Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
4 * Copyright (C) 2015 Broadcom Corporation
5 */
6
7#include <linux/kernel.h>
8#include <linux/pci.h>
9#include <linux/msi.h>
10#include <linux/clk.h>
11#include <linux/module.h>
12#include <linux/mbus.h>
13#include <linux/slab.h>
14#include <linux/delay.h>
15#include <linux/interrupt.h>
16#include <linux/irqchip/arm-gic-v3.h>
17#include <linux/platform_device.h>
18#include <linux/of_address.h>
19#include <linux/of_pci.h>
20#include <linux/of_irq.h>
21#include <linux/of_platform.h>
22#include <linux/phy/phy.h>
23
24#include "pcie-iproc.h"
25
26#define EP_PERST_SOURCE_SELECT_SHIFT 2
27#define EP_PERST_SOURCE_SELECT BIT(EP_PERST_SOURCE_SELECT_SHIFT)
28#define EP_MODE_SURVIVE_PERST_SHIFT 1
29#define EP_MODE_SURVIVE_PERST BIT(EP_MODE_SURVIVE_PERST_SHIFT)
30#define RC_PCIE_RST_OUTPUT_SHIFT 0
31#define RC_PCIE_RST_OUTPUT BIT(RC_PCIE_RST_OUTPUT_SHIFT)
32#define PAXC_RESET_MASK 0x7f
33
34#define GIC_V3_CFG_SHIFT 0
35#define GIC_V3_CFG BIT(GIC_V3_CFG_SHIFT)
36
37#define MSI_ENABLE_CFG_SHIFT 0
38#define MSI_ENABLE_CFG BIT(MSI_ENABLE_CFG_SHIFT)
39
40#define CFG_IND_ADDR_MASK 0x00001ffc
41
42#define CFG_ADDR_BUS_NUM_SHIFT 20
43#define CFG_ADDR_BUS_NUM_MASK 0x0ff00000
44#define CFG_ADDR_DEV_NUM_SHIFT 15
45#define CFG_ADDR_DEV_NUM_MASK 0x000f8000
46#define CFG_ADDR_FUNC_NUM_SHIFT 12
47#define CFG_ADDR_FUNC_NUM_MASK 0x00007000
48#define CFG_ADDR_REG_NUM_SHIFT 2
49#define CFG_ADDR_REG_NUM_MASK 0x00000ffc
50#define CFG_ADDR_CFG_TYPE_SHIFT 0
51#define CFG_ADDR_CFG_TYPE_MASK 0x00000003
52
53#define SYS_RC_INTX_MASK 0xf
54
55#define PCIE_PHYLINKUP_SHIFT 3
56#define PCIE_PHYLINKUP BIT(PCIE_PHYLINKUP_SHIFT)
57#define PCIE_DL_ACTIVE_SHIFT 2
58#define PCIE_DL_ACTIVE BIT(PCIE_DL_ACTIVE_SHIFT)
59
60#define APB_ERR_EN_SHIFT 0
61#define APB_ERR_EN BIT(APB_ERR_EN_SHIFT)
62
63#define CFG_RD_SUCCESS 0
64#define CFG_RD_UR 1
65#define CFG_RD_CRS 2
66#define CFG_RD_CA 3
67#define CFG_RETRY_STATUS 0xffff0001
68#define CFG_RETRY_STATUS_TIMEOUT_US 500000 /* 500 milliseconds */
69
70/* derive the enum index of the outbound/inbound mapping registers */
71#define MAP_REG(base_reg, index) ((base_reg) + (index) * 2)
72
73/*
74 * Maximum number of outbound mapping window sizes that can be supported by any
75 * OARR/OMAP mapping pair
76 */
77#define MAX_NUM_OB_WINDOW_SIZES 4
78
79#define OARR_VALID_SHIFT 0
80#define OARR_VALID BIT(OARR_VALID_SHIFT)
81#define OARR_SIZE_CFG_SHIFT 1
82
83/*
84 * Maximum number of inbound mapping region sizes that can be supported by an
85 * IARR
86 */
87#define MAX_NUM_IB_REGION_SIZES 9
88
89#define IMAP_VALID_SHIFT 0
90#define IMAP_VALID BIT(IMAP_VALID_SHIFT)
91
92#define IPROC_PCI_PM_CAP 0x48
93#define IPROC_PCI_PM_CAP_MASK 0xffff
94#define IPROC_PCI_EXP_CAP 0xac
95
96#define IPROC_PCIE_REG_INVALID 0xffff
97
98/**
99 * iProc PCIe outbound mapping controller specific parameters
100 *
101 * @window_sizes: list of supported outbound mapping window sizes in MB
102 * @nr_sizes: number of supported outbound mapping window sizes
103 */
104struct iproc_pcie_ob_map {
105 resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
106 unsigned int nr_sizes;
107};
108
109static const struct iproc_pcie_ob_map paxb_ob_map[] = {
110 {
111 /* OARR0/OMAP0 */
112 .window_sizes = { 128, 256 },
113 .nr_sizes = 2,
114 },
115 {
116 /* OARR1/OMAP1 */
117 .window_sizes = { 128, 256 },
118 .nr_sizes = 2,
119 },
120};
121
122static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
123 {
124 /* OARR0/OMAP0 */
125 .window_sizes = { 128, 256 },
126 .nr_sizes = 2,
127 },
128 {
129 /* OARR1/OMAP1 */
130 .window_sizes = { 128, 256 },
131 .nr_sizes = 2,
132 },
133 {
134 /* OARR2/OMAP2 */
135 .window_sizes = { 128, 256, 512, 1024 },
136 .nr_sizes = 4,
137 },
138 {
139 /* OARR3/OMAP3 */
140 .window_sizes = { 128, 256, 512, 1024 },
141 .nr_sizes = 4,
142 },
143};
144
145/**
146 * iProc PCIe inbound mapping type
147 */
148enum iproc_pcie_ib_map_type {
149 /* for DDR memory */
150 IPROC_PCIE_IB_MAP_MEM = 0,
151
152 /* for device I/O memory */
153 IPROC_PCIE_IB_MAP_IO,
154
155 /* invalid or unused */
156 IPROC_PCIE_IB_MAP_INVALID
157};
158
159/**
160 * iProc PCIe inbound mapping controller specific parameters
161 *
162 * @type: inbound mapping region type
163 * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
164 * SZ_1G
165 * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
166 * GB, depending on the size unit
167 * @nr_sizes: number of supported inbound mapping region sizes
168 * @nr_windows: number of supported inbound mapping windows for the region
169 * @imap_addr_offset: register offset between the upper and lower 32-bit
170 * IMAP address registers
171 * @imap_window_offset: register offset between each IMAP window
172 */
173struct iproc_pcie_ib_map {
174 enum iproc_pcie_ib_map_type type;
175 unsigned int size_unit;
176 resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
177 unsigned int nr_sizes;
178 unsigned int nr_windows;
179 u16 imap_addr_offset;
180 u16 imap_window_offset;
181};
182
183static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
184 {
185 /* IARR0/IMAP0 */
186 .type = IPROC_PCIE_IB_MAP_IO,
187 .size_unit = SZ_1K,
188 .region_sizes = { 32 },
189 .nr_sizes = 1,
190 .nr_windows = 8,
191 .imap_addr_offset = 0x40,
192 .imap_window_offset = 0x4,
193 },
194 {
195 /* IARR1/IMAP1 (currently unused) */
196 .type = IPROC_PCIE_IB_MAP_INVALID,
197 },
198 {
199 /* IARR2/IMAP2 */
200 .type = IPROC_PCIE_IB_MAP_MEM,
201 .size_unit = SZ_1M,
202 .region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
203 16384 },
204 .nr_sizes = 9,
205 .nr_windows = 1,
206 .imap_addr_offset = 0x4,
207 .imap_window_offset = 0x8,
208 },
209 {
210 /* IARR3/IMAP3 */
211 .type = IPROC_PCIE_IB_MAP_MEM,
212 .size_unit = SZ_1G,
213 .region_sizes = { 1, 2, 4, 8, 16, 32 },
214 .nr_sizes = 6,
215 .nr_windows = 8,
216 .imap_addr_offset = 0x4,
217 .imap_window_offset = 0x8,
218 },
219 {
220 /* IARR4/IMAP4 */
221 .type = IPROC_PCIE_IB_MAP_MEM,
222 .size_unit = SZ_1G,
223 .region_sizes = { 32, 64, 128, 256, 512 },
224 .nr_sizes = 5,
225 .nr_windows = 8,
226 .imap_addr_offset = 0x4,
227 .imap_window_offset = 0x8,
228 },
229};
230
231/*
232 * iProc PCIe host registers
233 */
234enum iproc_pcie_reg {
235 /* clock/reset signal control */
236 IPROC_PCIE_CLK_CTRL = 0,
237
238 /*
239 * To allow MSI to be steered to an external MSI controller (e.g., ARM
240 * GICv3 ITS)
241 */
242 IPROC_PCIE_MSI_GIC_MODE,
243
244 /*
245 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
246 * window where the MSI posted writes are written, for the writes to be
247 * interpreted as MSI writes.
248 */
249 IPROC_PCIE_MSI_BASE_ADDR,
250 IPROC_PCIE_MSI_WINDOW_SIZE,
251
252 /*
253 * To hold the address of the register where the MSI writes are
254 * programed. When ARM GICv3 ITS is used, this should be programmed
255 * with the address of the GITS_TRANSLATER register.
256 */
257 IPROC_PCIE_MSI_ADDR_LO,
258 IPROC_PCIE_MSI_ADDR_HI,
259
260 /* enable MSI */
261 IPROC_PCIE_MSI_EN_CFG,
262
263 /* allow access to root complex configuration space */
264 IPROC_PCIE_CFG_IND_ADDR,
265 IPROC_PCIE_CFG_IND_DATA,
266
267 /* allow access to device configuration space */
268 IPROC_PCIE_CFG_ADDR,
269 IPROC_PCIE_CFG_DATA,
270
271 /* enable INTx */
272 IPROC_PCIE_INTX_EN,
273
274 /* outbound address mapping */
275 IPROC_PCIE_OARR0,
276 IPROC_PCIE_OMAP0,
277 IPROC_PCIE_OARR1,
278 IPROC_PCIE_OMAP1,
279 IPROC_PCIE_OARR2,
280 IPROC_PCIE_OMAP2,
281 IPROC_PCIE_OARR3,
282 IPROC_PCIE_OMAP3,
283
284 /* inbound address mapping */
285 IPROC_PCIE_IARR0,
286 IPROC_PCIE_IMAP0,
287 IPROC_PCIE_IARR1,
288 IPROC_PCIE_IMAP1,
289 IPROC_PCIE_IARR2,
290 IPROC_PCIE_IMAP2,
291 IPROC_PCIE_IARR3,
292 IPROC_PCIE_IMAP3,
293 IPROC_PCIE_IARR4,
294 IPROC_PCIE_IMAP4,
295
296 /* config read status */
297 IPROC_PCIE_CFG_RD_STATUS,
298
299 /* link status */
300 IPROC_PCIE_LINK_STATUS,
301
302 /* enable APB error for unsupported requests */
303 IPROC_PCIE_APB_ERR_EN,
304
305 /* total number of core registers */
306 IPROC_PCIE_MAX_NUM_REG,
307};
308
309/* iProc PCIe PAXB BCMA registers */
310static const u16 iproc_pcie_reg_paxb_bcma[] = {
311 [IPROC_PCIE_CLK_CTRL] = 0x000,
312 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
313 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
314 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
315 [IPROC_PCIE_CFG_DATA] = 0x1fc,
316 [IPROC_PCIE_INTX_EN] = 0x330,
317 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
318};
319
320/* iProc PCIe PAXB registers */
321static const u16 iproc_pcie_reg_paxb[] = {
322 [IPROC_PCIE_CLK_CTRL] = 0x000,
323 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
324 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
325 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
326 [IPROC_PCIE_CFG_DATA] = 0x1fc,
327 [IPROC_PCIE_INTX_EN] = 0x330,
328 [IPROC_PCIE_OARR0] = 0xd20,
329 [IPROC_PCIE_OMAP0] = 0xd40,
330 [IPROC_PCIE_OARR1] = 0xd28,
331 [IPROC_PCIE_OMAP1] = 0xd48,
332 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
333 [IPROC_PCIE_APB_ERR_EN] = 0xf40,
334};
335
336/* iProc PCIe PAXB v2 registers */
337static const u16 iproc_pcie_reg_paxb_v2[] = {
338 [IPROC_PCIE_CLK_CTRL] = 0x000,
339 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
340 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
341 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
342 [IPROC_PCIE_CFG_DATA] = 0x1fc,
343 [IPROC_PCIE_INTX_EN] = 0x330,
344 [IPROC_PCIE_OARR0] = 0xd20,
345 [IPROC_PCIE_OMAP0] = 0xd40,
346 [IPROC_PCIE_OARR1] = 0xd28,
347 [IPROC_PCIE_OMAP1] = 0xd48,
348 [IPROC_PCIE_OARR2] = 0xd60,
349 [IPROC_PCIE_OMAP2] = 0xd68,
350 [IPROC_PCIE_OARR3] = 0xdf0,
351 [IPROC_PCIE_OMAP3] = 0xdf8,
352 [IPROC_PCIE_IARR0] = 0xd00,
353 [IPROC_PCIE_IMAP0] = 0xc00,
354 [IPROC_PCIE_IARR2] = 0xd10,
355 [IPROC_PCIE_IMAP2] = 0xcc0,
356 [IPROC_PCIE_IARR3] = 0xe00,
357 [IPROC_PCIE_IMAP3] = 0xe08,
358 [IPROC_PCIE_IARR4] = 0xe68,
359 [IPROC_PCIE_IMAP4] = 0xe70,
360 [IPROC_PCIE_CFG_RD_STATUS] = 0xee0,
361 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
362 [IPROC_PCIE_APB_ERR_EN] = 0xf40,
363};
364
365/* iProc PCIe PAXC v1 registers */
366static const u16 iproc_pcie_reg_paxc[] = {
367 [IPROC_PCIE_CLK_CTRL] = 0x000,
368 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
369 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
370 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
371 [IPROC_PCIE_CFG_DATA] = 0x1fc,
372};
373
374/* iProc PCIe PAXC v2 registers */
375static const u16 iproc_pcie_reg_paxc_v2[] = {
376 [IPROC_PCIE_MSI_GIC_MODE] = 0x050,
377 [IPROC_PCIE_MSI_BASE_ADDR] = 0x074,
378 [IPROC_PCIE_MSI_WINDOW_SIZE] = 0x078,
379 [IPROC_PCIE_MSI_ADDR_LO] = 0x07c,
380 [IPROC_PCIE_MSI_ADDR_HI] = 0x080,
381 [IPROC_PCIE_MSI_EN_CFG] = 0x09c,
382 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
383 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
384 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
385 [IPROC_PCIE_CFG_DATA] = 0x1fc,
386};
387
388/*
389 * List of device IDs of controllers that have corrupted capability list that
390 * require SW fixup
391 */
392static const u16 iproc_pcie_corrupt_cap_did[] = {
393 0x16cd,
394 0x16f0,
395 0xd802,
396 0xd804
397};
398
399static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
400{
401 struct iproc_pcie *pcie = bus->sysdata;
402 return pcie;
403}
404
405static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
406{
407 return !!(reg_offset == IPROC_PCIE_REG_INVALID);
408}
409
410static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
411 enum iproc_pcie_reg reg)
412{
413 return pcie->reg_offsets[reg];
414}
415
416static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
417 enum iproc_pcie_reg reg)
418{
419 u16 offset = iproc_pcie_reg_offset(pcie, reg);
420
421 if (iproc_pcie_reg_is_invalid(offset))
422 return 0;
423
424 return readl(pcie->base + offset);
425}
426
427static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
428 enum iproc_pcie_reg reg, u32 val)
429{
430 u16 offset = iproc_pcie_reg_offset(pcie, reg);
431
432 if (iproc_pcie_reg_is_invalid(offset))
433 return;
434
435 writel(val, pcie->base + offset);
436}
437
438/**
439 * APB error forwarding can be disabled during access of configuration
440 * registers of the endpoint device, to prevent unsupported requests
441 * (typically seen during enumeration with multi-function devices) from
442 * triggering a system exception.
443 */
444static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
445 bool disable)
446{
447 struct iproc_pcie *pcie = iproc_data(bus);
448 u32 val;
449
450 if (bus->number && pcie->has_apb_err_disable) {
451 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
452 if (disable)
453 val &= ~APB_ERR_EN;
454 else
455 val |= APB_ERR_EN;
456 iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
457 }
458}
459
460static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
461 unsigned int busno,
462 unsigned int slot,
463 unsigned int fn,
464 int where)
465{
466 u16 offset;
467 u32 val;
468
469 /* EP device access */
470 val = (busno << CFG_ADDR_BUS_NUM_SHIFT) |
471 (slot << CFG_ADDR_DEV_NUM_SHIFT) |
472 (fn << CFG_ADDR_FUNC_NUM_SHIFT) |
473 (where & CFG_ADDR_REG_NUM_MASK) |
474 (1 & CFG_ADDR_CFG_TYPE_MASK);
475
476 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
477 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
478
479 if (iproc_pcie_reg_is_invalid(offset))
480 return NULL;
481
482 return (pcie->base + offset);
483}
484
485static unsigned int iproc_pcie_cfg_retry(struct iproc_pcie *pcie,
486 void __iomem *cfg_data_p)
487{
488 int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
489 unsigned int data;
490 u32 status;
491
492 /*
493 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
494 * affects config reads of the Vendor ID. For config writes or any
495 * other config reads, the Root may automatically reissue the
496 * configuration request again as a new request.
497 *
498 * For config reads, this hardware returns CFG_RETRY_STATUS data
499 * when it receives a CRS completion, regardless of the address of
500 * the read or the CRS Software Visibility Enable bit. As a
501 * partial workaround for this, we retry in software any read that
502 * returns CFG_RETRY_STATUS.
503 *
504 * Note that a non-Vendor ID config register may have a value of
505 * CFG_RETRY_STATUS. If we read that, we can't distinguish it from
506 * a CRS completion, so we will incorrectly retry the read and
507 * eventually return the wrong data (0xffffffff).
508 */
509 data = readl(cfg_data_p);
510 while (data == CFG_RETRY_STATUS && timeout--) {
511 /*
512 * CRS state is set in CFG_RD status register
513 * This will handle the case where CFG_RETRY_STATUS is
514 * valid config data.
515 */
516 status = iproc_pcie_read_reg(pcie, IPROC_PCIE_CFG_RD_STATUS);
517 if (status != CFG_RD_CRS)
518 return data;
519
520 udelay(1);
521 data = readl(cfg_data_p);
522 }
523
524 if (data == CFG_RETRY_STATUS)
525 data = 0xffffffff;
526
527 return data;
528}
529
530static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val)
531{
532 u32 i, dev_id;
533
534 switch (where & ~0x3) {
535 case PCI_VENDOR_ID:
536 dev_id = *val >> 16;
537
538 /*
539 * Activate fixup for those controllers that have corrupted
540 * capability list registers
541 */
542 for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++)
543 if (dev_id == iproc_pcie_corrupt_cap_did[i])
544 pcie->fix_paxc_cap = true;
545 break;
546
547 case IPROC_PCI_PM_CAP:
548 if (pcie->fix_paxc_cap) {
549 /* advertise PM, force next capability to PCIe */
550 *val &= ~IPROC_PCI_PM_CAP_MASK;
551 *val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM;
552 }
553 break;
554
555 case IPROC_PCI_EXP_CAP:
556 if (pcie->fix_paxc_cap) {
557 /* advertise root port, version 2, terminate here */
558 *val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 |
559 PCI_CAP_ID_EXP;
560 }
561 break;
562
563 case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL:
564 /* Don't advertise CRS SV support */
565 *val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
566 break;
567
568 default:
569 break;
570 }
571}
572
573static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
574 int where, int size, u32 *val)
575{
576 struct iproc_pcie *pcie = iproc_data(bus);
577 unsigned int slot = PCI_SLOT(devfn);
578 unsigned int fn = PCI_FUNC(devfn);
579 unsigned int busno = bus->number;
580 void __iomem *cfg_data_p;
581 unsigned int data;
582 int ret;
583
584 /* root complex access */
585 if (busno == 0) {
586 ret = pci_generic_config_read32(bus, devfn, where, size, val);
587 if (ret == PCIBIOS_SUCCESSFUL)
588 iproc_pcie_fix_cap(pcie, where, val);
589
590 return ret;
591 }
592
593 cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
594
595 if (!cfg_data_p)
596 return PCIBIOS_DEVICE_NOT_FOUND;
597
598 data = iproc_pcie_cfg_retry(pcie, cfg_data_p);
599
600 *val = data;
601 if (size <= 2)
602 *val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
603
604 /*
605 * For PAXC and PAXCv2, the total number of PFs that one can enumerate
606 * depends on the firmware configuration. Unfortunately, due to an ASIC
607 * bug, unconfigured PFs cannot be properly hidden from the root
608 * complex. As a result, write access to these PFs will cause bus lock
609 * up on the embedded processor
610 *
611 * Since all unconfigured PFs are left with an incorrect, staled device
612 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access
613 * early here and reject them all
614 */
615#define DEVICE_ID_MASK 0xffff0000
616#define DEVICE_ID_SHIFT 16
617 if (pcie->rej_unconfig_pf &&
618 (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID)
619 if ((*val & DEVICE_ID_MASK) ==
620 (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT))
621 return PCIBIOS_FUNC_NOT_SUPPORTED;
622
623 return PCIBIOS_SUCCESSFUL;
624}
625
626/**
627 * Note access to the configuration registers are protected at the higher layer
628 * by 'pci_lock' in drivers/pci/access.c
629 */
630static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
631 int busno, unsigned int devfn,
632 int where)
633{
634 unsigned slot = PCI_SLOT(devfn);
635 unsigned fn = PCI_FUNC(devfn);
636 u16 offset;
637
638 /* root complex access */
639 if (busno == 0) {
640 if (slot > 0 || fn > 0)
641 return NULL;
642
643 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
644 where & CFG_IND_ADDR_MASK);
645 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
646 if (iproc_pcie_reg_is_invalid(offset))
647 return NULL;
648 else
649 return (pcie->base + offset);
650 }
651
652 return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
653}
654
655static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
656 unsigned int devfn,
657 int where)
658{
659 return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
660 where);
661}
662
663static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
664 unsigned int devfn, int where,
665 int size, u32 *val)
666{
667 void __iomem *addr;
668
669 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
670 if (!addr) {
671 *val = ~0;
672 return PCIBIOS_DEVICE_NOT_FOUND;
673 }
674
675 *val = readl(addr);
676
677 if (size <= 2)
678 *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
679
680 return PCIBIOS_SUCCESSFUL;
681}
682
683static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
684 unsigned int devfn, int where,
685 int size, u32 val)
686{
687 void __iomem *addr;
688 u32 mask, tmp;
689
690 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
691 if (!addr)
692 return PCIBIOS_DEVICE_NOT_FOUND;
693
694 if (size == 4) {
695 writel(val, addr);
696 return PCIBIOS_SUCCESSFUL;
697 }
698
699 mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
700 tmp = readl(addr) & mask;
701 tmp |= val << ((where & 0x3) * 8);
702 writel(tmp, addr);
703
704 return PCIBIOS_SUCCESSFUL;
705}
706
707static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
708 int where, int size, u32 *val)
709{
710 int ret;
711 struct iproc_pcie *pcie = iproc_data(bus);
712
713 iproc_pcie_apb_err_disable(bus, true);
714 if (pcie->iproc_cfg_read)
715 ret = iproc_pcie_config_read(bus, devfn, where, size, val);
716 else
717 ret = pci_generic_config_read32(bus, devfn, where, size, val);
718 iproc_pcie_apb_err_disable(bus, false);
719
720 return ret;
721}
722
723static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
724 int where, int size, u32 val)
725{
726 int ret;
727
728 iproc_pcie_apb_err_disable(bus, true);
729 ret = pci_generic_config_write32(bus, devfn, where, size, val);
730 iproc_pcie_apb_err_disable(bus, false);
731
732 return ret;
733}
734
735static struct pci_ops iproc_pcie_ops = {
736 .map_bus = iproc_pcie_bus_map_cfg_bus,
737 .read = iproc_pcie_config_read32,
738 .write = iproc_pcie_config_write32,
739};
740
741static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
742{
743 u32 val;
744
745 /*
746 * PAXC and the internal emulated endpoint device downstream should not
747 * be reset. If firmware has been loaded on the endpoint device at an
748 * earlier boot stage, reset here causes issues.
749 */
750 if (pcie->ep_is_internal)
751 return;
752
753 if (assert) {
754 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
755 val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
756 ~RC_PCIE_RST_OUTPUT;
757 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
758 udelay(250);
759 } else {
760 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
761 val |= RC_PCIE_RST_OUTPUT;
762 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
763 msleep(100);
764 }
765}
766
767int iproc_pcie_shutdown(struct iproc_pcie *pcie)
768{
769 iproc_pcie_perst_ctrl(pcie, true);
770 msleep(500);
771
772 return 0;
773}
774EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
775
776static int iproc_pcie_check_link(struct iproc_pcie *pcie)
777{
778 struct device *dev = pcie->dev;
779 u32 hdr_type, link_ctrl, link_status, class, val;
780 bool link_is_active = false;
781
782 /*
783 * PAXC connects to emulated endpoint devices directly and does not
784 * have a Serdes. Therefore skip the link detection logic here.
785 */
786 if (pcie->ep_is_internal)
787 return 0;
788
789 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
790 if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
791 dev_err(dev, "PHY or data link is INACTIVE!\n");
792 return -ENODEV;
793 }
794
795 /* make sure we are not in EP mode */
796 iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
797 if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
798 dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
799 return -EFAULT;
800 }
801
802 /* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */
803#define PCI_BRIDGE_CTRL_REG_OFFSET 0x43c
804#define PCI_CLASS_BRIDGE_MASK 0xffff00
805#define PCI_CLASS_BRIDGE_SHIFT 8
806 iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
807 4, &class);
808 class &= ~PCI_CLASS_BRIDGE_MASK;
809 class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT);
810 iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
811 4, class);
812
813 /* check link status to see if link is active */
814 iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
815 2, &link_status);
816 if (link_status & PCI_EXP_LNKSTA_NLW)
817 link_is_active = true;
818
819 if (!link_is_active) {
820 /* try GEN 1 link speed */
821#define PCI_TARGET_LINK_SPEED_MASK 0xf
822#define PCI_TARGET_LINK_SPEED_GEN2 0x2
823#define PCI_TARGET_LINK_SPEED_GEN1 0x1
824 iproc_pci_raw_config_read32(pcie, 0,
825 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
826 4, &link_ctrl);
827 if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
828 PCI_TARGET_LINK_SPEED_GEN2) {
829 link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
830 link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
831 iproc_pci_raw_config_write32(pcie, 0,
832 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
833 4, link_ctrl);
834 msleep(100);
835
836 iproc_pci_raw_config_read32(pcie, 0,
837 IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
838 2, &link_status);
839 if (link_status & PCI_EXP_LNKSTA_NLW)
840 link_is_active = true;
841 }
842 }
843
844 dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
845
846 return link_is_active ? 0 : -ENODEV;
847}
848
849static void iproc_pcie_enable(struct iproc_pcie *pcie)
850{
851 iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
852}
853
854static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
855 int window_idx)
856{
857 u32 val;
858
859 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
860
861 return !!(val & OARR_VALID);
862}
863
864static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
865 int size_idx, u64 axi_addr, u64 pci_addr)
866{
867 struct device *dev = pcie->dev;
868 u16 oarr_offset, omap_offset;
869
870 /*
871 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
872 * on window index.
873 */
874 oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
875 window_idx));
876 omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
877 window_idx));
878 if (iproc_pcie_reg_is_invalid(oarr_offset) ||
879 iproc_pcie_reg_is_invalid(omap_offset))
880 return -EINVAL;
881
882 /*
883 * Program the OARR registers. The upper 32-bit OARR register is
884 * always right after the lower 32-bit OARR register.
885 */
886 writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
887 OARR_VALID, pcie->base + oarr_offset);
888 writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
889
890 /* now program the OMAP registers */
891 writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
892 writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
893
894 dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
895 window_idx, oarr_offset, &axi_addr, &pci_addr);
896 dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n",
897 readl(pcie->base + oarr_offset),
898 readl(pcie->base + oarr_offset + 4));
899 dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n",
900 readl(pcie->base + omap_offset),
901 readl(pcie->base + omap_offset + 4));
902
903 return 0;
904}
905
906/**
907 * Some iProc SoCs require the SW to configure the outbound address mapping
908 *
909 * Outbound address translation:
910 *
911 * iproc_pcie_address = axi_address - axi_offset
912 * OARR = iproc_pcie_address
913 * OMAP = pci_addr
914 *
915 * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
916 */
917static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
918 u64 pci_addr, resource_size_t size)
919{
920 struct iproc_pcie_ob *ob = &pcie->ob;
921 struct device *dev = pcie->dev;
922 int ret = -EINVAL, window_idx, size_idx;
923
924 if (axi_addr < ob->axi_offset) {
925 dev_err(dev, "axi address %pap less than offset %pap\n",
926 &axi_addr, &ob->axi_offset);
927 return -EINVAL;
928 }
929
930 /*
931 * Translate the AXI address to the internal address used by the iProc
932 * PCIe core before programming the OARR
933 */
934 axi_addr -= ob->axi_offset;
935
936 /* iterate through all OARR/OMAP mapping windows */
937 for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
938 const struct iproc_pcie_ob_map *ob_map =
939 &pcie->ob_map[window_idx];
940
941 /*
942 * If current outbound window is already in use, move on to the
943 * next one.
944 */
945 if (iproc_pcie_ob_is_valid(pcie, window_idx))
946 continue;
947
948 /*
949 * Iterate through all supported window sizes within the
950 * OARR/OMAP pair to find a match. Go through the window sizes
951 * in a descending order.
952 */
953 for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
954 size_idx--) {
955 resource_size_t window_size =
956 ob_map->window_sizes[size_idx] * SZ_1M;
957
958 /*
959 * Keep iterating until we reach the last window and
960 * with the minimal window size at index zero. In this
961 * case, we take a compromise by mapping it using the
962 * minimum window size that can be supported
963 */
964 if (size < window_size) {
965 if (size_idx > 0 || window_idx > 0)
966 continue;
967
968 /*
969 * For the corner case of reaching the minimal
970 * window size that can be supported on the
971 * last window
972 */
973 axi_addr = ALIGN_DOWN(axi_addr, window_size);
974 pci_addr = ALIGN_DOWN(pci_addr, window_size);
975 size = window_size;
976 }
977
978 if (!IS_ALIGNED(axi_addr, window_size) ||
979 !IS_ALIGNED(pci_addr, window_size)) {
980 dev_err(dev,
981 "axi %pap or pci %pap not aligned\n",
982 &axi_addr, &pci_addr);
983 return -EINVAL;
984 }
985
986 /*
987 * Match found! Program both OARR and OMAP and mark
988 * them as a valid entry.
989 */
990 ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
991 axi_addr, pci_addr);
992 if (ret)
993 goto err_ob;
994
995 size -= window_size;
996 if (size == 0)
997 return 0;
998
999 /*
1000 * If we are here, we are done with the current window,
1001 * but not yet finished all mappings. Need to move on
1002 * to the next window.
1003 */
1004 axi_addr += window_size;
1005 pci_addr += window_size;
1006 break;
1007 }
1008 }
1009
1010err_ob:
1011 dev_err(dev, "unable to configure outbound mapping\n");
1012 dev_err(dev,
1013 "axi %pap, axi offset %pap, pci %pap, res size %pap\n",
1014 &axi_addr, &ob->axi_offset, &pci_addr, &size);
1015
1016 return ret;
1017}
1018
1019static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
1020 struct list_head *resources)
1021{
1022 struct device *dev = pcie->dev;
1023 struct resource_entry *window;
1024 int ret;
1025
1026 resource_list_for_each_entry(window, resources) {
1027 struct resource *res = window->res;
1028 u64 res_type = resource_type(res);
1029
1030 switch (res_type) {
1031 case IORESOURCE_IO:
1032 case IORESOURCE_BUS:
1033 break;
1034 case IORESOURCE_MEM:
1035 ret = iproc_pcie_setup_ob(pcie, res->start,
1036 res->start - window->offset,
1037 resource_size(res));
1038 if (ret)
1039 return ret;
1040 break;
1041 default:
1042 dev_err(dev, "invalid resource %pR\n", res);
1043 return -EINVAL;
1044 }
1045 }
1046
1047 return 0;
1048}
1049
1050static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
1051 int region_idx)
1052{
1053 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1054 u32 val;
1055
1056 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
1057
1058 return !!(val & (BIT(ib_map->nr_sizes) - 1));
1059}
1060
1061static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
1062 enum iproc_pcie_ib_map_type type)
1063{
1064 return !!(ib_map->type == type);
1065}
1066
1067static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
1068 int size_idx, int nr_windows, u64 axi_addr,
1069 u64 pci_addr, resource_size_t size)
1070{
1071 struct device *dev = pcie->dev;
1072 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1073 u16 iarr_offset, imap_offset;
1074 u32 val;
1075 int window_idx;
1076
1077 iarr_offset = iproc_pcie_reg_offset(pcie,
1078 MAP_REG(IPROC_PCIE_IARR0, region_idx));
1079 imap_offset = iproc_pcie_reg_offset(pcie,
1080 MAP_REG(IPROC_PCIE_IMAP0, region_idx));
1081 if (iproc_pcie_reg_is_invalid(iarr_offset) ||
1082 iproc_pcie_reg_is_invalid(imap_offset))
1083 return -EINVAL;
1084
1085 dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
1086 region_idx, iarr_offset, &axi_addr, &pci_addr);
1087
1088 /*
1089 * Program the IARR registers. The upper 32-bit IARR register is
1090 * always right after the lower 32-bit IARR register.
1091 */
1092 writel(lower_32_bits(pci_addr) | BIT(size_idx),
1093 pcie->base + iarr_offset);
1094 writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
1095
1096 dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n",
1097 readl(pcie->base + iarr_offset),
1098 readl(pcie->base + iarr_offset + 4));
1099
1100 /*
1101 * Now program the IMAP registers. Each IARR region may have one or
1102 * more IMAP windows.
1103 */
1104 size >>= ilog2(nr_windows);
1105 for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1106 val = readl(pcie->base + imap_offset);
1107 val |= lower_32_bits(axi_addr) | IMAP_VALID;
1108 writel(val, pcie->base + imap_offset);
1109 writel(upper_32_bits(axi_addr),
1110 pcie->base + imap_offset + ib_map->imap_addr_offset);
1111
1112 dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1113 window_idx, readl(pcie->base + imap_offset),
1114 readl(pcie->base + imap_offset +
1115 ib_map->imap_addr_offset));
1116
1117 imap_offset += ib_map->imap_window_offset;
1118 axi_addr += size;
1119 }
1120
1121 return 0;
1122}
1123
1124static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1125 struct of_pci_range *range,
1126 enum iproc_pcie_ib_map_type type)
1127{
1128 struct device *dev = pcie->dev;
1129 struct iproc_pcie_ib *ib = &pcie->ib;
1130 int ret;
1131 unsigned int region_idx, size_idx;
1132 u64 axi_addr = range->cpu_addr, pci_addr = range->pci_addr;
1133 resource_size_t size = range->size;
1134
1135 /* iterate through all IARR mapping regions */
1136 for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1137 const struct iproc_pcie_ib_map *ib_map =
1138 &pcie->ib_map[region_idx];
1139
1140 /*
1141 * If current inbound region is already in use or not a
1142 * compatible type, move on to the next.
1143 */
1144 if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1145 !iproc_pcie_ib_check_type(ib_map, type))
1146 continue;
1147
1148 /* iterate through all supported region sizes to find a match */
1149 for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1150 resource_size_t region_size =
1151 ib_map->region_sizes[size_idx] * ib_map->size_unit;
1152
1153 if (size != region_size)
1154 continue;
1155
1156 if (!IS_ALIGNED(axi_addr, region_size) ||
1157 !IS_ALIGNED(pci_addr, region_size)) {
1158 dev_err(dev,
1159 "axi %pap or pci %pap not aligned\n",
1160 &axi_addr, &pci_addr);
1161 return -EINVAL;
1162 }
1163
1164 /* Match found! Program IARR and all IMAP windows. */
1165 ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1166 ib_map->nr_windows, axi_addr,
1167 pci_addr, size);
1168 if (ret)
1169 goto err_ib;
1170 else
1171 return 0;
1172
1173 }
1174 }
1175 ret = -EINVAL;
1176
1177err_ib:
1178 dev_err(dev, "unable to configure inbound mapping\n");
1179 dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1180 &axi_addr, &pci_addr, &size);
1181
1182 return ret;
1183}
1184
1185static int iproc_pcie_add_dma_range(struct device *dev,
1186 struct list_head *resources,
1187 struct of_pci_range *range)
1188{
1189 struct resource *res;
1190 struct resource_entry *entry, *tmp;
1191 struct list_head *head = resources;
1192
1193 res = devm_kzalloc(dev, sizeof(struct resource), GFP_KERNEL);
1194 if (!res)
1195 return -ENOMEM;
1196
1197 resource_list_for_each_entry(tmp, resources) {
1198 if (tmp->res->start < range->cpu_addr)
1199 head = &tmp->node;
1200 }
1201
1202 res->start = range->cpu_addr;
1203 res->end = res->start + range->size - 1;
1204
1205 entry = resource_list_create_entry(res, 0);
1206 if (!entry)
1207 return -ENOMEM;
1208
1209 entry->offset = res->start - range->cpu_addr;
1210 resource_list_add(entry, head);
1211
1212 return 0;
1213}
1214
1215static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1216{
1217 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1218 struct of_pci_range range;
1219 struct of_pci_range_parser parser;
1220 int ret;
1221 LIST_HEAD(resources);
1222
1223 /* Get the dma-ranges from DT */
1224 ret = of_pci_dma_range_parser_init(&parser, pcie->dev->of_node);
1225 if (ret)
1226 return ret;
1227
1228 for_each_of_pci_range(&parser, &range) {
1229 ret = iproc_pcie_add_dma_range(pcie->dev,
1230 &resources,
1231 &range);
1232 if (ret)
1233 goto out;
1234 /* Each range entry corresponds to an inbound mapping region */
1235 ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_MEM);
1236 if (ret)
1237 goto out;
1238 }
1239
1240 list_splice_init(&resources, &host->dma_ranges);
1241
1242 return 0;
1243out:
1244 pci_free_resource_list(&resources);
1245 return ret;
1246}
1247
1248static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1249 struct device_node *msi_node,
1250 u64 *msi_addr)
1251{
1252 struct device *dev = pcie->dev;
1253 int ret;
1254 struct resource res;
1255
1256 /*
1257 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1258 * supported external MSI controller that requires steering.
1259 */
1260 if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1261 dev_err(dev, "unable to find compatible MSI controller\n");
1262 return -ENODEV;
1263 }
1264
1265 /* derive GITS_TRANSLATER address from GICv3 */
1266 ret = of_address_to_resource(msi_node, 0, &res);
1267 if (ret < 0) {
1268 dev_err(dev, "unable to obtain MSI controller resources\n");
1269 return ret;
1270 }
1271
1272 *msi_addr = res.start + GITS_TRANSLATER;
1273 return 0;
1274}
1275
1276static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1277{
1278 int ret;
1279 struct of_pci_range range;
1280
1281 memset(&range, 0, sizeof(range));
1282 range.size = SZ_32K;
1283 range.pci_addr = range.cpu_addr = msi_addr & ~(range.size - 1);
1284
1285 ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_IO);
1286 return ret;
1287}
1288
1289static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr,
1290 bool enable)
1291{
1292 u32 val;
1293
1294 if (!enable) {
1295 /*
1296 * Disable PAXC MSI steering. All write transfers will be
1297 * treated as non-MSI transfers
1298 */
1299 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1300 val &= ~MSI_ENABLE_CFG;
1301 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1302 return;
1303 }
1304
1305 /*
1306 * Program bits [43:13] of address of GITS_TRANSLATER register into
1307 * bits [30:0] of the MSI base address register. In fact, in all iProc
1308 * based SoCs, all I/O register bases are well below the 32-bit
1309 * boundary, so we can safely assume bits [43:32] are always zeros.
1310 */
1311 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1312 (u32)(msi_addr >> 13));
1313
1314 /* use a default 8K window size */
1315 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1316
1317 /* steering MSI to GICv3 ITS */
1318 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1319 val |= GIC_V3_CFG;
1320 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1321
1322 /*
1323 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1324 * iProc MSI address registers.
1325 */
1326 msi_addr >>= 2;
1327 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1328 upper_32_bits(msi_addr));
1329 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1330 lower_32_bits(msi_addr));
1331
1332 /* enable MSI */
1333 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1334 val |= MSI_ENABLE_CFG;
1335 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1336}
1337
1338static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1339 struct device_node *msi_node)
1340{
1341 struct device *dev = pcie->dev;
1342 int ret;
1343 u64 msi_addr;
1344
1345 ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1346 if (ret < 0) {
1347 dev_err(dev, "msi steering failed\n");
1348 return ret;
1349 }
1350
1351 switch (pcie->type) {
1352 case IPROC_PCIE_PAXB_V2:
1353 ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1354 if (ret)
1355 return ret;
1356 break;
1357 case IPROC_PCIE_PAXC_V2:
1358 iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true);
1359 break;
1360 default:
1361 return -EINVAL;
1362 }
1363
1364 return 0;
1365}
1366
1367static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1368{
1369 struct device_node *msi_node;
1370 int ret;
1371
1372 /*
1373 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1374 * for us to obtain the MSI node.
1375 */
1376
1377 msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1378 if (!msi_node) {
1379 const __be32 *msi_map = NULL;
1380 int len;
1381 u32 phandle;
1382
1383 msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1384 if (!msi_map)
1385 return -ENODEV;
1386
1387 phandle = be32_to_cpup(msi_map + 1);
1388 msi_node = of_find_node_by_phandle(phandle);
1389 if (!msi_node)
1390 return -ENODEV;
1391 }
1392
1393 /*
1394 * Certain revisions of the iProc PCIe controller require additional
1395 * configurations to steer the MSI writes towards an external MSI
1396 * controller.
1397 */
1398 if (pcie->need_msi_steer) {
1399 ret = iproc_pcie_msi_steer(pcie, msi_node);
1400 if (ret)
1401 goto out_put_node;
1402 }
1403
1404 /*
1405 * If another MSI controller is being used, the call below should fail
1406 * but that is okay
1407 */
1408 ret = iproc_msi_init(pcie, msi_node);
1409
1410out_put_node:
1411 of_node_put(msi_node);
1412 return ret;
1413}
1414
1415static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1416{
1417 iproc_msi_exit(pcie);
1418}
1419
1420static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1421{
1422 struct device *dev = pcie->dev;
1423 unsigned int reg_idx;
1424 const u16 *regs;
1425
1426 switch (pcie->type) {
1427 case IPROC_PCIE_PAXB_BCMA:
1428 regs = iproc_pcie_reg_paxb_bcma;
1429 break;
1430 case IPROC_PCIE_PAXB:
1431 regs = iproc_pcie_reg_paxb;
1432 pcie->has_apb_err_disable = true;
1433 if (pcie->need_ob_cfg) {
1434 pcie->ob_map = paxb_ob_map;
1435 pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1436 }
1437 break;
1438 case IPROC_PCIE_PAXB_V2:
1439 regs = iproc_pcie_reg_paxb_v2;
1440 pcie->iproc_cfg_read = true;
1441 pcie->has_apb_err_disable = true;
1442 if (pcie->need_ob_cfg) {
1443 pcie->ob_map = paxb_v2_ob_map;
1444 pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1445 }
1446 pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1447 pcie->ib_map = paxb_v2_ib_map;
1448 pcie->need_msi_steer = true;
1449 dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1450 CFG_RETRY_STATUS);
1451 break;
1452 case IPROC_PCIE_PAXC:
1453 regs = iproc_pcie_reg_paxc;
1454 pcie->ep_is_internal = true;
1455 pcie->iproc_cfg_read = true;
1456 pcie->rej_unconfig_pf = true;
1457 break;
1458 case IPROC_PCIE_PAXC_V2:
1459 regs = iproc_pcie_reg_paxc_v2;
1460 pcie->ep_is_internal = true;
1461 pcie->iproc_cfg_read = true;
1462 pcie->rej_unconfig_pf = true;
1463 pcie->need_msi_steer = true;
1464 break;
1465 default:
1466 dev_err(dev, "incompatible iProc PCIe interface\n");
1467 return -EINVAL;
1468 }
1469
1470 pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1471 sizeof(*pcie->reg_offsets),
1472 GFP_KERNEL);
1473 if (!pcie->reg_offsets)
1474 return -ENOMEM;
1475
1476 /* go through the register table and populate all valid registers */
1477 pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1478 IPROC_PCIE_REG_INVALID : regs[0];
1479 for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1480 pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1481 regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1482
1483 return 0;
1484}
1485
1486int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1487{
1488 struct device *dev;
1489 int ret;
1490 struct pci_bus *child;
1491 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1492
1493 dev = pcie->dev;
1494
1495 ret = iproc_pcie_rev_init(pcie);
1496 if (ret) {
1497 dev_err(dev, "unable to initialize controller parameters\n");
1498 return ret;
1499 }
1500
1501 ret = devm_request_pci_bus_resources(dev, res);
1502 if (ret)
1503 return ret;
1504
1505 ret = phy_init(pcie->phy);
1506 if (ret) {
1507 dev_err(dev, "unable to initialize PCIe PHY\n");
1508 return ret;
1509 }
1510
1511 ret = phy_power_on(pcie->phy);
1512 if (ret) {
1513 dev_err(dev, "unable to power on PCIe PHY\n");
1514 goto err_exit_phy;
1515 }
1516
1517 iproc_pcie_perst_ctrl(pcie, true);
1518 iproc_pcie_perst_ctrl(pcie, false);
1519
1520 if (pcie->need_ob_cfg) {
1521 ret = iproc_pcie_map_ranges(pcie, res);
1522 if (ret) {
1523 dev_err(dev, "map failed\n");
1524 goto err_power_off_phy;
1525 }
1526 }
1527
1528 if (pcie->need_ib_cfg) {
1529 ret = iproc_pcie_map_dma_ranges(pcie);
1530 if (ret && ret != -ENOENT)
1531 goto err_power_off_phy;
1532 }
1533
1534 ret = iproc_pcie_check_link(pcie);
1535 if (ret) {
1536 dev_err(dev, "no PCIe EP device detected\n");
1537 goto err_power_off_phy;
1538 }
1539
1540 iproc_pcie_enable(pcie);
1541
1542 if (IS_ENABLED(CONFIG_PCI_MSI))
1543 if (iproc_pcie_msi_enable(pcie))
1544 dev_info(dev, "not using iProc MSI\n");
1545
1546 list_splice_init(res, &host->windows);
1547 host->busnr = 0;
1548 host->dev.parent = dev;
1549 host->ops = &iproc_pcie_ops;
1550 host->sysdata = pcie;
1551 host->map_irq = pcie->map_irq;
1552 host->swizzle_irq = pci_common_swizzle;
1553
1554 ret = pci_scan_root_bus_bridge(host);
1555 if (ret < 0) {
1556 dev_err(dev, "failed to scan host: %d\n", ret);
1557 goto err_power_off_phy;
1558 }
1559
1560 pci_assign_unassigned_bus_resources(host->bus);
1561
1562 pcie->root_bus = host->bus;
1563
1564 list_for_each_entry(child, &host->bus->children, node)
1565 pcie_bus_configure_settings(child);
1566
1567 pci_bus_add_devices(host->bus);
1568
1569 return 0;
1570
1571err_power_off_phy:
1572 phy_power_off(pcie->phy);
1573err_exit_phy:
1574 phy_exit(pcie->phy);
1575 return ret;
1576}
1577EXPORT_SYMBOL(iproc_pcie_setup);
1578
1579int iproc_pcie_remove(struct iproc_pcie *pcie)
1580{
1581 pci_stop_root_bus(pcie->root_bus);
1582 pci_remove_root_bus(pcie->root_bus);
1583
1584 iproc_pcie_msi_disable(pcie);
1585
1586 phy_power_off(pcie->phy);
1587 phy_exit(pcie->phy);
1588
1589 return 0;
1590}
1591EXPORT_SYMBOL(iproc_pcie_remove);
1592
1593/*
1594 * The MSI parsing logic in certain revisions of Broadcom PAXC based root
1595 * complex does not work and needs to be disabled
1596 */
1597static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev)
1598{
1599 struct iproc_pcie *pcie = iproc_data(pdev->bus);
1600
1601 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1602 iproc_pcie_paxc_v2_msi_steer(pcie, 0, false);
1603}
1604DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0,
1605 quirk_paxc_disable_msi_parsing);
1606DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802,
1607 quirk_paxc_disable_msi_parsing);
1608DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804,
1609 quirk_paxc_disable_msi_parsing);
1610
1611MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1612MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1613MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
4 * Copyright (C) 2015 Broadcom Corporation
5 */
6
7#include <linux/kernel.h>
8#include <linux/pci.h>
9#include <linux/pci-ecam.h>
10#include <linux/msi.h>
11#include <linux/clk.h>
12#include <linux/module.h>
13#include <linux/mbus.h>
14#include <linux/slab.h>
15#include <linux/delay.h>
16#include <linux/interrupt.h>
17#include <linux/irqchip/arm-gic-v3.h>
18#include <linux/platform_device.h>
19#include <linux/of_address.h>
20#include <linux/of_pci.h>
21#include <linux/of_irq.h>
22#include <linux/of_platform.h>
23#include <linux/phy/phy.h>
24
25#include "pcie-iproc.h"
26
27#define EP_PERST_SOURCE_SELECT_SHIFT 2
28#define EP_PERST_SOURCE_SELECT BIT(EP_PERST_SOURCE_SELECT_SHIFT)
29#define EP_MODE_SURVIVE_PERST_SHIFT 1
30#define EP_MODE_SURVIVE_PERST BIT(EP_MODE_SURVIVE_PERST_SHIFT)
31#define RC_PCIE_RST_OUTPUT_SHIFT 0
32#define RC_PCIE_RST_OUTPUT BIT(RC_PCIE_RST_OUTPUT_SHIFT)
33#define PAXC_RESET_MASK 0x7f
34
35#define GIC_V3_CFG_SHIFT 0
36#define GIC_V3_CFG BIT(GIC_V3_CFG_SHIFT)
37
38#define MSI_ENABLE_CFG_SHIFT 0
39#define MSI_ENABLE_CFG BIT(MSI_ENABLE_CFG_SHIFT)
40
41#define CFG_IND_ADDR_MASK 0x00001ffc
42
43#define CFG_ADDR_REG_NUM_MASK 0x00000ffc
44#define CFG_ADDR_CFG_TYPE_1 1
45
46#define SYS_RC_INTX_MASK 0xf
47
48#define PCIE_PHYLINKUP_SHIFT 3
49#define PCIE_PHYLINKUP BIT(PCIE_PHYLINKUP_SHIFT)
50#define PCIE_DL_ACTIVE_SHIFT 2
51#define PCIE_DL_ACTIVE BIT(PCIE_DL_ACTIVE_SHIFT)
52
53#define APB_ERR_EN_SHIFT 0
54#define APB_ERR_EN BIT(APB_ERR_EN_SHIFT)
55
56#define CFG_RD_SUCCESS 0
57#define CFG_RD_UR 1
58#define CFG_RD_CRS 2
59#define CFG_RD_CA 3
60#define CFG_RETRY_STATUS 0xffff0001
61#define CFG_RETRY_STATUS_TIMEOUT_US 500000 /* 500 milliseconds */
62
63/* derive the enum index of the outbound/inbound mapping registers */
64#define MAP_REG(base_reg, index) ((base_reg) + (index) * 2)
65
66/*
67 * Maximum number of outbound mapping window sizes that can be supported by any
68 * OARR/OMAP mapping pair
69 */
70#define MAX_NUM_OB_WINDOW_SIZES 4
71
72#define OARR_VALID_SHIFT 0
73#define OARR_VALID BIT(OARR_VALID_SHIFT)
74#define OARR_SIZE_CFG_SHIFT 1
75
76/*
77 * Maximum number of inbound mapping region sizes that can be supported by an
78 * IARR
79 */
80#define MAX_NUM_IB_REGION_SIZES 9
81
82#define IMAP_VALID_SHIFT 0
83#define IMAP_VALID BIT(IMAP_VALID_SHIFT)
84
85#define IPROC_PCI_PM_CAP 0x48
86#define IPROC_PCI_PM_CAP_MASK 0xffff
87#define IPROC_PCI_EXP_CAP 0xac
88
89#define IPROC_PCIE_REG_INVALID 0xffff
90
91/**
92 * struct iproc_pcie_ob_map - iProc PCIe outbound mapping controller-specific
93 * parameters
94 * @window_sizes: list of supported outbound mapping window sizes in MB
95 * @nr_sizes: number of supported outbound mapping window sizes
96 */
97struct iproc_pcie_ob_map {
98 resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
99 unsigned int nr_sizes;
100};
101
102static const struct iproc_pcie_ob_map paxb_ob_map[] = {
103 {
104 /* OARR0/OMAP0 */
105 .window_sizes = { 128, 256 },
106 .nr_sizes = 2,
107 },
108 {
109 /* OARR1/OMAP1 */
110 .window_sizes = { 128, 256 },
111 .nr_sizes = 2,
112 },
113};
114
115static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
116 {
117 /* OARR0/OMAP0 */
118 .window_sizes = { 128, 256 },
119 .nr_sizes = 2,
120 },
121 {
122 /* OARR1/OMAP1 */
123 .window_sizes = { 128, 256 },
124 .nr_sizes = 2,
125 },
126 {
127 /* OARR2/OMAP2 */
128 .window_sizes = { 128, 256, 512, 1024 },
129 .nr_sizes = 4,
130 },
131 {
132 /* OARR3/OMAP3 */
133 .window_sizes = { 128, 256, 512, 1024 },
134 .nr_sizes = 4,
135 },
136};
137
138/**
139 * enum iproc_pcie_ib_map_type - iProc PCIe inbound mapping type
140 * @IPROC_PCIE_IB_MAP_MEM: DDR memory
141 * @IPROC_PCIE_IB_MAP_IO: device I/O memory
142 * @IPROC_PCIE_IB_MAP_INVALID: invalid or unused
143 */
144enum iproc_pcie_ib_map_type {
145 IPROC_PCIE_IB_MAP_MEM = 0,
146 IPROC_PCIE_IB_MAP_IO,
147 IPROC_PCIE_IB_MAP_INVALID
148};
149
150/**
151 * struct iproc_pcie_ib_map - iProc PCIe inbound mapping controller-specific
152 * parameters
153 * @type: inbound mapping region type
154 * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
155 * SZ_1G
156 * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
157 * GB, depending on the size unit
158 * @nr_sizes: number of supported inbound mapping region sizes
159 * @nr_windows: number of supported inbound mapping windows for the region
160 * @imap_addr_offset: register offset between the upper and lower 32-bit
161 * IMAP address registers
162 * @imap_window_offset: register offset between each IMAP window
163 */
164struct iproc_pcie_ib_map {
165 enum iproc_pcie_ib_map_type type;
166 unsigned int size_unit;
167 resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
168 unsigned int nr_sizes;
169 unsigned int nr_windows;
170 u16 imap_addr_offset;
171 u16 imap_window_offset;
172};
173
174static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
175 {
176 /* IARR0/IMAP0 */
177 .type = IPROC_PCIE_IB_MAP_IO,
178 .size_unit = SZ_1K,
179 .region_sizes = { 32 },
180 .nr_sizes = 1,
181 .nr_windows = 8,
182 .imap_addr_offset = 0x40,
183 .imap_window_offset = 0x4,
184 },
185 {
186 /* IARR1/IMAP1 */
187 .type = IPROC_PCIE_IB_MAP_MEM,
188 .size_unit = SZ_1M,
189 .region_sizes = { 8 },
190 .nr_sizes = 1,
191 .nr_windows = 8,
192 .imap_addr_offset = 0x4,
193 .imap_window_offset = 0x8,
194
195 },
196 {
197 /* IARR2/IMAP2 */
198 .type = IPROC_PCIE_IB_MAP_MEM,
199 .size_unit = SZ_1M,
200 .region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
201 16384 },
202 .nr_sizes = 9,
203 .nr_windows = 1,
204 .imap_addr_offset = 0x4,
205 .imap_window_offset = 0x8,
206 },
207 {
208 /* IARR3/IMAP3 */
209 .type = IPROC_PCIE_IB_MAP_MEM,
210 .size_unit = SZ_1G,
211 .region_sizes = { 1, 2, 4, 8, 16, 32 },
212 .nr_sizes = 6,
213 .nr_windows = 8,
214 .imap_addr_offset = 0x4,
215 .imap_window_offset = 0x8,
216 },
217 {
218 /* IARR4/IMAP4 */
219 .type = IPROC_PCIE_IB_MAP_MEM,
220 .size_unit = SZ_1G,
221 .region_sizes = { 32, 64, 128, 256, 512 },
222 .nr_sizes = 5,
223 .nr_windows = 8,
224 .imap_addr_offset = 0x4,
225 .imap_window_offset = 0x8,
226 },
227};
228
229/*
230 * iProc PCIe host registers
231 */
232enum iproc_pcie_reg {
233 /* clock/reset signal control */
234 IPROC_PCIE_CLK_CTRL = 0,
235
236 /*
237 * To allow MSI to be steered to an external MSI controller (e.g., ARM
238 * GICv3 ITS)
239 */
240 IPROC_PCIE_MSI_GIC_MODE,
241
242 /*
243 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
244 * window where the MSI posted writes are written, for the writes to be
245 * interpreted as MSI writes.
246 */
247 IPROC_PCIE_MSI_BASE_ADDR,
248 IPROC_PCIE_MSI_WINDOW_SIZE,
249
250 /*
251 * To hold the address of the register where the MSI writes are
252 * programed. When ARM GICv3 ITS is used, this should be programmed
253 * with the address of the GITS_TRANSLATER register.
254 */
255 IPROC_PCIE_MSI_ADDR_LO,
256 IPROC_PCIE_MSI_ADDR_HI,
257
258 /* enable MSI */
259 IPROC_PCIE_MSI_EN_CFG,
260
261 /* allow access to root complex configuration space */
262 IPROC_PCIE_CFG_IND_ADDR,
263 IPROC_PCIE_CFG_IND_DATA,
264
265 /* allow access to device configuration space */
266 IPROC_PCIE_CFG_ADDR,
267 IPROC_PCIE_CFG_DATA,
268
269 /* enable INTx */
270 IPROC_PCIE_INTX_EN,
271
272 /* outbound address mapping */
273 IPROC_PCIE_OARR0,
274 IPROC_PCIE_OMAP0,
275 IPROC_PCIE_OARR1,
276 IPROC_PCIE_OMAP1,
277 IPROC_PCIE_OARR2,
278 IPROC_PCIE_OMAP2,
279 IPROC_PCIE_OARR3,
280 IPROC_PCIE_OMAP3,
281
282 /* inbound address mapping */
283 IPROC_PCIE_IARR0,
284 IPROC_PCIE_IMAP0,
285 IPROC_PCIE_IARR1,
286 IPROC_PCIE_IMAP1,
287 IPROC_PCIE_IARR2,
288 IPROC_PCIE_IMAP2,
289 IPROC_PCIE_IARR3,
290 IPROC_PCIE_IMAP3,
291 IPROC_PCIE_IARR4,
292 IPROC_PCIE_IMAP4,
293
294 /* config read status */
295 IPROC_PCIE_CFG_RD_STATUS,
296
297 /* link status */
298 IPROC_PCIE_LINK_STATUS,
299
300 /* enable APB error for unsupported requests */
301 IPROC_PCIE_APB_ERR_EN,
302
303 /* total number of core registers */
304 IPROC_PCIE_MAX_NUM_REG,
305};
306
307/* iProc PCIe PAXB BCMA registers */
308static const u16 iproc_pcie_reg_paxb_bcma[IPROC_PCIE_MAX_NUM_REG] = {
309 [IPROC_PCIE_CLK_CTRL] = 0x000,
310 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
311 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
312 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
313 [IPROC_PCIE_CFG_DATA] = 0x1fc,
314 [IPROC_PCIE_INTX_EN] = 0x330,
315 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
316};
317
318/* iProc PCIe PAXB registers */
319static const u16 iproc_pcie_reg_paxb[IPROC_PCIE_MAX_NUM_REG] = {
320 [IPROC_PCIE_CLK_CTRL] = 0x000,
321 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
322 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
323 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
324 [IPROC_PCIE_CFG_DATA] = 0x1fc,
325 [IPROC_PCIE_INTX_EN] = 0x330,
326 [IPROC_PCIE_OARR0] = 0xd20,
327 [IPROC_PCIE_OMAP0] = 0xd40,
328 [IPROC_PCIE_OARR1] = 0xd28,
329 [IPROC_PCIE_OMAP1] = 0xd48,
330 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
331 [IPROC_PCIE_APB_ERR_EN] = 0xf40,
332};
333
334/* iProc PCIe PAXB v2 registers */
335static const u16 iproc_pcie_reg_paxb_v2[IPROC_PCIE_MAX_NUM_REG] = {
336 [IPROC_PCIE_CLK_CTRL] = 0x000,
337 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
338 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
339 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
340 [IPROC_PCIE_CFG_DATA] = 0x1fc,
341 [IPROC_PCIE_INTX_EN] = 0x330,
342 [IPROC_PCIE_OARR0] = 0xd20,
343 [IPROC_PCIE_OMAP0] = 0xd40,
344 [IPROC_PCIE_OARR1] = 0xd28,
345 [IPROC_PCIE_OMAP1] = 0xd48,
346 [IPROC_PCIE_OARR2] = 0xd60,
347 [IPROC_PCIE_OMAP2] = 0xd68,
348 [IPROC_PCIE_OARR3] = 0xdf0,
349 [IPROC_PCIE_OMAP3] = 0xdf8,
350 [IPROC_PCIE_IARR0] = 0xd00,
351 [IPROC_PCIE_IMAP0] = 0xc00,
352 [IPROC_PCIE_IARR1] = 0xd08,
353 [IPROC_PCIE_IMAP1] = 0xd70,
354 [IPROC_PCIE_IARR2] = 0xd10,
355 [IPROC_PCIE_IMAP2] = 0xcc0,
356 [IPROC_PCIE_IARR3] = 0xe00,
357 [IPROC_PCIE_IMAP3] = 0xe08,
358 [IPROC_PCIE_IARR4] = 0xe68,
359 [IPROC_PCIE_IMAP4] = 0xe70,
360 [IPROC_PCIE_CFG_RD_STATUS] = 0xee0,
361 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
362 [IPROC_PCIE_APB_ERR_EN] = 0xf40,
363};
364
365/* iProc PCIe PAXC v1 registers */
366static const u16 iproc_pcie_reg_paxc[IPROC_PCIE_MAX_NUM_REG] = {
367 [IPROC_PCIE_CLK_CTRL] = 0x000,
368 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
369 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
370 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
371 [IPROC_PCIE_CFG_DATA] = 0x1fc,
372};
373
374/* iProc PCIe PAXC v2 registers */
375static const u16 iproc_pcie_reg_paxc_v2[IPROC_PCIE_MAX_NUM_REG] = {
376 [IPROC_PCIE_MSI_GIC_MODE] = 0x050,
377 [IPROC_PCIE_MSI_BASE_ADDR] = 0x074,
378 [IPROC_PCIE_MSI_WINDOW_SIZE] = 0x078,
379 [IPROC_PCIE_MSI_ADDR_LO] = 0x07c,
380 [IPROC_PCIE_MSI_ADDR_HI] = 0x080,
381 [IPROC_PCIE_MSI_EN_CFG] = 0x09c,
382 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
383 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
384 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
385 [IPROC_PCIE_CFG_DATA] = 0x1fc,
386};
387
388/*
389 * List of device IDs of controllers that have corrupted capability list that
390 * require SW fixup
391 */
392static const u16 iproc_pcie_corrupt_cap_did[] = {
393 0x16cd,
394 0x16f0,
395 0xd802,
396 0xd804
397};
398
399static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
400{
401 struct iproc_pcie *pcie = bus->sysdata;
402 return pcie;
403}
404
405static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
406{
407 return !!(reg_offset == IPROC_PCIE_REG_INVALID);
408}
409
410static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
411 enum iproc_pcie_reg reg)
412{
413 return pcie->reg_offsets[reg];
414}
415
416static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
417 enum iproc_pcie_reg reg)
418{
419 u16 offset = iproc_pcie_reg_offset(pcie, reg);
420
421 if (iproc_pcie_reg_is_invalid(offset))
422 return 0;
423
424 return readl(pcie->base + offset);
425}
426
427static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
428 enum iproc_pcie_reg reg, u32 val)
429{
430 u16 offset = iproc_pcie_reg_offset(pcie, reg);
431
432 if (iproc_pcie_reg_is_invalid(offset))
433 return;
434
435 writel(val, pcie->base + offset);
436}
437
438/*
439 * APB error forwarding can be disabled during access of configuration
440 * registers of the endpoint device, to prevent unsupported requests
441 * (typically seen during enumeration with multi-function devices) from
442 * triggering a system exception.
443 */
444static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
445 bool disable)
446{
447 struct iproc_pcie *pcie = iproc_data(bus);
448 u32 val;
449
450 if (bus->number && pcie->has_apb_err_disable) {
451 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
452 if (disable)
453 val &= ~APB_ERR_EN;
454 else
455 val |= APB_ERR_EN;
456 iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
457 }
458}
459
460static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
461 unsigned int busno,
462 unsigned int devfn,
463 int where)
464{
465 u16 offset;
466 u32 val;
467
468 /* EP device access */
469 val = ALIGN_DOWN(PCIE_ECAM_OFFSET(busno, devfn, where), 4) |
470 CFG_ADDR_CFG_TYPE_1;
471
472 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
473 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
474
475 if (iproc_pcie_reg_is_invalid(offset))
476 return NULL;
477
478 return (pcie->base + offset);
479}
480
481static unsigned int iproc_pcie_cfg_retry(struct iproc_pcie *pcie,
482 void __iomem *cfg_data_p)
483{
484 int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
485 unsigned int data;
486 u32 status;
487
488 /*
489 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
490 * affects config reads of the Vendor ID. For config writes or any
491 * other config reads, the Root may automatically reissue the
492 * configuration request again as a new request.
493 *
494 * For config reads, this hardware returns CFG_RETRY_STATUS data
495 * when it receives a CRS completion, regardless of the address of
496 * the read or the CRS Software Visibility Enable bit. As a
497 * partial workaround for this, we retry in software any read that
498 * returns CFG_RETRY_STATUS.
499 *
500 * Note that a non-Vendor ID config register may have a value of
501 * CFG_RETRY_STATUS. If we read that, we can't distinguish it from
502 * a CRS completion, so we will incorrectly retry the read and
503 * eventually return the wrong data (0xffffffff).
504 */
505 data = readl(cfg_data_p);
506 while (data == CFG_RETRY_STATUS && timeout--) {
507 /*
508 * CRS state is set in CFG_RD status register
509 * This will handle the case where CFG_RETRY_STATUS is
510 * valid config data.
511 */
512 status = iproc_pcie_read_reg(pcie, IPROC_PCIE_CFG_RD_STATUS);
513 if (status != CFG_RD_CRS)
514 return data;
515
516 udelay(1);
517 data = readl(cfg_data_p);
518 }
519
520 if (data == CFG_RETRY_STATUS)
521 data = 0xffffffff;
522
523 return data;
524}
525
526static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val)
527{
528 u32 i, dev_id;
529
530 switch (where & ~0x3) {
531 case PCI_VENDOR_ID:
532 dev_id = *val >> 16;
533
534 /*
535 * Activate fixup for those controllers that have corrupted
536 * capability list registers
537 */
538 for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++)
539 if (dev_id == iproc_pcie_corrupt_cap_did[i])
540 pcie->fix_paxc_cap = true;
541 break;
542
543 case IPROC_PCI_PM_CAP:
544 if (pcie->fix_paxc_cap) {
545 /* advertise PM, force next capability to PCIe */
546 *val &= ~IPROC_PCI_PM_CAP_MASK;
547 *val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM;
548 }
549 break;
550
551 case IPROC_PCI_EXP_CAP:
552 if (pcie->fix_paxc_cap) {
553 /* advertise root port, version 2, terminate here */
554 *val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 |
555 PCI_CAP_ID_EXP;
556 }
557 break;
558
559 case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL:
560 /* Don't advertise CRS SV support */
561 *val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
562 break;
563
564 default:
565 break;
566 }
567}
568
569static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
570 int where, int size, u32 *val)
571{
572 struct iproc_pcie *pcie = iproc_data(bus);
573 unsigned int busno = bus->number;
574 void __iomem *cfg_data_p;
575 unsigned int data;
576 int ret;
577
578 /* root complex access */
579 if (busno == 0) {
580 ret = pci_generic_config_read32(bus, devfn, where, size, val);
581 if (ret == PCIBIOS_SUCCESSFUL)
582 iproc_pcie_fix_cap(pcie, where, val);
583
584 return ret;
585 }
586
587 cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, devfn, where);
588
589 if (!cfg_data_p)
590 return PCIBIOS_DEVICE_NOT_FOUND;
591
592 data = iproc_pcie_cfg_retry(pcie, cfg_data_p);
593
594 *val = data;
595 if (size <= 2)
596 *val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
597
598 /*
599 * For PAXC and PAXCv2, the total number of PFs that one can enumerate
600 * depends on the firmware configuration. Unfortunately, due to an ASIC
601 * bug, unconfigured PFs cannot be properly hidden from the root
602 * complex. As a result, write access to these PFs will cause bus lock
603 * up on the embedded processor
604 *
605 * Since all unconfigured PFs are left with an incorrect, staled device
606 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access
607 * early here and reject them all
608 */
609#define DEVICE_ID_MASK 0xffff0000
610#define DEVICE_ID_SHIFT 16
611 if (pcie->rej_unconfig_pf &&
612 (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID)
613 if ((*val & DEVICE_ID_MASK) ==
614 (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT))
615 return PCIBIOS_FUNC_NOT_SUPPORTED;
616
617 return PCIBIOS_SUCCESSFUL;
618}
619
620/*
621 * Note access to the configuration registers are protected at the higher layer
622 * by 'pci_lock' in drivers/pci/access.c
623 */
624static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
625 int busno, unsigned int devfn,
626 int where)
627{
628 u16 offset;
629
630 /* root complex access */
631 if (busno == 0) {
632 if (PCIE_ECAM_DEVFN(devfn) > 0)
633 return NULL;
634
635 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
636 where & CFG_IND_ADDR_MASK);
637 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
638 if (iproc_pcie_reg_is_invalid(offset))
639 return NULL;
640 else
641 return (pcie->base + offset);
642 }
643
644 return iproc_pcie_map_ep_cfg_reg(pcie, busno, devfn, where);
645}
646
647static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
648 unsigned int devfn,
649 int where)
650{
651 return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
652 where);
653}
654
655static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
656 unsigned int devfn, int where,
657 int size, u32 *val)
658{
659 void __iomem *addr;
660
661 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
662 if (!addr) {
663 *val = ~0;
664 return PCIBIOS_DEVICE_NOT_FOUND;
665 }
666
667 *val = readl(addr);
668
669 if (size <= 2)
670 *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
671
672 return PCIBIOS_SUCCESSFUL;
673}
674
675static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
676 unsigned int devfn, int where,
677 int size, u32 val)
678{
679 void __iomem *addr;
680 u32 mask, tmp;
681
682 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
683 if (!addr)
684 return PCIBIOS_DEVICE_NOT_FOUND;
685
686 if (size == 4) {
687 writel(val, addr);
688 return PCIBIOS_SUCCESSFUL;
689 }
690
691 mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
692 tmp = readl(addr) & mask;
693 tmp |= val << ((where & 0x3) * 8);
694 writel(tmp, addr);
695
696 return PCIBIOS_SUCCESSFUL;
697}
698
699static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
700 int where, int size, u32 *val)
701{
702 int ret;
703 struct iproc_pcie *pcie = iproc_data(bus);
704
705 iproc_pcie_apb_err_disable(bus, true);
706 if (pcie->iproc_cfg_read)
707 ret = iproc_pcie_config_read(bus, devfn, where, size, val);
708 else
709 ret = pci_generic_config_read32(bus, devfn, where, size, val);
710 iproc_pcie_apb_err_disable(bus, false);
711
712 return ret;
713}
714
715static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
716 int where, int size, u32 val)
717{
718 int ret;
719
720 iproc_pcie_apb_err_disable(bus, true);
721 ret = pci_generic_config_write32(bus, devfn, where, size, val);
722 iproc_pcie_apb_err_disable(bus, false);
723
724 return ret;
725}
726
727static struct pci_ops iproc_pcie_ops = {
728 .map_bus = iproc_pcie_bus_map_cfg_bus,
729 .read = iproc_pcie_config_read32,
730 .write = iproc_pcie_config_write32,
731};
732
733static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
734{
735 u32 val;
736
737 /*
738 * PAXC and the internal emulated endpoint device downstream should not
739 * be reset. If firmware has been loaded on the endpoint device at an
740 * earlier boot stage, reset here causes issues.
741 */
742 if (pcie->ep_is_internal)
743 return;
744
745 if (assert) {
746 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
747 val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
748 ~RC_PCIE_RST_OUTPUT;
749 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
750 udelay(250);
751 } else {
752 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
753 val |= RC_PCIE_RST_OUTPUT;
754 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
755 msleep(100);
756 }
757}
758
759int iproc_pcie_shutdown(struct iproc_pcie *pcie)
760{
761 iproc_pcie_perst_ctrl(pcie, true);
762 msleep(500);
763
764 return 0;
765}
766EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
767
768static int iproc_pcie_check_link(struct iproc_pcie *pcie)
769{
770 struct device *dev = pcie->dev;
771 u32 hdr_type, link_ctrl, link_status, class, val;
772 bool link_is_active = false;
773
774 /*
775 * PAXC connects to emulated endpoint devices directly and does not
776 * have a Serdes. Therefore skip the link detection logic here.
777 */
778 if (pcie->ep_is_internal)
779 return 0;
780
781 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
782 if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
783 dev_err(dev, "PHY or data link is INACTIVE!\n");
784 return -ENODEV;
785 }
786
787 /* make sure we are not in EP mode */
788 iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
789 if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
790 dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
791 return -EFAULT;
792 }
793
794 /* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */
795#define PCI_BRIDGE_CTRL_REG_OFFSET 0x43c
796#define PCI_CLASS_BRIDGE_MASK 0xffff00
797#define PCI_CLASS_BRIDGE_SHIFT 8
798 iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
799 4, &class);
800 class &= ~PCI_CLASS_BRIDGE_MASK;
801 class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT);
802 iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
803 4, class);
804
805 /* check link status to see if link is active */
806 iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
807 2, &link_status);
808 if (link_status & PCI_EXP_LNKSTA_NLW)
809 link_is_active = true;
810
811 if (!link_is_active) {
812 /* try GEN 1 link speed */
813#define PCI_TARGET_LINK_SPEED_MASK 0xf
814#define PCI_TARGET_LINK_SPEED_GEN2 0x2
815#define PCI_TARGET_LINK_SPEED_GEN1 0x1
816 iproc_pci_raw_config_read32(pcie, 0,
817 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
818 4, &link_ctrl);
819 if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
820 PCI_TARGET_LINK_SPEED_GEN2) {
821 link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
822 link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
823 iproc_pci_raw_config_write32(pcie, 0,
824 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
825 4, link_ctrl);
826 msleep(100);
827
828 iproc_pci_raw_config_read32(pcie, 0,
829 IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
830 2, &link_status);
831 if (link_status & PCI_EXP_LNKSTA_NLW)
832 link_is_active = true;
833 }
834 }
835
836 dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
837
838 return link_is_active ? 0 : -ENODEV;
839}
840
841static void iproc_pcie_enable(struct iproc_pcie *pcie)
842{
843 iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
844}
845
846static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
847 int window_idx)
848{
849 u32 val;
850
851 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
852
853 return !!(val & OARR_VALID);
854}
855
856static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
857 int size_idx, u64 axi_addr, u64 pci_addr)
858{
859 struct device *dev = pcie->dev;
860 u16 oarr_offset, omap_offset;
861
862 /*
863 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
864 * on window index.
865 */
866 oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
867 window_idx));
868 omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
869 window_idx));
870 if (iproc_pcie_reg_is_invalid(oarr_offset) ||
871 iproc_pcie_reg_is_invalid(omap_offset))
872 return -EINVAL;
873
874 /*
875 * Program the OARR registers. The upper 32-bit OARR register is
876 * always right after the lower 32-bit OARR register.
877 */
878 writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
879 OARR_VALID, pcie->base + oarr_offset);
880 writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
881
882 /* now program the OMAP registers */
883 writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
884 writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
885
886 dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
887 window_idx, oarr_offset, &axi_addr, &pci_addr);
888 dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n",
889 readl(pcie->base + oarr_offset),
890 readl(pcie->base + oarr_offset + 4));
891 dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n",
892 readl(pcie->base + omap_offset),
893 readl(pcie->base + omap_offset + 4));
894
895 return 0;
896}
897
898/*
899 * Some iProc SoCs require the SW to configure the outbound address mapping
900 *
901 * Outbound address translation:
902 *
903 * iproc_pcie_address = axi_address - axi_offset
904 * OARR = iproc_pcie_address
905 * OMAP = pci_addr
906 *
907 * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
908 */
909static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
910 u64 pci_addr, resource_size_t size)
911{
912 struct iproc_pcie_ob *ob = &pcie->ob;
913 struct device *dev = pcie->dev;
914 int ret = -EINVAL, window_idx, size_idx;
915
916 if (axi_addr < ob->axi_offset) {
917 dev_err(dev, "axi address %pap less than offset %pap\n",
918 &axi_addr, &ob->axi_offset);
919 return -EINVAL;
920 }
921
922 /*
923 * Translate the AXI address to the internal address used by the iProc
924 * PCIe core before programming the OARR
925 */
926 axi_addr -= ob->axi_offset;
927
928 /* iterate through all OARR/OMAP mapping windows */
929 for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
930 const struct iproc_pcie_ob_map *ob_map =
931 &pcie->ob_map[window_idx];
932
933 /*
934 * If current outbound window is already in use, move on to the
935 * next one.
936 */
937 if (iproc_pcie_ob_is_valid(pcie, window_idx))
938 continue;
939
940 /*
941 * Iterate through all supported window sizes within the
942 * OARR/OMAP pair to find a match. Go through the window sizes
943 * in a descending order.
944 */
945 for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
946 size_idx--) {
947 resource_size_t window_size =
948 ob_map->window_sizes[size_idx] * SZ_1M;
949
950 /*
951 * Keep iterating until we reach the last window and
952 * with the minimal window size at index zero. In this
953 * case, we take a compromise by mapping it using the
954 * minimum window size that can be supported
955 */
956 if (size < window_size) {
957 if (size_idx > 0 || window_idx > 0)
958 continue;
959
960 /*
961 * For the corner case of reaching the minimal
962 * window size that can be supported on the
963 * last window
964 */
965 axi_addr = ALIGN_DOWN(axi_addr, window_size);
966 pci_addr = ALIGN_DOWN(pci_addr, window_size);
967 size = window_size;
968 }
969
970 if (!IS_ALIGNED(axi_addr, window_size) ||
971 !IS_ALIGNED(pci_addr, window_size)) {
972 dev_err(dev,
973 "axi %pap or pci %pap not aligned\n",
974 &axi_addr, &pci_addr);
975 return -EINVAL;
976 }
977
978 /*
979 * Match found! Program both OARR and OMAP and mark
980 * them as a valid entry.
981 */
982 ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
983 axi_addr, pci_addr);
984 if (ret)
985 goto err_ob;
986
987 size -= window_size;
988 if (size == 0)
989 return 0;
990
991 /*
992 * If we are here, we are done with the current window,
993 * but not yet finished all mappings. Need to move on
994 * to the next window.
995 */
996 axi_addr += window_size;
997 pci_addr += window_size;
998 break;
999 }
1000 }
1001
1002err_ob:
1003 dev_err(dev, "unable to configure outbound mapping\n");
1004 dev_err(dev,
1005 "axi %pap, axi offset %pap, pci %pap, res size %pap\n",
1006 &axi_addr, &ob->axi_offset, &pci_addr, &size);
1007
1008 return ret;
1009}
1010
1011static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
1012 struct list_head *resources)
1013{
1014 struct device *dev = pcie->dev;
1015 struct resource_entry *window;
1016 int ret;
1017
1018 resource_list_for_each_entry(window, resources) {
1019 struct resource *res = window->res;
1020 u64 res_type = resource_type(res);
1021
1022 switch (res_type) {
1023 case IORESOURCE_IO:
1024 case IORESOURCE_BUS:
1025 break;
1026 case IORESOURCE_MEM:
1027 ret = iproc_pcie_setup_ob(pcie, res->start,
1028 res->start - window->offset,
1029 resource_size(res));
1030 if (ret)
1031 return ret;
1032 break;
1033 default:
1034 dev_err(dev, "invalid resource %pR\n", res);
1035 return -EINVAL;
1036 }
1037 }
1038
1039 return 0;
1040}
1041
1042static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
1043 int region_idx)
1044{
1045 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1046 u32 val;
1047
1048 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
1049
1050 return !!(val & (BIT(ib_map->nr_sizes) - 1));
1051}
1052
1053static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
1054 enum iproc_pcie_ib_map_type type)
1055{
1056 return !!(ib_map->type == type);
1057}
1058
1059static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
1060 int size_idx, int nr_windows, u64 axi_addr,
1061 u64 pci_addr, resource_size_t size)
1062{
1063 struct device *dev = pcie->dev;
1064 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1065 u16 iarr_offset, imap_offset;
1066 u32 val;
1067 int window_idx;
1068
1069 iarr_offset = iproc_pcie_reg_offset(pcie,
1070 MAP_REG(IPROC_PCIE_IARR0, region_idx));
1071 imap_offset = iproc_pcie_reg_offset(pcie,
1072 MAP_REG(IPROC_PCIE_IMAP0, region_idx));
1073 if (iproc_pcie_reg_is_invalid(iarr_offset) ||
1074 iproc_pcie_reg_is_invalid(imap_offset))
1075 return -EINVAL;
1076
1077 dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
1078 region_idx, iarr_offset, &axi_addr, &pci_addr);
1079
1080 /*
1081 * Program the IARR registers. The upper 32-bit IARR register is
1082 * always right after the lower 32-bit IARR register.
1083 */
1084 writel(lower_32_bits(pci_addr) | BIT(size_idx),
1085 pcie->base + iarr_offset);
1086 writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
1087
1088 dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n",
1089 readl(pcie->base + iarr_offset),
1090 readl(pcie->base + iarr_offset + 4));
1091
1092 /*
1093 * Now program the IMAP registers. Each IARR region may have one or
1094 * more IMAP windows.
1095 */
1096 size >>= ilog2(nr_windows);
1097 for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1098 val = readl(pcie->base + imap_offset);
1099 val |= lower_32_bits(axi_addr) | IMAP_VALID;
1100 writel(val, pcie->base + imap_offset);
1101 writel(upper_32_bits(axi_addr),
1102 pcie->base + imap_offset + ib_map->imap_addr_offset);
1103
1104 dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1105 window_idx, readl(pcie->base + imap_offset),
1106 readl(pcie->base + imap_offset +
1107 ib_map->imap_addr_offset));
1108
1109 imap_offset += ib_map->imap_window_offset;
1110 axi_addr += size;
1111 }
1112
1113 return 0;
1114}
1115
1116static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1117 struct resource_entry *entry,
1118 enum iproc_pcie_ib_map_type type)
1119{
1120 struct device *dev = pcie->dev;
1121 struct iproc_pcie_ib *ib = &pcie->ib;
1122 int ret;
1123 unsigned int region_idx, size_idx;
1124 u64 axi_addr = entry->res->start;
1125 u64 pci_addr = entry->res->start - entry->offset;
1126 resource_size_t size = resource_size(entry->res);
1127
1128 /* iterate through all IARR mapping regions */
1129 for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1130 const struct iproc_pcie_ib_map *ib_map =
1131 &pcie->ib_map[region_idx];
1132
1133 /*
1134 * If current inbound region is already in use or not a
1135 * compatible type, move on to the next.
1136 */
1137 if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1138 !iproc_pcie_ib_check_type(ib_map, type))
1139 continue;
1140
1141 /* iterate through all supported region sizes to find a match */
1142 for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1143 resource_size_t region_size =
1144 ib_map->region_sizes[size_idx] * ib_map->size_unit;
1145
1146 if (size != region_size)
1147 continue;
1148
1149 if (!IS_ALIGNED(axi_addr, region_size) ||
1150 !IS_ALIGNED(pci_addr, region_size)) {
1151 dev_err(dev,
1152 "axi %pap or pci %pap not aligned\n",
1153 &axi_addr, &pci_addr);
1154 return -EINVAL;
1155 }
1156
1157 /* Match found! Program IARR and all IMAP windows. */
1158 ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1159 ib_map->nr_windows, axi_addr,
1160 pci_addr, size);
1161 if (ret)
1162 goto err_ib;
1163 else
1164 return 0;
1165
1166 }
1167 }
1168 ret = -EINVAL;
1169
1170err_ib:
1171 dev_err(dev, "unable to configure inbound mapping\n");
1172 dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1173 &axi_addr, &pci_addr, &size);
1174
1175 return ret;
1176}
1177
1178static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1179{
1180 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1181 struct resource_entry *entry;
1182 int ret = 0;
1183
1184 resource_list_for_each_entry(entry, &host->dma_ranges) {
1185 /* Each range entry corresponds to an inbound mapping region */
1186 ret = iproc_pcie_setup_ib(pcie, entry, IPROC_PCIE_IB_MAP_MEM);
1187 if (ret)
1188 break;
1189 }
1190
1191 return ret;
1192}
1193
1194static void iproc_pcie_invalidate_mapping(struct iproc_pcie *pcie)
1195{
1196 struct iproc_pcie_ib *ib = &pcie->ib;
1197 struct iproc_pcie_ob *ob = &pcie->ob;
1198 int idx;
1199
1200 if (pcie->ep_is_internal)
1201 return;
1202
1203 if (pcie->need_ob_cfg) {
1204 /* iterate through all OARR mapping regions */
1205 for (idx = ob->nr_windows - 1; idx >= 0; idx--) {
1206 iproc_pcie_write_reg(pcie,
1207 MAP_REG(IPROC_PCIE_OARR0, idx), 0);
1208 }
1209 }
1210
1211 if (pcie->need_ib_cfg) {
1212 /* iterate through all IARR mapping regions */
1213 for (idx = 0; idx < ib->nr_regions; idx++) {
1214 iproc_pcie_write_reg(pcie,
1215 MAP_REG(IPROC_PCIE_IARR0, idx), 0);
1216 }
1217 }
1218}
1219
1220static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1221 struct device_node *msi_node,
1222 u64 *msi_addr)
1223{
1224 struct device *dev = pcie->dev;
1225 int ret;
1226 struct resource res;
1227
1228 /*
1229 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1230 * supported external MSI controller that requires steering.
1231 */
1232 if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1233 dev_err(dev, "unable to find compatible MSI controller\n");
1234 return -ENODEV;
1235 }
1236
1237 /* derive GITS_TRANSLATER address from GICv3 */
1238 ret = of_address_to_resource(msi_node, 0, &res);
1239 if (ret < 0) {
1240 dev_err(dev, "unable to obtain MSI controller resources\n");
1241 return ret;
1242 }
1243
1244 *msi_addr = res.start + GITS_TRANSLATER;
1245 return 0;
1246}
1247
1248static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1249{
1250 int ret;
1251 struct resource_entry entry;
1252
1253 memset(&entry, 0, sizeof(entry));
1254 entry.res = &entry.__res;
1255
1256 msi_addr &= ~(SZ_32K - 1);
1257 entry.res->start = msi_addr;
1258 entry.res->end = msi_addr + SZ_32K - 1;
1259
1260 ret = iproc_pcie_setup_ib(pcie, &entry, IPROC_PCIE_IB_MAP_IO);
1261 return ret;
1262}
1263
1264static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr,
1265 bool enable)
1266{
1267 u32 val;
1268
1269 if (!enable) {
1270 /*
1271 * Disable PAXC MSI steering. All write transfers will be
1272 * treated as non-MSI transfers
1273 */
1274 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1275 val &= ~MSI_ENABLE_CFG;
1276 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1277 return;
1278 }
1279
1280 /*
1281 * Program bits [43:13] of address of GITS_TRANSLATER register into
1282 * bits [30:0] of the MSI base address register. In fact, in all iProc
1283 * based SoCs, all I/O register bases are well below the 32-bit
1284 * boundary, so we can safely assume bits [43:32] are always zeros.
1285 */
1286 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1287 (u32)(msi_addr >> 13));
1288
1289 /* use a default 8K window size */
1290 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1291
1292 /* steering MSI to GICv3 ITS */
1293 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1294 val |= GIC_V3_CFG;
1295 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1296
1297 /*
1298 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1299 * iProc MSI address registers.
1300 */
1301 msi_addr >>= 2;
1302 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1303 upper_32_bits(msi_addr));
1304 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1305 lower_32_bits(msi_addr));
1306
1307 /* enable MSI */
1308 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1309 val |= MSI_ENABLE_CFG;
1310 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1311}
1312
1313static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1314 struct device_node *msi_node)
1315{
1316 struct device *dev = pcie->dev;
1317 int ret;
1318 u64 msi_addr;
1319
1320 ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1321 if (ret < 0) {
1322 dev_err(dev, "msi steering failed\n");
1323 return ret;
1324 }
1325
1326 switch (pcie->type) {
1327 case IPROC_PCIE_PAXB_V2:
1328 ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1329 if (ret)
1330 return ret;
1331 break;
1332 case IPROC_PCIE_PAXC_V2:
1333 iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true);
1334 break;
1335 default:
1336 return -EINVAL;
1337 }
1338
1339 return 0;
1340}
1341
1342static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1343{
1344 struct device_node *msi_node;
1345 int ret;
1346
1347 /*
1348 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1349 * for us to obtain the MSI node.
1350 */
1351
1352 msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1353 if (!msi_node) {
1354 const __be32 *msi_map = NULL;
1355 int len;
1356 u32 phandle;
1357
1358 msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1359 if (!msi_map)
1360 return -ENODEV;
1361
1362 phandle = be32_to_cpup(msi_map + 1);
1363 msi_node = of_find_node_by_phandle(phandle);
1364 if (!msi_node)
1365 return -ENODEV;
1366 }
1367
1368 /*
1369 * Certain revisions of the iProc PCIe controller require additional
1370 * configurations to steer the MSI writes towards an external MSI
1371 * controller.
1372 */
1373 if (pcie->need_msi_steer) {
1374 ret = iproc_pcie_msi_steer(pcie, msi_node);
1375 if (ret)
1376 goto out_put_node;
1377 }
1378
1379 /*
1380 * If another MSI controller is being used, the call below should fail
1381 * but that is okay
1382 */
1383 ret = iproc_msi_init(pcie, msi_node);
1384
1385out_put_node:
1386 of_node_put(msi_node);
1387 return ret;
1388}
1389
1390static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1391{
1392 iproc_msi_exit(pcie);
1393}
1394
1395static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1396{
1397 struct device *dev = pcie->dev;
1398 unsigned int reg_idx;
1399 const u16 *regs;
1400
1401 switch (pcie->type) {
1402 case IPROC_PCIE_PAXB_BCMA:
1403 regs = iproc_pcie_reg_paxb_bcma;
1404 break;
1405 case IPROC_PCIE_PAXB:
1406 regs = iproc_pcie_reg_paxb;
1407 pcie->has_apb_err_disable = true;
1408 if (pcie->need_ob_cfg) {
1409 pcie->ob_map = paxb_ob_map;
1410 pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1411 }
1412 break;
1413 case IPROC_PCIE_PAXB_V2:
1414 regs = iproc_pcie_reg_paxb_v2;
1415 pcie->iproc_cfg_read = true;
1416 pcie->has_apb_err_disable = true;
1417 if (pcie->need_ob_cfg) {
1418 pcie->ob_map = paxb_v2_ob_map;
1419 pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1420 }
1421 pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1422 pcie->ib_map = paxb_v2_ib_map;
1423 pcie->need_msi_steer = true;
1424 dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1425 CFG_RETRY_STATUS);
1426 break;
1427 case IPROC_PCIE_PAXC:
1428 regs = iproc_pcie_reg_paxc;
1429 pcie->ep_is_internal = true;
1430 pcie->iproc_cfg_read = true;
1431 pcie->rej_unconfig_pf = true;
1432 break;
1433 case IPROC_PCIE_PAXC_V2:
1434 regs = iproc_pcie_reg_paxc_v2;
1435 pcie->ep_is_internal = true;
1436 pcie->iproc_cfg_read = true;
1437 pcie->rej_unconfig_pf = true;
1438 pcie->need_msi_steer = true;
1439 break;
1440 default:
1441 dev_err(dev, "incompatible iProc PCIe interface\n");
1442 return -EINVAL;
1443 }
1444
1445 pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1446 sizeof(*pcie->reg_offsets),
1447 GFP_KERNEL);
1448 if (!pcie->reg_offsets)
1449 return -ENOMEM;
1450
1451 /* go through the register table and populate all valid registers */
1452 pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1453 IPROC_PCIE_REG_INVALID : regs[0];
1454 for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1455 pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1456 regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1457
1458 return 0;
1459}
1460
1461int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1462{
1463 struct device *dev;
1464 int ret;
1465 struct pci_dev *pdev;
1466 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1467
1468 dev = pcie->dev;
1469
1470 ret = iproc_pcie_rev_init(pcie);
1471 if (ret) {
1472 dev_err(dev, "unable to initialize controller parameters\n");
1473 return ret;
1474 }
1475
1476 ret = phy_init(pcie->phy);
1477 if (ret) {
1478 dev_err(dev, "unable to initialize PCIe PHY\n");
1479 return ret;
1480 }
1481
1482 ret = phy_power_on(pcie->phy);
1483 if (ret) {
1484 dev_err(dev, "unable to power on PCIe PHY\n");
1485 goto err_exit_phy;
1486 }
1487
1488 iproc_pcie_perst_ctrl(pcie, true);
1489 iproc_pcie_perst_ctrl(pcie, false);
1490
1491 iproc_pcie_invalidate_mapping(pcie);
1492
1493 if (pcie->need_ob_cfg) {
1494 ret = iproc_pcie_map_ranges(pcie, res);
1495 if (ret) {
1496 dev_err(dev, "map failed\n");
1497 goto err_power_off_phy;
1498 }
1499 }
1500
1501 if (pcie->need_ib_cfg) {
1502 ret = iproc_pcie_map_dma_ranges(pcie);
1503 if (ret && ret != -ENOENT)
1504 goto err_power_off_phy;
1505 }
1506
1507 ret = iproc_pcie_check_link(pcie);
1508 if (ret) {
1509 dev_err(dev, "no PCIe EP device detected\n");
1510 goto err_power_off_phy;
1511 }
1512
1513 iproc_pcie_enable(pcie);
1514
1515 if (IS_ENABLED(CONFIG_PCI_MSI))
1516 if (iproc_pcie_msi_enable(pcie))
1517 dev_info(dev, "not using iProc MSI\n");
1518
1519 host->ops = &iproc_pcie_ops;
1520 host->sysdata = pcie;
1521 host->map_irq = pcie->map_irq;
1522
1523 ret = pci_host_probe(host);
1524 if (ret < 0) {
1525 dev_err(dev, "failed to scan host: %d\n", ret);
1526 goto err_power_off_phy;
1527 }
1528
1529 for_each_pci_bridge(pdev, host->bus) {
1530 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT)
1531 pcie_print_link_status(pdev);
1532 }
1533
1534 return 0;
1535
1536err_power_off_phy:
1537 phy_power_off(pcie->phy);
1538err_exit_phy:
1539 phy_exit(pcie->phy);
1540 return ret;
1541}
1542EXPORT_SYMBOL(iproc_pcie_setup);
1543
1544int iproc_pcie_remove(struct iproc_pcie *pcie)
1545{
1546 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1547
1548 pci_stop_root_bus(host->bus);
1549 pci_remove_root_bus(host->bus);
1550
1551 iproc_pcie_msi_disable(pcie);
1552
1553 phy_power_off(pcie->phy);
1554 phy_exit(pcie->phy);
1555
1556 return 0;
1557}
1558EXPORT_SYMBOL(iproc_pcie_remove);
1559
1560/*
1561 * The MSI parsing logic in certain revisions of Broadcom PAXC based root
1562 * complex does not work and needs to be disabled
1563 */
1564static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev)
1565{
1566 struct iproc_pcie *pcie = iproc_data(pdev->bus);
1567
1568 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1569 iproc_pcie_paxc_v2_msi_steer(pcie, 0, false);
1570}
1571DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0,
1572 quirk_paxc_disable_msi_parsing);
1573DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802,
1574 quirk_paxc_disable_msi_parsing);
1575DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804,
1576 quirk_paxc_disable_msi_parsing);
1577
1578static void quirk_paxc_bridge(struct pci_dev *pdev)
1579{
1580 /*
1581 * The PCI config space is shared with the PAXC root port and the first
1582 * Ethernet device. So, we need to workaround this by telling the PCI
1583 * code that the bridge is not an Ethernet device.
1584 */
1585 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1586 pdev->class = PCI_CLASS_BRIDGE_PCI << 8;
1587
1588 /*
1589 * MPSS is not being set properly (as it is currently 0). This is
1590 * because that area of the PCI config space is hard coded to zero, and
1591 * is not modifiable by firmware. Set this to 2 (e.g., 512 byte MPS)
1592 * so that the MPS can be set to the real max value.
1593 */
1594 pdev->pcie_mpss = 2;
1595}
1596DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16cd, quirk_paxc_bridge);
1597DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, quirk_paxc_bridge);
1598DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd750, quirk_paxc_bridge);
1599DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, quirk_paxc_bridge);
1600DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, quirk_paxc_bridge);
1601
1602MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1603MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1604MODULE_LICENSE("GPL v2");