Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
21 */
22#include <linux/linkage.h>
23#include <asm/segment.h>
24#include <asm/cache.h>
25#include <asm/errno.h>
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <asm/export.h>
39#include <asm/frame.h>
40#include <asm/nospec-branch.h>
41#include <linux/err.h>
42
43#include "calling.h"
44
45.code64
46.section .entry.text, "ax"
47
48#ifdef CONFIG_PARAVIRT
49ENTRY(native_usergs_sysret64)
50 UNWIND_HINT_EMPTY
51 swapgs
52 sysretq
53END(native_usergs_sysret64)
54#endif /* CONFIG_PARAVIRT */
55
56.macro TRACE_IRQS_FLAGS flags:req
57#ifdef CONFIG_TRACE_IRQFLAGS
58 btl $9, \flags /* interrupts off? */
59 jnc 1f
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
65.macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67.endm
68
69/*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82.macro TRACE_IRQS_OFF_DEBUG
83 call debug_stack_set_zero
84 TRACE_IRQS_OFF
85 call debug_stack_reset
86.endm
87
88.macro TRACE_IRQS_ON_DEBUG
89 call debug_stack_set_zero
90 TRACE_IRQS_ON
91 call debug_stack_reset
92.endm
93
94.macro TRACE_IRQS_IRETQ_DEBUG
95 btl $9, EFLAGS(%rsp) /* interrupts off? */
96 jnc 1f
97 TRACE_IRQS_ON_DEBUG
981:
99.endm
100
101#else
102# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
105#endif
106
107/*
108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
109 *
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
127 * rax system call number
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
130 * rdi arg0
131 * rsi arg1
132 * rdx arg2
133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
134 * r8 arg4
135 * r9 arg5
136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137 *
138 * Only called from user space.
139 *
140 * When user can change pt_regs->foo always force IRET. That is because
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
143 */
144
145ENTRY(entry_SYSCALL_64)
146 UNWIND_HINT_EMPTY
147 /*
148 * Interrupts are off on entry.
149 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
150 * it is too small to ever cause noticeable irq latency.
151 */
152
153 swapgs
154 /* tss.sp2 is scratch space. */
155 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
156 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
157 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
158
159 /* Construct struct pt_regs on stack */
160 pushq $__USER_DS /* pt_regs->ss */
161 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
162 pushq %r11 /* pt_regs->flags */
163 pushq $__USER_CS /* pt_regs->cs */
164 pushq %rcx /* pt_regs->ip */
165GLOBAL(entry_SYSCALL_64_after_hwframe)
166 pushq %rax /* pt_regs->orig_ax */
167
168 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
169
170 TRACE_IRQS_OFF
171
172 /* IRQs are off. */
173 movq %rax, %rdi
174 movq %rsp, %rsi
175 call do_syscall_64 /* returns with IRQs disabled */
176
177 TRACE_IRQS_IRETQ /* we're about to change IF */
178
179 /*
180 * Try to use SYSRET instead of IRET if we're returning to
181 * a completely clean 64-bit userspace context. If we're not,
182 * go to the slow exit path.
183 */
184 movq RCX(%rsp), %rcx
185 movq RIP(%rsp), %r11
186
187 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
188 jne swapgs_restore_regs_and_return_to_usermode
189
190 /*
191 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
192 * in kernel space. This essentially lets the user take over
193 * the kernel, since userspace controls RSP.
194 *
195 * If width of "canonical tail" ever becomes variable, this will need
196 * to be updated to remain correct on both old and new CPUs.
197 *
198 * Change top bits to match most significant bit (47th or 56th bit
199 * depending on paging mode) in the address.
200 */
201#ifdef CONFIG_X86_5LEVEL
202 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
203 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
204#else
205 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
206 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
207#endif
208
209 /* If this changed %rcx, it was not canonical */
210 cmpq %rcx, %r11
211 jne swapgs_restore_regs_and_return_to_usermode
212
213 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
214 jne swapgs_restore_regs_and_return_to_usermode
215
216 movq R11(%rsp), %r11
217 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
218 jne swapgs_restore_regs_and_return_to_usermode
219
220 /*
221 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
222 * restore RF properly. If the slowpath sets it for whatever reason, we
223 * need to restore it correctly.
224 *
225 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
226 * trap from userspace immediately after SYSRET. This would cause an
227 * infinite loop whenever #DB happens with register state that satisfies
228 * the opportunistic SYSRET conditions. For example, single-stepping
229 * this user code:
230 *
231 * movq $stuck_here, %rcx
232 * pushfq
233 * popq %r11
234 * stuck_here:
235 *
236 * would never get past 'stuck_here'.
237 */
238 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
239 jnz swapgs_restore_regs_and_return_to_usermode
240
241 /* nothing to check for RSP */
242
243 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
244 jne swapgs_restore_regs_and_return_to_usermode
245
246 /*
247 * We win! This label is here just for ease of understanding
248 * perf profiles. Nothing jumps here.
249 */
250syscall_return_via_sysret:
251 /* rcx and r11 are already restored (see code above) */
252 UNWIND_HINT_EMPTY
253 POP_REGS pop_rdi=0 skip_r11rcx=1
254
255 /*
256 * Now all regs are restored except RSP and RDI.
257 * Save old stack pointer and switch to trampoline stack.
258 */
259 movq %rsp, %rdi
260 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
261
262 pushq RSP-RDI(%rdi) /* RSP */
263 pushq (%rdi) /* RDI */
264
265 /*
266 * We are on the trampoline stack. All regs except RDI are live.
267 * We can do future final exit work right here.
268 */
269 STACKLEAK_ERASE_NOCLOBBER
270
271 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
272
273 popq %rdi
274 popq %rsp
275 USERGS_SYSRET64
276END(entry_SYSCALL_64)
277
278/*
279 * %rdi: prev task
280 * %rsi: next task
281 */
282ENTRY(__switch_to_asm)
283 UNWIND_HINT_FUNC
284 /*
285 * Save callee-saved registers
286 * This must match the order in inactive_task_frame
287 */
288 pushq %rbp
289 pushq %rbx
290 pushq %r12
291 pushq %r13
292 pushq %r14
293 pushq %r15
294
295 /* switch stack */
296 movq %rsp, TASK_threadsp(%rdi)
297 movq TASK_threadsp(%rsi), %rsp
298
299#ifdef CONFIG_STACKPROTECTOR
300 movq TASK_stack_canary(%rsi), %rbx
301 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
302#endif
303
304#ifdef CONFIG_RETPOLINE
305 /*
306 * When switching from a shallower to a deeper call stack
307 * the RSB may either underflow or use entries populated
308 * with userspace addresses. On CPUs where those concerns
309 * exist, overwrite the RSB with entries which capture
310 * speculative execution to prevent attack.
311 */
312 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
313#endif
314
315 /* restore callee-saved registers */
316 popq %r15
317 popq %r14
318 popq %r13
319 popq %r12
320 popq %rbx
321 popq %rbp
322
323 jmp __switch_to
324END(__switch_to_asm)
325
326/*
327 * A newly forked process directly context switches into this address.
328 *
329 * rax: prev task we switched from
330 * rbx: kernel thread func (NULL for user thread)
331 * r12: kernel thread arg
332 */
333ENTRY(ret_from_fork)
334 UNWIND_HINT_EMPTY
335 movq %rax, %rdi
336 call schedule_tail /* rdi: 'prev' task parameter */
337
338 testq %rbx, %rbx /* from kernel_thread? */
339 jnz 1f /* kernel threads are uncommon */
340
3412:
342 UNWIND_HINT_REGS
343 movq %rsp, %rdi
344 call syscall_return_slowpath /* returns with IRQs disabled */
345 TRACE_IRQS_ON /* user mode is traced as IRQS on */
346 jmp swapgs_restore_regs_and_return_to_usermode
347
3481:
349 /* kernel thread */
350 UNWIND_HINT_EMPTY
351 movq %r12, %rdi
352 CALL_NOSPEC %rbx
353 /*
354 * A kernel thread is allowed to return here after successfully
355 * calling do_execve(). Exit to userspace to complete the execve()
356 * syscall.
357 */
358 movq $0, RAX(%rsp)
359 jmp 2b
360END(ret_from_fork)
361
362/*
363 * Build the entry stubs with some assembler magic.
364 * We pack 1 stub into every 8-byte block.
365 */
366 .align 8
367ENTRY(irq_entries_start)
368 vector=FIRST_EXTERNAL_VECTOR
369 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
370 UNWIND_HINT_IRET_REGS
371 pushq $(~vector+0x80) /* Note: always in signed byte range */
372 jmp common_interrupt
373 .align 8
374 vector=vector+1
375 .endr
376END(irq_entries_start)
377
378 .align 8
379ENTRY(spurious_entries_start)
380 vector=FIRST_SYSTEM_VECTOR
381 .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
382 UNWIND_HINT_IRET_REGS
383 pushq $(~vector+0x80) /* Note: always in signed byte range */
384 jmp common_spurious
385 .align 8
386 vector=vector+1
387 .endr
388END(spurious_entries_start)
389
390.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
391#ifdef CONFIG_DEBUG_ENTRY
392 pushq %rax
393 SAVE_FLAGS(CLBR_RAX)
394 testl $X86_EFLAGS_IF, %eax
395 jz .Lokay_\@
396 ud2
397.Lokay_\@:
398 popq %rax
399#endif
400.endm
401
402/*
403 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
404 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
405 * Requires kernel GSBASE.
406 *
407 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
408 */
409.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
410 DEBUG_ENTRY_ASSERT_IRQS_OFF
411
412 .if \save_ret
413 /*
414 * If save_ret is set, the original stack contains one additional
415 * entry -- the return address. Therefore, move the address one
416 * entry below %rsp to \old_rsp.
417 */
418 leaq 8(%rsp), \old_rsp
419 .else
420 movq %rsp, \old_rsp
421 .endif
422
423 .if \regs
424 UNWIND_HINT_REGS base=\old_rsp
425 .endif
426
427 incl PER_CPU_VAR(irq_count)
428 jnz .Lirq_stack_push_old_rsp_\@
429
430 /*
431 * Right now, if we just incremented irq_count to zero, we've
432 * claimed the IRQ stack but we haven't switched to it yet.
433 *
434 * If anything is added that can interrupt us here without using IST,
435 * it must be *extremely* careful to limit its stack usage. This
436 * could include kprobes and a hypothetical future IST-less #DB
437 * handler.
438 *
439 * The OOPS unwinder relies on the word at the top of the IRQ
440 * stack linking back to the previous RSP for the entire time we're
441 * on the IRQ stack. For this to work reliably, we need to write
442 * it before we actually move ourselves to the IRQ stack.
443 */
444
445 movq \old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8)
446 movq PER_CPU_VAR(hardirq_stack_ptr), %rsp
447
448#ifdef CONFIG_DEBUG_ENTRY
449 /*
450 * If the first movq above becomes wrong due to IRQ stack layout
451 * changes, the only way we'll notice is if we try to unwind right
452 * here. Assert that we set up the stack right to catch this type
453 * of bug quickly.
454 */
455 cmpq -8(%rsp), \old_rsp
456 je .Lirq_stack_okay\@
457 ud2
458 .Lirq_stack_okay\@:
459#endif
460
461.Lirq_stack_push_old_rsp_\@:
462 pushq \old_rsp
463
464 .if \regs
465 UNWIND_HINT_REGS indirect=1
466 .endif
467
468 .if \save_ret
469 /*
470 * Push the return address to the stack. This return address can
471 * be found at the "real" original RSP, which was offset by 8 at
472 * the beginning of this macro.
473 */
474 pushq -8(\old_rsp)
475 .endif
476.endm
477
478/*
479 * Undoes ENTER_IRQ_STACK.
480 */
481.macro LEAVE_IRQ_STACK regs=1
482 DEBUG_ENTRY_ASSERT_IRQS_OFF
483 /* We need to be off the IRQ stack before decrementing irq_count. */
484 popq %rsp
485
486 .if \regs
487 UNWIND_HINT_REGS
488 .endif
489
490 /*
491 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
492 * the irq stack but we're not on it.
493 */
494
495 decl PER_CPU_VAR(irq_count)
496.endm
497
498/*
499 * Interrupt entry helper function.
500 *
501 * Entry runs with interrupts off. Stack layout at entry:
502 * +----------------------------------------------------+
503 * | regs->ss |
504 * | regs->rsp |
505 * | regs->eflags |
506 * | regs->cs |
507 * | regs->ip |
508 * +----------------------------------------------------+
509 * | regs->orig_ax = ~(interrupt number) |
510 * +----------------------------------------------------+
511 * | return address |
512 * +----------------------------------------------------+
513 */
514ENTRY(interrupt_entry)
515 UNWIND_HINT_FUNC
516 ASM_CLAC
517 cld
518
519 testb $3, CS-ORIG_RAX+8(%rsp)
520 jz 1f
521 SWAPGS
522 FENCE_SWAPGS_USER_ENTRY
523 /*
524 * Switch to the thread stack. The IRET frame and orig_ax are
525 * on the stack, as well as the return address. RDI..R12 are
526 * not (yet) on the stack and space has not (yet) been
527 * allocated for them.
528 */
529 pushq %rdi
530
531 /* Need to switch before accessing the thread stack. */
532 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
533 movq %rsp, %rdi
534 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
535
536 /*
537 * We have RDI, return address, and orig_ax on the stack on
538 * top of the IRET frame. That means offset=24
539 */
540 UNWIND_HINT_IRET_REGS base=%rdi offset=24
541
542 pushq 7*8(%rdi) /* regs->ss */
543 pushq 6*8(%rdi) /* regs->rsp */
544 pushq 5*8(%rdi) /* regs->eflags */
545 pushq 4*8(%rdi) /* regs->cs */
546 pushq 3*8(%rdi) /* regs->ip */
547 pushq 2*8(%rdi) /* regs->orig_ax */
548 pushq 8(%rdi) /* return address */
549 UNWIND_HINT_FUNC
550
551 movq (%rdi), %rdi
552 jmp 2f
5531:
554 FENCE_SWAPGS_KERNEL_ENTRY
5552:
556 PUSH_AND_CLEAR_REGS save_ret=1
557 ENCODE_FRAME_POINTER 8
558
559 testb $3, CS+8(%rsp)
560 jz 1f
561
562 /*
563 * IRQ from user mode.
564 *
565 * We need to tell lockdep that IRQs are off. We can't do this until
566 * we fix gsbase, and we should do it before enter_from_user_mode
567 * (which can take locks). Since TRACE_IRQS_OFF is idempotent,
568 * the simplest way to handle it is to just call it twice if
569 * we enter from user mode. There's no reason to optimize this since
570 * TRACE_IRQS_OFF is a no-op if lockdep is off.
571 */
572 TRACE_IRQS_OFF
573
574 CALL_enter_from_user_mode
575
5761:
577 ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
578 /* We entered an interrupt context - irqs are off: */
579 TRACE_IRQS_OFF
580
581 ret
582END(interrupt_entry)
583_ASM_NOKPROBE(interrupt_entry)
584
585
586/* Interrupt entry/exit. */
587
588/*
589 * The interrupt stubs push (~vector+0x80) onto the stack and
590 * then jump to common_spurious/interrupt.
591 */
592common_spurious:
593 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
594 call interrupt_entry
595 UNWIND_HINT_REGS indirect=1
596 call smp_spurious_interrupt /* rdi points to pt_regs */
597 jmp ret_from_intr
598END(common_spurious)
599_ASM_NOKPROBE(common_spurious)
600
601/* common_interrupt is a hotpath. Align it */
602 .p2align CONFIG_X86_L1_CACHE_SHIFT
603common_interrupt:
604 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
605 call interrupt_entry
606 UNWIND_HINT_REGS indirect=1
607 call do_IRQ /* rdi points to pt_regs */
608 /* 0(%rsp): old RSP */
609ret_from_intr:
610 DISABLE_INTERRUPTS(CLBR_ANY)
611 TRACE_IRQS_OFF
612
613 LEAVE_IRQ_STACK
614
615 testb $3, CS(%rsp)
616 jz retint_kernel
617
618 /* Interrupt came from user space */
619GLOBAL(retint_user)
620 mov %rsp,%rdi
621 call prepare_exit_to_usermode
622 TRACE_IRQS_IRETQ
623
624GLOBAL(swapgs_restore_regs_and_return_to_usermode)
625#ifdef CONFIG_DEBUG_ENTRY
626 /* Assert that pt_regs indicates user mode. */
627 testb $3, CS(%rsp)
628 jnz 1f
629 ud2
6301:
631#endif
632 POP_REGS pop_rdi=0
633
634 /*
635 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
636 * Save old stack pointer and switch to trampoline stack.
637 */
638 movq %rsp, %rdi
639 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
640
641 /* Copy the IRET frame to the trampoline stack. */
642 pushq 6*8(%rdi) /* SS */
643 pushq 5*8(%rdi) /* RSP */
644 pushq 4*8(%rdi) /* EFLAGS */
645 pushq 3*8(%rdi) /* CS */
646 pushq 2*8(%rdi) /* RIP */
647
648 /* Push user RDI on the trampoline stack. */
649 pushq (%rdi)
650
651 /*
652 * We are on the trampoline stack. All regs except RDI are live.
653 * We can do future final exit work right here.
654 */
655 STACKLEAK_ERASE_NOCLOBBER
656
657 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
658
659 /* Restore RDI. */
660 popq %rdi
661 SWAPGS
662 INTERRUPT_RETURN
663
664
665/* Returning to kernel space */
666retint_kernel:
667#ifdef CONFIG_PREEMPTION
668 /* Interrupts are off */
669 /* Check if we need preemption */
670 btl $9, EFLAGS(%rsp) /* were interrupts off? */
671 jnc 1f
672 cmpl $0, PER_CPU_VAR(__preempt_count)
673 jnz 1f
674 call preempt_schedule_irq
6751:
676#endif
677 /*
678 * The iretq could re-enable interrupts:
679 */
680 TRACE_IRQS_IRETQ
681
682GLOBAL(restore_regs_and_return_to_kernel)
683#ifdef CONFIG_DEBUG_ENTRY
684 /* Assert that pt_regs indicates kernel mode. */
685 testb $3, CS(%rsp)
686 jz 1f
687 ud2
6881:
689#endif
690 POP_REGS
691 addq $8, %rsp /* skip regs->orig_ax */
692 /*
693 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
694 * when returning from IPI handler.
695 */
696 INTERRUPT_RETURN
697
698ENTRY(native_iret)
699 UNWIND_HINT_IRET_REGS
700 /*
701 * Are we returning to a stack segment from the LDT? Note: in
702 * 64-bit mode SS:RSP on the exception stack is always valid.
703 */
704#ifdef CONFIG_X86_ESPFIX64
705 testb $4, (SS-RIP)(%rsp)
706 jnz native_irq_return_ldt
707#endif
708
709.global native_irq_return_iret
710native_irq_return_iret:
711 /*
712 * This may fault. Non-paranoid faults on return to userspace are
713 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
714 * Double-faults due to espfix64 are handled in do_double_fault.
715 * Other faults here are fatal.
716 */
717 iretq
718
719#ifdef CONFIG_X86_ESPFIX64
720native_irq_return_ldt:
721 /*
722 * We are running with user GSBASE. All GPRs contain their user
723 * values. We have a percpu ESPFIX stack that is eight slots
724 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
725 * of the ESPFIX stack.
726 *
727 * We clobber RAX and RDI in this code. We stash RDI on the
728 * normal stack and RAX on the ESPFIX stack.
729 *
730 * The ESPFIX stack layout we set up looks like this:
731 *
732 * --- top of ESPFIX stack ---
733 * SS
734 * RSP
735 * RFLAGS
736 * CS
737 * RIP <-- RSP points here when we're done
738 * RAX <-- espfix_waddr points here
739 * --- bottom of ESPFIX stack ---
740 */
741
742 pushq %rdi /* Stash user RDI */
743 SWAPGS /* to kernel GS */
744 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
745
746 movq PER_CPU_VAR(espfix_waddr), %rdi
747 movq %rax, (0*8)(%rdi) /* user RAX */
748 movq (1*8)(%rsp), %rax /* user RIP */
749 movq %rax, (1*8)(%rdi)
750 movq (2*8)(%rsp), %rax /* user CS */
751 movq %rax, (2*8)(%rdi)
752 movq (3*8)(%rsp), %rax /* user RFLAGS */
753 movq %rax, (3*8)(%rdi)
754 movq (5*8)(%rsp), %rax /* user SS */
755 movq %rax, (5*8)(%rdi)
756 movq (4*8)(%rsp), %rax /* user RSP */
757 movq %rax, (4*8)(%rdi)
758 /* Now RAX == RSP. */
759
760 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
761
762 /*
763 * espfix_stack[31:16] == 0. The page tables are set up such that
764 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
765 * espfix_waddr for any X. That is, there are 65536 RO aliases of
766 * the same page. Set up RSP so that RSP[31:16] contains the
767 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
768 * still points to an RO alias of the ESPFIX stack.
769 */
770 orq PER_CPU_VAR(espfix_stack), %rax
771
772 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
773 SWAPGS /* to user GS */
774 popq %rdi /* Restore user RDI */
775
776 movq %rax, %rsp
777 UNWIND_HINT_IRET_REGS offset=8
778
779 /*
780 * At this point, we cannot write to the stack any more, but we can
781 * still read.
782 */
783 popq %rax /* Restore user RAX */
784
785 /*
786 * RSP now points to an ordinary IRET frame, except that the page
787 * is read-only and RSP[31:16] are preloaded with the userspace
788 * values. We can now IRET back to userspace.
789 */
790 jmp native_irq_return_iret
791#endif
792END(common_interrupt)
793_ASM_NOKPROBE(common_interrupt)
794
795/*
796 * APIC interrupts.
797 */
798.macro apicinterrupt3 num sym do_sym
799ENTRY(\sym)
800 UNWIND_HINT_IRET_REGS
801 pushq $~(\num)
802.Lcommon_\sym:
803 call interrupt_entry
804 UNWIND_HINT_REGS indirect=1
805 call \do_sym /* rdi points to pt_regs */
806 jmp ret_from_intr
807END(\sym)
808_ASM_NOKPROBE(\sym)
809.endm
810
811/* Make sure APIC interrupt handlers end up in the irqentry section: */
812#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
813#define POP_SECTION_IRQENTRY .popsection
814
815.macro apicinterrupt num sym do_sym
816PUSH_SECTION_IRQENTRY
817apicinterrupt3 \num \sym \do_sym
818POP_SECTION_IRQENTRY
819.endm
820
821#ifdef CONFIG_SMP
822apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
823apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
824#endif
825
826#ifdef CONFIG_X86_UV
827apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
828#endif
829
830apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
831apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
832
833#ifdef CONFIG_HAVE_KVM
834apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
835apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
836apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
837#endif
838
839#ifdef CONFIG_X86_MCE_THRESHOLD
840apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
841#endif
842
843#ifdef CONFIG_X86_MCE_AMD
844apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
845#endif
846
847#ifdef CONFIG_X86_THERMAL_VECTOR
848apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
849#endif
850
851#ifdef CONFIG_SMP
852apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
853apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
854apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
855#endif
856
857apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
858apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
859
860#ifdef CONFIG_IRQ_WORK
861apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
862#endif
863
864/*
865 * Exception entry points.
866 */
867#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8)
868
869.macro idtentry_part do_sym, has_error_code:req, read_cr2:req, paranoid:req, shift_ist=-1, ist_offset=0
870
871 .if \paranoid
872 call paranoid_entry
873 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
874 .else
875 call error_entry
876 .endif
877 UNWIND_HINT_REGS
878
879 .if \read_cr2
880 /*
881 * Store CR2 early so subsequent faults cannot clobber it. Use R12 as
882 * intermediate storage as RDX can be clobbered in enter_from_user_mode().
883 * GET_CR2_INTO can clobber RAX.
884 */
885 GET_CR2_INTO(%r12);
886 .endif
887
888 .if \shift_ist != -1
889 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
890 .else
891 TRACE_IRQS_OFF
892 .endif
893
894 .if \paranoid == 0
895 testb $3, CS(%rsp)
896 jz .Lfrom_kernel_no_context_tracking_\@
897 CALL_enter_from_user_mode
898.Lfrom_kernel_no_context_tracking_\@:
899 .endif
900
901 movq %rsp, %rdi /* pt_regs pointer */
902
903 .if \has_error_code
904 movq ORIG_RAX(%rsp), %rsi /* get error code */
905 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
906 .else
907 xorl %esi, %esi /* no error code */
908 .endif
909
910 .if \shift_ist != -1
911 subq $\ist_offset, CPU_TSS_IST(\shift_ist)
912 .endif
913
914 .if \read_cr2
915 movq %r12, %rdx /* Move CR2 into 3rd argument */
916 .endif
917
918 call \do_sym
919
920 .if \shift_ist != -1
921 addq $\ist_offset, CPU_TSS_IST(\shift_ist)
922 .endif
923
924 .if \paranoid
925 /* this procedure expect "no swapgs" flag in ebx */
926 jmp paranoid_exit
927 .else
928 jmp error_exit
929 .endif
930
931.endm
932
933/**
934 * idtentry - Generate an IDT entry stub
935 * @sym: Name of the generated entry point
936 * @do_sym: C function to be called
937 * @has_error_code: True if this IDT vector has an error code on the stack
938 * @paranoid: non-zero means that this vector may be invoked from
939 * kernel mode with user GSBASE and/or user CR3.
940 * 2 is special -- see below.
941 * @shift_ist: Set to an IST index if entries from kernel mode should
942 * decrement the IST stack so that nested entries get a
943 * fresh stack. (This is for #DB, which has a nasty habit
944 * of recursing.)
945 * @create_gap: create a 6-word stack gap when coming from kernel mode.
946 * @read_cr2: load CR2 into the 3rd argument; done before calling any C code
947 *
948 * idtentry generates an IDT stub that sets up a usable kernel context,
949 * creates struct pt_regs, and calls @do_sym. The stub has the following
950 * special behaviors:
951 *
952 * On an entry from user mode, the stub switches from the trampoline or
953 * IST stack to the normal thread stack. On an exit to user mode, the
954 * normal exit-to-usermode path is invoked.
955 *
956 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
957 * whereas we omit the preemption check if @paranoid != 0. This is purely
958 * because the implementation is simpler this way. The kernel only needs
959 * to check for asynchronous kernel preemption when IRQ handlers return.
960 *
961 * If @paranoid == 0, then the stub will handle IRET faults by pretending
962 * that the fault came from user mode. It will handle gs_change faults by
963 * pretending that the fault happened with kernel GSBASE. Since this handling
964 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
965 * @paranoid == 0. This special handling will do the wrong thing for
966 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
967 *
968 * @paranoid == 2 is special: the stub will never switch stacks. This is for
969 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
970 */
971.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 ist_offset=0 create_gap=0 read_cr2=0
972ENTRY(\sym)
973 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
974
975 /* Sanity check */
976 .if \shift_ist != -1 && \paranoid != 1
977 .error "using shift_ist requires paranoid=1"
978 .endif
979
980 .if \create_gap && \paranoid
981 .error "using create_gap requires paranoid=0"
982 .endif
983
984 ASM_CLAC
985
986 .if \has_error_code == 0
987 pushq $-1 /* ORIG_RAX: no syscall to restart */
988 .endif
989
990 .if \paranoid == 1
991 testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
992 jnz .Lfrom_usermode_switch_stack_\@
993 .endif
994
995 .if \create_gap == 1
996 /*
997 * If coming from kernel space, create a 6-word gap to allow the
998 * int3 handler to emulate a call instruction.
999 */
1000 testb $3, CS-ORIG_RAX(%rsp)
1001 jnz .Lfrom_usermode_no_gap_\@
1002 .rept 6
1003 pushq 5*8(%rsp)
1004 .endr
1005 UNWIND_HINT_IRET_REGS offset=8
1006.Lfrom_usermode_no_gap_\@:
1007 .endif
1008
1009 idtentry_part \do_sym, \has_error_code, \read_cr2, \paranoid, \shift_ist, \ist_offset
1010
1011 .if \paranoid == 1
1012 /*
1013 * Entry from userspace. Switch stacks and treat it
1014 * as a normal entry. This means that paranoid handlers
1015 * run in real process context if user_mode(regs).
1016 */
1017.Lfrom_usermode_switch_stack_\@:
1018 idtentry_part \do_sym, \has_error_code, \read_cr2, paranoid=0
1019 .endif
1020
1021_ASM_NOKPROBE(\sym)
1022END(\sym)
1023.endm
1024
1025idtentry divide_error do_divide_error has_error_code=0
1026idtentry overflow do_overflow has_error_code=0
1027idtentry bounds do_bounds has_error_code=0
1028idtentry invalid_op do_invalid_op has_error_code=0
1029idtentry device_not_available do_device_not_available has_error_code=0
1030idtentry double_fault do_double_fault has_error_code=1 paranoid=2 read_cr2=1
1031idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
1032idtentry invalid_TSS do_invalid_TSS has_error_code=1
1033idtentry segment_not_present do_segment_not_present has_error_code=1
1034idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
1035idtentry coprocessor_error do_coprocessor_error has_error_code=0
1036idtentry alignment_check do_alignment_check has_error_code=1
1037idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1038
1039
1040 /*
1041 * Reload gs selector with exception handling
1042 * edi: new selector
1043 */
1044ENTRY(native_load_gs_index)
1045 FRAME_BEGIN
1046 pushfq
1047 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1048 TRACE_IRQS_OFF
1049 SWAPGS
1050.Lgs_change:
1051 movl %edi, %gs
10522: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1053 SWAPGS
1054 TRACE_IRQS_FLAGS (%rsp)
1055 popfq
1056 FRAME_END
1057 ret
1058ENDPROC(native_load_gs_index)
1059EXPORT_SYMBOL(native_load_gs_index)
1060
1061 _ASM_EXTABLE(.Lgs_change, .Lbad_gs)
1062 .section .fixup, "ax"
1063 /* running with kernelgs */
1064.Lbad_gs:
1065 SWAPGS /* switch back to user gs */
1066.macro ZAP_GS
1067 /* This can't be a string because the preprocessor needs to see it. */
1068 movl $__USER_DS, %eax
1069 movl %eax, %gs
1070.endm
1071 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1072 xorl %eax, %eax
1073 movl %eax, %gs
1074 jmp 2b
1075 .previous
1076
1077/* Call softirq on interrupt stack. Interrupts are off. */
1078ENTRY(do_softirq_own_stack)
1079 pushq %rbp
1080 mov %rsp, %rbp
1081 ENTER_IRQ_STACK regs=0 old_rsp=%r11
1082 call __do_softirq
1083 LEAVE_IRQ_STACK regs=0
1084 leaveq
1085 ret
1086ENDPROC(do_softirq_own_stack)
1087
1088#ifdef CONFIG_XEN_PV
1089idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1090
1091/*
1092 * A note on the "critical region" in our callback handler.
1093 * We want to avoid stacking callback handlers due to events occurring
1094 * during handling of the last event. To do this, we keep events disabled
1095 * until we've done all processing. HOWEVER, we must enable events before
1096 * popping the stack frame (can't be done atomically) and so it would still
1097 * be possible to get enough handler activations to overflow the stack.
1098 * Although unlikely, bugs of that kind are hard to track down, so we'd
1099 * like to avoid the possibility.
1100 * So, on entry to the handler we detect whether we interrupted an
1101 * existing activation in its critical region -- if so, we pop the current
1102 * activation and restart the handler using the previous one.
1103 */
1104ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1105
1106/*
1107 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1108 * see the correct pointer to the pt_regs
1109 */
1110 UNWIND_HINT_FUNC
1111 movq %rdi, %rsp /* we don't return, adjust the stack frame */
1112 UNWIND_HINT_REGS
1113
1114 ENTER_IRQ_STACK old_rsp=%r10
1115 call xen_evtchn_do_upcall
1116 LEAVE_IRQ_STACK
1117
1118#ifndef CONFIG_PREEMPTION
1119 call xen_maybe_preempt_hcall
1120#endif
1121 jmp error_exit
1122END(xen_do_hypervisor_callback)
1123
1124/*
1125 * Hypervisor uses this for application faults while it executes.
1126 * We get here for two reasons:
1127 * 1. Fault while reloading DS, ES, FS or GS
1128 * 2. Fault while executing IRET
1129 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1130 * registers that could be reloaded and zeroed the others.
1131 * Category 2 we fix up by killing the current process. We cannot use the
1132 * normal Linux return path in this case because if we use the IRET hypercall
1133 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1134 * We distinguish between categories by comparing each saved segment register
1135 * with its current contents: any discrepancy means we in category 1.
1136 */
1137ENTRY(xen_failsafe_callback)
1138 UNWIND_HINT_EMPTY
1139 movl %ds, %ecx
1140 cmpw %cx, 0x10(%rsp)
1141 jne 1f
1142 movl %es, %ecx
1143 cmpw %cx, 0x18(%rsp)
1144 jne 1f
1145 movl %fs, %ecx
1146 cmpw %cx, 0x20(%rsp)
1147 jne 1f
1148 movl %gs, %ecx
1149 cmpw %cx, 0x28(%rsp)
1150 jne 1f
1151 /* All segments match their saved values => Category 2 (Bad IRET). */
1152 movq (%rsp), %rcx
1153 movq 8(%rsp), %r11
1154 addq $0x30, %rsp
1155 pushq $0 /* RIP */
1156 UNWIND_HINT_IRET_REGS offset=8
1157 jmp general_protection
11581: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1159 movq (%rsp), %rcx
1160 movq 8(%rsp), %r11
1161 addq $0x30, %rsp
1162 UNWIND_HINT_IRET_REGS
1163 pushq $-1 /* orig_ax = -1 => not a system call */
1164 PUSH_AND_CLEAR_REGS
1165 ENCODE_FRAME_POINTER
1166 jmp error_exit
1167END(xen_failsafe_callback)
1168#endif /* CONFIG_XEN_PV */
1169
1170#ifdef CONFIG_XEN_PVHVM
1171apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1172 xen_hvm_callback_vector xen_evtchn_do_upcall
1173#endif
1174
1175
1176#if IS_ENABLED(CONFIG_HYPERV)
1177apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1178 hyperv_callback_vector hyperv_vector_handler
1179
1180apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1181 hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1182
1183apicinterrupt3 HYPERV_STIMER0_VECTOR \
1184 hv_stimer0_callback_vector hv_stimer0_vector_handler
1185#endif /* CONFIG_HYPERV */
1186
1187#if IS_ENABLED(CONFIG_ACRN_GUEST)
1188apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1189 acrn_hv_callback_vector acrn_hv_vector_handler
1190#endif
1191
1192idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=IST_INDEX_DB ist_offset=DB_STACK_OFFSET
1193idtentry int3 do_int3 has_error_code=0 create_gap=1
1194idtentry stack_segment do_stack_segment has_error_code=1
1195
1196#ifdef CONFIG_XEN_PV
1197idtentry xennmi do_nmi has_error_code=0
1198idtentry xendebug do_debug has_error_code=0
1199#endif
1200
1201idtentry general_protection do_general_protection has_error_code=1
1202idtentry page_fault do_page_fault has_error_code=1 read_cr2=1
1203
1204#ifdef CONFIG_KVM_GUEST
1205idtentry async_page_fault do_async_page_fault has_error_code=1 read_cr2=1
1206#endif
1207
1208#ifdef CONFIG_X86_MCE
1209idtentry machine_check do_mce has_error_code=0 paranoid=1
1210#endif
1211
1212/*
1213 * Save all registers in pt_regs, and switch gs if needed.
1214 * Use slow, but surefire "are we in kernel?" check.
1215 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1216 */
1217ENTRY(paranoid_entry)
1218 UNWIND_HINT_FUNC
1219 cld
1220 PUSH_AND_CLEAR_REGS save_ret=1
1221 ENCODE_FRAME_POINTER 8
1222 movl $1, %ebx
1223 movl $MSR_GS_BASE, %ecx
1224 rdmsr
1225 testl %edx, %edx
1226 js 1f /* negative -> in kernel */
1227 SWAPGS
1228 xorl %ebx, %ebx
1229
12301:
1231 /*
1232 * Always stash CR3 in %r14. This value will be restored,
1233 * verbatim, at exit. Needed if paranoid_entry interrupted
1234 * another entry that already switched to the user CR3 value
1235 * but has not yet returned to userspace.
1236 *
1237 * This is also why CS (stashed in the "iret frame" by the
1238 * hardware at entry) can not be used: this may be a return
1239 * to kernel code, but with a user CR3 value.
1240 */
1241 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1242
1243 /*
1244 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
1245 * unconditional CR3 write, even in the PTI case. So do an lfence
1246 * to prevent GS speculation, regardless of whether PTI is enabled.
1247 */
1248 FENCE_SWAPGS_KERNEL_ENTRY
1249
1250 ret
1251END(paranoid_entry)
1252
1253/*
1254 * "Paranoid" exit path from exception stack. This is invoked
1255 * only on return from non-NMI IST interrupts that came
1256 * from kernel space.
1257 *
1258 * We may be returning to very strange contexts (e.g. very early
1259 * in syscall entry), so checking for preemption here would
1260 * be complicated. Fortunately, we there's no good reason
1261 * to try to handle preemption here.
1262 *
1263 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1264 */
1265ENTRY(paranoid_exit)
1266 UNWIND_HINT_REGS
1267 DISABLE_INTERRUPTS(CLBR_ANY)
1268 TRACE_IRQS_OFF_DEBUG
1269 testl %ebx, %ebx /* swapgs needed? */
1270 jnz .Lparanoid_exit_no_swapgs
1271 TRACE_IRQS_IRETQ
1272 /* Always restore stashed CR3 value (see paranoid_entry) */
1273 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
1274 SWAPGS_UNSAFE_STACK
1275 jmp .Lparanoid_exit_restore
1276.Lparanoid_exit_no_swapgs:
1277 TRACE_IRQS_IRETQ_DEBUG
1278 /* Always restore stashed CR3 value (see paranoid_entry) */
1279 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
1280.Lparanoid_exit_restore:
1281 jmp restore_regs_and_return_to_kernel
1282END(paranoid_exit)
1283
1284/*
1285 * Save all registers in pt_regs, and switch GS if needed.
1286 */
1287ENTRY(error_entry)
1288 UNWIND_HINT_FUNC
1289 cld
1290 PUSH_AND_CLEAR_REGS save_ret=1
1291 ENCODE_FRAME_POINTER 8
1292 testb $3, CS+8(%rsp)
1293 jz .Lerror_kernelspace
1294
1295 /*
1296 * We entered from user mode or we're pretending to have entered
1297 * from user mode due to an IRET fault.
1298 */
1299 SWAPGS
1300 FENCE_SWAPGS_USER_ENTRY
1301 /* We have user CR3. Change to kernel CR3. */
1302 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1303
1304.Lerror_entry_from_usermode_after_swapgs:
1305 /* Put us onto the real thread stack. */
1306 popq %r12 /* save return addr in %12 */
1307 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1308 call sync_regs
1309 movq %rax, %rsp /* switch stack */
1310 ENCODE_FRAME_POINTER
1311 pushq %r12
1312 ret
1313
1314.Lerror_entry_done_lfence:
1315 FENCE_SWAPGS_KERNEL_ENTRY
1316.Lerror_entry_done:
1317 ret
1318
1319 /*
1320 * There are two places in the kernel that can potentially fault with
1321 * usergs. Handle them here. B stepping K8s sometimes report a
1322 * truncated RIP for IRET exceptions returning to compat mode. Check
1323 * for these here too.
1324 */
1325.Lerror_kernelspace:
1326 leaq native_irq_return_iret(%rip), %rcx
1327 cmpq %rcx, RIP+8(%rsp)
1328 je .Lerror_bad_iret
1329 movl %ecx, %eax /* zero extend */
1330 cmpq %rax, RIP+8(%rsp)
1331 je .Lbstep_iret
1332 cmpq $.Lgs_change, RIP+8(%rsp)
1333 jne .Lerror_entry_done_lfence
1334
1335 /*
1336 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1337 * gsbase and proceed. We'll fix up the exception and land in
1338 * .Lgs_change's error handler with kernel gsbase.
1339 */
1340 SWAPGS
1341 FENCE_SWAPGS_USER_ENTRY
1342 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1343 jmp .Lerror_entry_done
1344
1345.Lbstep_iret:
1346 /* Fix truncated RIP */
1347 movq %rcx, RIP+8(%rsp)
1348 /* fall through */
1349
1350.Lerror_bad_iret:
1351 /*
1352 * We came from an IRET to user mode, so we have user
1353 * gsbase and CR3. Switch to kernel gsbase and CR3:
1354 */
1355 SWAPGS
1356 FENCE_SWAPGS_USER_ENTRY
1357 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1358
1359 /*
1360 * Pretend that the exception came from user mode: set up pt_regs
1361 * as if we faulted immediately after IRET.
1362 */
1363 mov %rsp, %rdi
1364 call fixup_bad_iret
1365 mov %rax, %rsp
1366 jmp .Lerror_entry_from_usermode_after_swapgs
1367END(error_entry)
1368
1369ENTRY(error_exit)
1370 UNWIND_HINT_REGS
1371 DISABLE_INTERRUPTS(CLBR_ANY)
1372 TRACE_IRQS_OFF
1373 testb $3, CS(%rsp)
1374 jz retint_kernel
1375 jmp retint_user
1376END(error_exit)
1377
1378/*
1379 * Runs on exception stack. Xen PV does not go through this path at all,
1380 * so we can use real assembly here.
1381 *
1382 * Registers:
1383 * %r14: Used to save/restore the CR3 of the interrupted context
1384 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
1385 */
1386ENTRY(nmi)
1387 UNWIND_HINT_IRET_REGS
1388
1389 /*
1390 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1391 * the iretq it performs will take us out of NMI context.
1392 * This means that we can have nested NMIs where the next
1393 * NMI is using the top of the stack of the previous NMI. We
1394 * can't let it execute because the nested NMI will corrupt the
1395 * stack of the previous NMI. NMI handlers are not re-entrant
1396 * anyway.
1397 *
1398 * To handle this case we do the following:
1399 * Check the a special location on the stack that contains
1400 * a variable that is set when NMIs are executing.
1401 * The interrupted task's stack is also checked to see if it
1402 * is an NMI stack.
1403 * If the variable is not set and the stack is not the NMI
1404 * stack then:
1405 * o Set the special variable on the stack
1406 * o Copy the interrupt frame into an "outermost" location on the
1407 * stack
1408 * o Copy the interrupt frame into an "iret" location on the stack
1409 * o Continue processing the NMI
1410 * If the variable is set or the previous stack is the NMI stack:
1411 * o Modify the "iret" location to jump to the repeat_nmi
1412 * o return back to the first NMI
1413 *
1414 * Now on exit of the first NMI, we first clear the stack variable
1415 * The NMI stack will tell any nested NMIs at that point that it is
1416 * nested. Then we pop the stack normally with iret, and if there was
1417 * a nested NMI that updated the copy interrupt stack frame, a
1418 * jump will be made to the repeat_nmi code that will handle the second
1419 * NMI.
1420 *
1421 * However, espfix prevents us from directly returning to userspace
1422 * with a single IRET instruction. Similarly, IRET to user mode
1423 * can fault. We therefore handle NMIs from user space like
1424 * other IST entries.
1425 */
1426
1427 ASM_CLAC
1428
1429 /* Use %rdx as our temp variable throughout */
1430 pushq %rdx
1431
1432 testb $3, CS-RIP+8(%rsp)
1433 jz .Lnmi_from_kernel
1434
1435 /*
1436 * NMI from user mode. We need to run on the thread stack, but we
1437 * can't go through the normal entry paths: NMIs are masked, and
1438 * we don't want to enable interrupts, because then we'll end
1439 * up in an awkward situation in which IRQs are on but NMIs
1440 * are off.
1441 *
1442 * We also must not push anything to the stack before switching
1443 * stacks lest we corrupt the "NMI executing" variable.
1444 */
1445
1446 swapgs
1447 cld
1448 FENCE_SWAPGS_USER_ENTRY
1449 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1450 movq %rsp, %rdx
1451 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1452 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1453 pushq 5*8(%rdx) /* pt_regs->ss */
1454 pushq 4*8(%rdx) /* pt_regs->rsp */
1455 pushq 3*8(%rdx) /* pt_regs->flags */
1456 pushq 2*8(%rdx) /* pt_regs->cs */
1457 pushq 1*8(%rdx) /* pt_regs->rip */
1458 UNWIND_HINT_IRET_REGS
1459 pushq $-1 /* pt_regs->orig_ax */
1460 PUSH_AND_CLEAR_REGS rdx=(%rdx)
1461 ENCODE_FRAME_POINTER
1462
1463 /*
1464 * At this point we no longer need to worry about stack damage
1465 * due to nesting -- we're on the normal thread stack and we're
1466 * done with the NMI stack.
1467 */
1468
1469 movq %rsp, %rdi
1470 movq $-1, %rsi
1471 call do_nmi
1472
1473 /*
1474 * Return back to user mode. We must *not* do the normal exit
1475 * work, because we don't want to enable interrupts.
1476 */
1477 jmp swapgs_restore_regs_and_return_to_usermode
1478
1479.Lnmi_from_kernel:
1480 /*
1481 * Here's what our stack frame will look like:
1482 * +---------------------------------------------------------+
1483 * | original SS |
1484 * | original Return RSP |
1485 * | original RFLAGS |
1486 * | original CS |
1487 * | original RIP |
1488 * +---------------------------------------------------------+
1489 * | temp storage for rdx |
1490 * +---------------------------------------------------------+
1491 * | "NMI executing" variable |
1492 * +---------------------------------------------------------+
1493 * | iret SS } Copied from "outermost" frame |
1494 * | iret Return RSP } on each loop iteration; overwritten |
1495 * | iret RFLAGS } by a nested NMI to force another |
1496 * | iret CS } iteration if needed. |
1497 * | iret RIP } |
1498 * +---------------------------------------------------------+
1499 * | outermost SS } initialized in first_nmi; |
1500 * | outermost Return RSP } will not be changed before |
1501 * | outermost RFLAGS } NMI processing is done. |
1502 * | outermost CS } Copied to "iret" frame on each |
1503 * | outermost RIP } iteration. |
1504 * +---------------------------------------------------------+
1505 * | pt_regs |
1506 * +---------------------------------------------------------+
1507 *
1508 * The "original" frame is used by hardware. Before re-enabling
1509 * NMIs, we need to be done with it, and we need to leave enough
1510 * space for the asm code here.
1511 *
1512 * We return by executing IRET while RSP points to the "iret" frame.
1513 * That will either return for real or it will loop back into NMI
1514 * processing.
1515 *
1516 * The "outermost" frame is copied to the "iret" frame on each
1517 * iteration of the loop, so each iteration starts with the "iret"
1518 * frame pointing to the final return target.
1519 */
1520
1521 /*
1522 * Determine whether we're a nested NMI.
1523 *
1524 * If we interrupted kernel code between repeat_nmi and
1525 * end_repeat_nmi, then we are a nested NMI. We must not
1526 * modify the "iret" frame because it's being written by
1527 * the outer NMI. That's okay; the outer NMI handler is
1528 * about to about to call do_nmi anyway, so we can just
1529 * resume the outer NMI.
1530 */
1531
1532 movq $repeat_nmi, %rdx
1533 cmpq 8(%rsp), %rdx
1534 ja 1f
1535 movq $end_repeat_nmi, %rdx
1536 cmpq 8(%rsp), %rdx
1537 ja nested_nmi_out
15381:
1539
1540 /*
1541 * Now check "NMI executing". If it's set, then we're nested.
1542 * This will not detect if we interrupted an outer NMI just
1543 * before IRET.
1544 */
1545 cmpl $1, -8(%rsp)
1546 je nested_nmi
1547
1548 /*
1549 * Now test if the previous stack was an NMI stack. This covers
1550 * the case where we interrupt an outer NMI after it clears
1551 * "NMI executing" but before IRET. We need to be careful, though:
1552 * there is one case in which RSP could point to the NMI stack
1553 * despite there being no NMI active: naughty userspace controls
1554 * RSP at the very beginning of the SYSCALL targets. We can
1555 * pull a fast one on naughty userspace, though: we program
1556 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1557 * if it controls the kernel's RSP. We set DF before we clear
1558 * "NMI executing".
1559 */
1560 lea 6*8(%rsp), %rdx
1561 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1562 cmpq %rdx, 4*8(%rsp)
1563 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1564 ja first_nmi
1565
1566 subq $EXCEPTION_STKSZ, %rdx
1567 cmpq %rdx, 4*8(%rsp)
1568 /* If it is below the NMI stack, it is a normal NMI */
1569 jb first_nmi
1570
1571 /* Ah, it is within the NMI stack. */
1572
1573 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1574 jz first_nmi /* RSP was user controlled. */
1575
1576 /* This is a nested NMI. */
1577
1578nested_nmi:
1579 /*
1580 * Modify the "iret" frame to point to repeat_nmi, forcing another
1581 * iteration of NMI handling.
1582 */
1583 subq $8, %rsp
1584 leaq -10*8(%rsp), %rdx
1585 pushq $__KERNEL_DS
1586 pushq %rdx
1587 pushfq
1588 pushq $__KERNEL_CS
1589 pushq $repeat_nmi
1590
1591 /* Put stack back */
1592 addq $(6*8), %rsp
1593
1594nested_nmi_out:
1595 popq %rdx
1596
1597 /* We are returning to kernel mode, so this cannot result in a fault. */
1598 iretq
1599
1600first_nmi:
1601 /* Restore rdx. */
1602 movq (%rsp), %rdx
1603
1604 /* Make room for "NMI executing". */
1605 pushq $0
1606
1607 /* Leave room for the "iret" frame */
1608 subq $(5*8), %rsp
1609
1610 /* Copy the "original" frame to the "outermost" frame */
1611 .rept 5
1612 pushq 11*8(%rsp)
1613 .endr
1614 UNWIND_HINT_IRET_REGS
1615
1616 /* Everything up to here is safe from nested NMIs */
1617
1618#ifdef CONFIG_DEBUG_ENTRY
1619 /*
1620 * For ease of testing, unmask NMIs right away. Disabled by
1621 * default because IRET is very expensive.
1622 */
1623 pushq $0 /* SS */
1624 pushq %rsp /* RSP (minus 8 because of the previous push) */
1625 addq $8, (%rsp) /* Fix up RSP */
1626 pushfq /* RFLAGS */
1627 pushq $__KERNEL_CS /* CS */
1628 pushq $1f /* RIP */
1629 iretq /* continues at repeat_nmi below */
1630 UNWIND_HINT_IRET_REGS
16311:
1632#endif
1633
1634repeat_nmi:
1635 /*
1636 * If there was a nested NMI, the first NMI's iret will return
1637 * here. But NMIs are still enabled and we can take another
1638 * nested NMI. The nested NMI checks the interrupted RIP to see
1639 * if it is between repeat_nmi and end_repeat_nmi, and if so
1640 * it will just return, as we are about to repeat an NMI anyway.
1641 * This makes it safe to copy to the stack frame that a nested
1642 * NMI will update.
1643 *
1644 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1645 * we're repeating an NMI, gsbase has the same value that it had on
1646 * the first iteration. paranoid_entry will load the kernel
1647 * gsbase if needed before we call do_nmi. "NMI executing"
1648 * is zero.
1649 */
1650 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1651
1652 /*
1653 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1654 * here must not modify the "iret" frame while we're writing to
1655 * it or it will end up containing garbage.
1656 */
1657 addq $(10*8), %rsp
1658 .rept 5
1659 pushq -6*8(%rsp)
1660 .endr
1661 subq $(5*8), %rsp
1662end_repeat_nmi:
1663
1664 /*
1665 * Everything below this point can be preempted by a nested NMI.
1666 * If this happens, then the inner NMI will change the "iret"
1667 * frame to point back to repeat_nmi.
1668 */
1669 pushq $-1 /* ORIG_RAX: no syscall to restart */
1670
1671 /*
1672 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1673 * as we should not be calling schedule in NMI context.
1674 * Even with normal interrupts enabled. An NMI should not be
1675 * setting NEED_RESCHED or anything that normal interrupts and
1676 * exceptions might do.
1677 */
1678 call paranoid_entry
1679 UNWIND_HINT_REGS
1680
1681 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1682 movq %rsp, %rdi
1683 movq $-1, %rsi
1684 call do_nmi
1685
1686 /* Always restore stashed CR3 value (see paranoid_entry) */
1687 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1688
1689 testl %ebx, %ebx /* swapgs needed? */
1690 jnz nmi_restore
1691nmi_swapgs:
1692 SWAPGS_UNSAFE_STACK
1693nmi_restore:
1694 POP_REGS
1695
1696 /*
1697 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1698 * at the "iret" frame.
1699 */
1700 addq $6*8, %rsp
1701
1702 /*
1703 * Clear "NMI executing". Set DF first so that we can easily
1704 * distinguish the remaining code between here and IRET from
1705 * the SYSCALL entry and exit paths.
1706 *
1707 * We arguably should just inspect RIP instead, but I (Andy) wrote
1708 * this code when I had the misapprehension that Xen PV supported
1709 * NMIs, and Xen PV would break that approach.
1710 */
1711 std
1712 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1713
1714 /*
1715 * iretq reads the "iret" frame and exits the NMI stack in a
1716 * single instruction. We are returning to kernel mode, so this
1717 * cannot result in a fault. Similarly, we don't need to worry
1718 * about espfix64 on the way back to kernel mode.
1719 */
1720 iretq
1721END(nmi)
1722
1723#ifndef CONFIG_IA32_EMULATION
1724/*
1725 * This handles SYSCALL from 32-bit code. There is no way to program
1726 * MSRs to fully disable 32-bit SYSCALL.
1727 */
1728ENTRY(ignore_sysret)
1729 UNWIND_HINT_EMPTY
1730 mov $-ENOSYS, %eax
1731 sysret
1732END(ignore_sysret)
1733#endif
1734
1735ENTRY(rewind_stack_do_exit)
1736 UNWIND_HINT_FUNC
1737 /* Prevent any naive code from trying to unwind to our caller. */
1738 xorl %ebp, %ebp
1739
1740 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1741 leaq -PTREGS_SIZE(%rax), %rsp
1742 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1743
1744 call do_exit
1745END(rewind_stack_do_exit)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry: Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include <asm/asm-offsets.h>
26#include <asm/msr.h>
27#include <asm/unistd.h>
28#include <asm/thread_info.h>
29#include <asm/hw_irq.h>
30#include <asm/page_types.h>
31#include <asm/irqflags.h>
32#include <asm/paravirt.h>
33#include <asm/percpu.h>
34#include <asm/asm.h>
35#include <asm/smap.h>
36#include <asm/pgtable_types.h>
37#include <asm/export.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49/*
50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51 *
52 * This is the only entry point used for 64-bit system calls. The
53 * hardware interface is reasonably well designed and the register to
54 * argument mapping Linux uses fits well with the registers that are
55 * available when SYSCALL is used.
56 *
57 * SYSCALL instructions can be found inlined in libc implementations as
58 * well as some other programs and libraries. There are also a handful
59 * of SYSCALL instructions in the vDSO used, for example, as a
60 * clock_gettimeofday fallback.
61 *
62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63 * then loads new ss, cs, and rip from previously programmed MSRs.
64 * rflags gets masked by a value from another MSR (so CLD and CLAC
65 * are not needed). SYSCALL does not save anything on the stack
66 * and does not change rsp.
67 *
68 * Registers on entry:
69 * rax system call number
70 * rcx return address
71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
72 * rdi arg0
73 * rsi arg1
74 * rdx arg2
75 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
76 * r8 arg4
77 * r9 arg5
78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79 *
80 * Only called from user space.
81 *
82 * When user can change pt_regs->foo always force IRET. That is because
83 * it deals with uncanonical addresses better. SYSRET has trouble
84 * with them due to bugs in both AMD and Intel CPUs.
85 */
86
87SYM_CODE_START(entry_SYSCALL_64)
88 UNWIND_HINT_EMPTY
89
90 swapgs
91 /* tss.sp2 is scratch space. */
92 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
93 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
94 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
95
96SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
97
98 /* Construct struct pt_regs on stack */
99 pushq $__USER_DS /* pt_regs->ss */
100 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
101 pushq %r11 /* pt_regs->flags */
102 pushq $__USER_CS /* pt_regs->cs */
103 pushq %rcx /* pt_regs->ip */
104SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
105 pushq %rax /* pt_regs->orig_ax */
106
107 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
108
109 /* IRQs are off. */
110 movq %rsp, %rdi
111 /* Sign extend the lower 32bit as syscall numbers are treated as int */
112 movslq %eax, %rsi
113 call do_syscall_64 /* returns with IRQs disabled */
114
115 /*
116 * Try to use SYSRET instead of IRET if we're returning to
117 * a completely clean 64-bit userspace context. If we're not,
118 * go to the slow exit path.
119 * In the Xen PV case we must use iret anyway.
120 */
121
122 ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \
123 X86_FEATURE_XENPV
124
125 movq RCX(%rsp), %rcx
126 movq RIP(%rsp), %r11
127
128 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
129 jne swapgs_restore_regs_and_return_to_usermode
130
131 /*
132 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
133 * in kernel space. This essentially lets the user take over
134 * the kernel, since userspace controls RSP.
135 *
136 * If width of "canonical tail" ever becomes variable, this will need
137 * to be updated to remain correct on both old and new CPUs.
138 *
139 * Change top bits to match most significant bit (47th or 56th bit
140 * depending on paging mode) in the address.
141 */
142#ifdef CONFIG_X86_5LEVEL
143 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
144 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
145#else
146 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
147 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
148#endif
149
150 /* If this changed %rcx, it was not canonical */
151 cmpq %rcx, %r11
152 jne swapgs_restore_regs_and_return_to_usermode
153
154 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
155 jne swapgs_restore_regs_and_return_to_usermode
156
157 movq R11(%rsp), %r11
158 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
159 jne swapgs_restore_regs_and_return_to_usermode
160
161 /*
162 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
163 * restore RF properly. If the slowpath sets it for whatever reason, we
164 * need to restore it correctly.
165 *
166 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
167 * trap from userspace immediately after SYSRET. This would cause an
168 * infinite loop whenever #DB happens with register state that satisfies
169 * the opportunistic SYSRET conditions. For example, single-stepping
170 * this user code:
171 *
172 * movq $stuck_here, %rcx
173 * pushfq
174 * popq %r11
175 * stuck_here:
176 *
177 * would never get past 'stuck_here'.
178 */
179 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
180 jnz swapgs_restore_regs_and_return_to_usermode
181
182 /* nothing to check for RSP */
183
184 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
185 jne swapgs_restore_regs_and_return_to_usermode
186
187 /*
188 * We win! This label is here just for ease of understanding
189 * perf profiles. Nothing jumps here.
190 */
191syscall_return_via_sysret:
192 /* rcx and r11 are already restored (see code above) */
193 POP_REGS pop_rdi=0 skip_r11rcx=1
194
195 /*
196 * Now all regs are restored except RSP and RDI.
197 * Save old stack pointer and switch to trampoline stack.
198 */
199 movq %rsp, %rdi
200 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
201 UNWIND_HINT_EMPTY
202
203 pushq RSP-RDI(%rdi) /* RSP */
204 pushq (%rdi) /* RDI */
205
206 /*
207 * We are on the trampoline stack. All regs except RDI are live.
208 * We can do future final exit work right here.
209 */
210 STACKLEAK_ERASE_NOCLOBBER
211
212 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
213
214 popq %rdi
215 popq %rsp
216 swapgs
217 sysretq
218SYM_CODE_END(entry_SYSCALL_64)
219
220/*
221 * %rdi: prev task
222 * %rsi: next task
223 */
224.pushsection .text, "ax"
225SYM_FUNC_START(__switch_to_asm)
226 /*
227 * Save callee-saved registers
228 * This must match the order in inactive_task_frame
229 */
230 pushq %rbp
231 pushq %rbx
232 pushq %r12
233 pushq %r13
234 pushq %r14
235 pushq %r15
236
237 /* switch stack */
238 movq %rsp, TASK_threadsp(%rdi)
239 movq TASK_threadsp(%rsi), %rsp
240
241#ifdef CONFIG_STACKPROTECTOR
242 movq TASK_stack_canary(%rsi), %rbx
243 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
244#endif
245
246#ifdef CONFIG_RETPOLINE
247 /*
248 * When switching from a shallower to a deeper call stack
249 * the RSB may either underflow or use entries populated
250 * with userspace addresses. On CPUs where those concerns
251 * exist, overwrite the RSB with entries which capture
252 * speculative execution to prevent attack.
253 */
254 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
255#endif
256
257 /* restore callee-saved registers */
258 popq %r15
259 popq %r14
260 popq %r13
261 popq %r12
262 popq %rbx
263 popq %rbp
264
265 jmp __switch_to
266SYM_FUNC_END(__switch_to_asm)
267.popsection
268
269/*
270 * A newly forked process directly context switches into this address.
271 *
272 * rax: prev task we switched from
273 * rbx: kernel thread func (NULL for user thread)
274 * r12: kernel thread arg
275 */
276.pushsection .text, "ax"
277SYM_CODE_START(ret_from_fork)
278 UNWIND_HINT_EMPTY
279 movq %rax, %rdi
280 call schedule_tail /* rdi: 'prev' task parameter */
281
282 testq %rbx, %rbx /* from kernel_thread? */
283 jnz 1f /* kernel threads are uncommon */
284
2852:
286 UNWIND_HINT_REGS
287 movq %rsp, %rdi
288 call syscall_exit_to_user_mode /* returns with IRQs disabled */
289 jmp swapgs_restore_regs_and_return_to_usermode
290
2911:
292 /* kernel thread */
293 UNWIND_HINT_EMPTY
294 movq %r12, %rdi
295 CALL_NOSPEC rbx
296 /*
297 * A kernel thread is allowed to return here after successfully
298 * calling kernel_execve(). Exit to userspace to complete the execve()
299 * syscall.
300 */
301 movq $0, RAX(%rsp)
302 jmp 2b
303SYM_CODE_END(ret_from_fork)
304.popsection
305
306.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
307#ifdef CONFIG_DEBUG_ENTRY
308 pushq %rax
309 SAVE_FLAGS
310 testl $X86_EFLAGS_IF, %eax
311 jz .Lokay_\@
312 ud2
313.Lokay_\@:
314 popq %rax
315#endif
316.endm
317
318/**
319 * idtentry_body - Macro to emit code calling the C function
320 * @cfunc: C function to be called
321 * @has_error_code: Hardware pushed error code on stack
322 */
323.macro idtentry_body cfunc has_error_code:req
324
325 call error_entry
326 UNWIND_HINT_REGS
327
328 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/
329
330 .if \has_error_code == 1
331 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
332 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
333 .endif
334
335 call \cfunc
336
337 jmp error_return
338.endm
339
340/**
341 * idtentry - Macro to generate entry stubs for simple IDT entries
342 * @vector: Vector number
343 * @asmsym: ASM symbol for the entry point
344 * @cfunc: C function to be called
345 * @has_error_code: Hardware pushed error code on stack
346 *
347 * The macro emits code to set up the kernel context for straight forward
348 * and simple IDT entries. No IST stack, no paranoid entry checks.
349 */
350.macro idtentry vector asmsym cfunc has_error_code:req
351SYM_CODE_START(\asmsym)
352 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
353 ASM_CLAC
354
355 .if \has_error_code == 0
356 pushq $-1 /* ORIG_RAX: no syscall to restart */
357 .endif
358
359 .if \vector == X86_TRAP_BP
360 /*
361 * If coming from kernel space, create a 6-word gap to allow the
362 * int3 handler to emulate a call instruction.
363 */
364 testb $3, CS-ORIG_RAX(%rsp)
365 jnz .Lfrom_usermode_no_gap_\@
366 .rept 6
367 pushq 5*8(%rsp)
368 .endr
369 UNWIND_HINT_IRET_REGS offset=8
370.Lfrom_usermode_no_gap_\@:
371 .endif
372
373 idtentry_body \cfunc \has_error_code
374
375_ASM_NOKPROBE(\asmsym)
376SYM_CODE_END(\asmsym)
377.endm
378
379/*
380 * Interrupt entry/exit.
381 *
382 + The interrupt stubs push (vector) onto the stack, which is the error_code
383 * position of idtentry exceptions, and jump to one of the two idtentry points
384 * (common/spurious).
385 *
386 * common_interrupt is a hotpath, align it to a cache line
387 */
388.macro idtentry_irq vector cfunc
389 .p2align CONFIG_X86_L1_CACHE_SHIFT
390 idtentry \vector asm_\cfunc \cfunc has_error_code=1
391.endm
392
393/*
394 * System vectors which invoke their handlers directly and are not
395 * going through the regular common device interrupt handling code.
396 */
397.macro idtentry_sysvec vector cfunc
398 idtentry \vector asm_\cfunc \cfunc has_error_code=0
399.endm
400
401/**
402 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
403 * @vector: Vector number
404 * @asmsym: ASM symbol for the entry point
405 * @cfunc: C function to be called
406 *
407 * The macro emits code to set up the kernel context for #MC and #DB
408 *
409 * If the entry comes from user space it uses the normal entry path
410 * including the return to user space work and preemption checks on
411 * exit.
412 *
413 * If hits in kernel mode then it needs to go through the paranoid
414 * entry as the exception can hit any random state. No preemption
415 * check on exit to keep the paranoid path simple.
416 */
417.macro idtentry_mce_db vector asmsym cfunc
418SYM_CODE_START(\asmsym)
419 UNWIND_HINT_IRET_REGS
420 ASM_CLAC
421
422 pushq $-1 /* ORIG_RAX: no syscall to restart */
423
424 /*
425 * If the entry is from userspace, switch stacks and treat it as
426 * a normal entry.
427 */
428 testb $3, CS-ORIG_RAX(%rsp)
429 jnz .Lfrom_usermode_switch_stack_\@
430
431 /* paranoid_entry returns GS information for paranoid_exit in EBX. */
432 call paranoid_entry
433
434 UNWIND_HINT_REGS
435
436 movq %rsp, %rdi /* pt_regs pointer */
437
438 call \cfunc
439
440 jmp paranoid_exit
441
442 /* Switch to the regular task stack and use the noist entry point */
443.Lfrom_usermode_switch_stack_\@:
444 idtentry_body noist_\cfunc, has_error_code=0
445
446_ASM_NOKPROBE(\asmsym)
447SYM_CODE_END(\asmsym)
448.endm
449
450#ifdef CONFIG_AMD_MEM_ENCRYPT
451/**
452 * idtentry_vc - Macro to generate entry stub for #VC
453 * @vector: Vector number
454 * @asmsym: ASM symbol for the entry point
455 * @cfunc: C function to be called
456 *
457 * The macro emits code to set up the kernel context for #VC. The #VC handler
458 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
459 *
460 * To make this work the #VC entry code tries its best to pretend it doesn't use
461 * an IST stack by switching to the task stack if coming from user-space (which
462 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
463 * entered from kernel-mode.
464 *
465 * If entered from kernel-mode the return stack is validated first, and if it is
466 * not safe to use (e.g. because it points to the entry stack) the #VC handler
467 * will switch to a fall-back stack (VC2) and call a special handler function.
468 *
469 * The macro is only used for one vector, but it is planned to be extended in
470 * the future for the #HV exception.
471 */
472.macro idtentry_vc vector asmsym cfunc
473SYM_CODE_START(\asmsym)
474 UNWIND_HINT_IRET_REGS
475 ASM_CLAC
476
477 /*
478 * If the entry is from userspace, switch stacks and treat it as
479 * a normal entry.
480 */
481 testb $3, CS-ORIG_RAX(%rsp)
482 jnz .Lfrom_usermode_switch_stack_\@
483
484 /*
485 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
486 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
487 */
488 call paranoid_entry
489
490 UNWIND_HINT_REGS
491
492 /*
493 * Switch off the IST stack to make it free for nested exceptions. The
494 * vc_switch_off_ist() function will switch back to the interrupted
495 * stack if it is safe to do so. If not it switches to the VC fall-back
496 * stack.
497 */
498 movq %rsp, %rdi /* pt_regs pointer */
499 call vc_switch_off_ist
500 movq %rax, %rsp /* Switch to new stack */
501
502 UNWIND_HINT_REGS
503
504 /* Update pt_regs */
505 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
506 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
507
508 movq %rsp, %rdi /* pt_regs pointer */
509
510 call kernel_\cfunc
511
512 /*
513 * No need to switch back to the IST stack. The current stack is either
514 * identical to the stack in the IRET frame or the VC fall-back stack,
515 * so it is definitely mapped even with PTI enabled.
516 */
517 jmp paranoid_exit
518
519 /* Switch to the regular task stack */
520.Lfrom_usermode_switch_stack_\@:
521 idtentry_body user_\cfunc, has_error_code=1
522
523_ASM_NOKPROBE(\asmsym)
524SYM_CODE_END(\asmsym)
525.endm
526#endif
527
528/*
529 * Double fault entry. Straight paranoid. No checks from which context
530 * this comes because for the espfix induced #DF this would do the wrong
531 * thing.
532 */
533.macro idtentry_df vector asmsym cfunc
534SYM_CODE_START(\asmsym)
535 UNWIND_HINT_IRET_REGS offset=8
536 ASM_CLAC
537
538 /* paranoid_entry returns GS information for paranoid_exit in EBX. */
539 call paranoid_entry
540 UNWIND_HINT_REGS
541
542 movq %rsp, %rdi /* pt_regs pointer into first argument */
543 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
544 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
545 call \cfunc
546
547 jmp paranoid_exit
548
549_ASM_NOKPROBE(\asmsym)
550SYM_CODE_END(\asmsym)
551.endm
552
553/*
554 * Include the defines which emit the idt entries which are shared
555 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
556 * so the stacktrace boundary checks work.
557 */
558 .align 16
559 .globl __irqentry_text_start
560__irqentry_text_start:
561
562#include <asm/idtentry.h>
563
564 .align 16
565 .globl __irqentry_text_end
566__irqentry_text_end:
567
568SYM_CODE_START_LOCAL(common_interrupt_return)
569SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
570#ifdef CONFIG_DEBUG_ENTRY
571 /* Assert that pt_regs indicates user mode. */
572 testb $3, CS(%rsp)
573 jnz 1f
574 ud2
5751:
576#endif
577 POP_REGS pop_rdi=0
578
579 /*
580 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
581 * Save old stack pointer and switch to trampoline stack.
582 */
583 movq %rsp, %rdi
584 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
585 UNWIND_HINT_EMPTY
586
587 /* Copy the IRET frame to the trampoline stack. */
588 pushq 6*8(%rdi) /* SS */
589 pushq 5*8(%rdi) /* RSP */
590 pushq 4*8(%rdi) /* EFLAGS */
591 pushq 3*8(%rdi) /* CS */
592 pushq 2*8(%rdi) /* RIP */
593
594 /* Push user RDI on the trampoline stack. */
595 pushq (%rdi)
596
597 /*
598 * We are on the trampoline stack. All regs except RDI are live.
599 * We can do future final exit work right here.
600 */
601 STACKLEAK_ERASE_NOCLOBBER
602
603 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
604
605 /* Restore RDI. */
606 popq %rdi
607 SWAPGS
608 INTERRUPT_RETURN
609
610
611SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
612#ifdef CONFIG_DEBUG_ENTRY
613 /* Assert that pt_regs indicates kernel mode. */
614 testb $3, CS(%rsp)
615 jz 1f
616 ud2
6171:
618#endif
619 POP_REGS
620 addq $8, %rsp /* skip regs->orig_ax */
621 /*
622 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
623 * when returning from IPI handler.
624 */
625 INTERRUPT_RETURN
626
627SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
628 UNWIND_HINT_IRET_REGS
629 /*
630 * Are we returning to a stack segment from the LDT? Note: in
631 * 64-bit mode SS:RSP on the exception stack is always valid.
632 */
633#ifdef CONFIG_X86_ESPFIX64
634 testb $4, (SS-RIP)(%rsp)
635 jnz native_irq_return_ldt
636#endif
637
638SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
639 /*
640 * This may fault. Non-paranoid faults on return to userspace are
641 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
642 * Double-faults due to espfix64 are handled in exc_double_fault.
643 * Other faults here are fatal.
644 */
645 iretq
646
647#ifdef CONFIG_X86_ESPFIX64
648native_irq_return_ldt:
649 /*
650 * We are running with user GSBASE. All GPRs contain their user
651 * values. We have a percpu ESPFIX stack that is eight slots
652 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
653 * of the ESPFIX stack.
654 *
655 * We clobber RAX and RDI in this code. We stash RDI on the
656 * normal stack and RAX on the ESPFIX stack.
657 *
658 * The ESPFIX stack layout we set up looks like this:
659 *
660 * --- top of ESPFIX stack ---
661 * SS
662 * RSP
663 * RFLAGS
664 * CS
665 * RIP <-- RSP points here when we're done
666 * RAX <-- espfix_waddr points here
667 * --- bottom of ESPFIX stack ---
668 */
669
670 pushq %rdi /* Stash user RDI */
671 swapgs /* to kernel GS */
672 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
673
674 movq PER_CPU_VAR(espfix_waddr), %rdi
675 movq %rax, (0*8)(%rdi) /* user RAX */
676 movq (1*8)(%rsp), %rax /* user RIP */
677 movq %rax, (1*8)(%rdi)
678 movq (2*8)(%rsp), %rax /* user CS */
679 movq %rax, (2*8)(%rdi)
680 movq (3*8)(%rsp), %rax /* user RFLAGS */
681 movq %rax, (3*8)(%rdi)
682 movq (5*8)(%rsp), %rax /* user SS */
683 movq %rax, (5*8)(%rdi)
684 movq (4*8)(%rsp), %rax /* user RSP */
685 movq %rax, (4*8)(%rdi)
686 /* Now RAX == RSP. */
687
688 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
689
690 /*
691 * espfix_stack[31:16] == 0. The page tables are set up such that
692 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
693 * espfix_waddr for any X. That is, there are 65536 RO aliases of
694 * the same page. Set up RSP so that RSP[31:16] contains the
695 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
696 * still points to an RO alias of the ESPFIX stack.
697 */
698 orq PER_CPU_VAR(espfix_stack), %rax
699
700 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
701 swapgs /* to user GS */
702 popq %rdi /* Restore user RDI */
703
704 movq %rax, %rsp
705 UNWIND_HINT_IRET_REGS offset=8
706
707 /*
708 * At this point, we cannot write to the stack any more, but we can
709 * still read.
710 */
711 popq %rax /* Restore user RAX */
712
713 /*
714 * RSP now points to an ordinary IRET frame, except that the page
715 * is read-only and RSP[31:16] are preloaded with the userspace
716 * values. We can now IRET back to userspace.
717 */
718 jmp native_irq_return_iret
719#endif
720SYM_CODE_END(common_interrupt_return)
721_ASM_NOKPROBE(common_interrupt_return)
722
723/*
724 * Reload gs selector with exception handling
725 * edi: new selector
726 *
727 * Is in entry.text as it shouldn't be instrumented.
728 */
729SYM_FUNC_START(asm_load_gs_index)
730 FRAME_BEGIN
731 swapgs
732.Lgs_change:
733 movl %edi, %gs
7342: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
735 swapgs
736 FRAME_END
737 ret
738SYM_FUNC_END(asm_load_gs_index)
739EXPORT_SYMBOL(asm_load_gs_index)
740
741 _ASM_EXTABLE(.Lgs_change, .Lbad_gs)
742 .section .fixup, "ax"
743 /* running with kernelgs */
744SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
745 swapgs /* switch back to user gs */
746.macro ZAP_GS
747 /* This can't be a string because the preprocessor needs to see it. */
748 movl $__USER_DS, %eax
749 movl %eax, %gs
750.endm
751 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
752 xorl %eax, %eax
753 movl %eax, %gs
754 jmp 2b
755SYM_CODE_END(.Lbad_gs)
756 .previous
757
758#ifdef CONFIG_XEN_PV
759/*
760 * A note on the "critical region" in our callback handler.
761 * We want to avoid stacking callback handlers due to events occurring
762 * during handling of the last event. To do this, we keep events disabled
763 * until we've done all processing. HOWEVER, we must enable events before
764 * popping the stack frame (can't be done atomically) and so it would still
765 * be possible to get enough handler activations to overflow the stack.
766 * Although unlikely, bugs of that kind are hard to track down, so we'd
767 * like to avoid the possibility.
768 * So, on entry to the handler we detect whether we interrupted an
769 * existing activation in its critical region -- if so, we pop the current
770 * activation and restart the handler using the previous one.
771 *
772 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
773 */
774SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
775
776/*
777 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
778 * see the correct pointer to the pt_regs
779 */
780 UNWIND_HINT_FUNC
781 movq %rdi, %rsp /* we don't return, adjust the stack frame */
782 UNWIND_HINT_REGS
783
784 call xen_pv_evtchn_do_upcall
785
786 jmp error_return
787SYM_CODE_END(exc_xen_hypervisor_callback)
788
789/*
790 * Hypervisor uses this for application faults while it executes.
791 * We get here for two reasons:
792 * 1. Fault while reloading DS, ES, FS or GS
793 * 2. Fault while executing IRET
794 * Category 1 we do not need to fix up as Xen has already reloaded all segment
795 * registers that could be reloaded and zeroed the others.
796 * Category 2 we fix up by killing the current process. We cannot use the
797 * normal Linux return path in this case because if we use the IRET hypercall
798 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
799 * We distinguish between categories by comparing each saved segment register
800 * with its current contents: any discrepancy means we in category 1.
801 */
802SYM_CODE_START(xen_failsafe_callback)
803 UNWIND_HINT_EMPTY
804 movl %ds, %ecx
805 cmpw %cx, 0x10(%rsp)
806 jne 1f
807 movl %es, %ecx
808 cmpw %cx, 0x18(%rsp)
809 jne 1f
810 movl %fs, %ecx
811 cmpw %cx, 0x20(%rsp)
812 jne 1f
813 movl %gs, %ecx
814 cmpw %cx, 0x28(%rsp)
815 jne 1f
816 /* All segments match their saved values => Category 2 (Bad IRET). */
817 movq (%rsp), %rcx
818 movq 8(%rsp), %r11
819 addq $0x30, %rsp
820 pushq $0 /* RIP */
821 UNWIND_HINT_IRET_REGS offset=8
822 jmp asm_exc_general_protection
8231: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
824 movq (%rsp), %rcx
825 movq 8(%rsp), %r11
826 addq $0x30, %rsp
827 UNWIND_HINT_IRET_REGS
828 pushq $-1 /* orig_ax = -1 => not a system call */
829 PUSH_AND_CLEAR_REGS
830 ENCODE_FRAME_POINTER
831 jmp error_return
832SYM_CODE_END(xen_failsafe_callback)
833#endif /* CONFIG_XEN_PV */
834
835/*
836 * Save all registers in pt_regs. Return GSBASE related information
837 * in EBX depending on the availability of the FSGSBASE instructions:
838 *
839 * FSGSBASE R/EBX
840 * N 0 -> SWAPGS on exit
841 * 1 -> no SWAPGS on exit
842 *
843 * Y GSBASE value at entry, must be restored in paranoid_exit
844 */
845SYM_CODE_START_LOCAL(paranoid_entry)
846 UNWIND_HINT_FUNC
847 cld
848 PUSH_AND_CLEAR_REGS save_ret=1
849 ENCODE_FRAME_POINTER 8
850
851 /*
852 * Always stash CR3 in %r14. This value will be restored,
853 * verbatim, at exit. Needed if paranoid_entry interrupted
854 * another entry that already switched to the user CR3 value
855 * but has not yet returned to userspace.
856 *
857 * This is also why CS (stashed in the "iret frame" by the
858 * hardware at entry) can not be used: this may be a return
859 * to kernel code, but with a user CR3 value.
860 *
861 * Switching CR3 does not depend on kernel GSBASE so it can
862 * be done before switching to the kernel GSBASE. This is
863 * required for FSGSBASE because the kernel GSBASE has to
864 * be retrieved from a kernel internal table.
865 */
866 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
867
868 /*
869 * Handling GSBASE depends on the availability of FSGSBASE.
870 *
871 * Without FSGSBASE the kernel enforces that negative GSBASE
872 * values indicate kernel GSBASE. With FSGSBASE no assumptions
873 * can be made about the GSBASE value when entering from user
874 * space.
875 */
876 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
877
878 /*
879 * Read the current GSBASE and store it in %rbx unconditionally,
880 * retrieve and set the current CPUs kernel GSBASE. The stored value
881 * has to be restored in paranoid_exit unconditionally.
882 *
883 * The unconditional write to GS base below ensures that no subsequent
884 * loads based on a mispredicted GS base can happen, therefore no LFENCE
885 * is needed here.
886 */
887 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
888 ret
889
890.Lparanoid_entry_checkgs:
891 /* EBX = 1 -> kernel GSBASE active, no restore required */
892 movl $1, %ebx
893 /*
894 * The kernel-enforced convention is a negative GSBASE indicates
895 * a kernel value. No SWAPGS needed on entry and exit.
896 */
897 movl $MSR_GS_BASE, %ecx
898 rdmsr
899 testl %edx, %edx
900 jns .Lparanoid_entry_swapgs
901 ret
902
903.Lparanoid_entry_swapgs:
904 swapgs
905
906 /*
907 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
908 * unconditional CR3 write, even in the PTI case. So do an lfence
909 * to prevent GS speculation, regardless of whether PTI is enabled.
910 */
911 FENCE_SWAPGS_KERNEL_ENTRY
912
913 /* EBX = 0 -> SWAPGS required on exit */
914 xorl %ebx, %ebx
915 ret
916SYM_CODE_END(paranoid_entry)
917
918/*
919 * "Paranoid" exit path from exception stack. This is invoked
920 * only on return from non-NMI IST interrupts that came
921 * from kernel space.
922 *
923 * We may be returning to very strange contexts (e.g. very early
924 * in syscall entry), so checking for preemption here would
925 * be complicated. Fortunately, there's no good reason to try
926 * to handle preemption here.
927 *
928 * R/EBX contains the GSBASE related information depending on the
929 * availability of the FSGSBASE instructions:
930 *
931 * FSGSBASE R/EBX
932 * N 0 -> SWAPGS on exit
933 * 1 -> no SWAPGS on exit
934 *
935 * Y User space GSBASE, must be restored unconditionally
936 */
937SYM_CODE_START_LOCAL(paranoid_exit)
938 UNWIND_HINT_REGS
939 /*
940 * The order of operations is important. RESTORE_CR3 requires
941 * kernel GSBASE.
942 *
943 * NB to anyone to try to optimize this code: this code does
944 * not execute at all for exceptions from user mode. Those
945 * exceptions go through error_exit instead.
946 */
947 RESTORE_CR3 scratch_reg=%rax save_reg=%r14
948
949 /* Handle the three GSBASE cases */
950 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
951
952 /* With FSGSBASE enabled, unconditionally restore GSBASE */
953 wrgsbase %rbx
954 jmp restore_regs_and_return_to_kernel
955
956.Lparanoid_exit_checkgs:
957 /* On non-FSGSBASE systems, conditionally do SWAPGS */
958 testl %ebx, %ebx
959 jnz restore_regs_and_return_to_kernel
960
961 /* We are returning to a context with user GSBASE */
962 swapgs
963 jmp restore_regs_and_return_to_kernel
964SYM_CODE_END(paranoid_exit)
965
966/*
967 * Save all registers in pt_regs, and switch GS if needed.
968 */
969SYM_CODE_START_LOCAL(error_entry)
970 UNWIND_HINT_FUNC
971 cld
972 PUSH_AND_CLEAR_REGS save_ret=1
973 ENCODE_FRAME_POINTER 8
974 testb $3, CS+8(%rsp)
975 jz .Lerror_kernelspace
976
977 /*
978 * We entered from user mode or we're pretending to have entered
979 * from user mode due to an IRET fault.
980 */
981 SWAPGS
982 FENCE_SWAPGS_USER_ENTRY
983 /* We have user CR3. Change to kernel CR3. */
984 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
985
986.Lerror_entry_from_usermode_after_swapgs:
987 /* Put us onto the real thread stack. */
988 popq %r12 /* save return addr in %12 */
989 movq %rsp, %rdi /* arg0 = pt_regs pointer */
990 call sync_regs
991 movq %rax, %rsp /* switch stack */
992 ENCODE_FRAME_POINTER
993 pushq %r12
994 ret
995
996.Lerror_entry_done_lfence:
997 FENCE_SWAPGS_KERNEL_ENTRY
998.Lerror_entry_done:
999 ret
1000
1001 /*
1002 * There are two places in the kernel that can potentially fault with
1003 * usergs. Handle them here. B stepping K8s sometimes report a
1004 * truncated RIP for IRET exceptions returning to compat mode. Check
1005 * for these here too.
1006 */
1007.Lerror_kernelspace:
1008 leaq native_irq_return_iret(%rip), %rcx
1009 cmpq %rcx, RIP+8(%rsp)
1010 je .Lerror_bad_iret
1011 movl %ecx, %eax /* zero extend */
1012 cmpq %rax, RIP+8(%rsp)
1013 je .Lbstep_iret
1014 cmpq $.Lgs_change, RIP+8(%rsp)
1015 jne .Lerror_entry_done_lfence
1016
1017 /*
1018 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1019 * gsbase and proceed. We'll fix up the exception and land in
1020 * .Lgs_change's error handler with kernel gsbase.
1021 */
1022 SWAPGS
1023 FENCE_SWAPGS_USER_ENTRY
1024 jmp .Lerror_entry_done
1025
1026.Lbstep_iret:
1027 /* Fix truncated RIP */
1028 movq %rcx, RIP+8(%rsp)
1029 /* fall through */
1030
1031.Lerror_bad_iret:
1032 /*
1033 * We came from an IRET to user mode, so we have user
1034 * gsbase and CR3. Switch to kernel gsbase and CR3:
1035 */
1036 SWAPGS
1037 FENCE_SWAPGS_USER_ENTRY
1038 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1039
1040 /*
1041 * Pretend that the exception came from user mode: set up pt_regs
1042 * as if we faulted immediately after IRET.
1043 */
1044 mov %rsp, %rdi
1045 call fixup_bad_iret
1046 mov %rax, %rsp
1047 jmp .Lerror_entry_from_usermode_after_swapgs
1048SYM_CODE_END(error_entry)
1049
1050SYM_CODE_START_LOCAL(error_return)
1051 UNWIND_HINT_REGS
1052 DEBUG_ENTRY_ASSERT_IRQS_OFF
1053 testb $3, CS(%rsp)
1054 jz restore_regs_and_return_to_kernel
1055 jmp swapgs_restore_regs_and_return_to_usermode
1056SYM_CODE_END(error_return)
1057
1058/*
1059 * Runs on exception stack. Xen PV does not go through this path at all,
1060 * so we can use real assembly here.
1061 *
1062 * Registers:
1063 * %r14: Used to save/restore the CR3 of the interrupted context
1064 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
1065 */
1066SYM_CODE_START(asm_exc_nmi)
1067 UNWIND_HINT_IRET_REGS
1068
1069 /*
1070 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1071 * the iretq it performs will take us out of NMI context.
1072 * This means that we can have nested NMIs where the next
1073 * NMI is using the top of the stack of the previous NMI. We
1074 * can't let it execute because the nested NMI will corrupt the
1075 * stack of the previous NMI. NMI handlers are not re-entrant
1076 * anyway.
1077 *
1078 * To handle this case we do the following:
1079 * Check the a special location on the stack that contains
1080 * a variable that is set when NMIs are executing.
1081 * The interrupted task's stack is also checked to see if it
1082 * is an NMI stack.
1083 * If the variable is not set and the stack is not the NMI
1084 * stack then:
1085 * o Set the special variable on the stack
1086 * o Copy the interrupt frame into an "outermost" location on the
1087 * stack
1088 * o Copy the interrupt frame into an "iret" location on the stack
1089 * o Continue processing the NMI
1090 * If the variable is set or the previous stack is the NMI stack:
1091 * o Modify the "iret" location to jump to the repeat_nmi
1092 * o return back to the first NMI
1093 *
1094 * Now on exit of the first NMI, we first clear the stack variable
1095 * The NMI stack will tell any nested NMIs at that point that it is
1096 * nested. Then we pop the stack normally with iret, and if there was
1097 * a nested NMI that updated the copy interrupt stack frame, a
1098 * jump will be made to the repeat_nmi code that will handle the second
1099 * NMI.
1100 *
1101 * However, espfix prevents us from directly returning to userspace
1102 * with a single IRET instruction. Similarly, IRET to user mode
1103 * can fault. We therefore handle NMIs from user space like
1104 * other IST entries.
1105 */
1106
1107 ASM_CLAC
1108
1109 /* Use %rdx as our temp variable throughout */
1110 pushq %rdx
1111
1112 testb $3, CS-RIP+8(%rsp)
1113 jz .Lnmi_from_kernel
1114
1115 /*
1116 * NMI from user mode. We need to run on the thread stack, but we
1117 * can't go through the normal entry paths: NMIs are masked, and
1118 * we don't want to enable interrupts, because then we'll end
1119 * up in an awkward situation in which IRQs are on but NMIs
1120 * are off.
1121 *
1122 * We also must not push anything to the stack before switching
1123 * stacks lest we corrupt the "NMI executing" variable.
1124 */
1125
1126 swapgs
1127 cld
1128 FENCE_SWAPGS_USER_ENTRY
1129 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1130 movq %rsp, %rdx
1131 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1132 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1133 pushq 5*8(%rdx) /* pt_regs->ss */
1134 pushq 4*8(%rdx) /* pt_regs->rsp */
1135 pushq 3*8(%rdx) /* pt_regs->flags */
1136 pushq 2*8(%rdx) /* pt_regs->cs */
1137 pushq 1*8(%rdx) /* pt_regs->rip */
1138 UNWIND_HINT_IRET_REGS
1139 pushq $-1 /* pt_regs->orig_ax */
1140 PUSH_AND_CLEAR_REGS rdx=(%rdx)
1141 ENCODE_FRAME_POINTER
1142
1143 /*
1144 * At this point we no longer need to worry about stack damage
1145 * due to nesting -- we're on the normal thread stack and we're
1146 * done with the NMI stack.
1147 */
1148
1149 movq %rsp, %rdi
1150 movq $-1, %rsi
1151 call exc_nmi
1152
1153 /*
1154 * Return back to user mode. We must *not* do the normal exit
1155 * work, because we don't want to enable interrupts.
1156 */
1157 jmp swapgs_restore_regs_and_return_to_usermode
1158
1159.Lnmi_from_kernel:
1160 /*
1161 * Here's what our stack frame will look like:
1162 * +---------------------------------------------------------+
1163 * | original SS |
1164 * | original Return RSP |
1165 * | original RFLAGS |
1166 * | original CS |
1167 * | original RIP |
1168 * +---------------------------------------------------------+
1169 * | temp storage for rdx |
1170 * +---------------------------------------------------------+
1171 * | "NMI executing" variable |
1172 * +---------------------------------------------------------+
1173 * | iret SS } Copied from "outermost" frame |
1174 * | iret Return RSP } on each loop iteration; overwritten |
1175 * | iret RFLAGS } by a nested NMI to force another |
1176 * | iret CS } iteration if needed. |
1177 * | iret RIP } |
1178 * +---------------------------------------------------------+
1179 * | outermost SS } initialized in first_nmi; |
1180 * | outermost Return RSP } will not be changed before |
1181 * | outermost RFLAGS } NMI processing is done. |
1182 * | outermost CS } Copied to "iret" frame on each |
1183 * | outermost RIP } iteration. |
1184 * +---------------------------------------------------------+
1185 * | pt_regs |
1186 * +---------------------------------------------------------+
1187 *
1188 * The "original" frame is used by hardware. Before re-enabling
1189 * NMIs, we need to be done with it, and we need to leave enough
1190 * space for the asm code here.
1191 *
1192 * We return by executing IRET while RSP points to the "iret" frame.
1193 * That will either return for real or it will loop back into NMI
1194 * processing.
1195 *
1196 * The "outermost" frame is copied to the "iret" frame on each
1197 * iteration of the loop, so each iteration starts with the "iret"
1198 * frame pointing to the final return target.
1199 */
1200
1201 /*
1202 * Determine whether we're a nested NMI.
1203 *
1204 * If we interrupted kernel code between repeat_nmi and
1205 * end_repeat_nmi, then we are a nested NMI. We must not
1206 * modify the "iret" frame because it's being written by
1207 * the outer NMI. That's okay; the outer NMI handler is
1208 * about to about to call exc_nmi() anyway, so we can just
1209 * resume the outer NMI.
1210 */
1211
1212 movq $repeat_nmi, %rdx
1213 cmpq 8(%rsp), %rdx
1214 ja 1f
1215 movq $end_repeat_nmi, %rdx
1216 cmpq 8(%rsp), %rdx
1217 ja nested_nmi_out
12181:
1219
1220 /*
1221 * Now check "NMI executing". If it's set, then we're nested.
1222 * This will not detect if we interrupted an outer NMI just
1223 * before IRET.
1224 */
1225 cmpl $1, -8(%rsp)
1226 je nested_nmi
1227
1228 /*
1229 * Now test if the previous stack was an NMI stack. This covers
1230 * the case where we interrupt an outer NMI after it clears
1231 * "NMI executing" but before IRET. We need to be careful, though:
1232 * there is one case in which RSP could point to the NMI stack
1233 * despite there being no NMI active: naughty userspace controls
1234 * RSP at the very beginning of the SYSCALL targets. We can
1235 * pull a fast one on naughty userspace, though: we program
1236 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1237 * if it controls the kernel's RSP. We set DF before we clear
1238 * "NMI executing".
1239 */
1240 lea 6*8(%rsp), %rdx
1241 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1242 cmpq %rdx, 4*8(%rsp)
1243 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1244 ja first_nmi
1245
1246 subq $EXCEPTION_STKSZ, %rdx
1247 cmpq %rdx, 4*8(%rsp)
1248 /* If it is below the NMI stack, it is a normal NMI */
1249 jb first_nmi
1250
1251 /* Ah, it is within the NMI stack. */
1252
1253 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1254 jz first_nmi /* RSP was user controlled. */
1255
1256 /* This is a nested NMI. */
1257
1258nested_nmi:
1259 /*
1260 * Modify the "iret" frame to point to repeat_nmi, forcing another
1261 * iteration of NMI handling.
1262 */
1263 subq $8, %rsp
1264 leaq -10*8(%rsp), %rdx
1265 pushq $__KERNEL_DS
1266 pushq %rdx
1267 pushfq
1268 pushq $__KERNEL_CS
1269 pushq $repeat_nmi
1270
1271 /* Put stack back */
1272 addq $(6*8), %rsp
1273
1274nested_nmi_out:
1275 popq %rdx
1276
1277 /* We are returning to kernel mode, so this cannot result in a fault. */
1278 iretq
1279
1280first_nmi:
1281 /* Restore rdx. */
1282 movq (%rsp), %rdx
1283
1284 /* Make room for "NMI executing". */
1285 pushq $0
1286
1287 /* Leave room for the "iret" frame */
1288 subq $(5*8), %rsp
1289
1290 /* Copy the "original" frame to the "outermost" frame */
1291 .rept 5
1292 pushq 11*8(%rsp)
1293 .endr
1294 UNWIND_HINT_IRET_REGS
1295
1296 /* Everything up to here is safe from nested NMIs */
1297
1298#ifdef CONFIG_DEBUG_ENTRY
1299 /*
1300 * For ease of testing, unmask NMIs right away. Disabled by
1301 * default because IRET is very expensive.
1302 */
1303 pushq $0 /* SS */
1304 pushq %rsp /* RSP (minus 8 because of the previous push) */
1305 addq $8, (%rsp) /* Fix up RSP */
1306 pushfq /* RFLAGS */
1307 pushq $__KERNEL_CS /* CS */
1308 pushq $1f /* RIP */
1309 iretq /* continues at repeat_nmi below */
1310 UNWIND_HINT_IRET_REGS
13111:
1312#endif
1313
1314repeat_nmi:
1315 /*
1316 * If there was a nested NMI, the first NMI's iret will return
1317 * here. But NMIs are still enabled and we can take another
1318 * nested NMI. The nested NMI checks the interrupted RIP to see
1319 * if it is between repeat_nmi and end_repeat_nmi, and if so
1320 * it will just return, as we are about to repeat an NMI anyway.
1321 * This makes it safe to copy to the stack frame that a nested
1322 * NMI will update.
1323 *
1324 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1325 * we're repeating an NMI, gsbase has the same value that it had on
1326 * the first iteration. paranoid_entry will load the kernel
1327 * gsbase if needed before we call exc_nmi(). "NMI executing"
1328 * is zero.
1329 */
1330 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1331
1332 /*
1333 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1334 * here must not modify the "iret" frame while we're writing to
1335 * it or it will end up containing garbage.
1336 */
1337 addq $(10*8), %rsp
1338 .rept 5
1339 pushq -6*8(%rsp)
1340 .endr
1341 subq $(5*8), %rsp
1342end_repeat_nmi:
1343
1344 /*
1345 * Everything below this point can be preempted by a nested NMI.
1346 * If this happens, then the inner NMI will change the "iret"
1347 * frame to point back to repeat_nmi.
1348 */
1349 pushq $-1 /* ORIG_RAX: no syscall to restart */
1350
1351 /*
1352 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1353 * as we should not be calling schedule in NMI context.
1354 * Even with normal interrupts enabled. An NMI should not be
1355 * setting NEED_RESCHED or anything that normal interrupts and
1356 * exceptions might do.
1357 */
1358 call paranoid_entry
1359 UNWIND_HINT_REGS
1360
1361 movq %rsp, %rdi
1362 movq $-1, %rsi
1363 call exc_nmi
1364
1365 /* Always restore stashed CR3 value (see paranoid_entry) */
1366 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1367
1368 /*
1369 * The above invocation of paranoid_entry stored the GSBASE
1370 * related information in R/EBX depending on the availability
1371 * of FSGSBASE.
1372 *
1373 * If FSGSBASE is enabled, restore the saved GSBASE value
1374 * unconditionally, otherwise take the conditional SWAPGS path.
1375 */
1376 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1377
1378 wrgsbase %rbx
1379 jmp nmi_restore
1380
1381nmi_no_fsgsbase:
1382 /* EBX == 0 -> invoke SWAPGS */
1383 testl %ebx, %ebx
1384 jnz nmi_restore
1385
1386nmi_swapgs:
1387 swapgs
1388
1389nmi_restore:
1390 POP_REGS
1391
1392 /*
1393 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1394 * at the "iret" frame.
1395 */
1396 addq $6*8, %rsp
1397
1398 /*
1399 * Clear "NMI executing". Set DF first so that we can easily
1400 * distinguish the remaining code between here and IRET from
1401 * the SYSCALL entry and exit paths.
1402 *
1403 * We arguably should just inspect RIP instead, but I (Andy) wrote
1404 * this code when I had the misapprehension that Xen PV supported
1405 * NMIs, and Xen PV would break that approach.
1406 */
1407 std
1408 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1409
1410 /*
1411 * iretq reads the "iret" frame and exits the NMI stack in a
1412 * single instruction. We are returning to kernel mode, so this
1413 * cannot result in a fault. Similarly, we don't need to worry
1414 * about espfix64 on the way back to kernel mode.
1415 */
1416 iretq
1417SYM_CODE_END(asm_exc_nmi)
1418
1419#ifndef CONFIG_IA32_EMULATION
1420/*
1421 * This handles SYSCALL from 32-bit code. There is no way to program
1422 * MSRs to fully disable 32-bit SYSCALL.
1423 */
1424SYM_CODE_START(ignore_sysret)
1425 UNWIND_HINT_EMPTY
1426 mov $-ENOSYS, %eax
1427 sysretl
1428SYM_CODE_END(ignore_sysret)
1429#endif
1430
1431.pushsection .text, "ax"
1432SYM_CODE_START(rewind_stack_do_exit)
1433 UNWIND_HINT_FUNC
1434 /* Prevent any naive code from trying to unwind to our caller. */
1435 xorl %ebp, %ebp
1436
1437 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1438 leaq -PTREGS_SIZE(%rax), %rsp
1439 UNWIND_HINT_REGS
1440
1441 call do_exit
1442SYM_CODE_END(rewind_stack_do_exit)
1443.popsection