Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/drivers/char/mem.c
  4 *
  5 *  Copyright (C) 1991, 1992  Linus Torvalds
  6 *
  7 *  Added devfs support.
  8 *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
  9 *  Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
 10 */
 11
 12#include <linux/mm.h>
 13#include <linux/miscdevice.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include <linux/mman.h>
 17#include <linux/random.h>
 18#include <linux/init.h>
 19#include <linux/raw.h>
 20#include <linux/tty.h>
 21#include <linux/capability.h>
 22#include <linux/ptrace.h>
 23#include <linux/device.h>
 24#include <linux/highmem.h>
 25#include <linux/backing-dev.h>
 26#include <linux/shmem_fs.h>
 27#include <linux/splice.h>
 28#include <linux/pfn.h>
 29#include <linux/export.h>
 30#include <linux/io.h>
 31#include <linux/uio.h>
 32#include <linux/uaccess.h>
 33#include <linux/security.h>
 34
 35#ifdef CONFIG_IA64
 36# include <linux/efi.h>
 37#endif
 38
 
 39#define DEVPORT_MINOR	4
 40
 41static inline unsigned long size_inside_page(unsigned long start,
 42					     unsigned long size)
 43{
 44	unsigned long sz;
 45
 46	sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
 47
 48	return min(sz, size);
 49}
 50
 51#ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
 52static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
 53{
 54	return addr + count <= __pa(high_memory);
 55}
 56
 57static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
 58{
 59	return 1;
 60}
 61#endif
 62
 63#ifdef CONFIG_STRICT_DEVMEM
 64static inline int page_is_allowed(unsigned long pfn)
 65{
 66	return devmem_is_allowed(pfn);
 67}
 68static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 69{
 70	u64 from = ((u64)pfn) << PAGE_SHIFT;
 71	u64 to = from + size;
 72	u64 cursor = from;
 73
 74	while (cursor < to) {
 75		if (!devmem_is_allowed(pfn))
 76			return 0;
 77		cursor += PAGE_SIZE;
 78		pfn++;
 79	}
 80	return 1;
 81}
 82#else
 83static inline int page_is_allowed(unsigned long pfn)
 84{
 85	return 1;
 86}
 87static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 88{
 89	return 1;
 90}
 91#endif
 92
 93#ifndef unxlate_dev_mem_ptr
 94#define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
 95void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
 96{
 97}
 98#endif
 99
100static inline bool should_stop_iteration(void)
101{
102	if (need_resched())
103		cond_resched();
104	return fatal_signal_pending(current);
105}
106
107/*
108 * This funcion reads the *physical* memory. The f_pos points directly to the
109 * memory location.
110 */
111static ssize_t read_mem(struct file *file, char __user *buf,
112			size_t count, loff_t *ppos)
113{
114	phys_addr_t p = *ppos;
115	ssize_t read, sz;
116	void *ptr;
117	char *bounce;
118	int err;
119
120	if (p != *ppos)
121		return 0;
122
123	if (!valid_phys_addr_range(p, count))
124		return -EFAULT;
125	read = 0;
126#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
127	/* we don't have page 0 mapped on sparc and m68k.. */
128	if (p < PAGE_SIZE) {
129		sz = size_inside_page(p, count);
130		if (sz > 0) {
131			if (clear_user(buf, sz))
132				return -EFAULT;
133			buf += sz;
134			p += sz;
135			count -= sz;
136			read += sz;
137		}
138	}
139#endif
140
141	bounce = kmalloc(PAGE_SIZE, GFP_KERNEL);
142	if (!bounce)
143		return -ENOMEM;
144
145	while (count > 0) {
146		unsigned long remaining;
147		int allowed, probe;
148
149		sz = size_inside_page(p, count);
150
151		err = -EPERM;
152		allowed = page_is_allowed(p >> PAGE_SHIFT);
153		if (!allowed)
154			goto failed;
155
156		err = -EFAULT;
157		if (allowed == 2) {
158			/* Show zeros for restricted memory. */
159			remaining = clear_user(buf, sz);
160		} else {
161			/*
162			 * On ia64 if a page has been mapped somewhere as
163			 * uncached, then it must also be accessed uncached
164			 * by the kernel or data corruption may occur.
165			 */
166			ptr = xlate_dev_mem_ptr(p);
167			if (!ptr)
168				goto failed;
169
170			probe = probe_kernel_read(bounce, ptr, sz);
171			unxlate_dev_mem_ptr(p, ptr);
172			if (probe)
173				goto failed;
174
175			remaining = copy_to_user(buf, bounce, sz);
176		}
177
178		if (remaining)
179			goto failed;
180
181		buf += sz;
182		p += sz;
183		count -= sz;
184		read += sz;
185		if (should_stop_iteration())
186			break;
187	}
188	kfree(bounce);
189
190	*ppos += read;
191	return read;
192
193failed:
194	kfree(bounce);
195	return err;
196}
197
198static ssize_t write_mem(struct file *file, const char __user *buf,
199			 size_t count, loff_t *ppos)
200{
201	phys_addr_t p = *ppos;
202	ssize_t written, sz;
203	unsigned long copied;
204	void *ptr;
205
206	if (p != *ppos)
207		return -EFBIG;
208
209	if (!valid_phys_addr_range(p, count))
210		return -EFAULT;
211
212	written = 0;
213
214#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
215	/* we don't have page 0 mapped on sparc and m68k.. */
216	if (p < PAGE_SIZE) {
217		sz = size_inside_page(p, count);
218		/* Hmm. Do something? */
219		buf += sz;
220		p += sz;
221		count -= sz;
222		written += sz;
223	}
224#endif
225
226	while (count > 0) {
227		int allowed;
228
229		sz = size_inside_page(p, count);
230
231		allowed = page_is_allowed(p >> PAGE_SHIFT);
232		if (!allowed)
233			return -EPERM;
234
235		/* Skip actual writing when a page is marked as restricted. */
236		if (allowed == 1) {
237			/*
238			 * On ia64 if a page has been mapped somewhere as
239			 * uncached, then it must also be accessed uncached
240			 * by the kernel or data corruption may occur.
241			 */
242			ptr = xlate_dev_mem_ptr(p);
243			if (!ptr) {
244				if (written)
245					break;
246				return -EFAULT;
247			}
248
249			copied = copy_from_user(ptr, buf, sz);
250			unxlate_dev_mem_ptr(p, ptr);
251			if (copied) {
252				written += sz - copied;
253				if (written)
254					break;
255				return -EFAULT;
256			}
257		}
258
259		buf += sz;
260		p += sz;
261		count -= sz;
262		written += sz;
263		if (should_stop_iteration())
264			break;
265	}
266
267	*ppos += written;
268	return written;
269}
270
271int __weak phys_mem_access_prot_allowed(struct file *file,
272	unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
273{
274	return 1;
275}
276
277#ifndef __HAVE_PHYS_MEM_ACCESS_PROT
278
279/*
280 * Architectures vary in how they handle caching for addresses
281 * outside of main memory.
282 *
283 */
284#ifdef pgprot_noncached
285static int uncached_access(struct file *file, phys_addr_t addr)
286{
287#if defined(CONFIG_IA64)
288	/*
289	 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
290	 * attribute aliases.
291	 */
292	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
293#elif defined(CONFIG_MIPS)
294	{
295		extern int __uncached_access(struct file *file,
296					     unsigned long addr);
297
298		return __uncached_access(file, addr);
299	}
300#else
301	/*
302	 * Accessing memory above the top the kernel knows about or through a
303	 * file pointer
304	 * that was marked O_DSYNC will be done non-cached.
305	 */
306	if (file->f_flags & O_DSYNC)
307		return 1;
308	return addr >= __pa(high_memory);
309#endif
310}
311#endif
312
313static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
314				     unsigned long size, pgprot_t vma_prot)
315{
316#ifdef pgprot_noncached
317	phys_addr_t offset = pfn << PAGE_SHIFT;
318
319	if (uncached_access(file, offset))
320		return pgprot_noncached(vma_prot);
321#endif
322	return vma_prot;
323}
324#endif
325
326#ifndef CONFIG_MMU
327static unsigned long get_unmapped_area_mem(struct file *file,
328					   unsigned long addr,
329					   unsigned long len,
330					   unsigned long pgoff,
331					   unsigned long flags)
332{
333	if (!valid_mmap_phys_addr_range(pgoff, len))
334		return (unsigned long) -EINVAL;
335	return pgoff << PAGE_SHIFT;
336}
337
338/* permit direct mmap, for read, write or exec */
339static unsigned memory_mmap_capabilities(struct file *file)
340{
341	return NOMMU_MAP_DIRECT |
342		NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
343}
344
345static unsigned zero_mmap_capabilities(struct file *file)
346{
347	return NOMMU_MAP_COPY;
348}
349
350/* can't do an in-place private mapping if there's no MMU */
351static inline int private_mapping_ok(struct vm_area_struct *vma)
352{
353	return vma->vm_flags & VM_MAYSHARE;
354}
355#else
356
357static inline int private_mapping_ok(struct vm_area_struct *vma)
358{
359	return 1;
360}
361#endif
362
363static const struct vm_operations_struct mmap_mem_ops = {
364#ifdef CONFIG_HAVE_IOREMAP_PROT
365	.access = generic_access_phys
366#endif
367};
368
369static int mmap_mem(struct file *file, struct vm_area_struct *vma)
370{
371	size_t size = vma->vm_end - vma->vm_start;
372	phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
373
374	/* Does it even fit in phys_addr_t? */
375	if (offset >> PAGE_SHIFT != vma->vm_pgoff)
376		return -EINVAL;
377
378	/* It's illegal to wrap around the end of the physical address space. */
379	if (offset + (phys_addr_t)size - 1 < offset)
380		return -EINVAL;
381
382	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
383		return -EINVAL;
384
385	if (!private_mapping_ok(vma))
386		return -ENOSYS;
387
388	if (!range_is_allowed(vma->vm_pgoff, size))
389		return -EPERM;
390
391	if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
392						&vma->vm_page_prot))
393		return -EINVAL;
394
395	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
396						 size,
397						 vma->vm_page_prot);
398
399	vma->vm_ops = &mmap_mem_ops;
400
401	/* Remap-pfn-range will mark the range VM_IO */
402	if (remap_pfn_range(vma,
403			    vma->vm_start,
404			    vma->vm_pgoff,
405			    size,
406			    vma->vm_page_prot)) {
407		return -EAGAIN;
408	}
409	return 0;
410}
411
412static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
413{
414	unsigned long pfn;
415
416	/* Turn a kernel-virtual address into a physical page frame */
417	pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
418
419	/*
420	 * RED-PEN: on some architectures there is more mapped memory than
421	 * available in mem_map which pfn_valid checks for. Perhaps should add a
422	 * new macro here.
423	 *
424	 * RED-PEN: vmalloc is not supported right now.
425	 */
426	if (!pfn_valid(pfn))
427		return -EIO;
428
429	vma->vm_pgoff = pfn;
430	return mmap_mem(file, vma);
431}
432
433/*
434 * This function reads the *virtual* memory as seen by the kernel.
435 */
436static ssize_t read_kmem(struct file *file, char __user *buf,
437			 size_t count, loff_t *ppos)
438{
439	unsigned long p = *ppos;
440	ssize_t low_count, read, sz;
441	char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
442	int err = 0;
443
444	read = 0;
445	if (p < (unsigned long) high_memory) {
446		low_count = count;
447		if (count > (unsigned long)high_memory - p)
448			low_count = (unsigned long)high_memory - p;
449
450#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
451		/* we don't have page 0 mapped on sparc and m68k.. */
452		if (p < PAGE_SIZE && low_count > 0) {
453			sz = size_inside_page(p, low_count);
454			if (clear_user(buf, sz))
455				return -EFAULT;
456			buf += sz;
457			p += sz;
458			read += sz;
459			low_count -= sz;
460			count -= sz;
461		}
462#endif
463		while (low_count > 0) {
464			sz = size_inside_page(p, low_count);
465
466			/*
467			 * On ia64 if a page has been mapped somewhere as
468			 * uncached, then it must also be accessed uncached
469			 * by the kernel or data corruption may occur
470			 */
471			kbuf = xlate_dev_kmem_ptr((void *)p);
472			if (!virt_addr_valid(kbuf))
473				return -ENXIO;
474
475			if (copy_to_user(buf, kbuf, sz))
476				return -EFAULT;
477			buf += sz;
478			p += sz;
479			read += sz;
480			low_count -= sz;
481			count -= sz;
482			if (should_stop_iteration()) {
483				count = 0;
484				break;
485			}
486		}
487	}
488
489	if (count > 0) {
490		kbuf = (char *)__get_free_page(GFP_KERNEL);
491		if (!kbuf)
492			return -ENOMEM;
493		while (count > 0) {
494			sz = size_inside_page(p, count);
495			if (!is_vmalloc_or_module_addr((void *)p)) {
496				err = -ENXIO;
497				break;
498			}
499			sz = vread(kbuf, (char *)p, sz);
500			if (!sz)
501				break;
502			if (copy_to_user(buf, kbuf, sz)) {
503				err = -EFAULT;
504				break;
505			}
506			count -= sz;
507			buf += sz;
508			read += sz;
509			p += sz;
510			if (should_stop_iteration())
511				break;
512		}
513		free_page((unsigned long)kbuf);
514	}
515	*ppos = p;
516	return read ? read : err;
517}
518
519
520static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
521				size_t count, loff_t *ppos)
522{
523	ssize_t written, sz;
524	unsigned long copied;
525
526	written = 0;
527#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
528	/* we don't have page 0 mapped on sparc and m68k.. */
529	if (p < PAGE_SIZE) {
530		sz = size_inside_page(p, count);
531		/* Hmm. Do something? */
532		buf += sz;
533		p += sz;
534		count -= sz;
535		written += sz;
536	}
537#endif
538
539	while (count > 0) {
540		void *ptr;
541
542		sz = size_inside_page(p, count);
543
544		/*
545		 * On ia64 if a page has been mapped somewhere as uncached, then
546		 * it must also be accessed uncached by the kernel or data
547		 * corruption may occur.
548		 */
549		ptr = xlate_dev_kmem_ptr((void *)p);
550		if (!virt_addr_valid(ptr))
551			return -ENXIO;
552
553		copied = copy_from_user(ptr, buf, sz);
554		if (copied) {
555			written += sz - copied;
556			if (written)
557				break;
558			return -EFAULT;
559		}
560		buf += sz;
561		p += sz;
562		count -= sz;
563		written += sz;
564		if (should_stop_iteration())
565			break;
566	}
567
568	*ppos += written;
569	return written;
570}
571
572/*
573 * This function writes to the *virtual* memory as seen by the kernel.
574 */
575static ssize_t write_kmem(struct file *file, const char __user *buf,
576			  size_t count, loff_t *ppos)
577{
578	unsigned long p = *ppos;
579	ssize_t wrote = 0;
580	ssize_t virtr = 0;
581	char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
582	int err = 0;
583
584	if (p < (unsigned long) high_memory) {
585		unsigned long to_write = min_t(unsigned long, count,
586					       (unsigned long)high_memory - p);
587		wrote = do_write_kmem(p, buf, to_write, ppos);
588		if (wrote != to_write)
589			return wrote;
590		p += wrote;
591		buf += wrote;
592		count -= wrote;
593	}
594
595	if (count > 0) {
596		kbuf = (char *)__get_free_page(GFP_KERNEL);
597		if (!kbuf)
598			return wrote ? wrote : -ENOMEM;
599		while (count > 0) {
600			unsigned long sz = size_inside_page(p, count);
601			unsigned long n;
602
603			if (!is_vmalloc_or_module_addr((void *)p)) {
604				err = -ENXIO;
605				break;
606			}
607			n = copy_from_user(kbuf, buf, sz);
608			if (n) {
609				err = -EFAULT;
610				break;
611			}
612			vwrite(kbuf, (char *)p, sz);
613			count -= sz;
614			buf += sz;
615			virtr += sz;
616			p += sz;
617			if (should_stop_iteration())
618				break;
619		}
620		free_page((unsigned long)kbuf);
621	}
622
623	*ppos = p;
624	return virtr + wrote ? : err;
625}
626
627static ssize_t read_port(struct file *file, char __user *buf,
628			 size_t count, loff_t *ppos)
629{
630	unsigned long i = *ppos;
631	char __user *tmp = buf;
632
633	if (!access_ok(buf, count))
634		return -EFAULT;
635	while (count-- > 0 && i < 65536) {
636		if (__put_user(inb(i), tmp) < 0)
637			return -EFAULT;
638		i++;
639		tmp++;
640	}
641	*ppos = i;
642	return tmp-buf;
643}
644
645static ssize_t write_port(struct file *file, const char __user *buf,
646			  size_t count, loff_t *ppos)
647{
648	unsigned long i = *ppos;
649	const char __user *tmp = buf;
650
651	if (!access_ok(buf, count))
652		return -EFAULT;
653	while (count-- > 0 && i < 65536) {
654		char c;
655
656		if (__get_user(c, tmp)) {
657			if (tmp > buf)
658				break;
659			return -EFAULT;
660		}
661		outb(c, i);
662		i++;
663		tmp++;
664	}
665	*ppos = i;
666	return tmp-buf;
667}
668
669static ssize_t read_null(struct file *file, char __user *buf,
670			 size_t count, loff_t *ppos)
671{
672	return 0;
673}
674
675static ssize_t write_null(struct file *file, const char __user *buf,
676			  size_t count, loff_t *ppos)
677{
678	return count;
679}
680
681static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
682{
683	return 0;
684}
685
686static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
687{
688	size_t count = iov_iter_count(from);
689	iov_iter_advance(from, count);
690	return count;
691}
692
693static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
694			struct splice_desc *sd)
695{
696	return sd->len;
697}
698
699static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
700				 loff_t *ppos, size_t len, unsigned int flags)
701{
702	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
703}
704
705static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
706{
707	size_t written = 0;
708
709	while (iov_iter_count(iter)) {
710		size_t chunk = iov_iter_count(iter), n;
711
712		if (chunk > PAGE_SIZE)
713			chunk = PAGE_SIZE;	/* Just for latency reasons */
714		n = iov_iter_zero(chunk, iter);
715		if (!n && iov_iter_count(iter))
716			return written ? written : -EFAULT;
717		written += n;
718		if (signal_pending(current))
719			return written ? written : -ERESTARTSYS;
720		cond_resched();
721	}
722	return written;
723}
724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725static int mmap_zero(struct file *file, struct vm_area_struct *vma)
726{
727#ifndef CONFIG_MMU
728	return -ENOSYS;
729#endif
730	if (vma->vm_flags & VM_SHARED)
731		return shmem_zero_setup(vma);
732	vma_set_anonymous(vma);
733	return 0;
734}
735
736static unsigned long get_unmapped_area_zero(struct file *file,
737				unsigned long addr, unsigned long len,
738				unsigned long pgoff, unsigned long flags)
739{
740#ifdef CONFIG_MMU
741	if (flags & MAP_SHARED) {
742		/*
743		 * mmap_zero() will call shmem_zero_setup() to create a file,
744		 * so use shmem's get_unmapped_area in case it can be huge;
745		 * and pass NULL for file as in mmap.c's get_unmapped_area(),
746		 * so as not to confuse shmem with our handle on "/dev/zero".
747		 */
748		return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
749	}
750
751	/* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
752	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
753#else
754	return -ENOSYS;
755#endif
756}
757
758static ssize_t write_full(struct file *file, const char __user *buf,
759			  size_t count, loff_t *ppos)
760{
761	return -ENOSPC;
762}
763
764/*
765 * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
766 * can fopen() both devices with "a" now.  This was previously impossible.
767 * -- SRB.
768 */
769static loff_t null_lseek(struct file *file, loff_t offset, int orig)
770{
771	return file->f_pos = 0;
772}
773
774/*
775 * The memory devices use the full 32/64 bits of the offset, and so we cannot
776 * check against negative addresses: they are ok. The return value is weird,
777 * though, in that case (0).
778 *
779 * also note that seeking relative to the "end of file" isn't supported:
780 * it has no meaning, so it returns -EINVAL.
781 */
782static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
783{
784	loff_t ret;
785
786	inode_lock(file_inode(file));
787	switch (orig) {
788	case SEEK_CUR:
789		offset += file->f_pos;
790		/* fall through */
791	case SEEK_SET:
792		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
793		if ((unsigned long long)offset >= -MAX_ERRNO) {
794			ret = -EOVERFLOW;
795			break;
796		}
797		file->f_pos = offset;
798		ret = file->f_pos;
799		force_successful_syscall_return();
800		break;
801	default:
802		ret = -EINVAL;
803	}
804	inode_unlock(file_inode(file));
805	return ret;
806}
807
808static int open_port(struct inode *inode, struct file *filp)
809{
 
 
810	if (!capable(CAP_SYS_RAWIO))
811		return -EPERM;
812
813	return security_locked_down(LOCKDOWN_DEV_MEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
814}
815
816#define zero_lseek	null_lseek
817#define full_lseek      null_lseek
818#define write_zero	write_null
819#define write_iter_zero	write_iter_null
820#define open_mem	open_port
821#define open_kmem	open_mem
822
823static const struct file_operations __maybe_unused mem_fops = {
824	.llseek		= memory_lseek,
825	.read		= read_mem,
826	.write		= write_mem,
827	.mmap		= mmap_mem,
828	.open		= open_mem,
829#ifndef CONFIG_MMU
830	.get_unmapped_area = get_unmapped_area_mem,
831	.mmap_capabilities = memory_mmap_capabilities,
832#endif
833};
834
835static const struct file_operations __maybe_unused kmem_fops = {
836	.llseek		= memory_lseek,
837	.read		= read_kmem,
838	.write		= write_kmem,
839	.mmap		= mmap_kmem,
840	.open		= open_kmem,
841#ifndef CONFIG_MMU
842	.get_unmapped_area = get_unmapped_area_mem,
843	.mmap_capabilities = memory_mmap_capabilities,
844#endif
845};
846
847static const struct file_operations null_fops = {
848	.llseek		= null_lseek,
849	.read		= read_null,
850	.write		= write_null,
851	.read_iter	= read_iter_null,
852	.write_iter	= write_iter_null,
853	.splice_write	= splice_write_null,
854};
855
856static const struct file_operations __maybe_unused port_fops = {
857	.llseek		= memory_lseek,
858	.read		= read_port,
859	.write		= write_port,
860	.open		= open_port,
861};
862
863static const struct file_operations zero_fops = {
864	.llseek		= zero_lseek,
865	.write		= write_zero,
866	.read_iter	= read_iter_zero,
 
867	.write_iter	= write_iter_zero,
868	.mmap		= mmap_zero,
869	.get_unmapped_area = get_unmapped_area_zero,
870#ifndef CONFIG_MMU
871	.mmap_capabilities = zero_mmap_capabilities,
872#endif
873};
874
875static const struct file_operations full_fops = {
876	.llseek		= full_lseek,
877	.read_iter	= read_iter_zero,
878	.write		= write_full,
879};
880
881static const struct memdev {
882	const char *name;
883	umode_t mode;
884	const struct file_operations *fops;
885	fmode_t fmode;
886} devlist[] = {
887#ifdef CONFIG_DEVMEM
888	 [1] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
889#endif
890#ifdef CONFIG_DEVKMEM
891	 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
892#endif
893	 [3] = { "null", 0666, &null_fops, 0 },
894#ifdef CONFIG_DEVPORT
895	 [4] = { "port", 0, &port_fops, 0 },
896#endif
897	 [5] = { "zero", 0666, &zero_fops, 0 },
898	 [7] = { "full", 0666, &full_fops, 0 },
899	 [8] = { "random", 0666, &random_fops, 0 },
900	 [9] = { "urandom", 0666, &urandom_fops, 0 },
901#ifdef CONFIG_PRINTK
902	[11] = { "kmsg", 0644, &kmsg_fops, 0 },
903#endif
904};
905
906static int memory_open(struct inode *inode, struct file *filp)
907{
908	int minor;
909	const struct memdev *dev;
910
911	minor = iminor(inode);
912	if (minor >= ARRAY_SIZE(devlist))
913		return -ENXIO;
914
915	dev = &devlist[minor];
916	if (!dev->fops)
917		return -ENXIO;
918
919	filp->f_op = dev->fops;
920	filp->f_mode |= dev->fmode;
921
922	if (dev->fops->open)
923		return dev->fops->open(inode, filp);
924
925	return 0;
926}
927
928static const struct file_operations memory_fops = {
929	.open = memory_open,
930	.llseek = noop_llseek,
931};
932
933static char *mem_devnode(struct device *dev, umode_t *mode)
934{
935	if (mode && devlist[MINOR(dev->devt)].mode)
936		*mode = devlist[MINOR(dev->devt)].mode;
937	return NULL;
938}
939
940static struct class *mem_class;
941
942static int __init chr_dev_init(void)
943{
944	int minor;
945
946	if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
947		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
948
949	mem_class = class_create(THIS_MODULE, "mem");
950	if (IS_ERR(mem_class))
951		return PTR_ERR(mem_class);
952
953	mem_class->devnode = mem_devnode;
954	for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
955		if (!devlist[minor].name)
956			continue;
957
958		/*
959		 * Create /dev/port?
960		 */
961		if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
962			continue;
963
964		device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
965			      NULL, devlist[minor].name);
966	}
967
968	return tty_init();
969}
970
971fs_initcall(chr_dev_init);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/drivers/char/mem.c
  4 *
  5 *  Copyright (C) 1991, 1992  Linus Torvalds
  6 *
  7 *  Added devfs support.
  8 *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
  9 *  Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
 10 */
 11
 12#include <linux/mm.h>
 13#include <linux/miscdevice.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include <linux/mman.h>
 17#include <linux/random.h>
 18#include <linux/init.h>
 
 19#include <linux/tty.h>
 20#include <linux/capability.h>
 21#include <linux/ptrace.h>
 22#include <linux/device.h>
 23#include <linux/highmem.h>
 24#include <linux/backing-dev.h>
 25#include <linux/shmem_fs.h>
 26#include <linux/splice.h>
 27#include <linux/pfn.h>
 28#include <linux/export.h>
 29#include <linux/io.h>
 30#include <linux/uio.h>
 31#include <linux/uaccess.h>
 32#include <linux/security.h>
 33
 34#ifdef CONFIG_IA64
 35# include <linux/efi.h>
 36#endif
 37
 38#define DEVMEM_MINOR	1
 39#define DEVPORT_MINOR	4
 40
 41static inline unsigned long size_inside_page(unsigned long start,
 42					     unsigned long size)
 43{
 44	unsigned long sz;
 45
 46	sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
 47
 48	return min(sz, size);
 49}
 50
 51#ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
 52static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
 53{
 54	return addr + count <= __pa(high_memory);
 55}
 56
 57static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
 58{
 59	return 1;
 60}
 61#endif
 62
 63#ifdef CONFIG_STRICT_DEVMEM
 64static inline int page_is_allowed(unsigned long pfn)
 65{
 66	return devmem_is_allowed(pfn);
 67}
 68static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 69{
 70	u64 from = ((u64)pfn) << PAGE_SHIFT;
 71	u64 to = from + size;
 72	u64 cursor = from;
 73
 74	while (cursor < to) {
 75		if (!devmem_is_allowed(pfn))
 76			return 0;
 77		cursor += PAGE_SIZE;
 78		pfn++;
 79	}
 80	return 1;
 81}
 82#else
 83static inline int page_is_allowed(unsigned long pfn)
 84{
 85	return 1;
 86}
 87static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 88{
 89	return 1;
 90}
 91#endif
 92
 93#ifndef unxlate_dev_mem_ptr
 94#define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
 95void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
 96{
 97}
 98#endif
 99
100static inline bool should_stop_iteration(void)
101{
102	if (need_resched())
103		cond_resched();
104	return fatal_signal_pending(current);
105}
106
107/*
108 * This funcion reads the *physical* memory. The f_pos points directly to the
109 * memory location.
110 */
111static ssize_t read_mem(struct file *file, char __user *buf,
112			size_t count, loff_t *ppos)
113{
114	phys_addr_t p = *ppos;
115	ssize_t read, sz;
116	void *ptr;
117	char *bounce;
118	int err;
119
120	if (p != *ppos)
121		return 0;
122
123	if (!valid_phys_addr_range(p, count))
124		return -EFAULT;
125	read = 0;
126#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
127	/* we don't have page 0 mapped on sparc and m68k.. */
128	if (p < PAGE_SIZE) {
129		sz = size_inside_page(p, count);
130		if (sz > 0) {
131			if (clear_user(buf, sz))
132				return -EFAULT;
133			buf += sz;
134			p += sz;
135			count -= sz;
136			read += sz;
137		}
138	}
139#endif
140
141	bounce = kmalloc(PAGE_SIZE, GFP_KERNEL);
142	if (!bounce)
143		return -ENOMEM;
144
145	while (count > 0) {
146		unsigned long remaining;
147		int allowed, probe;
148
149		sz = size_inside_page(p, count);
150
151		err = -EPERM;
152		allowed = page_is_allowed(p >> PAGE_SHIFT);
153		if (!allowed)
154			goto failed;
155
156		err = -EFAULT;
157		if (allowed == 2) {
158			/* Show zeros for restricted memory. */
159			remaining = clear_user(buf, sz);
160		} else {
161			/*
162			 * On ia64 if a page has been mapped somewhere as
163			 * uncached, then it must also be accessed uncached
164			 * by the kernel or data corruption may occur.
165			 */
166			ptr = xlate_dev_mem_ptr(p);
167			if (!ptr)
168				goto failed;
169
170			probe = copy_from_kernel_nofault(bounce, ptr, sz);
171			unxlate_dev_mem_ptr(p, ptr);
172			if (probe)
173				goto failed;
174
175			remaining = copy_to_user(buf, bounce, sz);
176		}
177
178		if (remaining)
179			goto failed;
180
181		buf += sz;
182		p += sz;
183		count -= sz;
184		read += sz;
185		if (should_stop_iteration())
186			break;
187	}
188	kfree(bounce);
189
190	*ppos += read;
191	return read;
192
193failed:
194	kfree(bounce);
195	return err;
196}
197
198static ssize_t write_mem(struct file *file, const char __user *buf,
199			 size_t count, loff_t *ppos)
200{
201	phys_addr_t p = *ppos;
202	ssize_t written, sz;
203	unsigned long copied;
204	void *ptr;
205
206	if (p != *ppos)
207		return -EFBIG;
208
209	if (!valid_phys_addr_range(p, count))
210		return -EFAULT;
211
212	written = 0;
213
214#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
215	/* we don't have page 0 mapped on sparc and m68k.. */
216	if (p < PAGE_SIZE) {
217		sz = size_inside_page(p, count);
218		/* Hmm. Do something? */
219		buf += sz;
220		p += sz;
221		count -= sz;
222		written += sz;
223	}
224#endif
225
226	while (count > 0) {
227		int allowed;
228
229		sz = size_inside_page(p, count);
230
231		allowed = page_is_allowed(p >> PAGE_SHIFT);
232		if (!allowed)
233			return -EPERM;
234
235		/* Skip actual writing when a page is marked as restricted. */
236		if (allowed == 1) {
237			/*
238			 * On ia64 if a page has been mapped somewhere as
239			 * uncached, then it must also be accessed uncached
240			 * by the kernel or data corruption may occur.
241			 */
242			ptr = xlate_dev_mem_ptr(p);
243			if (!ptr) {
244				if (written)
245					break;
246				return -EFAULT;
247			}
248
249			copied = copy_from_user(ptr, buf, sz);
250			unxlate_dev_mem_ptr(p, ptr);
251			if (copied) {
252				written += sz - copied;
253				if (written)
254					break;
255				return -EFAULT;
256			}
257		}
258
259		buf += sz;
260		p += sz;
261		count -= sz;
262		written += sz;
263		if (should_stop_iteration())
264			break;
265	}
266
267	*ppos += written;
268	return written;
269}
270
271int __weak phys_mem_access_prot_allowed(struct file *file,
272	unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
273{
274	return 1;
275}
276
277#ifndef __HAVE_PHYS_MEM_ACCESS_PROT
278
279/*
280 * Architectures vary in how they handle caching for addresses
281 * outside of main memory.
282 *
283 */
284#ifdef pgprot_noncached
285static int uncached_access(struct file *file, phys_addr_t addr)
286{
287#if defined(CONFIG_IA64)
288	/*
289	 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
290	 * attribute aliases.
291	 */
292	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
 
 
 
 
 
 
 
293#else
294	/*
295	 * Accessing memory above the top the kernel knows about or through a
296	 * file pointer
297	 * that was marked O_DSYNC will be done non-cached.
298	 */
299	if (file->f_flags & O_DSYNC)
300		return 1;
301	return addr >= __pa(high_memory);
302#endif
303}
304#endif
305
306static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
307				     unsigned long size, pgprot_t vma_prot)
308{
309#ifdef pgprot_noncached
310	phys_addr_t offset = pfn << PAGE_SHIFT;
311
312	if (uncached_access(file, offset))
313		return pgprot_noncached(vma_prot);
314#endif
315	return vma_prot;
316}
317#endif
318
319#ifndef CONFIG_MMU
320static unsigned long get_unmapped_area_mem(struct file *file,
321					   unsigned long addr,
322					   unsigned long len,
323					   unsigned long pgoff,
324					   unsigned long flags)
325{
326	if (!valid_mmap_phys_addr_range(pgoff, len))
327		return (unsigned long) -EINVAL;
328	return pgoff << PAGE_SHIFT;
329}
330
331/* permit direct mmap, for read, write or exec */
332static unsigned memory_mmap_capabilities(struct file *file)
333{
334	return NOMMU_MAP_DIRECT |
335		NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
336}
337
338static unsigned zero_mmap_capabilities(struct file *file)
339{
340	return NOMMU_MAP_COPY;
341}
342
343/* can't do an in-place private mapping if there's no MMU */
344static inline int private_mapping_ok(struct vm_area_struct *vma)
345{
346	return vma->vm_flags & VM_MAYSHARE;
347}
348#else
349
350static inline int private_mapping_ok(struct vm_area_struct *vma)
351{
352	return 1;
353}
354#endif
355
356static const struct vm_operations_struct mmap_mem_ops = {
357#ifdef CONFIG_HAVE_IOREMAP_PROT
358	.access = generic_access_phys
359#endif
360};
361
362static int mmap_mem(struct file *file, struct vm_area_struct *vma)
363{
364	size_t size = vma->vm_end - vma->vm_start;
365	phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
366
367	/* Does it even fit in phys_addr_t? */
368	if (offset >> PAGE_SHIFT != vma->vm_pgoff)
369		return -EINVAL;
370
371	/* It's illegal to wrap around the end of the physical address space. */
372	if (offset + (phys_addr_t)size - 1 < offset)
373		return -EINVAL;
374
375	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
376		return -EINVAL;
377
378	if (!private_mapping_ok(vma))
379		return -ENOSYS;
380
381	if (!range_is_allowed(vma->vm_pgoff, size))
382		return -EPERM;
383
384	if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
385						&vma->vm_page_prot))
386		return -EINVAL;
387
388	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
389						 size,
390						 vma->vm_page_prot);
391
392	vma->vm_ops = &mmap_mem_ops;
393
394	/* Remap-pfn-range will mark the range VM_IO */
395	if (remap_pfn_range(vma,
396			    vma->vm_start,
397			    vma->vm_pgoff,
398			    size,
399			    vma->vm_page_prot)) {
400		return -EAGAIN;
401	}
402	return 0;
403}
404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405static ssize_t read_port(struct file *file, char __user *buf,
406			 size_t count, loff_t *ppos)
407{
408	unsigned long i = *ppos;
409	char __user *tmp = buf;
410
411	if (!access_ok(buf, count))
412		return -EFAULT;
413	while (count-- > 0 && i < 65536) {
414		if (__put_user(inb(i), tmp) < 0)
415			return -EFAULT;
416		i++;
417		tmp++;
418	}
419	*ppos = i;
420	return tmp-buf;
421}
422
423static ssize_t write_port(struct file *file, const char __user *buf,
424			  size_t count, loff_t *ppos)
425{
426	unsigned long i = *ppos;
427	const char __user *tmp = buf;
428
429	if (!access_ok(buf, count))
430		return -EFAULT;
431	while (count-- > 0 && i < 65536) {
432		char c;
433
434		if (__get_user(c, tmp)) {
435			if (tmp > buf)
436				break;
437			return -EFAULT;
438		}
439		outb(c, i);
440		i++;
441		tmp++;
442	}
443	*ppos = i;
444	return tmp-buf;
445}
446
447static ssize_t read_null(struct file *file, char __user *buf,
448			 size_t count, loff_t *ppos)
449{
450	return 0;
451}
452
453static ssize_t write_null(struct file *file, const char __user *buf,
454			  size_t count, loff_t *ppos)
455{
456	return count;
457}
458
459static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
460{
461	return 0;
462}
463
464static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
465{
466	size_t count = iov_iter_count(from);
467	iov_iter_advance(from, count);
468	return count;
469}
470
471static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
472			struct splice_desc *sd)
473{
474	return sd->len;
475}
476
477static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
478				 loff_t *ppos, size_t len, unsigned int flags)
479{
480	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
481}
482
483static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
484{
485	size_t written = 0;
486
487	while (iov_iter_count(iter)) {
488		size_t chunk = iov_iter_count(iter), n;
489
490		if (chunk > PAGE_SIZE)
491			chunk = PAGE_SIZE;	/* Just for latency reasons */
492		n = iov_iter_zero(chunk, iter);
493		if (!n && iov_iter_count(iter))
494			return written ? written : -EFAULT;
495		written += n;
496		if (signal_pending(current))
497			return written ? written : -ERESTARTSYS;
498		cond_resched();
499	}
500	return written;
501}
502
503static ssize_t read_zero(struct file *file, char __user *buf,
504			 size_t count, loff_t *ppos)
505{
506	size_t cleared = 0;
507
508	while (count) {
509		size_t chunk = min_t(size_t, count, PAGE_SIZE);
510		size_t left;
511
512		left = clear_user(buf + cleared, chunk);
513		if (unlikely(left)) {
514			cleared += (chunk - left);
515			if (!cleared)
516				return -EFAULT;
517			break;
518		}
519		cleared += chunk;
520		count -= chunk;
521
522		if (signal_pending(current))
523			break;
524		cond_resched();
525	}
526
527	return cleared;
528}
529
530static int mmap_zero(struct file *file, struct vm_area_struct *vma)
531{
532#ifndef CONFIG_MMU
533	return -ENOSYS;
534#endif
535	if (vma->vm_flags & VM_SHARED)
536		return shmem_zero_setup(vma);
537	vma_set_anonymous(vma);
538	return 0;
539}
540
541static unsigned long get_unmapped_area_zero(struct file *file,
542				unsigned long addr, unsigned long len,
543				unsigned long pgoff, unsigned long flags)
544{
545#ifdef CONFIG_MMU
546	if (flags & MAP_SHARED) {
547		/*
548		 * mmap_zero() will call shmem_zero_setup() to create a file,
549		 * so use shmem's get_unmapped_area in case it can be huge;
550		 * and pass NULL for file as in mmap.c's get_unmapped_area(),
551		 * so as not to confuse shmem with our handle on "/dev/zero".
552		 */
553		return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
554	}
555
556	/* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
557	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
558#else
559	return -ENOSYS;
560#endif
561}
562
563static ssize_t write_full(struct file *file, const char __user *buf,
564			  size_t count, loff_t *ppos)
565{
566	return -ENOSPC;
567}
568
569/*
570 * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
571 * can fopen() both devices with "a" now.  This was previously impossible.
572 * -- SRB.
573 */
574static loff_t null_lseek(struct file *file, loff_t offset, int orig)
575{
576	return file->f_pos = 0;
577}
578
579/*
580 * The memory devices use the full 32/64 bits of the offset, and so we cannot
581 * check against negative addresses: they are ok. The return value is weird,
582 * though, in that case (0).
583 *
584 * also note that seeking relative to the "end of file" isn't supported:
585 * it has no meaning, so it returns -EINVAL.
586 */
587static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
588{
589	loff_t ret;
590
591	inode_lock(file_inode(file));
592	switch (orig) {
593	case SEEK_CUR:
594		offset += file->f_pos;
595		fallthrough;
596	case SEEK_SET:
597		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
598		if ((unsigned long long)offset >= -MAX_ERRNO) {
599			ret = -EOVERFLOW;
600			break;
601		}
602		file->f_pos = offset;
603		ret = file->f_pos;
604		force_successful_syscall_return();
605		break;
606	default:
607		ret = -EINVAL;
608	}
609	inode_unlock(file_inode(file));
610	return ret;
611}
612
613static int open_port(struct inode *inode, struct file *filp)
614{
615	int rc;
616
617	if (!capable(CAP_SYS_RAWIO))
618		return -EPERM;
619
620	rc = security_locked_down(LOCKDOWN_DEV_MEM);
621	if (rc)
622		return rc;
623
624	if (iminor(inode) != DEVMEM_MINOR)
625		return 0;
626
627	/*
628	 * Use a unified address space to have a single point to manage
629	 * revocations when drivers want to take over a /dev/mem mapped
630	 * range.
631	 */
632	filp->f_mapping = iomem_get_mapping();
633
634	return 0;
635}
636
637#define zero_lseek	null_lseek
638#define full_lseek      null_lseek
639#define write_zero	write_null
640#define write_iter_zero	write_iter_null
641#define open_mem	open_port
 
642
643static const struct file_operations __maybe_unused mem_fops = {
644	.llseek		= memory_lseek,
645	.read		= read_mem,
646	.write		= write_mem,
647	.mmap		= mmap_mem,
648	.open		= open_mem,
649#ifndef CONFIG_MMU
650	.get_unmapped_area = get_unmapped_area_mem,
651	.mmap_capabilities = memory_mmap_capabilities,
652#endif
653};
654
 
 
 
 
 
 
 
 
 
 
 
 
655static const struct file_operations null_fops = {
656	.llseek		= null_lseek,
657	.read		= read_null,
658	.write		= write_null,
659	.read_iter	= read_iter_null,
660	.write_iter	= write_iter_null,
661	.splice_write	= splice_write_null,
662};
663
664static const struct file_operations __maybe_unused port_fops = {
665	.llseek		= memory_lseek,
666	.read		= read_port,
667	.write		= write_port,
668	.open		= open_port,
669};
670
671static const struct file_operations zero_fops = {
672	.llseek		= zero_lseek,
673	.write		= write_zero,
674	.read_iter	= read_iter_zero,
675	.read		= read_zero,
676	.write_iter	= write_iter_zero,
677	.mmap		= mmap_zero,
678	.get_unmapped_area = get_unmapped_area_zero,
679#ifndef CONFIG_MMU
680	.mmap_capabilities = zero_mmap_capabilities,
681#endif
682};
683
684static const struct file_operations full_fops = {
685	.llseek		= full_lseek,
686	.read_iter	= read_iter_zero,
687	.write		= write_full,
688};
689
690static const struct memdev {
691	const char *name;
692	umode_t mode;
693	const struct file_operations *fops;
694	fmode_t fmode;
695} devlist[] = {
696#ifdef CONFIG_DEVMEM
697	 [DEVMEM_MINOR] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
 
 
 
698#endif
699	 [3] = { "null", 0666, &null_fops, 0 },
700#ifdef CONFIG_DEVPORT
701	 [4] = { "port", 0, &port_fops, 0 },
702#endif
703	 [5] = { "zero", 0666, &zero_fops, 0 },
704	 [7] = { "full", 0666, &full_fops, 0 },
705	 [8] = { "random", 0666, &random_fops, 0 },
706	 [9] = { "urandom", 0666, &urandom_fops, 0 },
707#ifdef CONFIG_PRINTK
708	[11] = { "kmsg", 0644, &kmsg_fops, 0 },
709#endif
710};
711
712static int memory_open(struct inode *inode, struct file *filp)
713{
714	int minor;
715	const struct memdev *dev;
716
717	minor = iminor(inode);
718	if (minor >= ARRAY_SIZE(devlist))
719		return -ENXIO;
720
721	dev = &devlist[minor];
722	if (!dev->fops)
723		return -ENXIO;
724
725	filp->f_op = dev->fops;
726	filp->f_mode |= dev->fmode;
727
728	if (dev->fops->open)
729		return dev->fops->open(inode, filp);
730
731	return 0;
732}
733
734static const struct file_operations memory_fops = {
735	.open = memory_open,
736	.llseek = noop_llseek,
737};
738
739static char *mem_devnode(struct device *dev, umode_t *mode)
740{
741	if (mode && devlist[MINOR(dev->devt)].mode)
742		*mode = devlist[MINOR(dev->devt)].mode;
743	return NULL;
744}
745
746static struct class *mem_class;
747
748static int __init chr_dev_init(void)
749{
750	int minor;
751
752	if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
753		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
754
755	mem_class = class_create(THIS_MODULE, "mem");
756	if (IS_ERR(mem_class))
757		return PTR_ERR(mem_class);
758
759	mem_class->devnode = mem_devnode;
760	for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
761		if (!devlist[minor].name)
762			continue;
763
764		/*
765		 * Create /dev/port?
766		 */
767		if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
768			continue;
769
770		device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
771			      NULL, devlist[minor].name);
772	}
773
774	return tty_init();
775}
776
777fs_initcall(chr_dev_init);