Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Cryptographic API for algorithms (i.e., low-level API).
4 *
5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7#ifndef _CRYPTO_ALGAPI_H
8#define _CRYPTO_ALGAPI_H
9
10#include <linux/crypto.h>
11#include <linux/list.h>
12#include <linux/kernel.h>
13#include <linux/skbuff.h>
14
15/*
16 * Maximum values for blocksize and alignmask, used to allocate
17 * static buffers that are big enough for any combination of
18 * algs and architectures. Ciphers have a lower maximum size.
19 */
20#define MAX_ALGAPI_BLOCKSIZE 160
21#define MAX_ALGAPI_ALIGNMASK 63
22#define MAX_CIPHER_BLOCKSIZE 16
23#define MAX_CIPHER_ALIGNMASK 15
24
25struct crypto_aead;
26struct crypto_instance;
27struct module;
28struct rtattr;
29struct seq_file;
30
31struct crypto_type {
32 unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
33 unsigned int (*extsize)(struct crypto_alg *alg);
34 int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
35 int (*init_tfm)(struct crypto_tfm *tfm);
36 void (*show)(struct seq_file *m, struct crypto_alg *alg);
37 int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
38 void (*free)(struct crypto_instance *inst);
39
40 unsigned int type;
41 unsigned int maskclear;
42 unsigned int maskset;
43 unsigned int tfmsize;
44};
45
46struct crypto_instance {
47 struct crypto_alg alg;
48
49 struct crypto_template *tmpl;
50 struct hlist_node list;
51
52 void *__ctx[] CRYPTO_MINALIGN_ATTR;
53};
54
55struct crypto_template {
56 struct list_head list;
57 struct hlist_head instances;
58 struct module *module;
59
60 struct crypto_instance *(*alloc)(struct rtattr **tb);
61 void (*free)(struct crypto_instance *inst);
62 int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
63
64 char name[CRYPTO_MAX_ALG_NAME];
65};
66
67struct crypto_spawn {
68 struct list_head list;
69 struct crypto_alg *alg;
70 struct crypto_instance *inst;
71 const struct crypto_type *frontend;
72 u32 mask;
73};
74
75struct crypto_queue {
76 struct list_head list;
77 struct list_head *backlog;
78
79 unsigned int qlen;
80 unsigned int max_qlen;
81};
82
83struct scatter_walk {
84 struct scatterlist *sg;
85 unsigned int offset;
86};
87
88struct blkcipher_walk {
89 union {
90 struct {
91 struct page *page;
92 unsigned long offset;
93 } phys;
94
95 struct {
96 u8 *page;
97 u8 *addr;
98 } virt;
99 } src, dst;
100
101 struct scatter_walk in;
102 unsigned int nbytes;
103
104 struct scatter_walk out;
105 unsigned int total;
106
107 void *page;
108 u8 *buffer;
109 u8 *iv;
110 unsigned int ivsize;
111
112 int flags;
113 unsigned int walk_blocksize;
114 unsigned int cipher_blocksize;
115 unsigned int alignmask;
116};
117
118struct ablkcipher_walk {
119 struct {
120 struct page *page;
121 unsigned int offset;
122 } src, dst;
123
124 struct scatter_walk in;
125 unsigned int nbytes;
126 struct scatter_walk out;
127 unsigned int total;
128 struct list_head buffers;
129 u8 *iv_buffer;
130 u8 *iv;
131 int flags;
132 unsigned int blocksize;
133};
134
135extern const struct crypto_type crypto_ablkcipher_type;
136extern const struct crypto_type crypto_blkcipher_type;
137
138void crypto_mod_put(struct crypto_alg *alg);
139
140int crypto_register_template(struct crypto_template *tmpl);
141int crypto_register_templates(struct crypto_template *tmpls, int count);
142void crypto_unregister_template(struct crypto_template *tmpl);
143void crypto_unregister_templates(struct crypto_template *tmpls, int count);
144struct crypto_template *crypto_lookup_template(const char *name);
145
146int crypto_register_instance(struct crypto_template *tmpl,
147 struct crypto_instance *inst);
148int crypto_unregister_instance(struct crypto_instance *inst);
149
150int crypto_init_spawn(struct crypto_spawn *spawn, struct crypto_alg *alg,
151 struct crypto_instance *inst, u32 mask);
152int crypto_init_spawn2(struct crypto_spawn *spawn, struct crypto_alg *alg,
153 struct crypto_instance *inst,
154 const struct crypto_type *frontend);
155int crypto_grab_spawn(struct crypto_spawn *spawn, const char *name,
156 u32 type, u32 mask);
157
158void crypto_drop_spawn(struct crypto_spawn *spawn);
159struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
160 u32 mask);
161void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
162
163static inline void crypto_set_spawn(struct crypto_spawn *spawn,
164 struct crypto_instance *inst)
165{
166 spawn->inst = inst;
167}
168
169struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
170int crypto_check_attr_type(struct rtattr **tb, u32 type);
171const char *crypto_attr_alg_name(struct rtattr *rta);
172struct crypto_alg *crypto_attr_alg2(struct rtattr *rta,
173 const struct crypto_type *frontend,
174 u32 type, u32 mask);
175
176static inline struct crypto_alg *crypto_attr_alg(struct rtattr *rta,
177 u32 type, u32 mask)
178{
179 return crypto_attr_alg2(rta, NULL, type, mask);
180}
181
182int crypto_attr_u32(struct rtattr *rta, u32 *num);
183int crypto_inst_setname(struct crypto_instance *inst, const char *name,
184 struct crypto_alg *alg);
185void *crypto_alloc_instance(const char *name, struct crypto_alg *alg,
186 unsigned int head);
187
188void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
189int crypto_enqueue_request(struct crypto_queue *queue,
190 struct crypto_async_request *request);
191struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
192static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
193{
194 return queue->qlen;
195}
196
197void crypto_inc(u8 *a, unsigned int size);
198void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size);
199
200static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size)
201{
202 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
203 __builtin_constant_p(size) &&
204 (size % sizeof(unsigned long)) == 0) {
205 unsigned long *d = (unsigned long *)dst;
206 unsigned long *s = (unsigned long *)src;
207
208 while (size > 0) {
209 *d++ ^= *s++;
210 size -= sizeof(unsigned long);
211 }
212 } else {
213 __crypto_xor(dst, dst, src, size);
214 }
215}
216
217static inline void crypto_xor_cpy(u8 *dst, const u8 *src1, const u8 *src2,
218 unsigned int size)
219{
220 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
221 __builtin_constant_p(size) &&
222 (size % sizeof(unsigned long)) == 0) {
223 unsigned long *d = (unsigned long *)dst;
224 unsigned long *s1 = (unsigned long *)src1;
225 unsigned long *s2 = (unsigned long *)src2;
226
227 while (size > 0) {
228 *d++ = *s1++ ^ *s2++;
229 size -= sizeof(unsigned long);
230 }
231 } else {
232 __crypto_xor(dst, src1, src2, size);
233 }
234}
235
236int blkcipher_walk_done(struct blkcipher_desc *desc,
237 struct blkcipher_walk *walk, int err);
238int blkcipher_walk_virt(struct blkcipher_desc *desc,
239 struct blkcipher_walk *walk);
240int blkcipher_walk_phys(struct blkcipher_desc *desc,
241 struct blkcipher_walk *walk);
242int blkcipher_walk_virt_block(struct blkcipher_desc *desc,
243 struct blkcipher_walk *walk,
244 unsigned int blocksize);
245int blkcipher_aead_walk_virt_block(struct blkcipher_desc *desc,
246 struct blkcipher_walk *walk,
247 struct crypto_aead *tfm,
248 unsigned int blocksize);
249
250int ablkcipher_walk_done(struct ablkcipher_request *req,
251 struct ablkcipher_walk *walk, int err);
252int ablkcipher_walk_phys(struct ablkcipher_request *req,
253 struct ablkcipher_walk *walk);
254void __ablkcipher_walk_complete(struct ablkcipher_walk *walk);
255
256static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
257{
258 return PTR_ALIGN(crypto_tfm_ctx(tfm),
259 crypto_tfm_alg_alignmask(tfm) + 1);
260}
261
262static inline struct crypto_instance *crypto_tfm_alg_instance(
263 struct crypto_tfm *tfm)
264{
265 return container_of(tfm->__crt_alg, struct crypto_instance, alg);
266}
267
268static inline void *crypto_instance_ctx(struct crypto_instance *inst)
269{
270 return inst->__ctx;
271}
272
273static inline struct ablkcipher_alg *crypto_ablkcipher_alg(
274 struct crypto_ablkcipher *tfm)
275{
276 return &crypto_ablkcipher_tfm(tfm)->__crt_alg->cra_ablkcipher;
277}
278
279static inline void *crypto_ablkcipher_ctx(struct crypto_ablkcipher *tfm)
280{
281 return crypto_tfm_ctx(&tfm->base);
282}
283
284static inline void *crypto_ablkcipher_ctx_aligned(struct crypto_ablkcipher *tfm)
285{
286 return crypto_tfm_ctx_aligned(&tfm->base);
287}
288
289static inline struct crypto_blkcipher *crypto_spawn_blkcipher(
290 struct crypto_spawn *spawn)
291{
292 u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
293 u32 mask = CRYPTO_ALG_TYPE_MASK;
294
295 return __crypto_blkcipher_cast(crypto_spawn_tfm(spawn, type, mask));
296}
297
298static inline void *crypto_blkcipher_ctx(struct crypto_blkcipher *tfm)
299{
300 return crypto_tfm_ctx(&tfm->base);
301}
302
303static inline void *crypto_blkcipher_ctx_aligned(struct crypto_blkcipher *tfm)
304{
305 return crypto_tfm_ctx_aligned(&tfm->base);
306}
307
308static inline struct crypto_cipher *crypto_spawn_cipher(
309 struct crypto_spawn *spawn)
310{
311 u32 type = CRYPTO_ALG_TYPE_CIPHER;
312 u32 mask = CRYPTO_ALG_TYPE_MASK;
313
314 return __crypto_cipher_cast(crypto_spawn_tfm(spawn, type, mask));
315}
316
317static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm)
318{
319 return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher;
320}
321
322static inline void blkcipher_walk_init(struct blkcipher_walk *walk,
323 struct scatterlist *dst,
324 struct scatterlist *src,
325 unsigned int nbytes)
326{
327 walk->in.sg = src;
328 walk->out.sg = dst;
329 walk->total = nbytes;
330}
331
332static inline void ablkcipher_walk_init(struct ablkcipher_walk *walk,
333 struct scatterlist *dst,
334 struct scatterlist *src,
335 unsigned int nbytes)
336{
337 walk->in.sg = src;
338 walk->out.sg = dst;
339 walk->total = nbytes;
340 INIT_LIST_HEAD(&walk->buffers);
341}
342
343static inline void ablkcipher_walk_complete(struct ablkcipher_walk *walk)
344{
345 if (unlikely(!list_empty(&walk->buffers)))
346 __ablkcipher_walk_complete(walk);
347}
348
349static inline struct crypto_async_request *crypto_get_backlog(
350 struct crypto_queue *queue)
351{
352 return queue->backlog == &queue->list ? NULL :
353 container_of(queue->backlog, struct crypto_async_request, list);
354}
355
356static inline int ablkcipher_enqueue_request(struct crypto_queue *queue,
357 struct ablkcipher_request *request)
358{
359 return crypto_enqueue_request(queue, &request->base);
360}
361
362static inline struct ablkcipher_request *ablkcipher_dequeue_request(
363 struct crypto_queue *queue)
364{
365 return ablkcipher_request_cast(crypto_dequeue_request(queue));
366}
367
368static inline void *ablkcipher_request_ctx(struct ablkcipher_request *req)
369{
370 return req->__ctx;
371}
372
373static inline struct crypto_alg *crypto_get_attr_alg(struct rtattr **tb,
374 u32 type, u32 mask)
375{
376 return crypto_attr_alg(tb[1], type, mask);
377}
378
379static inline int crypto_requires_off(u32 type, u32 mask, u32 off)
380{
381 return (type ^ off) & mask & off;
382}
383
384/*
385 * Returns CRYPTO_ALG_ASYNC if type/mask requires the use of sync algorithms.
386 * Otherwise returns zero.
387 */
388static inline int crypto_requires_sync(u32 type, u32 mask)
389{
390 return crypto_requires_off(type, mask, CRYPTO_ALG_ASYNC);
391}
392
393noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
394
395/**
396 * crypto_memneq - Compare two areas of memory without leaking
397 * timing information.
398 *
399 * @a: One area of memory
400 * @b: Another area of memory
401 * @size: The size of the area.
402 *
403 * Returns 0 when data is equal, 1 otherwise.
404 */
405static inline int crypto_memneq(const void *a, const void *b, size_t size)
406{
407 return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
408}
409
410static inline void crypto_yield(u32 flags)
411{
412 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP)
413 cond_resched();
414}
415
416int crypto_register_notifier(struct notifier_block *nb);
417int crypto_unregister_notifier(struct notifier_block *nb);
418
419/* Crypto notification events. */
420enum {
421 CRYPTO_MSG_ALG_REQUEST,
422 CRYPTO_MSG_ALG_REGISTER,
423 CRYPTO_MSG_ALG_LOADED,
424};
425
426#endif /* _CRYPTO_ALGAPI_H */
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Cryptographic API for algorithms (i.e., low-level API).
4 *
5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7#ifndef _CRYPTO_ALGAPI_H
8#define _CRYPTO_ALGAPI_H
9
10#include <linux/crypto.h>
11#include <linux/list.h>
12#include <linux/kernel.h>
13
14/*
15 * Maximum values for blocksize and alignmask, used to allocate
16 * static buffers that are big enough for any combination of
17 * algs and architectures. Ciphers have a lower maximum size.
18 */
19#define MAX_ALGAPI_BLOCKSIZE 160
20#define MAX_ALGAPI_ALIGNMASK 63
21#define MAX_CIPHER_BLOCKSIZE 16
22#define MAX_CIPHER_ALIGNMASK 15
23
24struct crypto_aead;
25struct crypto_instance;
26struct module;
27struct rtattr;
28struct seq_file;
29struct sk_buff;
30
31struct crypto_type {
32 unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
33 unsigned int (*extsize)(struct crypto_alg *alg);
34 int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
35 int (*init_tfm)(struct crypto_tfm *tfm);
36 void (*show)(struct seq_file *m, struct crypto_alg *alg);
37 int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
38 void (*free)(struct crypto_instance *inst);
39
40 unsigned int type;
41 unsigned int maskclear;
42 unsigned int maskset;
43 unsigned int tfmsize;
44};
45
46struct crypto_instance {
47 struct crypto_alg alg;
48
49 struct crypto_template *tmpl;
50
51 union {
52 /* Node in list of instances after registration. */
53 struct hlist_node list;
54 /* List of attached spawns before registration. */
55 struct crypto_spawn *spawns;
56 };
57
58 void *__ctx[] CRYPTO_MINALIGN_ATTR;
59};
60
61struct crypto_template {
62 struct list_head list;
63 struct hlist_head instances;
64 struct module *module;
65
66 int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
67
68 char name[CRYPTO_MAX_ALG_NAME];
69};
70
71struct crypto_spawn {
72 struct list_head list;
73 struct crypto_alg *alg;
74 union {
75 /* Back pointer to instance after registration.*/
76 struct crypto_instance *inst;
77 /* Spawn list pointer prior to registration. */
78 struct crypto_spawn *next;
79 };
80 const struct crypto_type *frontend;
81 u32 mask;
82 bool dead;
83 bool registered;
84};
85
86struct crypto_queue {
87 struct list_head list;
88 struct list_head *backlog;
89
90 unsigned int qlen;
91 unsigned int max_qlen;
92};
93
94struct scatter_walk {
95 struct scatterlist *sg;
96 unsigned int offset;
97};
98
99struct crypto_attr_alg {
100 char name[CRYPTO_MAX_ALG_NAME];
101};
102
103struct crypto_attr_type {
104 u32 type;
105 u32 mask;
106};
107
108void crypto_mod_put(struct crypto_alg *alg);
109
110int crypto_register_template(struct crypto_template *tmpl);
111int crypto_register_templates(struct crypto_template *tmpls, int count);
112void crypto_unregister_template(struct crypto_template *tmpl);
113void crypto_unregister_templates(struct crypto_template *tmpls, int count);
114struct crypto_template *crypto_lookup_template(const char *name);
115
116int crypto_register_instance(struct crypto_template *tmpl,
117 struct crypto_instance *inst);
118void crypto_unregister_instance(struct crypto_instance *inst);
119
120int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst,
121 const char *name, u32 type, u32 mask);
122void crypto_drop_spawn(struct crypto_spawn *spawn);
123struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
124 u32 mask);
125void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
126
127struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
128int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret);
129const char *crypto_attr_alg_name(struct rtattr *rta);
130int crypto_inst_setname(struct crypto_instance *inst, const char *name,
131 struct crypto_alg *alg);
132
133void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
134int crypto_enqueue_request(struct crypto_queue *queue,
135 struct crypto_async_request *request);
136void crypto_enqueue_request_head(struct crypto_queue *queue,
137 struct crypto_async_request *request);
138struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
139static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
140{
141 return queue->qlen;
142}
143
144void crypto_inc(u8 *a, unsigned int size);
145void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size);
146
147static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size)
148{
149 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
150 __builtin_constant_p(size) &&
151 (size % sizeof(unsigned long)) == 0) {
152 unsigned long *d = (unsigned long *)dst;
153 unsigned long *s = (unsigned long *)src;
154
155 while (size > 0) {
156 *d++ ^= *s++;
157 size -= sizeof(unsigned long);
158 }
159 } else {
160 __crypto_xor(dst, dst, src, size);
161 }
162}
163
164static inline void crypto_xor_cpy(u8 *dst, const u8 *src1, const u8 *src2,
165 unsigned int size)
166{
167 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
168 __builtin_constant_p(size) &&
169 (size % sizeof(unsigned long)) == 0) {
170 unsigned long *d = (unsigned long *)dst;
171 unsigned long *s1 = (unsigned long *)src1;
172 unsigned long *s2 = (unsigned long *)src2;
173
174 while (size > 0) {
175 *d++ = *s1++ ^ *s2++;
176 size -= sizeof(unsigned long);
177 }
178 } else {
179 __crypto_xor(dst, src1, src2, size);
180 }
181}
182
183static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
184{
185 return PTR_ALIGN(crypto_tfm_ctx(tfm),
186 crypto_tfm_alg_alignmask(tfm) + 1);
187}
188
189static inline struct crypto_instance *crypto_tfm_alg_instance(
190 struct crypto_tfm *tfm)
191{
192 return container_of(tfm->__crt_alg, struct crypto_instance, alg);
193}
194
195static inline void *crypto_instance_ctx(struct crypto_instance *inst)
196{
197 return inst->__ctx;
198}
199
200static inline struct crypto_async_request *crypto_get_backlog(
201 struct crypto_queue *queue)
202{
203 return queue->backlog == &queue->list ? NULL :
204 container_of(queue->backlog, struct crypto_async_request, list);
205}
206
207static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off)
208{
209 return (algt->type ^ off) & algt->mask & off;
210}
211
212/*
213 * When an algorithm uses another algorithm (e.g., if it's an instance of a
214 * template), these are the flags that should always be set on the "outer"
215 * algorithm if any "inner" algorithm has them set.
216 */
217#define CRYPTO_ALG_INHERITED_FLAGS \
218 (CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | \
219 CRYPTO_ALG_ALLOCATES_MEMORY)
220
221/*
222 * Given the type and mask that specify the flags restrictions on a template
223 * instance being created, return the mask that should be passed to
224 * crypto_grab_*() (along with type=0) to honor any request the user made to
225 * have any of the CRYPTO_ALG_INHERITED_FLAGS clear.
226 */
227static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt)
228{
229 return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS);
230}
231
232noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
233
234/**
235 * crypto_memneq - Compare two areas of memory without leaking
236 * timing information.
237 *
238 * @a: One area of memory
239 * @b: Another area of memory
240 * @size: The size of the area.
241 *
242 * Returns 0 when data is equal, 1 otherwise.
243 */
244static inline int crypto_memneq(const void *a, const void *b, size_t size)
245{
246 return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
247}
248
249int crypto_register_notifier(struct notifier_block *nb);
250int crypto_unregister_notifier(struct notifier_block *nb);
251
252/* Crypto notification events. */
253enum {
254 CRYPTO_MSG_ALG_REQUEST,
255 CRYPTO_MSG_ALG_REGISTER,
256 CRYPTO_MSG_ALG_LOADED,
257};
258
259#endif /* _CRYPTO_ALGAPI_H */