Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) Microsoft Corporation.
   4 *
   5 * Author:
   6 *   Jake Oshins <jakeo@microsoft.com>
   7 *
   8 * This driver acts as a paravirtual front-end for PCI Express root buses.
   9 * When a PCI Express function (either an entire device or an SR-IOV
  10 * Virtual Function) is being passed through to the VM, this driver exposes
  11 * a new bus to the guest VM.  This is modeled as a root PCI bus because
  12 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
  13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
  14 * until a device as been exposed using this driver.
  15 *
  16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
  17 * the PCI Firmware Specifications.  Thus while each device passed through
  18 * to the VM using this front-end will appear at "device 0", the domain will
  19 * be unique.  Typically, each bus will have one PCI function on it, though
  20 * this driver does support more than one.
  21 *
  22 * In order to map the interrupts from the device through to the guest VM,
  23 * this driver also implements an IRQ Domain, which handles interrupts (either
  24 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
  25 * set up, torn down, or reaffined, this driver communicates with the
  26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
  27 * interrupt will be delivered to the correct virtual processor at the right
  28 * vector.  This driver does not support level-triggered (line-based)
  29 * interrupts, and will report that the Interrupt Line register in the
  30 * function's configuration space is zero.
  31 *
  32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
  33 * facilities.  For instance, the configuration space of a function exposed
  34 * by Hyper-V is mapped into a single page of memory space, and the
  35 * read and write handlers for config space must be aware of this mechanism.
  36 * Similarly, device setup and teardown involves messages sent to and from
  37 * the PCI back-end driver in Hyper-V.
  38 */
  39
  40#include <linux/kernel.h>
  41#include <linux/module.h>
  42#include <linux/pci.h>
  43#include <linux/delay.h>
  44#include <linux/semaphore.h>
  45#include <linux/irqdomain.h>
  46#include <asm/irqdomain.h>
  47#include <asm/apic.h>
  48#include <linux/irq.h>
  49#include <linux/msi.h>
  50#include <linux/hyperv.h>
  51#include <linux/refcount.h>
  52#include <asm/mshyperv.h>
  53
  54/*
  55 * Protocol versions. The low word is the minor version, the high word the
  56 * major version.
  57 */
  58
  59#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
  60#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
  61#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
  62
  63enum pci_protocol_version_t {
  64	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
  65	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
 
  66};
  67
  68#define CPU_AFFINITY_ALL	-1ULL
  69
  70/*
  71 * Supported protocol versions in the order of probing - highest go
  72 * first.
  73 */
  74static enum pci_protocol_version_t pci_protocol_versions[] = {
 
  75	PCI_PROTOCOL_VERSION_1_2,
  76	PCI_PROTOCOL_VERSION_1_1,
  77};
  78
  79/*
  80 * Protocol version negotiated by hv_pci_protocol_negotiation().
  81 */
  82static enum pci_protocol_version_t pci_protocol_version;
  83
  84#define PCI_CONFIG_MMIO_LENGTH	0x2000
  85#define CFG_PAGE_OFFSET 0x1000
  86#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
  87
  88#define MAX_SUPPORTED_MSI_MESSAGES 0x400
  89
  90#define STATUS_REVISION_MISMATCH 0xC0000059
  91
  92/* space for 32bit serial number as string */
  93#define SLOT_NAME_SIZE 11
  94
  95/*
  96 * Message Types
  97 */
  98
  99enum pci_message_type {
 100	/*
 101	 * Version 1.1
 102	 */
 103	PCI_MESSAGE_BASE                = 0x42490000,
 104	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
 105	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
 106	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
 107	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
 108	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
 109	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
 110	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
 111	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
 112	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
 113	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
 114	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
 115	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
 116	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
 117	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
 118	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
 119	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
 120	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
 121	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
 122	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
 123	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
 124	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
 125	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
 126	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
 
 127	PCI_MESSAGE_MAXIMUM
 128};
 129
 130/*
 131 * Structures defining the virtual PCI Express protocol.
 132 */
 133
 134union pci_version {
 135	struct {
 136		u16 minor_version;
 137		u16 major_version;
 138	} parts;
 139	u32 version;
 140} __packed;
 141
 142/*
 143 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 144 * which is all this driver does.  This representation is the one used in
 145 * Windows, which is what is expected when sending this back and forth with
 146 * the Hyper-V parent partition.
 147 */
 148union win_slot_encoding {
 149	struct {
 150		u32	dev:5;
 151		u32	func:3;
 152		u32	reserved:24;
 153	} bits;
 154	u32 slot;
 155} __packed;
 156
 157/*
 158 * Pretty much as defined in the PCI Specifications.
 159 */
 160struct pci_function_description {
 161	u16	v_id;	/* vendor ID */
 162	u16	d_id;	/* device ID */
 163	u8	rev;
 164	u8	prog_intf;
 165	u8	subclass;
 166	u8	base_class;
 167	u32	subsystem_id;
 168	union win_slot_encoding win_slot;
 169	u32	ser;	/* serial number */
 170} __packed;
 171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172/**
 173 * struct hv_msi_desc
 174 * @vector:		IDT entry
 175 * @delivery_mode:	As defined in Intel's Programmer's
 176 *			Reference Manual, Volume 3, Chapter 8.
 177 * @vector_count:	Number of contiguous entries in the
 178 *			Interrupt Descriptor Table that are
 179 *			occupied by this Message-Signaled
 180 *			Interrupt. For "MSI", as first defined
 181 *			in PCI 2.2, this can be between 1 and
 182 *			32. For "MSI-X," as first defined in PCI
 183 *			3.0, this must be 1, as each MSI-X table
 184 *			entry would have its own descriptor.
 185 * @reserved:		Empty space
 186 * @cpu_mask:		All the target virtual processors.
 187 */
 188struct hv_msi_desc {
 189	u8	vector;
 190	u8	delivery_mode;
 191	u16	vector_count;
 192	u32	reserved;
 193	u64	cpu_mask;
 194} __packed;
 195
 196/**
 197 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 198 * @vector:		IDT entry
 199 * @delivery_mode:	As defined in Intel's Programmer's
 200 *			Reference Manual, Volume 3, Chapter 8.
 201 * @vector_count:	Number of contiguous entries in the
 202 *			Interrupt Descriptor Table that are
 203 *			occupied by this Message-Signaled
 204 *			Interrupt. For "MSI", as first defined
 205 *			in PCI 2.2, this can be between 1 and
 206 *			32. For "MSI-X," as first defined in PCI
 207 *			3.0, this must be 1, as each MSI-X table
 208 *			entry would have its own descriptor.
 209 * @processor_count:	number of bits enabled in array.
 210 * @processor_array:	All the target virtual processors.
 211 */
 212struct hv_msi_desc2 {
 213	u8	vector;
 214	u8	delivery_mode;
 215	u16	vector_count;
 216	u16	processor_count;
 217	u16	processor_array[32];
 218} __packed;
 219
 220/**
 221 * struct tran_int_desc
 222 * @reserved:		unused, padding
 223 * @vector_count:	same as in hv_msi_desc
 224 * @data:		This is the "data payload" value that is
 225 *			written by the device when it generates
 226 *			a message-signaled interrupt, either MSI
 227 *			or MSI-X.
 228 * @address:		This is the address to which the data
 229 *			payload is written on interrupt
 230 *			generation.
 231 */
 232struct tran_int_desc {
 233	u16	reserved;
 234	u16	vector_count;
 235	u32	data;
 236	u64	address;
 237} __packed;
 238
 239/*
 240 * A generic message format for virtual PCI.
 241 * Specific message formats are defined later in the file.
 242 */
 243
 244struct pci_message {
 245	u32 type;
 246} __packed;
 247
 248struct pci_child_message {
 249	struct pci_message message_type;
 250	union win_slot_encoding wslot;
 251} __packed;
 252
 253struct pci_incoming_message {
 254	struct vmpacket_descriptor hdr;
 255	struct pci_message message_type;
 256} __packed;
 257
 258struct pci_response {
 259	struct vmpacket_descriptor hdr;
 260	s32 status;			/* negative values are failures */
 261} __packed;
 262
 263struct pci_packet {
 264	void (*completion_func)(void *context, struct pci_response *resp,
 265				int resp_packet_size);
 266	void *compl_ctxt;
 267
 268	struct pci_message message[0];
 269};
 270
 271/*
 272 * Specific message types supporting the PCI protocol.
 273 */
 274
 275/*
 276 * Version negotiation message. Sent from the guest to the host.
 277 * The guest is free to try different versions until the host
 278 * accepts the version.
 279 *
 280 * pci_version: The protocol version requested.
 281 * is_last_attempt: If TRUE, this is the last version guest will request.
 282 * reservedz: Reserved field, set to zero.
 283 */
 284
 285struct pci_version_request {
 286	struct pci_message message_type;
 287	u32 protocol_version;
 288} __packed;
 289
 290/*
 291 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 292 * bus (PCI Express port) is ready for action.
 293 */
 294
 295struct pci_bus_d0_entry {
 296	struct pci_message message_type;
 297	u32 reserved;
 298	u64 mmio_base;
 299} __packed;
 300
 301struct pci_bus_relations {
 302	struct pci_incoming_message incoming;
 303	u32 device_count;
 304	struct pci_function_description func[0];
 
 
 
 
 
 
 305} __packed;
 306
 307struct pci_q_res_req_response {
 308	struct vmpacket_descriptor hdr;
 309	s32 status;			/* negative values are failures */
 310	u32 probed_bar[6];
 311} __packed;
 312
 313struct pci_set_power {
 314	struct pci_message message_type;
 315	union win_slot_encoding wslot;
 316	u32 power_state;		/* In Windows terms */
 317	u32 reserved;
 318} __packed;
 319
 320struct pci_set_power_response {
 321	struct vmpacket_descriptor hdr;
 322	s32 status;			/* negative values are failures */
 323	union win_slot_encoding wslot;
 324	u32 resultant_state;		/* In Windows terms */
 325	u32 reserved;
 326} __packed;
 327
 328struct pci_resources_assigned {
 329	struct pci_message message_type;
 330	union win_slot_encoding wslot;
 331	u8 memory_range[0x14][6];	/* not used here */
 332	u32 msi_descriptors;
 333	u32 reserved[4];
 334} __packed;
 335
 336struct pci_resources_assigned2 {
 337	struct pci_message message_type;
 338	union win_slot_encoding wslot;
 339	u8 memory_range[0x14][6];	/* not used here */
 340	u32 msi_descriptor_count;
 341	u8 reserved[70];
 342} __packed;
 343
 344struct pci_create_interrupt {
 345	struct pci_message message_type;
 346	union win_slot_encoding wslot;
 347	struct hv_msi_desc int_desc;
 348} __packed;
 349
 350struct pci_create_int_response {
 351	struct pci_response response;
 352	u32 reserved;
 353	struct tran_int_desc int_desc;
 354} __packed;
 355
 356struct pci_create_interrupt2 {
 357	struct pci_message message_type;
 358	union win_slot_encoding wslot;
 359	struct hv_msi_desc2 int_desc;
 360} __packed;
 361
 362struct pci_delete_interrupt {
 363	struct pci_message message_type;
 364	union win_slot_encoding wslot;
 365	struct tran_int_desc int_desc;
 366} __packed;
 367
 368/*
 369 * Note: the VM must pass a valid block id, wslot and bytes_requested.
 370 */
 371struct pci_read_block {
 372	struct pci_message message_type;
 373	u32 block_id;
 374	union win_slot_encoding wslot;
 375	u32 bytes_requested;
 376} __packed;
 377
 378struct pci_read_block_response {
 379	struct vmpacket_descriptor hdr;
 380	u32 status;
 381	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 382} __packed;
 383
 384/*
 385 * Note: the VM must pass a valid block id, wslot and byte_count.
 386 */
 387struct pci_write_block {
 388	struct pci_message message_type;
 389	u32 block_id;
 390	union win_slot_encoding wslot;
 391	u32 byte_count;
 392	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 393} __packed;
 394
 395struct pci_dev_inval_block {
 396	struct pci_incoming_message incoming;
 397	union win_slot_encoding wslot;
 398	u64 block_mask;
 399} __packed;
 400
 401struct pci_dev_incoming {
 402	struct pci_incoming_message incoming;
 403	union win_slot_encoding wslot;
 404} __packed;
 405
 406struct pci_eject_response {
 407	struct pci_message message_type;
 408	union win_slot_encoding wslot;
 409	u32 status;
 410} __packed;
 411
 412static int pci_ring_size = (4 * PAGE_SIZE);
 413
 414/*
 415 * Definitions or interrupt steering hypercall.
 416 */
 417#define HV_PARTITION_ID_SELF		((u64)-1)
 418#define HVCALL_RETARGET_INTERRUPT	0x7e
 419
 420struct hv_interrupt_entry {
 421	u32	source;			/* 1 for MSI(-X) */
 422	u32	reserved1;
 423	u32	address;
 424	u32	data;
 425};
 426
 427/*
 428 * flags for hv_device_interrupt_target.flags
 429 */
 430#define HV_DEVICE_INTERRUPT_TARGET_MULTICAST		1
 431#define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET	2
 432
 433struct hv_device_interrupt_target {
 434	u32	vector;
 435	u32	flags;
 436	union {
 437		u64		 vp_mask;
 438		struct hv_vpset vp_set;
 439	};
 440};
 441
 442struct retarget_msi_interrupt {
 443	u64	partition_id;		/* use "self" */
 444	u64	device_id;
 445	struct hv_interrupt_entry int_entry;
 446	u64	reserved2;
 447	struct hv_device_interrupt_target int_target;
 448} __packed __aligned(8);
 449
 450/*
 451 * Driver specific state.
 452 */
 453
 454enum hv_pcibus_state {
 455	hv_pcibus_init = 0,
 456	hv_pcibus_probed,
 457	hv_pcibus_installed,
 458	hv_pcibus_removed,
 459	hv_pcibus_maximum
 460};
 461
 462struct hv_pcibus_device {
 463	struct pci_sysdata sysdata;
 
 
 464	enum hv_pcibus_state state;
 465	refcount_t remove_lock;
 466	struct hv_device *hdev;
 467	resource_size_t low_mmio_space;
 468	resource_size_t high_mmio_space;
 469	struct resource *mem_config;
 470	struct resource *low_mmio_res;
 471	struct resource *high_mmio_res;
 472	struct completion *survey_event;
 473	struct completion remove_event;
 474	struct pci_bus *pci_bus;
 475	spinlock_t config_lock;	/* Avoid two threads writing index page */
 476	spinlock_t device_list_lock;	/* Protect lists below */
 477	void __iomem *cfg_addr;
 478
 479	struct list_head resources_for_children;
 480
 481	struct list_head children;
 482	struct list_head dr_list;
 483
 484	struct msi_domain_info msi_info;
 485	struct msi_controller msi_chip;
 486	struct irq_domain *irq_domain;
 487
 488	spinlock_t retarget_msi_interrupt_lock;
 489
 490	struct workqueue_struct *wq;
 491
 
 
 
 492	/* hypercall arg, must not cross page boundary */
 493	struct retarget_msi_interrupt retarget_msi_interrupt_params;
 494
 495	/*
 496	 * Don't put anything here: retarget_msi_interrupt_params must be last
 497	 */
 498};
 499
 500/*
 501 * Tracks "Device Relations" messages from the host, which must be both
 502 * processed in order and deferred so that they don't run in the context
 503 * of the incoming packet callback.
 504 */
 505struct hv_dr_work {
 506	struct work_struct wrk;
 507	struct hv_pcibus_device *bus;
 508};
 509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510struct hv_dr_state {
 511	struct list_head list_entry;
 512	u32 device_count;
 513	struct pci_function_description func[0];
 514};
 515
 516enum hv_pcichild_state {
 517	hv_pcichild_init = 0,
 518	hv_pcichild_requirements,
 519	hv_pcichild_resourced,
 520	hv_pcichild_ejecting,
 521	hv_pcichild_maximum
 522};
 523
 524struct hv_pci_dev {
 525	/* List protected by pci_rescan_remove_lock */
 526	struct list_head list_entry;
 527	refcount_t refs;
 528	enum hv_pcichild_state state;
 529	struct pci_slot *pci_slot;
 530	struct pci_function_description desc;
 531	bool reported_missing;
 532	struct hv_pcibus_device *hbus;
 533	struct work_struct wrk;
 534
 535	void (*block_invalidate)(void *context, u64 block_mask);
 536	void *invalidate_context;
 537
 538	/*
 539	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
 540	 * read it back, for each of the BAR offsets within config space.
 541	 */
 542	u32 probed_bar[6];
 543};
 544
 545struct hv_pci_compl {
 546	struct completion host_event;
 547	s32 completion_status;
 548};
 549
 550static void hv_pci_onchannelcallback(void *context);
 551
 552/**
 553 * hv_pci_generic_compl() - Invoked for a completion packet
 554 * @context:		Set up by the sender of the packet.
 555 * @resp:		The response packet
 556 * @resp_packet_size:	Size in bytes of the packet
 557 *
 558 * This function is used to trigger an event and report status
 559 * for any message for which the completion packet contains a
 560 * status and nothing else.
 561 */
 562static void hv_pci_generic_compl(void *context, struct pci_response *resp,
 563				 int resp_packet_size)
 564{
 565	struct hv_pci_compl *comp_pkt = context;
 566
 567	if (resp_packet_size >= offsetofend(struct pci_response, status))
 568		comp_pkt->completion_status = resp->status;
 569	else
 570		comp_pkt->completion_status = -1;
 571
 572	complete(&comp_pkt->host_event);
 573}
 574
 575static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
 576						u32 wslot);
 577
 578static void get_pcichild(struct hv_pci_dev *hpdev)
 579{
 580	refcount_inc(&hpdev->refs);
 581}
 582
 583static void put_pcichild(struct hv_pci_dev *hpdev)
 584{
 585	if (refcount_dec_and_test(&hpdev->refs))
 586		kfree(hpdev);
 587}
 588
 589static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 590static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 591
 592/*
 593 * There is no good way to get notified from vmbus_onoffer_rescind(),
 594 * so let's use polling here, since this is not a hot path.
 595 */
 596static int wait_for_response(struct hv_device *hdev,
 597			     struct completion *comp)
 598{
 599	while (true) {
 600		if (hdev->channel->rescind) {
 601			dev_warn_once(&hdev->device, "The device is gone.\n");
 602			return -ENODEV;
 603		}
 604
 605		if (wait_for_completion_timeout(comp, HZ / 10))
 606			break;
 607	}
 608
 609	return 0;
 610}
 611
 612/**
 613 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
 614 * @devfn:	The Linux representation of PCI slot
 615 *
 616 * Windows uses a slightly different representation of PCI slot.
 617 *
 618 * Return: The Windows representation
 619 */
 620static u32 devfn_to_wslot(int devfn)
 621{
 622	union win_slot_encoding wslot;
 623
 624	wslot.slot = 0;
 625	wslot.bits.dev = PCI_SLOT(devfn);
 626	wslot.bits.func = PCI_FUNC(devfn);
 627
 628	return wslot.slot;
 629}
 630
 631/**
 632 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
 633 * @wslot:	The Windows representation of PCI slot
 634 *
 635 * Windows uses a slightly different representation of PCI slot.
 636 *
 637 * Return: The Linux representation
 638 */
 639static int wslot_to_devfn(u32 wslot)
 640{
 641	union win_slot_encoding slot_no;
 642
 643	slot_no.slot = wslot;
 644	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
 645}
 646
 647/*
 648 * PCI Configuration Space for these root PCI buses is implemented as a pair
 649 * of pages in memory-mapped I/O space.  Writing to the first page chooses
 650 * the PCI function being written or read.  Once the first page has been
 651 * written to, the following page maps in the entire configuration space of
 652 * the function.
 653 */
 654
 655/**
 656 * _hv_pcifront_read_config() - Internal PCI config read
 657 * @hpdev:	The PCI driver's representation of the device
 658 * @where:	Offset within config space
 659 * @size:	Size of the transfer
 660 * @val:	Pointer to the buffer receiving the data
 661 */
 662static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
 663				     int size, u32 *val)
 664{
 665	unsigned long flags;
 666	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 667
 668	/*
 669	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
 670	 */
 671	if (where + size <= PCI_COMMAND) {
 672		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
 673	} else if (where >= PCI_CLASS_REVISION && where + size <=
 674		   PCI_CACHE_LINE_SIZE) {
 675		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
 676		       PCI_CLASS_REVISION, size);
 677	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
 678		   PCI_ROM_ADDRESS) {
 679		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
 680		       PCI_SUBSYSTEM_VENDOR_ID, size);
 681	} else if (where >= PCI_ROM_ADDRESS && where + size <=
 682		   PCI_CAPABILITY_LIST) {
 683		/* ROM BARs are unimplemented */
 684		*val = 0;
 685	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
 686		   PCI_INTERRUPT_PIN) {
 687		/*
 688		 * Interrupt Line and Interrupt PIN are hard-wired to zero
 689		 * because this front-end only supports message-signaled
 690		 * interrupts.
 691		 */
 692		*val = 0;
 693	} else if (where + size <= CFG_PAGE_SIZE) {
 694		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 695		/* Choose the function to be read. (See comment above) */
 696		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 697		/* Make sure the function was chosen before we start reading. */
 698		mb();
 699		/* Read from that function's config space. */
 700		switch (size) {
 701		case 1:
 702			*val = readb(addr);
 703			break;
 704		case 2:
 705			*val = readw(addr);
 706			break;
 707		default:
 708			*val = readl(addr);
 709			break;
 710		}
 711		/*
 712		 * Make sure the read was done before we release the spinlock
 713		 * allowing consecutive reads/writes.
 714		 */
 715		mb();
 716		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 717	} else {
 718		dev_err(&hpdev->hbus->hdev->device,
 719			"Attempt to read beyond a function's config space.\n");
 720	}
 721}
 722
 723static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
 724{
 725	u16 ret;
 726	unsigned long flags;
 727	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
 728			     PCI_VENDOR_ID;
 729
 730	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 731
 732	/* Choose the function to be read. (See comment above) */
 733	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 734	/* Make sure the function was chosen before we start reading. */
 735	mb();
 736	/* Read from that function's config space. */
 737	ret = readw(addr);
 738	/*
 739	 * mb() is not required here, because the spin_unlock_irqrestore()
 740	 * is a barrier.
 741	 */
 742
 743	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 744
 745	return ret;
 746}
 747
 748/**
 749 * _hv_pcifront_write_config() - Internal PCI config write
 750 * @hpdev:	The PCI driver's representation of the device
 751 * @where:	Offset within config space
 752 * @size:	Size of the transfer
 753 * @val:	The data being transferred
 754 */
 755static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
 756				      int size, u32 val)
 757{
 758	unsigned long flags;
 759	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 760
 761	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
 762	    where + size <= PCI_CAPABILITY_LIST) {
 763		/* SSIDs and ROM BARs are read-only */
 764	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
 765		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 766		/* Choose the function to be written. (See comment above) */
 767		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 768		/* Make sure the function was chosen before we start writing. */
 769		wmb();
 770		/* Write to that function's config space. */
 771		switch (size) {
 772		case 1:
 773			writeb(val, addr);
 774			break;
 775		case 2:
 776			writew(val, addr);
 777			break;
 778		default:
 779			writel(val, addr);
 780			break;
 781		}
 782		/*
 783		 * Make sure the write was done before we release the spinlock
 784		 * allowing consecutive reads/writes.
 785		 */
 786		mb();
 787		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 788	} else {
 789		dev_err(&hpdev->hbus->hdev->device,
 790			"Attempt to write beyond a function's config space.\n");
 791	}
 792}
 793
 794/**
 795 * hv_pcifront_read_config() - Read configuration space
 796 * @bus: PCI Bus structure
 797 * @devfn: Device/function
 798 * @where: Offset from base
 799 * @size: Byte/word/dword
 800 * @val: Value to be read
 801 *
 802 * Return: PCIBIOS_SUCCESSFUL on success
 803 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 804 */
 805static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
 806				   int where, int size, u32 *val)
 807{
 808	struct hv_pcibus_device *hbus =
 809		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 810	struct hv_pci_dev *hpdev;
 811
 812	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 813	if (!hpdev)
 814		return PCIBIOS_DEVICE_NOT_FOUND;
 815
 816	_hv_pcifront_read_config(hpdev, where, size, val);
 817
 818	put_pcichild(hpdev);
 819	return PCIBIOS_SUCCESSFUL;
 820}
 821
 822/**
 823 * hv_pcifront_write_config() - Write configuration space
 824 * @bus: PCI Bus structure
 825 * @devfn: Device/function
 826 * @where: Offset from base
 827 * @size: Byte/word/dword
 828 * @val: Value to be written to device
 829 *
 830 * Return: PCIBIOS_SUCCESSFUL on success
 831 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 832 */
 833static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
 834				    int where, int size, u32 val)
 835{
 836	struct hv_pcibus_device *hbus =
 837	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 838	struct hv_pci_dev *hpdev;
 839
 840	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 841	if (!hpdev)
 842		return PCIBIOS_DEVICE_NOT_FOUND;
 843
 844	_hv_pcifront_write_config(hpdev, where, size, val);
 845
 846	put_pcichild(hpdev);
 847	return PCIBIOS_SUCCESSFUL;
 848}
 849
 850/* PCIe operations */
 851static struct pci_ops hv_pcifront_ops = {
 852	.read  = hv_pcifront_read_config,
 853	.write = hv_pcifront_write_config,
 854};
 855
 856/*
 857 * Paravirtual backchannel
 858 *
 859 * Hyper-V SR-IOV provides a backchannel mechanism in software for
 860 * communication between a VF driver and a PF driver.  These
 861 * "configuration blocks" are similar in concept to PCI configuration space,
 862 * but instead of doing reads and writes in 32-bit chunks through a very slow
 863 * path, packets of up to 128 bytes can be sent or received asynchronously.
 864 *
 865 * Nearly every SR-IOV device contains just such a communications channel in
 866 * hardware, so using this one in software is usually optional.  Using the
 867 * software channel, however, allows driver implementers to leverage software
 868 * tools that fuzz the communications channel looking for vulnerabilities.
 869 *
 870 * The usage model for these packets puts the responsibility for reading or
 871 * writing on the VF driver.  The VF driver sends a read or a write packet,
 872 * indicating which "block" is being referred to by number.
 873 *
 874 * If the PF driver wishes to initiate communication, it can "invalidate" one or
 875 * more of the first 64 blocks.  This invalidation is delivered via a callback
 876 * supplied by the VF driver by this driver.
 877 *
 878 * No protocol is implied, except that supplied by the PF and VF drivers.
 879 */
 880
 881struct hv_read_config_compl {
 882	struct hv_pci_compl comp_pkt;
 883	void *buf;
 884	unsigned int len;
 885	unsigned int bytes_returned;
 886};
 887
 888/**
 889 * hv_pci_read_config_compl() - Invoked when a response packet
 890 * for a read config block operation arrives.
 891 * @context:		Identifies the read config operation
 892 * @resp:		The response packet itself
 893 * @resp_packet_size:	Size in bytes of the response packet
 894 */
 895static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
 896				     int resp_packet_size)
 897{
 898	struct hv_read_config_compl *comp = context;
 899	struct pci_read_block_response *read_resp =
 900		(struct pci_read_block_response *)resp;
 901	unsigned int data_len, hdr_len;
 902
 903	hdr_len = offsetof(struct pci_read_block_response, bytes);
 904	if (resp_packet_size < hdr_len) {
 905		comp->comp_pkt.completion_status = -1;
 906		goto out;
 907	}
 908
 909	data_len = resp_packet_size - hdr_len;
 910	if (data_len > 0 && read_resp->status == 0) {
 911		comp->bytes_returned = min(comp->len, data_len);
 912		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
 913	} else {
 914		comp->bytes_returned = 0;
 915	}
 916
 917	comp->comp_pkt.completion_status = read_resp->status;
 918out:
 919	complete(&comp->comp_pkt.host_event);
 920}
 921
 922/**
 923 * hv_read_config_block() - Sends a read config block request to
 924 * the back-end driver running in the Hyper-V parent partition.
 925 * @pdev:		The PCI driver's representation for this device.
 926 * @buf:		Buffer into which the config block will be copied.
 927 * @len:		Size in bytes of buf.
 928 * @block_id:		Identifies the config block which has been requested.
 929 * @bytes_returned:	Size which came back from the back-end driver.
 930 *
 931 * Return: 0 on success, -errno on failure
 932 */
 933int hv_read_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
 934			 unsigned int block_id, unsigned int *bytes_returned)
 
 935{
 936	struct hv_pcibus_device *hbus =
 937		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
 938			     sysdata);
 939	struct {
 940		struct pci_packet pkt;
 941		char buf[sizeof(struct pci_read_block)];
 942	} pkt;
 943	struct hv_read_config_compl comp_pkt;
 944	struct pci_read_block *read_blk;
 945	int ret;
 946
 947	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
 948		return -EINVAL;
 949
 950	init_completion(&comp_pkt.comp_pkt.host_event);
 951	comp_pkt.buf = buf;
 952	comp_pkt.len = len;
 953
 954	memset(&pkt, 0, sizeof(pkt));
 955	pkt.pkt.completion_func = hv_pci_read_config_compl;
 956	pkt.pkt.compl_ctxt = &comp_pkt;
 957	read_blk = (struct pci_read_block *)&pkt.pkt.message;
 958	read_blk->message_type.type = PCI_READ_BLOCK;
 959	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
 960	read_blk->block_id = block_id;
 961	read_blk->bytes_requested = len;
 962
 963	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
 964			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
 965			       VM_PKT_DATA_INBAND,
 966			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
 967	if (ret)
 968		return ret;
 969
 970	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
 971	if (ret)
 972		return ret;
 973
 974	if (comp_pkt.comp_pkt.completion_status != 0 ||
 975	    comp_pkt.bytes_returned == 0) {
 976		dev_err(&hbus->hdev->device,
 977			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
 978			comp_pkt.comp_pkt.completion_status,
 979			comp_pkt.bytes_returned);
 980		return -EIO;
 981	}
 982
 983	*bytes_returned = comp_pkt.bytes_returned;
 984	return 0;
 985}
 986
 987/**
 988 * hv_pci_write_config_compl() - Invoked when a response packet for a write
 989 * config block operation arrives.
 990 * @context:		Identifies the write config operation
 991 * @resp:		The response packet itself
 992 * @resp_packet_size:	Size in bytes of the response packet
 993 */
 994static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
 995				      int resp_packet_size)
 996{
 997	struct hv_pci_compl *comp_pkt = context;
 998
 999	comp_pkt->completion_status = resp->status;
1000	complete(&comp_pkt->host_event);
1001}
1002
1003/**
1004 * hv_write_config_block() - Sends a write config block request to the
1005 * back-end driver running in the Hyper-V parent partition.
1006 * @pdev:		The PCI driver's representation for this device.
1007 * @buf:		Buffer from which the config block will	be copied.
1008 * @len:		Size in bytes of buf.
1009 * @block_id:		Identifies the config block which is being written.
1010 *
1011 * Return: 0 on success, -errno on failure
1012 */
1013int hv_write_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
1014			  unsigned int block_id)
1015{
1016	struct hv_pcibus_device *hbus =
1017		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1018			     sysdata);
1019	struct {
1020		struct pci_packet pkt;
1021		char buf[sizeof(struct pci_write_block)];
1022		u32 reserved;
1023	} pkt;
1024	struct hv_pci_compl comp_pkt;
1025	struct pci_write_block *write_blk;
1026	u32 pkt_size;
1027	int ret;
1028
1029	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1030		return -EINVAL;
1031
1032	init_completion(&comp_pkt.host_event);
1033
1034	memset(&pkt, 0, sizeof(pkt));
1035	pkt.pkt.completion_func = hv_pci_write_config_compl;
1036	pkt.pkt.compl_ctxt = &comp_pkt;
1037	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1038	write_blk->message_type.type = PCI_WRITE_BLOCK;
1039	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1040	write_blk->block_id = block_id;
1041	write_blk->byte_count = len;
1042	memcpy(write_blk->bytes, buf, len);
1043	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1044	/*
1045	 * This quirk is required on some hosts shipped around 2018, because
1046	 * these hosts don't check the pkt_size correctly (new hosts have been
1047	 * fixed since early 2019). The quirk is also safe on very old hosts
1048	 * and new hosts, because, on them, what really matters is the length
1049	 * specified in write_blk->byte_count.
1050	 */
1051	pkt_size += sizeof(pkt.reserved);
1052
1053	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1054			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1055			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1056	if (ret)
1057		return ret;
1058
1059	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1060	if (ret)
1061		return ret;
1062
1063	if (comp_pkt.completion_status != 0) {
1064		dev_err(&hbus->hdev->device,
1065			"Write Config Block failed: 0x%x\n",
1066			comp_pkt.completion_status);
1067		return -EIO;
1068	}
1069
1070	return 0;
1071}
1072
1073/**
1074 * hv_register_block_invalidate() - Invoked when a config block invalidation
1075 * arrives from the back-end driver.
1076 * @pdev:		The PCI driver's representation for this device.
1077 * @context:		Identifies the device.
1078 * @block_invalidate:	Identifies all of the blocks being invalidated.
1079 *
1080 * Return: 0 on success, -errno on failure
1081 */
1082int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1083				 void (*block_invalidate)(void *context,
1084							  u64 block_mask))
1085{
1086	struct hv_pcibus_device *hbus =
1087		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1088			     sysdata);
1089	struct hv_pci_dev *hpdev;
1090
1091	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1092	if (!hpdev)
1093		return -ENODEV;
1094
1095	hpdev->block_invalidate = block_invalidate;
1096	hpdev->invalidate_context = context;
1097
1098	put_pcichild(hpdev);
1099	return 0;
1100
1101}
1102
1103/* Interrupt management hooks */
1104static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1105			     struct tran_int_desc *int_desc)
1106{
1107	struct pci_delete_interrupt *int_pkt;
1108	struct {
1109		struct pci_packet pkt;
1110		u8 buffer[sizeof(struct pci_delete_interrupt)];
1111	} ctxt;
1112
1113	memset(&ctxt, 0, sizeof(ctxt));
1114	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1115	int_pkt->message_type.type =
1116		PCI_DELETE_INTERRUPT_MESSAGE;
1117	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1118	int_pkt->int_desc = *int_desc;
1119	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1120			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1121	kfree(int_desc);
1122}
1123
1124/**
1125 * hv_msi_free() - Free the MSI.
1126 * @domain:	The interrupt domain pointer
1127 * @info:	Extra MSI-related context
1128 * @irq:	Identifies the IRQ.
1129 *
1130 * The Hyper-V parent partition and hypervisor are tracking the
1131 * messages that are in use, keeping the interrupt redirection
1132 * table up to date.  This callback sends a message that frees
1133 * the IRT entry and related tracking nonsense.
1134 */
1135static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1136			unsigned int irq)
1137{
1138	struct hv_pcibus_device *hbus;
1139	struct hv_pci_dev *hpdev;
1140	struct pci_dev *pdev;
1141	struct tran_int_desc *int_desc;
1142	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1143	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1144
1145	pdev = msi_desc_to_pci_dev(msi);
1146	hbus = info->data;
1147	int_desc = irq_data_get_irq_chip_data(irq_data);
1148	if (!int_desc)
1149		return;
1150
1151	irq_data->chip_data = NULL;
1152	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1153	if (!hpdev) {
1154		kfree(int_desc);
1155		return;
1156	}
1157
1158	hv_int_desc_free(hpdev, int_desc);
1159	put_pcichild(hpdev);
1160}
1161
1162static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1163			   bool force)
1164{
1165	struct irq_data *parent = data->parent_data;
1166
1167	return parent->chip->irq_set_affinity(parent, dest, force);
1168}
1169
1170static void hv_irq_mask(struct irq_data *data)
1171{
1172	pci_msi_mask_irq(data);
1173}
1174
1175/**
1176 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1177 * affinity.
1178 * @data:	Describes the IRQ
1179 *
1180 * Build new a destination for the MSI and make a hypercall to
1181 * update the Interrupt Redirection Table. "Device Logical ID"
1182 * is built out of this PCI bus's instance GUID and the function
1183 * number of the device.
1184 */
1185static void hv_irq_unmask(struct irq_data *data)
1186{
1187	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1188	struct irq_cfg *cfg = irqd_cfg(data);
1189	struct retarget_msi_interrupt *params;
1190	struct hv_pcibus_device *hbus;
1191	struct cpumask *dest;
1192	cpumask_var_t tmp;
1193	struct pci_bus *pbus;
1194	struct pci_dev *pdev;
1195	unsigned long flags;
1196	u32 var_size = 0;
1197	int cpu, nr_bank;
1198	u64 res;
1199
1200	dest = irq_data_get_effective_affinity_mask(data);
1201	pdev = msi_desc_to_pci_dev(msi_desc);
1202	pbus = pdev->bus;
1203	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1204
1205	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1206
1207	params = &hbus->retarget_msi_interrupt_params;
1208	memset(params, 0, sizeof(*params));
1209	params->partition_id = HV_PARTITION_ID_SELF;
1210	params->int_entry.source = 1; /* MSI(-X) */
1211	params->int_entry.address = msi_desc->msg.address_lo;
1212	params->int_entry.data = msi_desc->msg.data;
1213	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1214			   (hbus->hdev->dev_instance.b[4] << 16) |
1215			   (hbus->hdev->dev_instance.b[7] << 8) |
1216			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1217			   PCI_FUNC(pdev->devfn);
1218	params->int_target.vector = cfg->vector;
1219
1220	/*
1221	 * Honoring apic->irq_delivery_mode set to dest_Fixed by
1222	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1223	 * spurious interrupt storm. Not doing so does not seem to have a
1224	 * negative effect (yet?).
1225	 */
1226
1227	if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1228		/*
1229		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1230		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1231		 * with >64 VP support.
1232		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1233		 * is not sufficient for this hypercall.
1234		 */
1235		params->int_target.flags |=
1236			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1237
1238		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1239			res = 1;
1240			goto exit_unlock;
1241		}
1242
1243		cpumask_and(tmp, dest, cpu_online_mask);
1244		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1245		free_cpumask_var(tmp);
1246
1247		if (nr_bank <= 0) {
1248			res = 1;
1249			goto exit_unlock;
1250		}
1251
1252		/*
1253		 * var-sized hypercall, var-size starts after vp_mask (thus
1254		 * vp_set.format does not count, but vp_set.valid_bank_mask
1255		 * does).
1256		 */
1257		var_size = 1 + nr_bank;
1258	} else {
1259		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1260			params->int_target.vp_mask |=
1261				(1ULL << hv_cpu_number_to_vp_number(cpu));
1262		}
1263	}
1264
1265	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1266			      params, NULL);
1267
1268exit_unlock:
1269	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1270
1271	if (res) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272		dev_err(&hbus->hdev->device,
1273			"%s() failed: %#llx", __func__, res);
1274		return;
1275	}
1276
1277	pci_msi_unmask_irq(data);
1278}
1279
1280struct compose_comp_ctxt {
1281	struct hv_pci_compl comp_pkt;
1282	struct tran_int_desc int_desc;
1283};
1284
1285static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1286				 int resp_packet_size)
1287{
1288	struct compose_comp_ctxt *comp_pkt = context;
1289	struct pci_create_int_response *int_resp =
1290		(struct pci_create_int_response *)resp;
1291
1292	comp_pkt->comp_pkt.completion_status = resp->status;
1293	comp_pkt->int_desc = int_resp->int_desc;
1294	complete(&comp_pkt->comp_pkt.host_event);
1295}
1296
1297static u32 hv_compose_msi_req_v1(
1298	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1299	u32 slot, u8 vector)
1300{
1301	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1302	int_pkt->wslot.slot = slot;
1303	int_pkt->int_desc.vector = vector;
1304	int_pkt->int_desc.vector_count = 1;
1305	int_pkt->int_desc.delivery_mode = dest_Fixed;
1306
1307	/*
1308	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1309	 * hv_irq_unmask().
1310	 */
1311	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1312
1313	return sizeof(*int_pkt);
1314}
1315
1316static u32 hv_compose_msi_req_v2(
1317	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1318	u32 slot, u8 vector)
1319{
1320	int cpu;
1321
1322	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1323	int_pkt->wslot.slot = slot;
1324	int_pkt->int_desc.vector = vector;
1325	int_pkt->int_desc.vector_count = 1;
1326	int_pkt->int_desc.delivery_mode = dest_Fixed;
1327
1328	/*
1329	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1330	 * by subsequent retarget in hv_irq_unmask().
1331	 */
1332	cpu = cpumask_first_and(affinity, cpu_online_mask);
1333	int_pkt->int_desc.processor_array[0] =
1334		hv_cpu_number_to_vp_number(cpu);
1335	int_pkt->int_desc.processor_count = 1;
1336
1337	return sizeof(*int_pkt);
1338}
1339
1340/**
1341 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1342 * @data:	Everything about this MSI
1343 * @msg:	Buffer that is filled in by this function
1344 *
1345 * This function unpacks the IRQ looking for target CPU set, IDT
1346 * vector and mode and sends a message to the parent partition
1347 * asking for a mapping for that tuple in this partition.  The
1348 * response supplies a data value and address to which that data
1349 * should be written to trigger that interrupt.
1350 */
1351static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1352{
1353	struct irq_cfg *cfg = irqd_cfg(data);
1354	struct hv_pcibus_device *hbus;
 
1355	struct hv_pci_dev *hpdev;
1356	struct pci_bus *pbus;
1357	struct pci_dev *pdev;
1358	struct cpumask *dest;
1359	unsigned long flags;
1360	struct compose_comp_ctxt comp;
1361	struct tran_int_desc *int_desc;
1362	struct {
1363		struct pci_packet pci_pkt;
1364		union {
1365			struct pci_create_interrupt v1;
1366			struct pci_create_interrupt2 v2;
1367		} int_pkts;
1368	} __packed ctxt;
1369
1370	u32 size;
1371	int ret;
1372
1373	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1374	dest = irq_data_get_effective_affinity_mask(data);
1375	pbus = pdev->bus;
1376	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
 
1377	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1378	if (!hpdev)
1379		goto return_null_message;
1380
1381	/* Free any previous message that might have already been composed. */
1382	if (data->chip_data) {
1383		int_desc = data->chip_data;
1384		data->chip_data = NULL;
1385		hv_int_desc_free(hpdev, int_desc);
1386	}
1387
1388	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1389	if (!int_desc)
1390		goto drop_reference;
1391
1392	memset(&ctxt, 0, sizeof(ctxt));
1393	init_completion(&comp.comp_pkt.host_event);
1394	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1395	ctxt.pci_pkt.compl_ctxt = &comp;
1396
1397	switch (pci_protocol_version) {
1398	case PCI_PROTOCOL_VERSION_1_1:
1399		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1400					dest,
1401					hpdev->desc.win_slot.slot,
1402					cfg->vector);
1403		break;
1404
1405	case PCI_PROTOCOL_VERSION_1_2:
 
1406		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1407					dest,
1408					hpdev->desc.win_slot.slot,
1409					cfg->vector);
1410		break;
1411
1412	default:
1413		/* As we only negotiate protocol versions known to this driver,
1414		 * this path should never hit. However, this is it not a hot
1415		 * path so we print a message to aid future updates.
1416		 */
1417		dev_err(&hbus->hdev->device,
1418			"Unexpected vPCI protocol, update driver.");
1419		goto free_int_desc;
1420	}
1421
1422	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1423			       size, (unsigned long)&ctxt.pci_pkt,
1424			       VM_PKT_DATA_INBAND,
1425			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1426	if (ret) {
1427		dev_err(&hbus->hdev->device,
1428			"Sending request for interrupt failed: 0x%x",
1429			comp.comp_pkt.completion_status);
1430		goto free_int_desc;
1431	}
1432
1433	/*
 
 
 
 
 
 
1434	 * Since this function is called with IRQ locks held, can't
1435	 * do normal wait for completion; instead poll.
1436	 */
1437	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
 
 
1438		/* 0xFFFF means an invalid PCI VENDOR ID. */
1439		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1440			dev_err_once(&hbus->hdev->device,
1441				     "the device has gone\n");
1442			goto free_int_desc;
1443		}
1444
1445		/*
1446		 * When the higher level interrupt code calls us with
1447		 * interrupt disabled, we must poll the channel by calling
1448		 * the channel callback directly when channel->target_cpu is
1449		 * the current CPU. When the higher level interrupt code
1450		 * calls us with interrupt enabled, let's add the
1451		 * local_irq_save()/restore() to avoid race:
1452		 * hv_pci_onchannelcallback() can also run in tasklet.
1453		 */
1454		local_irq_save(flags);
1455
1456		if (hbus->hdev->channel->target_cpu == smp_processor_id())
1457			hv_pci_onchannelcallback(hbus);
1458
1459		local_irq_restore(flags);
 
1460
1461		if (hpdev->state == hv_pcichild_ejecting) {
1462			dev_err_once(&hbus->hdev->device,
1463				     "the device is being ejected\n");
1464			goto free_int_desc;
1465		}
1466
1467		udelay(100);
1468	}
1469
 
 
1470	if (comp.comp_pkt.completion_status < 0) {
1471		dev_err(&hbus->hdev->device,
1472			"Request for interrupt failed: 0x%x",
1473			comp.comp_pkt.completion_status);
1474		goto free_int_desc;
1475	}
1476
1477	/*
1478	 * Record the assignment so that this can be unwound later. Using
1479	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1480	 * is already held.
1481	 */
1482	*int_desc = comp.int_desc;
1483	data->chip_data = int_desc;
1484
1485	/* Pass up the result. */
1486	msg->address_hi = comp.int_desc.address >> 32;
1487	msg->address_lo = comp.int_desc.address & 0xffffffff;
1488	msg->data = comp.int_desc.data;
1489
1490	put_pcichild(hpdev);
1491	return;
1492
 
 
1493free_int_desc:
1494	kfree(int_desc);
1495drop_reference:
1496	put_pcichild(hpdev);
1497return_null_message:
1498	msg->address_hi = 0;
1499	msg->address_lo = 0;
1500	msg->data = 0;
1501}
1502
1503/* HW Interrupt Chip Descriptor */
1504static struct irq_chip hv_msi_irq_chip = {
1505	.name			= "Hyper-V PCIe MSI",
1506	.irq_compose_msi_msg	= hv_compose_msi_msg,
1507	.irq_set_affinity	= hv_set_affinity,
1508	.irq_ack		= irq_chip_ack_parent,
1509	.irq_mask		= hv_irq_mask,
1510	.irq_unmask		= hv_irq_unmask,
1511};
1512
1513static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1514						   msi_alloc_info_t *arg)
1515{
1516	return arg->msi_hwirq;
1517}
1518
1519static struct msi_domain_ops hv_msi_ops = {
1520	.get_hwirq	= hv_msi_domain_ops_get_hwirq,
1521	.msi_prepare	= pci_msi_prepare,
1522	.set_desc	= pci_msi_set_desc,
1523	.msi_free	= hv_msi_free,
1524};
1525
1526/**
1527 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1528 * @hbus:	The root PCI bus
1529 *
1530 * This function creates an IRQ domain which will be used for
1531 * interrupts from devices that have been passed through.  These
1532 * devices only support MSI and MSI-X, not line-based interrupts
1533 * or simulations of line-based interrupts through PCIe's
1534 * fabric-layer messages.  Because interrupts are remapped, we
1535 * can support multi-message MSI here.
1536 *
1537 * Return: '0' on success and error value on failure
1538 */
1539static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1540{
1541	hbus->msi_info.chip = &hv_msi_irq_chip;
1542	hbus->msi_info.ops = &hv_msi_ops;
1543	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1544		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1545		MSI_FLAG_PCI_MSIX);
1546	hbus->msi_info.handler = handle_edge_irq;
1547	hbus->msi_info.handler_name = "edge";
1548	hbus->msi_info.data = hbus;
1549	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1550						     &hbus->msi_info,
1551						     x86_vector_domain);
1552	if (!hbus->irq_domain) {
1553		dev_err(&hbus->hdev->device,
1554			"Failed to build an MSI IRQ domain\n");
1555		return -ENODEV;
1556	}
1557
1558	return 0;
1559}
1560
1561/**
1562 * get_bar_size() - Get the address space consumed by a BAR
1563 * @bar_val:	Value that a BAR returned after -1 was written
1564 *              to it.
1565 *
1566 * This function returns the size of the BAR, rounded up to 1
1567 * page.  It has to be rounded up because the hypervisor's page
1568 * table entry that maps the BAR into the VM can't specify an
1569 * offset within a page.  The invariant is that the hypervisor
1570 * must place any BARs of smaller than page length at the
1571 * beginning of a page.
1572 *
1573 * Return:	Size in bytes of the consumed MMIO space.
1574 */
1575static u64 get_bar_size(u64 bar_val)
1576{
1577	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1578			PAGE_SIZE);
1579}
1580
1581/**
1582 * survey_child_resources() - Total all MMIO requirements
1583 * @hbus:	Root PCI bus, as understood by this driver
1584 */
1585static void survey_child_resources(struct hv_pcibus_device *hbus)
1586{
1587	struct hv_pci_dev *hpdev;
1588	resource_size_t bar_size = 0;
1589	unsigned long flags;
1590	struct completion *event;
1591	u64 bar_val;
1592	int i;
1593
1594	/* If nobody is waiting on the answer, don't compute it. */
1595	event = xchg(&hbus->survey_event, NULL);
1596	if (!event)
1597		return;
1598
1599	/* If the answer has already been computed, go with it. */
1600	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1601		complete(event);
1602		return;
1603	}
1604
1605	spin_lock_irqsave(&hbus->device_list_lock, flags);
1606
1607	/*
1608	 * Due to an interesting quirk of the PCI spec, all memory regions
1609	 * for a child device are a power of 2 in size and aligned in memory,
1610	 * so it's sufficient to just add them up without tracking alignment.
1611	 */
1612	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1613		for (i = 0; i < 6; i++) {
1614			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1615				dev_err(&hbus->hdev->device,
1616					"There's an I/O BAR in this list!\n");
1617
1618			if (hpdev->probed_bar[i] != 0) {
1619				/*
1620				 * A probed BAR has all the upper bits set that
1621				 * can be changed.
1622				 */
1623
1624				bar_val = hpdev->probed_bar[i];
1625				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1626					bar_val |=
1627					((u64)hpdev->probed_bar[++i] << 32);
1628				else
1629					bar_val |= 0xffffffff00000000ULL;
1630
1631				bar_size = get_bar_size(bar_val);
1632
1633				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1634					hbus->high_mmio_space += bar_size;
1635				else
1636					hbus->low_mmio_space += bar_size;
1637			}
1638		}
1639	}
1640
1641	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1642	complete(event);
1643}
1644
1645/**
1646 * prepopulate_bars() - Fill in BARs with defaults
1647 * @hbus:	Root PCI bus, as understood by this driver
1648 *
1649 * The core PCI driver code seems much, much happier if the BARs
1650 * for a device have values upon first scan. So fill them in.
1651 * The algorithm below works down from large sizes to small,
1652 * attempting to pack the assignments optimally. The assumption,
1653 * enforced in other parts of the code, is that the beginning of
1654 * the memory-mapped I/O space will be aligned on the largest
1655 * BAR size.
1656 */
1657static void prepopulate_bars(struct hv_pcibus_device *hbus)
1658{
1659	resource_size_t high_size = 0;
1660	resource_size_t low_size = 0;
1661	resource_size_t high_base = 0;
1662	resource_size_t low_base = 0;
1663	resource_size_t bar_size;
1664	struct hv_pci_dev *hpdev;
1665	unsigned long flags;
1666	u64 bar_val;
1667	u32 command;
1668	bool high;
1669	int i;
1670
1671	if (hbus->low_mmio_space) {
1672		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1673		low_base = hbus->low_mmio_res->start;
1674	}
1675
1676	if (hbus->high_mmio_space) {
1677		high_size = 1ULL <<
1678			(63 - __builtin_clzll(hbus->high_mmio_space));
1679		high_base = hbus->high_mmio_res->start;
1680	}
1681
1682	spin_lock_irqsave(&hbus->device_list_lock, flags);
1683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684	/* Pick addresses for the BARs. */
1685	do {
1686		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1687			for (i = 0; i < 6; i++) {
1688				bar_val = hpdev->probed_bar[i];
1689				if (bar_val == 0)
1690					continue;
1691				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1692				if (high) {
1693					bar_val |=
1694						((u64)hpdev->probed_bar[i + 1]
1695						 << 32);
1696				} else {
1697					bar_val |= 0xffffffffULL << 32;
1698				}
1699				bar_size = get_bar_size(bar_val);
1700				if (high) {
1701					if (high_size != bar_size) {
1702						i++;
1703						continue;
1704					}
1705					_hv_pcifront_write_config(hpdev,
1706						PCI_BASE_ADDRESS_0 + (4 * i),
1707						4,
1708						(u32)(high_base & 0xffffff00));
1709					i++;
1710					_hv_pcifront_write_config(hpdev,
1711						PCI_BASE_ADDRESS_0 + (4 * i),
1712						4, (u32)(high_base >> 32));
1713					high_base += bar_size;
1714				} else {
1715					if (low_size != bar_size)
1716						continue;
1717					_hv_pcifront_write_config(hpdev,
1718						PCI_BASE_ADDRESS_0 + (4 * i),
1719						4,
1720						(u32)(low_base & 0xffffff00));
1721					low_base += bar_size;
1722				}
1723			}
1724			if (high_size <= 1 && low_size <= 1) {
1725				/* Set the memory enable bit. */
1726				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1727							 &command);
1728				command |= PCI_COMMAND_MEMORY;
1729				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1730							  command);
1731				break;
1732			}
1733		}
1734
1735		high_size >>= 1;
1736		low_size >>= 1;
1737	}  while (high_size || low_size);
1738
1739	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1740}
1741
1742/*
1743 * Assign entries in sysfs pci slot directory.
1744 *
1745 * Note that this function does not need to lock the children list
1746 * because it is called from pci_devices_present_work which
1747 * is serialized with hv_eject_device_work because they are on the
1748 * same ordered workqueue. Therefore hbus->children list will not change
1749 * even when pci_create_slot sleeps.
1750 */
1751static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1752{
1753	struct hv_pci_dev *hpdev;
1754	char name[SLOT_NAME_SIZE];
1755	int slot_nr;
1756
1757	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1758		if (hpdev->pci_slot)
1759			continue;
1760
1761		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1762		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1763		hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1764					  name, NULL);
1765		if (IS_ERR(hpdev->pci_slot)) {
1766			pr_warn("pci_create slot %s failed\n", name);
1767			hpdev->pci_slot = NULL;
1768		}
1769	}
1770}
1771
1772/*
1773 * Remove entries in sysfs pci slot directory.
1774 */
1775static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1776{
1777	struct hv_pci_dev *hpdev;
1778
1779	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1780		if (!hpdev->pci_slot)
1781			continue;
1782		pci_destroy_slot(hpdev->pci_slot);
1783		hpdev->pci_slot = NULL;
1784	}
1785}
1786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1787/**
1788 * create_root_hv_pci_bus() - Expose a new root PCI bus
1789 * @hbus:	Root PCI bus, as understood by this driver
1790 *
1791 * Return: 0 on success, -errno on failure
1792 */
1793static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1794{
1795	/* Register the device */
1796	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1797					    0, /* bus number is always zero */
1798					    &hv_pcifront_ops,
1799					    &hbus->sysdata,
1800					    &hbus->resources_for_children);
1801	if (!hbus->pci_bus)
1802		return -ENODEV;
1803
1804	hbus->pci_bus->msi = &hbus->msi_chip;
1805	hbus->pci_bus->msi->dev = &hbus->hdev->device;
1806
1807	pci_lock_rescan_remove();
1808	pci_scan_child_bus(hbus->pci_bus);
 
1809	pci_bus_assign_resources(hbus->pci_bus);
1810	hv_pci_assign_slots(hbus);
1811	pci_bus_add_devices(hbus->pci_bus);
1812	pci_unlock_rescan_remove();
1813	hbus->state = hv_pcibus_installed;
1814	return 0;
1815}
1816
1817struct q_res_req_compl {
1818	struct completion host_event;
1819	struct hv_pci_dev *hpdev;
1820};
1821
1822/**
1823 * q_resource_requirements() - Query Resource Requirements
1824 * @context:		The completion context.
1825 * @resp:		The response that came from the host.
1826 * @resp_packet_size:	The size in bytes of resp.
1827 *
1828 * This function is invoked on completion of a Query Resource
1829 * Requirements packet.
1830 */
1831static void q_resource_requirements(void *context, struct pci_response *resp,
1832				    int resp_packet_size)
1833{
1834	struct q_res_req_compl *completion = context;
1835	struct pci_q_res_req_response *q_res_req =
1836		(struct pci_q_res_req_response *)resp;
1837	int i;
1838
1839	if (resp->status < 0) {
1840		dev_err(&completion->hpdev->hbus->hdev->device,
1841			"query resource requirements failed: %x\n",
1842			resp->status);
1843	} else {
1844		for (i = 0; i < 6; i++) {
1845			completion->hpdev->probed_bar[i] =
1846				q_res_req->probed_bar[i];
1847		}
1848	}
1849
1850	complete(&completion->host_event);
1851}
1852
1853/**
1854 * new_pcichild_device() - Create a new child device
1855 * @hbus:	The internal struct tracking this root PCI bus.
1856 * @desc:	The information supplied so far from the host
1857 *              about the device.
1858 *
1859 * This function creates the tracking structure for a new child
1860 * device and kicks off the process of figuring out what it is.
1861 *
1862 * Return: Pointer to the new tracking struct
1863 */
1864static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1865		struct pci_function_description *desc)
1866{
1867	struct hv_pci_dev *hpdev;
1868	struct pci_child_message *res_req;
1869	struct q_res_req_compl comp_pkt;
1870	struct {
1871		struct pci_packet init_packet;
1872		u8 buffer[sizeof(struct pci_child_message)];
1873	} pkt;
1874	unsigned long flags;
1875	int ret;
1876
1877	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1878	if (!hpdev)
1879		return NULL;
1880
1881	hpdev->hbus = hbus;
1882
1883	memset(&pkt, 0, sizeof(pkt));
1884	init_completion(&comp_pkt.host_event);
1885	comp_pkt.hpdev = hpdev;
1886	pkt.init_packet.compl_ctxt = &comp_pkt;
1887	pkt.init_packet.completion_func = q_resource_requirements;
1888	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1889	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1890	res_req->wslot.slot = desc->win_slot.slot;
1891
1892	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1893			       sizeof(struct pci_child_message),
1894			       (unsigned long)&pkt.init_packet,
1895			       VM_PKT_DATA_INBAND,
1896			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1897	if (ret)
1898		goto error;
1899
1900	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1901		goto error;
1902
1903	hpdev->desc = *desc;
1904	refcount_set(&hpdev->refs, 1);
1905	get_pcichild(hpdev);
1906	spin_lock_irqsave(&hbus->device_list_lock, flags);
1907
1908	list_add_tail(&hpdev->list_entry, &hbus->children);
1909	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1910	return hpdev;
1911
1912error:
1913	kfree(hpdev);
1914	return NULL;
1915}
1916
1917/**
1918 * get_pcichild_wslot() - Find device from slot
1919 * @hbus:	Root PCI bus, as understood by this driver
1920 * @wslot:	Location on the bus
1921 *
1922 * This function looks up a PCI device and returns the internal
1923 * representation of it.  It acquires a reference on it, so that
1924 * the device won't be deleted while somebody is using it.  The
1925 * caller is responsible for calling put_pcichild() to release
1926 * this reference.
1927 *
1928 * Return:	Internal representation of a PCI device
1929 */
1930static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1931					     u32 wslot)
1932{
1933	unsigned long flags;
1934	struct hv_pci_dev *iter, *hpdev = NULL;
1935
1936	spin_lock_irqsave(&hbus->device_list_lock, flags);
1937	list_for_each_entry(iter, &hbus->children, list_entry) {
1938		if (iter->desc.win_slot.slot == wslot) {
1939			hpdev = iter;
1940			get_pcichild(hpdev);
1941			break;
1942		}
1943	}
1944	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1945
1946	return hpdev;
1947}
1948
1949/**
1950 * pci_devices_present_work() - Handle new list of child devices
1951 * @work:	Work struct embedded in struct hv_dr_work
1952 *
1953 * "Bus Relations" is the Windows term for "children of this
1954 * bus."  The terminology is preserved here for people trying to
1955 * debug the interaction between Hyper-V and Linux.  This
1956 * function is called when the parent partition reports a list
1957 * of functions that should be observed under this PCI Express
1958 * port (bus).
1959 *
1960 * This function updates the list, and must tolerate being
1961 * called multiple times with the same information.  The typical
1962 * number of child devices is one, with very atypical cases
1963 * involving three or four, so the algorithms used here can be
1964 * simple and inefficient.
1965 *
1966 * It must also treat the omission of a previously observed device as
1967 * notification that the device no longer exists.
1968 *
1969 * Note that this function is serialized with hv_eject_device_work(),
1970 * because both are pushed to the ordered workqueue hbus->wq.
1971 */
1972static void pci_devices_present_work(struct work_struct *work)
1973{
1974	u32 child_no;
1975	bool found;
1976	struct pci_function_description *new_desc;
1977	struct hv_pci_dev *hpdev;
1978	struct hv_pcibus_device *hbus;
1979	struct list_head removed;
1980	struct hv_dr_work *dr_wrk;
1981	struct hv_dr_state *dr = NULL;
1982	unsigned long flags;
1983
1984	dr_wrk = container_of(work, struct hv_dr_work, wrk);
1985	hbus = dr_wrk->bus;
1986	kfree(dr_wrk);
1987
1988	INIT_LIST_HEAD(&removed);
1989
1990	/* Pull this off the queue and process it if it was the last one. */
1991	spin_lock_irqsave(&hbus->device_list_lock, flags);
1992	while (!list_empty(&hbus->dr_list)) {
1993		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1994				      list_entry);
1995		list_del(&dr->list_entry);
1996
1997		/* Throw this away if the list still has stuff in it. */
1998		if (!list_empty(&hbus->dr_list)) {
1999			kfree(dr);
2000			continue;
2001		}
2002	}
2003	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2004
2005	if (!dr) {
2006		put_hvpcibus(hbus);
2007		return;
2008	}
2009
2010	/* First, mark all existing children as reported missing. */
2011	spin_lock_irqsave(&hbus->device_list_lock, flags);
2012	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2013		hpdev->reported_missing = true;
2014	}
2015	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2016
2017	/* Next, add back any reported devices. */
2018	for (child_no = 0; child_no < dr->device_count; child_no++) {
2019		found = false;
2020		new_desc = &dr->func[child_no];
2021
2022		spin_lock_irqsave(&hbus->device_list_lock, flags);
2023		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2024			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2025			    (hpdev->desc.v_id == new_desc->v_id) &&
2026			    (hpdev->desc.d_id == new_desc->d_id) &&
2027			    (hpdev->desc.ser == new_desc->ser)) {
2028				hpdev->reported_missing = false;
2029				found = true;
2030			}
2031		}
2032		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2033
2034		if (!found) {
2035			hpdev = new_pcichild_device(hbus, new_desc);
2036			if (!hpdev)
2037				dev_err(&hbus->hdev->device,
2038					"couldn't record a child device.\n");
2039		}
2040	}
2041
2042	/* Move missing children to a list on the stack. */
2043	spin_lock_irqsave(&hbus->device_list_lock, flags);
2044	do {
2045		found = false;
2046		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2047			if (hpdev->reported_missing) {
2048				found = true;
2049				put_pcichild(hpdev);
2050				list_move_tail(&hpdev->list_entry, &removed);
2051				break;
2052			}
2053		}
2054	} while (found);
2055	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2056
2057	/* Delete everything that should no longer exist. */
2058	while (!list_empty(&removed)) {
2059		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2060					 list_entry);
2061		list_del(&hpdev->list_entry);
2062
2063		if (hpdev->pci_slot)
2064			pci_destroy_slot(hpdev->pci_slot);
2065
2066		put_pcichild(hpdev);
2067	}
2068
2069	switch (hbus->state) {
2070	case hv_pcibus_installed:
2071		/*
2072		 * Tell the core to rescan bus
2073		 * because there may have been changes.
2074		 */
2075		pci_lock_rescan_remove();
2076		pci_scan_child_bus(hbus->pci_bus);
 
2077		hv_pci_assign_slots(hbus);
2078		pci_unlock_rescan_remove();
2079		break;
2080
2081	case hv_pcibus_init:
2082	case hv_pcibus_probed:
2083		survey_child_resources(hbus);
2084		break;
2085
2086	default:
2087		break;
2088	}
2089
2090	put_hvpcibus(hbus);
2091	kfree(dr);
2092}
2093
2094/**
2095 * hv_pci_devices_present() - Handles list of new children
2096 * @hbus:	Root PCI bus, as understood by this driver
2097 * @relations:	Packet from host listing children
2098 *
2099 * This function is invoked whenever a new list of devices for
2100 * this bus appears.
2101 */
2102static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2103				   struct pci_bus_relations *relations)
2104{
2105	struct hv_dr_state *dr;
2106	struct hv_dr_work *dr_wrk;
2107	unsigned long flags;
2108	bool pending_dr;
2109
 
 
 
 
 
 
2110	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2111	if (!dr_wrk)
2112		return;
2113
2114	dr = kzalloc(offsetof(struct hv_dr_state, func) +
2115		     (sizeof(struct pci_function_description) *
2116		      (relations->device_count)), GFP_NOWAIT);
2117	if (!dr)  {
2118		kfree(dr_wrk);
2119		return;
2120	}
2121
2122	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2123	dr_wrk->bus = hbus;
2124	dr->device_count = relations->device_count;
2125	if (dr->device_count != 0) {
2126		memcpy(dr->func, relations->func,
2127		       sizeof(struct pci_function_description) *
2128		       dr->device_count);
2129	}
2130
2131	spin_lock_irqsave(&hbus->device_list_lock, flags);
2132	/*
2133	 * If pending_dr is true, we have already queued a work,
2134	 * which will see the new dr. Otherwise, we need to
2135	 * queue a new work.
2136	 */
2137	pending_dr = !list_empty(&hbus->dr_list);
2138	list_add_tail(&dr->list_entry, &hbus->dr_list);
2139	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2140
2141	if (pending_dr) {
2142		kfree(dr_wrk);
2143	} else {
2144		get_hvpcibus(hbus);
2145		queue_work(hbus->wq, &dr_wrk->wrk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2146	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147}
2148
2149/**
2150 * hv_eject_device_work() - Asynchronously handles ejection
2151 * @work:	Work struct embedded in internal device struct
2152 *
2153 * This function handles ejecting a device.  Windows will
2154 * attempt to gracefully eject a device, waiting 60 seconds to
2155 * hear back from the guest OS that this completed successfully.
2156 * If this timer expires, the device will be forcibly removed.
2157 */
2158static void hv_eject_device_work(struct work_struct *work)
2159{
2160	struct pci_eject_response *ejct_pkt;
2161	struct hv_pcibus_device *hbus;
2162	struct hv_pci_dev *hpdev;
2163	struct pci_dev *pdev;
2164	unsigned long flags;
2165	int wslot;
2166	struct {
2167		struct pci_packet pkt;
2168		u8 buffer[sizeof(struct pci_eject_response)];
2169	} ctxt;
2170
2171	hpdev = container_of(work, struct hv_pci_dev, wrk);
2172	hbus = hpdev->hbus;
2173
2174	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2175
2176	/*
2177	 * Ejection can come before or after the PCI bus has been set up, so
2178	 * attempt to find it and tear down the bus state, if it exists.  This
2179	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2180	 * because hbus->pci_bus may not exist yet.
2181	 */
2182	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2183	pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2184	if (pdev) {
2185		pci_lock_rescan_remove();
2186		pci_stop_and_remove_bus_device(pdev);
2187		pci_dev_put(pdev);
2188		pci_unlock_rescan_remove();
2189	}
2190
2191	spin_lock_irqsave(&hbus->device_list_lock, flags);
2192	list_del(&hpdev->list_entry);
2193	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2194
2195	if (hpdev->pci_slot)
2196		pci_destroy_slot(hpdev->pci_slot);
2197
2198	memset(&ctxt, 0, sizeof(ctxt));
2199	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2200	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2201	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2202	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2203			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2204			 VM_PKT_DATA_INBAND, 0);
2205
2206	/* For the get_pcichild() in hv_pci_eject_device() */
2207	put_pcichild(hpdev);
2208	/* For the two refs got in new_pcichild_device() */
2209	put_pcichild(hpdev);
2210	put_pcichild(hpdev);
2211	/* hpdev has been freed. Do not use it any more. */
2212
2213	put_hvpcibus(hbus);
2214}
2215
2216/**
2217 * hv_pci_eject_device() - Handles device ejection
2218 * @hpdev:	Internal device tracking struct
2219 *
2220 * This function is invoked when an ejection packet arrives.  It
2221 * just schedules work so that we don't re-enter the packet
2222 * delivery code handling the ejection.
2223 */
2224static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2225{
 
 
 
 
 
 
 
 
2226	hpdev->state = hv_pcichild_ejecting;
2227	get_pcichild(hpdev);
2228	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2229	get_hvpcibus(hpdev->hbus);
2230	queue_work(hpdev->hbus->wq, &hpdev->wrk);
2231}
2232
2233/**
2234 * hv_pci_onchannelcallback() - Handles incoming packets
2235 * @context:	Internal bus tracking struct
2236 *
2237 * This function is invoked whenever the host sends a packet to
2238 * this channel (which is private to this root PCI bus).
2239 */
2240static void hv_pci_onchannelcallback(void *context)
2241{
2242	const int packet_size = 0x100;
2243	int ret;
2244	struct hv_pcibus_device *hbus = context;
2245	u32 bytes_recvd;
2246	u64 req_id;
2247	struct vmpacket_descriptor *desc;
2248	unsigned char *buffer;
2249	int bufferlen = packet_size;
2250	struct pci_packet *comp_packet;
2251	struct pci_response *response;
2252	struct pci_incoming_message *new_message;
2253	struct pci_bus_relations *bus_rel;
 
2254	struct pci_dev_inval_block *inval;
2255	struct pci_dev_incoming *dev_message;
2256	struct hv_pci_dev *hpdev;
2257
2258	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2259	if (!buffer)
2260		return;
2261
2262	while (1) {
2263		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2264					   bufferlen, &bytes_recvd, &req_id);
2265
2266		if (ret == -ENOBUFS) {
2267			kfree(buffer);
2268			/* Handle large packet */
2269			bufferlen = bytes_recvd;
2270			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2271			if (!buffer)
2272				return;
2273			continue;
2274		}
2275
2276		/* Zero length indicates there are no more packets. */
2277		if (ret || !bytes_recvd)
2278			break;
2279
2280		/*
2281		 * All incoming packets must be at least as large as a
2282		 * response.
2283		 */
2284		if (bytes_recvd <= sizeof(struct pci_response))
2285			continue;
2286		desc = (struct vmpacket_descriptor *)buffer;
2287
2288		switch (desc->type) {
2289		case VM_PKT_COMP:
2290
2291			/*
2292			 * The host is trusted, and thus it's safe to interpret
2293			 * this transaction ID as a pointer.
2294			 */
2295			comp_packet = (struct pci_packet *)req_id;
2296			response = (struct pci_response *)buffer;
2297			comp_packet->completion_func(comp_packet->compl_ctxt,
2298						     response,
2299						     bytes_recvd);
2300			break;
2301
2302		case VM_PKT_DATA_INBAND:
2303
2304			new_message = (struct pci_incoming_message *)buffer;
2305			switch (new_message->message_type.type) {
2306			case PCI_BUS_RELATIONS:
2307
2308				bus_rel = (struct pci_bus_relations *)buffer;
2309				if (bytes_recvd <
2310				    offsetof(struct pci_bus_relations, func) +
2311				    (sizeof(struct pci_function_description) *
2312				     (bus_rel->device_count))) {
2313					dev_err(&hbus->hdev->device,
2314						"bus relations too small\n");
2315					break;
2316				}
2317
2318				hv_pci_devices_present(hbus, bus_rel);
2319				break;
2320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2321			case PCI_EJECT:
2322
2323				dev_message = (struct pci_dev_incoming *)buffer;
2324				hpdev = get_pcichild_wslot(hbus,
2325						      dev_message->wslot.slot);
2326				if (hpdev) {
2327					hv_pci_eject_device(hpdev);
2328					put_pcichild(hpdev);
2329				}
2330				break;
2331
2332			case PCI_INVALIDATE_BLOCK:
2333
2334				inval = (struct pci_dev_inval_block *)buffer;
2335				hpdev = get_pcichild_wslot(hbus,
2336							   inval->wslot.slot);
2337				if (hpdev) {
2338					if (hpdev->block_invalidate) {
2339						hpdev->block_invalidate(
2340						    hpdev->invalidate_context,
2341						    inval->block_mask);
2342					}
2343					put_pcichild(hpdev);
2344				}
2345				break;
2346
2347			default:
2348				dev_warn(&hbus->hdev->device,
2349					"Unimplemented protocol message %x\n",
2350					new_message->message_type.type);
2351				break;
2352			}
2353			break;
2354
2355		default:
2356			dev_err(&hbus->hdev->device,
2357				"unhandled packet type %d, tid %llx len %d\n",
2358				desc->type, req_id, bytes_recvd);
2359			break;
2360		}
2361	}
2362
2363	kfree(buffer);
2364}
2365
2366/**
2367 * hv_pci_protocol_negotiation() - Set up protocol
2368 * @hdev:	VMBus's tracking struct for this root PCI bus
 
 
 
2369 *
2370 * This driver is intended to support running on Windows 10
2371 * (server) and later versions. It will not run on earlier
2372 * versions, as they assume that many of the operations which
2373 * Linux needs accomplished with a spinlock held were done via
2374 * asynchronous messaging via VMBus.  Windows 10 increases the
2375 * surface area of PCI emulation so that these actions can take
2376 * place by suspending a virtual processor for their duration.
2377 *
2378 * This function negotiates the channel protocol version,
2379 * failing if the host doesn't support the necessary protocol
2380 * level.
2381 */
2382static int hv_pci_protocol_negotiation(struct hv_device *hdev)
 
 
2383{
 
2384	struct pci_version_request *version_req;
2385	struct hv_pci_compl comp_pkt;
2386	struct pci_packet *pkt;
2387	int ret;
2388	int i;
2389
2390	/*
2391	 * Initiate the handshake with the host and negotiate
2392	 * a version that the host can support. We start with the
2393	 * highest version number and go down if the host cannot
2394	 * support it.
2395	 */
2396	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2397	if (!pkt)
2398		return -ENOMEM;
2399
2400	init_completion(&comp_pkt.host_event);
2401	pkt->completion_func = hv_pci_generic_compl;
2402	pkt->compl_ctxt = &comp_pkt;
2403	version_req = (struct pci_version_request *)&pkt->message;
2404	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2405
2406	for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2407		version_req->protocol_version = pci_protocol_versions[i];
2408		ret = vmbus_sendpacket(hdev->channel, version_req,
2409				sizeof(struct pci_version_request),
2410				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2411				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2412		if (!ret)
2413			ret = wait_for_response(hdev, &comp_pkt.host_event);
2414
2415		if (ret) {
2416			dev_err(&hdev->device,
2417				"PCI Pass-through VSP failed to request version: %d",
2418				ret);
2419			goto exit;
2420		}
2421
2422		if (comp_pkt.completion_status >= 0) {
2423			pci_protocol_version = pci_protocol_versions[i];
2424			dev_info(&hdev->device,
2425				"PCI VMBus probing: Using version %#x\n",
2426				pci_protocol_version);
2427			goto exit;
2428		}
2429
2430		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2431			dev_err(&hdev->device,
2432				"PCI Pass-through VSP failed version request: %#x",
2433				comp_pkt.completion_status);
2434			ret = -EPROTO;
2435			goto exit;
2436		}
2437
2438		reinit_completion(&comp_pkt.host_event);
2439	}
2440
2441	dev_err(&hdev->device,
2442		"PCI pass-through VSP failed to find supported version");
2443	ret = -EPROTO;
2444
2445exit:
2446	kfree(pkt);
2447	return ret;
2448}
2449
2450/**
2451 * hv_pci_free_bridge_windows() - Release memory regions for the
2452 * bus
2453 * @hbus:	Root PCI bus, as understood by this driver
2454 */
2455static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2456{
2457	/*
2458	 * Set the resources back to the way they looked when they
2459	 * were allocated by setting IORESOURCE_BUSY again.
2460	 */
2461
2462	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2463		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2464		vmbus_free_mmio(hbus->low_mmio_res->start,
2465				resource_size(hbus->low_mmio_res));
2466	}
2467
2468	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2469		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2470		vmbus_free_mmio(hbus->high_mmio_res->start,
2471				resource_size(hbus->high_mmio_res));
2472	}
2473}
2474
2475/**
2476 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2477 * for the bus
2478 * @hbus:	Root PCI bus, as understood by this driver
2479 *
2480 * This function calls vmbus_allocate_mmio(), which is itself a
2481 * bit of a compromise.  Ideally, we might change the pnp layer
2482 * in the kernel such that it comprehends either PCI devices
2483 * which are "grandchildren of ACPI," with some intermediate bus
2484 * node (in this case, VMBus) or change it such that it
2485 * understands VMBus.  The pnp layer, however, has been declared
2486 * deprecated, and not subject to change.
2487 *
2488 * The workaround, implemented here, is to ask VMBus to allocate
2489 * MMIO space for this bus.  VMBus itself knows which ranges are
2490 * appropriate by looking at its own ACPI objects.  Then, after
2491 * these ranges are claimed, they're modified to look like they
2492 * would have looked if the ACPI and pnp code had allocated
2493 * bridge windows.  These descriptors have to exist in this form
2494 * in order to satisfy the code which will get invoked when the
2495 * endpoint PCI function driver calls request_mem_region() or
2496 * request_mem_region_exclusive().
2497 *
2498 * Return: 0 on success, -errno on failure
2499 */
2500static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2501{
2502	resource_size_t align;
2503	int ret;
2504
2505	if (hbus->low_mmio_space) {
2506		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2507		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2508					  (u64)(u32)0xffffffff,
2509					  hbus->low_mmio_space,
2510					  align, false);
2511		if (ret) {
2512			dev_err(&hbus->hdev->device,
2513				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2514				hbus->low_mmio_space);
2515			return ret;
2516		}
2517
2518		/* Modify this resource to become a bridge window. */
2519		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2520		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2521		pci_add_resource(&hbus->resources_for_children,
2522				 hbus->low_mmio_res);
2523	}
2524
2525	if (hbus->high_mmio_space) {
2526		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2527		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2528					  0x100000000, -1,
2529					  hbus->high_mmio_space, align,
2530					  false);
2531		if (ret) {
2532			dev_err(&hbus->hdev->device,
2533				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2534				hbus->high_mmio_space);
2535			goto release_low_mmio;
2536		}
2537
2538		/* Modify this resource to become a bridge window. */
2539		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2540		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2541		pci_add_resource(&hbus->resources_for_children,
2542				 hbus->high_mmio_res);
2543	}
2544
2545	return 0;
2546
2547release_low_mmio:
2548	if (hbus->low_mmio_res) {
2549		vmbus_free_mmio(hbus->low_mmio_res->start,
2550				resource_size(hbus->low_mmio_res));
2551	}
2552
2553	return ret;
2554}
2555
2556/**
2557 * hv_allocate_config_window() - Find MMIO space for PCI Config
2558 * @hbus:	Root PCI bus, as understood by this driver
2559 *
2560 * This function claims memory-mapped I/O space for accessing
2561 * configuration space for the functions on this bus.
2562 *
2563 * Return: 0 on success, -errno on failure
2564 */
2565static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2566{
2567	int ret;
2568
2569	/*
2570	 * Set up a region of MMIO space to use for accessing configuration
2571	 * space.
2572	 */
2573	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2574				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2575	if (ret)
2576		return ret;
2577
2578	/*
2579	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2580	 * resource claims (those which cannot be overlapped) and the ranges
2581	 * which are valid for the children of this bus, which are intended
2582	 * to be overlapped by those children.  Set the flag on this claim
2583	 * meaning that this region can't be overlapped.
2584	 */
2585
2586	hbus->mem_config->flags |= IORESOURCE_BUSY;
2587
2588	return 0;
2589}
2590
2591static void hv_free_config_window(struct hv_pcibus_device *hbus)
2592{
2593	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2594}
2595
 
 
2596/**
2597 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2598 * @hdev:	VMBus's tracking struct for this root PCI bus
2599 *
2600 * Return: 0 on success, -errno on failure
2601 */
2602static int hv_pci_enter_d0(struct hv_device *hdev)
2603{
2604	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2605	struct pci_bus_d0_entry *d0_entry;
2606	struct hv_pci_compl comp_pkt;
2607	struct pci_packet *pkt;
2608	int ret;
2609
2610	/*
2611	 * Tell the host that the bus is ready to use, and moved into the
2612	 * powered-on state.  This includes telling the host which region
2613	 * of memory-mapped I/O space has been chosen for configuration space
2614	 * access.
2615	 */
2616	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2617	if (!pkt)
2618		return -ENOMEM;
2619
2620	init_completion(&comp_pkt.host_event);
2621	pkt->completion_func = hv_pci_generic_compl;
2622	pkt->compl_ctxt = &comp_pkt;
2623	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2624	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2625	d0_entry->mmio_base = hbus->mem_config->start;
2626
2627	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2628			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2629			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2630	if (!ret)
2631		ret = wait_for_response(hdev, &comp_pkt.host_event);
2632
2633	if (ret)
2634		goto exit;
2635
2636	if (comp_pkt.completion_status < 0) {
2637		dev_err(&hdev->device,
2638			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2639			comp_pkt.completion_status);
2640		ret = -EPROTO;
2641		goto exit;
2642	}
2643
2644	ret = 0;
2645
2646exit:
2647	kfree(pkt);
2648	return ret;
2649}
2650
2651/**
2652 * hv_pci_query_relations() - Ask host to send list of child
2653 * devices
2654 * @hdev:	VMBus's tracking struct for this root PCI bus
2655 *
2656 * Return: 0 on success, -errno on failure
2657 */
2658static int hv_pci_query_relations(struct hv_device *hdev)
2659{
2660	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2661	struct pci_message message;
2662	struct completion comp;
2663	int ret;
2664
2665	/* Ask the host to send along the list of child devices */
2666	init_completion(&comp);
2667	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2668		return -ENOTEMPTY;
2669
2670	memset(&message, 0, sizeof(message));
2671	message.type = PCI_QUERY_BUS_RELATIONS;
2672
2673	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2674			       0, VM_PKT_DATA_INBAND, 0);
2675	if (!ret)
2676		ret = wait_for_response(hdev, &comp);
2677
2678	return ret;
2679}
2680
2681/**
2682 * hv_send_resources_allocated() - Report local resource choices
2683 * @hdev:	VMBus's tracking struct for this root PCI bus
2684 *
2685 * The host OS is expecting to be sent a request as a message
2686 * which contains all the resources that the device will use.
2687 * The response contains those same resources, "translated"
2688 * which is to say, the values which should be used by the
2689 * hardware, when it delivers an interrupt.  (MMIO resources are
2690 * used in local terms.)  This is nice for Windows, and lines up
2691 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2692 * is deeply expecting to scan an emulated PCI configuration
2693 * space.  So this message is sent here only to drive the state
2694 * machine on the host forward.
2695 *
2696 * Return: 0 on success, -errno on failure
2697 */
2698static int hv_send_resources_allocated(struct hv_device *hdev)
2699{
2700	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2701	struct pci_resources_assigned *res_assigned;
2702	struct pci_resources_assigned2 *res_assigned2;
2703	struct hv_pci_compl comp_pkt;
2704	struct hv_pci_dev *hpdev;
2705	struct pci_packet *pkt;
2706	size_t size_res;
2707	u32 wslot;
2708	int ret;
2709
2710	size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2711			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2712
2713	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2714	if (!pkt)
2715		return -ENOMEM;
2716
2717	ret = 0;
2718
2719	for (wslot = 0; wslot < 256; wslot++) {
2720		hpdev = get_pcichild_wslot(hbus, wslot);
2721		if (!hpdev)
2722			continue;
2723
2724		memset(pkt, 0, sizeof(*pkt) + size_res);
2725		init_completion(&comp_pkt.host_event);
2726		pkt->completion_func = hv_pci_generic_compl;
2727		pkt->compl_ctxt = &comp_pkt;
2728
2729		if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2730			res_assigned =
2731				(struct pci_resources_assigned *)&pkt->message;
2732			res_assigned->message_type.type =
2733				PCI_RESOURCES_ASSIGNED;
2734			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2735		} else {
2736			res_assigned2 =
2737				(struct pci_resources_assigned2 *)&pkt->message;
2738			res_assigned2->message_type.type =
2739				PCI_RESOURCES_ASSIGNED2;
2740			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2741		}
2742		put_pcichild(hpdev);
2743
2744		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2745				size_res, (unsigned long)pkt,
2746				VM_PKT_DATA_INBAND,
2747				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2748		if (!ret)
2749			ret = wait_for_response(hdev, &comp_pkt.host_event);
2750		if (ret)
2751			break;
2752
2753		if (comp_pkt.completion_status < 0) {
2754			ret = -EPROTO;
2755			dev_err(&hdev->device,
2756				"resource allocated returned 0x%x",
2757				comp_pkt.completion_status);
2758			break;
2759		}
 
 
2760	}
2761
2762	kfree(pkt);
2763	return ret;
2764}
2765
2766/**
2767 * hv_send_resources_released() - Report local resources
2768 * released
2769 * @hdev:	VMBus's tracking struct for this root PCI bus
2770 *
2771 * Return: 0 on success, -errno on failure
2772 */
2773static int hv_send_resources_released(struct hv_device *hdev)
2774{
2775	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2776	struct pci_child_message pkt;
2777	struct hv_pci_dev *hpdev;
2778	u32 wslot;
2779	int ret;
2780
2781	for (wslot = 0; wslot < 256; wslot++) {
2782		hpdev = get_pcichild_wslot(hbus, wslot);
2783		if (!hpdev)
2784			continue;
2785
2786		memset(&pkt, 0, sizeof(pkt));
2787		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2788		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2789
2790		put_pcichild(hpdev);
2791
2792		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2793				       VM_PKT_DATA_INBAND, 0);
2794		if (ret)
2795			return ret;
 
 
2796	}
2797
2798	return 0;
2799}
2800
2801static void get_hvpcibus(struct hv_pcibus_device *hbus)
2802{
2803	refcount_inc(&hbus->remove_lock);
2804}
2805
2806static void put_hvpcibus(struct hv_pcibus_device *hbus)
2807{
2808	if (refcount_dec_and_test(&hbus->remove_lock))
2809		complete(&hbus->remove_event);
2810}
2811
2812#define HVPCI_DOM_MAP_SIZE (64 * 1024)
2813static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2814
2815/*
2816 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2817 * as invalid for passthrough PCI devices of this driver.
2818 */
2819#define HVPCI_DOM_INVALID 0
2820
2821/**
2822 * hv_get_dom_num() - Get a valid PCI domain number
2823 * Check if the PCI domain number is in use, and return another number if
2824 * it is in use.
2825 *
2826 * @dom: Requested domain number
2827 *
2828 * return: domain number on success, HVPCI_DOM_INVALID on failure
2829 */
2830static u16 hv_get_dom_num(u16 dom)
2831{
2832	unsigned int i;
2833
2834	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
2835		return dom;
2836
2837	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
2838		if (test_and_set_bit(i, hvpci_dom_map) == 0)
2839			return i;
2840	}
2841
2842	return HVPCI_DOM_INVALID;
2843}
2844
2845/**
2846 * hv_put_dom_num() - Mark the PCI domain number as free
2847 * @dom: Domain number to be freed
2848 */
2849static void hv_put_dom_num(u16 dom)
2850{
2851	clear_bit(dom, hvpci_dom_map);
2852}
2853
2854/**
2855 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2856 * @hdev:	VMBus's tracking struct for this root PCI bus
2857 * @dev_id:	Identifies the device itself
2858 *
2859 * Return: 0 on success, -errno on failure
2860 */
2861static int hv_pci_probe(struct hv_device *hdev,
2862			const struct hv_vmbus_device_id *dev_id)
2863{
2864	struct hv_pcibus_device *hbus;
2865	u16 dom_req, dom;
2866	char *name;
 
2867	int ret;
2868
2869	/*
2870	 * hv_pcibus_device contains the hypercall arguments for retargeting in
2871	 * hv_irq_unmask(). Those must not cross a page boundary.
2872	 */
2873	BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2874
2875	hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2876	if (!hbus)
2877		return -ENOMEM;
2878	hbus->state = hv_pcibus_init;
 
2879
2880	/*
2881	 * The PCI bus "domain" is what is called "segment" in ACPI and other
2882	 * specs. Pull it from the instance ID, to get something usually
2883	 * unique. In rare cases of collision, we will find out another number
2884	 * not in use.
2885	 *
2886	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
2887	 * together with this guest driver can guarantee that (1) The only
2888	 * domain used by Gen1 VMs for something that looks like a physical
2889	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
2890	 * (2) There will be no overlap between domains (after fixing possible
2891	 * collisions) in the same VM.
2892	 */
2893	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
2894	dom = hv_get_dom_num(dom_req);
2895
2896	if (dom == HVPCI_DOM_INVALID) {
2897		dev_err(&hdev->device,
2898			"Unable to use dom# 0x%hx or other numbers", dom_req);
2899		ret = -EINVAL;
2900		goto free_bus;
2901	}
2902
2903	if (dom != dom_req)
2904		dev_info(&hdev->device,
2905			 "PCI dom# 0x%hx has collision, using 0x%hx",
2906			 dom_req, dom);
2907
2908	hbus->sysdata.domain = dom;
2909
2910	hbus->hdev = hdev;
2911	refcount_set(&hbus->remove_lock, 1);
2912	INIT_LIST_HEAD(&hbus->children);
2913	INIT_LIST_HEAD(&hbus->dr_list);
2914	INIT_LIST_HEAD(&hbus->resources_for_children);
2915	spin_lock_init(&hbus->config_lock);
2916	spin_lock_init(&hbus->device_list_lock);
2917	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2918	init_completion(&hbus->remove_event);
2919	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2920					   hbus->sysdata.domain);
2921	if (!hbus->wq) {
2922		ret = -ENOMEM;
2923		goto free_dom;
2924	}
2925
2926	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2927			 hv_pci_onchannelcallback, hbus);
2928	if (ret)
2929		goto destroy_wq;
2930
2931	hv_set_drvdata(hdev, hbus);
2932
2933	ret = hv_pci_protocol_negotiation(hdev);
 
2934	if (ret)
2935		goto close;
2936
2937	ret = hv_allocate_config_window(hbus);
2938	if (ret)
2939		goto close;
2940
2941	hbus->cfg_addr = ioremap(hbus->mem_config->start,
2942				 PCI_CONFIG_MMIO_LENGTH);
2943	if (!hbus->cfg_addr) {
2944		dev_err(&hdev->device,
2945			"Unable to map a virtual address for config space\n");
2946		ret = -ENOMEM;
2947		goto free_config;
2948	}
2949
2950	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
2951	if (!name) {
2952		ret = -ENOMEM;
2953		goto unmap;
2954	}
2955
2956	hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
2957	kfree(name);
2958	if (!hbus->sysdata.fwnode) {
2959		ret = -ENOMEM;
2960		goto unmap;
2961	}
2962
2963	ret = hv_pcie_init_irq_domain(hbus);
2964	if (ret)
2965		goto free_fwnode;
2966
 
2967	ret = hv_pci_query_relations(hdev);
2968	if (ret)
2969		goto free_irq_domain;
2970
2971	ret = hv_pci_enter_d0(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2972	if (ret)
2973		goto free_irq_domain;
2974
2975	ret = hv_pci_allocate_bridge_windows(hbus);
2976	if (ret)
2977		goto free_irq_domain;
2978
2979	ret = hv_send_resources_allocated(hdev);
2980	if (ret)
2981		goto free_windows;
2982
2983	prepopulate_bars(hbus);
2984
2985	hbus->state = hv_pcibus_probed;
2986
2987	ret = create_root_hv_pci_bus(hbus);
2988	if (ret)
2989		goto free_windows;
2990
2991	return 0;
2992
2993free_windows:
2994	hv_pci_free_bridge_windows(hbus);
 
 
2995free_irq_domain:
2996	irq_domain_remove(hbus->irq_domain);
2997free_fwnode:
2998	irq_domain_free_fwnode(hbus->sysdata.fwnode);
2999unmap:
3000	iounmap(hbus->cfg_addr);
3001free_config:
3002	hv_free_config_window(hbus);
3003close:
3004	vmbus_close(hdev->channel);
3005destroy_wq:
3006	destroy_workqueue(hbus->wq);
3007free_dom:
3008	hv_put_dom_num(hbus->sysdata.domain);
3009free_bus:
3010	free_page((unsigned long)hbus);
3011	return ret;
3012}
3013
3014static void hv_pci_bus_exit(struct hv_device *hdev)
3015{
3016	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3017	struct {
3018		struct pci_packet teardown_packet;
3019		u8 buffer[sizeof(struct pci_message)];
3020	} pkt;
3021	struct pci_bus_relations relations;
3022	struct hv_pci_compl comp_pkt;
 
 
3023	int ret;
3024
3025	/*
3026	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3027	 * access the per-channel ringbuffer any longer.
3028	 */
3029	if (hdev->channel->rescind)
3030		return;
3031
3032	/* Delete any children which might still exist. */
3033	memset(&relations, 0, sizeof(relations));
3034	hv_pci_devices_present(hbus, &relations);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035
3036	ret = hv_send_resources_released(hdev);
3037	if (ret)
3038		dev_err(&hdev->device,
3039			"Couldn't send resources released packet(s)\n");
 
 
3040
3041	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3042	init_completion(&comp_pkt.host_event);
3043	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3044	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3045	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3046
3047	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3048			       sizeof(struct pci_message),
3049			       (unsigned long)&pkt.teardown_packet,
3050			       VM_PKT_DATA_INBAND,
3051			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3052	if (!ret)
3053		wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
 
 
 
 
 
3054}
3055
3056/**
3057 * hv_pci_remove() - Remove routine for this VMBus channel
3058 * @hdev:	VMBus's tracking struct for this root PCI bus
3059 *
3060 * Return: 0 on success, -errno on failure
3061 */
3062static int hv_pci_remove(struct hv_device *hdev)
3063{
3064	struct hv_pcibus_device *hbus;
 
3065
3066	hbus = hv_get_drvdata(hdev);
3067	if (hbus->state == hv_pcibus_installed) {
 
 
 
 
 
 
 
 
 
 
 
3068		/* Remove the bus from PCI's point of view. */
3069		pci_lock_rescan_remove();
3070		pci_stop_root_bus(hbus->pci_bus);
3071		hv_pci_remove_slots(hbus);
3072		pci_remove_root_bus(hbus->pci_bus);
3073		pci_unlock_rescan_remove();
3074		hbus->state = hv_pcibus_removed;
3075	}
3076
3077	hv_pci_bus_exit(hdev);
3078
3079	vmbus_close(hdev->channel);
3080
3081	iounmap(hbus->cfg_addr);
3082	hv_free_config_window(hbus);
3083	pci_free_resource_list(&hbus->resources_for_children);
3084	hv_pci_free_bridge_windows(hbus);
3085	irq_domain_remove(hbus->irq_domain);
3086	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3087	put_hvpcibus(hbus);
3088	wait_for_completion(&hbus->remove_event);
3089	destroy_workqueue(hbus->wq);
3090
3091	hv_put_dom_num(hbus->sysdata.domain);
3092
3093	free_page((unsigned long)hbus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3094	return 0;
 
 
 
3095}
3096
3097static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3098	/* PCI Pass-through Class ID */
3099	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3100	{ HV_PCIE_GUID, },
3101	{ },
3102};
3103
3104MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3105
3106static struct hv_driver hv_pci_drv = {
3107	.name		= "hv_pci",
3108	.id_table	= hv_pci_id_table,
3109	.probe		= hv_pci_probe,
3110	.remove		= hv_pci_remove,
 
 
3111};
3112
3113static void __exit exit_hv_pci_drv(void)
3114{
3115	vmbus_driver_unregister(&hv_pci_drv);
3116
3117	hvpci_block_ops.read_block = NULL;
3118	hvpci_block_ops.write_block = NULL;
3119	hvpci_block_ops.reg_blk_invalidate = NULL;
3120}
3121
3122static int __init init_hv_pci_drv(void)
3123{
 
 
 
3124	/* Set the invalid domain number's bit, so it will not be used */
3125	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3126
3127	/* Initialize PCI block r/w interface */
3128	hvpci_block_ops.read_block = hv_read_config_block;
3129	hvpci_block_ops.write_block = hv_write_config_block;
3130	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3131
3132	return vmbus_driver_register(&hv_pci_drv);
3133}
3134
3135module_init(init_hv_pci_drv);
3136module_exit(exit_hv_pci_drv);
3137
3138MODULE_DESCRIPTION("Hyper-V PCI");
3139MODULE_LICENSE("GPL v2");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) Microsoft Corporation.
   4 *
   5 * Author:
   6 *   Jake Oshins <jakeo@microsoft.com>
   7 *
   8 * This driver acts as a paravirtual front-end for PCI Express root buses.
   9 * When a PCI Express function (either an entire device or an SR-IOV
  10 * Virtual Function) is being passed through to the VM, this driver exposes
  11 * a new bus to the guest VM.  This is modeled as a root PCI bus because
  12 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
  13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
  14 * until a device as been exposed using this driver.
  15 *
  16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
  17 * the PCI Firmware Specifications.  Thus while each device passed through
  18 * to the VM using this front-end will appear at "device 0", the domain will
  19 * be unique.  Typically, each bus will have one PCI function on it, though
  20 * this driver does support more than one.
  21 *
  22 * In order to map the interrupts from the device through to the guest VM,
  23 * this driver also implements an IRQ Domain, which handles interrupts (either
  24 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
  25 * set up, torn down, or reaffined, this driver communicates with the
  26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
  27 * interrupt will be delivered to the correct virtual processor at the right
  28 * vector.  This driver does not support level-triggered (line-based)
  29 * interrupts, and will report that the Interrupt Line register in the
  30 * function's configuration space is zero.
  31 *
  32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
  33 * facilities.  For instance, the configuration space of a function exposed
  34 * by Hyper-V is mapped into a single page of memory space, and the
  35 * read and write handlers for config space must be aware of this mechanism.
  36 * Similarly, device setup and teardown involves messages sent to and from
  37 * the PCI back-end driver in Hyper-V.
  38 */
  39
  40#include <linux/kernel.h>
  41#include <linux/module.h>
  42#include <linux/pci.h>
  43#include <linux/delay.h>
  44#include <linux/semaphore.h>
  45#include <linux/irqdomain.h>
  46#include <asm/irqdomain.h>
  47#include <asm/apic.h>
  48#include <linux/irq.h>
  49#include <linux/msi.h>
  50#include <linux/hyperv.h>
  51#include <linux/refcount.h>
  52#include <asm/mshyperv.h>
  53
  54/*
  55 * Protocol versions. The low word is the minor version, the high word the
  56 * major version.
  57 */
  58
  59#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
  60#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
  61#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
  62
  63enum pci_protocol_version_t {
  64	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
  65	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
  66	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
  67};
  68
  69#define CPU_AFFINITY_ALL	-1ULL
  70
  71/*
  72 * Supported protocol versions in the order of probing - highest go
  73 * first.
  74 */
  75static enum pci_protocol_version_t pci_protocol_versions[] = {
  76	PCI_PROTOCOL_VERSION_1_3,
  77	PCI_PROTOCOL_VERSION_1_2,
  78	PCI_PROTOCOL_VERSION_1_1,
  79};
  80
 
 
 
 
 
  81#define PCI_CONFIG_MMIO_LENGTH	0x2000
  82#define CFG_PAGE_OFFSET 0x1000
  83#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
  84
  85#define MAX_SUPPORTED_MSI_MESSAGES 0x400
  86
  87#define STATUS_REVISION_MISMATCH 0xC0000059
  88
  89/* space for 32bit serial number as string */
  90#define SLOT_NAME_SIZE 11
  91
  92/*
  93 * Message Types
  94 */
  95
  96enum pci_message_type {
  97	/*
  98	 * Version 1.1
  99	 */
 100	PCI_MESSAGE_BASE                = 0x42490000,
 101	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
 102	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
 103	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
 104	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
 105	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
 106	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
 107	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
 108	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
 109	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
 110	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
 111	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
 112	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
 113	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
 114	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
 115	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
 116	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
 117	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
 118	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
 119	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
 120	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
 121	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
 122	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
 123	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
 124	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
 125	PCI_MESSAGE_MAXIMUM
 126};
 127
 128/*
 129 * Structures defining the virtual PCI Express protocol.
 130 */
 131
 132union pci_version {
 133	struct {
 134		u16 minor_version;
 135		u16 major_version;
 136	} parts;
 137	u32 version;
 138} __packed;
 139
 140/*
 141 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 142 * which is all this driver does.  This representation is the one used in
 143 * Windows, which is what is expected when sending this back and forth with
 144 * the Hyper-V parent partition.
 145 */
 146union win_slot_encoding {
 147	struct {
 148		u32	dev:5;
 149		u32	func:3;
 150		u32	reserved:24;
 151	} bits;
 152	u32 slot;
 153} __packed;
 154
 155/*
 156 * Pretty much as defined in the PCI Specifications.
 157 */
 158struct pci_function_description {
 159	u16	v_id;	/* vendor ID */
 160	u16	d_id;	/* device ID */
 161	u8	rev;
 162	u8	prog_intf;
 163	u8	subclass;
 164	u8	base_class;
 165	u32	subsystem_id;
 166	union win_slot_encoding win_slot;
 167	u32	ser;	/* serial number */
 168} __packed;
 169
 170enum pci_device_description_flags {
 171	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
 172	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
 173};
 174
 175struct pci_function_description2 {
 176	u16	v_id;	/* vendor ID */
 177	u16	d_id;	/* device ID */
 178	u8	rev;
 179	u8	prog_intf;
 180	u8	subclass;
 181	u8	base_class;
 182	u32	subsystem_id;
 183	union	win_slot_encoding win_slot;
 184	u32	ser;	/* serial number */
 185	u32	flags;
 186	u16	virtual_numa_node;
 187	u16	reserved;
 188} __packed;
 189
 190/**
 191 * struct hv_msi_desc
 192 * @vector:		IDT entry
 193 * @delivery_mode:	As defined in Intel's Programmer's
 194 *			Reference Manual, Volume 3, Chapter 8.
 195 * @vector_count:	Number of contiguous entries in the
 196 *			Interrupt Descriptor Table that are
 197 *			occupied by this Message-Signaled
 198 *			Interrupt. For "MSI", as first defined
 199 *			in PCI 2.2, this can be between 1 and
 200 *			32. For "MSI-X," as first defined in PCI
 201 *			3.0, this must be 1, as each MSI-X table
 202 *			entry would have its own descriptor.
 203 * @reserved:		Empty space
 204 * @cpu_mask:		All the target virtual processors.
 205 */
 206struct hv_msi_desc {
 207	u8	vector;
 208	u8	delivery_mode;
 209	u16	vector_count;
 210	u32	reserved;
 211	u64	cpu_mask;
 212} __packed;
 213
 214/**
 215 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 216 * @vector:		IDT entry
 217 * @delivery_mode:	As defined in Intel's Programmer's
 218 *			Reference Manual, Volume 3, Chapter 8.
 219 * @vector_count:	Number of contiguous entries in the
 220 *			Interrupt Descriptor Table that are
 221 *			occupied by this Message-Signaled
 222 *			Interrupt. For "MSI", as first defined
 223 *			in PCI 2.2, this can be between 1 and
 224 *			32. For "MSI-X," as first defined in PCI
 225 *			3.0, this must be 1, as each MSI-X table
 226 *			entry would have its own descriptor.
 227 * @processor_count:	number of bits enabled in array.
 228 * @processor_array:	All the target virtual processors.
 229 */
 230struct hv_msi_desc2 {
 231	u8	vector;
 232	u8	delivery_mode;
 233	u16	vector_count;
 234	u16	processor_count;
 235	u16	processor_array[32];
 236} __packed;
 237
 238/**
 239 * struct tran_int_desc
 240 * @reserved:		unused, padding
 241 * @vector_count:	same as in hv_msi_desc
 242 * @data:		This is the "data payload" value that is
 243 *			written by the device when it generates
 244 *			a message-signaled interrupt, either MSI
 245 *			or MSI-X.
 246 * @address:		This is the address to which the data
 247 *			payload is written on interrupt
 248 *			generation.
 249 */
 250struct tran_int_desc {
 251	u16	reserved;
 252	u16	vector_count;
 253	u32	data;
 254	u64	address;
 255} __packed;
 256
 257/*
 258 * A generic message format for virtual PCI.
 259 * Specific message formats are defined later in the file.
 260 */
 261
 262struct pci_message {
 263	u32 type;
 264} __packed;
 265
 266struct pci_child_message {
 267	struct pci_message message_type;
 268	union win_slot_encoding wslot;
 269} __packed;
 270
 271struct pci_incoming_message {
 272	struct vmpacket_descriptor hdr;
 273	struct pci_message message_type;
 274} __packed;
 275
 276struct pci_response {
 277	struct vmpacket_descriptor hdr;
 278	s32 status;			/* negative values are failures */
 279} __packed;
 280
 281struct pci_packet {
 282	void (*completion_func)(void *context, struct pci_response *resp,
 283				int resp_packet_size);
 284	void *compl_ctxt;
 285
 286	struct pci_message message[];
 287};
 288
 289/*
 290 * Specific message types supporting the PCI protocol.
 291 */
 292
 293/*
 294 * Version negotiation message. Sent from the guest to the host.
 295 * The guest is free to try different versions until the host
 296 * accepts the version.
 297 *
 298 * pci_version: The protocol version requested.
 299 * is_last_attempt: If TRUE, this is the last version guest will request.
 300 * reservedz: Reserved field, set to zero.
 301 */
 302
 303struct pci_version_request {
 304	struct pci_message message_type;
 305	u32 protocol_version;
 306} __packed;
 307
 308/*
 309 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 310 * bus (PCI Express port) is ready for action.
 311 */
 312
 313struct pci_bus_d0_entry {
 314	struct pci_message message_type;
 315	u32 reserved;
 316	u64 mmio_base;
 317} __packed;
 318
 319struct pci_bus_relations {
 320	struct pci_incoming_message incoming;
 321	u32 device_count;
 322	struct pci_function_description func[];
 323} __packed;
 324
 325struct pci_bus_relations2 {
 326	struct pci_incoming_message incoming;
 327	u32 device_count;
 328	struct pci_function_description2 func[];
 329} __packed;
 330
 331struct pci_q_res_req_response {
 332	struct vmpacket_descriptor hdr;
 333	s32 status;			/* negative values are failures */
 334	u32 probed_bar[PCI_STD_NUM_BARS];
 335} __packed;
 336
 337struct pci_set_power {
 338	struct pci_message message_type;
 339	union win_slot_encoding wslot;
 340	u32 power_state;		/* In Windows terms */
 341	u32 reserved;
 342} __packed;
 343
 344struct pci_set_power_response {
 345	struct vmpacket_descriptor hdr;
 346	s32 status;			/* negative values are failures */
 347	union win_slot_encoding wslot;
 348	u32 resultant_state;		/* In Windows terms */
 349	u32 reserved;
 350} __packed;
 351
 352struct pci_resources_assigned {
 353	struct pci_message message_type;
 354	union win_slot_encoding wslot;
 355	u8 memory_range[0x14][6];	/* not used here */
 356	u32 msi_descriptors;
 357	u32 reserved[4];
 358} __packed;
 359
 360struct pci_resources_assigned2 {
 361	struct pci_message message_type;
 362	union win_slot_encoding wslot;
 363	u8 memory_range[0x14][6];	/* not used here */
 364	u32 msi_descriptor_count;
 365	u8 reserved[70];
 366} __packed;
 367
 368struct pci_create_interrupt {
 369	struct pci_message message_type;
 370	union win_slot_encoding wslot;
 371	struct hv_msi_desc int_desc;
 372} __packed;
 373
 374struct pci_create_int_response {
 375	struct pci_response response;
 376	u32 reserved;
 377	struct tran_int_desc int_desc;
 378} __packed;
 379
 380struct pci_create_interrupt2 {
 381	struct pci_message message_type;
 382	union win_slot_encoding wslot;
 383	struct hv_msi_desc2 int_desc;
 384} __packed;
 385
 386struct pci_delete_interrupt {
 387	struct pci_message message_type;
 388	union win_slot_encoding wslot;
 389	struct tran_int_desc int_desc;
 390} __packed;
 391
 392/*
 393 * Note: the VM must pass a valid block id, wslot and bytes_requested.
 394 */
 395struct pci_read_block {
 396	struct pci_message message_type;
 397	u32 block_id;
 398	union win_slot_encoding wslot;
 399	u32 bytes_requested;
 400} __packed;
 401
 402struct pci_read_block_response {
 403	struct vmpacket_descriptor hdr;
 404	u32 status;
 405	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 406} __packed;
 407
 408/*
 409 * Note: the VM must pass a valid block id, wslot and byte_count.
 410 */
 411struct pci_write_block {
 412	struct pci_message message_type;
 413	u32 block_id;
 414	union win_slot_encoding wslot;
 415	u32 byte_count;
 416	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 417} __packed;
 418
 419struct pci_dev_inval_block {
 420	struct pci_incoming_message incoming;
 421	union win_slot_encoding wslot;
 422	u64 block_mask;
 423} __packed;
 424
 425struct pci_dev_incoming {
 426	struct pci_incoming_message incoming;
 427	union win_slot_encoding wslot;
 428} __packed;
 429
 430struct pci_eject_response {
 431	struct pci_message message_type;
 432	union win_slot_encoding wslot;
 433	u32 status;
 434} __packed;
 435
 436static int pci_ring_size = (4 * PAGE_SIZE);
 437
 438/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439 * Driver specific state.
 440 */
 441
 442enum hv_pcibus_state {
 443	hv_pcibus_init = 0,
 444	hv_pcibus_probed,
 445	hv_pcibus_installed,
 446	hv_pcibus_removing,
 447	hv_pcibus_maximum
 448};
 449
 450struct hv_pcibus_device {
 451	struct pci_sysdata sysdata;
 452	/* Protocol version negotiated with the host */
 453	enum pci_protocol_version_t protocol_version;
 454	enum hv_pcibus_state state;
 
 455	struct hv_device *hdev;
 456	resource_size_t low_mmio_space;
 457	resource_size_t high_mmio_space;
 458	struct resource *mem_config;
 459	struct resource *low_mmio_res;
 460	struct resource *high_mmio_res;
 461	struct completion *survey_event;
 
 462	struct pci_bus *pci_bus;
 463	spinlock_t config_lock;	/* Avoid two threads writing index page */
 464	spinlock_t device_list_lock;	/* Protect lists below */
 465	void __iomem *cfg_addr;
 466
 467	struct list_head resources_for_children;
 468
 469	struct list_head children;
 470	struct list_head dr_list;
 471
 472	struct msi_domain_info msi_info;
 
 473	struct irq_domain *irq_domain;
 474
 475	spinlock_t retarget_msi_interrupt_lock;
 476
 477	struct workqueue_struct *wq;
 478
 479	/* Highest slot of child device with resources allocated */
 480	int wslot_res_allocated;
 481
 482	/* hypercall arg, must not cross page boundary */
 483	struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
 484
 485	/*
 486	 * Don't put anything here: retarget_msi_interrupt_params must be last
 487	 */
 488};
 489
 490/*
 491 * Tracks "Device Relations" messages from the host, which must be both
 492 * processed in order and deferred so that they don't run in the context
 493 * of the incoming packet callback.
 494 */
 495struct hv_dr_work {
 496	struct work_struct wrk;
 497	struct hv_pcibus_device *bus;
 498};
 499
 500struct hv_pcidev_description {
 501	u16	v_id;	/* vendor ID */
 502	u16	d_id;	/* device ID */
 503	u8	rev;
 504	u8	prog_intf;
 505	u8	subclass;
 506	u8	base_class;
 507	u32	subsystem_id;
 508	union	win_slot_encoding win_slot;
 509	u32	ser;	/* serial number */
 510	u32	flags;
 511	u16	virtual_numa_node;
 512};
 513
 514struct hv_dr_state {
 515	struct list_head list_entry;
 516	u32 device_count;
 517	struct hv_pcidev_description func[];
 518};
 519
 520enum hv_pcichild_state {
 521	hv_pcichild_init = 0,
 522	hv_pcichild_requirements,
 523	hv_pcichild_resourced,
 524	hv_pcichild_ejecting,
 525	hv_pcichild_maximum
 526};
 527
 528struct hv_pci_dev {
 529	/* List protected by pci_rescan_remove_lock */
 530	struct list_head list_entry;
 531	refcount_t refs;
 532	enum hv_pcichild_state state;
 533	struct pci_slot *pci_slot;
 534	struct hv_pcidev_description desc;
 535	bool reported_missing;
 536	struct hv_pcibus_device *hbus;
 537	struct work_struct wrk;
 538
 539	void (*block_invalidate)(void *context, u64 block_mask);
 540	void *invalidate_context;
 541
 542	/*
 543	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
 544	 * read it back, for each of the BAR offsets within config space.
 545	 */
 546	u32 probed_bar[PCI_STD_NUM_BARS];
 547};
 548
 549struct hv_pci_compl {
 550	struct completion host_event;
 551	s32 completion_status;
 552};
 553
 554static void hv_pci_onchannelcallback(void *context);
 555
 556/**
 557 * hv_pci_generic_compl() - Invoked for a completion packet
 558 * @context:		Set up by the sender of the packet.
 559 * @resp:		The response packet
 560 * @resp_packet_size:	Size in bytes of the packet
 561 *
 562 * This function is used to trigger an event and report status
 563 * for any message for which the completion packet contains a
 564 * status and nothing else.
 565 */
 566static void hv_pci_generic_compl(void *context, struct pci_response *resp,
 567				 int resp_packet_size)
 568{
 569	struct hv_pci_compl *comp_pkt = context;
 570
 571	if (resp_packet_size >= offsetofend(struct pci_response, status))
 572		comp_pkt->completion_status = resp->status;
 573	else
 574		comp_pkt->completion_status = -1;
 575
 576	complete(&comp_pkt->host_event);
 577}
 578
 579static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
 580						u32 wslot);
 581
 582static void get_pcichild(struct hv_pci_dev *hpdev)
 583{
 584	refcount_inc(&hpdev->refs);
 585}
 586
 587static void put_pcichild(struct hv_pci_dev *hpdev)
 588{
 589	if (refcount_dec_and_test(&hpdev->refs))
 590		kfree(hpdev);
 591}
 592
 
 
 
 593/*
 594 * There is no good way to get notified from vmbus_onoffer_rescind(),
 595 * so let's use polling here, since this is not a hot path.
 596 */
 597static int wait_for_response(struct hv_device *hdev,
 598			     struct completion *comp)
 599{
 600	while (true) {
 601		if (hdev->channel->rescind) {
 602			dev_warn_once(&hdev->device, "The device is gone.\n");
 603			return -ENODEV;
 604		}
 605
 606		if (wait_for_completion_timeout(comp, HZ / 10))
 607			break;
 608	}
 609
 610	return 0;
 611}
 612
 613/**
 614 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
 615 * @devfn:	The Linux representation of PCI slot
 616 *
 617 * Windows uses a slightly different representation of PCI slot.
 618 *
 619 * Return: The Windows representation
 620 */
 621static u32 devfn_to_wslot(int devfn)
 622{
 623	union win_slot_encoding wslot;
 624
 625	wslot.slot = 0;
 626	wslot.bits.dev = PCI_SLOT(devfn);
 627	wslot.bits.func = PCI_FUNC(devfn);
 628
 629	return wslot.slot;
 630}
 631
 632/**
 633 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
 634 * @wslot:	The Windows representation of PCI slot
 635 *
 636 * Windows uses a slightly different representation of PCI slot.
 637 *
 638 * Return: The Linux representation
 639 */
 640static int wslot_to_devfn(u32 wslot)
 641{
 642	union win_slot_encoding slot_no;
 643
 644	slot_no.slot = wslot;
 645	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
 646}
 647
 648/*
 649 * PCI Configuration Space for these root PCI buses is implemented as a pair
 650 * of pages in memory-mapped I/O space.  Writing to the first page chooses
 651 * the PCI function being written or read.  Once the first page has been
 652 * written to, the following page maps in the entire configuration space of
 653 * the function.
 654 */
 655
 656/**
 657 * _hv_pcifront_read_config() - Internal PCI config read
 658 * @hpdev:	The PCI driver's representation of the device
 659 * @where:	Offset within config space
 660 * @size:	Size of the transfer
 661 * @val:	Pointer to the buffer receiving the data
 662 */
 663static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
 664				     int size, u32 *val)
 665{
 666	unsigned long flags;
 667	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 668
 669	/*
 670	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
 671	 */
 672	if (where + size <= PCI_COMMAND) {
 673		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
 674	} else if (where >= PCI_CLASS_REVISION && where + size <=
 675		   PCI_CACHE_LINE_SIZE) {
 676		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
 677		       PCI_CLASS_REVISION, size);
 678	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
 679		   PCI_ROM_ADDRESS) {
 680		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
 681		       PCI_SUBSYSTEM_VENDOR_ID, size);
 682	} else if (where >= PCI_ROM_ADDRESS && where + size <=
 683		   PCI_CAPABILITY_LIST) {
 684		/* ROM BARs are unimplemented */
 685		*val = 0;
 686	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
 687		   PCI_INTERRUPT_PIN) {
 688		/*
 689		 * Interrupt Line and Interrupt PIN are hard-wired to zero
 690		 * because this front-end only supports message-signaled
 691		 * interrupts.
 692		 */
 693		*val = 0;
 694	} else if (where + size <= CFG_PAGE_SIZE) {
 695		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 696		/* Choose the function to be read. (See comment above) */
 697		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 698		/* Make sure the function was chosen before we start reading. */
 699		mb();
 700		/* Read from that function's config space. */
 701		switch (size) {
 702		case 1:
 703			*val = readb(addr);
 704			break;
 705		case 2:
 706			*val = readw(addr);
 707			break;
 708		default:
 709			*val = readl(addr);
 710			break;
 711		}
 712		/*
 713		 * Make sure the read was done before we release the spinlock
 714		 * allowing consecutive reads/writes.
 715		 */
 716		mb();
 717		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 718	} else {
 719		dev_err(&hpdev->hbus->hdev->device,
 720			"Attempt to read beyond a function's config space.\n");
 721	}
 722}
 723
 724static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
 725{
 726	u16 ret;
 727	unsigned long flags;
 728	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
 729			     PCI_VENDOR_ID;
 730
 731	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 732
 733	/* Choose the function to be read. (See comment above) */
 734	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 735	/* Make sure the function was chosen before we start reading. */
 736	mb();
 737	/* Read from that function's config space. */
 738	ret = readw(addr);
 739	/*
 740	 * mb() is not required here, because the spin_unlock_irqrestore()
 741	 * is a barrier.
 742	 */
 743
 744	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 745
 746	return ret;
 747}
 748
 749/**
 750 * _hv_pcifront_write_config() - Internal PCI config write
 751 * @hpdev:	The PCI driver's representation of the device
 752 * @where:	Offset within config space
 753 * @size:	Size of the transfer
 754 * @val:	The data being transferred
 755 */
 756static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
 757				      int size, u32 val)
 758{
 759	unsigned long flags;
 760	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 761
 762	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
 763	    where + size <= PCI_CAPABILITY_LIST) {
 764		/* SSIDs and ROM BARs are read-only */
 765	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
 766		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 767		/* Choose the function to be written. (See comment above) */
 768		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 769		/* Make sure the function was chosen before we start writing. */
 770		wmb();
 771		/* Write to that function's config space. */
 772		switch (size) {
 773		case 1:
 774			writeb(val, addr);
 775			break;
 776		case 2:
 777			writew(val, addr);
 778			break;
 779		default:
 780			writel(val, addr);
 781			break;
 782		}
 783		/*
 784		 * Make sure the write was done before we release the spinlock
 785		 * allowing consecutive reads/writes.
 786		 */
 787		mb();
 788		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 789	} else {
 790		dev_err(&hpdev->hbus->hdev->device,
 791			"Attempt to write beyond a function's config space.\n");
 792	}
 793}
 794
 795/**
 796 * hv_pcifront_read_config() - Read configuration space
 797 * @bus: PCI Bus structure
 798 * @devfn: Device/function
 799 * @where: Offset from base
 800 * @size: Byte/word/dword
 801 * @val: Value to be read
 802 *
 803 * Return: PCIBIOS_SUCCESSFUL on success
 804 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 805 */
 806static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
 807				   int where, int size, u32 *val)
 808{
 809	struct hv_pcibus_device *hbus =
 810		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 811	struct hv_pci_dev *hpdev;
 812
 813	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 814	if (!hpdev)
 815		return PCIBIOS_DEVICE_NOT_FOUND;
 816
 817	_hv_pcifront_read_config(hpdev, where, size, val);
 818
 819	put_pcichild(hpdev);
 820	return PCIBIOS_SUCCESSFUL;
 821}
 822
 823/**
 824 * hv_pcifront_write_config() - Write configuration space
 825 * @bus: PCI Bus structure
 826 * @devfn: Device/function
 827 * @where: Offset from base
 828 * @size: Byte/word/dword
 829 * @val: Value to be written to device
 830 *
 831 * Return: PCIBIOS_SUCCESSFUL on success
 832 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 833 */
 834static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
 835				    int where, int size, u32 val)
 836{
 837	struct hv_pcibus_device *hbus =
 838	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 839	struct hv_pci_dev *hpdev;
 840
 841	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 842	if (!hpdev)
 843		return PCIBIOS_DEVICE_NOT_FOUND;
 844
 845	_hv_pcifront_write_config(hpdev, where, size, val);
 846
 847	put_pcichild(hpdev);
 848	return PCIBIOS_SUCCESSFUL;
 849}
 850
 851/* PCIe operations */
 852static struct pci_ops hv_pcifront_ops = {
 853	.read  = hv_pcifront_read_config,
 854	.write = hv_pcifront_write_config,
 855};
 856
 857/*
 858 * Paravirtual backchannel
 859 *
 860 * Hyper-V SR-IOV provides a backchannel mechanism in software for
 861 * communication between a VF driver and a PF driver.  These
 862 * "configuration blocks" are similar in concept to PCI configuration space,
 863 * but instead of doing reads and writes in 32-bit chunks through a very slow
 864 * path, packets of up to 128 bytes can be sent or received asynchronously.
 865 *
 866 * Nearly every SR-IOV device contains just such a communications channel in
 867 * hardware, so using this one in software is usually optional.  Using the
 868 * software channel, however, allows driver implementers to leverage software
 869 * tools that fuzz the communications channel looking for vulnerabilities.
 870 *
 871 * The usage model for these packets puts the responsibility for reading or
 872 * writing on the VF driver.  The VF driver sends a read or a write packet,
 873 * indicating which "block" is being referred to by number.
 874 *
 875 * If the PF driver wishes to initiate communication, it can "invalidate" one or
 876 * more of the first 64 blocks.  This invalidation is delivered via a callback
 877 * supplied by the VF driver by this driver.
 878 *
 879 * No protocol is implied, except that supplied by the PF and VF drivers.
 880 */
 881
 882struct hv_read_config_compl {
 883	struct hv_pci_compl comp_pkt;
 884	void *buf;
 885	unsigned int len;
 886	unsigned int bytes_returned;
 887};
 888
 889/**
 890 * hv_pci_read_config_compl() - Invoked when a response packet
 891 * for a read config block operation arrives.
 892 * @context:		Identifies the read config operation
 893 * @resp:		The response packet itself
 894 * @resp_packet_size:	Size in bytes of the response packet
 895 */
 896static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
 897				     int resp_packet_size)
 898{
 899	struct hv_read_config_compl *comp = context;
 900	struct pci_read_block_response *read_resp =
 901		(struct pci_read_block_response *)resp;
 902	unsigned int data_len, hdr_len;
 903
 904	hdr_len = offsetof(struct pci_read_block_response, bytes);
 905	if (resp_packet_size < hdr_len) {
 906		comp->comp_pkt.completion_status = -1;
 907		goto out;
 908	}
 909
 910	data_len = resp_packet_size - hdr_len;
 911	if (data_len > 0 && read_resp->status == 0) {
 912		comp->bytes_returned = min(comp->len, data_len);
 913		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
 914	} else {
 915		comp->bytes_returned = 0;
 916	}
 917
 918	comp->comp_pkt.completion_status = read_resp->status;
 919out:
 920	complete(&comp->comp_pkt.host_event);
 921}
 922
 923/**
 924 * hv_read_config_block() - Sends a read config block request to
 925 * the back-end driver running in the Hyper-V parent partition.
 926 * @pdev:		The PCI driver's representation for this device.
 927 * @buf:		Buffer into which the config block will be copied.
 928 * @len:		Size in bytes of buf.
 929 * @block_id:		Identifies the config block which has been requested.
 930 * @bytes_returned:	Size which came back from the back-end driver.
 931 *
 932 * Return: 0 on success, -errno on failure
 933 */
 934static int hv_read_config_block(struct pci_dev *pdev, void *buf,
 935				unsigned int len, unsigned int block_id,
 936				unsigned int *bytes_returned)
 937{
 938	struct hv_pcibus_device *hbus =
 939		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
 940			     sysdata);
 941	struct {
 942		struct pci_packet pkt;
 943		char buf[sizeof(struct pci_read_block)];
 944	} pkt;
 945	struct hv_read_config_compl comp_pkt;
 946	struct pci_read_block *read_blk;
 947	int ret;
 948
 949	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
 950		return -EINVAL;
 951
 952	init_completion(&comp_pkt.comp_pkt.host_event);
 953	comp_pkt.buf = buf;
 954	comp_pkt.len = len;
 955
 956	memset(&pkt, 0, sizeof(pkt));
 957	pkt.pkt.completion_func = hv_pci_read_config_compl;
 958	pkt.pkt.compl_ctxt = &comp_pkt;
 959	read_blk = (struct pci_read_block *)&pkt.pkt.message;
 960	read_blk->message_type.type = PCI_READ_BLOCK;
 961	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
 962	read_blk->block_id = block_id;
 963	read_blk->bytes_requested = len;
 964
 965	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
 966			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
 967			       VM_PKT_DATA_INBAND,
 968			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
 969	if (ret)
 970		return ret;
 971
 972	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
 973	if (ret)
 974		return ret;
 975
 976	if (comp_pkt.comp_pkt.completion_status != 0 ||
 977	    comp_pkt.bytes_returned == 0) {
 978		dev_err(&hbus->hdev->device,
 979			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
 980			comp_pkt.comp_pkt.completion_status,
 981			comp_pkt.bytes_returned);
 982		return -EIO;
 983	}
 984
 985	*bytes_returned = comp_pkt.bytes_returned;
 986	return 0;
 987}
 988
 989/**
 990 * hv_pci_write_config_compl() - Invoked when a response packet for a write
 991 * config block operation arrives.
 992 * @context:		Identifies the write config operation
 993 * @resp:		The response packet itself
 994 * @resp_packet_size:	Size in bytes of the response packet
 995 */
 996static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
 997				      int resp_packet_size)
 998{
 999	struct hv_pci_compl *comp_pkt = context;
1000
1001	comp_pkt->completion_status = resp->status;
1002	complete(&comp_pkt->host_event);
1003}
1004
1005/**
1006 * hv_write_config_block() - Sends a write config block request to the
1007 * back-end driver running in the Hyper-V parent partition.
1008 * @pdev:		The PCI driver's representation for this device.
1009 * @buf:		Buffer from which the config block will	be copied.
1010 * @len:		Size in bytes of buf.
1011 * @block_id:		Identifies the config block which is being written.
1012 *
1013 * Return: 0 on success, -errno on failure
1014 */
1015static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1016				unsigned int len, unsigned int block_id)
1017{
1018	struct hv_pcibus_device *hbus =
1019		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1020			     sysdata);
1021	struct {
1022		struct pci_packet pkt;
1023		char buf[sizeof(struct pci_write_block)];
1024		u32 reserved;
1025	} pkt;
1026	struct hv_pci_compl comp_pkt;
1027	struct pci_write_block *write_blk;
1028	u32 pkt_size;
1029	int ret;
1030
1031	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1032		return -EINVAL;
1033
1034	init_completion(&comp_pkt.host_event);
1035
1036	memset(&pkt, 0, sizeof(pkt));
1037	pkt.pkt.completion_func = hv_pci_write_config_compl;
1038	pkt.pkt.compl_ctxt = &comp_pkt;
1039	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1040	write_blk->message_type.type = PCI_WRITE_BLOCK;
1041	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1042	write_blk->block_id = block_id;
1043	write_blk->byte_count = len;
1044	memcpy(write_blk->bytes, buf, len);
1045	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1046	/*
1047	 * This quirk is required on some hosts shipped around 2018, because
1048	 * these hosts don't check the pkt_size correctly (new hosts have been
1049	 * fixed since early 2019). The quirk is also safe on very old hosts
1050	 * and new hosts, because, on them, what really matters is the length
1051	 * specified in write_blk->byte_count.
1052	 */
1053	pkt_size += sizeof(pkt.reserved);
1054
1055	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1056			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1057			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1058	if (ret)
1059		return ret;
1060
1061	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1062	if (ret)
1063		return ret;
1064
1065	if (comp_pkt.completion_status != 0) {
1066		dev_err(&hbus->hdev->device,
1067			"Write Config Block failed: 0x%x\n",
1068			comp_pkt.completion_status);
1069		return -EIO;
1070	}
1071
1072	return 0;
1073}
1074
1075/**
1076 * hv_register_block_invalidate() - Invoked when a config block invalidation
1077 * arrives from the back-end driver.
1078 * @pdev:		The PCI driver's representation for this device.
1079 * @context:		Identifies the device.
1080 * @block_invalidate:	Identifies all of the blocks being invalidated.
1081 *
1082 * Return: 0 on success, -errno on failure
1083 */
1084static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1085					void (*block_invalidate)(void *context,
1086								 u64 block_mask))
1087{
1088	struct hv_pcibus_device *hbus =
1089		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1090			     sysdata);
1091	struct hv_pci_dev *hpdev;
1092
1093	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1094	if (!hpdev)
1095		return -ENODEV;
1096
1097	hpdev->block_invalidate = block_invalidate;
1098	hpdev->invalidate_context = context;
1099
1100	put_pcichild(hpdev);
1101	return 0;
1102
1103}
1104
1105/* Interrupt management hooks */
1106static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1107			     struct tran_int_desc *int_desc)
1108{
1109	struct pci_delete_interrupt *int_pkt;
1110	struct {
1111		struct pci_packet pkt;
1112		u8 buffer[sizeof(struct pci_delete_interrupt)];
1113	} ctxt;
1114
1115	memset(&ctxt, 0, sizeof(ctxt));
1116	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1117	int_pkt->message_type.type =
1118		PCI_DELETE_INTERRUPT_MESSAGE;
1119	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1120	int_pkt->int_desc = *int_desc;
1121	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1122			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1123	kfree(int_desc);
1124}
1125
1126/**
1127 * hv_msi_free() - Free the MSI.
1128 * @domain:	The interrupt domain pointer
1129 * @info:	Extra MSI-related context
1130 * @irq:	Identifies the IRQ.
1131 *
1132 * The Hyper-V parent partition and hypervisor are tracking the
1133 * messages that are in use, keeping the interrupt redirection
1134 * table up to date.  This callback sends a message that frees
1135 * the IRT entry and related tracking nonsense.
1136 */
1137static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1138			unsigned int irq)
1139{
1140	struct hv_pcibus_device *hbus;
1141	struct hv_pci_dev *hpdev;
1142	struct pci_dev *pdev;
1143	struct tran_int_desc *int_desc;
1144	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1145	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1146
1147	pdev = msi_desc_to_pci_dev(msi);
1148	hbus = info->data;
1149	int_desc = irq_data_get_irq_chip_data(irq_data);
1150	if (!int_desc)
1151		return;
1152
1153	irq_data->chip_data = NULL;
1154	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1155	if (!hpdev) {
1156		kfree(int_desc);
1157		return;
1158	}
1159
1160	hv_int_desc_free(hpdev, int_desc);
1161	put_pcichild(hpdev);
1162}
1163
1164static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1165			   bool force)
1166{
1167	struct irq_data *parent = data->parent_data;
1168
1169	return parent->chip->irq_set_affinity(parent, dest, force);
1170}
1171
1172static void hv_irq_mask(struct irq_data *data)
1173{
1174	pci_msi_mask_irq(data);
1175}
1176
1177/**
1178 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1179 * affinity.
1180 * @data:	Describes the IRQ
1181 *
1182 * Build new a destination for the MSI and make a hypercall to
1183 * update the Interrupt Redirection Table. "Device Logical ID"
1184 * is built out of this PCI bus's instance GUID and the function
1185 * number of the device.
1186 */
1187static void hv_irq_unmask(struct irq_data *data)
1188{
1189	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1190	struct irq_cfg *cfg = irqd_cfg(data);
1191	struct hv_retarget_device_interrupt *params;
1192	struct hv_pcibus_device *hbus;
1193	struct cpumask *dest;
1194	cpumask_var_t tmp;
1195	struct pci_bus *pbus;
1196	struct pci_dev *pdev;
1197	unsigned long flags;
1198	u32 var_size = 0;
1199	int cpu, nr_bank;
1200	u64 res;
1201
1202	dest = irq_data_get_effective_affinity_mask(data);
1203	pdev = msi_desc_to_pci_dev(msi_desc);
1204	pbus = pdev->bus;
1205	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1206
1207	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1208
1209	params = &hbus->retarget_msi_interrupt_params;
1210	memset(params, 0, sizeof(*params));
1211	params->partition_id = HV_PARTITION_ID_SELF;
1212	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
1213	hv_set_msi_entry_from_desc(&params->int_entry.msi_entry, msi_desc);
 
1214	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1215			   (hbus->hdev->dev_instance.b[4] << 16) |
1216			   (hbus->hdev->dev_instance.b[7] << 8) |
1217			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1218			   PCI_FUNC(pdev->devfn);
1219	params->int_target.vector = cfg->vector;
1220
1221	/*
1222	 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
1223	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1224	 * spurious interrupt storm. Not doing so does not seem to have a
1225	 * negative effect (yet?).
1226	 */
1227
1228	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1229		/*
1230		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1231		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1232		 * with >64 VP support.
1233		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1234		 * is not sufficient for this hypercall.
1235		 */
1236		params->int_target.flags |=
1237			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1238
1239		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1240			res = 1;
1241			goto exit_unlock;
1242		}
1243
1244		cpumask_and(tmp, dest, cpu_online_mask);
1245		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1246		free_cpumask_var(tmp);
1247
1248		if (nr_bank <= 0) {
1249			res = 1;
1250			goto exit_unlock;
1251		}
1252
1253		/*
1254		 * var-sized hypercall, var-size starts after vp_mask (thus
1255		 * vp_set.format does not count, but vp_set.valid_bank_mask
1256		 * does).
1257		 */
1258		var_size = 1 + nr_bank;
1259	} else {
1260		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1261			params->int_target.vp_mask |=
1262				(1ULL << hv_cpu_number_to_vp_number(cpu));
1263		}
1264	}
1265
1266	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1267			      params, NULL);
1268
1269exit_unlock:
1270	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1271
1272	/*
1273	 * During hibernation, when a CPU is offlined, the kernel tries
1274	 * to move the interrupt to the remaining CPUs that haven't
1275	 * been offlined yet. In this case, the below hv_do_hypercall()
1276	 * always fails since the vmbus channel has been closed:
1277	 * refer to cpu_disable_common() -> fixup_irqs() ->
1278	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
1279	 *
1280	 * Suppress the error message for hibernation because the failure
1281	 * during hibernation does not matter (at this time all the devices
1282	 * have been frozen). Note: the correct affinity info is still updated
1283	 * into the irqdata data structure in migrate_one_irq() ->
1284	 * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM
1285	 * resumes, hv_pci_restore_msi_state() is able to correctly restore
1286	 * the interrupt with the correct affinity.
1287	 */
1288	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
1289		dev_err(&hbus->hdev->device,
1290			"%s() failed: %#llx", __func__, res);
 
 
1291
1292	pci_msi_unmask_irq(data);
1293}
1294
1295struct compose_comp_ctxt {
1296	struct hv_pci_compl comp_pkt;
1297	struct tran_int_desc int_desc;
1298};
1299
1300static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1301				 int resp_packet_size)
1302{
1303	struct compose_comp_ctxt *comp_pkt = context;
1304	struct pci_create_int_response *int_resp =
1305		(struct pci_create_int_response *)resp;
1306
1307	comp_pkt->comp_pkt.completion_status = resp->status;
1308	comp_pkt->int_desc = int_resp->int_desc;
1309	complete(&comp_pkt->comp_pkt.host_event);
1310}
1311
1312static u32 hv_compose_msi_req_v1(
1313	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1314	u32 slot, u8 vector)
1315{
1316	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1317	int_pkt->wslot.slot = slot;
1318	int_pkt->int_desc.vector = vector;
1319	int_pkt->int_desc.vector_count = 1;
1320	int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1321
1322	/*
1323	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1324	 * hv_irq_unmask().
1325	 */
1326	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1327
1328	return sizeof(*int_pkt);
1329}
1330
1331static u32 hv_compose_msi_req_v2(
1332	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1333	u32 slot, u8 vector)
1334{
1335	int cpu;
1336
1337	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1338	int_pkt->wslot.slot = slot;
1339	int_pkt->int_desc.vector = vector;
1340	int_pkt->int_desc.vector_count = 1;
1341	int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1342
1343	/*
1344	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1345	 * by subsequent retarget in hv_irq_unmask().
1346	 */
1347	cpu = cpumask_first_and(affinity, cpu_online_mask);
1348	int_pkt->int_desc.processor_array[0] =
1349		hv_cpu_number_to_vp_number(cpu);
1350	int_pkt->int_desc.processor_count = 1;
1351
1352	return sizeof(*int_pkt);
1353}
1354
1355/**
1356 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1357 * @data:	Everything about this MSI
1358 * @msg:	Buffer that is filled in by this function
1359 *
1360 * This function unpacks the IRQ looking for target CPU set, IDT
1361 * vector and mode and sends a message to the parent partition
1362 * asking for a mapping for that tuple in this partition.  The
1363 * response supplies a data value and address to which that data
1364 * should be written to trigger that interrupt.
1365 */
1366static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1367{
1368	struct irq_cfg *cfg = irqd_cfg(data);
1369	struct hv_pcibus_device *hbus;
1370	struct vmbus_channel *channel;
1371	struct hv_pci_dev *hpdev;
1372	struct pci_bus *pbus;
1373	struct pci_dev *pdev;
1374	struct cpumask *dest;
 
1375	struct compose_comp_ctxt comp;
1376	struct tran_int_desc *int_desc;
1377	struct {
1378		struct pci_packet pci_pkt;
1379		union {
1380			struct pci_create_interrupt v1;
1381			struct pci_create_interrupt2 v2;
1382		} int_pkts;
1383	} __packed ctxt;
1384
1385	u32 size;
1386	int ret;
1387
1388	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1389	dest = irq_data_get_effective_affinity_mask(data);
1390	pbus = pdev->bus;
1391	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1392	channel = hbus->hdev->channel;
1393	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1394	if (!hpdev)
1395		goto return_null_message;
1396
1397	/* Free any previous message that might have already been composed. */
1398	if (data->chip_data) {
1399		int_desc = data->chip_data;
1400		data->chip_data = NULL;
1401		hv_int_desc_free(hpdev, int_desc);
1402	}
1403
1404	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1405	if (!int_desc)
1406		goto drop_reference;
1407
1408	memset(&ctxt, 0, sizeof(ctxt));
1409	init_completion(&comp.comp_pkt.host_event);
1410	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1411	ctxt.pci_pkt.compl_ctxt = &comp;
1412
1413	switch (hbus->protocol_version) {
1414	case PCI_PROTOCOL_VERSION_1_1:
1415		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1416					dest,
1417					hpdev->desc.win_slot.slot,
1418					cfg->vector);
1419		break;
1420
1421	case PCI_PROTOCOL_VERSION_1_2:
1422	case PCI_PROTOCOL_VERSION_1_3:
1423		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1424					dest,
1425					hpdev->desc.win_slot.slot,
1426					cfg->vector);
1427		break;
1428
1429	default:
1430		/* As we only negotiate protocol versions known to this driver,
1431		 * this path should never hit. However, this is it not a hot
1432		 * path so we print a message to aid future updates.
1433		 */
1434		dev_err(&hbus->hdev->device,
1435			"Unexpected vPCI protocol, update driver.");
1436		goto free_int_desc;
1437	}
1438
1439	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1440			       size, (unsigned long)&ctxt.pci_pkt,
1441			       VM_PKT_DATA_INBAND,
1442			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1443	if (ret) {
1444		dev_err(&hbus->hdev->device,
1445			"Sending request for interrupt failed: 0x%x",
1446			comp.comp_pkt.completion_status);
1447		goto free_int_desc;
1448	}
1449
1450	/*
1451	 * Prevents hv_pci_onchannelcallback() from running concurrently
1452	 * in the tasklet.
1453	 */
1454	tasklet_disable_in_atomic(&channel->callback_event);
1455
1456	/*
1457	 * Since this function is called with IRQ locks held, can't
1458	 * do normal wait for completion; instead poll.
1459	 */
1460	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1461		unsigned long flags;
1462
1463		/* 0xFFFF means an invalid PCI VENDOR ID. */
1464		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1465			dev_err_once(&hbus->hdev->device,
1466				     "the device has gone\n");
1467			goto enable_tasklet;
1468		}
1469
1470		/*
1471		 * Make sure that the ring buffer data structure doesn't get
1472		 * freed while we dereference the ring buffer pointer.  Test
1473		 * for the channel's onchannel_callback being NULL within a
1474		 * sched_lock critical section.  See also the inline comments
1475		 * in vmbus_reset_channel_cb().
 
 
1476		 */
1477		spin_lock_irqsave(&channel->sched_lock, flags);
1478		if (unlikely(channel->onchannel_callback == NULL)) {
1479			spin_unlock_irqrestore(&channel->sched_lock, flags);
1480			goto enable_tasklet;
1481		}
1482		hv_pci_onchannelcallback(hbus);
1483		spin_unlock_irqrestore(&channel->sched_lock, flags);
1484
1485		if (hpdev->state == hv_pcichild_ejecting) {
1486			dev_err_once(&hbus->hdev->device,
1487				     "the device is being ejected\n");
1488			goto enable_tasklet;
1489		}
1490
1491		udelay(100);
1492	}
1493
1494	tasklet_enable(&channel->callback_event);
1495
1496	if (comp.comp_pkt.completion_status < 0) {
1497		dev_err(&hbus->hdev->device,
1498			"Request for interrupt failed: 0x%x",
1499			comp.comp_pkt.completion_status);
1500		goto free_int_desc;
1501	}
1502
1503	/*
1504	 * Record the assignment so that this can be unwound later. Using
1505	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1506	 * is already held.
1507	 */
1508	*int_desc = comp.int_desc;
1509	data->chip_data = int_desc;
1510
1511	/* Pass up the result. */
1512	msg->address_hi = comp.int_desc.address >> 32;
1513	msg->address_lo = comp.int_desc.address & 0xffffffff;
1514	msg->data = comp.int_desc.data;
1515
1516	put_pcichild(hpdev);
1517	return;
1518
1519enable_tasklet:
1520	tasklet_enable(&channel->callback_event);
1521free_int_desc:
1522	kfree(int_desc);
1523drop_reference:
1524	put_pcichild(hpdev);
1525return_null_message:
1526	msg->address_hi = 0;
1527	msg->address_lo = 0;
1528	msg->data = 0;
1529}
1530
1531/* HW Interrupt Chip Descriptor */
1532static struct irq_chip hv_msi_irq_chip = {
1533	.name			= "Hyper-V PCIe MSI",
1534	.irq_compose_msi_msg	= hv_compose_msi_msg,
1535	.irq_set_affinity	= hv_set_affinity,
1536	.irq_ack		= irq_chip_ack_parent,
1537	.irq_mask		= hv_irq_mask,
1538	.irq_unmask		= hv_irq_unmask,
1539};
1540
 
 
 
 
 
 
1541static struct msi_domain_ops hv_msi_ops = {
 
1542	.msi_prepare	= pci_msi_prepare,
 
1543	.msi_free	= hv_msi_free,
1544};
1545
1546/**
1547 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1548 * @hbus:	The root PCI bus
1549 *
1550 * This function creates an IRQ domain which will be used for
1551 * interrupts from devices that have been passed through.  These
1552 * devices only support MSI and MSI-X, not line-based interrupts
1553 * or simulations of line-based interrupts through PCIe's
1554 * fabric-layer messages.  Because interrupts are remapped, we
1555 * can support multi-message MSI here.
1556 *
1557 * Return: '0' on success and error value on failure
1558 */
1559static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1560{
1561	hbus->msi_info.chip = &hv_msi_irq_chip;
1562	hbus->msi_info.ops = &hv_msi_ops;
1563	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1564		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1565		MSI_FLAG_PCI_MSIX);
1566	hbus->msi_info.handler = handle_edge_irq;
1567	hbus->msi_info.handler_name = "edge";
1568	hbus->msi_info.data = hbus;
1569	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1570						     &hbus->msi_info,
1571						     x86_vector_domain);
1572	if (!hbus->irq_domain) {
1573		dev_err(&hbus->hdev->device,
1574			"Failed to build an MSI IRQ domain\n");
1575		return -ENODEV;
1576	}
1577
1578	return 0;
1579}
1580
1581/**
1582 * get_bar_size() - Get the address space consumed by a BAR
1583 * @bar_val:	Value that a BAR returned after -1 was written
1584 *              to it.
1585 *
1586 * This function returns the size of the BAR, rounded up to 1
1587 * page.  It has to be rounded up because the hypervisor's page
1588 * table entry that maps the BAR into the VM can't specify an
1589 * offset within a page.  The invariant is that the hypervisor
1590 * must place any BARs of smaller than page length at the
1591 * beginning of a page.
1592 *
1593 * Return:	Size in bytes of the consumed MMIO space.
1594 */
1595static u64 get_bar_size(u64 bar_val)
1596{
1597	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1598			PAGE_SIZE);
1599}
1600
1601/**
1602 * survey_child_resources() - Total all MMIO requirements
1603 * @hbus:	Root PCI bus, as understood by this driver
1604 */
1605static void survey_child_resources(struct hv_pcibus_device *hbus)
1606{
1607	struct hv_pci_dev *hpdev;
1608	resource_size_t bar_size = 0;
1609	unsigned long flags;
1610	struct completion *event;
1611	u64 bar_val;
1612	int i;
1613
1614	/* If nobody is waiting on the answer, don't compute it. */
1615	event = xchg(&hbus->survey_event, NULL);
1616	if (!event)
1617		return;
1618
1619	/* If the answer has already been computed, go with it. */
1620	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1621		complete(event);
1622		return;
1623	}
1624
1625	spin_lock_irqsave(&hbus->device_list_lock, flags);
1626
1627	/*
1628	 * Due to an interesting quirk of the PCI spec, all memory regions
1629	 * for a child device are a power of 2 in size and aligned in memory,
1630	 * so it's sufficient to just add them up without tracking alignment.
1631	 */
1632	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1633		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1634			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1635				dev_err(&hbus->hdev->device,
1636					"There's an I/O BAR in this list!\n");
1637
1638			if (hpdev->probed_bar[i] != 0) {
1639				/*
1640				 * A probed BAR has all the upper bits set that
1641				 * can be changed.
1642				 */
1643
1644				bar_val = hpdev->probed_bar[i];
1645				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1646					bar_val |=
1647					((u64)hpdev->probed_bar[++i] << 32);
1648				else
1649					bar_val |= 0xffffffff00000000ULL;
1650
1651				bar_size = get_bar_size(bar_val);
1652
1653				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1654					hbus->high_mmio_space += bar_size;
1655				else
1656					hbus->low_mmio_space += bar_size;
1657			}
1658		}
1659	}
1660
1661	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1662	complete(event);
1663}
1664
1665/**
1666 * prepopulate_bars() - Fill in BARs with defaults
1667 * @hbus:	Root PCI bus, as understood by this driver
1668 *
1669 * The core PCI driver code seems much, much happier if the BARs
1670 * for a device have values upon first scan. So fill them in.
1671 * The algorithm below works down from large sizes to small,
1672 * attempting to pack the assignments optimally. The assumption,
1673 * enforced in other parts of the code, is that the beginning of
1674 * the memory-mapped I/O space will be aligned on the largest
1675 * BAR size.
1676 */
1677static void prepopulate_bars(struct hv_pcibus_device *hbus)
1678{
1679	resource_size_t high_size = 0;
1680	resource_size_t low_size = 0;
1681	resource_size_t high_base = 0;
1682	resource_size_t low_base = 0;
1683	resource_size_t bar_size;
1684	struct hv_pci_dev *hpdev;
1685	unsigned long flags;
1686	u64 bar_val;
1687	u32 command;
1688	bool high;
1689	int i;
1690
1691	if (hbus->low_mmio_space) {
1692		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1693		low_base = hbus->low_mmio_res->start;
1694	}
1695
1696	if (hbus->high_mmio_space) {
1697		high_size = 1ULL <<
1698			(63 - __builtin_clzll(hbus->high_mmio_space));
1699		high_base = hbus->high_mmio_res->start;
1700	}
1701
1702	spin_lock_irqsave(&hbus->device_list_lock, flags);
1703
1704	/*
1705	 * Clear the memory enable bit, in case it's already set. This occurs
1706	 * in the suspend path of hibernation, where the device is suspended,
1707	 * resumed and suspended again: see hibernation_snapshot() and
1708	 * hibernation_platform_enter().
1709	 *
1710	 * If the memory enable bit is already set, Hyper-V silently ignores
1711	 * the below BAR updates, and the related PCI device driver can not
1712	 * work, because reading from the device register(s) always returns
1713	 * 0xFFFFFFFF.
1714	 */
1715	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1716		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1717		command &= ~PCI_COMMAND_MEMORY;
1718		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1719	}
1720
1721	/* Pick addresses for the BARs. */
1722	do {
1723		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1724			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1725				bar_val = hpdev->probed_bar[i];
1726				if (bar_val == 0)
1727					continue;
1728				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1729				if (high) {
1730					bar_val |=
1731						((u64)hpdev->probed_bar[i + 1]
1732						 << 32);
1733				} else {
1734					bar_val |= 0xffffffffULL << 32;
1735				}
1736				bar_size = get_bar_size(bar_val);
1737				if (high) {
1738					if (high_size != bar_size) {
1739						i++;
1740						continue;
1741					}
1742					_hv_pcifront_write_config(hpdev,
1743						PCI_BASE_ADDRESS_0 + (4 * i),
1744						4,
1745						(u32)(high_base & 0xffffff00));
1746					i++;
1747					_hv_pcifront_write_config(hpdev,
1748						PCI_BASE_ADDRESS_0 + (4 * i),
1749						4, (u32)(high_base >> 32));
1750					high_base += bar_size;
1751				} else {
1752					if (low_size != bar_size)
1753						continue;
1754					_hv_pcifront_write_config(hpdev,
1755						PCI_BASE_ADDRESS_0 + (4 * i),
1756						4,
1757						(u32)(low_base & 0xffffff00));
1758					low_base += bar_size;
1759				}
1760			}
1761			if (high_size <= 1 && low_size <= 1) {
1762				/* Set the memory enable bit. */
1763				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1764							 &command);
1765				command |= PCI_COMMAND_MEMORY;
1766				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1767							  command);
1768				break;
1769			}
1770		}
1771
1772		high_size >>= 1;
1773		low_size >>= 1;
1774	}  while (high_size || low_size);
1775
1776	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1777}
1778
1779/*
1780 * Assign entries in sysfs pci slot directory.
1781 *
1782 * Note that this function does not need to lock the children list
1783 * because it is called from pci_devices_present_work which
1784 * is serialized with hv_eject_device_work because they are on the
1785 * same ordered workqueue. Therefore hbus->children list will not change
1786 * even when pci_create_slot sleeps.
1787 */
1788static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1789{
1790	struct hv_pci_dev *hpdev;
1791	char name[SLOT_NAME_SIZE];
1792	int slot_nr;
1793
1794	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1795		if (hpdev->pci_slot)
1796			continue;
1797
1798		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1799		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1800		hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1801					  name, NULL);
1802		if (IS_ERR(hpdev->pci_slot)) {
1803			pr_warn("pci_create slot %s failed\n", name);
1804			hpdev->pci_slot = NULL;
1805		}
1806	}
1807}
1808
1809/*
1810 * Remove entries in sysfs pci slot directory.
1811 */
1812static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1813{
1814	struct hv_pci_dev *hpdev;
1815
1816	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1817		if (!hpdev->pci_slot)
1818			continue;
1819		pci_destroy_slot(hpdev->pci_slot);
1820		hpdev->pci_slot = NULL;
1821	}
1822}
1823
1824/*
1825 * Set NUMA node for the devices on the bus
1826 */
1827static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
1828{
1829	struct pci_dev *dev;
1830	struct pci_bus *bus = hbus->pci_bus;
1831	struct hv_pci_dev *hv_dev;
1832
1833	list_for_each_entry(dev, &bus->devices, bus_list) {
1834		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
1835		if (!hv_dev)
1836			continue;
1837
1838		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY)
1839			set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node);
1840
1841		put_pcichild(hv_dev);
1842	}
1843}
1844
1845/**
1846 * create_root_hv_pci_bus() - Expose a new root PCI bus
1847 * @hbus:	Root PCI bus, as understood by this driver
1848 *
1849 * Return: 0 on success, -errno on failure
1850 */
1851static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1852{
1853	/* Register the device */
1854	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1855					    0, /* bus number is always zero */
1856					    &hv_pcifront_ops,
1857					    &hbus->sysdata,
1858					    &hbus->resources_for_children);
1859	if (!hbus->pci_bus)
1860		return -ENODEV;
1861
 
 
 
1862	pci_lock_rescan_remove();
1863	pci_scan_child_bus(hbus->pci_bus);
1864	hv_pci_assign_numa_node(hbus);
1865	pci_bus_assign_resources(hbus->pci_bus);
1866	hv_pci_assign_slots(hbus);
1867	pci_bus_add_devices(hbus->pci_bus);
1868	pci_unlock_rescan_remove();
1869	hbus->state = hv_pcibus_installed;
1870	return 0;
1871}
1872
1873struct q_res_req_compl {
1874	struct completion host_event;
1875	struct hv_pci_dev *hpdev;
1876};
1877
1878/**
1879 * q_resource_requirements() - Query Resource Requirements
1880 * @context:		The completion context.
1881 * @resp:		The response that came from the host.
1882 * @resp_packet_size:	The size in bytes of resp.
1883 *
1884 * This function is invoked on completion of a Query Resource
1885 * Requirements packet.
1886 */
1887static void q_resource_requirements(void *context, struct pci_response *resp,
1888				    int resp_packet_size)
1889{
1890	struct q_res_req_compl *completion = context;
1891	struct pci_q_res_req_response *q_res_req =
1892		(struct pci_q_res_req_response *)resp;
1893	int i;
1894
1895	if (resp->status < 0) {
1896		dev_err(&completion->hpdev->hbus->hdev->device,
1897			"query resource requirements failed: %x\n",
1898			resp->status);
1899	} else {
1900		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1901			completion->hpdev->probed_bar[i] =
1902				q_res_req->probed_bar[i];
1903		}
1904	}
1905
1906	complete(&completion->host_event);
1907}
1908
1909/**
1910 * new_pcichild_device() - Create a new child device
1911 * @hbus:	The internal struct tracking this root PCI bus.
1912 * @desc:	The information supplied so far from the host
1913 *              about the device.
1914 *
1915 * This function creates the tracking structure for a new child
1916 * device and kicks off the process of figuring out what it is.
1917 *
1918 * Return: Pointer to the new tracking struct
1919 */
1920static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1921		struct hv_pcidev_description *desc)
1922{
1923	struct hv_pci_dev *hpdev;
1924	struct pci_child_message *res_req;
1925	struct q_res_req_compl comp_pkt;
1926	struct {
1927		struct pci_packet init_packet;
1928		u8 buffer[sizeof(struct pci_child_message)];
1929	} pkt;
1930	unsigned long flags;
1931	int ret;
1932
1933	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1934	if (!hpdev)
1935		return NULL;
1936
1937	hpdev->hbus = hbus;
1938
1939	memset(&pkt, 0, sizeof(pkt));
1940	init_completion(&comp_pkt.host_event);
1941	comp_pkt.hpdev = hpdev;
1942	pkt.init_packet.compl_ctxt = &comp_pkt;
1943	pkt.init_packet.completion_func = q_resource_requirements;
1944	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1945	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1946	res_req->wslot.slot = desc->win_slot.slot;
1947
1948	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1949			       sizeof(struct pci_child_message),
1950			       (unsigned long)&pkt.init_packet,
1951			       VM_PKT_DATA_INBAND,
1952			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1953	if (ret)
1954		goto error;
1955
1956	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1957		goto error;
1958
1959	hpdev->desc = *desc;
1960	refcount_set(&hpdev->refs, 1);
1961	get_pcichild(hpdev);
1962	spin_lock_irqsave(&hbus->device_list_lock, flags);
1963
1964	list_add_tail(&hpdev->list_entry, &hbus->children);
1965	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1966	return hpdev;
1967
1968error:
1969	kfree(hpdev);
1970	return NULL;
1971}
1972
1973/**
1974 * get_pcichild_wslot() - Find device from slot
1975 * @hbus:	Root PCI bus, as understood by this driver
1976 * @wslot:	Location on the bus
1977 *
1978 * This function looks up a PCI device and returns the internal
1979 * representation of it.  It acquires a reference on it, so that
1980 * the device won't be deleted while somebody is using it.  The
1981 * caller is responsible for calling put_pcichild() to release
1982 * this reference.
1983 *
1984 * Return:	Internal representation of a PCI device
1985 */
1986static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1987					     u32 wslot)
1988{
1989	unsigned long flags;
1990	struct hv_pci_dev *iter, *hpdev = NULL;
1991
1992	spin_lock_irqsave(&hbus->device_list_lock, flags);
1993	list_for_each_entry(iter, &hbus->children, list_entry) {
1994		if (iter->desc.win_slot.slot == wslot) {
1995			hpdev = iter;
1996			get_pcichild(hpdev);
1997			break;
1998		}
1999	}
2000	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2001
2002	return hpdev;
2003}
2004
2005/**
2006 * pci_devices_present_work() - Handle new list of child devices
2007 * @work:	Work struct embedded in struct hv_dr_work
2008 *
2009 * "Bus Relations" is the Windows term for "children of this
2010 * bus."  The terminology is preserved here for people trying to
2011 * debug the interaction between Hyper-V and Linux.  This
2012 * function is called when the parent partition reports a list
2013 * of functions that should be observed under this PCI Express
2014 * port (bus).
2015 *
2016 * This function updates the list, and must tolerate being
2017 * called multiple times with the same information.  The typical
2018 * number of child devices is one, with very atypical cases
2019 * involving three or four, so the algorithms used here can be
2020 * simple and inefficient.
2021 *
2022 * It must also treat the omission of a previously observed device as
2023 * notification that the device no longer exists.
2024 *
2025 * Note that this function is serialized with hv_eject_device_work(),
2026 * because both are pushed to the ordered workqueue hbus->wq.
2027 */
2028static void pci_devices_present_work(struct work_struct *work)
2029{
2030	u32 child_no;
2031	bool found;
2032	struct hv_pcidev_description *new_desc;
2033	struct hv_pci_dev *hpdev;
2034	struct hv_pcibus_device *hbus;
2035	struct list_head removed;
2036	struct hv_dr_work *dr_wrk;
2037	struct hv_dr_state *dr = NULL;
2038	unsigned long flags;
2039
2040	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2041	hbus = dr_wrk->bus;
2042	kfree(dr_wrk);
2043
2044	INIT_LIST_HEAD(&removed);
2045
2046	/* Pull this off the queue and process it if it was the last one. */
2047	spin_lock_irqsave(&hbus->device_list_lock, flags);
2048	while (!list_empty(&hbus->dr_list)) {
2049		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2050				      list_entry);
2051		list_del(&dr->list_entry);
2052
2053		/* Throw this away if the list still has stuff in it. */
2054		if (!list_empty(&hbus->dr_list)) {
2055			kfree(dr);
2056			continue;
2057		}
2058	}
2059	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2060
2061	if (!dr)
 
2062		return;
 
2063
2064	/* First, mark all existing children as reported missing. */
2065	spin_lock_irqsave(&hbus->device_list_lock, flags);
2066	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2067		hpdev->reported_missing = true;
2068	}
2069	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2070
2071	/* Next, add back any reported devices. */
2072	for (child_no = 0; child_no < dr->device_count; child_no++) {
2073		found = false;
2074		new_desc = &dr->func[child_no];
2075
2076		spin_lock_irqsave(&hbus->device_list_lock, flags);
2077		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2078			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2079			    (hpdev->desc.v_id == new_desc->v_id) &&
2080			    (hpdev->desc.d_id == new_desc->d_id) &&
2081			    (hpdev->desc.ser == new_desc->ser)) {
2082				hpdev->reported_missing = false;
2083				found = true;
2084			}
2085		}
2086		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2087
2088		if (!found) {
2089			hpdev = new_pcichild_device(hbus, new_desc);
2090			if (!hpdev)
2091				dev_err(&hbus->hdev->device,
2092					"couldn't record a child device.\n");
2093		}
2094	}
2095
2096	/* Move missing children to a list on the stack. */
2097	spin_lock_irqsave(&hbus->device_list_lock, flags);
2098	do {
2099		found = false;
2100		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2101			if (hpdev->reported_missing) {
2102				found = true;
2103				put_pcichild(hpdev);
2104				list_move_tail(&hpdev->list_entry, &removed);
2105				break;
2106			}
2107		}
2108	} while (found);
2109	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2110
2111	/* Delete everything that should no longer exist. */
2112	while (!list_empty(&removed)) {
2113		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2114					 list_entry);
2115		list_del(&hpdev->list_entry);
2116
2117		if (hpdev->pci_slot)
2118			pci_destroy_slot(hpdev->pci_slot);
2119
2120		put_pcichild(hpdev);
2121	}
2122
2123	switch (hbus->state) {
2124	case hv_pcibus_installed:
2125		/*
2126		 * Tell the core to rescan bus
2127		 * because there may have been changes.
2128		 */
2129		pci_lock_rescan_remove();
2130		pci_scan_child_bus(hbus->pci_bus);
2131		hv_pci_assign_numa_node(hbus);
2132		hv_pci_assign_slots(hbus);
2133		pci_unlock_rescan_remove();
2134		break;
2135
2136	case hv_pcibus_init:
2137	case hv_pcibus_probed:
2138		survey_child_resources(hbus);
2139		break;
2140
2141	default:
2142		break;
2143	}
2144
 
2145	kfree(dr);
2146}
2147
2148/**
2149 * hv_pci_start_relations_work() - Queue work to start device discovery
2150 * @hbus:	Root PCI bus, as understood by this driver
2151 * @dr:		The list of children returned from host
2152 *
2153 * Return:  0 on success, -errno on failure
 
2154 */
2155static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2156				       struct hv_dr_state *dr)
2157{
 
2158	struct hv_dr_work *dr_wrk;
2159	unsigned long flags;
2160	bool pending_dr;
2161
2162	if (hbus->state == hv_pcibus_removing) {
2163		dev_info(&hbus->hdev->device,
2164			 "PCI VMBus BUS_RELATIONS: ignored\n");
2165		return -ENOENT;
2166	}
2167
2168	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2169	if (!dr_wrk)
2170		return -ENOMEM;
 
 
 
 
 
 
 
 
2171
2172	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2173	dr_wrk->bus = hbus;
 
 
 
 
 
 
2174
2175	spin_lock_irqsave(&hbus->device_list_lock, flags);
2176	/*
2177	 * If pending_dr is true, we have already queued a work,
2178	 * which will see the new dr. Otherwise, we need to
2179	 * queue a new work.
2180	 */
2181	pending_dr = !list_empty(&hbus->dr_list);
2182	list_add_tail(&dr->list_entry, &hbus->dr_list);
2183	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2184
2185	if (pending_dr)
2186		kfree(dr_wrk);
2187	else
 
2188		queue_work(hbus->wq, &dr_wrk->wrk);
2189
2190	return 0;
2191}
2192
2193/**
2194 * hv_pci_devices_present() - Handle list of new children
2195 * @hbus:      Root PCI bus, as understood by this driver
2196 * @relations: Packet from host listing children
2197 *
2198 * Process a new list of devices on the bus. The list of devices is
2199 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2200 * whenever a new list of devices for this bus appears.
2201 */
2202static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2203				   struct pci_bus_relations *relations)
2204{
2205	struct hv_dr_state *dr;
2206	int i;
2207
2208	dr = kzalloc(struct_size(dr, func, relations->device_count),
2209		     GFP_NOWAIT);
2210	if (!dr)
2211		return;
2212
2213	dr->device_count = relations->device_count;
2214	for (i = 0; i < dr->device_count; i++) {
2215		dr->func[i].v_id = relations->func[i].v_id;
2216		dr->func[i].d_id = relations->func[i].d_id;
2217		dr->func[i].rev = relations->func[i].rev;
2218		dr->func[i].prog_intf = relations->func[i].prog_intf;
2219		dr->func[i].subclass = relations->func[i].subclass;
2220		dr->func[i].base_class = relations->func[i].base_class;
2221		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2222		dr->func[i].win_slot = relations->func[i].win_slot;
2223		dr->func[i].ser = relations->func[i].ser;
2224	}
2225
2226	if (hv_pci_start_relations_work(hbus, dr))
2227		kfree(dr);
2228}
2229
2230/**
2231 * hv_pci_devices_present2() - Handle list of new children
2232 * @hbus:	Root PCI bus, as understood by this driver
2233 * @relations:	Packet from host listing children
2234 *
2235 * This function is the v2 version of hv_pci_devices_present()
2236 */
2237static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2238				    struct pci_bus_relations2 *relations)
2239{
2240	struct hv_dr_state *dr;
2241	int i;
2242
2243	dr = kzalloc(struct_size(dr, func, relations->device_count),
2244		     GFP_NOWAIT);
2245	if (!dr)
2246		return;
2247
2248	dr->device_count = relations->device_count;
2249	for (i = 0; i < dr->device_count; i++) {
2250		dr->func[i].v_id = relations->func[i].v_id;
2251		dr->func[i].d_id = relations->func[i].d_id;
2252		dr->func[i].rev = relations->func[i].rev;
2253		dr->func[i].prog_intf = relations->func[i].prog_intf;
2254		dr->func[i].subclass = relations->func[i].subclass;
2255		dr->func[i].base_class = relations->func[i].base_class;
2256		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2257		dr->func[i].win_slot = relations->func[i].win_slot;
2258		dr->func[i].ser = relations->func[i].ser;
2259		dr->func[i].flags = relations->func[i].flags;
2260		dr->func[i].virtual_numa_node =
2261			relations->func[i].virtual_numa_node;
2262	}
2263
2264	if (hv_pci_start_relations_work(hbus, dr))
2265		kfree(dr);
2266}
2267
2268/**
2269 * hv_eject_device_work() - Asynchronously handles ejection
2270 * @work:	Work struct embedded in internal device struct
2271 *
2272 * This function handles ejecting a device.  Windows will
2273 * attempt to gracefully eject a device, waiting 60 seconds to
2274 * hear back from the guest OS that this completed successfully.
2275 * If this timer expires, the device will be forcibly removed.
2276 */
2277static void hv_eject_device_work(struct work_struct *work)
2278{
2279	struct pci_eject_response *ejct_pkt;
2280	struct hv_pcibus_device *hbus;
2281	struct hv_pci_dev *hpdev;
2282	struct pci_dev *pdev;
2283	unsigned long flags;
2284	int wslot;
2285	struct {
2286		struct pci_packet pkt;
2287		u8 buffer[sizeof(struct pci_eject_response)];
2288	} ctxt;
2289
2290	hpdev = container_of(work, struct hv_pci_dev, wrk);
2291	hbus = hpdev->hbus;
2292
2293	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2294
2295	/*
2296	 * Ejection can come before or after the PCI bus has been set up, so
2297	 * attempt to find it and tear down the bus state, if it exists.  This
2298	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2299	 * because hbus->pci_bus may not exist yet.
2300	 */
2301	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2302	pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2303	if (pdev) {
2304		pci_lock_rescan_remove();
2305		pci_stop_and_remove_bus_device(pdev);
2306		pci_dev_put(pdev);
2307		pci_unlock_rescan_remove();
2308	}
2309
2310	spin_lock_irqsave(&hbus->device_list_lock, flags);
2311	list_del(&hpdev->list_entry);
2312	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2313
2314	if (hpdev->pci_slot)
2315		pci_destroy_slot(hpdev->pci_slot);
2316
2317	memset(&ctxt, 0, sizeof(ctxt));
2318	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2319	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2320	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2321	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2322			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2323			 VM_PKT_DATA_INBAND, 0);
2324
2325	/* For the get_pcichild() in hv_pci_eject_device() */
2326	put_pcichild(hpdev);
2327	/* For the two refs got in new_pcichild_device() */
2328	put_pcichild(hpdev);
2329	put_pcichild(hpdev);
2330	/* hpdev has been freed. Do not use it any more. */
 
 
2331}
2332
2333/**
2334 * hv_pci_eject_device() - Handles device ejection
2335 * @hpdev:	Internal device tracking struct
2336 *
2337 * This function is invoked when an ejection packet arrives.  It
2338 * just schedules work so that we don't re-enter the packet
2339 * delivery code handling the ejection.
2340 */
2341static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2342{
2343	struct hv_pcibus_device *hbus = hpdev->hbus;
2344	struct hv_device *hdev = hbus->hdev;
2345
2346	if (hbus->state == hv_pcibus_removing) {
2347		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2348		return;
2349	}
2350
2351	hpdev->state = hv_pcichild_ejecting;
2352	get_pcichild(hpdev);
2353	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2354	queue_work(hbus->wq, &hpdev->wrk);
 
2355}
2356
2357/**
2358 * hv_pci_onchannelcallback() - Handles incoming packets
2359 * @context:	Internal bus tracking struct
2360 *
2361 * This function is invoked whenever the host sends a packet to
2362 * this channel (which is private to this root PCI bus).
2363 */
2364static void hv_pci_onchannelcallback(void *context)
2365{
2366	const int packet_size = 0x100;
2367	int ret;
2368	struct hv_pcibus_device *hbus = context;
2369	u32 bytes_recvd;
2370	u64 req_id;
2371	struct vmpacket_descriptor *desc;
2372	unsigned char *buffer;
2373	int bufferlen = packet_size;
2374	struct pci_packet *comp_packet;
2375	struct pci_response *response;
2376	struct pci_incoming_message *new_message;
2377	struct pci_bus_relations *bus_rel;
2378	struct pci_bus_relations2 *bus_rel2;
2379	struct pci_dev_inval_block *inval;
2380	struct pci_dev_incoming *dev_message;
2381	struct hv_pci_dev *hpdev;
2382
2383	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2384	if (!buffer)
2385		return;
2386
2387	while (1) {
2388		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2389					   bufferlen, &bytes_recvd, &req_id);
2390
2391		if (ret == -ENOBUFS) {
2392			kfree(buffer);
2393			/* Handle large packet */
2394			bufferlen = bytes_recvd;
2395			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2396			if (!buffer)
2397				return;
2398			continue;
2399		}
2400
2401		/* Zero length indicates there are no more packets. */
2402		if (ret || !bytes_recvd)
2403			break;
2404
2405		/*
2406		 * All incoming packets must be at least as large as a
2407		 * response.
2408		 */
2409		if (bytes_recvd <= sizeof(struct pci_response))
2410			continue;
2411		desc = (struct vmpacket_descriptor *)buffer;
2412
2413		switch (desc->type) {
2414		case VM_PKT_COMP:
2415
2416			/*
2417			 * The host is trusted, and thus it's safe to interpret
2418			 * this transaction ID as a pointer.
2419			 */
2420			comp_packet = (struct pci_packet *)req_id;
2421			response = (struct pci_response *)buffer;
2422			comp_packet->completion_func(comp_packet->compl_ctxt,
2423						     response,
2424						     bytes_recvd);
2425			break;
2426
2427		case VM_PKT_DATA_INBAND:
2428
2429			new_message = (struct pci_incoming_message *)buffer;
2430			switch (new_message->message_type.type) {
2431			case PCI_BUS_RELATIONS:
2432
2433				bus_rel = (struct pci_bus_relations *)buffer;
2434				if (bytes_recvd <
2435					struct_size(bus_rel, func,
2436						    bus_rel->device_count)) {
 
2437					dev_err(&hbus->hdev->device,
2438						"bus relations too small\n");
2439					break;
2440				}
2441
2442				hv_pci_devices_present(hbus, bus_rel);
2443				break;
2444
2445			case PCI_BUS_RELATIONS2:
2446
2447				bus_rel2 = (struct pci_bus_relations2 *)buffer;
2448				if (bytes_recvd <
2449					struct_size(bus_rel2, func,
2450						    bus_rel2->device_count)) {
2451					dev_err(&hbus->hdev->device,
2452						"bus relations v2 too small\n");
2453					break;
2454				}
2455
2456				hv_pci_devices_present2(hbus, bus_rel2);
2457				break;
2458
2459			case PCI_EJECT:
2460
2461				dev_message = (struct pci_dev_incoming *)buffer;
2462				hpdev = get_pcichild_wslot(hbus,
2463						      dev_message->wslot.slot);
2464				if (hpdev) {
2465					hv_pci_eject_device(hpdev);
2466					put_pcichild(hpdev);
2467				}
2468				break;
2469
2470			case PCI_INVALIDATE_BLOCK:
2471
2472				inval = (struct pci_dev_inval_block *)buffer;
2473				hpdev = get_pcichild_wslot(hbus,
2474							   inval->wslot.slot);
2475				if (hpdev) {
2476					if (hpdev->block_invalidate) {
2477						hpdev->block_invalidate(
2478						    hpdev->invalidate_context,
2479						    inval->block_mask);
2480					}
2481					put_pcichild(hpdev);
2482				}
2483				break;
2484
2485			default:
2486				dev_warn(&hbus->hdev->device,
2487					"Unimplemented protocol message %x\n",
2488					new_message->message_type.type);
2489				break;
2490			}
2491			break;
2492
2493		default:
2494			dev_err(&hbus->hdev->device,
2495				"unhandled packet type %d, tid %llx len %d\n",
2496				desc->type, req_id, bytes_recvd);
2497			break;
2498		}
2499	}
2500
2501	kfree(buffer);
2502}
2503
2504/**
2505 * hv_pci_protocol_negotiation() - Set up protocol
2506 * @hdev:		VMBus's tracking struct for this root PCI bus.
2507 * @version:		Array of supported channel protocol versions in
2508 *			the order of probing - highest go first.
2509 * @num_version:	Number of elements in the version array.
2510 *
2511 * This driver is intended to support running on Windows 10
2512 * (server) and later versions. It will not run on earlier
2513 * versions, as they assume that many of the operations which
2514 * Linux needs accomplished with a spinlock held were done via
2515 * asynchronous messaging via VMBus.  Windows 10 increases the
2516 * surface area of PCI emulation so that these actions can take
2517 * place by suspending a virtual processor for their duration.
2518 *
2519 * This function negotiates the channel protocol version,
2520 * failing if the host doesn't support the necessary protocol
2521 * level.
2522 */
2523static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2524				       enum pci_protocol_version_t version[],
2525				       int num_version)
2526{
2527	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2528	struct pci_version_request *version_req;
2529	struct hv_pci_compl comp_pkt;
2530	struct pci_packet *pkt;
2531	int ret;
2532	int i;
2533
2534	/*
2535	 * Initiate the handshake with the host and negotiate
2536	 * a version that the host can support. We start with the
2537	 * highest version number and go down if the host cannot
2538	 * support it.
2539	 */
2540	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2541	if (!pkt)
2542		return -ENOMEM;
2543
2544	init_completion(&comp_pkt.host_event);
2545	pkt->completion_func = hv_pci_generic_compl;
2546	pkt->compl_ctxt = &comp_pkt;
2547	version_req = (struct pci_version_request *)&pkt->message;
2548	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2549
2550	for (i = 0; i < num_version; i++) {
2551		version_req->protocol_version = version[i];
2552		ret = vmbus_sendpacket(hdev->channel, version_req,
2553				sizeof(struct pci_version_request),
2554				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2555				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2556		if (!ret)
2557			ret = wait_for_response(hdev, &comp_pkt.host_event);
2558
2559		if (ret) {
2560			dev_err(&hdev->device,
2561				"PCI Pass-through VSP failed to request version: %d",
2562				ret);
2563			goto exit;
2564		}
2565
2566		if (comp_pkt.completion_status >= 0) {
2567			hbus->protocol_version = version[i];
2568			dev_info(&hdev->device,
2569				"PCI VMBus probing: Using version %#x\n",
2570				hbus->protocol_version);
2571			goto exit;
2572		}
2573
2574		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2575			dev_err(&hdev->device,
2576				"PCI Pass-through VSP failed version request: %#x",
2577				comp_pkt.completion_status);
2578			ret = -EPROTO;
2579			goto exit;
2580		}
2581
2582		reinit_completion(&comp_pkt.host_event);
2583	}
2584
2585	dev_err(&hdev->device,
2586		"PCI pass-through VSP failed to find supported version");
2587	ret = -EPROTO;
2588
2589exit:
2590	kfree(pkt);
2591	return ret;
2592}
2593
2594/**
2595 * hv_pci_free_bridge_windows() - Release memory regions for the
2596 * bus
2597 * @hbus:	Root PCI bus, as understood by this driver
2598 */
2599static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2600{
2601	/*
2602	 * Set the resources back to the way they looked when they
2603	 * were allocated by setting IORESOURCE_BUSY again.
2604	 */
2605
2606	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2607		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2608		vmbus_free_mmio(hbus->low_mmio_res->start,
2609				resource_size(hbus->low_mmio_res));
2610	}
2611
2612	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2613		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2614		vmbus_free_mmio(hbus->high_mmio_res->start,
2615				resource_size(hbus->high_mmio_res));
2616	}
2617}
2618
2619/**
2620 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2621 * for the bus
2622 * @hbus:	Root PCI bus, as understood by this driver
2623 *
2624 * This function calls vmbus_allocate_mmio(), which is itself a
2625 * bit of a compromise.  Ideally, we might change the pnp layer
2626 * in the kernel such that it comprehends either PCI devices
2627 * which are "grandchildren of ACPI," with some intermediate bus
2628 * node (in this case, VMBus) or change it such that it
2629 * understands VMBus.  The pnp layer, however, has been declared
2630 * deprecated, and not subject to change.
2631 *
2632 * The workaround, implemented here, is to ask VMBus to allocate
2633 * MMIO space for this bus.  VMBus itself knows which ranges are
2634 * appropriate by looking at its own ACPI objects.  Then, after
2635 * these ranges are claimed, they're modified to look like they
2636 * would have looked if the ACPI and pnp code had allocated
2637 * bridge windows.  These descriptors have to exist in this form
2638 * in order to satisfy the code which will get invoked when the
2639 * endpoint PCI function driver calls request_mem_region() or
2640 * request_mem_region_exclusive().
2641 *
2642 * Return: 0 on success, -errno on failure
2643 */
2644static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2645{
2646	resource_size_t align;
2647	int ret;
2648
2649	if (hbus->low_mmio_space) {
2650		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2651		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2652					  (u64)(u32)0xffffffff,
2653					  hbus->low_mmio_space,
2654					  align, false);
2655		if (ret) {
2656			dev_err(&hbus->hdev->device,
2657				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2658				hbus->low_mmio_space);
2659			return ret;
2660		}
2661
2662		/* Modify this resource to become a bridge window. */
2663		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2664		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2665		pci_add_resource(&hbus->resources_for_children,
2666				 hbus->low_mmio_res);
2667	}
2668
2669	if (hbus->high_mmio_space) {
2670		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2671		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2672					  0x100000000, -1,
2673					  hbus->high_mmio_space, align,
2674					  false);
2675		if (ret) {
2676			dev_err(&hbus->hdev->device,
2677				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2678				hbus->high_mmio_space);
2679			goto release_low_mmio;
2680		}
2681
2682		/* Modify this resource to become a bridge window. */
2683		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2684		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2685		pci_add_resource(&hbus->resources_for_children,
2686				 hbus->high_mmio_res);
2687	}
2688
2689	return 0;
2690
2691release_low_mmio:
2692	if (hbus->low_mmio_res) {
2693		vmbus_free_mmio(hbus->low_mmio_res->start,
2694				resource_size(hbus->low_mmio_res));
2695	}
2696
2697	return ret;
2698}
2699
2700/**
2701 * hv_allocate_config_window() - Find MMIO space for PCI Config
2702 * @hbus:	Root PCI bus, as understood by this driver
2703 *
2704 * This function claims memory-mapped I/O space for accessing
2705 * configuration space for the functions on this bus.
2706 *
2707 * Return: 0 on success, -errno on failure
2708 */
2709static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2710{
2711	int ret;
2712
2713	/*
2714	 * Set up a region of MMIO space to use for accessing configuration
2715	 * space.
2716	 */
2717	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2718				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2719	if (ret)
2720		return ret;
2721
2722	/*
2723	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2724	 * resource claims (those which cannot be overlapped) and the ranges
2725	 * which are valid for the children of this bus, which are intended
2726	 * to be overlapped by those children.  Set the flag on this claim
2727	 * meaning that this region can't be overlapped.
2728	 */
2729
2730	hbus->mem_config->flags |= IORESOURCE_BUSY;
2731
2732	return 0;
2733}
2734
2735static void hv_free_config_window(struct hv_pcibus_device *hbus)
2736{
2737	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2738}
2739
2740static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
2741
2742/**
2743 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2744 * @hdev:	VMBus's tracking struct for this root PCI bus
2745 *
2746 * Return: 0 on success, -errno on failure
2747 */
2748static int hv_pci_enter_d0(struct hv_device *hdev)
2749{
2750	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2751	struct pci_bus_d0_entry *d0_entry;
2752	struct hv_pci_compl comp_pkt;
2753	struct pci_packet *pkt;
2754	int ret;
2755
2756	/*
2757	 * Tell the host that the bus is ready to use, and moved into the
2758	 * powered-on state.  This includes telling the host which region
2759	 * of memory-mapped I/O space has been chosen for configuration space
2760	 * access.
2761	 */
2762	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2763	if (!pkt)
2764		return -ENOMEM;
2765
2766	init_completion(&comp_pkt.host_event);
2767	pkt->completion_func = hv_pci_generic_compl;
2768	pkt->compl_ctxt = &comp_pkt;
2769	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2770	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2771	d0_entry->mmio_base = hbus->mem_config->start;
2772
2773	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2774			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2775			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2776	if (!ret)
2777		ret = wait_for_response(hdev, &comp_pkt.host_event);
2778
2779	if (ret)
2780		goto exit;
2781
2782	if (comp_pkt.completion_status < 0) {
2783		dev_err(&hdev->device,
2784			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2785			comp_pkt.completion_status);
2786		ret = -EPROTO;
2787		goto exit;
2788	}
2789
2790	ret = 0;
2791
2792exit:
2793	kfree(pkt);
2794	return ret;
2795}
2796
2797/**
2798 * hv_pci_query_relations() - Ask host to send list of child
2799 * devices
2800 * @hdev:	VMBus's tracking struct for this root PCI bus
2801 *
2802 * Return: 0 on success, -errno on failure
2803 */
2804static int hv_pci_query_relations(struct hv_device *hdev)
2805{
2806	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2807	struct pci_message message;
2808	struct completion comp;
2809	int ret;
2810
2811	/* Ask the host to send along the list of child devices */
2812	init_completion(&comp);
2813	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2814		return -ENOTEMPTY;
2815
2816	memset(&message, 0, sizeof(message));
2817	message.type = PCI_QUERY_BUS_RELATIONS;
2818
2819	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2820			       0, VM_PKT_DATA_INBAND, 0);
2821	if (!ret)
2822		ret = wait_for_response(hdev, &comp);
2823
2824	return ret;
2825}
2826
2827/**
2828 * hv_send_resources_allocated() - Report local resource choices
2829 * @hdev:	VMBus's tracking struct for this root PCI bus
2830 *
2831 * The host OS is expecting to be sent a request as a message
2832 * which contains all the resources that the device will use.
2833 * The response contains those same resources, "translated"
2834 * which is to say, the values which should be used by the
2835 * hardware, when it delivers an interrupt.  (MMIO resources are
2836 * used in local terms.)  This is nice for Windows, and lines up
2837 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2838 * is deeply expecting to scan an emulated PCI configuration
2839 * space.  So this message is sent here only to drive the state
2840 * machine on the host forward.
2841 *
2842 * Return: 0 on success, -errno on failure
2843 */
2844static int hv_send_resources_allocated(struct hv_device *hdev)
2845{
2846	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2847	struct pci_resources_assigned *res_assigned;
2848	struct pci_resources_assigned2 *res_assigned2;
2849	struct hv_pci_compl comp_pkt;
2850	struct hv_pci_dev *hpdev;
2851	struct pci_packet *pkt;
2852	size_t size_res;
2853	int wslot;
2854	int ret;
2855
2856	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
2857			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2858
2859	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2860	if (!pkt)
2861		return -ENOMEM;
2862
2863	ret = 0;
2864
2865	for (wslot = 0; wslot < 256; wslot++) {
2866		hpdev = get_pcichild_wslot(hbus, wslot);
2867		if (!hpdev)
2868			continue;
2869
2870		memset(pkt, 0, sizeof(*pkt) + size_res);
2871		init_completion(&comp_pkt.host_event);
2872		pkt->completion_func = hv_pci_generic_compl;
2873		pkt->compl_ctxt = &comp_pkt;
2874
2875		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2876			res_assigned =
2877				(struct pci_resources_assigned *)&pkt->message;
2878			res_assigned->message_type.type =
2879				PCI_RESOURCES_ASSIGNED;
2880			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2881		} else {
2882			res_assigned2 =
2883				(struct pci_resources_assigned2 *)&pkt->message;
2884			res_assigned2->message_type.type =
2885				PCI_RESOURCES_ASSIGNED2;
2886			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2887		}
2888		put_pcichild(hpdev);
2889
2890		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2891				size_res, (unsigned long)pkt,
2892				VM_PKT_DATA_INBAND,
2893				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2894		if (!ret)
2895			ret = wait_for_response(hdev, &comp_pkt.host_event);
2896		if (ret)
2897			break;
2898
2899		if (comp_pkt.completion_status < 0) {
2900			ret = -EPROTO;
2901			dev_err(&hdev->device,
2902				"resource allocated returned 0x%x",
2903				comp_pkt.completion_status);
2904			break;
2905		}
2906
2907		hbus->wslot_res_allocated = wslot;
2908	}
2909
2910	kfree(pkt);
2911	return ret;
2912}
2913
2914/**
2915 * hv_send_resources_released() - Report local resources
2916 * released
2917 * @hdev:	VMBus's tracking struct for this root PCI bus
2918 *
2919 * Return: 0 on success, -errno on failure
2920 */
2921static int hv_send_resources_released(struct hv_device *hdev)
2922{
2923	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2924	struct pci_child_message pkt;
2925	struct hv_pci_dev *hpdev;
2926	int wslot;
2927	int ret;
2928
2929	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
2930		hpdev = get_pcichild_wslot(hbus, wslot);
2931		if (!hpdev)
2932			continue;
2933
2934		memset(&pkt, 0, sizeof(pkt));
2935		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2936		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2937
2938		put_pcichild(hpdev);
2939
2940		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2941				       VM_PKT_DATA_INBAND, 0);
2942		if (ret)
2943			return ret;
2944
2945		hbus->wslot_res_allocated = wslot - 1;
2946	}
2947
2948	hbus->wslot_res_allocated = -1;
 
2949
2950	return 0;
 
 
 
 
 
 
 
 
2951}
2952
2953#define HVPCI_DOM_MAP_SIZE (64 * 1024)
2954static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2955
2956/*
2957 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2958 * as invalid for passthrough PCI devices of this driver.
2959 */
2960#define HVPCI_DOM_INVALID 0
2961
2962/**
2963 * hv_get_dom_num() - Get a valid PCI domain number
2964 * Check if the PCI domain number is in use, and return another number if
2965 * it is in use.
2966 *
2967 * @dom: Requested domain number
2968 *
2969 * return: domain number on success, HVPCI_DOM_INVALID on failure
2970 */
2971static u16 hv_get_dom_num(u16 dom)
2972{
2973	unsigned int i;
2974
2975	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
2976		return dom;
2977
2978	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
2979		if (test_and_set_bit(i, hvpci_dom_map) == 0)
2980			return i;
2981	}
2982
2983	return HVPCI_DOM_INVALID;
2984}
2985
2986/**
2987 * hv_put_dom_num() - Mark the PCI domain number as free
2988 * @dom: Domain number to be freed
2989 */
2990static void hv_put_dom_num(u16 dom)
2991{
2992	clear_bit(dom, hvpci_dom_map);
2993}
2994
2995/**
2996 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2997 * @hdev:	VMBus's tracking struct for this root PCI bus
2998 * @dev_id:	Identifies the device itself
2999 *
3000 * Return: 0 on success, -errno on failure
3001 */
3002static int hv_pci_probe(struct hv_device *hdev,
3003			const struct hv_vmbus_device_id *dev_id)
3004{
3005	struct hv_pcibus_device *hbus;
3006	u16 dom_req, dom;
3007	char *name;
3008	bool enter_d0_retry = true;
3009	int ret;
3010
3011	/*
3012	 * hv_pcibus_device contains the hypercall arguments for retargeting in
3013	 * hv_irq_unmask(). Those must not cross a page boundary.
3014	 */
3015	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3016
3017	/*
3018	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3019	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3020	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3021	 * alignment of hbus is important because hbus's field
3022	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3023	 *
3024	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3025	 * allocated by the latter is not tracked and scanned by kmemleak, and
3026	 * hence kmemleak reports the pointer contained in the hbus buffer
3027	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3028	 * is tracked by hbus->children) as memory leak (false positive).
3029	 *
3030	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3031	 * used to allocate the hbus buffer and we can avoid the kmemleak false
3032	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3033	 * kmemleak to track and scan the hbus buffer.
3034	 */
3035	hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3036	if (!hbus)
3037		return -ENOMEM;
3038	hbus->state = hv_pcibus_init;
3039	hbus->wslot_res_allocated = -1;
3040
3041	/*
3042	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3043	 * specs. Pull it from the instance ID, to get something usually
3044	 * unique. In rare cases of collision, we will find out another number
3045	 * not in use.
3046	 *
3047	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3048	 * together with this guest driver can guarantee that (1) The only
3049	 * domain used by Gen1 VMs for something that looks like a physical
3050	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3051	 * (2) There will be no overlap between domains (after fixing possible
3052	 * collisions) in the same VM.
3053	 */
3054	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3055	dom = hv_get_dom_num(dom_req);
3056
3057	if (dom == HVPCI_DOM_INVALID) {
3058		dev_err(&hdev->device,
3059			"Unable to use dom# 0x%hx or other numbers", dom_req);
3060		ret = -EINVAL;
3061		goto free_bus;
3062	}
3063
3064	if (dom != dom_req)
3065		dev_info(&hdev->device,
3066			 "PCI dom# 0x%hx has collision, using 0x%hx",
3067			 dom_req, dom);
3068
3069	hbus->sysdata.domain = dom;
3070
3071	hbus->hdev = hdev;
 
3072	INIT_LIST_HEAD(&hbus->children);
3073	INIT_LIST_HEAD(&hbus->dr_list);
3074	INIT_LIST_HEAD(&hbus->resources_for_children);
3075	spin_lock_init(&hbus->config_lock);
3076	spin_lock_init(&hbus->device_list_lock);
3077	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
 
3078	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3079					   hbus->sysdata.domain);
3080	if (!hbus->wq) {
3081		ret = -ENOMEM;
3082		goto free_dom;
3083	}
3084
3085	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3086			 hv_pci_onchannelcallback, hbus);
3087	if (ret)
3088		goto destroy_wq;
3089
3090	hv_set_drvdata(hdev, hbus);
3091
3092	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3093					  ARRAY_SIZE(pci_protocol_versions));
3094	if (ret)
3095		goto close;
3096
3097	ret = hv_allocate_config_window(hbus);
3098	if (ret)
3099		goto close;
3100
3101	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3102				 PCI_CONFIG_MMIO_LENGTH);
3103	if (!hbus->cfg_addr) {
3104		dev_err(&hdev->device,
3105			"Unable to map a virtual address for config space\n");
3106		ret = -ENOMEM;
3107		goto free_config;
3108	}
3109
3110	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3111	if (!name) {
3112		ret = -ENOMEM;
3113		goto unmap;
3114	}
3115
3116	hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
3117	kfree(name);
3118	if (!hbus->sysdata.fwnode) {
3119		ret = -ENOMEM;
3120		goto unmap;
3121	}
3122
3123	ret = hv_pcie_init_irq_domain(hbus);
3124	if (ret)
3125		goto free_fwnode;
3126
3127retry:
3128	ret = hv_pci_query_relations(hdev);
3129	if (ret)
3130		goto free_irq_domain;
3131
3132	ret = hv_pci_enter_d0(hdev);
3133	/*
3134	 * In certain case (Kdump) the pci device of interest was
3135	 * not cleanly shut down and resource is still held on host
3136	 * side, the host could return invalid device status.
3137	 * We need to explicitly request host to release the resource
3138	 * and try to enter D0 again.
3139	 * Since the hv_pci_bus_exit() call releases structures
3140	 * of all its child devices, we need to start the retry from
3141	 * hv_pci_query_relations() call, requesting host to send
3142	 * the synchronous child device relations message before this
3143	 * information is needed in hv_send_resources_allocated()
3144	 * call later.
3145	 */
3146	if (ret == -EPROTO && enter_d0_retry) {
3147		enter_d0_retry = false;
3148
3149		dev_err(&hdev->device, "Retrying D0 Entry\n");
3150
3151		/*
3152		 * Hv_pci_bus_exit() calls hv_send_resources_released()
3153		 * to free up resources of its child devices.
3154		 * In the kdump kernel we need to set the
3155		 * wslot_res_allocated to 255 so it scans all child
3156		 * devices to release resources allocated in the
3157		 * normal kernel before panic happened.
3158		 */
3159		hbus->wslot_res_allocated = 255;
3160		ret = hv_pci_bus_exit(hdev, true);
3161
3162		if (ret == 0)
3163			goto retry;
3164
3165		dev_err(&hdev->device,
3166			"Retrying D0 failed with ret %d\n", ret);
3167	}
3168	if (ret)
3169		goto free_irq_domain;
3170
3171	ret = hv_pci_allocate_bridge_windows(hbus);
3172	if (ret)
3173		goto exit_d0;
3174
3175	ret = hv_send_resources_allocated(hdev);
3176	if (ret)
3177		goto free_windows;
3178
3179	prepopulate_bars(hbus);
3180
3181	hbus->state = hv_pcibus_probed;
3182
3183	ret = create_root_hv_pci_bus(hbus);
3184	if (ret)
3185		goto free_windows;
3186
3187	return 0;
3188
3189free_windows:
3190	hv_pci_free_bridge_windows(hbus);
3191exit_d0:
3192	(void) hv_pci_bus_exit(hdev, true);
3193free_irq_domain:
3194	irq_domain_remove(hbus->irq_domain);
3195free_fwnode:
3196	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3197unmap:
3198	iounmap(hbus->cfg_addr);
3199free_config:
3200	hv_free_config_window(hbus);
3201close:
3202	vmbus_close(hdev->channel);
3203destroy_wq:
3204	destroy_workqueue(hbus->wq);
3205free_dom:
3206	hv_put_dom_num(hbus->sysdata.domain);
3207free_bus:
3208	kfree(hbus);
3209	return ret;
3210}
3211
3212static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3213{
3214	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3215	struct {
3216		struct pci_packet teardown_packet;
3217		u8 buffer[sizeof(struct pci_message)];
3218	} pkt;
 
3219	struct hv_pci_compl comp_pkt;
3220	struct hv_pci_dev *hpdev, *tmp;
3221	unsigned long flags;
3222	int ret;
3223
3224	/*
3225	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3226	 * access the per-channel ringbuffer any longer.
3227	 */
3228	if (hdev->channel->rescind)
3229		return 0;
3230
3231	if (!keep_devs) {
3232		struct list_head removed;
3233
3234		/* Move all present children to the list on stack */
3235		INIT_LIST_HEAD(&removed);
3236		spin_lock_irqsave(&hbus->device_list_lock, flags);
3237		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3238			list_move_tail(&hpdev->list_entry, &removed);
3239		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3240
3241		/* Remove all children in the list */
3242		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3243			list_del(&hpdev->list_entry);
3244			if (hpdev->pci_slot)
3245				pci_destroy_slot(hpdev->pci_slot);
3246			/* For the two refs got in new_pcichild_device() */
3247			put_pcichild(hpdev);
3248			put_pcichild(hpdev);
3249		}
3250	}
3251
3252	ret = hv_send_resources_released(hdev);
3253	if (ret) {
3254		dev_err(&hdev->device,
3255			"Couldn't send resources released packet(s)\n");
3256		return ret;
3257	}
3258
3259	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3260	init_completion(&comp_pkt.host_event);
3261	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3262	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3263	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3264
3265	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3266			       sizeof(struct pci_message),
3267			       (unsigned long)&pkt.teardown_packet,
3268			       VM_PKT_DATA_INBAND,
3269			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3270	if (ret)
3271		return ret;
3272
3273	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
3274		return -ETIMEDOUT;
3275
3276	return 0;
3277}
3278
3279/**
3280 * hv_pci_remove() - Remove routine for this VMBus channel
3281 * @hdev:	VMBus's tracking struct for this root PCI bus
3282 *
3283 * Return: 0 on success, -errno on failure
3284 */
3285static int hv_pci_remove(struct hv_device *hdev)
3286{
3287	struct hv_pcibus_device *hbus;
3288	int ret;
3289
3290	hbus = hv_get_drvdata(hdev);
3291	if (hbus->state == hv_pcibus_installed) {
3292		tasklet_disable(&hdev->channel->callback_event);
3293		hbus->state = hv_pcibus_removing;
3294		tasklet_enable(&hdev->channel->callback_event);
3295		destroy_workqueue(hbus->wq);
3296		hbus->wq = NULL;
3297		/*
3298		 * At this point, no work is running or can be scheduled
3299		 * on hbus-wq. We can't race with hv_pci_devices_present()
3300		 * or hv_pci_eject_device(), it's safe to proceed.
3301		 */
3302
3303		/* Remove the bus from PCI's point of view. */
3304		pci_lock_rescan_remove();
3305		pci_stop_root_bus(hbus->pci_bus);
3306		hv_pci_remove_slots(hbus);
3307		pci_remove_root_bus(hbus->pci_bus);
3308		pci_unlock_rescan_remove();
 
3309	}
3310
3311	ret = hv_pci_bus_exit(hdev, false);
3312
3313	vmbus_close(hdev->channel);
3314
3315	iounmap(hbus->cfg_addr);
3316	hv_free_config_window(hbus);
3317	pci_free_resource_list(&hbus->resources_for_children);
3318	hv_pci_free_bridge_windows(hbus);
3319	irq_domain_remove(hbus->irq_domain);
3320	irq_domain_free_fwnode(hbus->sysdata.fwnode);
 
 
 
3321
3322	hv_put_dom_num(hbus->sysdata.domain);
3323
3324	kfree(hbus);
3325	return ret;
3326}
3327
3328static int hv_pci_suspend(struct hv_device *hdev)
3329{
3330	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3331	enum hv_pcibus_state old_state;
3332	int ret;
3333
3334	/*
3335	 * hv_pci_suspend() must make sure there are no pending work items
3336	 * before calling vmbus_close(), since it runs in a process context
3337	 * as a callback in dpm_suspend().  When it starts to run, the channel
3338	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3339	 * context, can be still running concurrently and scheduling new work
3340	 * items onto hbus->wq in hv_pci_devices_present() and
3341	 * hv_pci_eject_device(), and the work item handlers can access the
3342	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3343	 * the work item handler pci_devices_present_work() ->
3344	 * new_pcichild_device() writes to the vmbus channel.
3345	 *
3346	 * To eliminate the race, hv_pci_suspend() disables the channel
3347	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3348	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3349	 * it knows that no new work item can be scheduled, and then it flushes
3350	 * hbus->wq and safely closes the vmbus channel.
3351	 */
3352	tasklet_disable(&hdev->channel->callback_event);
3353
3354	/* Change the hbus state to prevent new work items. */
3355	old_state = hbus->state;
3356	if (hbus->state == hv_pcibus_installed)
3357		hbus->state = hv_pcibus_removing;
3358
3359	tasklet_enable(&hdev->channel->callback_event);
3360
3361	if (old_state != hv_pcibus_installed)
3362		return -EINVAL;
3363
3364	flush_workqueue(hbus->wq);
3365
3366	ret = hv_pci_bus_exit(hdev, true);
3367	if (ret)
3368		return ret;
3369
3370	vmbus_close(hdev->channel);
3371
3372	return 0;
3373}
3374
3375static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3376{
3377	struct msi_desc *entry;
3378	struct irq_data *irq_data;
3379
3380	for_each_pci_msi_entry(entry, pdev) {
3381		irq_data = irq_get_irq_data(entry->irq);
3382		if (WARN_ON_ONCE(!irq_data))
3383			return -EINVAL;
3384
3385		hv_compose_msi_msg(irq_data, &entry->msg);
3386	}
3387
3388	return 0;
3389}
3390
3391/*
3392 * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
3393 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3394 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3395 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3396 * Table entries.
3397 */
3398static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3399{
3400	pci_walk_bus(hbus->pci_bus, hv_pci_restore_msi_msg, NULL);
3401}
3402
3403static int hv_pci_resume(struct hv_device *hdev)
3404{
3405	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3406	enum pci_protocol_version_t version[1];
3407	int ret;
3408
3409	hbus->state = hv_pcibus_init;
3410
3411	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3412			 hv_pci_onchannelcallback, hbus);
3413	if (ret)
3414		return ret;
3415
3416	/* Only use the version that was in use before hibernation. */
3417	version[0] = hbus->protocol_version;
3418	ret = hv_pci_protocol_negotiation(hdev, version, 1);
3419	if (ret)
3420		goto out;
3421
3422	ret = hv_pci_query_relations(hdev);
3423	if (ret)
3424		goto out;
3425
3426	ret = hv_pci_enter_d0(hdev);
3427	if (ret)
3428		goto out;
3429
3430	ret = hv_send_resources_allocated(hdev);
3431	if (ret)
3432		goto out;
3433
3434	prepopulate_bars(hbus);
3435
3436	hv_pci_restore_msi_state(hbus);
3437
3438	hbus->state = hv_pcibus_installed;
3439	return 0;
3440out:
3441	vmbus_close(hdev->channel);
3442	return ret;
3443}
3444
3445static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3446	/* PCI Pass-through Class ID */
3447	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3448	{ HV_PCIE_GUID, },
3449	{ },
3450};
3451
3452MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3453
3454static struct hv_driver hv_pci_drv = {
3455	.name		= "hv_pci",
3456	.id_table	= hv_pci_id_table,
3457	.probe		= hv_pci_probe,
3458	.remove		= hv_pci_remove,
3459	.suspend	= hv_pci_suspend,
3460	.resume		= hv_pci_resume,
3461};
3462
3463static void __exit exit_hv_pci_drv(void)
3464{
3465	vmbus_driver_unregister(&hv_pci_drv);
3466
3467	hvpci_block_ops.read_block = NULL;
3468	hvpci_block_ops.write_block = NULL;
3469	hvpci_block_ops.reg_blk_invalidate = NULL;
3470}
3471
3472static int __init init_hv_pci_drv(void)
3473{
3474	if (!hv_is_hyperv_initialized())
3475		return -ENODEV;
3476
3477	/* Set the invalid domain number's bit, so it will not be used */
3478	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3479
3480	/* Initialize PCI block r/w interface */
3481	hvpci_block_ops.read_block = hv_read_config_block;
3482	hvpci_block_ops.write_block = hv_write_config_block;
3483	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3484
3485	return vmbus_driver_register(&hv_pci_drv);
3486}
3487
3488module_init(init_hv_pci_drv);
3489module_exit(exit_hv_pci_drv);
3490
3491MODULE_DESCRIPTION("Hyper-V PCI");
3492MODULE_LICENSE("GPL v2");