Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
   4 * Copyright (C) 2015 Broadcom Corporation
   5 */
   6
   7#include <linux/kernel.h>
   8#include <linux/pci.h>
 
   9#include <linux/msi.h>
  10#include <linux/clk.h>
  11#include <linux/module.h>
  12#include <linux/mbus.h>
  13#include <linux/slab.h>
  14#include <linux/delay.h>
  15#include <linux/interrupt.h>
  16#include <linux/irqchip/arm-gic-v3.h>
  17#include <linux/platform_device.h>
  18#include <linux/of_address.h>
  19#include <linux/of_pci.h>
  20#include <linux/of_irq.h>
  21#include <linux/of_platform.h>
  22#include <linux/phy/phy.h>
  23
  24#include "pcie-iproc.h"
  25
  26#define EP_PERST_SOURCE_SELECT_SHIFT	2
  27#define EP_PERST_SOURCE_SELECT		BIT(EP_PERST_SOURCE_SELECT_SHIFT)
  28#define EP_MODE_SURVIVE_PERST_SHIFT	1
  29#define EP_MODE_SURVIVE_PERST		BIT(EP_MODE_SURVIVE_PERST_SHIFT)
  30#define RC_PCIE_RST_OUTPUT_SHIFT	0
  31#define RC_PCIE_RST_OUTPUT		BIT(RC_PCIE_RST_OUTPUT_SHIFT)
  32#define PAXC_RESET_MASK			0x7f
  33
  34#define GIC_V3_CFG_SHIFT		0
  35#define GIC_V3_CFG			BIT(GIC_V3_CFG_SHIFT)
  36
  37#define MSI_ENABLE_CFG_SHIFT		0
  38#define MSI_ENABLE_CFG			BIT(MSI_ENABLE_CFG_SHIFT)
  39
  40#define CFG_IND_ADDR_MASK		0x00001ffc
  41
  42#define CFG_ADDR_BUS_NUM_SHIFT		20
  43#define CFG_ADDR_BUS_NUM_MASK		0x0ff00000
  44#define CFG_ADDR_DEV_NUM_SHIFT		15
  45#define CFG_ADDR_DEV_NUM_MASK		0x000f8000
  46#define CFG_ADDR_FUNC_NUM_SHIFT		12
  47#define CFG_ADDR_FUNC_NUM_MASK		0x00007000
  48#define CFG_ADDR_REG_NUM_SHIFT		2
  49#define CFG_ADDR_REG_NUM_MASK		0x00000ffc
  50#define CFG_ADDR_CFG_TYPE_SHIFT		0
  51#define CFG_ADDR_CFG_TYPE_MASK		0x00000003
  52
  53#define SYS_RC_INTX_MASK		0xf
  54
  55#define PCIE_PHYLINKUP_SHIFT		3
  56#define PCIE_PHYLINKUP			BIT(PCIE_PHYLINKUP_SHIFT)
  57#define PCIE_DL_ACTIVE_SHIFT		2
  58#define PCIE_DL_ACTIVE			BIT(PCIE_DL_ACTIVE_SHIFT)
  59
  60#define APB_ERR_EN_SHIFT		0
  61#define APB_ERR_EN			BIT(APB_ERR_EN_SHIFT)
  62
  63#define CFG_RD_SUCCESS			0
  64#define CFG_RD_UR			1
  65#define CFG_RD_CRS			2
  66#define CFG_RD_CA			3
  67#define CFG_RETRY_STATUS		0xffff0001
  68#define CFG_RETRY_STATUS_TIMEOUT_US	500000 /* 500 milliseconds */
  69
  70/* derive the enum index of the outbound/inbound mapping registers */
  71#define MAP_REG(base_reg, index)	((base_reg) + (index) * 2)
  72
  73/*
  74 * Maximum number of outbound mapping window sizes that can be supported by any
  75 * OARR/OMAP mapping pair
  76 */
  77#define MAX_NUM_OB_WINDOW_SIZES		4
  78
  79#define OARR_VALID_SHIFT		0
  80#define OARR_VALID			BIT(OARR_VALID_SHIFT)
  81#define OARR_SIZE_CFG_SHIFT		1
  82
  83/*
  84 * Maximum number of inbound mapping region sizes that can be supported by an
  85 * IARR
  86 */
  87#define MAX_NUM_IB_REGION_SIZES		9
  88
  89#define IMAP_VALID_SHIFT		0
  90#define IMAP_VALID			BIT(IMAP_VALID_SHIFT)
  91
  92#define IPROC_PCI_PM_CAP		0x48
  93#define IPROC_PCI_PM_CAP_MASK		0xffff
  94#define IPROC_PCI_EXP_CAP		0xac
  95
  96#define IPROC_PCIE_REG_INVALID		0xffff
  97
  98/**
  99 * iProc PCIe outbound mapping controller specific parameters
 100 *
 101 * @window_sizes: list of supported outbound mapping window sizes in MB
 102 * @nr_sizes: number of supported outbound mapping window sizes
 103 */
 104struct iproc_pcie_ob_map {
 105	resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
 106	unsigned int nr_sizes;
 107};
 108
 109static const struct iproc_pcie_ob_map paxb_ob_map[] = {
 110	{
 111		/* OARR0/OMAP0 */
 112		.window_sizes = { 128, 256 },
 113		.nr_sizes = 2,
 114	},
 115	{
 116		/* OARR1/OMAP1 */
 117		.window_sizes = { 128, 256 },
 118		.nr_sizes = 2,
 119	},
 120};
 121
 122static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
 123	{
 124		/* OARR0/OMAP0 */
 125		.window_sizes = { 128, 256 },
 126		.nr_sizes = 2,
 127	},
 128	{
 129		/* OARR1/OMAP1 */
 130		.window_sizes = { 128, 256 },
 131		.nr_sizes = 2,
 132	},
 133	{
 134		/* OARR2/OMAP2 */
 135		.window_sizes = { 128, 256, 512, 1024 },
 136		.nr_sizes = 4,
 137	},
 138	{
 139		/* OARR3/OMAP3 */
 140		.window_sizes = { 128, 256, 512, 1024 },
 141		.nr_sizes = 4,
 142	},
 143};
 144
 145/**
 146 * iProc PCIe inbound mapping type
 
 
 
 147 */
 148enum iproc_pcie_ib_map_type {
 149	/* for DDR memory */
 150	IPROC_PCIE_IB_MAP_MEM = 0,
 151
 152	/* for device I/O memory */
 153	IPROC_PCIE_IB_MAP_IO,
 154
 155	/* invalid or unused */
 156	IPROC_PCIE_IB_MAP_INVALID
 157};
 158
 159/**
 160 * iProc PCIe inbound mapping controller specific parameters
 161 *
 162 * @type: inbound mapping region type
 163 * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
 164 * SZ_1G
 165 * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
 166 * GB, depending on the size unit
 167 * @nr_sizes: number of supported inbound mapping region sizes
 168 * @nr_windows: number of supported inbound mapping windows for the region
 169 * @imap_addr_offset: register offset between the upper and lower 32-bit
 170 * IMAP address registers
 171 * @imap_window_offset: register offset between each IMAP window
 172 */
 173struct iproc_pcie_ib_map {
 174	enum iproc_pcie_ib_map_type type;
 175	unsigned int size_unit;
 176	resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
 177	unsigned int nr_sizes;
 178	unsigned int nr_windows;
 179	u16 imap_addr_offset;
 180	u16 imap_window_offset;
 181};
 182
 183static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
 184	{
 185		/* IARR0/IMAP0 */
 186		.type = IPROC_PCIE_IB_MAP_IO,
 187		.size_unit = SZ_1K,
 188		.region_sizes = { 32 },
 189		.nr_sizes = 1,
 190		.nr_windows = 8,
 191		.imap_addr_offset = 0x40,
 192		.imap_window_offset = 0x4,
 193	},
 194	{
 195		/* IARR1/IMAP1 (currently unused) */
 196		.type = IPROC_PCIE_IB_MAP_INVALID,
 
 
 
 
 
 
 
 197	},
 198	{
 199		/* IARR2/IMAP2 */
 200		.type = IPROC_PCIE_IB_MAP_MEM,
 201		.size_unit = SZ_1M,
 202		.region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
 203				  16384 },
 204		.nr_sizes = 9,
 205		.nr_windows = 1,
 206		.imap_addr_offset = 0x4,
 207		.imap_window_offset = 0x8,
 208	},
 209	{
 210		/* IARR3/IMAP3 */
 211		.type = IPROC_PCIE_IB_MAP_MEM,
 212		.size_unit = SZ_1G,
 213		.region_sizes = { 1, 2, 4, 8, 16, 32 },
 214		.nr_sizes = 6,
 215		.nr_windows = 8,
 216		.imap_addr_offset = 0x4,
 217		.imap_window_offset = 0x8,
 218	},
 219	{
 220		/* IARR4/IMAP4 */
 221		.type = IPROC_PCIE_IB_MAP_MEM,
 222		.size_unit = SZ_1G,
 223		.region_sizes = { 32, 64, 128, 256, 512 },
 224		.nr_sizes = 5,
 225		.nr_windows = 8,
 226		.imap_addr_offset = 0x4,
 227		.imap_window_offset = 0x8,
 228	},
 229};
 230
 231/*
 232 * iProc PCIe host registers
 233 */
 234enum iproc_pcie_reg {
 235	/* clock/reset signal control */
 236	IPROC_PCIE_CLK_CTRL = 0,
 237
 238	/*
 239	 * To allow MSI to be steered to an external MSI controller (e.g., ARM
 240	 * GICv3 ITS)
 241	 */
 242	IPROC_PCIE_MSI_GIC_MODE,
 243
 244	/*
 245	 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
 246	 * window where the MSI posted writes are written, for the writes to be
 247	 * interpreted as MSI writes.
 248	 */
 249	IPROC_PCIE_MSI_BASE_ADDR,
 250	IPROC_PCIE_MSI_WINDOW_SIZE,
 251
 252	/*
 253	 * To hold the address of the register where the MSI writes are
 254	 * programed.  When ARM GICv3 ITS is used, this should be programmed
 255	 * with the address of the GITS_TRANSLATER register.
 256	 */
 257	IPROC_PCIE_MSI_ADDR_LO,
 258	IPROC_PCIE_MSI_ADDR_HI,
 259
 260	/* enable MSI */
 261	IPROC_PCIE_MSI_EN_CFG,
 262
 263	/* allow access to root complex configuration space */
 264	IPROC_PCIE_CFG_IND_ADDR,
 265	IPROC_PCIE_CFG_IND_DATA,
 266
 267	/* allow access to device configuration space */
 268	IPROC_PCIE_CFG_ADDR,
 269	IPROC_PCIE_CFG_DATA,
 270
 271	/* enable INTx */
 272	IPROC_PCIE_INTX_EN,
 273
 274	/* outbound address mapping */
 275	IPROC_PCIE_OARR0,
 276	IPROC_PCIE_OMAP0,
 277	IPROC_PCIE_OARR1,
 278	IPROC_PCIE_OMAP1,
 279	IPROC_PCIE_OARR2,
 280	IPROC_PCIE_OMAP2,
 281	IPROC_PCIE_OARR3,
 282	IPROC_PCIE_OMAP3,
 283
 284	/* inbound address mapping */
 285	IPROC_PCIE_IARR0,
 286	IPROC_PCIE_IMAP0,
 287	IPROC_PCIE_IARR1,
 288	IPROC_PCIE_IMAP1,
 289	IPROC_PCIE_IARR2,
 290	IPROC_PCIE_IMAP2,
 291	IPROC_PCIE_IARR3,
 292	IPROC_PCIE_IMAP3,
 293	IPROC_PCIE_IARR4,
 294	IPROC_PCIE_IMAP4,
 295
 296	/* config read status */
 297	IPROC_PCIE_CFG_RD_STATUS,
 298
 299	/* link status */
 300	IPROC_PCIE_LINK_STATUS,
 301
 302	/* enable APB error for unsupported requests */
 303	IPROC_PCIE_APB_ERR_EN,
 304
 305	/* total number of core registers */
 306	IPROC_PCIE_MAX_NUM_REG,
 307};
 308
 309/* iProc PCIe PAXB BCMA registers */
 310static const u16 iproc_pcie_reg_paxb_bcma[] = {
 311	[IPROC_PCIE_CLK_CTRL]		= 0x000,
 312	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
 313	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
 314	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
 315	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
 316	[IPROC_PCIE_INTX_EN]		= 0x330,
 317	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
 318};
 319
 320/* iProc PCIe PAXB registers */
 321static const u16 iproc_pcie_reg_paxb[] = {
 322	[IPROC_PCIE_CLK_CTRL]		= 0x000,
 323	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
 324	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
 325	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
 326	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
 327	[IPROC_PCIE_INTX_EN]		= 0x330,
 328	[IPROC_PCIE_OARR0]		= 0xd20,
 329	[IPROC_PCIE_OMAP0]		= 0xd40,
 330	[IPROC_PCIE_OARR1]		= 0xd28,
 331	[IPROC_PCIE_OMAP1]		= 0xd48,
 332	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
 333	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
 334};
 335
 336/* iProc PCIe PAXB v2 registers */
 337static const u16 iproc_pcie_reg_paxb_v2[] = {
 338	[IPROC_PCIE_CLK_CTRL]		= 0x000,
 339	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
 340	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
 341	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
 342	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
 343	[IPROC_PCIE_INTX_EN]		= 0x330,
 344	[IPROC_PCIE_OARR0]		= 0xd20,
 345	[IPROC_PCIE_OMAP0]		= 0xd40,
 346	[IPROC_PCIE_OARR1]		= 0xd28,
 347	[IPROC_PCIE_OMAP1]		= 0xd48,
 348	[IPROC_PCIE_OARR2]		= 0xd60,
 349	[IPROC_PCIE_OMAP2]		= 0xd68,
 350	[IPROC_PCIE_OARR3]		= 0xdf0,
 351	[IPROC_PCIE_OMAP3]		= 0xdf8,
 352	[IPROC_PCIE_IARR0]		= 0xd00,
 353	[IPROC_PCIE_IMAP0]		= 0xc00,
 
 
 354	[IPROC_PCIE_IARR2]		= 0xd10,
 355	[IPROC_PCIE_IMAP2]		= 0xcc0,
 356	[IPROC_PCIE_IARR3]		= 0xe00,
 357	[IPROC_PCIE_IMAP3]		= 0xe08,
 358	[IPROC_PCIE_IARR4]		= 0xe68,
 359	[IPROC_PCIE_IMAP4]		= 0xe70,
 360	[IPROC_PCIE_CFG_RD_STATUS]	= 0xee0,
 361	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
 362	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
 363};
 364
 365/* iProc PCIe PAXC v1 registers */
 366static const u16 iproc_pcie_reg_paxc[] = {
 367	[IPROC_PCIE_CLK_CTRL]		= 0x000,
 368	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
 369	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
 370	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
 371	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
 372};
 373
 374/* iProc PCIe PAXC v2 registers */
 375static const u16 iproc_pcie_reg_paxc_v2[] = {
 376	[IPROC_PCIE_MSI_GIC_MODE]	= 0x050,
 377	[IPROC_PCIE_MSI_BASE_ADDR]	= 0x074,
 378	[IPROC_PCIE_MSI_WINDOW_SIZE]	= 0x078,
 379	[IPROC_PCIE_MSI_ADDR_LO]	= 0x07c,
 380	[IPROC_PCIE_MSI_ADDR_HI]	= 0x080,
 381	[IPROC_PCIE_MSI_EN_CFG]		= 0x09c,
 382	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
 383	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
 384	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
 385	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
 386};
 387
 388/*
 389 * List of device IDs of controllers that have corrupted capability list that
 390 * require SW fixup
 391 */
 392static const u16 iproc_pcie_corrupt_cap_did[] = {
 393	0x16cd,
 394	0x16f0,
 395	0xd802,
 396	0xd804
 397};
 398
 399static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
 400{
 401	struct iproc_pcie *pcie = bus->sysdata;
 402	return pcie;
 403}
 404
 405static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
 406{
 407	return !!(reg_offset == IPROC_PCIE_REG_INVALID);
 408}
 409
 410static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
 411					enum iproc_pcie_reg reg)
 412{
 413	return pcie->reg_offsets[reg];
 414}
 415
 416static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
 417				      enum iproc_pcie_reg reg)
 418{
 419	u16 offset = iproc_pcie_reg_offset(pcie, reg);
 420
 421	if (iproc_pcie_reg_is_invalid(offset))
 422		return 0;
 423
 424	return readl(pcie->base + offset);
 425}
 426
 427static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
 428					enum iproc_pcie_reg reg, u32 val)
 429{
 430	u16 offset = iproc_pcie_reg_offset(pcie, reg);
 431
 432	if (iproc_pcie_reg_is_invalid(offset))
 433		return;
 434
 435	writel(val, pcie->base + offset);
 436}
 437
 438/**
 439 * APB error forwarding can be disabled during access of configuration
 440 * registers of the endpoint device, to prevent unsupported requests
 441 * (typically seen during enumeration with multi-function devices) from
 442 * triggering a system exception.
 443 */
 444static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
 445					      bool disable)
 446{
 447	struct iproc_pcie *pcie = iproc_data(bus);
 448	u32 val;
 449
 450	if (bus->number && pcie->has_apb_err_disable) {
 451		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
 452		if (disable)
 453			val &= ~APB_ERR_EN;
 454		else
 455			val |= APB_ERR_EN;
 456		iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
 457	}
 458}
 459
 460static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
 461					       unsigned int busno,
 462					       unsigned int slot,
 463					       unsigned int fn,
 464					       int where)
 465{
 466	u16 offset;
 467	u32 val;
 468
 469	/* EP device access */
 470	val = (busno << CFG_ADDR_BUS_NUM_SHIFT) |
 471		(slot << CFG_ADDR_DEV_NUM_SHIFT) |
 472		(fn << CFG_ADDR_FUNC_NUM_SHIFT) |
 473		(where & CFG_ADDR_REG_NUM_MASK) |
 474		(1 & CFG_ADDR_CFG_TYPE_MASK);
 475
 476	iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
 477	offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
 478
 479	if (iproc_pcie_reg_is_invalid(offset))
 480		return NULL;
 481
 482	return (pcie->base + offset);
 483}
 484
 485static unsigned int iproc_pcie_cfg_retry(struct iproc_pcie *pcie,
 486					 void __iomem *cfg_data_p)
 487{
 488	int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
 489	unsigned int data;
 490	u32 status;
 491
 492	/*
 493	 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
 494	 * affects config reads of the Vendor ID.  For config writes or any
 495	 * other config reads, the Root may automatically reissue the
 496	 * configuration request again as a new request.
 497	 *
 498	 * For config reads, this hardware returns CFG_RETRY_STATUS data
 499	 * when it receives a CRS completion, regardless of the address of
 500	 * the read or the CRS Software Visibility Enable bit.  As a
 501	 * partial workaround for this, we retry in software any read that
 502	 * returns CFG_RETRY_STATUS.
 503	 *
 504	 * Note that a non-Vendor ID config register may have a value of
 505	 * CFG_RETRY_STATUS.  If we read that, we can't distinguish it from
 506	 * a CRS completion, so we will incorrectly retry the read and
 507	 * eventually return the wrong data (0xffffffff).
 508	 */
 509	data = readl(cfg_data_p);
 510	while (data == CFG_RETRY_STATUS && timeout--) {
 511		/*
 512		 * CRS state is set in CFG_RD status register
 513		 * This will handle the case where CFG_RETRY_STATUS is
 514		 * valid config data.
 515		 */
 516		status = iproc_pcie_read_reg(pcie, IPROC_PCIE_CFG_RD_STATUS);
 517		if (status != CFG_RD_CRS)
 518			return data;
 519
 520		udelay(1);
 521		data = readl(cfg_data_p);
 522	}
 523
 524	if (data == CFG_RETRY_STATUS)
 525		data = 0xffffffff;
 526
 527	return data;
 528}
 529
 530static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val)
 531{
 532	u32 i, dev_id;
 533
 534	switch (where & ~0x3) {
 535	case PCI_VENDOR_ID:
 536		dev_id = *val >> 16;
 537
 538		/*
 539		 * Activate fixup for those controllers that have corrupted
 540		 * capability list registers
 541		 */
 542		for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++)
 543			if (dev_id == iproc_pcie_corrupt_cap_did[i])
 544				pcie->fix_paxc_cap = true;
 545		break;
 546
 547	case IPROC_PCI_PM_CAP:
 548		if (pcie->fix_paxc_cap) {
 549			/* advertise PM, force next capability to PCIe */
 550			*val &= ~IPROC_PCI_PM_CAP_MASK;
 551			*val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM;
 552		}
 553		break;
 554
 555	case IPROC_PCI_EXP_CAP:
 556		if (pcie->fix_paxc_cap) {
 557			/* advertise root port, version 2, terminate here */
 558			*val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 |
 559				PCI_CAP_ID_EXP;
 560		}
 561		break;
 562
 563	case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL:
 564		/* Don't advertise CRS SV support */
 565		*val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
 566		break;
 567
 568	default:
 569		break;
 570	}
 571}
 572
 573static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
 574				  int where, int size, u32 *val)
 575{
 576	struct iproc_pcie *pcie = iproc_data(bus);
 577	unsigned int slot = PCI_SLOT(devfn);
 578	unsigned int fn = PCI_FUNC(devfn);
 579	unsigned int busno = bus->number;
 580	void __iomem *cfg_data_p;
 581	unsigned int data;
 582	int ret;
 583
 584	/* root complex access */
 585	if (busno == 0) {
 586		ret = pci_generic_config_read32(bus, devfn, where, size, val);
 587		if (ret == PCIBIOS_SUCCESSFUL)
 588			iproc_pcie_fix_cap(pcie, where, val);
 589
 590		return ret;
 591	}
 592
 593	cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
 594
 595	if (!cfg_data_p)
 596		return PCIBIOS_DEVICE_NOT_FOUND;
 597
 598	data = iproc_pcie_cfg_retry(pcie, cfg_data_p);
 599
 600	*val = data;
 601	if (size <= 2)
 602		*val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
 603
 604	/*
 605	 * For PAXC and PAXCv2, the total number of PFs that one can enumerate
 606	 * depends on the firmware configuration. Unfortunately, due to an ASIC
 607	 * bug, unconfigured PFs cannot be properly hidden from the root
 608	 * complex. As a result, write access to these PFs will cause bus lock
 609	 * up on the embedded processor
 610	 *
 611	 * Since all unconfigured PFs are left with an incorrect, staled device
 612	 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access
 613	 * early here and reject them all
 614	 */
 615#define DEVICE_ID_MASK     0xffff0000
 616#define DEVICE_ID_SHIFT    16
 617	if (pcie->rej_unconfig_pf &&
 618	    (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID)
 619		if ((*val & DEVICE_ID_MASK) ==
 620		    (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT))
 621			return PCIBIOS_FUNC_NOT_SUPPORTED;
 622
 623	return PCIBIOS_SUCCESSFUL;
 624}
 625
 626/**
 627 * Note access to the configuration registers are protected at the higher layer
 628 * by 'pci_lock' in drivers/pci/access.c
 629 */
 630static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
 631					    int busno, unsigned int devfn,
 632					    int where)
 633{
 634	unsigned slot = PCI_SLOT(devfn);
 635	unsigned fn = PCI_FUNC(devfn);
 636	u16 offset;
 637
 638	/* root complex access */
 639	if (busno == 0) {
 640		if (slot > 0 || fn > 0)
 641			return NULL;
 642
 643		iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
 644				     where & CFG_IND_ADDR_MASK);
 645		offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
 646		if (iproc_pcie_reg_is_invalid(offset))
 647			return NULL;
 648		else
 649			return (pcie->base + offset);
 650	}
 651
 652	return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
 653}
 654
 655static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
 656						unsigned int devfn,
 657						int where)
 658{
 659	return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
 660				      where);
 661}
 662
 663static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
 664				       unsigned int devfn, int where,
 665				       int size, u32 *val)
 666{
 667	void __iomem *addr;
 668
 669	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
 670	if (!addr) {
 671		*val = ~0;
 672		return PCIBIOS_DEVICE_NOT_FOUND;
 673	}
 674
 675	*val = readl(addr);
 676
 677	if (size <= 2)
 678		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
 679
 680	return PCIBIOS_SUCCESSFUL;
 681}
 682
 683static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
 684					unsigned int devfn, int where,
 685					int size, u32 val)
 686{
 687	void __iomem *addr;
 688	u32 mask, tmp;
 689
 690	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
 691	if (!addr)
 692		return PCIBIOS_DEVICE_NOT_FOUND;
 693
 694	if (size == 4) {
 695		writel(val, addr);
 696		return PCIBIOS_SUCCESSFUL;
 697	}
 698
 699	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
 700	tmp = readl(addr) & mask;
 701	tmp |= val << ((where & 0x3) * 8);
 702	writel(tmp, addr);
 703
 704	return PCIBIOS_SUCCESSFUL;
 705}
 706
 707static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
 708				    int where, int size, u32 *val)
 709{
 710	int ret;
 711	struct iproc_pcie *pcie = iproc_data(bus);
 712
 713	iproc_pcie_apb_err_disable(bus, true);
 714	if (pcie->iproc_cfg_read)
 715		ret = iproc_pcie_config_read(bus, devfn, where, size, val);
 716	else
 717		ret = pci_generic_config_read32(bus, devfn, where, size, val);
 718	iproc_pcie_apb_err_disable(bus, false);
 719
 720	return ret;
 721}
 722
 723static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
 724				     int where, int size, u32 val)
 725{
 726	int ret;
 727
 728	iproc_pcie_apb_err_disable(bus, true);
 729	ret = pci_generic_config_write32(bus, devfn, where, size, val);
 730	iproc_pcie_apb_err_disable(bus, false);
 731
 732	return ret;
 733}
 734
 735static struct pci_ops iproc_pcie_ops = {
 736	.map_bus = iproc_pcie_bus_map_cfg_bus,
 737	.read = iproc_pcie_config_read32,
 738	.write = iproc_pcie_config_write32,
 739};
 740
 741static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
 742{
 743	u32 val;
 744
 745	/*
 746	 * PAXC and the internal emulated endpoint device downstream should not
 747	 * be reset.  If firmware has been loaded on the endpoint device at an
 748	 * earlier boot stage, reset here causes issues.
 749	 */
 750	if (pcie->ep_is_internal)
 751		return;
 752
 753	if (assert) {
 754		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
 755		val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
 756			~RC_PCIE_RST_OUTPUT;
 757		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
 758		udelay(250);
 759	} else {
 760		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
 761		val |= RC_PCIE_RST_OUTPUT;
 762		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
 763		msleep(100);
 764	}
 765}
 766
 767int iproc_pcie_shutdown(struct iproc_pcie *pcie)
 768{
 769	iproc_pcie_perst_ctrl(pcie, true);
 770	msleep(500);
 771
 772	return 0;
 773}
 774EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
 775
 776static int iproc_pcie_check_link(struct iproc_pcie *pcie)
 777{
 778	struct device *dev = pcie->dev;
 779	u32 hdr_type, link_ctrl, link_status, class, val;
 780	bool link_is_active = false;
 781
 782	/*
 783	 * PAXC connects to emulated endpoint devices directly and does not
 784	 * have a Serdes.  Therefore skip the link detection logic here.
 785	 */
 786	if (pcie->ep_is_internal)
 787		return 0;
 788
 789	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
 790	if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
 791		dev_err(dev, "PHY or data link is INACTIVE!\n");
 792		return -ENODEV;
 793	}
 794
 795	/* make sure we are not in EP mode */
 796	iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
 797	if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
 798		dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
 799		return -EFAULT;
 800	}
 801
 802	/* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */
 803#define PCI_BRIDGE_CTRL_REG_OFFSET	0x43c
 804#define PCI_CLASS_BRIDGE_MASK		0xffff00
 805#define PCI_CLASS_BRIDGE_SHIFT		8
 806	iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
 807				    4, &class);
 808	class &= ~PCI_CLASS_BRIDGE_MASK;
 809	class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT);
 810	iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
 811				     4, class);
 812
 813	/* check link status to see if link is active */
 814	iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
 815				    2, &link_status);
 816	if (link_status & PCI_EXP_LNKSTA_NLW)
 817		link_is_active = true;
 818
 819	if (!link_is_active) {
 820		/* try GEN 1 link speed */
 821#define PCI_TARGET_LINK_SPEED_MASK	0xf
 822#define PCI_TARGET_LINK_SPEED_GEN2	0x2
 823#define PCI_TARGET_LINK_SPEED_GEN1	0x1
 824		iproc_pci_raw_config_read32(pcie, 0,
 825					    IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
 826					    4, &link_ctrl);
 827		if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
 828		    PCI_TARGET_LINK_SPEED_GEN2) {
 829			link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
 830			link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
 831			iproc_pci_raw_config_write32(pcie, 0,
 832					IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
 833					4, link_ctrl);
 834			msleep(100);
 835
 836			iproc_pci_raw_config_read32(pcie, 0,
 837					IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
 838					2, &link_status);
 839			if (link_status & PCI_EXP_LNKSTA_NLW)
 840				link_is_active = true;
 841		}
 842	}
 843
 844	dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
 845
 846	return link_is_active ? 0 : -ENODEV;
 847}
 848
 849static void iproc_pcie_enable(struct iproc_pcie *pcie)
 850{
 851	iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
 852}
 853
 854static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
 855					  int window_idx)
 856{
 857	u32 val;
 858
 859	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
 860
 861	return !!(val & OARR_VALID);
 862}
 863
 864static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
 865				      int size_idx, u64 axi_addr, u64 pci_addr)
 866{
 867	struct device *dev = pcie->dev;
 868	u16 oarr_offset, omap_offset;
 869
 870	/*
 871	 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
 872	 * on window index.
 873	 */
 874	oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
 875							  window_idx));
 876	omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
 877							  window_idx));
 878	if (iproc_pcie_reg_is_invalid(oarr_offset) ||
 879	    iproc_pcie_reg_is_invalid(omap_offset))
 880		return -EINVAL;
 881
 882	/*
 883	 * Program the OARR registers.  The upper 32-bit OARR register is
 884	 * always right after the lower 32-bit OARR register.
 885	 */
 886	writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
 887	       OARR_VALID, pcie->base + oarr_offset);
 888	writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
 889
 890	/* now program the OMAP registers */
 891	writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
 892	writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
 893
 894	dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
 895		window_idx, oarr_offset, &axi_addr, &pci_addr);
 896	dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n",
 897		readl(pcie->base + oarr_offset),
 898		readl(pcie->base + oarr_offset + 4));
 899	dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n",
 900		readl(pcie->base + omap_offset),
 901		readl(pcie->base + omap_offset + 4));
 902
 903	return 0;
 904}
 905
 906/**
 907 * Some iProc SoCs require the SW to configure the outbound address mapping
 908 *
 909 * Outbound address translation:
 910 *
 911 * iproc_pcie_address = axi_address - axi_offset
 912 * OARR = iproc_pcie_address
 913 * OMAP = pci_addr
 914 *
 915 * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
 916 */
 917static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
 918			       u64 pci_addr, resource_size_t size)
 919{
 920	struct iproc_pcie_ob *ob = &pcie->ob;
 921	struct device *dev = pcie->dev;
 922	int ret = -EINVAL, window_idx, size_idx;
 923
 924	if (axi_addr < ob->axi_offset) {
 925		dev_err(dev, "axi address %pap less than offset %pap\n",
 926			&axi_addr, &ob->axi_offset);
 927		return -EINVAL;
 928	}
 929
 930	/*
 931	 * Translate the AXI address to the internal address used by the iProc
 932	 * PCIe core before programming the OARR
 933	 */
 934	axi_addr -= ob->axi_offset;
 935
 936	/* iterate through all OARR/OMAP mapping windows */
 937	for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
 938		const struct iproc_pcie_ob_map *ob_map =
 939			&pcie->ob_map[window_idx];
 940
 941		/*
 942		 * If current outbound window is already in use, move on to the
 943		 * next one.
 944		 */
 945		if (iproc_pcie_ob_is_valid(pcie, window_idx))
 946			continue;
 947
 948		/*
 949		 * Iterate through all supported window sizes within the
 950		 * OARR/OMAP pair to find a match.  Go through the window sizes
 951		 * in a descending order.
 952		 */
 953		for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
 954		     size_idx--) {
 955			resource_size_t window_size =
 956				ob_map->window_sizes[size_idx] * SZ_1M;
 957
 958			/*
 959			 * Keep iterating until we reach the last window and
 960			 * with the minimal window size at index zero. In this
 961			 * case, we take a compromise by mapping it using the
 962			 * minimum window size that can be supported
 963			 */
 964			if (size < window_size) {
 965				if (size_idx > 0 || window_idx > 0)
 966					continue;
 967
 968				/*
 969				 * For the corner case of reaching the minimal
 970				 * window size that can be supported on the
 971				 * last window
 972				 */
 973				axi_addr = ALIGN_DOWN(axi_addr, window_size);
 974				pci_addr = ALIGN_DOWN(pci_addr, window_size);
 975				size = window_size;
 976			}
 977
 978			if (!IS_ALIGNED(axi_addr, window_size) ||
 979			    !IS_ALIGNED(pci_addr, window_size)) {
 980				dev_err(dev,
 981					"axi %pap or pci %pap not aligned\n",
 982					&axi_addr, &pci_addr);
 983				return -EINVAL;
 984			}
 985
 986			/*
 987			 * Match found!  Program both OARR and OMAP and mark
 988			 * them as a valid entry.
 989			 */
 990			ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
 991						  axi_addr, pci_addr);
 992			if (ret)
 993				goto err_ob;
 994
 995			size -= window_size;
 996			if (size == 0)
 997				return 0;
 998
 999			/*
1000			 * If we are here, we are done with the current window,
1001			 * but not yet finished all mappings.  Need to move on
1002			 * to the next window.
1003			 */
1004			axi_addr += window_size;
1005			pci_addr += window_size;
1006			break;
1007		}
1008	}
1009
1010err_ob:
1011	dev_err(dev, "unable to configure outbound mapping\n");
1012	dev_err(dev,
1013		"axi %pap, axi offset %pap, pci %pap, res size %pap\n",
1014		&axi_addr, &ob->axi_offset, &pci_addr, &size);
1015
1016	return ret;
1017}
1018
1019static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
1020				 struct list_head *resources)
1021{
1022	struct device *dev = pcie->dev;
1023	struct resource_entry *window;
1024	int ret;
1025
1026	resource_list_for_each_entry(window, resources) {
1027		struct resource *res = window->res;
1028		u64 res_type = resource_type(res);
1029
1030		switch (res_type) {
1031		case IORESOURCE_IO:
1032		case IORESOURCE_BUS:
1033			break;
1034		case IORESOURCE_MEM:
1035			ret = iproc_pcie_setup_ob(pcie, res->start,
1036						  res->start - window->offset,
1037						  resource_size(res));
1038			if (ret)
1039				return ret;
1040			break;
1041		default:
1042			dev_err(dev, "invalid resource %pR\n", res);
1043			return -EINVAL;
1044		}
1045	}
1046
1047	return 0;
1048}
1049
1050static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
1051					   int region_idx)
1052{
1053	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1054	u32 val;
1055
1056	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
1057
1058	return !!(val & (BIT(ib_map->nr_sizes) - 1));
1059}
1060
1061static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
1062					    enum iproc_pcie_ib_map_type type)
1063{
1064	return !!(ib_map->type == type);
1065}
1066
1067static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
1068			       int size_idx, int nr_windows, u64 axi_addr,
1069			       u64 pci_addr, resource_size_t size)
1070{
1071	struct device *dev = pcie->dev;
1072	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1073	u16 iarr_offset, imap_offset;
1074	u32 val;
1075	int window_idx;
1076
1077	iarr_offset = iproc_pcie_reg_offset(pcie,
1078				MAP_REG(IPROC_PCIE_IARR0, region_idx));
1079	imap_offset = iproc_pcie_reg_offset(pcie,
1080				MAP_REG(IPROC_PCIE_IMAP0, region_idx));
1081	if (iproc_pcie_reg_is_invalid(iarr_offset) ||
1082	    iproc_pcie_reg_is_invalid(imap_offset))
1083		return -EINVAL;
1084
1085	dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
1086		region_idx, iarr_offset, &axi_addr, &pci_addr);
1087
1088	/*
1089	 * Program the IARR registers.  The upper 32-bit IARR register is
1090	 * always right after the lower 32-bit IARR register.
1091	 */
1092	writel(lower_32_bits(pci_addr) | BIT(size_idx),
1093	       pcie->base + iarr_offset);
1094	writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
1095
1096	dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n",
1097		readl(pcie->base + iarr_offset),
1098		readl(pcie->base + iarr_offset + 4));
1099
1100	/*
1101	 * Now program the IMAP registers.  Each IARR region may have one or
1102	 * more IMAP windows.
1103	 */
1104	size >>= ilog2(nr_windows);
1105	for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1106		val = readl(pcie->base + imap_offset);
1107		val |= lower_32_bits(axi_addr) | IMAP_VALID;
1108		writel(val, pcie->base + imap_offset);
1109		writel(upper_32_bits(axi_addr),
1110		       pcie->base + imap_offset + ib_map->imap_addr_offset);
1111
1112		dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1113			window_idx, readl(pcie->base + imap_offset),
1114			readl(pcie->base + imap_offset +
1115			      ib_map->imap_addr_offset));
1116
1117		imap_offset += ib_map->imap_window_offset;
1118		axi_addr += size;
1119	}
1120
1121	return 0;
1122}
1123
1124static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1125			       struct of_pci_range *range,
1126			       enum iproc_pcie_ib_map_type type)
1127{
1128	struct device *dev = pcie->dev;
1129	struct iproc_pcie_ib *ib = &pcie->ib;
1130	int ret;
1131	unsigned int region_idx, size_idx;
1132	u64 axi_addr = range->cpu_addr, pci_addr = range->pci_addr;
1133	resource_size_t size = range->size;
 
1134
1135	/* iterate through all IARR mapping regions */
1136	for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1137		const struct iproc_pcie_ib_map *ib_map =
1138			&pcie->ib_map[region_idx];
1139
1140		/*
1141		 * If current inbound region is already in use or not a
1142		 * compatible type, move on to the next.
1143		 */
1144		if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1145		    !iproc_pcie_ib_check_type(ib_map, type))
1146			continue;
1147
1148		/* iterate through all supported region sizes to find a match */
1149		for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1150			resource_size_t region_size =
1151			ib_map->region_sizes[size_idx] * ib_map->size_unit;
1152
1153			if (size != region_size)
1154				continue;
1155
1156			if (!IS_ALIGNED(axi_addr, region_size) ||
1157			    !IS_ALIGNED(pci_addr, region_size)) {
1158				dev_err(dev,
1159					"axi %pap or pci %pap not aligned\n",
1160					&axi_addr, &pci_addr);
1161				return -EINVAL;
1162			}
1163
1164			/* Match found!  Program IARR and all IMAP windows. */
1165			ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1166						  ib_map->nr_windows, axi_addr,
1167						  pci_addr, size);
1168			if (ret)
1169				goto err_ib;
1170			else
1171				return 0;
1172
1173		}
1174	}
1175	ret = -EINVAL;
1176
1177err_ib:
1178	dev_err(dev, "unable to configure inbound mapping\n");
1179	dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1180		&axi_addr, &pci_addr, &size);
1181
1182	return ret;
1183}
1184
1185static int iproc_pcie_add_dma_range(struct device *dev,
1186				    struct list_head *resources,
1187				    struct of_pci_range *range)
1188{
1189	struct resource *res;
1190	struct resource_entry *entry, *tmp;
1191	struct list_head *head = resources;
1192
1193	res = devm_kzalloc(dev, sizeof(struct resource), GFP_KERNEL);
1194	if (!res)
1195		return -ENOMEM;
1196
1197	resource_list_for_each_entry(tmp, resources) {
1198		if (tmp->res->start < range->cpu_addr)
1199			head = &tmp->node;
 
 
1200	}
1201
1202	res->start = range->cpu_addr;
1203	res->end = res->start + range->size - 1;
1204
1205	entry = resource_list_create_entry(res, 0);
1206	if (!entry)
1207		return -ENOMEM;
1208
1209	entry->offset = res->start - range->cpu_addr;
1210	resource_list_add(entry, head);
1211
1212	return 0;
1213}
1214
1215static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1216{
1217	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1218	struct of_pci_range range;
1219	struct of_pci_range_parser parser;
1220	int ret;
1221	LIST_HEAD(resources);
1222
1223	/* Get the dma-ranges from DT */
1224	ret = of_pci_dma_range_parser_init(&parser, pcie->dev->of_node);
1225	if (ret)
1226		return ret;
1227
1228	for_each_of_pci_range(&parser, &range) {
1229		ret = iproc_pcie_add_dma_range(pcie->dev,
1230					       &resources,
1231					       &range);
1232		if (ret)
1233			goto out;
1234		/* Each range entry corresponds to an inbound mapping region */
1235		ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_MEM);
1236		if (ret)
1237			goto out;
1238	}
1239
1240	list_splice_init(&resources, &host->dma_ranges);
1241
1242	return 0;
1243out:
1244	pci_free_resource_list(&resources);
1245	return ret;
 
1246}
1247
1248static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1249			       struct device_node *msi_node,
1250			       u64 *msi_addr)
1251{
1252	struct device *dev = pcie->dev;
1253	int ret;
1254	struct resource res;
1255
1256	/*
1257	 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1258	 * supported external MSI controller that requires steering.
1259	 */
1260	if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1261		dev_err(dev, "unable to find compatible MSI controller\n");
1262		return -ENODEV;
1263	}
1264
1265	/* derive GITS_TRANSLATER address from GICv3 */
1266	ret = of_address_to_resource(msi_node, 0, &res);
1267	if (ret < 0) {
1268		dev_err(dev, "unable to obtain MSI controller resources\n");
1269		return ret;
1270	}
1271
1272	*msi_addr = res.start + GITS_TRANSLATER;
1273	return 0;
1274}
1275
1276static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1277{
1278	int ret;
1279	struct of_pci_range range;
1280
1281	memset(&range, 0, sizeof(range));
1282	range.size = SZ_32K;
1283	range.pci_addr = range.cpu_addr = msi_addr & ~(range.size - 1);
1284
1285	ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_IO);
 
 
 
 
1286	return ret;
1287}
1288
1289static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr,
1290					 bool enable)
1291{
1292	u32 val;
1293
1294	if (!enable) {
1295		/*
1296		 * Disable PAXC MSI steering. All write transfers will be
1297		 * treated as non-MSI transfers
1298		 */
1299		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1300		val &= ~MSI_ENABLE_CFG;
1301		iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1302		return;
1303	}
1304
1305	/*
1306	 * Program bits [43:13] of address of GITS_TRANSLATER register into
1307	 * bits [30:0] of the MSI base address register.  In fact, in all iProc
1308	 * based SoCs, all I/O register bases are well below the 32-bit
1309	 * boundary, so we can safely assume bits [43:32] are always zeros.
1310	 */
1311	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1312			     (u32)(msi_addr >> 13));
1313
1314	/* use a default 8K window size */
1315	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1316
1317	/* steering MSI to GICv3 ITS */
1318	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1319	val |= GIC_V3_CFG;
1320	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1321
1322	/*
1323	 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1324	 * iProc MSI address registers.
1325	 */
1326	msi_addr >>= 2;
1327	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1328			     upper_32_bits(msi_addr));
1329	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1330			     lower_32_bits(msi_addr));
1331
1332	/* enable MSI */
1333	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1334	val |= MSI_ENABLE_CFG;
1335	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1336}
1337
1338static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1339				struct device_node *msi_node)
1340{
1341	struct device *dev = pcie->dev;
1342	int ret;
1343	u64 msi_addr;
1344
1345	ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1346	if (ret < 0) {
1347		dev_err(dev, "msi steering failed\n");
1348		return ret;
1349	}
1350
1351	switch (pcie->type) {
1352	case IPROC_PCIE_PAXB_V2:
1353		ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1354		if (ret)
1355			return ret;
1356		break;
1357	case IPROC_PCIE_PAXC_V2:
1358		iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true);
1359		break;
1360	default:
1361		return -EINVAL;
1362	}
1363
1364	return 0;
1365}
1366
1367static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1368{
1369	struct device_node *msi_node;
1370	int ret;
1371
1372	/*
1373	 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1374	 * for us to obtain the MSI node.
1375	 */
1376
1377	msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1378	if (!msi_node) {
1379		const __be32 *msi_map = NULL;
1380		int len;
1381		u32 phandle;
1382
1383		msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1384		if (!msi_map)
1385			return -ENODEV;
1386
1387		phandle = be32_to_cpup(msi_map + 1);
1388		msi_node = of_find_node_by_phandle(phandle);
1389		if (!msi_node)
1390			return -ENODEV;
1391	}
1392
1393	/*
1394	 * Certain revisions of the iProc PCIe controller require additional
1395	 * configurations to steer the MSI writes towards an external MSI
1396	 * controller.
1397	 */
1398	if (pcie->need_msi_steer) {
1399		ret = iproc_pcie_msi_steer(pcie, msi_node);
1400		if (ret)
1401			goto out_put_node;
1402	}
1403
1404	/*
1405	 * If another MSI controller is being used, the call below should fail
1406	 * but that is okay
1407	 */
1408	ret = iproc_msi_init(pcie, msi_node);
1409
1410out_put_node:
1411	of_node_put(msi_node);
1412	return ret;
1413}
1414
1415static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1416{
1417	iproc_msi_exit(pcie);
1418}
1419
1420static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1421{
1422	struct device *dev = pcie->dev;
1423	unsigned int reg_idx;
1424	const u16 *regs;
1425
1426	switch (pcie->type) {
1427	case IPROC_PCIE_PAXB_BCMA:
1428		regs = iproc_pcie_reg_paxb_bcma;
1429		break;
1430	case IPROC_PCIE_PAXB:
1431		regs = iproc_pcie_reg_paxb;
1432		pcie->has_apb_err_disable = true;
1433		if (pcie->need_ob_cfg) {
1434			pcie->ob_map = paxb_ob_map;
1435			pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1436		}
1437		break;
1438	case IPROC_PCIE_PAXB_V2:
1439		regs = iproc_pcie_reg_paxb_v2;
1440		pcie->iproc_cfg_read = true;
1441		pcie->has_apb_err_disable = true;
1442		if (pcie->need_ob_cfg) {
1443			pcie->ob_map = paxb_v2_ob_map;
1444			pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1445		}
1446		pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1447		pcie->ib_map = paxb_v2_ib_map;
1448		pcie->need_msi_steer = true;
1449		dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1450			 CFG_RETRY_STATUS);
1451		break;
1452	case IPROC_PCIE_PAXC:
1453		regs = iproc_pcie_reg_paxc;
1454		pcie->ep_is_internal = true;
1455		pcie->iproc_cfg_read = true;
1456		pcie->rej_unconfig_pf = true;
1457		break;
1458	case IPROC_PCIE_PAXC_V2:
1459		regs = iproc_pcie_reg_paxc_v2;
1460		pcie->ep_is_internal = true;
1461		pcie->iproc_cfg_read = true;
1462		pcie->rej_unconfig_pf = true;
1463		pcie->need_msi_steer = true;
1464		break;
1465	default:
1466		dev_err(dev, "incompatible iProc PCIe interface\n");
1467		return -EINVAL;
1468	}
1469
1470	pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1471					 sizeof(*pcie->reg_offsets),
1472					 GFP_KERNEL);
1473	if (!pcie->reg_offsets)
1474		return -ENOMEM;
1475
1476	/* go through the register table and populate all valid registers */
1477	pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1478		IPROC_PCIE_REG_INVALID : regs[0];
1479	for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1480		pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1481			regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1482
1483	return 0;
1484}
1485
1486int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1487{
1488	struct device *dev;
1489	int ret;
1490	struct pci_bus *child;
1491	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1492
1493	dev = pcie->dev;
1494
1495	ret = iproc_pcie_rev_init(pcie);
1496	if (ret) {
1497		dev_err(dev, "unable to initialize controller parameters\n");
1498		return ret;
1499	}
1500
1501	ret = devm_request_pci_bus_resources(dev, res);
1502	if (ret)
1503		return ret;
1504
1505	ret = phy_init(pcie->phy);
1506	if (ret) {
1507		dev_err(dev, "unable to initialize PCIe PHY\n");
1508		return ret;
1509	}
1510
1511	ret = phy_power_on(pcie->phy);
1512	if (ret) {
1513		dev_err(dev, "unable to power on PCIe PHY\n");
1514		goto err_exit_phy;
1515	}
1516
1517	iproc_pcie_perst_ctrl(pcie, true);
1518	iproc_pcie_perst_ctrl(pcie, false);
1519
 
 
1520	if (pcie->need_ob_cfg) {
1521		ret = iproc_pcie_map_ranges(pcie, res);
1522		if (ret) {
1523			dev_err(dev, "map failed\n");
1524			goto err_power_off_phy;
1525		}
1526	}
1527
1528	if (pcie->need_ib_cfg) {
1529		ret = iproc_pcie_map_dma_ranges(pcie);
1530		if (ret && ret != -ENOENT)
1531			goto err_power_off_phy;
1532	}
1533
1534	ret = iproc_pcie_check_link(pcie);
1535	if (ret) {
1536		dev_err(dev, "no PCIe EP device detected\n");
1537		goto err_power_off_phy;
1538	}
1539
1540	iproc_pcie_enable(pcie);
1541
1542	if (IS_ENABLED(CONFIG_PCI_MSI))
1543		if (iproc_pcie_msi_enable(pcie))
1544			dev_info(dev, "not using iProc MSI\n");
1545
1546	list_splice_init(res, &host->windows);
1547	host->busnr = 0;
1548	host->dev.parent = dev;
1549	host->ops = &iproc_pcie_ops;
1550	host->sysdata = pcie;
1551	host->map_irq = pcie->map_irq;
1552	host->swizzle_irq = pci_common_swizzle;
1553
1554	ret = pci_scan_root_bus_bridge(host);
1555	if (ret < 0) {
1556		dev_err(dev, "failed to scan host: %d\n", ret);
1557		goto err_power_off_phy;
1558	}
1559
1560	pci_assign_unassigned_bus_resources(host->bus);
1561
1562	pcie->root_bus = host->bus;
1563
1564	list_for_each_entry(child, &host->bus->children, node)
1565		pcie_bus_configure_settings(child);
1566
1567	pci_bus_add_devices(host->bus);
1568
1569	return 0;
1570
1571err_power_off_phy:
1572	phy_power_off(pcie->phy);
1573err_exit_phy:
1574	phy_exit(pcie->phy);
1575	return ret;
1576}
1577EXPORT_SYMBOL(iproc_pcie_setup);
1578
1579int iproc_pcie_remove(struct iproc_pcie *pcie)
1580{
1581	pci_stop_root_bus(pcie->root_bus);
1582	pci_remove_root_bus(pcie->root_bus);
 
 
1583
1584	iproc_pcie_msi_disable(pcie);
1585
1586	phy_power_off(pcie->phy);
1587	phy_exit(pcie->phy);
1588
1589	return 0;
1590}
1591EXPORT_SYMBOL(iproc_pcie_remove);
1592
1593/*
1594 * The MSI parsing logic in certain revisions of Broadcom PAXC based root
1595 * complex does not work and needs to be disabled
1596 */
1597static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev)
1598{
1599	struct iproc_pcie *pcie = iproc_data(pdev->bus);
1600
1601	if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1602		iproc_pcie_paxc_v2_msi_steer(pcie, 0, false);
1603}
1604DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0,
1605			quirk_paxc_disable_msi_parsing);
1606DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802,
1607			quirk_paxc_disable_msi_parsing);
1608DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804,
1609			quirk_paxc_disable_msi_parsing);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1610
1611MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1612MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1613MODULE_LICENSE("GPL v2");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
   4 * Copyright (C) 2015 Broadcom Corporation
   5 */
   6
   7#include <linux/kernel.h>
   8#include <linux/pci.h>
   9#include <linux/pci-ecam.h>
  10#include <linux/msi.h>
  11#include <linux/clk.h>
  12#include <linux/module.h>
  13#include <linux/mbus.h>
  14#include <linux/slab.h>
  15#include <linux/delay.h>
  16#include <linux/interrupt.h>
  17#include <linux/irqchip/arm-gic-v3.h>
  18#include <linux/platform_device.h>
  19#include <linux/of_address.h>
  20#include <linux/of_pci.h>
  21#include <linux/of_irq.h>
  22#include <linux/of_platform.h>
  23#include <linux/phy/phy.h>
  24
  25#include "pcie-iproc.h"
  26
  27#define EP_PERST_SOURCE_SELECT_SHIFT	2
  28#define EP_PERST_SOURCE_SELECT		BIT(EP_PERST_SOURCE_SELECT_SHIFT)
  29#define EP_MODE_SURVIVE_PERST_SHIFT	1
  30#define EP_MODE_SURVIVE_PERST		BIT(EP_MODE_SURVIVE_PERST_SHIFT)
  31#define RC_PCIE_RST_OUTPUT_SHIFT	0
  32#define RC_PCIE_RST_OUTPUT		BIT(RC_PCIE_RST_OUTPUT_SHIFT)
  33#define PAXC_RESET_MASK			0x7f
  34
  35#define GIC_V3_CFG_SHIFT		0
  36#define GIC_V3_CFG			BIT(GIC_V3_CFG_SHIFT)
  37
  38#define MSI_ENABLE_CFG_SHIFT		0
  39#define MSI_ENABLE_CFG			BIT(MSI_ENABLE_CFG_SHIFT)
  40
  41#define CFG_IND_ADDR_MASK		0x00001ffc
  42
 
 
 
 
 
 
 
  43#define CFG_ADDR_REG_NUM_MASK		0x00000ffc
  44#define CFG_ADDR_CFG_TYPE_1		1
 
  45
  46#define SYS_RC_INTX_MASK		0xf
  47
  48#define PCIE_PHYLINKUP_SHIFT		3
  49#define PCIE_PHYLINKUP			BIT(PCIE_PHYLINKUP_SHIFT)
  50#define PCIE_DL_ACTIVE_SHIFT		2
  51#define PCIE_DL_ACTIVE			BIT(PCIE_DL_ACTIVE_SHIFT)
  52
  53#define APB_ERR_EN_SHIFT		0
  54#define APB_ERR_EN			BIT(APB_ERR_EN_SHIFT)
  55
  56#define CFG_RD_SUCCESS			0
  57#define CFG_RD_UR			1
  58#define CFG_RD_CRS			2
  59#define CFG_RD_CA			3
  60#define CFG_RETRY_STATUS		0xffff0001
  61#define CFG_RETRY_STATUS_TIMEOUT_US	500000 /* 500 milliseconds */
  62
  63/* derive the enum index of the outbound/inbound mapping registers */
  64#define MAP_REG(base_reg, index)	((base_reg) + (index) * 2)
  65
  66/*
  67 * Maximum number of outbound mapping window sizes that can be supported by any
  68 * OARR/OMAP mapping pair
  69 */
  70#define MAX_NUM_OB_WINDOW_SIZES		4
  71
  72#define OARR_VALID_SHIFT		0
  73#define OARR_VALID			BIT(OARR_VALID_SHIFT)
  74#define OARR_SIZE_CFG_SHIFT		1
  75
  76/*
  77 * Maximum number of inbound mapping region sizes that can be supported by an
  78 * IARR
  79 */
  80#define MAX_NUM_IB_REGION_SIZES		9
  81
  82#define IMAP_VALID_SHIFT		0
  83#define IMAP_VALID			BIT(IMAP_VALID_SHIFT)
  84
  85#define IPROC_PCI_PM_CAP		0x48
  86#define IPROC_PCI_PM_CAP_MASK		0xffff
  87#define IPROC_PCI_EXP_CAP		0xac
  88
  89#define IPROC_PCIE_REG_INVALID		0xffff
  90
  91/**
  92 * struct iproc_pcie_ob_map - iProc PCIe outbound mapping controller-specific
  93 * parameters
  94 * @window_sizes: list of supported outbound mapping window sizes in MB
  95 * @nr_sizes: number of supported outbound mapping window sizes
  96 */
  97struct iproc_pcie_ob_map {
  98	resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
  99	unsigned int nr_sizes;
 100};
 101
 102static const struct iproc_pcie_ob_map paxb_ob_map[] = {
 103	{
 104		/* OARR0/OMAP0 */
 105		.window_sizes = { 128, 256 },
 106		.nr_sizes = 2,
 107	},
 108	{
 109		/* OARR1/OMAP1 */
 110		.window_sizes = { 128, 256 },
 111		.nr_sizes = 2,
 112	},
 113};
 114
 115static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
 116	{
 117		/* OARR0/OMAP0 */
 118		.window_sizes = { 128, 256 },
 119		.nr_sizes = 2,
 120	},
 121	{
 122		/* OARR1/OMAP1 */
 123		.window_sizes = { 128, 256 },
 124		.nr_sizes = 2,
 125	},
 126	{
 127		/* OARR2/OMAP2 */
 128		.window_sizes = { 128, 256, 512, 1024 },
 129		.nr_sizes = 4,
 130	},
 131	{
 132		/* OARR3/OMAP3 */
 133		.window_sizes = { 128, 256, 512, 1024 },
 134		.nr_sizes = 4,
 135	},
 136};
 137
 138/**
 139 * enum iproc_pcie_ib_map_type - iProc PCIe inbound mapping type
 140 * @IPROC_PCIE_IB_MAP_MEM: DDR memory
 141 * @IPROC_PCIE_IB_MAP_IO: device I/O memory
 142 * @IPROC_PCIE_IB_MAP_INVALID: invalid or unused
 143 */
 144enum iproc_pcie_ib_map_type {
 
 145	IPROC_PCIE_IB_MAP_MEM = 0,
 
 
 146	IPROC_PCIE_IB_MAP_IO,
 
 
 147	IPROC_PCIE_IB_MAP_INVALID
 148};
 149
 150/**
 151 * struct iproc_pcie_ib_map - iProc PCIe inbound mapping controller-specific
 152 * parameters
 153 * @type: inbound mapping region type
 154 * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
 155 * SZ_1G
 156 * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
 157 * GB, depending on the size unit
 158 * @nr_sizes: number of supported inbound mapping region sizes
 159 * @nr_windows: number of supported inbound mapping windows for the region
 160 * @imap_addr_offset: register offset between the upper and lower 32-bit
 161 * IMAP address registers
 162 * @imap_window_offset: register offset between each IMAP window
 163 */
 164struct iproc_pcie_ib_map {
 165	enum iproc_pcie_ib_map_type type;
 166	unsigned int size_unit;
 167	resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
 168	unsigned int nr_sizes;
 169	unsigned int nr_windows;
 170	u16 imap_addr_offset;
 171	u16 imap_window_offset;
 172};
 173
 174static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
 175	{
 176		/* IARR0/IMAP0 */
 177		.type = IPROC_PCIE_IB_MAP_IO,
 178		.size_unit = SZ_1K,
 179		.region_sizes = { 32 },
 180		.nr_sizes = 1,
 181		.nr_windows = 8,
 182		.imap_addr_offset = 0x40,
 183		.imap_window_offset = 0x4,
 184	},
 185	{
 186		/* IARR1/IMAP1 */
 187		.type = IPROC_PCIE_IB_MAP_MEM,
 188		.size_unit = SZ_1M,
 189		.region_sizes = { 8 },
 190		.nr_sizes = 1,
 191		.nr_windows = 8,
 192		.imap_addr_offset = 0x4,
 193		.imap_window_offset = 0x8,
 194
 195	},
 196	{
 197		/* IARR2/IMAP2 */
 198		.type = IPROC_PCIE_IB_MAP_MEM,
 199		.size_unit = SZ_1M,
 200		.region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
 201				  16384 },
 202		.nr_sizes = 9,
 203		.nr_windows = 1,
 204		.imap_addr_offset = 0x4,
 205		.imap_window_offset = 0x8,
 206	},
 207	{
 208		/* IARR3/IMAP3 */
 209		.type = IPROC_PCIE_IB_MAP_MEM,
 210		.size_unit = SZ_1G,
 211		.region_sizes = { 1, 2, 4, 8, 16, 32 },
 212		.nr_sizes = 6,
 213		.nr_windows = 8,
 214		.imap_addr_offset = 0x4,
 215		.imap_window_offset = 0x8,
 216	},
 217	{
 218		/* IARR4/IMAP4 */
 219		.type = IPROC_PCIE_IB_MAP_MEM,
 220		.size_unit = SZ_1G,
 221		.region_sizes = { 32, 64, 128, 256, 512 },
 222		.nr_sizes = 5,
 223		.nr_windows = 8,
 224		.imap_addr_offset = 0x4,
 225		.imap_window_offset = 0x8,
 226	},
 227};
 228
 229/*
 230 * iProc PCIe host registers
 231 */
 232enum iproc_pcie_reg {
 233	/* clock/reset signal control */
 234	IPROC_PCIE_CLK_CTRL = 0,
 235
 236	/*
 237	 * To allow MSI to be steered to an external MSI controller (e.g., ARM
 238	 * GICv3 ITS)
 239	 */
 240	IPROC_PCIE_MSI_GIC_MODE,
 241
 242	/*
 243	 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
 244	 * window where the MSI posted writes are written, for the writes to be
 245	 * interpreted as MSI writes.
 246	 */
 247	IPROC_PCIE_MSI_BASE_ADDR,
 248	IPROC_PCIE_MSI_WINDOW_SIZE,
 249
 250	/*
 251	 * To hold the address of the register where the MSI writes are
 252	 * programed.  When ARM GICv3 ITS is used, this should be programmed
 253	 * with the address of the GITS_TRANSLATER register.
 254	 */
 255	IPROC_PCIE_MSI_ADDR_LO,
 256	IPROC_PCIE_MSI_ADDR_HI,
 257
 258	/* enable MSI */
 259	IPROC_PCIE_MSI_EN_CFG,
 260
 261	/* allow access to root complex configuration space */
 262	IPROC_PCIE_CFG_IND_ADDR,
 263	IPROC_PCIE_CFG_IND_DATA,
 264
 265	/* allow access to device configuration space */
 266	IPROC_PCIE_CFG_ADDR,
 267	IPROC_PCIE_CFG_DATA,
 268
 269	/* enable INTx */
 270	IPROC_PCIE_INTX_EN,
 271
 272	/* outbound address mapping */
 273	IPROC_PCIE_OARR0,
 274	IPROC_PCIE_OMAP0,
 275	IPROC_PCIE_OARR1,
 276	IPROC_PCIE_OMAP1,
 277	IPROC_PCIE_OARR2,
 278	IPROC_PCIE_OMAP2,
 279	IPROC_PCIE_OARR3,
 280	IPROC_PCIE_OMAP3,
 281
 282	/* inbound address mapping */
 283	IPROC_PCIE_IARR0,
 284	IPROC_PCIE_IMAP0,
 285	IPROC_PCIE_IARR1,
 286	IPROC_PCIE_IMAP1,
 287	IPROC_PCIE_IARR2,
 288	IPROC_PCIE_IMAP2,
 289	IPROC_PCIE_IARR3,
 290	IPROC_PCIE_IMAP3,
 291	IPROC_PCIE_IARR4,
 292	IPROC_PCIE_IMAP4,
 293
 294	/* config read status */
 295	IPROC_PCIE_CFG_RD_STATUS,
 296
 297	/* link status */
 298	IPROC_PCIE_LINK_STATUS,
 299
 300	/* enable APB error for unsupported requests */
 301	IPROC_PCIE_APB_ERR_EN,
 302
 303	/* total number of core registers */
 304	IPROC_PCIE_MAX_NUM_REG,
 305};
 306
 307/* iProc PCIe PAXB BCMA registers */
 308static const u16 iproc_pcie_reg_paxb_bcma[IPROC_PCIE_MAX_NUM_REG] = {
 309	[IPROC_PCIE_CLK_CTRL]		= 0x000,
 310	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
 311	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
 312	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
 313	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
 314	[IPROC_PCIE_INTX_EN]		= 0x330,
 315	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
 316};
 317
 318/* iProc PCIe PAXB registers */
 319static const u16 iproc_pcie_reg_paxb[IPROC_PCIE_MAX_NUM_REG] = {
 320	[IPROC_PCIE_CLK_CTRL]		= 0x000,
 321	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
 322	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
 323	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
 324	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
 325	[IPROC_PCIE_INTX_EN]		= 0x330,
 326	[IPROC_PCIE_OARR0]		= 0xd20,
 327	[IPROC_PCIE_OMAP0]		= 0xd40,
 328	[IPROC_PCIE_OARR1]		= 0xd28,
 329	[IPROC_PCIE_OMAP1]		= 0xd48,
 330	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
 331	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
 332};
 333
 334/* iProc PCIe PAXB v2 registers */
 335static const u16 iproc_pcie_reg_paxb_v2[IPROC_PCIE_MAX_NUM_REG] = {
 336	[IPROC_PCIE_CLK_CTRL]		= 0x000,
 337	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
 338	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
 339	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
 340	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
 341	[IPROC_PCIE_INTX_EN]		= 0x330,
 342	[IPROC_PCIE_OARR0]		= 0xd20,
 343	[IPROC_PCIE_OMAP0]		= 0xd40,
 344	[IPROC_PCIE_OARR1]		= 0xd28,
 345	[IPROC_PCIE_OMAP1]		= 0xd48,
 346	[IPROC_PCIE_OARR2]		= 0xd60,
 347	[IPROC_PCIE_OMAP2]		= 0xd68,
 348	[IPROC_PCIE_OARR3]		= 0xdf0,
 349	[IPROC_PCIE_OMAP3]		= 0xdf8,
 350	[IPROC_PCIE_IARR0]		= 0xd00,
 351	[IPROC_PCIE_IMAP0]		= 0xc00,
 352	[IPROC_PCIE_IARR1]		= 0xd08,
 353	[IPROC_PCIE_IMAP1]		= 0xd70,
 354	[IPROC_PCIE_IARR2]		= 0xd10,
 355	[IPROC_PCIE_IMAP2]		= 0xcc0,
 356	[IPROC_PCIE_IARR3]		= 0xe00,
 357	[IPROC_PCIE_IMAP3]		= 0xe08,
 358	[IPROC_PCIE_IARR4]		= 0xe68,
 359	[IPROC_PCIE_IMAP4]		= 0xe70,
 360	[IPROC_PCIE_CFG_RD_STATUS]	= 0xee0,
 361	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
 362	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
 363};
 364
 365/* iProc PCIe PAXC v1 registers */
 366static const u16 iproc_pcie_reg_paxc[IPROC_PCIE_MAX_NUM_REG] = {
 367	[IPROC_PCIE_CLK_CTRL]		= 0x000,
 368	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
 369	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
 370	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
 371	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
 372};
 373
 374/* iProc PCIe PAXC v2 registers */
 375static const u16 iproc_pcie_reg_paxc_v2[IPROC_PCIE_MAX_NUM_REG] = {
 376	[IPROC_PCIE_MSI_GIC_MODE]	= 0x050,
 377	[IPROC_PCIE_MSI_BASE_ADDR]	= 0x074,
 378	[IPROC_PCIE_MSI_WINDOW_SIZE]	= 0x078,
 379	[IPROC_PCIE_MSI_ADDR_LO]	= 0x07c,
 380	[IPROC_PCIE_MSI_ADDR_HI]	= 0x080,
 381	[IPROC_PCIE_MSI_EN_CFG]		= 0x09c,
 382	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
 383	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
 384	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
 385	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
 386};
 387
 388/*
 389 * List of device IDs of controllers that have corrupted capability list that
 390 * require SW fixup
 391 */
 392static const u16 iproc_pcie_corrupt_cap_did[] = {
 393	0x16cd,
 394	0x16f0,
 395	0xd802,
 396	0xd804
 397};
 398
 399static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
 400{
 401	struct iproc_pcie *pcie = bus->sysdata;
 402	return pcie;
 403}
 404
 405static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
 406{
 407	return !!(reg_offset == IPROC_PCIE_REG_INVALID);
 408}
 409
 410static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
 411					enum iproc_pcie_reg reg)
 412{
 413	return pcie->reg_offsets[reg];
 414}
 415
 416static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
 417				      enum iproc_pcie_reg reg)
 418{
 419	u16 offset = iproc_pcie_reg_offset(pcie, reg);
 420
 421	if (iproc_pcie_reg_is_invalid(offset))
 422		return 0;
 423
 424	return readl(pcie->base + offset);
 425}
 426
 427static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
 428					enum iproc_pcie_reg reg, u32 val)
 429{
 430	u16 offset = iproc_pcie_reg_offset(pcie, reg);
 431
 432	if (iproc_pcie_reg_is_invalid(offset))
 433		return;
 434
 435	writel(val, pcie->base + offset);
 436}
 437
 438/*
 439 * APB error forwarding can be disabled during access of configuration
 440 * registers of the endpoint device, to prevent unsupported requests
 441 * (typically seen during enumeration with multi-function devices) from
 442 * triggering a system exception.
 443 */
 444static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
 445					      bool disable)
 446{
 447	struct iproc_pcie *pcie = iproc_data(bus);
 448	u32 val;
 449
 450	if (bus->number && pcie->has_apb_err_disable) {
 451		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
 452		if (disable)
 453			val &= ~APB_ERR_EN;
 454		else
 455			val |= APB_ERR_EN;
 456		iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
 457	}
 458}
 459
 460static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
 461					       unsigned int busno,
 462					       unsigned int devfn,
 
 463					       int where)
 464{
 465	u16 offset;
 466	u32 val;
 467
 468	/* EP device access */
 469	val = ALIGN_DOWN(PCIE_ECAM_OFFSET(busno, devfn, where), 4) |
 470		CFG_ADDR_CFG_TYPE_1;
 
 
 
 471
 472	iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
 473	offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
 474
 475	if (iproc_pcie_reg_is_invalid(offset))
 476		return NULL;
 477
 478	return (pcie->base + offset);
 479}
 480
 481static unsigned int iproc_pcie_cfg_retry(struct iproc_pcie *pcie,
 482					 void __iomem *cfg_data_p)
 483{
 484	int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
 485	unsigned int data;
 486	u32 status;
 487
 488	/*
 489	 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
 490	 * affects config reads of the Vendor ID.  For config writes or any
 491	 * other config reads, the Root may automatically reissue the
 492	 * configuration request again as a new request.
 493	 *
 494	 * For config reads, this hardware returns CFG_RETRY_STATUS data
 495	 * when it receives a CRS completion, regardless of the address of
 496	 * the read or the CRS Software Visibility Enable bit.  As a
 497	 * partial workaround for this, we retry in software any read that
 498	 * returns CFG_RETRY_STATUS.
 499	 *
 500	 * Note that a non-Vendor ID config register may have a value of
 501	 * CFG_RETRY_STATUS.  If we read that, we can't distinguish it from
 502	 * a CRS completion, so we will incorrectly retry the read and
 503	 * eventually return the wrong data (0xffffffff).
 504	 */
 505	data = readl(cfg_data_p);
 506	while (data == CFG_RETRY_STATUS && timeout--) {
 507		/*
 508		 * CRS state is set in CFG_RD status register
 509		 * This will handle the case where CFG_RETRY_STATUS is
 510		 * valid config data.
 511		 */
 512		status = iproc_pcie_read_reg(pcie, IPROC_PCIE_CFG_RD_STATUS);
 513		if (status != CFG_RD_CRS)
 514			return data;
 515
 516		udelay(1);
 517		data = readl(cfg_data_p);
 518	}
 519
 520	if (data == CFG_RETRY_STATUS)
 521		data = 0xffffffff;
 522
 523	return data;
 524}
 525
 526static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val)
 527{
 528	u32 i, dev_id;
 529
 530	switch (where & ~0x3) {
 531	case PCI_VENDOR_ID:
 532		dev_id = *val >> 16;
 533
 534		/*
 535		 * Activate fixup for those controllers that have corrupted
 536		 * capability list registers
 537		 */
 538		for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++)
 539			if (dev_id == iproc_pcie_corrupt_cap_did[i])
 540				pcie->fix_paxc_cap = true;
 541		break;
 542
 543	case IPROC_PCI_PM_CAP:
 544		if (pcie->fix_paxc_cap) {
 545			/* advertise PM, force next capability to PCIe */
 546			*val &= ~IPROC_PCI_PM_CAP_MASK;
 547			*val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM;
 548		}
 549		break;
 550
 551	case IPROC_PCI_EXP_CAP:
 552		if (pcie->fix_paxc_cap) {
 553			/* advertise root port, version 2, terminate here */
 554			*val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 |
 555				PCI_CAP_ID_EXP;
 556		}
 557		break;
 558
 559	case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL:
 560		/* Don't advertise CRS SV support */
 561		*val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
 562		break;
 563
 564	default:
 565		break;
 566	}
 567}
 568
 569static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
 570				  int where, int size, u32 *val)
 571{
 572	struct iproc_pcie *pcie = iproc_data(bus);
 
 
 573	unsigned int busno = bus->number;
 574	void __iomem *cfg_data_p;
 575	unsigned int data;
 576	int ret;
 577
 578	/* root complex access */
 579	if (busno == 0) {
 580		ret = pci_generic_config_read32(bus, devfn, where, size, val);
 581		if (ret == PCIBIOS_SUCCESSFUL)
 582			iproc_pcie_fix_cap(pcie, where, val);
 583
 584		return ret;
 585	}
 586
 587	cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, devfn, where);
 588
 589	if (!cfg_data_p)
 590		return PCIBIOS_DEVICE_NOT_FOUND;
 591
 592	data = iproc_pcie_cfg_retry(pcie, cfg_data_p);
 593
 594	*val = data;
 595	if (size <= 2)
 596		*val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
 597
 598	/*
 599	 * For PAXC and PAXCv2, the total number of PFs that one can enumerate
 600	 * depends on the firmware configuration. Unfortunately, due to an ASIC
 601	 * bug, unconfigured PFs cannot be properly hidden from the root
 602	 * complex. As a result, write access to these PFs will cause bus lock
 603	 * up on the embedded processor
 604	 *
 605	 * Since all unconfigured PFs are left with an incorrect, staled device
 606	 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access
 607	 * early here and reject them all
 608	 */
 609#define DEVICE_ID_MASK     0xffff0000
 610#define DEVICE_ID_SHIFT    16
 611	if (pcie->rej_unconfig_pf &&
 612	    (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID)
 613		if ((*val & DEVICE_ID_MASK) ==
 614		    (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT))
 615			return PCIBIOS_FUNC_NOT_SUPPORTED;
 616
 617	return PCIBIOS_SUCCESSFUL;
 618}
 619
 620/*
 621 * Note access to the configuration registers are protected at the higher layer
 622 * by 'pci_lock' in drivers/pci/access.c
 623 */
 624static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
 625					    int busno, unsigned int devfn,
 626					    int where)
 627{
 
 
 628	u16 offset;
 629
 630	/* root complex access */
 631	if (busno == 0) {
 632		if (PCIE_ECAM_DEVFN(devfn) > 0)
 633			return NULL;
 634
 635		iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
 636				     where & CFG_IND_ADDR_MASK);
 637		offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
 638		if (iproc_pcie_reg_is_invalid(offset))
 639			return NULL;
 640		else
 641			return (pcie->base + offset);
 642	}
 643
 644	return iproc_pcie_map_ep_cfg_reg(pcie, busno, devfn, where);
 645}
 646
 647static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
 648						unsigned int devfn,
 649						int where)
 650{
 651	return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
 652				      where);
 653}
 654
 655static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
 656				       unsigned int devfn, int where,
 657				       int size, u32 *val)
 658{
 659	void __iomem *addr;
 660
 661	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
 662	if (!addr) {
 663		*val = ~0;
 664		return PCIBIOS_DEVICE_NOT_FOUND;
 665	}
 666
 667	*val = readl(addr);
 668
 669	if (size <= 2)
 670		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
 671
 672	return PCIBIOS_SUCCESSFUL;
 673}
 674
 675static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
 676					unsigned int devfn, int where,
 677					int size, u32 val)
 678{
 679	void __iomem *addr;
 680	u32 mask, tmp;
 681
 682	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
 683	if (!addr)
 684		return PCIBIOS_DEVICE_NOT_FOUND;
 685
 686	if (size == 4) {
 687		writel(val, addr);
 688		return PCIBIOS_SUCCESSFUL;
 689	}
 690
 691	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
 692	tmp = readl(addr) & mask;
 693	tmp |= val << ((where & 0x3) * 8);
 694	writel(tmp, addr);
 695
 696	return PCIBIOS_SUCCESSFUL;
 697}
 698
 699static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
 700				    int where, int size, u32 *val)
 701{
 702	int ret;
 703	struct iproc_pcie *pcie = iproc_data(bus);
 704
 705	iproc_pcie_apb_err_disable(bus, true);
 706	if (pcie->iproc_cfg_read)
 707		ret = iproc_pcie_config_read(bus, devfn, where, size, val);
 708	else
 709		ret = pci_generic_config_read32(bus, devfn, where, size, val);
 710	iproc_pcie_apb_err_disable(bus, false);
 711
 712	return ret;
 713}
 714
 715static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
 716				     int where, int size, u32 val)
 717{
 718	int ret;
 719
 720	iproc_pcie_apb_err_disable(bus, true);
 721	ret = pci_generic_config_write32(bus, devfn, where, size, val);
 722	iproc_pcie_apb_err_disable(bus, false);
 723
 724	return ret;
 725}
 726
 727static struct pci_ops iproc_pcie_ops = {
 728	.map_bus = iproc_pcie_bus_map_cfg_bus,
 729	.read = iproc_pcie_config_read32,
 730	.write = iproc_pcie_config_write32,
 731};
 732
 733static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
 734{
 735	u32 val;
 736
 737	/*
 738	 * PAXC and the internal emulated endpoint device downstream should not
 739	 * be reset.  If firmware has been loaded on the endpoint device at an
 740	 * earlier boot stage, reset here causes issues.
 741	 */
 742	if (pcie->ep_is_internal)
 743		return;
 744
 745	if (assert) {
 746		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
 747		val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
 748			~RC_PCIE_RST_OUTPUT;
 749		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
 750		udelay(250);
 751	} else {
 752		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
 753		val |= RC_PCIE_RST_OUTPUT;
 754		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
 755		msleep(100);
 756	}
 757}
 758
 759int iproc_pcie_shutdown(struct iproc_pcie *pcie)
 760{
 761	iproc_pcie_perst_ctrl(pcie, true);
 762	msleep(500);
 763
 764	return 0;
 765}
 766EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
 767
 768static int iproc_pcie_check_link(struct iproc_pcie *pcie)
 769{
 770	struct device *dev = pcie->dev;
 771	u32 hdr_type, link_ctrl, link_status, class, val;
 772	bool link_is_active = false;
 773
 774	/*
 775	 * PAXC connects to emulated endpoint devices directly and does not
 776	 * have a Serdes.  Therefore skip the link detection logic here.
 777	 */
 778	if (pcie->ep_is_internal)
 779		return 0;
 780
 781	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
 782	if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
 783		dev_err(dev, "PHY or data link is INACTIVE!\n");
 784		return -ENODEV;
 785	}
 786
 787	/* make sure we are not in EP mode */
 788	iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
 789	if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
 790		dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
 791		return -EFAULT;
 792	}
 793
 794	/* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */
 795#define PCI_BRIDGE_CTRL_REG_OFFSET	0x43c
 796#define PCI_CLASS_BRIDGE_MASK		0xffff00
 797#define PCI_CLASS_BRIDGE_SHIFT		8
 798	iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
 799				    4, &class);
 800	class &= ~PCI_CLASS_BRIDGE_MASK;
 801	class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT);
 802	iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
 803				     4, class);
 804
 805	/* check link status to see if link is active */
 806	iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
 807				    2, &link_status);
 808	if (link_status & PCI_EXP_LNKSTA_NLW)
 809		link_is_active = true;
 810
 811	if (!link_is_active) {
 812		/* try GEN 1 link speed */
 813#define PCI_TARGET_LINK_SPEED_MASK	0xf
 814#define PCI_TARGET_LINK_SPEED_GEN2	0x2
 815#define PCI_TARGET_LINK_SPEED_GEN1	0x1
 816		iproc_pci_raw_config_read32(pcie, 0,
 817					    IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
 818					    4, &link_ctrl);
 819		if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
 820		    PCI_TARGET_LINK_SPEED_GEN2) {
 821			link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
 822			link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
 823			iproc_pci_raw_config_write32(pcie, 0,
 824					IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
 825					4, link_ctrl);
 826			msleep(100);
 827
 828			iproc_pci_raw_config_read32(pcie, 0,
 829					IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
 830					2, &link_status);
 831			if (link_status & PCI_EXP_LNKSTA_NLW)
 832				link_is_active = true;
 833		}
 834	}
 835
 836	dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
 837
 838	return link_is_active ? 0 : -ENODEV;
 839}
 840
 841static void iproc_pcie_enable(struct iproc_pcie *pcie)
 842{
 843	iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
 844}
 845
 846static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
 847					  int window_idx)
 848{
 849	u32 val;
 850
 851	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
 852
 853	return !!(val & OARR_VALID);
 854}
 855
 856static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
 857				      int size_idx, u64 axi_addr, u64 pci_addr)
 858{
 859	struct device *dev = pcie->dev;
 860	u16 oarr_offset, omap_offset;
 861
 862	/*
 863	 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
 864	 * on window index.
 865	 */
 866	oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
 867							  window_idx));
 868	omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
 869							  window_idx));
 870	if (iproc_pcie_reg_is_invalid(oarr_offset) ||
 871	    iproc_pcie_reg_is_invalid(omap_offset))
 872		return -EINVAL;
 873
 874	/*
 875	 * Program the OARR registers.  The upper 32-bit OARR register is
 876	 * always right after the lower 32-bit OARR register.
 877	 */
 878	writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
 879	       OARR_VALID, pcie->base + oarr_offset);
 880	writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
 881
 882	/* now program the OMAP registers */
 883	writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
 884	writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
 885
 886	dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
 887		window_idx, oarr_offset, &axi_addr, &pci_addr);
 888	dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n",
 889		readl(pcie->base + oarr_offset),
 890		readl(pcie->base + oarr_offset + 4));
 891	dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n",
 892		readl(pcie->base + omap_offset),
 893		readl(pcie->base + omap_offset + 4));
 894
 895	return 0;
 896}
 897
 898/*
 899 * Some iProc SoCs require the SW to configure the outbound address mapping
 900 *
 901 * Outbound address translation:
 902 *
 903 * iproc_pcie_address = axi_address - axi_offset
 904 * OARR = iproc_pcie_address
 905 * OMAP = pci_addr
 906 *
 907 * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
 908 */
 909static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
 910			       u64 pci_addr, resource_size_t size)
 911{
 912	struct iproc_pcie_ob *ob = &pcie->ob;
 913	struct device *dev = pcie->dev;
 914	int ret = -EINVAL, window_idx, size_idx;
 915
 916	if (axi_addr < ob->axi_offset) {
 917		dev_err(dev, "axi address %pap less than offset %pap\n",
 918			&axi_addr, &ob->axi_offset);
 919		return -EINVAL;
 920	}
 921
 922	/*
 923	 * Translate the AXI address to the internal address used by the iProc
 924	 * PCIe core before programming the OARR
 925	 */
 926	axi_addr -= ob->axi_offset;
 927
 928	/* iterate through all OARR/OMAP mapping windows */
 929	for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
 930		const struct iproc_pcie_ob_map *ob_map =
 931			&pcie->ob_map[window_idx];
 932
 933		/*
 934		 * If current outbound window is already in use, move on to the
 935		 * next one.
 936		 */
 937		if (iproc_pcie_ob_is_valid(pcie, window_idx))
 938			continue;
 939
 940		/*
 941		 * Iterate through all supported window sizes within the
 942		 * OARR/OMAP pair to find a match.  Go through the window sizes
 943		 * in a descending order.
 944		 */
 945		for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
 946		     size_idx--) {
 947			resource_size_t window_size =
 948				ob_map->window_sizes[size_idx] * SZ_1M;
 949
 950			/*
 951			 * Keep iterating until we reach the last window and
 952			 * with the minimal window size at index zero. In this
 953			 * case, we take a compromise by mapping it using the
 954			 * minimum window size that can be supported
 955			 */
 956			if (size < window_size) {
 957				if (size_idx > 0 || window_idx > 0)
 958					continue;
 959
 960				/*
 961				 * For the corner case of reaching the minimal
 962				 * window size that can be supported on the
 963				 * last window
 964				 */
 965				axi_addr = ALIGN_DOWN(axi_addr, window_size);
 966				pci_addr = ALIGN_DOWN(pci_addr, window_size);
 967				size = window_size;
 968			}
 969
 970			if (!IS_ALIGNED(axi_addr, window_size) ||
 971			    !IS_ALIGNED(pci_addr, window_size)) {
 972				dev_err(dev,
 973					"axi %pap or pci %pap not aligned\n",
 974					&axi_addr, &pci_addr);
 975				return -EINVAL;
 976			}
 977
 978			/*
 979			 * Match found!  Program both OARR and OMAP and mark
 980			 * them as a valid entry.
 981			 */
 982			ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
 983						  axi_addr, pci_addr);
 984			if (ret)
 985				goto err_ob;
 986
 987			size -= window_size;
 988			if (size == 0)
 989				return 0;
 990
 991			/*
 992			 * If we are here, we are done with the current window,
 993			 * but not yet finished all mappings.  Need to move on
 994			 * to the next window.
 995			 */
 996			axi_addr += window_size;
 997			pci_addr += window_size;
 998			break;
 999		}
1000	}
1001
1002err_ob:
1003	dev_err(dev, "unable to configure outbound mapping\n");
1004	dev_err(dev,
1005		"axi %pap, axi offset %pap, pci %pap, res size %pap\n",
1006		&axi_addr, &ob->axi_offset, &pci_addr, &size);
1007
1008	return ret;
1009}
1010
1011static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
1012				 struct list_head *resources)
1013{
1014	struct device *dev = pcie->dev;
1015	struct resource_entry *window;
1016	int ret;
1017
1018	resource_list_for_each_entry(window, resources) {
1019		struct resource *res = window->res;
1020		u64 res_type = resource_type(res);
1021
1022		switch (res_type) {
1023		case IORESOURCE_IO:
1024		case IORESOURCE_BUS:
1025			break;
1026		case IORESOURCE_MEM:
1027			ret = iproc_pcie_setup_ob(pcie, res->start,
1028						  res->start - window->offset,
1029						  resource_size(res));
1030			if (ret)
1031				return ret;
1032			break;
1033		default:
1034			dev_err(dev, "invalid resource %pR\n", res);
1035			return -EINVAL;
1036		}
1037	}
1038
1039	return 0;
1040}
1041
1042static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
1043					   int region_idx)
1044{
1045	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1046	u32 val;
1047
1048	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
1049
1050	return !!(val & (BIT(ib_map->nr_sizes) - 1));
1051}
1052
1053static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
1054					    enum iproc_pcie_ib_map_type type)
1055{
1056	return !!(ib_map->type == type);
1057}
1058
1059static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
1060			       int size_idx, int nr_windows, u64 axi_addr,
1061			       u64 pci_addr, resource_size_t size)
1062{
1063	struct device *dev = pcie->dev;
1064	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1065	u16 iarr_offset, imap_offset;
1066	u32 val;
1067	int window_idx;
1068
1069	iarr_offset = iproc_pcie_reg_offset(pcie,
1070				MAP_REG(IPROC_PCIE_IARR0, region_idx));
1071	imap_offset = iproc_pcie_reg_offset(pcie,
1072				MAP_REG(IPROC_PCIE_IMAP0, region_idx));
1073	if (iproc_pcie_reg_is_invalid(iarr_offset) ||
1074	    iproc_pcie_reg_is_invalid(imap_offset))
1075		return -EINVAL;
1076
1077	dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
1078		region_idx, iarr_offset, &axi_addr, &pci_addr);
1079
1080	/*
1081	 * Program the IARR registers.  The upper 32-bit IARR register is
1082	 * always right after the lower 32-bit IARR register.
1083	 */
1084	writel(lower_32_bits(pci_addr) | BIT(size_idx),
1085	       pcie->base + iarr_offset);
1086	writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
1087
1088	dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n",
1089		readl(pcie->base + iarr_offset),
1090		readl(pcie->base + iarr_offset + 4));
1091
1092	/*
1093	 * Now program the IMAP registers.  Each IARR region may have one or
1094	 * more IMAP windows.
1095	 */
1096	size >>= ilog2(nr_windows);
1097	for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1098		val = readl(pcie->base + imap_offset);
1099		val |= lower_32_bits(axi_addr) | IMAP_VALID;
1100		writel(val, pcie->base + imap_offset);
1101		writel(upper_32_bits(axi_addr),
1102		       pcie->base + imap_offset + ib_map->imap_addr_offset);
1103
1104		dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1105			window_idx, readl(pcie->base + imap_offset),
1106			readl(pcie->base + imap_offset +
1107			      ib_map->imap_addr_offset));
1108
1109		imap_offset += ib_map->imap_window_offset;
1110		axi_addr += size;
1111	}
1112
1113	return 0;
1114}
1115
1116static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1117			       struct resource_entry *entry,
1118			       enum iproc_pcie_ib_map_type type)
1119{
1120	struct device *dev = pcie->dev;
1121	struct iproc_pcie_ib *ib = &pcie->ib;
1122	int ret;
1123	unsigned int region_idx, size_idx;
1124	u64 axi_addr = entry->res->start;
1125	u64 pci_addr = entry->res->start - entry->offset;
1126	resource_size_t size = resource_size(entry->res);
1127
1128	/* iterate through all IARR mapping regions */
1129	for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1130		const struct iproc_pcie_ib_map *ib_map =
1131			&pcie->ib_map[region_idx];
1132
1133		/*
1134		 * If current inbound region is already in use or not a
1135		 * compatible type, move on to the next.
1136		 */
1137		if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1138		    !iproc_pcie_ib_check_type(ib_map, type))
1139			continue;
1140
1141		/* iterate through all supported region sizes to find a match */
1142		for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1143			resource_size_t region_size =
1144			ib_map->region_sizes[size_idx] * ib_map->size_unit;
1145
1146			if (size != region_size)
1147				continue;
1148
1149			if (!IS_ALIGNED(axi_addr, region_size) ||
1150			    !IS_ALIGNED(pci_addr, region_size)) {
1151				dev_err(dev,
1152					"axi %pap or pci %pap not aligned\n",
1153					&axi_addr, &pci_addr);
1154				return -EINVAL;
1155			}
1156
1157			/* Match found!  Program IARR and all IMAP windows. */
1158			ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1159						  ib_map->nr_windows, axi_addr,
1160						  pci_addr, size);
1161			if (ret)
1162				goto err_ib;
1163			else
1164				return 0;
1165
1166		}
1167	}
1168	ret = -EINVAL;
1169
1170err_ib:
1171	dev_err(dev, "unable to configure inbound mapping\n");
1172	dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1173		&axi_addr, &pci_addr, &size);
1174
1175	return ret;
1176}
1177
1178static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1179{
1180	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1181	struct resource_entry *entry;
1182	int ret = 0;
 
 
 
 
 
 
1183
1184	resource_list_for_each_entry(entry, &host->dma_ranges) {
1185		/* Each range entry corresponds to an inbound mapping region */
1186		ret = iproc_pcie_setup_ib(pcie, entry, IPROC_PCIE_IB_MAP_MEM);
1187		if (ret)
1188			break;
1189	}
1190
1191	return ret;
 
 
 
 
 
 
 
 
 
 
1192}
1193
1194static void iproc_pcie_invalidate_mapping(struct iproc_pcie *pcie)
1195{
1196	struct iproc_pcie_ib *ib = &pcie->ib;
1197	struct iproc_pcie_ob *ob = &pcie->ob;
1198	int idx;
 
 
1199
1200	if (pcie->ep_is_internal)
1201		return;
 
 
1202
1203	if (pcie->need_ob_cfg) {
1204		/* iterate through all OARR mapping regions */
1205		for (idx = ob->nr_windows - 1; idx >= 0; idx--) {
1206			iproc_pcie_write_reg(pcie,
1207					     MAP_REG(IPROC_PCIE_OARR0, idx), 0);
1208		}
 
 
 
 
1209	}
1210
1211	if (pcie->need_ib_cfg) {
1212		/* iterate through all IARR mapping regions */
1213		for (idx = 0; idx < ib->nr_regions; idx++) {
1214			iproc_pcie_write_reg(pcie,
1215					     MAP_REG(IPROC_PCIE_IARR0, idx), 0);
1216		}
1217	}
1218}
1219
1220static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1221			       struct device_node *msi_node,
1222			       u64 *msi_addr)
1223{
1224	struct device *dev = pcie->dev;
1225	int ret;
1226	struct resource res;
1227
1228	/*
1229	 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1230	 * supported external MSI controller that requires steering.
1231	 */
1232	if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1233		dev_err(dev, "unable to find compatible MSI controller\n");
1234		return -ENODEV;
1235	}
1236
1237	/* derive GITS_TRANSLATER address from GICv3 */
1238	ret = of_address_to_resource(msi_node, 0, &res);
1239	if (ret < 0) {
1240		dev_err(dev, "unable to obtain MSI controller resources\n");
1241		return ret;
1242	}
1243
1244	*msi_addr = res.start + GITS_TRANSLATER;
1245	return 0;
1246}
1247
1248static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1249{
1250	int ret;
1251	struct resource_entry entry;
1252
1253	memset(&entry, 0, sizeof(entry));
1254	entry.res = &entry.__res;
 
1255
1256	msi_addr &= ~(SZ_32K - 1);
1257	entry.res->start = msi_addr;
1258	entry.res->end = msi_addr + SZ_32K - 1;
1259
1260	ret = iproc_pcie_setup_ib(pcie, &entry, IPROC_PCIE_IB_MAP_IO);
1261	return ret;
1262}
1263
1264static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr,
1265					 bool enable)
1266{
1267	u32 val;
1268
1269	if (!enable) {
1270		/*
1271		 * Disable PAXC MSI steering. All write transfers will be
1272		 * treated as non-MSI transfers
1273		 */
1274		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1275		val &= ~MSI_ENABLE_CFG;
1276		iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1277		return;
1278	}
1279
1280	/*
1281	 * Program bits [43:13] of address of GITS_TRANSLATER register into
1282	 * bits [30:0] of the MSI base address register.  In fact, in all iProc
1283	 * based SoCs, all I/O register bases are well below the 32-bit
1284	 * boundary, so we can safely assume bits [43:32] are always zeros.
1285	 */
1286	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1287			     (u32)(msi_addr >> 13));
1288
1289	/* use a default 8K window size */
1290	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1291
1292	/* steering MSI to GICv3 ITS */
1293	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1294	val |= GIC_V3_CFG;
1295	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1296
1297	/*
1298	 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1299	 * iProc MSI address registers.
1300	 */
1301	msi_addr >>= 2;
1302	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1303			     upper_32_bits(msi_addr));
1304	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1305			     lower_32_bits(msi_addr));
1306
1307	/* enable MSI */
1308	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1309	val |= MSI_ENABLE_CFG;
1310	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1311}
1312
1313static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1314				struct device_node *msi_node)
1315{
1316	struct device *dev = pcie->dev;
1317	int ret;
1318	u64 msi_addr;
1319
1320	ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1321	if (ret < 0) {
1322		dev_err(dev, "msi steering failed\n");
1323		return ret;
1324	}
1325
1326	switch (pcie->type) {
1327	case IPROC_PCIE_PAXB_V2:
1328		ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1329		if (ret)
1330			return ret;
1331		break;
1332	case IPROC_PCIE_PAXC_V2:
1333		iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true);
1334		break;
1335	default:
1336		return -EINVAL;
1337	}
1338
1339	return 0;
1340}
1341
1342static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1343{
1344	struct device_node *msi_node;
1345	int ret;
1346
1347	/*
1348	 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1349	 * for us to obtain the MSI node.
1350	 */
1351
1352	msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1353	if (!msi_node) {
1354		const __be32 *msi_map = NULL;
1355		int len;
1356		u32 phandle;
1357
1358		msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1359		if (!msi_map)
1360			return -ENODEV;
1361
1362		phandle = be32_to_cpup(msi_map + 1);
1363		msi_node = of_find_node_by_phandle(phandle);
1364		if (!msi_node)
1365			return -ENODEV;
1366	}
1367
1368	/*
1369	 * Certain revisions of the iProc PCIe controller require additional
1370	 * configurations to steer the MSI writes towards an external MSI
1371	 * controller.
1372	 */
1373	if (pcie->need_msi_steer) {
1374		ret = iproc_pcie_msi_steer(pcie, msi_node);
1375		if (ret)
1376			goto out_put_node;
1377	}
1378
1379	/*
1380	 * If another MSI controller is being used, the call below should fail
1381	 * but that is okay
1382	 */
1383	ret = iproc_msi_init(pcie, msi_node);
1384
1385out_put_node:
1386	of_node_put(msi_node);
1387	return ret;
1388}
1389
1390static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1391{
1392	iproc_msi_exit(pcie);
1393}
1394
1395static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1396{
1397	struct device *dev = pcie->dev;
1398	unsigned int reg_idx;
1399	const u16 *regs;
1400
1401	switch (pcie->type) {
1402	case IPROC_PCIE_PAXB_BCMA:
1403		regs = iproc_pcie_reg_paxb_bcma;
1404		break;
1405	case IPROC_PCIE_PAXB:
1406		regs = iproc_pcie_reg_paxb;
1407		pcie->has_apb_err_disable = true;
1408		if (pcie->need_ob_cfg) {
1409			pcie->ob_map = paxb_ob_map;
1410			pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1411		}
1412		break;
1413	case IPROC_PCIE_PAXB_V2:
1414		regs = iproc_pcie_reg_paxb_v2;
1415		pcie->iproc_cfg_read = true;
1416		pcie->has_apb_err_disable = true;
1417		if (pcie->need_ob_cfg) {
1418			pcie->ob_map = paxb_v2_ob_map;
1419			pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1420		}
1421		pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1422		pcie->ib_map = paxb_v2_ib_map;
1423		pcie->need_msi_steer = true;
1424		dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1425			 CFG_RETRY_STATUS);
1426		break;
1427	case IPROC_PCIE_PAXC:
1428		regs = iproc_pcie_reg_paxc;
1429		pcie->ep_is_internal = true;
1430		pcie->iproc_cfg_read = true;
1431		pcie->rej_unconfig_pf = true;
1432		break;
1433	case IPROC_PCIE_PAXC_V2:
1434		regs = iproc_pcie_reg_paxc_v2;
1435		pcie->ep_is_internal = true;
1436		pcie->iproc_cfg_read = true;
1437		pcie->rej_unconfig_pf = true;
1438		pcie->need_msi_steer = true;
1439		break;
1440	default:
1441		dev_err(dev, "incompatible iProc PCIe interface\n");
1442		return -EINVAL;
1443	}
1444
1445	pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1446					 sizeof(*pcie->reg_offsets),
1447					 GFP_KERNEL);
1448	if (!pcie->reg_offsets)
1449		return -ENOMEM;
1450
1451	/* go through the register table and populate all valid registers */
1452	pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1453		IPROC_PCIE_REG_INVALID : regs[0];
1454	for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1455		pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1456			regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1457
1458	return 0;
1459}
1460
1461int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1462{
1463	struct device *dev;
1464	int ret;
1465	struct pci_dev *pdev;
1466	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1467
1468	dev = pcie->dev;
1469
1470	ret = iproc_pcie_rev_init(pcie);
1471	if (ret) {
1472		dev_err(dev, "unable to initialize controller parameters\n");
1473		return ret;
1474	}
1475
 
 
 
 
1476	ret = phy_init(pcie->phy);
1477	if (ret) {
1478		dev_err(dev, "unable to initialize PCIe PHY\n");
1479		return ret;
1480	}
1481
1482	ret = phy_power_on(pcie->phy);
1483	if (ret) {
1484		dev_err(dev, "unable to power on PCIe PHY\n");
1485		goto err_exit_phy;
1486	}
1487
1488	iproc_pcie_perst_ctrl(pcie, true);
1489	iproc_pcie_perst_ctrl(pcie, false);
1490
1491	iproc_pcie_invalidate_mapping(pcie);
1492
1493	if (pcie->need_ob_cfg) {
1494		ret = iproc_pcie_map_ranges(pcie, res);
1495		if (ret) {
1496			dev_err(dev, "map failed\n");
1497			goto err_power_off_phy;
1498		}
1499	}
1500
1501	if (pcie->need_ib_cfg) {
1502		ret = iproc_pcie_map_dma_ranges(pcie);
1503		if (ret && ret != -ENOENT)
1504			goto err_power_off_phy;
1505	}
1506
1507	ret = iproc_pcie_check_link(pcie);
1508	if (ret) {
1509		dev_err(dev, "no PCIe EP device detected\n");
1510		goto err_power_off_phy;
1511	}
1512
1513	iproc_pcie_enable(pcie);
1514
1515	if (IS_ENABLED(CONFIG_PCI_MSI))
1516		if (iproc_pcie_msi_enable(pcie))
1517			dev_info(dev, "not using iProc MSI\n");
1518
 
 
 
1519	host->ops = &iproc_pcie_ops;
1520	host->sysdata = pcie;
1521	host->map_irq = pcie->map_irq;
 
1522
1523	ret = pci_host_probe(host);
1524	if (ret < 0) {
1525		dev_err(dev, "failed to scan host: %d\n", ret);
1526		goto err_power_off_phy;
1527	}
1528
1529	for_each_pci_bridge(pdev, host->bus) {
1530		if (pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT)
1531			pcie_print_link_status(pdev);
1532	}
 
 
 
 
1533
1534	return 0;
1535
1536err_power_off_phy:
1537	phy_power_off(pcie->phy);
1538err_exit_phy:
1539	phy_exit(pcie->phy);
1540	return ret;
1541}
1542EXPORT_SYMBOL(iproc_pcie_setup);
1543
1544int iproc_pcie_remove(struct iproc_pcie *pcie)
1545{
1546	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1547
1548	pci_stop_root_bus(host->bus);
1549	pci_remove_root_bus(host->bus);
1550
1551	iproc_pcie_msi_disable(pcie);
1552
1553	phy_power_off(pcie->phy);
1554	phy_exit(pcie->phy);
1555
1556	return 0;
1557}
1558EXPORT_SYMBOL(iproc_pcie_remove);
1559
1560/*
1561 * The MSI parsing logic in certain revisions of Broadcom PAXC based root
1562 * complex does not work and needs to be disabled
1563 */
1564static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev)
1565{
1566	struct iproc_pcie *pcie = iproc_data(pdev->bus);
1567
1568	if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1569		iproc_pcie_paxc_v2_msi_steer(pcie, 0, false);
1570}
1571DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0,
1572			quirk_paxc_disable_msi_parsing);
1573DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802,
1574			quirk_paxc_disable_msi_parsing);
1575DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804,
1576			quirk_paxc_disable_msi_parsing);
1577
1578static void quirk_paxc_bridge(struct pci_dev *pdev)
1579{
1580	/*
1581	 * The PCI config space is shared with the PAXC root port and the first
1582	 * Ethernet device.  So, we need to workaround this by telling the PCI
1583	 * code that the bridge is not an Ethernet device.
1584	 */
1585	if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1586		pdev->class = PCI_CLASS_BRIDGE_PCI << 8;
1587
1588	/*
1589	 * MPSS is not being set properly (as it is currently 0).  This is
1590	 * because that area of the PCI config space is hard coded to zero, and
1591	 * is not modifiable by firmware.  Set this to 2 (e.g., 512 byte MPS)
1592	 * so that the MPS can be set to the real max value.
1593	 */
1594	pdev->pcie_mpss = 2;
1595}
1596DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16cd, quirk_paxc_bridge);
1597DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, quirk_paxc_bridge);
1598DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd750, quirk_paxc_bridge);
1599DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, quirk_paxc_bridge);
1600DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, quirk_paxc_bridge);
1601
1602MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1603MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1604MODULE_LICENSE("GPL v2");