Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
   4#include "string2.h"
   5#include <sys/param.h>
   6#include <sys/types.h>
   7#include <byteswap.h>
   8#include <unistd.h>
   9#include <stdio.h>
  10#include <stdlib.h>
  11#include <linux/compiler.h>
  12#include <linux/list.h>
  13#include <linux/kernel.h>
  14#include <linux/bitops.h>
  15#include <linux/string.h>
  16#include <linux/stringify.h>
  17#include <linux/zalloc.h>
  18#include <sys/stat.h>
  19#include <sys/utsname.h>
  20#include <linux/time64.h>
  21#include <dirent.h>
 
  22#include <bpf/libbpf.h>
 
  23#include <perf/cpumap.h>
  24
  25#include "dso.h"
  26#include "evlist.h"
  27#include "evsel.h"
  28#include "util/evsel_fprintf.h"
  29#include "header.h"
  30#include "memswap.h"
  31#include "trace-event.h"
  32#include "session.h"
  33#include "symbol.h"
  34#include "debug.h"
  35#include "cpumap.h"
  36#include "pmu.h"
  37#include "vdso.h"
  38#include "strbuf.h"
  39#include "build-id.h"
  40#include "data.h"
  41#include <api/fs/fs.h>
  42#include "asm/bug.h"
  43#include "tool.h"
  44#include "time-utils.h"
  45#include "units.h"
  46#include "util/util.h" // perf_exe()
  47#include "cputopo.h"
  48#include "bpf-event.h"
 
 
  49
  50#include <linux/ctype.h>
  51#include <internal/lib.h>
  52
  53/*
  54 * magic2 = "PERFILE2"
  55 * must be a numerical value to let the endianness
  56 * determine the memory layout. That way we are able
  57 * to detect endianness when reading the perf.data file
  58 * back.
  59 *
  60 * we check for legacy (PERFFILE) format.
  61 */
  62static const char *__perf_magic1 = "PERFFILE";
  63static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  64static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  65
  66#define PERF_MAGIC	__perf_magic2
  67
  68const char perf_version_string[] = PERF_VERSION;
  69
  70struct perf_file_attr {
  71	struct perf_event_attr	attr;
  72	struct perf_file_section	ids;
  73};
  74
  75void perf_header__set_feat(struct perf_header *header, int feat)
  76{
  77	set_bit(feat, header->adds_features);
  78}
  79
  80void perf_header__clear_feat(struct perf_header *header, int feat)
  81{
  82	clear_bit(feat, header->adds_features);
  83}
  84
  85bool perf_header__has_feat(const struct perf_header *header, int feat)
  86{
  87	return test_bit(feat, header->adds_features);
  88}
  89
  90static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
  91{
  92	ssize_t ret = writen(ff->fd, buf, size);
  93
  94	if (ret != (ssize_t)size)
  95		return ret < 0 ? (int)ret : -1;
  96	return 0;
  97}
  98
  99static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 100{
 101	/* struct perf_event_header::size is u16 */
 102	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 103	size_t new_size = ff->size;
 104	void *addr;
 105
 106	if (size + ff->offset > max_size)
 107		return -E2BIG;
 108
 109	while (size > (new_size - ff->offset))
 110		new_size <<= 1;
 111	new_size = min(max_size, new_size);
 112
 113	if (ff->size < new_size) {
 114		addr = realloc(ff->buf, new_size);
 115		if (!addr)
 116			return -ENOMEM;
 117		ff->buf = addr;
 118		ff->size = new_size;
 119	}
 120
 121	memcpy(ff->buf + ff->offset, buf, size);
 122	ff->offset += size;
 123
 124	return 0;
 125}
 126
 127/* Return: 0 if succeded, -ERR if failed. */
 128int do_write(struct feat_fd *ff, const void *buf, size_t size)
 129{
 130	if (!ff->buf)
 131		return __do_write_fd(ff, buf, size);
 132	return __do_write_buf(ff, buf, size);
 133}
 134
 135/* Return: 0 if succeded, -ERR if failed. */
 136static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 137{
 138	u64 *p = (u64 *) set;
 139	int i, ret;
 140
 141	ret = do_write(ff, &size, sizeof(size));
 142	if (ret < 0)
 143		return ret;
 144
 145	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 146		ret = do_write(ff, p + i, sizeof(*p));
 147		if (ret < 0)
 148			return ret;
 149	}
 150
 151	return 0;
 152}
 153
 154/* Return: 0 if succeded, -ERR if failed. */
 155int write_padded(struct feat_fd *ff, const void *bf,
 156		 size_t count, size_t count_aligned)
 157{
 158	static const char zero_buf[NAME_ALIGN];
 159	int err = do_write(ff, bf, count);
 160
 161	if (!err)
 162		err = do_write(ff, zero_buf, count_aligned - count);
 163
 164	return err;
 165}
 166
 167#define string_size(str)						\
 168	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 169
 170/* Return: 0 if succeded, -ERR if failed. */
 171static int do_write_string(struct feat_fd *ff, const char *str)
 172{
 173	u32 len, olen;
 174	int ret;
 175
 176	olen = strlen(str) + 1;
 177	len = PERF_ALIGN(olen, NAME_ALIGN);
 178
 179	/* write len, incl. \0 */
 180	ret = do_write(ff, &len, sizeof(len));
 181	if (ret < 0)
 182		return ret;
 183
 184	return write_padded(ff, str, olen, len);
 185}
 186
 187static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 188{
 189	ssize_t ret = readn(ff->fd, addr, size);
 190
 191	if (ret != size)
 192		return ret < 0 ? (int)ret : -1;
 193	return 0;
 194}
 195
 196static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 197{
 198	if (size > (ssize_t)ff->size - ff->offset)
 199		return -1;
 200
 201	memcpy(addr, ff->buf + ff->offset, size);
 202	ff->offset += size;
 203
 204	return 0;
 205
 206}
 207
 208static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 209{
 210	if (!ff->buf)
 211		return __do_read_fd(ff, addr, size);
 212	return __do_read_buf(ff, addr, size);
 213}
 214
 215static int do_read_u32(struct feat_fd *ff, u32 *addr)
 216{
 217	int ret;
 218
 219	ret = __do_read(ff, addr, sizeof(*addr));
 220	if (ret)
 221		return ret;
 222
 223	if (ff->ph->needs_swap)
 224		*addr = bswap_32(*addr);
 225	return 0;
 226}
 227
 228static int do_read_u64(struct feat_fd *ff, u64 *addr)
 229{
 230	int ret;
 231
 232	ret = __do_read(ff, addr, sizeof(*addr));
 233	if (ret)
 234		return ret;
 235
 236	if (ff->ph->needs_swap)
 237		*addr = bswap_64(*addr);
 238	return 0;
 239}
 240
 241static char *do_read_string(struct feat_fd *ff)
 242{
 243	u32 len;
 244	char *buf;
 245
 246	if (do_read_u32(ff, &len))
 247		return NULL;
 248
 249	buf = malloc(len);
 250	if (!buf)
 251		return NULL;
 252
 253	if (!__do_read(ff, buf, len)) {
 254		/*
 255		 * strings are padded by zeroes
 256		 * thus the actual strlen of buf
 257		 * may be less than len
 258		 */
 259		return buf;
 260	}
 261
 262	free(buf);
 263	return NULL;
 264}
 265
 266/* Return: 0 if succeded, -ERR if failed. */
 267static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 268{
 269	unsigned long *set;
 270	u64 size, *p;
 271	int i, ret;
 272
 273	ret = do_read_u64(ff, &size);
 274	if (ret)
 275		return ret;
 276
 277	set = bitmap_alloc(size);
 278	if (!set)
 279		return -ENOMEM;
 280
 281	p = (u64 *) set;
 282
 283	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 284		ret = do_read_u64(ff, p + i);
 285		if (ret < 0) {
 286			free(set);
 287			return ret;
 288		}
 289	}
 290
 291	*pset  = set;
 292	*psize = size;
 293	return 0;
 294}
 295
 296static int write_tracing_data(struct feat_fd *ff,
 297			      struct evlist *evlist)
 298{
 299	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 300		return -1;
 301
 302	return read_tracing_data(ff->fd, &evlist->core.entries);
 303}
 304
 305static int write_build_id(struct feat_fd *ff,
 306			  struct evlist *evlist __maybe_unused)
 307{
 308	struct perf_session *session;
 309	int err;
 310
 311	session = container_of(ff->ph, struct perf_session, header);
 312
 313	if (!perf_session__read_build_ids(session, true))
 314		return -1;
 315
 316	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 317		return -1;
 318
 319	err = perf_session__write_buildid_table(session, ff);
 320	if (err < 0) {
 321		pr_debug("failed to write buildid table\n");
 322		return err;
 323	}
 324	perf_session__cache_build_ids(session);
 325
 326	return 0;
 327}
 328
 329static int write_hostname(struct feat_fd *ff,
 330			  struct evlist *evlist __maybe_unused)
 331{
 332	struct utsname uts;
 333	int ret;
 334
 335	ret = uname(&uts);
 336	if (ret < 0)
 337		return -1;
 338
 339	return do_write_string(ff, uts.nodename);
 340}
 341
 342static int write_osrelease(struct feat_fd *ff,
 343			   struct evlist *evlist __maybe_unused)
 344{
 345	struct utsname uts;
 346	int ret;
 347
 348	ret = uname(&uts);
 349	if (ret < 0)
 350		return -1;
 351
 352	return do_write_string(ff, uts.release);
 353}
 354
 355static int write_arch(struct feat_fd *ff,
 356		      struct evlist *evlist __maybe_unused)
 357{
 358	struct utsname uts;
 359	int ret;
 360
 361	ret = uname(&uts);
 362	if (ret < 0)
 363		return -1;
 364
 365	return do_write_string(ff, uts.machine);
 366}
 367
 368static int write_version(struct feat_fd *ff,
 369			 struct evlist *evlist __maybe_unused)
 370{
 371	return do_write_string(ff, perf_version_string);
 372}
 373
 374static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 375{
 376	FILE *file;
 377	char *buf = NULL;
 378	char *s, *p;
 379	const char *search = cpuinfo_proc;
 380	size_t len = 0;
 381	int ret = -1;
 382
 383	if (!search)
 384		return -1;
 385
 386	file = fopen("/proc/cpuinfo", "r");
 387	if (!file)
 388		return -1;
 389
 390	while (getline(&buf, &len, file) > 0) {
 391		ret = strncmp(buf, search, strlen(search));
 392		if (!ret)
 393			break;
 394	}
 395
 396	if (ret) {
 397		ret = -1;
 398		goto done;
 399	}
 400
 401	s = buf;
 402
 403	p = strchr(buf, ':');
 404	if (p && *(p+1) == ' ' && *(p+2))
 405		s = p + 2;
 406	p = strchr(s, '\n');
 407	if (p)
 408		*p = '\0';
 409
 410	/* squash extra space characters (branding string) */
 411	p = s;
 412	while (*p) {
 413		if (isspace(*p)) {
 414			char *r = p + 1;
 415			char *q = skip_spaces(r);
 416			*p = ' ';
 417			if (q != (p+1))
 418				while ((*r++ = *q++));
 419		}
 420		p++;
 421	}
 422	ret = do_write_string(ff, s);
 423done:
 424	free(buf);
 425	fclose(file);
 426	return ret;
 427}
 428
 429static int write_cpudesc(struct feat_fd *ff,
 430		       struct evlist *evlist __maybe_unused)
 431{
 432#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
 433#define CPUINFO_PROC	{ "cpu", }
 434#elif defined(__s390__)
 435#define CPUINFO_PROC	{ "vendor_id", }
 436#elif defined(__sh__)
 437#define CPUINFO_PROC	{ "cpu type", }
 438#elif defined(__alpha__) || defined(__mips__)
 439#define CPUINFO_PROC	{ "cpu model", }
 440#elif defined(__arm__)
 441#define CPUINFO_PROC	{ "model name", "Processor", }
 442#elif defined(__arc__)
 443#define CPUINFO_PROC	{ "Processor", }
 444#elif defined(__xtensa__)
 445#define CPUINFO_PROC	{ "core ID", }
 446#else
 447#define CPUINFO_PROC	{ "model name", }
 448#endif
 449	const char *cpuinfo_procs[] = CPUINFO_PROC;
 450#undef CPUINFO_PROC
 451	unsigned int i;
 452
 453	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 454		int ret;
 455		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 456		if (ret >= 0)
 457			return ret;
 458	}
 459	return -1;
 460}
 461
 462
 463static int write_nrcpus(struct feat_fd *ff,
 464			struct evlist *evlist __maybe_unused)
 465{
 466	long nr;
 467	u32 nrc, nra;
 468	int ret;
 469
 470	nrc = cpu__max_present_cpu();
 471
 472	nr = sysconf(_SC_NPROCESSORS_ONLN);
 473	if (nr < 0)
 474		return -1;
 475
 476	nra = (u32)(nr & UINT_MAX);
 477
 478	ret = do_write(ff, &nrc, sizeof(nrc));
 479	if (ret < 0)
 480		return ret;
 481
 482	return do_write(ff, &nra, sizeof(nra));
 483}
 484
 485static int write_event_desc(struct feat_fd *ff,
 486			    struct evlist *evlist)
 487{
 488	struct evsel *evsel;
 489	u32 nre, nri, sz;
 490	int ret;
 491
 492	nre = evlist->core.nr_entries;
 493
 494	/*
 495	 * write number of events
 496	 */
 497	ret = do_write(ff, &nre, sizeof(nre));
 498	if (ret < 0)
 499		return ret;
 500
 501	/*
 502	 * size of perf_event_attr struct
 503	 */
 504	sz = (u32)sizeof(evsel->core.attr);
 505	ret = do_write(ff, &sz, sizeof(sz));
 506	if (ret < 0)
 507		return ret;
 508
 509	evlist__for_each_entry(evlist, evsel) {
 510		ret = do_write(ff, &evsel->core.attr, sz);
 511		if (ret < 0)
 512			return ret;
 513		/*
 514		 * write number of unique id per event
 515		 * there is one id per instance of an event
 516		 *
 517		 * copy into an nri to be independent of the
 518		 * type of ids,
 519		 */
 520		nri = evsel->core.ids;
 521		ret = do_write(ff, &nri, sizeof(nri));
 522		if (ret < 0)
 523			return ret;
 524
 525		/*
 526		 * write event string as passed on cmdline
 527		 */
 528		ret = do_write_string(ff, perf_evsel__name(evsel));
 529		if (ret < 0)
 530			return ret;
 531		/*
 532		 * write unique ids for this event
 533		 */
 534		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
 535		if (ret < 0)
 536			return ret;
 537	}
 538	return 0;
 539}
 540
 541static int write_cmdline(struct feat_fd *ff,
 542			 struct evlist *evlist __maybe_unused)
 543{
 544	char pbuf[MAXPATHLEN], *buf;
 545	int i, ret, n;
 546
 547	/* actual path to perf binary */
 548	buf = perf_exe(pbuf, MAXPATHLEN);
 549
 550	/* account for binary path */
 551	n = perf_env.nr_cmdline + 1;
 552
 553	ret = do_write(ff, &n, sizeof(n));
 554	if (ret < 0)
 555		return ret;
 556
 557	ret = do_write_string(ff, buf);
 558	if (ret < 0)
 559		return ret;
 560
 561	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 562		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 563		if (ret < 0)
 564			return ret;
 565	}
 566	return 0;
 567}
 568
 569
 570static int write_cpu_topology(struct feat_fd *ff,
 571			      struct evlist *evlist __maybe_unused)
 572{
 573	struct cpu_topology *tp;
 574	u32 i;
 575	int ret, j;
 576
 577	tp = cpu_topology__new();
 578	if (!tp)
 579		return -1;
 580
 581	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
 582	if (ret < 0)
 583		goto done;
 584
 585	for (i = 0; i < tp->core_sib; i++) {
 586		ret = do_write_string(ff, tp->core_siblings[i]);
 587		if (ret < 0)
 588			goto done;
 589	}
 590	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
 591	if (ret < 0)
 592		goto done;
 593
 594	for (i = 0; i < tp->thread_sib; i++) {
 595		ret = do_write_string(ff, tp->thread_siblings[i]);
 596		if (ret < 0)
 597			break;
 598	}
 599
 600	ret = perf_env__read_cpu_topology_map(&perf_env);
 601	if (ret < 0)
 602		goto done;
 603
 604	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 605		ret = do_write(ff, &perf_env.cpu[j].core_id,
 606			       sizeof(perf_env.cpu[j].core_id));
 607		if (ret < 0)
 608			return ret;
 609		ret = do_write(ff, &perf_env.cpu[j].socket_id,
 610			       sizeof(perf_env.cpu[j].socket_id));
 611		if (ret < 0)
 612			return ret;
 613	}
 614
 615	if (!tp->die_sib)
 616		goto done;
 617
 618	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
 619	if (ret < 0)
 620		goto done;
 621
 622	for (i = 0; i < tp->die_sib; i++) {
 623		ret = do_write_string(ff, tp->die_siblings[i]);
 624		if (ret < 0)
 625			goto done;
 626	}
 627
 628	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 629		ret = do_write(ff, &perf_env.cpu[j].die_id,
 630			       sizeof(perf_env.cpu[j].die_id));
 631		if (ret < 0)
 632			return ret;
 633	}
 634
 635done:
 636	cpu_topology__delete(tp);
 637	return ret;
 638}
 639
 640
 641
 642static int write_total_mem(struct feat_fd *ff,
 643			   struct evlist *evlist __maybe_unused)
 644{
 645	char *buf = NULL;
 646	FILE *fp;
 647	size_t len = 0;
 648	int ret = -1, n;
 649	uint64_t mem;
 650
 651	fp = fopen("/proc/meminfo", "r");
 652	if (!fp)
 653		return -1;
 654
 655	while (getline(&buf, &len, fp) > 0) {
 656		ret = strncmp(buf, "MemTotal:", 9);
 657		if (!ret)
 658			break;
 659	}
 660	if (!ret) {
 661		n = sscanf(buf, "%*s %"PRIu64, &mem);
 662		if (n == 1)
 663			ret = do_write(ff, &mem, sizeof(mem));
 664	} else
 665		ret = -1;
 666	free(buf);
 667	fclose(fp);
 668	return ret;
 669}
 670
 671static int write_numa_topology(struct feat_fd *ff,
 672			       struct evlist *evlist __maybe_unused)
 673{
 674	struct numa_topology *tp;
 675	int ret = -1;
 676	u32 i;
 677
 678	tp = numa_topology__new();
 679	if (!tp)
 680		return -ENOMEM;
 681
 682	ret = do_write(ff, &tp->nr, sizeof(u32));
 683	if (ret < 0)
 684		goto err;
 685
 686	for (i = 0; i < tp->nr; i++) {
 687		struct numa_topology_node *n = &tp->nodes[i];
 688
 689		ret = do_write(ff, &n->node, sizeof(u32));
 690		if (ret < 0)
 691			goto err;
 692
 693		ret = do_write(ff, &n->mem_total, sizeof(u64));
 694		if (ret)
 695			goto err;
 696
 697		ret = do_write(ff, &n->mem_free, sizeof(u64));
 698		if (ret)
 699			goto err;
 700
 701		ret = do_write_string(ff, n->cpus);
 702		if (ret < 0)
 703			goto err;
 704	}
 705
 706	ret = 0;
 707
 708err:
 709	numa_topology__delete(tp);
 710	return ret;
 711}
 712
 713/*
 714 * File format:
 715 *
 716 * struct pmu_mappings {
 717 *	u32	pmu_num;
 718 *	struct pmu_map {
 719 *		u32	type;
 720 *		char	name[];
 721 *	}[pmu_num];
 722 * };
 723 */
 724
 725static int write_pmu_mappings(struct feat_fd *ff,
 726			      struct evlist *evlist __maybe_unused)
 727{
 728	struct perf_pmu *pmu = NULL;
 729	u32 pmu_num = 0;
 730	int ret;
 731
 732	/*
 733	 * Do a first pass to count number of pmu to avoid lseek so this
 734	 * works in pipe mode as well.
 735	 */
 736	while ((pmu = perf_pmu__scan(pmu))) {
 737		if (!pmu->name)
 738			continue;
 739		pmu_num++;
 740	}
 741
 742	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 743	if (ret < 0)
 744		return ret;
 745
 746	while ((pmu = perf_pmu__scan(pmu))) {
 747		if (!pmu->name)
 748			continue;
 749
 750		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 751		if (ret < 0)
 752			return ret;
 753
 754		ret = do_write_string(ff, pmu->name);
 755		if (ret < 0)
 756			return ret;
 757	}
 758
 759	return 0;
 760}
 761
 762/*
 763 * File format:
 764 *
 765 * struct group_descs {
 766 *	u32	nr_groups;
 767 *	struct group_desc {
 768 *		char	name[];
 769 *		u32	leader_idx;
 770 *		u32	nr_members;
 771 *	}[nr_groups];
 772 * };
 773 */
 774static int write_group_desc(struct feat_fd *ff,
 775			    struct evlist *evlist)
 776{
 777	u32 nr_groups = evlist->nr_groups;
 778	struct evsel *evsel;
 779	int ret;
 780
 781	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 782	if (ret < 0)
 783		return ret;
 784
 785	evlist__for_each_entry(evlist, evsel) {
 786		if (perf_evsel__is_group_leader(evsel) &&
 787		    evsel->core.nr_members > 1) {
 788			const char *name = evsel->group_name ?: "{anon_group}";
 789			u32 leader_idx = evsel->idx;
 790			u32 nr_members = evsel->core.nr_members;
 791
 792			ret = do_write_string(ff, name);
 793			if (ret < 0)
 794				return ret;
 795
 796			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 797			if (ret < 0)
 798				return ret;
 799
 800			ret = do_write(ff, &nr_members, sizeof(nr_members));
 801			if (ret < 0)
 802				return ret;
 803		}
 804	}
 805	return 0;
 806}
 807
 808/*
 809 * Return the CPU id as a raw string.
 810 *
 811 * Each architecture should provide a more precise id string that
 812 * can be use to match the architecture's "mapfile".
 813 */
 814char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
 815{
 816	return NULL;
 817}
 818
 819/* Return zero when the cpuid from the mapfile.csv matches the
 820 * cpuid string generated on this platform.
 821 * Otherwise return non-zero.
 822 */
 823int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
 824{
 825	regex_t re;
 826	regmatch_t pmatch[1];
 827	int match;
 828
 829	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
 830		/* Warn unable to generate match particular string. */
 831		pr_info("Invalid regular expression %s\n", mapcpuid);
 832		return 1;
 833	}
 834
 835	match = !regexec(&re, cpuid, 1, pmatch, 0);
 836	regfree(&re);
 837	if (match) {
 838		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
 839
 840		/* Verify the entire string matched. */
 841		if (match_len == strlen(cpuid))
 842			return 0;
 843	}
 844	return 1;
 845}
 846
 847/*
 848 * default get_cpuid(): nothing gets recorded
 849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 850 */
 851int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
 852{
 853	return -1;
 854}
 855
 856static int write_cpuid(struct feat_fd *ff,
 857		       struct evlist *evlist __maybe_unused)
 858{
 859	char buffer[64];
 860	int ret;
 861
 862	ret = get_cpuid(buffer, sizeof(buffer));
 863	if (ret)
 864		return -1;
 865
 866	return do_write_string(ff, buffer);
 867}
 868
 869static int write_branch_stack(struct feat_fd *ff __maybe_unused,
 870			      struct evlist *evlist __maybe_unused)
 871{
 872	return 0;
 873}
 874
 875static int write_auxtrace(struct feat_fd *ff,
 876			  struct evlist *evlist __maybe_unused)
 877{
 878	struct perf_session *session;
 879	int err;
 880
 881	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 882		return -1;
 883
 884	session = container_of(ff->ph, struct perf_session, header);
 885
 886	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
 887	if (err < 0)
 888		pr_err("Failed to write auxtrace index\n");
 889	return err;
 890}
 891
 892static int write_clockid(struct feat_fd *ff,
 893			 struct evlist *evlist __maybe_unused)
 894{
 895	return do_write(ff, &ff->ph->env.clockid_res_ns,
 896			sizeof(ff->ph->env.clockid_res_ns));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897}
 898
 899static int write_dir_format(struct feat_fd *ff,
 900			    struct evlist *evlist __maybe_unused)
 901{
 902	struct perf_session *session;
 903	struct perf_data *data;
 904
 905	session = container_of(ff->ph, struct perf_session, header);
 906	data = session->data;
 907
 908	if (WARN_ON(!perf_data__is_dir(data)))
 909		return -1;
 910
 911	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
 912}
 913
 914#ifdef HAVE_LIBBPF_SUPPORT
 915static int write_bpf_prog_info(struct feat_fd *ff,
 916			       struct evlist *evlist __maybe_unused)
 917{
 918	struct perf_env *env = &ff->ph->env;
 919	struct rb_root *root;
 920	struct rb_node *next;
 921	int ret;
 922
 923	down_read(&env->bpf_progs.lock);
 924
 925	ret = do_write(ff, &env->bpf_progs.infos_cnt,
 926		       sizeof(env->bpf_progs.infos_cnt));
 927	if (ret < 0)
 928		goto out;
 929
 930	root = &env->bpf_progs.infos;
 931	next = rb_first(root);
 932	while (next) {
 933		struct bpf_prog_info_node *node;
 934		size_t len;
 935
 936		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
 937		next = rb_next(&node->rb_node);
 938		len = sizeof(struct bpf_prog_info_linear) +
 939			node->info_linear->data_len;
 940
 941		/* before writing to file, translate address to offset */
 942		bpf_program__bpil_addr_to_offs(node->info_linear);
 943		ret = do_write(ff, node->info_linear, len);
 944		/*
 945		 * translate back to address even when do_write() fails,
 946		 * so that this function never changes the data.
 947		 */
 948		bpf_program__bpil_offs_to_addr(node->info_linear);
 949		if (ret < 0)
 950			goto out;
 951	}
 952out:
 953	up_read(&env->bpf_progs.lock);
 954	return ret;
 955}
 956#else // HAVE_LIBBPF_SUPPORT
 957static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
 958			       struct evlist *evlist __maybe_unused)
 959{
 960	return 0;
 961}
 962#endif // HAVE_LIBBPF_SUPPORT
 963
 964static int write_bpf_btf(struct feat_fd *ff,
 965			 struct evlist *evlist __maybe_unused)
 966{
 967	struct perf_env *env = &ff->ph->env;
 968	struct rb_root *root;
 969	struct rb_node *next;
 970	int ret;
 971
 972	down_read(&env->bpf_progs.lock);
 973
 974	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
 975		       sizeof(env->bpf_progs.btfs_cnt));
 976
 977	if (ret < 0)
 978		goto out;
 979
 980	root = &env->bpf_progs.btfs;
 981	next = rb_first(root);
 982	while (next) {
 983		struct btf_node *node;
 984
 985		node = rb_entry(next, struct btf_node, rb_node);
 986		next = rb_next(&node->rb_node);
 987		ret = do_write(ff, &node->id,
 988			       sizeof(u32) * 2 + node->data_size);
 989		if (ret < 0)
 990			goto out;
 991	}
 992out:
 993	up_read(&env->bpf_progs.lock);
 994	return ret;
 995}
 
 996
 997static int cpu_cache_level__sort(const void *a, const void *b)
 998{
 999	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001
1002	return cache_a->level - cache_b->level;
1003}
1004
1005static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006{
1007	if (a->level != b->level)
1008		return false;
1009
1010	if (a->line_size != b->line_size)
1011		return false;
1012
1013	if (a->sets != b->sets)
1014		return false;
1015
1016	if (a->ways != b->ways)
1017		return false;
1018
1019	if (strcmp(a->type, b->type))
1020		return false;
1021
1022	if (strcmp(a->size, b->size))
1023		return false;
1024
1025	if (strcmp(a->map, b->map))
1026		return false;
1027
1028	return true;
1029}
1030
1031static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032{
1033	char path[PATH_MAX], file[PATH_MAX];
1034	struct stat st;
1035	size_t len;
1036
1037	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039
1040	if (stat(file, &st))
1041		return 1;
1042
1043	scnprintf(file, PATH_MAX, "%s/level", path);
1044	if (sysfs__read_int(file, (int *) &cache->level))
1045		return -1;
1046
1047	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048	if (sysfs__read_int(file, (int *) &cache->line_size))
1049		return -1;
1050
1051	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052	if (sysfs__read_int(file, (int *) &cache->sets))
1053		return -1;
1054
1055	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056	if (sysfs__read_int(file, (int *) &cache->ways))
1057		return -1;
1058
1059	scnprintf(file, PATH_MAX, "%s/type", path);
1060	if (sysfs__read_str(file, &cache->type, &len))
1061		return -1;
1062
1063	cache->type[len] = 0;
1064	cache->type = strim(cache->type);
1065
1066	scnprintf(file, PATH_MAX, "%s/size", path);
1067	if (sysfs__read_str(file, &cache->size, &len)) {
1068		zfree(&cache->type);
1069		return -1;
1070	}
1071
1072	cache->size[len] = 0;
1073	cache->size = strim(cache->size);
1074
1075	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076	if (sysfs__read_str(file, &cache->map, &len)) {
1077		zfree(&cache->size);
1078		zfree(&cache->type);
1079		return -1;
1080	}
1081
1082	cache->map[len] = 0;
1083	cache->map = strim(cache->map);
1084	return 0;
1085}
1086
1087static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088{
1089	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090}
1091
1092static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
 
 
1093{
1094	u32 i, cnt = 0;
1095	long ncpus;
1096	u32 nr, cpu;
1097	u16 level;
1098
1099	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1100	if (ncpus < 0)
1101		return -1;
1102
1103	nr = (u32)(ncpus & UINT_MAX);
1104
1105	for (cpu = 0; cpu < nr; cpu++) {
1106		for (level = 0; level < 10; level++) {
1107			struct cpu_cache_level c;
1108			int err;
1109
1110			err = cpu_cache_level__read(&c, cpu, level);
1111			if (err < 0)
1112				return err;
1113
1114			if (err == 1)
1115				break;
1116
1117			for (i = 0; i < cnt; i++) {
1118				if (cpu_cache_level__cmp(&c, &caches[i]))
1119					break;
1120			}
1121
1122			if (i == cnt)
1123				caches[cnt++] = c;
1124			else
1125				cpu_cache_level__free(&c);
1126
1127			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1128				goto out;
1129		}
1130	}
1131 out:
1132	*cntp = cnt;
1133	return 0;
1134}
1135
1136#define MAX_CACHE_LVL 4
1137
1138static int write_cache(struct feat_fd *ff,
1139		       struct evlist *evlist __maybe_unused)
1140{
1141	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1142	struct cpu_cache_level caches[max_caches];
1143	u32 cnt = 0, i, version = 1;
1144	int ret;
1145
1146	ret = build_caches(caches, max_caches, &cnt);
1147	if (ret)
1148		goto out;
1149
1150	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1151
1152	ret = do_write(ff, &version, sizeof(u32));
1153	if (ret < 0)
1154		goto out;
1155
1156	ret = do_write(ff, &cnt, sizeof(u32));
1157	if (ret < 0)
1158		goto out;
1159
1160	for (i = 0; i < cnt; i++) {
1161		struct cpu_cache_level *c = &caches[i];
1162
1163		#define _W(v)					\
1164			ret = do_write(ff, &c->v, sizeof(u32));	\
1165			if (ret < 0)				\
1166				goto out;
1167
1168		_W(level)
1169		_W(line_size)
1170		_W(sets)
1171		_W(ways)
1172		#undef _W
1173
1174		#define _W(v)						\
1175			ret = do_write_string(ff, (const char *) c->v);	\
1176			if (ret < 0)					\
1177				goto out;
1178
1179		_W(type)
1180		_W(size)
1181		_W(map)
1182		#undef _W
1183	}
1184
1185out:
1186	for (i = 0; i < cnt; i++)
1187		cpu_cache_level__free(&caches[i]);
1188	return ret;
1189}
1190
1191static int write_stat(struct feat_fd *ff __maybe_unused,
1192		      struct evlist *evlist __maybe_unused)
1193{
1194	return 0;
1195}
1196
1197static int write_sample_time(struct feat_fd *ff,
1198			     struct evlist *evlist)
1199{
1200	int ret;
1201
1202	ret = do_write(ff, &evlist->first_sample_time,
1203		       sizeof(evlist->first_sample_time));
1204	if (ret < 0)
1205		return ret;
1206
1207	return do_write(ff, &evlist->last_sample_time,
1208			sizeof(evlist->last_sample_time));
1209}
1210
1211
1212static int memory_node__read(struct memory_node *n, unsigned long idx)
1213{
1214	unsigned int phys, size = 0;
1215	char path[PATH_MAX];
1216	struct dirent *ent;
1217	DIR *dir;
1218
1219#define for_each_memory(mem, dir)					\
1220	while ((ent = readdir(dir)))					\
1221		if (strcmp(ent->d_name, ".") &&				\
1222		    strcmp(ent->d_name, "..") &&			\
1223		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1224
1225	scnprintf(path, PATH_MAX,
1226		  "%s/devices/system/node/node%lu",
1227		  sysfs__mountpoint(), idx);
1228
1229	dir = opendir(path);
1230	if (!dir) {
1231		pr_warning("failed: cant' open memory sysfs data\n");
1232		return -1;
1233	}
1234
1235	for_each_memory(phys, dir) {
1236		size = max(phys, size);
1237	}
1238
1239	size++;
1240
1241	n->set = bitmap_alloc(size);
1242	if (!n->set) {
1243		closedir(dir);
1244		return -ENOMEM;
1245	}
1246
1247	n->node = idx;
1248	n->size = size;
1249
1250	rewinddir(dir);
1251
1252	for_each_memory(phys, dir) {
1253		set_bit(phys, n->set);
1254	}
1255
1256	closedir(dir);
1257	return 0;
1258}
1259
1260static int memory_node__sort(const void *a, const void *b)
1261{
1262	const struct memory_node *na = a;
1263	const struct memory_node *nb = b;
1264
1265	return na->node - nb->node;
1266}
1267
1268static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1269{
1270	char path[PATH_MAX];
1271	struct dirent *ent;
1272	DIR *dir;
1273	u64 cnt = 0;
1274	int ret = 0;
1275
1276	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1277		  sysfs__mountpoint());
1278
1279	dir = opendir(path);
1280	if (!dir) {
1281		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1282			  __func__, path);
1283		return -1;
1284	}
1285
1286	while (!ret && (ent = readdir(dir))) {
1287		unsigned int idx;
1288		int r;
1289
1290		if (!strcmp(ent->d_name, ".") ||
1291		    !strcmp(ent->d_name, ".."))
1292			continue;
1293
1294		r = sscanf(ent->d_name, "node%u", &idx);
1295		if (r != 1)
1296			continue;
1297
1298		if (WARN_ONCE(cnt >= size,
1299			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1300			closedir(dir);
1301			return -1;
1302		}
1303
1304		ret = memory_node__read(&nodes[cnt++], idx);
1305	}
1306
1307	*cntp = cnt;
1308	closedir(dir);
1309
1310	if (!ret)
1311		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1312
1313	return ret;
1314}
1315
1316#define MAX_MEMORY_NODES 2000
1317
1318/*
1319 * The MEM_TOPOLOGY holds physical memory map for every
1320 * node in system. The format of data is as follows:
1321 *
1322 *  0 - version          | for future changes
1323 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1324 * 16 - count            | number of nodes
1325 *
1326 * For each node we store map of physical indexes for
1327 * each node:
1328 *
1329 * 32 - node id          | node index
1330 * 40 - size             | size of bitmap
1331 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1332 */
1333static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1334			      struct evlist *evlist __maybe_unused)
1335{
1336	static struct memory_node nodes[MAX_MEMORY_NODES];
1337	u64 bsize, version = 1, i, nr;
1338	int ret;
1339
1340	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1341			      (unsigned long long *) &bsize);
1342	if (ret)
1343		return ret;
1344
1345	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1346	if (ret)
1347		return ret;
1348
1349	ret = do_write(ff, &version, sizeof(version));
1350	if (ret < 0)
1351		goto out;
1352
1353	ret = do_write(ff, &bsize, sizeof(bsize));
1354	if (ret < 0)
1355		goto out;
1356
1357	ret = do_write(ff, &nr, sizeof(nr));
1358	if (ret < 0)
1359		goto out;
1360
1361	for (i = 0; i < nr; i++) {
1362		struct memory_node *n = &nodes[i];
1363
1364		#define _W(v)						\
1365			ret = do_write(ff, &n->v, sizeof(n->v));	\
1366			if (ret < 0)					\
1367				goto out;
1368
1369		_W(node)
1370		_W(size)
1371
1372		#undef _W
1373
1374		ret = do_write_bitmap(ff, n->set, n->size);
1375		if (ret < 0)
1376			goto out;
1377	}
1378
1379out:
1380	return ret;
1381}
1382
1383static int write_compressed(struct feat_fd *ff __maybe_unused,
1384			    struct evlist *evlist __maybe_unused)
1385{
1386	int ret;
1387
1388	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1389	if (ret)
1390		return ret;
1391
1392	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1393	if (ret)
1394		return ret;
1395
1396	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1397	if (ret)
1398		return ret;
1399
1400	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1401	if (ret)
1402		return ret;
1403
1404	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1405}
1406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407static void print_hostname(struct feat_fd *ff, FILE *fp)
1408{
1409	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1410}
1411
1412static void print_osrelease(struct feat_fd *ff, FILE *fp)
1413{
1414	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1415}
1416
1417static void print_arch(struct feat_fd *ff, FILE *fp)
1418{
1419	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1420}
1421
1422static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1423{
1424	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1425}
1426
1427static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1428{
1429	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1430	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1431}
1432
1433static void print_version(struct feat_fd *ff, FILE *fp)
1434{
1435	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1436}
1437
1438static void print_cmdline(struct feat_fd *ff, FILE *fp)
1439{
1440	int nr, i;
1441
1442	nr = ff->ph->env.nr_cmdline;
1443
1444	fprintf(fp, "# cmdline : ");
1445
1446	for (i = 0; i < nr; i++) {
1447		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1448		if (!argv_i) {
1449			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1450		} else {
1451			char *mem = argv_i;
1452			do {
1453				char *quote = strchr(argv_i, '\'');
1454				if (!quote)
1455					break;
1456				*quote++ = '\0';
1457				fprintf(fp, "%s\\\'", argv_i);
1458				argv_i = quote;
1459			} while (1);
1460			fprintf(fp, "%s ", argv_i);
1461			free(mem);
1462		}
1463	}
1464	fputc('\n', fp);
1465}
1466
1467static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1468{
1469	struct perf_header *ph = ff->ph;
1470	int cpu_nr = ph->env.nr_cpus_avail;
1471	int nr, i;
1472	char *str;
1473
1474	nr = ph->env.nr_sibling_cores;
1475	str = ph->env.sibling_cores;
1476
1477	for (i = 0; i < nr; i++) {
1478		fprintf(fp, "# sibling sockets : %s\n", str);
1479		str += strlen(str) + 1;
1480	}
1481
1482	if (ph->env.nr_sibling_dies) {
1483		nr = ph->env.nr_sibling_dies;
1484		str = ph->env.sibling_dies;
1485
1486		for (i = 0; i < nr; i++) {
1487			fprintf(fp, "# sibling dies    : %s\n", str);
1488			str += strlen(str) + 1;
1489		}
1490	}
1491
1492	nr = ph->env.nr_sibling_threads;
1493	str = ph->env.sibling_threads;
1494
1495	for (i = 0; i < nr; i++) {
1496		fprintf(fp, "# sibling threads : %s\n", str);
1497		str += strlen(str) + 1;
1498	}
1499
1500	if (ph->env.nr_sibling_dies) {
1501		if (ph->env.cpu != NULL) {
1502			for (i = 0; i < cpu_nr; i++)
1503				fprintf(fp, "# CPU %d: Core ID %d, "
1504					    "Die ID %d, Socket ID %d\n",
1505					    i, ph->env.cpu[i].core_id,
1506					    ph->env.cpu[i].die_id,
1507					    ph->env.cpu[i].socket_id);
1508		} else
1509			fprintf(fp, "# Core ID, Die ID and Socket ID "
1510				    "information is not available\n");
1511	} else {
1512		if (ph->env.cpu != NULL) {
1513			for (i = 0; i < cpu_nr; i++)
1514				fprintf(fp, "# CPU %d: Core ID %d, "
1515					    "Socket ID %d\n",
1516					    i, ph->env.cpu[i].core_id,
1517					    ph->env.cpu[i].socket_id);
1518		} else
1519			fprintf(fp, "# Core ID and Socket ID "
1520				    "information is not available\n");
1521	}
1522}
1523
1524static void print_clockid(struct feat_fd *ff, FILE *fp)
1525{
1526	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1527		ff->ph->env.clockid_res_ns * 1000);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528}
1529
1530static void print_dir_format(struct feat_fd *ff, FILE *fp)
1531{
1532	struct perf_session *session;
1533	struct perf_data *data;
1534
1535	session = container_of(ff->ph, struct perf_session, header);
1536	data = session->data;
1537
1538	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1539}
1540
 
1541static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1542{
1543	struct perf_env *env = &ff->ph->env;
1544	struct rb_root *root;
1545	struct rb_node *next;
1546
1547	down_read(&env->bpf_progs.lock);
1548
1549	root = &env->bpf_progs.infos;
1550	next = rb_first(root);
1551
1552	while (next) {
1553		struct bpf_prog_info_node *node;
1554
1555		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1556		next = rb_next(&node->rb_node);
1557
1558		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1559					       env, fp);
1560	}
1561
1562	up_read(&env->bpf_progs.lock);
1563}
1564
1565static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1566{
1567	struct perf_env *env = &ff->ph->env;
1568	struct rb_root *root;
1569	struct rb_node *next;
1570
1571	down_read(&env->bpf_progs.lock);
1572
1573	root = &env->bpf_progs.btfs;
1574	next = rb_first(root);
1575
1576	while (next) {
1577		struct btf_node *node;
1578
1579		node = rb_entry(next, struct btf_node, rb_node);
1580		next = rb_next(&node->rb_node);
1581		fprintf(fp, "# btf info of id %u\n", node->id);
1582	}
1583
1584	up_read(&env->bpf_progs.lock);
1585}
 
1586
1587static void free_event_desc(struct evsel *events)
1588{
1589	struct evsel *evsel;
1590
1591	if (!events)
1592		return;
1593
1594	for (evsel = events; evsel->core.attr.size; evsel++) {
1595		zfree(&evsel->name);
1596		zfree(&evsel->core.id);
1597	}
1598
1599	free(events);
1600}
1601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602static struct evsel *read_event_desc(struct feat_fd *ff)
1603{
1604	struct evsel *evsel, *events = NULL;
1605	u64 *id;
1606	void *buf = NULL;
1607	u32 nre, sz, nr, i, j;
1608	size_t msz;
1609
1610	/* number of events */
1611	if (do_read_u32(ff, &nre))
1612		goto error;
1613
1614	if (do_read_u32(ff, &sz))
1615		goto error;
1616
1617	/* buffer to hold on file attr struct */
1618	buf = malloc(sz);
1619	if (!buf)
1620		goto error;
1621
1622	/* the last event terminates with evsel->core.attr.size == 0: */
1623	events = calloc(nre + 1, sizeof(*events));
1624	if (!events)
1625		goto error;
1626
1627	msz = sizeof(evsel->core.attr);
1628	if (sz < msz)
1629		msz = sz;
1630
1631	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1632		evsel->idx = i;
1633
1634		/*
1635		 * must read entire on-file attr struct to
1636		 * sync up with layout.
1637		 */
1638		if (__do_read(ff, buf, sz))
1639			goto error;
1640
1641		if (ff->ph->needs_swap)
1642			perf_event__attr_swap(buf);
1643
1644		memcpy(&evsel->core.attr, buf, msz);
1645
 
 
 
1646		if (do_read_u32(ff, &nr))
1647			goto error;
1648
1649		if (ff->ph->needs_swap)
1650			evsel->needs_swap = true;
1651
1652		evsel->name = do_read_string(ff);
1653		if (!evsel->name)
1654			goto error;
1655
1656		if (!nr)
1657			continue;
1658
1659		id = calloc(nr, sizeof(*id));
1660		if (!id)
1661			goto error;
1662		evsel->core.ids = nr;
1663		evsel->core.id = id;
1664
1665		for (j = 0 ; j < nr; j++) {
1666			if (do_read_u64(ff, id))
1667				goto error;
1668			id++;
1669		}
1670	}
1671out:
1672	free(buf);
1673	return events;
1674error:
1675	free_event_desc(events);
1676	events = NULL;
1677	goto out;
1678}
1679
1680static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1681				void *priv __maybe_unused)
1682{
1683	return fprintf(fp, ", %s = %s", name, val);
1684}
1685
1686static void print_event_desc(struct feat_fd *ff, FILE *fp)
1687{
1688	struct evsel *evsel, *events;
1689	u32 j;
1690	u64 *id;
1691
1692	if (ff->events)
1693		events = ff->events;
1694	else
1695		events = read_event_desc(ff);
1696
1697	if (!events) {
1698		fprintf(fp, "# event desc: not available or unable to read\n");
1699		return;
1700	}
1701
1702	for (evsel = events; evsel->core.attr.size; evsel++) {
1703		fprintf(fp, "# event : name = %s, ", evsel->name);
1704
1705		if (evsel->core.ids) {
1706			fprintf(fp, ", id = {");
1707			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1708				if (j)
1709					fputc(',', fp);
1710				fprintf(fp, " %"PRIu64, *id);
1711			}
1712			fprintf(fp, " }");
1713		}
1714
1715		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1716
1717		fputc('\n', fp);
1718	}
1719
1720	free_event_desc(events);
1721	ff->events = NULL;
1722}
1723
1724static void print_total_mem(struct feat_fd *ff, FILE *fp)
1725{
1726	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1727}
1728
1729static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1730{
1731	int i;
1732	struct numa_node *n;
1733
1734	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1735		n = &ff->ph->env.numa_nodes[i];
1736
1737		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1738			    " free = %"PRIu64" kB\n",
1739			n->node, n->mem_total, n->mem_free);
1740
1741		fprintf(fp, "# node%u cpu list : ", n->node);
1742		cpu_map__fprintf(n->map, fp);
1743	}
1744}
1745
1746static void print_cpuid(struct feat_fd *ff, FILE *fp)
1747{
1748	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1749}
1750
1751static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1752{
1753	fprintf(fp, "# contains samples with branch stack\n");
1754}
1755
1756static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1757{
1758	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1759}
1760
1761static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1762{
1763	fprintf(fp, "# contains stat data\n");
1764}
1765
1766static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1767{
1768	int i;
1769
1770	fprintf(fp, "# CPU cache info:\n");
1771	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1772		fprintf(fp, "#  ");
1773		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1774	}
1775}
1776
1777static void print_compressed(struct feat_fd *ff, FILE *fp)
1778{
1779	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1780		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1781		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1782}
1783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1785{
1786	const char *delimiter = "# pmu mappings: ";
1787	char *str, *tmp;
1788	u32 pmu_num;
1789	u32 type;
1790
1791	pmu_num = ff->ph->env.nr_pmu_mappings;
1792	if (!pmu_num) {
1793		fprintf(fp, "# pmu mappings: not available\n");
1794		return;
1795	}
1796
1797	str = ff->ph->env.pmu_mappings;
1798
1799	while (pmu_num) {
1800		type = strtoul(str, &tmp, 0);
1801		if (*tmp != ':')
1802			goto error;
1803
1804		str = tmp + 1;
1805		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1806
1807		delimiter = ", ";
1808		str += strlen(str) + 1;
1809		pmu_num--;
1810	}
1811
1812	fprintf(fp, "\n");
1813
1814	if (!pmu_num)
1815		return;
1816error:
1817	fprintf(fp, "# pmu mappings: unable to read\n");
1818}
1819
1820static void print_group_desc(struct feat_fd *ff, FILE *fp)
1821{
1822	struct perf_session *session;
1823	struct evsel *evsel;
1824	u32 nr = 0;
1825
1826	session = container_of(ff->ph, struct perf_session, header);
1827
1828	evlist__for_each_entry(session->evlist, evsel) {
1829		if (perf_evsel__is_group_leader(evsel) &&
1830		    evsel->core.nr_members > 1) {
1831			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1832				perf_evsel__name(evsel));
1833
1834			nr = evsel->core.nr_members - 1;
1835		} else if (nr) {
1836			fprintf(fp, ",%s", perf_evsel__name(evsel));
1837
1838			if (--nr == 0)
1839				fprintf(fp, "}\n");
1840		}
1841	}
1842}
1843
1844static void print_sample_time(struct feat_fd *ff, FILE *fp)
1845{
1846	struct perf_session *session;
1847	char time_buf[32];
1848	double d;
1849
1850	session = container_of(ff->ph, struct perf_session, header);
1851
1852	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1853				  time_buf, sizeof(time_buf));
1854	fprintf(fp, "# time of first sample : %s\n", time_buf);
1855
1856	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1857				  time_buf, sizeof(time_buf));
1858	fprintf(fp, "# time of last sample : %s\n", time_buf);
1859
1860	d = (double)(session->evlist->last_sample_time -
1861		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1862
1863	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1864}
1865
1866static void memory_node__fprintf(struct memory_node *n,
1867				 unsigned long long bsize, FILE *fp)
1868{
1869	char buf_map[100], buf_size[50];
1870	unsigned long long size;
1871
1872	size = bsize * bitmap_weight(n->set, n->size);
1873	unit_number__scnprintf(buf_size, 50, size);
1874
1875	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1876	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1877}
1878
1879static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1880{
1881	struct memory_node *nodes;
1882	int i, nr;
1883
1884	nodes = ff->ph->env.memory_nodes;
1885	nr    = ff->ph->env.nr_memory_nodes;
1886
1887	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1888		nr, ff->ph->env.memory_bsize);
1889
1890	for (i = 0; i < nr; i++) {
1891		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1892	}
1893}
1894
1895static int __event_process_build_id(struct perf_record_header_build_id *bev,
1896				    char *filename,
1897				    struct perf_session *session)
1898{
1899	int err = -1;
1900	struct machine *machine;
1901	u16 cpumode;
1902	struct dso *dso;
1903	enum dso_kernel_type dso_type;
1904
1905	machine = perf_session__findnew_machine(session, bev->pid);
1906	if (!machine)
1907		goto out;
1908
1909	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1910
1911	switch (cpumode) {
1912	case PERF_RECORD_MISC_KERNEL:
1913		dso_type = DSO_TYPE_KERNEL;
1914		break;
1915	case PERF_RECORD_MISC_GUEST_KERNEL:
1916		dso_type = DSO_TYPE_GUEST_KERNEL;
1917		break;
1918	case PERF_RECORD_MISC_USER:
1919	case PERF_RECORD_MISC_GUEST_USER:
1920		dso_type = DSO_TYPE_USER;
1921		break;
1922	default:
1923		goto out;
1924	}
1925
1926	dso = machine__findnew_dso(machine, filename);
1927	if (dso != NULL) {
1928		char sbuild_id[SBUILD_ID_SIZE];
 
 
 
 
 
1929
1930		dso__set_build_id(dso, &bev->build_id);
 
1931
1932		if (dso_type != DSO_TYPE_USER) {
1933			struct kmod_path m = { .name = NULL, };
1934
1935			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1936				dso__set_module_info(dso, &m, machine);
1937			else
1938				dso->kernel = dso_type;
1939
 
1940			free(m.name);
1941		}
1942
1943		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1944				  sbuild_id);
1945		pr_debug("build id event received for %s: %s\n",
1946			 dso->long_name, sbuild_id);
1947		dso__put(dso);
1948	}
1949
1950	err = 0;
1951out:
1952	return err;
1953}
1954
1955static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1956						 int input, u64 offset, u64 size)
1957{
1958	struct perf_session *session = container_of(header, struct perf_session, header);
1959	struct {
1960		struct perf_event_header   header;
1961		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1962		char			   filename[0];
1963	} old_bev;
1964	struct perf_record_header_build_id bev;
1965	char filename[PATH_MAX];
1966	u64 limit = offset + size;
1967
1968	while (offset < limit) {
1969		ssize_t len;
1970
1971		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1972			return -1;
1973
1974		if (header->needs_swap)
1975			perf_event_header__bswap(&old_bev.header);
1976
1977		len = old_bev.header.size - sizeof(old_bev);
1978		if (readn(input, filename, len) != len)
1979			return -1;
1980
1981		bev.header = old_bev.header;
1982
1983		/*
1984		 * As the pid is the missing value, we need to fill
1985		 * it properly. The header.misc value give us nice hint.
1986		 */
1987		bev.pid	= HOST_KERNEL_ID;
1988		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1989		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1990			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1991
1992		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1993		__event_process_build_id(&bev, filename, session);
1994
1995		offset += bev.header.size;
1996	}
1997
1998	return 0;
1999}
2000
2001static int perf_header__read_build_ids(struct perf_header *header,
2002				       int input, u64 offset, u64 size)
2003{
2004	struct perf_session *session = container_of(header, struct perf_session, header);
2005	struct perf_record_header_build_id bev;
2006	char filename[PATH_MAX];
2007	u64 limit = offset + size, orig_offset = offset;
2008	int err = -1;
2009
2010	while (offset < limit) {
2011		ssize_t len;
2012
2013		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2014			goto out;
2015
2016		if (header->needs_swap)
2017			perf_event_header__bswap(&bev.header);
2018
2019		len = bev.header.size - sizeof(bev);
2020		if (readn(input, filename, len) != len)
2021			goto out;
2022		/*
2023		 * The a1645ce1 changeset:
2024		 *
2025		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2026		 *
2027		 * Added a field to struct perf_record_header_build_id that broke the file
2028		 * format.
2029		 *
2030		 * Since the kernel build-id is the first entry, process the
2031		 * table using the old format if the well known
2032		 * '[kernel.kallsyms]' string for the kernel build-id has the
2033		 * first 4 characters chopped off (where the pid_t sits).
2034		 */
2035		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2036			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2037				return -1;
2038			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2039		}
2040
2041		__event_process_build_id(&bev, filename, session);
2042
2043		offset += bev.header.size;
2044	}
2045	err = 0;
2046out:
2047	return err;
2048}
2049
2050/* Macro for features that simply need to read and store a string. */
2051#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2052static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2053{\
2054	ff->ph->env.__feat_env = do_read_string(ff); \
2055	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2056}
2057
2058FEAT_PROCESS_STR_FUN(hostname, hostname);
2059FEAT_PROCESS_STR_FUN(osrelease, os_release);
2060FEAT_PROCESS_STR_FUN(version, version);
2061FEAT_PROCESS_STR_FUN(arch, arch);
2062FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2063FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2064
2065static int process_tracing_data(struct feat_fd *ff, void *data)
2066{
2067	ssize_t ret = trace_report(ff->fd, data, false);
2068
2069	return ret < 0 ? -1 : 0;
2070}
2071
2072static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2073{
2074	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2075		pr_debug("Failed to read buildids, continuing...\n");
2076	return 0;
2077}
2078
2079static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2080{
2081	int ret;
2082	u32 nr_cpus_avail, nr_cpus_online;
2083
2084	ret = do_read_u32(ff, &nr_cpus_avail);
2085	if (ret)
2086		return ret;
2087
2088	ret = do_read_u32(ff, &nr_cpus_online);
2089	if (ret)
2090		return ret;
2091	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2092	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2093	return 0;
2094}
2095
2096static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2097{
2098	u64 total_mem;
2099	int ret;
2100
2101	ret = do_read_u64(ff, &total_mem);
2102	if (ret)
2103		return -1;
2104	ff->ph->env.total_mem = (unsigned long long)total_mem;
2105	return 0;
2106}
2107
2108static struct evsel *
2109perf_evlist__find_by_index(struct evlist *evlist, int idx)
2110{
2111	struct evsel *evsel;
2112
2113	evlist__for_each_entry(evlist, evsel) {
2114		if (evsel->idx == idx)
2115			return evsel;
2116	}
2117
2118	return NULL;
2119}
2120
2121static void
2122perf_evlist__set_event_name(struct evlist *evlist,
2123			    struct evsel *event)
2124{
2125	struct evsel *evsel;
2126
2127	if (!event->name)
2128		return;
2129
2130	evsel = perf_evlist__find_by_index(evlist, event->idx);
2131	if (!evsel)
2132		return;
2133
2134	if (evsel->name)
2135		return;
2136
2137	evsel->name = strdup(event->name);
2138}
2139
2140static int
2141process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2142{
2143	struct perf_session *session;
2144	struct evsel *evsel, *events = read_event_desc(ff);
2145
2146	if (!events)
2147		return 0;
2148
2149	session = container_of(ff->ph, struct perf_session, header);
2150
2151	if (session->data->is_pipe) {
2152		/* Save events for reading later by print_event_desc,
2153		 * since they can't be read again in pipe mode. */
2154		ff->events = events;
2155	}
2156
2157	for (evsel = events; evsel->core.attr.size; evsel++)
2158		perf_evlist__set_event_name(session->evlist, evsel);
2159
2160	if (!session->data->is_pipe)
2161		free_event_desc(events);
2162
2163	return 0;
2164}
2165
2166static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2167{
2168	char *str, *cmdline = NULL, **argv = NULL;
2169	u32 nr, i, len = 0;
2170
2171	if (do_read_u32(ff, &nr))
2172		return -1;
2173
2174	ff->ph->env.nr_cmdline = nr;
2175
2176	cmdline = zalloc(ff->size + nr + 1);
2177	if (!cmdline)
2178		return -1;
2179
2180	argv = zalloc(sizeof(char *) * (nr + 1));
2181	if (!argv)
2182		goto error;
2183
2184	for (i = 0; i < nr; i++) {
2185		str = do_read_string(ff);
2186		if (!str)
2187			goto error;
2188
2189		argv[i] = cmdline + len;
2190		memcpy(argv[i], str, strlen(str) + 1);
2191		len += strlen(str) + 1;
2192		free(str);
2193	}
2194	ff->ph->env.cmdline = cmdline;
2195	ff->ph->env.cmdline_argv = (const char **) argv;
2196	return 0;
2197
2198error:
2199	free(argv);
2200	free(cmdline);
2201	return -1;
2202}
2203
2204static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2205{
2206	u32 nr, i;
2207	char *str;
2208	struct strbuf sb;
2209	int cpu_nr = ff->ph->env.nr_cpus_avail;
2210	u64 size = 0;
2211	struct perf_header *ph = ff->ph;
2212	bool do_core_id_test = true;
2213
2214	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2215	if (!ph->env.cpu)
2216		return -1;
2217
2218	if (do_read_u32(ff, &nr))
2219		goto free_cpu;
2220
2221	ph->env.nr_sibling_cores = nr;
2222	size += sizeof(u32);
2223	if (strbuf_init(&sb, 128) < 0)
2224		goto free_cpu;
2225
2226	for (i = 0; i < nr; i++) {
2227		str = do_read_string(ff);
2228		if (!str)
2229			goto error;
2230
2231		/* include a NULL character at the end */
2232		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2233			goto error;
2234		size += string_size(str);
2235		free(str);
2236	}
2237	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2238
2239	if (do_read_u32(ff, &nr))
2240		return -1;
2241
2242	ph->env.nr_sibling_threads = nr;
2243	size += sizeof(u32);
2244
2245	for (i = 0; i < nr; i++) {
2246		str = do_read_string(ff);
2247		if (!str)
2248			goto error;
2249
2250		/* include a NULL character at the end */
2251		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2252			goto error;
2253		size += string_size(str);
2254		free(str);
2255	}
2256	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2257
2258	/*
2259	 * The header may be from old perf,
2260	 * which doesn't include core id and socket id information.
2261	 */
2262	if (ff->size <= size) {
2263		zfree(&ph->env.cpu);
2264		return 0;
2265	}
2266
2267	/* On s390 the socket_id number is not related to the numbers of cpus.
2268	 * The socket_id number might be higher than the numbers of cpus.
2269	 * This depends on the configuration.
2270	 * AArch64 is the same.
2271	 */
2272	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2273			  || !strncmp(ph->env.arch, "aarch64", 7)))
2274		do_core_id_test = false;
2275
2276	for (i = 0; i < (u32)cpu_nr; i++) {
2277		if (do_read_u32(ff, &nr))
2278			goto free_cpu;
2279
2280		ph->env.cpu[i].core_id = nr;
2281		size += sizeof(u32);
2282
2283		if (do_read_u32(ff, &nr))
2284			goto free_cpu;
2285
2286		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2287			pr_debug("socket_id number is too big."
2288				 "You may need to upgrade the perf tool.\n");
2289			goto free_cpu;
2290		}
2291
2292		ph->env.cpu[i].socket_id = nr;
2293		size += sizeof(u32);
2294	}
2295
2296	/*
2297	 * The header may be from old perf,
2298	 * which doesn't include die information.
2299	 */
2300	if (ff->size <= size)
2301		return 0;
2302
2303	if (do_read_u32(ff, &nr))
2304		return -1;
2305
2306	ph->env.nr_sibling_dies = nr;
2307	size += sizeof(u32);
2308
2309	for (i = 0; i < nr; i++) {
2310		str = do_read_string(ff);
2311		if (!str)
2312			goto error;
2313
2314		/* include a NULL character at the end */
2315		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2316			goto error;
2317		size += string_size(str);
2318		free(str);
2319	}
2320	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2321
2322	for (i = 0; i < (u32)cpu_nr; i++) {
2323		if (do_read_u32(ff, &nr))
2324			goto free_cpu;
2325
2326		ph->env.cpu[i].die_id = nr;
2327	}
2328
2329	return 0;
2330
2331error:
2332	strbuf_release(&sb);
2333free_cpu:
2334	zfree(&ph->env.cpu);
2335	return -1;
2336}
2337
2338static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2339{
2340	struct numa_node *nodes, *n;
2341	u32 nr, i;
2342	char *str;
2343
2344	/* nr nodes */
2345	if (do_read_u32(ff, &nr))
2346		return -1;
2347
2348	nodes = zalloc(sizeof(*nodes) * nr);
2349	if (!nodes)
2350		return -ENOMEM;
2351
2352	for (i = 0; i < nr; i++) {
2353		n = &nodes[i];
2354
2355		/* node number */
2356		if (do_read_u32(ff, &n->node))
2357			goto error;
2358
2359		if (do_read_u64(ff, &n->mem_total))
2360			goto error;
2361
2362		if (do_read_u64(ff, &n->mem_free))
2363			goto error;
2364
2365		str = do_read_string(ff);
2366		if (!str)
2367			goto error;
2368
2369		n->map = perf_cpu_map__new(str);
2370		if (!n->map)
2371			goto error;
2372
2373		free(str);
2374	}
2375	ff->ph->env.nr_numa_nodes = nr;
2376	ff->ph->env.numa_nodes = nodes;
2377	return 0;
2378
2379error:
2380	free(nodes);
2381	return -1;
2382}
2383
2384static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2385{
2386	char *name;
2387	u32 pmu_num;
2388	u32 type;
2389	struct strbuf sb;
2390
2391	if (do_read_u32(ff, &pmu_num))
2392		return -1;
2393
2394	if (!pmu_num) {
2395		pr_debug("pmu mappings not available\n");
2396		return 0;
2397	}
2398
2399	ff->ph->env.nr_pmu_mappings = pmu_num;
2400	if (strbuf_init(&sb, 128) < 0)
2401		return -1;
2402
2403	while (pmu_num) {
2404		if (do_read_u32(ff, &type))
2405			goto error;
2406
2407		name = do_read_string(ff);
2408		if (!name)
2409			goto error;
2410
2411		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2412			goto error;
2413		/* include a NULL character at the end */
2414		if (strbuf_add(&sb, "", 1) < 0)
2415			goto error;
2416
2417		if (!strcmp(name, "msr"))
2418			ff->ph->env.msr_pmu_type = type;
2419
2420		free(name);
2421		pmu_num--;
2422	}
2423	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2424	return 0;
2425
2426error:
2427	strbuf_release(&sb);
2428	return -1;
2429}
2430
2431static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2432{
2433	size_t ret = -1;
2434	u32 i, nr, nr_groups;
2435	struct perf_session *session;
2436	struct evsel *evsel, *leader = NULL;
2437	struct group_desc {
2438		char *name;
2439		u32 leader_idx;
2440		u32 nr_members;
2441	} *desc;
2442
2443	if (do_read_u32(ff, &nr_groups))
2444		return -1;
2445
2446	ff->ph->env.nr_groups = nr_groups;
2447	if (!nr_groups) {
2448		pr_debug("group desc not available\n");
2449		return 0;
2450	}
2451
2452	desc = calloc(nr_groups, sizeof(*desc));
2453	if (!desc)
2454		return -1;
2455
2456	for (i = 0; i < nr_groups; i++) {
2457		desc[i].name = do_read_string(ff);
2458		if (!desc[i].name)
2459			goto out_free;
2460
2461		if (do_read_u32(ff, &desc[i].leader_idx))
2462			goto out_free;
2463
2464		if (do_read_u32(ff, &desc[i].nr_members))
2465			goto out_free;
2466	}
2467
2468	/*
2469	 * Rebuild group relationship based on the group_desc
2470	 */
2471	session = container_of(ff->ph, struct perf_session, header);
2472	session->evlist->nr_groups = nr_groups;
2473
2474	i = nr = 0;
2475	evlist__for_each_entry(session->evlist, evsel) {
2476		if (evsel->idx == (int) desc[i].leader_idx) {
2477			evsel->leader = evsel;
2478			/* {anon_group} is a dummy name */
2479			if (strcmp(desc[i].name, "{anon_group}")) {
2480				evsel->group_name = desc[i].name;
2481				desc[i].name = NULL;
2482			}
2483			evsel->core.nr_members = desc[i].nr_members;
2484
2485			if (i >= nr_groups || nr > 0) {
2486				pr_debug("invalid group desc\n");
2487				goto out_free;
2488			}
2489
2490			leader = evsel;
2491			nr = evsel->core.nr_members - 1;
2492			i++;
2493		} else if (nr) {
2494			/* This is a group member */
2495			evsel->leader = leader;
2496
2497			nr--;
2498		}
2499	}
2500
2501	if (i != nr_groups || nr != 0) {
2502		pr_debug("invalid group desc\n");
2503		goto out_free;
2504	}
2505
2506	ret = 0;
2507out_free:
2508	for (i = 0; i < nr_groups; i++)
2509		zfree(&desc[i].name);
2510	free(desc);
2511
2512	return ret;
2513}
2514
2515static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2516{
2517	struct perf_session *session;
2518	int err;
2519
2520	session = container_of(ff->ph, struct perf_session, header);
2521
2522	err = auxtrace_index__process(ff->fd, ff->size, session,
2523				      ff->ph->needs_swap);
2524	if (err < 0)
2525		pr_err("Failed to process auxtrace index\n");
2526	return err;
2527}
2528
2529static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2530{
2531	struct cpu_cache_level *caches;
2532	u32 cnt, i, version;
2533
2534	if (do_read_u32(ff, &version))
2535		return -1;
2536
2537	if (version != 1)
2538		return -1;
2539
2540	if (do_read_u32(ff, &cnt))
2541		return -1;
2542
2543	caches = zalloc(sizeof(*caches) * cnt);
2544	if (!caches)
2545		return -1;
2546
2547	for (i = 0; i < cnt; i++) {
2548		struct cpu_cache_level c;
2549
2550		#define _R(v)						\
2551			if (do_read_u32(ff, &c.v))\
2552				goto out_free_caches;			\
2553
2554		_R(level)
2555		_R(line_size)
2556		_R(sets)
2557		_R(ways)
2558		#undef _R
2559
2560		#define _R(v)					\
2561			c.v = do_read_string(ff);		\
2562			if (!c.v)				\
2563				goto out_free_caches;
2564
2565		_R(type)
2566		_R(size)
2567		_R(map)
2568		#undef _R
2569
2570		caches[i] = c;
2571	}
2572
2573	ff->ph->env.caches = caches;
2574	ff->ph->env.caches_cnt = cnt;
2575	return 0;
2576out_free_caches:
2577	free(caches);
2578	return -1;
2579}
2580
2581static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2582{
2583	struct perf_session *session;
2584	u64 first_sample_time, last_sample_time;
2585	int ret;
2586
2587	session = container_of(ff->ph, struct perf_session, header);
2588
2589	ret = do_read_u64(ff, &first_sample_time);
2590	if (ret)
2591		return -1;
2592
2593	ret = do_read_u64(ff, &last_sample_time);
2594	if (ret)
2595		return -1;
2596
2597	session->evlist->first_sample_time = first_sample_time;
2598	session->evlist->last_sample_time = last_sample_time;
2599	return 0;
2600}
2601
2602static int process_mem_topology(struct feat_fd *ff,
2603				void *data __maybe_unused)
2604{
2605	struct memory_node *nodes;
2606	u64 version, i, nr, bsize;
2607	int ret = -1;
2608
2609	if (do_read_u64(ff, &version))
2610		return -1;
2611
2612	if (version != 1)
2613		return -1;
2614
2615	if (do_read_u64(ff, &bsize))
2616		return -1;
2617
2618	if (do_read_u64(ff, &nr))
2619		return -1;
2620
2621	nodes = zalloc(sizeof(*nodes) * nr);
2622	if (!nodes)
2623		return -1;
2624
2625	for (i = 0; i < nr; i++) {
2626		struct memory_node n;
2627
2628		#define _R(v)				\
2629			if (do_read_u64(ff, &n.v))	\
2630				goto out;		\
2631
2632		_R(node)
2633		_R(size)
2634
2635		#undef _R
2636
2637		if (do_read_bitmap(ff, &n.set, &n.size))
2638			goto out;
2639
2640		nodes[i] = n;
2641	}
2642
2643	ff->ph->env.memory_bsize    = bsize;
2644	ff->ph->env.memory_nodes    = nodes;
2645	ff->ph->env.nr_memory_nodes = nr;
2646	ret = 0;
2647
2648out:
2649	if (ret)
2650		free(nodes);
2651	return ret;
2652}
2653
2654static int process_clockid(struct feat_fd *ff,
2655			   void *data __maybe_unused)
2656{
2657	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2658		return -1;
2659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2660	return 0;
 
 
 
 
 
 
 
 
 
2661}
2662
2663static int process_dir_format(struct feat_fd *ff,
2664			      void *_data __maybe_unused)
2665{
2666	struct perf_session *session;
2667	struct perf_data *data;
2668
2669	session = container_of(ff->ph, struct perf_session, header);
2670	data = session->data;
2671
2672	if (WARN_ON(!perf_data__is_dir(data)))
2673		return -1;
2674
2675	return do_read_u64(ff, &data->dir.version);
2676}
2677
2678#ifdef HAVE_LIBBPF_SUPPORT
2679static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2680{
2681	struct bpf_prog_info_linear *info_linear;
2682	struct bpf_prog_info_node *info_node;
2683	struct perf_env *env = &ff->ph->env;
2684	u32 count, i;
2685	int err = -1;
2686
2687	if (ff->ph->needs_swap) {
2688		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2689		return 0;
2690	}
2691
2692	if (do_read_u32(ff, &count))
2693		return -1;
2694
2695	down_write(&env->bpf_progs.lock);
2696
2697	for (i = 0; i < count; ++i) {
2698		u32 info_len, data_len;
2699
2700		info_linear = NULL;
2701		info_node = NULL;
2702		if (do_read_u32(ff, &info_len))
2703			goto out;
2704		if (do_read_u32(ff, &data_len))
2705			goto out;
2706
2707		if (info_len > sizeof(struct bpf_prog_info)) {
2708			pr_warning("detected invalid bpf_prog_info\n");
2709			goto out;
2710		}
2711
2712		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2713				     data_len);
2714		if (!info_linear)
2715			goto out;
2716		info_linear->info_len = sizeof(struct bpf_prog_info);
2717		info_linear->data_len = data_len;
2718		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2719			goto out;
2720		if (__do_read(ff, &info_linear->info, info_len))
2721			goto out;
2722		if (info_len < sizeof(struct bpf_prog_info))
2723			memset(((void *)(&info_linear->info)) + info_len, 0,
2724			       sizeof(struct bpf_prog_info) - info_len);
2725
2726		if (__do_read(ff, info_linear->data, data_len))
2727			goto out;
2728
2729		info_node = malloc(sizeof(struct bpf_prog_info_node));
2730		if (!info_node)
2731			goto out;
2732
2733		/* after reading from file, translate offset to address */
2734		bpf_program__bpil_offs_to_addr(info_linear);
2735		info_node->info_linear = info_linear;
2736		perf_env__insert_bpf_prog_info(env, info_node);
2737	}
2738
2739	up_write(&env->bpf_progs.lock);
2740	return 0;
2741out:
2742	free(info_linear);
2743	free(info_node);
2744	up_write(&env->bpf_progs.lock);
2745	return err;
2746}
2747#else // HAVE_LIBBPF_SUPPORT
2748static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2749{
2750	return 0;
2751}
2752#endif // HAVE_LIBBPF_SUPPORT
2753
2754static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2755{
2756	struct perf_env *env = &ff->ph->env;
2757	struct btf_node *node = NULL;
2758	u32 count, i;
2759	int err = -1;
2760
2761	if (ff->ph->needs_swap) {
2762		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2763		return 0;
2764	}
2765
2766	if (do_read_u32(ff, &count))
2767		return -1;
2768
2769	down_write(&env->bpf_progs.lock);
2770
2771	for (i = 0; i < count; ++i) {
2772		u32 id, data_size;
2773
2774		if (do_read_u32(ff, &id))
2775			goto out;
2776		if (do_read_u32(ff, &data_size))
2777			goto out;
2778
2779		node = malloc(sizeof(struct btf_node) + data_size);
2780		if (!node)
2781			goto out;
2782
2783		node->id = id;
2784		node->data_size = data_size;
2785
2786		if (__do_read(ff, node->data, data_size))
2787			goto out;
2788
2789		perf_env__insert_btf(env, node);
2790		node = NULL;
2791	}
2792
2793	err = 0;
2794out:
2795	up_write(&env->bpf_progs.lock);
2796	free(node);
2797	return err;
2798}
 
2799
2800static int process_compressed(struct feat_fd *ff,
2801			      void *data __maybe_unused)
2802{
2803	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2804		return -1;
2805
2806	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2807		return -1;
2808
2809	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2810		return -1;
2811
2812	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2813		return -1;
2814
2815	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2816		return -1;
2817
2818	return 0;
2819}
2820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2821#define FEAT_OPR(n, func, __full_only) \
2822	[HEADER_##n] = {					\
2823		.name	    = __stringify(n),			\
2824		.write	    = write_##func,			\
2825		.print	    = print_##func,			\
2826		.full_only  = __full_only,			\
2827		.process    = process_##func,			\
2828		.synthesize = true				\
2829	}
2830
2831#define FEAT_OPN(n, func, __full_only) \
2832	[HEADER_##n] = {					\
2833		.name	    = __stringify(n),			\
2834		.write	    = write_##func,			\
2835		.print	    = print_##func,			\
2836		.full_only  = __full_only,			\
2837		.process    = process_##func			\
2838	}
2839
2840/* feature_ops not implemented: */
2841#define print_tracing_data	NULL
2842#define print_build_id		NULL
2843
2844#define process_branch_stack	NULL
2845#define process_stat		NULL
2846
2847// Only used in util/synthetic-events.c
2848const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2849
2850const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2851	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2852	FEAT_OPN(BUILD_ID,	build_id,	false),
2853	FEAT_OPR(HOSTNAME,	hostname,	false),
2854	FEAT_OPR(OSRELEASE,	osrelease,	false),
2855	FEAT_OPR(VERSION,	version,	false),
2856	FEAT_OPR(ARCH,		arch,		false),
2857	FEAT_OPR(NRCPUS,	nrcpus,		false),
2858	FEAT_OPR(CPUDESC,	cpudesc,	false),
2859	FEAT_OPR(CPUID,		cpuid,		false),
2860	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2861	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2862	FEAT_OPR(CMDLINE,	cmdline,	false),
2863	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2864	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2865	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2866	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2867	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2868	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2869	FEAT_OPN(STAT,		stat,		false),
2870	FEAT_OPN(CACHE,		cache,		true),
2871	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2872	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2873	FEAT_OPR(CLOCKID,	clockid,	false),
2874	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
 
2875	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2876	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
 
2877	FEAT_OPR(COMPRESSED,	compressed,	false),
 
 
 
 
2878};
2879
2880struct header_print_data {
2881	FILE *fp;
2882	bool full; /* extended list of headers */
2883};
2884
2885static int perf_file_section__fprintf_info(struct perf_file_section *section,
2886					   struct perf_header *ph,
2887					   int feat, int fd, void *data)
2888{
2889	struct header_print_data *hd = data;
2890	struct feat_fd ff;
2891
2892	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2893		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2894				"%d, continuing...\n", section->offset, feat);
2895		return 0;
2896	}
2897	if (feat >= HEADER_LAST_FEATURE) {
2898		pr_warning("unknown feature %d\n", feat);
2899		return 0;
2900	}
2901	if (!feat_ops[feat].print)
2902		return 0;
2903
2904	ff = (struct  feat_fd) {
2905		.fd = fd,
2906		.ph = ph,
2907	};
2908
2909	if (!feat_ops[feat].full_only || hd->full)
2910		feat_ops[feat].print(&ff, hd->fp);
2911	else
2912		fprintf(hd->fp, "# %s info available, use -I to display\n",
2913			feat_ops[feat].name);
2914
2915	return 0;
2916}
2917
2918int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2919{
2920	struct header_print_data hd;
2921	struct perf_header *header = &session->header;
2922	int fd = perf_data__fd(session->data);
2923	struct stat st;
2924	time_t stctime;
2925	int ret, bit;
2926
2927	hd.fp = fp;
2928	hd.full = full;
2929
2930	ret = fstat(fd, &st);
2931	if (ret == -1)
2932		return -1;
2933
2934	stctime = st.st_ctime;
2935	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2936
2937	fprintf(fp, "# header version : %u\n", header->version);
2938	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2939	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2940	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2941
2942	perf_header__process_sections(header, fd, &hd,
2943				      perf_file_section__fprintf_info);
2944
2945	if (session->data->is_pipe)
2946		return 0;
2947
2948	fprintf(fp, "# missing features: ");
2949	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2950		if (bit)
2951			fprintf(fp, "%s ", feat_ops[bit].name);
2952	}
2953
2954	fprintf(fp, "\n");
2955	return 0;
2956}
2957
2958static int do_write_feat(struct feat_fd *ff, int type,
2959			 struct perf_file_section **p,
2960			 struct evlist *evlist)
2961{
2962	int err;
2963	int ret = 0;
2964
2965	if (perf_header__has_feat(ff->ph, type)) {
2966		if (!feat_ops[type].write)
2967			return -1;
2968
2969		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2970			return -1;
2971
2972		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2973
2974		err = feat_ops[type].write(ff, evlist);
2975		if (err < 0) {
2976			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2977
2978			/* undo anything written */
2979			lseek(ff->fd, (*p)->offset, SEEK_SET);
2980
2981			return -1;
2982		}
2983		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2984		(*p)++;
2985	}
2986	return ret;
2987}
2988
2989static int perf_header__adds_write(struct perf_header *header,
2990				   struct evlist *evlist, int fd)
2991{
2992	int nr_sections;
2993	struct feat_fd ff;
2994	struct perf_file_section *feat_sec, *p;
2995	int sec_size;
2996	u64 sec_start;
2997	int feat;
2998	int err;
2999
3000	ff = (struct feat_fd){
3001		.fd  = fd,
3002		.ph = header,
3003	};
3004
3005	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3006	if (!nr_sections)
3007		return 0;
3008
3009	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3010	if (feat_sec == NULL)
3011		return -ENOMEM;
3012
3013	sec_size = sizeof(*feat_sec) * nr_sections;
3014
3015	sec_start = header->feat_offset;
3016	lseek(fd, sec_start + sec_size, SEEK_SET);
3017
3018	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3019		if (do_write_feat(&ff, feat, &p, evlist))
3020			perf_header__clear_feat(header, feat);
3021	}
3022
3023	lseek(fd, sec_start, SEEK_SET);
3024	/*
3025	 * may write more than needed due to dropped feature, but
3026	 * this is okay, reader will skip the missing entries
3027	 */
3028	err = do_write(&ff, feat_sec, sec_size);
3029	if (err < 0)
3030		pr_debug("failed to write feature section\n");
3031	free(feat_sec);
3032	return err;
3033}
3034
3035int perf_header__write_pipe(int fd)
3036{
3037	struct perf_pipe_file_header f_header;
3038	struct feat_fd ff;
3039	int err;
3040
3041	ff = (struct feat_fd){ .fd = fd };
3042
3043	f_header = (struct perf_pipe_file_header){
3044		.magic	   = PERF_MAGIC,
3045		.size	   = sizeof(f_header),
3046	};
3047
3048	err = do_write(&ff, &f_header, sizeof(f_header));
3049	if (err < 0) {
3050		pr_debug("failed to write perf pipe header\n");
3051		return err;
3052	}
3053
3054	return 0;
3055}
3056
3057int perf_session__write_header(struct perf_session *session,
3058			       struct evlist *evlist,
3059			       int fd, bool at_exit)
3060{
3061	struct perf_file_header f_header;
3062	struct perf_file_attr   f_attr;
3063	struct perf_header *header = &session->header;
3064	struct evsel *evsel;
3065	struct feat_fd ff;
3066	u64 attr_offset;
3067	int err;
3068
3069	ff = (struct feat_fd){ .fd = fd};
3070	lseek(fd, sizeof(f_header), SEEK_SET);
3071
3072	evlist__for_each_entry(session->evlist, evsel) {
3073		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3074		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3075		if (err < 0) {
3076			pr_debug("failed to write perf header\n");
3077			return err;
3078		}
3079	}
3080
3081	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3082
3083	evlist__for_each_entry(evlist, evsel) {
 
 
 
 
 
 
 
 
3084		f_attr = (struct perf_file_attr){
3085			.attr = evsel->core.attr,
3086			.ids  = {
3087				.offset = evsel->id_offset,
3088				.size   = evsel->core.ids * sizeof(u64),
3089			}
3090		};
3091		err = do_write(&ff, &f_attr, sizeof(f_attr));
3092		if (err < 0) {
3093			pr_debug("failed to write perf header attribute\n");
3094			return err;
3095		}
3096	}
3097
3098	if (!header->data_offset)
3099		header->data_offset = lseek(fd, 0, SEEK_CUR);
3100	header->feat_offset = header->data_offset + header->data_size;
3101
3102	if (at_exit) {
3103		err = perf_header__adds_write(header, evlist, fd);
3104		if (err < 0)
3105			return err;
3106	}
3107
3108	f_header = (struct perf_file_header){
3109		.magic	   = PERF_MAGIC,
3110		.size	   = sizeof(f_header),
3111		.attr_size = sizeof(f_attr),
3112		.attrs = {
3113			.offset = attr_offset,
3114			.size   = evlist->core.nr_entries * sizeof(f_attr),
3115		},
3116		.data = {
3117			.offset = header->data_offset,
3118			.size	= header->data_size,
3119		},
3120		/* event_types is ignored, store zeros */
3121	};
3122
3123	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3124
3125	lseek(fd, 0, SEEK_SET);
3126	err = do_write(&ff, &f_header, sizeof(f_header));
3127	if (err < 0) {
3128		pr_debug("failed to write perf header\n");
3129		return err;
3130	}
3131	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3132
3133	return 0;
3134}
3135
3136static int perf_header__getbuffer64(struct perf_header *header,
3137				    int fd, void *buf, size_t size)
3138{
3139	if (readn(fd, buf, size) <= 0)
3140		return -1;
3141
3142	if (header->needs_swap)
3143		mem_bswap_64(buf, size);
3144
3145	return 0;
3146}
3147
3148int perf_header__process_sections(struct perf_header *header, int fd,
3149				  void *data,
3150				  int (*process)(struct perf_file_section *section,
3151						 struct perf_header *ph,
3152						 int feat, int fd, void *data))
3153{
3154	struct perf_file_section *feat_sec, *sec;
3155	int nr_sections;
3156	int sec_size;
3157	int feat;
3158	int err;
3159
3160	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3161	if (!nr_sections)
3162		return 0;
3163
3164	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3165	if (!feat_sec)
3166		return -1;
3167
3168	sec_size = sizeof(*feat_sec) * nr_sections;
3169
3170	lseek(fd, header->feat_offset, SEEK_SET);
3171
3172	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3173	if (err < 0)
3174		goto out_free;
3175
3176	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3177		err = process(sec++, header, feat, fd, data);
3178		if (err < 0)
3179			goto out_free;
3180	}
3181	err = 0;
3182out_free:
3183	free(feat_sec);
3184	return err;
3185}
3186
3187static const int attr_file_abi_sizes[] = {
3188	[0] = PERF_ATTR_SIZE_VER0,
3189	[1] = PERF_ATTR_SIZE_VER1,
3190	[2] = PERF_ATTR_SIZE_VER2,
3191	[3] = PERF_ATTR_SIZE_VER3,
3192	[4] = PERF_ATTR_SIZE_VER4,
3193	0,
3194};
3195
3196/*
3197 * In the legacy file format, the magic number is not used to encode endianness.
3198 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3199 * on ABI revisions, we need to try all combinations for all endianness to
3200 * detect the endianness.
3201 */
3202static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3203{
3204	uint64_t ref_size, attr_size;
3205	int i;
3206
3207	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3208		ref_size = attr_file_abi_sizes[i]
3209			 + sizeof(struct perf_file_section);
3210		if (hdr_sz != ref_size) {
3211			attr_size = bswap_64(hdr_sz);
3212			if (attr_size != ref_size)
3213				continue;
3214
3215			ph->needs_swap = true;
3216		}
3217		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3218			 i,
3219			 ph->needs_swap);
3220		return 0;
3221	}
3222	/* could not determine endianness */
3223	return -1;
3224}
3225
3226#define PERF_PIPE_HDR_VER0	16
3227
3228static const size_t attr_pipe_abi_sizes[] = {
3229	[0] = PERF_PIPE_HDR_VER0,
3230	0,
3231};
3232
3233/*
3234 * In the legacy pipe format, there is an implicit assumption that endiannesss
3235 * between host recording the samples, and host parsing the samples is the
3236 * same. This is not always the case given that the pipe output may always be
3237 * redirected into a file and analyzed on a different machine with possibly a
3238 * different endianness and perf_event ABI revsions in the perf tool itself.
3239 */
3240static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3241{
3242	u64 attr_size;
3243	int i;
3244
3245	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3246		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3247			attr_size = bswap_64(hdr_sz);
3248			if (attr_size != hdr_sz)
3249				continue;
3250
3251			ph->needs_swap = true;
3252		}
3253		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3254		return 0;
3255	}
3256	return -1;
3257}
3258
3259bool is_perf_magic(u64 magic)
3260{
3261	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3262		|| magic == __perf_magic2
3263		|| magic == __perf_magic2_sw)
3264		return true;
3265
3266	return false;
3267}
3268
3269static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3270			      bool is_pipe, struct perf_header *ph)
3271{
3272	int ret;
3273
3274	/* check for legacy format */
3275	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3276	if (ret == 0) {
3277		ph->version = PERF_HEADER_VERSION_1;
3278		pr_debug("legacy perf.data format\n");
3279		if (is_pipe)
3280			return try_all_pipe_abis(hdr_sz, ph);
3281
3282		return try_all_file_abis(hdr_sz, ph);
3283	}
3284	/*
3285	 * the new magic number serves two purposes:
3286	 * - unique number to identify actual perf.data files
3287	 * - encode endianness of file
3288	 */
3289	ph->version = PERF_HEADER_VERSION_2;
3290
3291	/* check magic number with one endianness */
3292	if (magic == __perf_magic2)
3293		return 0;
3294
3295	/* check magic number with opposite endianness */
3296	if (magic != __perf_magic2_sw)
3297		return -1;
3298
3299	ph->needs_swap = true;
3300
3301	return 0;
3302}
3303
3304int perf_file_header__read(struct perf_file_header *header,
3305			   struct perf_header *ph, int fd)
3306{
3307	ssize_t ret;
3308
3309	lseek(fd, 0, SEEK_SET);
3310
3311	ret = readn(fd, header, sizeof(*header));
3312	if (ret <= 0)
3313		return -1;
3314
3315	if (check_magic_endian(header->magic,
3316			       header->attr_size, false, ph) < 0) {
3317		pr_debug("magic/endian check failed\n");
3318		return -1;
3319	}
3320
3321	if (ph->needs_swap) {
3322		mem_bswap_64(header, offsetof(struct perf_file_header,
3323			     adds_features));
3324	}
3325
3326	if (header->size != sizeof(*header)) {
3327		/* Support the previous format */
3328		if (header->size == offsetof(typeof(*header), adds_features))
3329			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3330		else
3331			return -1;
3332	} else if (ph->needs_swap) {
3333		/*
3334		 * feature bitmap is declared as an array of unsigned longs --
3335		 * not good since its size can differ between the host that
3336		 * generated the data file and the host analyzing the file.
3337		 *
3338		 * We need to handle endianness, but we don't know the size of
3339		 * the unsigned long where the file was generated. Take a best
3340		 * guess at determining it: try 64-bit swap first (ie., file
3341		 * created on a 64-bit host), and check if the hostname feature
3342		 * bit is set (this feature bit is forced on as of fbe96f2).
3343		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3344		 * swap. If the hostname bit is still not set (e.g., older data
3345		 * file), punt and fallback to the original behavior --
3346		 * clearing all feature bits and setting buildid.
3347		 */
3348		mem_bswap_64(&header->adds_features,
3349			    BITS_TO_U64(HEADER_FEAT_BITS));
3350
3351		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3352			/* unswap as u64 */
3353			mem_bswap_64(&header->adds_features,
3354				    BITS_TO_U64(HEADER_FEAT_BITS));
3355
3356			/* unswap as u32 */
3357			mem_bswap_32(&header->adds_features,
3358				    BITS_TO_U32(HEADER_FEAT_BITS));
3359		}
3360
3361		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3362			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3363			set_bit(HEADER_BUILD_ID, header->adds_features);
3364		}
3365	}
3366
3367	memcpy(&ph->adds_features, &header->adds_features,
3368	       sizeof(ph->adds_features));
3369
3370	ph->data_offset  = header->data.offset;
3371	ph->data_size	 = header->data.size;
3372	ph->feat_offset  = header->data.offset + header->data.size;
3373	return 0;
3374}
3375
3376static int perf_file_section__process(struct perf_file_section *section,
3377				      struct perf_header *ph,
3378				      int feat, int fd, void *data)
3379{
3380	struct feat_fd fdd = {
3381		.fd	= fd,
3382		.ph	= ph,
3383		.size	= section->size,
3384		.offset	= section->offset,
3385	};
3386
3387	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3388		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3389			  "%d, continuing...\n", section->offset, feat);
3390		return 0;
3391	}
3392
3393	if (feat >= HEADER_LAST_FEATURE) {
3394		pr_debug("unknown feature %d, continuing...\n", feat);
3395		return 0;
3396	}
3397
3398	if (!feat_ops[feat].process)
3399		return 0;
3400
3401	return feat_ops[feat].process(&fdd, data);
3402}
3403
3404static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3405				       struct perf_header *ph, int fd,
 
3406				       bool repipe)
3407{
3408	struct feat_fd ff = {
3409		.fd = STDOUT_FILENO,
3410		.ph = ph,
3411	};
3412	ssize_t ret;
3413
3414	ret = readn(fd, header, sizeof(*header));
3415	if (ret <= 0)
3416		return -1;
3417
3418	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3419		pr_debug("endian/magic failed\n");
3420		return -1;
3421	}
3422
3423	if (ph->needs_swap)
3424		header->size = bswap_64(header->size);
3425
3426	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3427		return -1;
3428
3429	return 0;
3430}
3431
3432static int perf_header__read_pipe(struct perf_session *session)
3433{
3434	struct perf_header *header = &session->header;
3435	struct perf_pipe_file_header f_header;
3436
3437	if (perf_file_header__read_pipe(&f_header, header,
3438					perf_data__fd(session->data),
3439					session->repipe) < 0) {
3440		pr_debug("incompatible file format\n");
3441		return -EINVAL;
3442	}
3443
3444	return 0;
3445}
3446
3447static int read_attr(int fd, struct perf_header *ph,
3448		     struct perf_file_attr *f_attr)
3449{
3450	struct perf_event_attr *attr = &f_attr->attr;
3451	size_t sz, left;
3452	size_t our_sz = sizeof(f_attr->attr);
3453	ssize_t ret;
3454
3455	memset(f_attr, 0, sizeof(*f_attr));
3456
3457	/* read minimal guaranteed structure */
3458	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3459	if (ret <= 0) {
3460		pr_debug("cannot read %d bytes of header attr\n",
3461			 PERF_ATTR_SIZE_VER0);
3462		return -1;
3463	}
3464
3465	/* on file perf_event_attr size */
3466	sz = attr->size;
3467
3468	if (ph->needs_swap)
3469		sz = bswap_32(sz);
3470
3471	if (sz == 0) {
3472		/* assume ABI0 */
3473		sz =  PERF_ATTR_SIZE_VER0;
3474	} else if (sz > our_sz) {
3475		pr_debug("file uses a more recent and unsupported ABI"
3476			 " (%zu bytes extra)\n", sz - our_sz);
3477		return -1;
3478	}
3479	/* what we have not yet read and that we know about */
3480	left = sz - PERF_ATTR_SIZE_VER0;
3481	if (left) {
3482		void *ptr = attr;
3483		ptr += PERF_ATTR_SIZE_VER0;
3484
3485		ret = readn(fd, ptr, left);
3486	}
3487	/* read perf_file_section, ids are read in caller */
3488	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3489
3490	return ret <= 0 ? -1 : 0;
3491}
3492
3493static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3494						struct tep_handle *pevent)
3495{
3496	struct tep_event *event;
3497	char bf[128];
3498
3499	/* already prepared */
3500	if (evsel->tp_format)
3501		return 0;
3502
3503	if (pevent == NULL) {
3504		pr_debug("broken or missing trace data\n");
3505		return -1;
3506	}
3507
3508	event = tep_find_event(pevent, evsel->core.attr.config);
3509	if (event == NULL) {
3510		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3511		return -1;
3512	}
3513
3514	if (!evsel->name) {
3515		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3516		evsel->name = strdup(bf);
3517		if (evsel->name == NULL)
3518			return -1;
3519	}
3520
3521	evsel->tp_format = event;
3522	return 0;
3523}
3524
3525static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3526						  struct tep_handle *pevent)
3527{
3528	struct evsel *pos;
3529
3530	evlist__for_each_entry(evlist, pos) {
3531		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3532		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3533			return -1;
3534	}
3535
3536	return 0;
3537}
3538
3539int perf_session__read_header(struct perf_session *session)
3540{
3541	struct perf_data *data = session->data;
3542	struct perf_header *header = &session->header;
3543	struct perf_file_header	f_header;
3544	struct perf_file_attr	f_attr;
3545	u64			f_id;
3546	int nr_attrs, nr_ids, i, j;
3547	int fd = perf_data__fd(data);
3548
3549	session->evlist = evlist__new();
3550	if (session->evlist == NULL)
3551		return -ENOMEM;
3552
3553	session->evlist->env = &header->env;
3554	session->machines.host.env = &header->env;
3555	if (perf_data__is_pipe(data))
3556		return perf_header__read_pipe(session);
 
 
 
 
 
 
 
 
3557
3558	if (perf_file_header__read(&f_header, header, fd) < 0)
3559		return -EINVAL;
3560
 
 
 
 
 
3561	/*
3562	 * Sanity check that perf.data was written cleanly; data size is
3563	 * initialized to 0 and updated only if the on_exit function is run.
3564	 * If data size is still 0 then the file contains only partial
3565	 * information.  Just warn user and process it as much as it can.
3566	 */
3567	if (f_header.data.size == 0) {
3568		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3569			   "Was the 'perf record' command properly terminated?\n",
3570			   data->file.path);
3571	}
3572
3573	if (f_header.attr_size == 0) {
3574		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3575		       "Was the 'perf record' command properly terminated?\n",
3576		       data->file.path);
3577		return -EINVAL;
3578	}
3579
3580	nr_attrs = f_header.attrs.size / f_header.attr_size;
3581	lseek(fd, f_header.attrs.offset, SEEK_SET);
3582
3583	for (i = 0; i < nr_attrs; i++) {
3584		struct evsel *evsel;
3585		off_t tmp;
3586
3587		if (read_attr(fd, header, &f_attr) < 0)
3588			goto out_errno;
3589
3590		if (header->needs_swap) {
3591			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3592			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3593			perf_event__attr_swap(&f_attr.attr);
3594		}
3595
3596		tmp = lseek(fd, 0, SEEK_CUR);
3597		evsel = evsel__new(&f_attr.attr);
3598
3599		if (evsel == NULL)
3600			goto out_delete_evlist;
3601
3602		evsel->needs_swap = header->needs_swap;
3603		/*
3604		 * Do it before so that if perf_evsel__alloc_id fails, this
3605		 * entry gets purged too at evlist__delete().
3606		 */
3607		evlist__add(session->evlist, evsel);
3608
3609		nr_ids = f_attr.ids.size / sizeof(u64);
3610		/*
3611		 * We don't have the cpu and thread maps on the header, so
3612		 * for allocating the perf_sample_id table we fake 1 cpu and
3613		 * hattr->ids threads.
3614		 */
3615		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3616			goto out_delete_evlist;
3617
3618		lseek(fd, f_attr.ids.offset, SEEK_SET);
3619
3620		for (j = 0; j < nr_ids; j++) {
3621			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3622				goto out_errno;
3623
3624			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3625		}
3626
3627		lseek(fd, tmp, SEEK_SET);
3628	}
3629
3630	perf_header__process_sections(header, fd, &session->tevent,
3631				      perf_file_section__process);
3632
3633	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3634						   session->tevent.pevent))
3635		goto out_delete_evlist;
3636
3637	return 0;
3638out_errno:
3639	return -errno;
3640
3641out_delete_evlist:
3642	evlist__delete(session->evlist);
3643	session->evlist = NULL;
3644	return -ENOMEM;
3645}
3646
3647int perf_event__process_feature(struct perf_session *session,
3648				union perf_event *event)
3649{
3650	struct perf_tool *tool = session->tool;
3651	struct feat_fd ff = { .fd = 0 };
3652	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3653	int type = fe->header.type;
3654	u64 feat = fe->feat_id;
3655
3656	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3657		pr_warning("invalid record type %d in pipe-mode\n", type);
3658		return 0;
3659	}
3660	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3661		pr_warning("invalid record type %d in pipe-mode\n", type);
3662		return -1;
3663	}
3664
3665	if (!feat_ops[feat].process)
3666		return 0;
3667
3668	ff.buf  = (void *)fe->data;
3669	ff.size = event->header.size - sizeof(*fe);
3670	ff.ph = &session->header;
3671
3672	if (feat_ops[feat].process(&ff, NULL))
3673		return -1;
3674
3675	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3676		return 0;
3677
3678	if (!feat_ops[feat].full_only ||
3679	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3680		feat_ops[feat].print(&ff, stdout);
3681	} else {
3682		fprintf(stdout, "# %s info available, use -I to display\n",
3683			feat_ops[feat].name);
3684	}
3685
3686	return 0;
3687}
3688
3689size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3690{
3691	struct perf_record_event_update *ev = &event->event_update;
3692	struct perf_record_event_update_scale *ev_scale;
3693	struct perf_record_event_update_cpus *ev_cpus;
3694	struct perf_cpu_map *map;
3695	size_t ret;
3696
3697	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3698
3699	switch (ev->type) {
3700	case PERF_EVENT_UPDATE__SCALE:
3701		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3702		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3703		break;
3704	case PERF_EVENT_UPDATE__UNIT:
3705		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3706		break;
3707	case PERF_EVENT_UPDATE__NAME:
3708		ret += fprintf(fp, "... name:  %s\n", ev->data);
3709		break;
3710	case PERF_EVENT_UPDATE__CPUS:
3711		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3712		ret += fprintf(fp, "... ");
3713
3714		map = cpu_map__new_data(&ev_cpus->cpus);
3715		if (map)
3716			ret += cpu_map__fprintf(map, fp);
3717		else
3718			ret += fprintf(fp, "failed to get cpus\n");
3719		break;
3720	default:
3721		ret += fprintf(fp, "... unknown type\n");
3722		break;
3723	}
3724
3725	return ret;
3726}
3727
3728int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3729			     union perf_event *event,
3730			     struct evlist **pevlist)
3731{
3732	u32 i, ids, n_ids;
3733	struct evsel *evsel;
3734	struct evlist *evlist = *pevlist;
3735
3736	if (evlist == NULL) {
3737		*pevlist = evlist = evlist__new();
3738		if (evlist == NULL)
3739			return -ENOMEM;
3740	}
3741
3742	evsel = evsel__new(&event->attr.attr);
3743	if (evsel == NULL)
3744		return -ENOMEM;
3745
3746	evlist__add(evlist, evsel);
3747
3748	ids = event->header.size;
3749	ids -= (void *)&event->attr.id - (void *)event;
3750	n_ids = ids / sizeof(u64);
3751	/*
3752	 * We don't have the cpu and thread maps on the header, so
3753	 * for allocating the perf_sample_id table we fake 1 cpu and
3754	 * hattr->ids threads.
3755	 */
3756	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3757		return -ENOMEM;
3758
3759	for (i = 0; i < n_ids; i++) {
3760		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3761	}
3762
3763	return 0;
3764}
3765
3766int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3767				     union perf_event *event,
3768				     struct evlist **pevlist)
3769{
3770	struct perf_record_event_update *ev = &event->event_update;
3771	struct perf_record_event_update_scale *ev_scale;
3772	struct perf_record_event_update_cpus *ev_cpus;
3773	struct evlist *evlist;
3774	struct evsel *evsel;
3775	struct perf_cpu_map *map;
3776
3777	if (!pevlist || *pevlist == NULL)
3778		return -EINVAL;
3779
3780	evlist = *pevlist;
3781
3782	evsel = perf_evlist__id2evsel(evlist, ev->id);
3783	if (evsel == NULL)
3784		return -EINVAL;
3785
3786	switch (ev->type) {
3787	case PERF_EVENT_UPDATE__UNIT:
3788		evsel->unit = strdup(ev->data);
3789		break;
3790	case PERF_EVENT_UPDATE__NAME:
3791		evsel->name = strdup(ev->data);
3792		break;
3793	case PERF_EVENT_UPDATE__SCALE:
3794		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3795		evsel->scale = ev_scale->scale;
3796		break;
3797	case PERF_EVENT_UPDATE__CPUS:
3798		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3799
3800		map = cpu_map__new_data(&ev_cpus->cpus);
3801		if (map)
3802			evsel->core.own_cpus = map;
3803		else
3804			pr_err("failed to get event_update cpus\n");
3805	default:
3806		break;
3807	}
3808
3809	return 0;
3810}
3811
3812int perf_event__process_tracing_data(struct perf_session *session,
3813				     union perf_event *event)
3814{
3815	ssize_t size_read, padding, size = event->tracing_data.size;
3816	int fd = perf_data__fd(session->data);
3817	off_t offset = lseek(fd, 0, SEEK_CUR);
3818	char buf[BUFSIZ];
3819
3820	/* setup for reading amidst mmap */
3821	lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3822	      SEEK_SET);
 
 
 
 
 
 
 
 
 
 
 
3823
3824	size_read = trace_report(fd, &session->tevent,
3825				 session->repipe);
3826	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3827
3828	if (readn(fd, buf, padding) < 0) {
3829		pr_err("%s: reading input file", __func__);
3830		return -1;
3831	}
3832	if (session->repipe) {
3833		int retw = write(STDOUT_FILENO, buf, padding);
3834		if (retw <= 0 || retw != padding) {
3835			pr_err("%s: repiping tracing data padding", __func__);
3836			return -1;
3837		}
3838	}
3839
3840	if (size_read + padding != size) {
3841		pr_err("%s: tracing data size mismatch", __func__);
3842		return -1;
3843	}
3844
3845	perf_evlist__prepare_tracepoint_events(session->evlist,
3846					       session->tevent.pevent);
3847
3848	return size_read + padding;
3849}
3850
3851int perf_event__process_build_id(struct perf_session *session,
3852				 union perf_event *event)
3853{
3854	__event_process_build_id(&event->build_id,
3855				 event->build_id.filename,
3856				 session);
3857	return 0;
3858}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
   4#include "string2.h"
   5#include <sys/param.h>
   6#include <sys/types.h>
   7#include <byteswap.h>
   8#include <unistd.h>
   9#include <stdio.h>
  10#include <stdlib.h>
  11#include <linux/compiler.h>
  12#include <linux/list.h>
  13#include <linux/kernel.h>
  14#include <linux/bitops.h>
  15#include <linux/string.h>
  16#include <linux/stringify.h>
  17#include <linux/zalloc.h>
  18#include <sys/stat.h>
  19#include <sys/utsname.h>
  20#include <linux/time64.h>
  21#include <dirent.h>
  22#ifdef HAVE_LIBBPF_SUPPORT
  23#include <bpf/libbpf.h>
  24#endif
  25#include <perf/cpumap.h>
  26
  27#include "dso.h"
  28#include "evlist.h"
  29#include "evsel.h"
  30#include "util/evsel_fprintf.h"
  31#include "header.h"
  32#include "memswap.h"
  33#include "trace-event.h"
  34#include "session.h"
  35#include "symbol.h"
  36#include "debug.h"
  37#include "cpumap.h"
  38#include "pmu.h"
  39#include "vdso.h"
  40#include "strbuf.h"
  41#include "build-id.h"
  42#include "data.h"
  43#include <api/fs/fs.h>
  44#include "asm/bug.h"
  45#include "tool.h"
  46#include "time-utils.h"
  47#include "units.h"
  48#include "util/util.h" // perf_exe()
  49#include "cputopo.h"
  50#include "bpf-event.h"
  51#include "clockid.h"
  52#include "pmu-hybrid.h"
  53
  54#include <linux/ctype.h>
  55#include <internal/lib.h>
  56
  57/*
  58 * magic2 = "PERFILE2"
  59 * must be a numerical value to let the endianness
  60 * determine the memory layout. That way we are able
  61 * to detect endianness when reading the perf.data file
  62 * back.
  63 *
  64 * we check for legacy (PERFFILE) format.
  65 */
  66static const char *__perf_magic1 = "PERFFILE";
  67static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  68static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  69
  70#define PERF_MAGIC	__perf_magic2
  71
  72const char perf_version_string[] = PERF_VERSION;
  73
  74struct perf_file_attr {
  75	struct perf_event_attr	attr;
  76	struct perf_file_section	ids;
  77};
  78
  79void perf_header__set_feat(struct perf_header *header, int feat)
  80{
  81	set_bit(feat, header->adds_features);
  82}
  83
  84void perf_header__clear_feat(struct perf_header *header, int feat)
  85{
  86	clear_bit(feat, header->adds_features);
  87}
  88
  89bool perf_header__has_feat(const struct perf_header *header, int feat)
  90{
  91	return test_bit(feat, header->adds_features);
  92}
  93
  94static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
  95{
  96	ssize_t ret = writen(ff->fd, buf, size);
  97
  98	if (ret != (ssize_t)size)
  99		return ret < 0 ? (int)ret : -1;
 100	return 0;
 101}
 102
 103static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 104{
 105	/* struct perf_event_header::size is u16 */
 106	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 107	size_t new_size = ff->size;
 108	void *addr;
 109
 110	if (size + ff->offset > max_size)
 111		return -E2BIG;
 112
 113	while (size > (new_size - ff->offset))
 114		new_size <<= 1;
 115	new_size = min(max_size, new_size);
 116
 117	if (ff->size < new_size) {
 118		addr = realloc(ff->buf, new_size);
 119		if (!addr)
 120			return -ENOMEM;
 121		ff->buf = addr;
 122		ff->size = new_size;
 123	}
 124
 125	memcpy(ff->buf + ff->offset, buf, size);
 126	ff->offset += size;
 127
 128	return 0;
 129}
 130
 131/* Return: 0 if succeeded, -ERR if failed. */
 132int do_write(struct feat_fd *ff, const void *buf, size_t size)
 133{
 134	if (!ff->buf)
 135		return __do_write_fd(ff, buf, size);
 136	return __do_write_buf(ff, buf, size);
 137}
 138
 139/* Return: 0 if succeeded, -ERR if failed. */
 140static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 141{
 142	u64 *p = (u64 *) set;
 143	int i, ret;
 144
 145	ret = do_write(ff, &size, sizeof(size));
 146	if (ret < 0)
 147		return ret;
 148
 149	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 150		ret = do_write(ff, p + i, sizeof(*p));
 151		if (ret < 0)
 152			return ret;
 153	}
 154
 155	return 0;
 156}
 157
 158/* Return: 0 if succeeded, -ERR if failed. */
 159int write_padded(struct feat_fd *ff, const void *bf,
 160		 size_t count, size_t count_aligned)
 161{
 162	static const char zero_buf[NAME_ALIGN];
 163	int err = do_write(ff, bf, count);
 164
 165	if (!err)
 166		err = do_write(ff, zero_buf, count_aligned - count);
 167
 168	return err;
 169}
 170
 171#define string_size(str)						\
 172	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 173
 174/* Return: 0 if succeeded, -ERR if failed. */
 175static int do_write_string(struct feat_fd *ff, const char *str)
 176{
 177	u32 len, olen;
 178	int ret;
 179
 180	olen = strlen(str) + 1;
 181	len = PERF_ALIGN(olen, NAME_ALIGN);
 182
 183	/* write len, incl. \0 */
 184	ret = do_write(ff, &len, sizeof(len));
 185	if (ret < 0)
 186		return ret;
 187
 188	return write_padded(ff, str, olen, len);
 189}
 190
 191static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 192{
 193	ssize_t ret = readn(ff->fd, addr, size);
 194
 195	if (ret != size)
 196		return ret < 0 ? (int)ret : -1;
 197	return 0;
 198}
 199
 200static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 201{
 202	if (size > (ssize_t)ff->size - ff->offset)
 203		return -1;
 204
 205	memcpy(addr, ff->buf + ff->offset, size);
 206	ff->offset += size;
 207
 208	return 0;
 209
 210}
 211
 212static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 213{
 214	if (!ff->buf)
 215		return __do_read_fd(ff, addr, size);
 216	return __do_read_buf(ff, addr, size);
 217}
 218
 219static int do_read_u32(struct feat_fd *ff, u32 *addr)
 220{
 221	int ret;
 222
 223	ret = __do_read(ff, addr, sizeof(*addr));
 224	if (ret)
 225		return ret;
 226
 227	if (ff->ph->needs_swap)
 228		*addr = bswap_32(*addr);
 229	return 0;
 230}
 231
 232static int do_read_u64(struct feat_fd *ff, u64 *addr)
 233{
 234	int ret;
 235
 236	ret = __do_read(ff, addr, sizeof(*addr));
 237	if (ret)
 238		return ret;
 239
 240	if (ff->ph->needs_swap)
 241		*addr = bswap_64(*addr);
 242	return 0;
 243}
 244
 245static char *do_read_string(struct feat_fd *ff)
 246{
 247	u32 len;
 248	char *buf;
 249
 250	if (do_read_u32(ff, &len))
 251		return NULL;
 252
 253	buf = malloc(len);
 254	if (!buf)
 255		return NULL;
 256
 257	if (!__do_read(ff, buf, len)) {
 258		/*
 259		 * strings are padded by zeroes
 260		 * thus the actual strlen of buf
 261		 * may be less than len
 262		 */
 263		return buf;
 264	}
 265
 266	free(buf);
 267	return NULL;
 268}
 269
 270/* Return: 0 if succeeded, -ERR if failed. */
 271static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 272{
 273	unsigned long *set;
 274	u64 size, *p;
 275	int i, ret;
 276
 277	ret = do_read_u64(ff, &size);
 278	if (ret)
 279		return ret;
 280
 281	set = bitmap_alloc(size);
 282	if (!set)
 283		return -ENOMEM;
 284
 285	p = (u64 *) set;
 286
 287	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 288		ret = do_read_u64(ff, p + i);
 289		if (ret < 0) {
 290			free(set);
 291			return ret;
 292		}
 293	}
 294
 295	*pset  = set;
 296	*psize = size;
 297	return 0;
 298}
 299
 300static int write_tracing_data(struct feat_fd *ff,
 301			      struct evlist *evlist)
 302{
 303	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 304		return -1;
 305
 306	return read_tracing_data(ff->fd, &evlist->core.entries);
 307}
 308
 309static int write_build_id(struct feat_fd *ff,
 310			  struct evlist *evlist __maybe_unused)
 311{
 312	struct perf_session *session;
 313	int err;
 314
 315	session = container_of(ff->ph, struct perf_session, header);
 316
 317	if (!perf_session__read_build_ids(session, true))
 318		return -1;
 319
 320	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 321		return -1;
 322
 323	err = perf_session__write_buildid_table(session, ff);
 324	if (err < 0) {
 325		pr_debug("failed to write buildid table\n");
 326		return err;
 327	}
 328	perf_session__cache_build_ids(session);
 329
 330	return 0;
 331}
 332
 333static int write_hostname(struct feat_fd *ff,
 334			  struct evlist *evlist __maybe_unused)
 335{
 336	struct utsname uts;
 337	int ret;
 338
 339	ret = uname(&uts);
 340	if (ret < 0)
 341		return -1;
 342
 343	return do_write_string(ff, uts.nodename);
 344}
 345
 346static int write_osrelease(struct feat_fd *ff,
 347			   struct evlist *evlist __maybe_unused)
 348{
 349	struct utsname uts;
 350	int ret;
 351
 352	ret = uname(&uts);
 353	if (ret < 0)
 354		return -1;
 355
 356	return do_write_string(ff, uts.release);
 357}
 358
 359static int write_arch(struct feat_fd *ff,
 360		      struct evlist *evlist __maybe_unused)
 361{
 362	struct utsname uts;
 363	int ret;
 364
 365	ret = uname(&uts);
 366	if (ret < 0)
 367		return -1;
 368
 369	return do_write_string(ff, uts.machine);
 370}
 371
 372static int write_version(struct feat_fd *ff,
 373			 struct evlist *evlist __maybe_unused)
 374{
 375	return do_write_string(ff, perf_version_string);
 376}
 377
 378static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 379{
 380	FILE *file;
 381	char *buf = NULL;
 382	char *s, *p;
 383	const char *search = cpuinfo_proc;
 384	size_t len = 0;
 385	int ret = -1;
 386
 387	if (!search)
 388		return -1;
 389
 390	file = fopen("/proc/cpuinfo", "r");
 391	if (!file)
 392		return -1;
 393
 394	while (getline(&buf, &len, file) > 0) {
 395		ret = strncmp(buf, search, strlen(search));
 396		if (!ret)
 397			break;
 398	}
 399
 400	if (ret) {
 401		ret = -1;
 402		goto done;
 403	}
 404
 405	s = buf;
 406
 407	p = strchr(buf, ':');
 408	if (p && *(p+1) == ' ' && *(p+2))
 409		s = p + 2;
 410	p = strchr(s, '\n');
 411	if (p)
 412		*p = '\0';
 413
 414	/* squash extra space characters (branding string) */
 415	p = s;
 416	while (*p) {
 417		if (isspace(*p)) {
 418			char *r = p + 1;
 419			char *q = skip_spaces(r);
 420			*p = ' ';
 421			if (q != (p+1))
 422				while ((*r++ = *q++));
 423		}
 424		p++;
 425	}
 426	ret = do_write_string(ff, s);
 427done:
 428	free(buf);
 429	fclose(file);
 430	return ret;
 431}
 432
 433static int write_cpudesc(struct feat_fd *ff,
 434		       struct evlist *evlist __maybe_unused)
 435{
 436#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
 437#define CPUINFO_PROC	{ "cpu", }
 438#elif defined(__s390__)
 439#define CPUINFO_PROC	{ "vendor_id", }
 440#elif defined(__sh__)
 441#define CPUINFO_PROC	{ "cpu type", }
 442#elif defined(__alpha__) || defined(__mips__)
 443#define CPUINFO_PROC	{ "cpu model", }
 444#elif defined(__arm__)
 445#define CPUINFO_PROC	{ "model name", "Processor", }
 446#elif defined(__arc__)
 447#define CPUINFO_PROC	{ "Processor", }
 448#elif defined(__xtensa__)
 449#define CPUINFO_PROC	{ "core ID", }
 450#else
 451#define CPUINFO_PROC	{ "model name", }
 452#endif
 453	const char *cpuinfo_procs[] = CPUINFO_PROC;
 454#undef CPUINFO_PROC
 455	unsigned int i;
 456
 457	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 458		int ret;
 459		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 460		if (ret >= 0)
 461			return ret;
 462	}
 463	return -1;
 464}
 465
 466
 467static int write_nrcpus(struct feat_fd *ff,
 468			struct evlist *evlist __maybe_unused)
 469{
 470	long nr;
 471	u32 nrc, nra;
 472	int ret;
 473
 474	nrc = cpu__max_present_cpu();
 475
 476	nr = sysconf(_SC_NPROCESSORS_ONLN);
 477	if (nr < 0)
 478		return -1;
 479
 480	nra = (u32)(nr & UINT_MAX);
 481
 482	ret = do_write(ff, &nrc, sizeof(nrc));
 483	if (ret < 0)
 484		return ret;
 485
 486	return do_write(ff, &nra, sizeof(nra));
 487}
 488
 489static int write_event_desc(struct feat_fd *ff,
 490			    struct evlist *evlist)
 491{
 492	struct evsel *evsel;
 493	u32 nre, nri, sz;
 494	int ret;
 495
 496	nre = evlist->core.nr_entries;
 497
 498	/*
 499	 * write number of events
 500	 */
 501	ret = do_write(ff, &nre, sizeof(nre));
 502	if (ret < 0)
 503		return ret;
 504
 505	/*
 506	 * size of perf_event_attr struct
 507	 */
 508	sz = (u32)sizeof(evsel->core.attr);
 509	ret = do_write(ff, &sz, sizeof(sz));
 510	if (ret < 0)
 511		return ret;
 512
 513	evlist__for_each_entry(evlist, evsel) {
 514		ret = do_write(ff, &evsel->core.attr, sz);
 515		if (ret < 0)
 516			return ret;
 517		/*
 518		 * write number of unique id per event
 519		 * there is one id per instance of an event
 520		 *
 521		 * copy into an nri to be independent of the
 522		 * type of ids,
 523		 */
 524		nri = evsel->core.ids;
 525		ret = do_write(ff, &nri, sizeof(nri));
 526		if (ret < 0)
 527			return ret;
 528
 529		/*
 530		 * write event string as passed on cmdline
 531		 */
 532		ret = do_write_string(ff, evsel__name(evsel));
 533		if (ret < 0)
 534			return ret;
 535		/*
 536		 * write unique ids for this event
 537		 */
 538		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
 539		if (ret < 0)
 540			return ret;
 541	}
 542	return 0;
 543}
 544
 545static int write_cmdline(struct feat_fd *ff,
 546			 struct evlist *evlist __maybe_unused)
 547{
 548	char pbuf[MAXPATHLEN], *buf;
 549	int i, ret, n;
 550
 551	/* actual path to perf binary */
 552	buf = perf_exe(pbuf, MAXPATHLEN);
 553
 554	/* account for binary path */
 555	n = perf_env.nr_cmdline + 1;
 556
 557	ret = do_write(ff, &n, sizeof(n));
 558	if (ret < 0)
 559		return ret;
 560
 561	ret = do_write_string(ff, buf);
 562	if (ret < 0)
 563		return ret;
 564
 565	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 566		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 567		if (ret < 0)
 568			return ret;
 569	}
 570	return 0;
 571}
 572
 573
 574static int write_cpu_topology(struct feat_fd *ff,
 575			      struct evlist *evlist __maybe_unused)
 576{
 577	struct cpu_topology *tp;
 578	u32 i;
 579	int ret, j;
 580
 581	tp = cpu_topology__new();
 582	if (!tp)
 583		return -1;
 584
 585	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
 586	if (ret < 0)
 587		goto done;
 588
 589	for (i = 0; i < tp->core_sib; i++) {
 590		ret = do_write_string(ff, tp->core_siblings[i]);
 591		if (ret < 0)
 592			goto done;
 593	}
 594	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
 595	if (ret < 0)
 596		goto done;
 597
 598	for (i = 0; i < tp->thread_sib; i++) {
 599		ret = do_write_string(ff, tp->thread_siblings[i]);
 600		if (ret < 0)
 601			break;
 602	}
 603
 604	ret = perf_env__read_cpu_topology_map(&perf_env);
 605	if (ret < 0)
 606		goto done;
 607
 608	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 609		ret = do_write(ff, &perf_env.cpu[j].core_id,
 610			       sizeof(perf_env.cpu[j].core_id));
 611		if (ret < 0)
 612			return ret;
 613		ret = do_write(ff, &perf_env.cpu[j].socket_id,
 614			       sizeof(perf_env.cpu[j].socket_id));
 615		if (ret < 0)
 616			return ret;
 617	}
 618
 619	if (!tp->die_sib)
 620		goto done;
 621
 622	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
 623	if (ret < 0)
 624		goto done;
 625
 626	for (i = 0; i < tp->die_sib; i++) {
 627		ret = do_write_string(ff, tp->die_siblings[i]);
 628		if (ret < 0)
 629			goto done;
 630	}
 631
 632	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 633		ret = do_write(ff, &perf_env.cpu[j].die_id,
 634			       sizeof(perf_env.cpu[j].die_id));
 635		if (ret < 0)
 636			return ret;
 637	}
 638
 639done:
 640	cpu_topology__delete(tp);
 641	return ret;
 642}
 643
 644
 645
 646static int write_total_mem(struct feat_fd *ff,
 647			   struct evlist *evlist __maybe_unused)
 648{
 649	char *buf = NULL;
 650	FILE *fp;
 651	size_t len = 0;
 652	int ret = -1, n;
 653	uint64_t mem;
 654
 655	fp = fopen("/proc/meminfo", "r");
 656	if (!fp)
 657		return -1;
 658
 659	while (getline(&buf, &len, fp) > 0) {
 660		ret = strncmp(buf, "MemTotal:", 9);
 661		if (!ret)
 662			break;
 663	}
 664	if (!ret) {
 665		n = sscanf(buf, "%*s %"PRIu64, &mem);
 666		if (n == 1)
 667			ret = do_write(ff, &mem, sizeof(mem));
 668	} else
 669		ret = -1;
 670	free(buf);
 671	fclose(fp);
 672	return ret;
 673}
 674
 675static int write_numa_topology(struct feat_fd *ff,
 676			       struct evlist *evlist __maybe_unused)
 677{
 678	struct numa_topology *tp;
 679	int ret = -1;
 680	u32 i;
 681
 682	tp = numa_topology__new();
 683	if (!tp)
 684		return -ENOMEM;
 685
 686	ret = do_write(ff, &tp->nr, sizeof(u32));
 687	if (ret < 0)
 688		goto err;
 689
 690	for (i = 0; i < tp->nr; i++) {
 691		struct numa_topology_node *n = &tp->nodes[i];
 692
 693		ret = do_write(ff, &n->node, sizeof(u32));
 694		if (ret < 0)
 695			goto err;
 696
 697		ret = do_write(ff, &n->mem_total, sizeof(u64));
 698		if (ret)
 699			goto err;
 700
 701		ret = do_write(ff, &n->mem_free, sizeof(u64));
 702		if (ret)
 703			goto err;
 704
 705		ret = do_write_string(ff, n->cpus);
 706		if (ret < 0)
 707			goto err;
 708	}
 709
 710	ret = 0;
 711
 712err:
 713	numa_topology__delete(tp);
 714	return ret;
 715}
 716
 717/*
 718 * File format:
 719 *
 720 * struct pmu_mappings {
 721 *	u32	pmu_num;
 722 *	struct pmu_map {
 723 *		u32	type;
 724 *		char	name[];
 725 *	}[pmu_num];
 726 * };
 727 */
 728
 729static int write_pmu_mappings(struct feat_fd *ff,
 730			      struct evlist *evlist __maybe_unused)
 731{
 732	struct perf_pmu *pmu = NULL;
 733	u32 pmu_num = 0;
 734	int ret;
 735
 736	/*
 737	 * Do a first pass to count number of pmu to avoid lseek so this
 738	 * works in pipe mode as well.
 739	 */
 740	while ((pmu = perf_pmu__scan(pmu))) {
 741		if (!pmu->name)
 742			continue;
 743		pmu_num++;
 744	}
 745
 746	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 747	if (ret < 0)
 748		return ret;
 749
 750	while ((pmu = perf_pmu__scan(pmu))) {
 751		if (!pmu->name)
 752			continue;
 753
 754		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 755		if (ret < 0)
 756			return ret;
 757
 758		ret = do_write_string(ff, pmu->name);
 759		if (ret < 0)
 760			return ret;
 761	}
 762
 763	return 0;
 764}
 765
 766/*
 767 * File format:
 768 *
 769 * struct group_descs {
 770 *	u32	nr_groups;
 771 *	struct group_desc {
 772 *		char	name[];
 773 *		u32	leader_idx;
 774 *		u32	nr_members;
 775 *	}[nr_groups];
 776 * };
 777 */
 778static int write_group_desc(struct feat_fd *ff,
 779			    struct evlist *evlist)
 780{
 781	u32 nr_groups = evlist->core.nr_groups;
 782	struct evsel *evsel;
 783	int ret;
 784
 785	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 786	if (ret < 0)
 787		return ret;
 788
 789	evlist__for_each_entry(evlist, evsel) {
 790		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
 
 791			const char *name = evsel->group_name ?: "{anon_group}";
 792			u32 leader_idx = evsel->core.idx;
 793			u32 nr_members = evsel->core.nr_members;
 794
 795			ret = do_write_string(ff, name);
 796			if (ret < 0)
 797				return ret;
 798
 799			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 800			if (ret < 0)
 801				return ret;
 802
 803			ret = do_write(ff, &nr_members, sizeof(nr_members));
 804			if (ret < 0)
 805				return ret;
 806		}
 807	}
 808	return 0;
 809}
 810
 811/*
 812 * Return the CPU id as a raw string.
 813 *
 814 * Each architecture should provide a more precise id string that
 815 * can be use to match the architecture's "mapfile".
 816 */
 817char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
 818{
 819	return NULL;
 820}
 821
 822/* Return zero when the cpuid from the mapfile.csv matches the
 823 * cpuid string generated on this platform.
 824 * Otherwise return non-zero.
 825 */
 826int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
 827{
 828	regex_t re;
 829	regmatch_t pmatch[1];
 830	int match;
 831
 832	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
 833		/* Warn unable to generate match particular string. */
 834		pr_info("Invalid regular expression %s\n", mapcpuid);
 835		return 1;
 836	}
 837
 838	match = !regexec(&re, cpuid, 1, pmatch, 0);
 839	regfree(&re);
 840	if (match) {
 841		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
 842
 843		/* Verify the entire string matched. */
 844		if (match_len == strlen(cpuid))
 845			return 0;
 846	}
 847	return 1;
 848}
 849
 850/*
 851 * default get_cpuid(): nothing gets recorded
 852 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 853 */
 854int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
 855{
 856	return ENOSYS; /* Not implemented */
 857}
 858
 859static int write_cpuid(struct feat_fd *ff,
 860		       struct evlist *evlist __maybe_unused)
 861{
 862	char buffer[64];
 863	int ret;
 864
 865	ret = get_cpuid(buffer, sizeof(buffer));
 866	if (ret)
 867		return -1;
 868
 869	return do_write_string(ff, buffer);
 870}
 871
 872static int write_branch_stack(struct feat_fd *ff __maybe_unused,
 873			      struct evlist *evlist __maybe_unused)
 874{
 875	return 0;
 876}
 877
 878static int write_auxtrace(struct feat_fd *ff,
 879			  struct evlist *evlist __maybe_unused)
 880{
 881	struct perf_session *session;
 882	int err;
 883
 884	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 885		return -1;
 886
 887	session = container_of(ff->ph, struct perf_session, header);
 888
 889	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
 890	if (err < 0)
 891		pr_err("Failed to write auxtrace index\n");
 892	return err;
 893}
 894
 895static int write_clockid(struct feat_fd *ff,
 896			 struct evlist *evlist __maybe_unused)
 897{
 898	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
 899			sizeof(ff->ph->env.clock.clockid_res_ns));
 900}
 901
 902static int write_clock_data(struct feat_fd *ff,
 903			    struct evlist *evlist __maybe_unused)
 904{
 905	u64 *data64;
 906	u32 data32;
 907	int ret;
 908
 909	/* version */
 910	data32 = 1;
 911
 912	ret = do_write(ff, &data32, sizeof(data32));
 913	if (ret < 0)
 914		return ret;
 915
 916	/* clockid */
 917	data32 = ff->ph->env.clock.clockid;
 918
 919	ret = do_write(ff, &data32, sizeof(data32));
 920	if (ret < 0)
 921		return ret;
 922
 923	/* TOD ref time */
 924	data64 = &ff->ph->env.clock.tod_ns;
 925
 926	ret = do_write(ff, data64, sizeof(*data64));
 927	if (ret < 0)
 928		return ret;
 929
 930	/* clockid ref time */
 931	data64 = &ff->ph->env.clock.clockid_ns;
 932
 933	return do_write(ff, data64, sizeof(*data64));
 934}
 935
 936static int write_hybrid_topology(struct feat_fd *ff,
 937				 struct evlist *evlist __maybe_unused)
 938{
 939	struct hybrid_topology *tp;
 940	int ret;
 941	u32 i;
 942
 943	tp = hybrid_topology__new();
 944	if (!tp)
 945		return -ENOENT;
 946
 947	ret = do_write(ff, &tp->nr, sizeof(u32));
 948	if (ret < 0)
 949		goto err;
 950
 951	for (i = 0; i < tp->nr; i++) {
 952		struct hybrid_topology_node *n = &tp->nodes[i];
 953
 954		ret = do_write_string(ff, n->pmu_name);
 955		if (ret < 0)
 956			goto err;
 957
 958		ret = do_write_string(ff, n->cpus);
 959		if (ret < 0)
 960			goto err;
 961	}
 962
 963	ret = 0;
 964
 965err:
 966	hybrid_topology__delete(tp);
 967	return ret;
 968}
 969
 970static int write_dir_format(struct feat_fd *ff,
 971			    struct evlist *evlist __maybe_unused)
 972{
 973	struct perf_session *session;
 974	struct perf_data *data;
 975
 976	session = container_of(ff->ph, struct perf_session, header);
 977	data = session->data;
 978
 979	if (WARN_ON(!perf_data__is_dir(data)))
 980		return -1;
 981
 982	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
 983}
 984
 985#ifdef HAVE_LIBBPF_SUPPORT
 986static int write_bpf_prog_info(struct feat_fd *ff,
 987			       struct evlist *evlist __maybe_unused)
 988{
 989	struct perf_env *env = &ff->ph->env;
 990	struct rb_root *root;
 991	struct rb_node *next;
 992	int ret;
 993
 994	down_read(&env->bpf_progs.lock);
 995
 996	ret = do_write(ff, &env->bpf_progs.infos_cnt,
 997		       sizeof(env->bpf_progs.infos_cnt));
 998	if (ret < 0)
 999		goto out;
1000
1001	root = &env->bpf_progs.infos;
1002	next = rb_first(root);
1003	while (next) {
1004		struct bpf_prog_info_node *node;
1005		size_t len;
1006
1007		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1008		next = rb_next(&node->rb_node);
1009		len = sizeof(struct bpf_prog_info_linear) +
1010			node->info_linear->data_len;
1011
1012		/* before writing to file, translate address to offset */
1013		bpf_program__bpil_addr_to_offs(node->info_linear);
1014		ret = do_write(ff, node->info_linear, len);
1015		/*
1016		 * translate back to address even when do_write() fails,
1017		 * so that this function never changes the data.
1018		 */
1019		bpf_program__bpil_offs_to_addr(node->info_linear);
1020		if (ret < 0)
1021			goto out;
1022	}
1023out:
1024	up_read(&env->bpf_progs.lock);
1025	return ret;
1026}
 
 
 
 
 
 
 
1027
1028static int write_bpf_btf(struct feat_fd *ff,
1029			 struct evlist *evlist __maybe_unused)
1030{
1031	struct perf_env *env = &ff->ph->env;
1032	struct rb_root *root;
1033	struct rb_node *next;
1034	int ret;
1035
1036	down_read(&env->bpf_progs.lock);
1037
1038	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1039		       sizeof(env->bpf_progs.btfs_cnt));
1040
1041	if (ret < 0)
1042		goto out;
1043
1044	root = &env->bpf_progs.btfs;
1045	next = rb_first(root);
1046	while (next) {
1047		struct btf_node *node;
1048
1049		node = rb_entry(next, struct btf_node, rb_node);
1050		next = rb_next(&node->rb_node);
1051		ret = do_write(ff, &node->id,
1052			       sizeof(u32) * 2 + node->data_size);
1053		if (ret < 0)
1054			goto out;
1055	}
1056out:
1057	up_read(&env->bpf_progs.lock);
1058	return ret;
1059}
1060#endif // HAVE_LIBBPF_SUPPORT
1061
1062static int cpu_cache_level__sort(const void *a, const void *b)
1063{
1064	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1065	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1066
1067	return cache_a->level - cache_b->level;
1068}
1069
1070static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1071{
1072	if (a->level != b->level)
1073		return false;
1074
1075	if (a->line_size != b->line_size)
1076		return false;
1077
1078	if (a->sets != b->sets)
1079		return false;
1080
1081	if (a->ways != b->ways)
1082		return false;
1083
1084	if (strcmp(a->type, b->type))
1085		return false;
1086
1087	if (strcmp(a->size, b->size))
1088		return false;
1089
1090	if (strcmp(a->map, b->map))
1091		return false;
1092
1093	return true;
1094}
1095
1096static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1097{
1098	char path[PATH_MAX], file[PATH_MAX];
1099	struct stat st;
1100	size_t len;
1101
1102	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1103	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1104
1105	if (stat(file, &st))
1106		return 1;
1107
1108	scnprintf(file, PATH_MAX, "%s/level", path);
1109	if (sysfs__read_int(file, (int *) &cache->level))
1110		return -1;
1111
1112	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1113	if (sysfs__read_int(file, (int *) &cache->line_size))
1114		return -1;
1115
1116	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1117	if (sysfs__read_int(file, (int *) &cache->sets))
1118		return -1;
1119
1120	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1121	if (sysfs__read_int(file, (int *) &cache->ways))
1122		return -1;
1123
1124	scnprintf(file, PATH_MAX, "%s/type", path);
1125	if (sysfs__read_str(file, &cache->type, &len))
1126		return -1;
1127
1128	cache->type[len] = 0;
1129	cache->type = strim(cache->type);
1130
1131	scnprintf(file, PATH_MAX, "%s/size", path);
1132	if (sysfs__read_str(file, &cache->size, &len)) {
1133		zfree(&cache->type);
1134		return -1;
1135	}
1136
1137	cache->size[len] = 0;
1138	cache->size = strim(cache->size);
1139
1140	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1141	if (sysfs__read_str(file, &cache->map, &len)) {
1142		zfree(&cache->size);
1143		zfree(&cache->type);
1144		return -1;
1145	}
1146
1147	cache->map[len] = 0;
1148	cache->map = strim(cache->map);
1149	return 0;
1150}
1151
1152static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1153{
1154	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1155}
1156
1157#define MAX_CACHE_LVL 4
1158
1159static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1160{
1161	u32 i, cnt = 0;
 
1162	u32 nr, cpu;
1163	u16 level;
1164
1165	nr = cpu__max_cpu();
 
 
 
 
1166
1167	for (cpu = 0; cpu < nr; cpu++) {
1168		for (level = 0; level < MAX_CACHE_LVL; level++) {
1169			struct cpu_cache_level c;
1170			int err;
1171
1172			err = cpu_cache_level__read(&c, cpu, level);
1173			if (err < 0)
1174				return err;
1175
1176			if (err == 1)
1177				break;
1178
1179			for (i = 0; i < cnt; i++) {
1180				if (cpu_cache_level__cmp(&c, &caches[i]))
1181					break;
1182			}
1183
1184			if (i == cnt)
1185				caches[cnt++] = c;
1186			else
1187				cpu_cache_level__free(&c);
 
 
 
1188		}
1189	}
 
1190	*cntp = cnt;
1191	return 0;
1192}
1193
 
 
1194static int write_cache(struct feat_fd *ff,
1195		       struct evlist *evlist __maybe_unused)
1196{
1197	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1198	struct cpu_cache_level caches[max_caches];
1199	u32 cnt = 0, i, version = 1;
1200	int ret;
1201
1202	ret = build_caches(caches, &cnt);
1203	if (ret)
1204		goto out;
1205
1206	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1207
1208	ret = do_write(ff, &version, sizeof(u32));
1209	if (ret < 0)
1210		goto out;
1211
1212	ret = do_write(ff, &cnt, sizeof(u32));
1213	if (ret < 0)
1214		goto out;
1215
1216	for (i = 0; i < cnt; i++) {
1217		struct cpu_cache_level *c = &caches[i];
1218
1219		#define _W(v)					\
1220			ret = do_write(ff, &c->v, sizeof(u32));	\
1221			if (ret < 0)				\
1222				goto out;
1223
1224		_W(level)
1225		_W(line_size)
1226		_W(sets)
1227		_W(ways)
1228		#undef _W
1229
1230		#define _W(v)						\
1231			ret = do_write_string(ff, (const char *) c->v);	\
1232			if (ret < 0)					\
1233				goto out;
1234
1235		_W(type)
1236		_W(size)
1237		_W(map)
1238		#undef _W
1239	}
1240
1241out:
1242	for (i = 0; i < cnt; i++)
1243		cpu_cache_level__free(&caches[i]);
1244	return ret;
1245}
1246
1247static int write_stat(struct feat_fd *ff __maybe_unused,
1248		      struct evlist *evlist __maybe_unused)
1249{
1250	return 0;
1251}
1252
1253static int write_sample_time(struct feat_fd *ff,
1254			     struct evlist *evlist)
1255{
1256	int ret;
1257
1258	ret = do_write(ff, &evlist->first_sample_time,
1259		       sizeof(evlist->first_sample_time));
1260	if (ret < 0)
1261		return ret;
1262
1263	return do_write(ff, &evlist->last_sample_time,
1264			sizeof(evlist->last_sample_time));
1265}
1266
1267
1268static int memory_node__read(struct memory_node *n, unsigned long idx)
1269{
1270	unsigned int phys, size = 0;
1271	char path[PATH_MAX];
1272	struct dirent *ent;
1273	DIR *dir;
1274
1275#define for_each_memory(mem, dir)					\
1276	while ((ent = readdir(dir)))					\
1277		if (strcmp(ent->d_name, ".") &&				\
1278		    strcmp(ent->d_name, "..") &&			\
1279		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1280
1281	scnprintf(path, PATH_MAX,
1282		  "%s/devices/system/node/node%lu",
1283		  sysfs__mountpoint(), idx);
1284
1285	dir = opendir(path);
1286	if (!dir) {
1287		pr_warning("failed: cant' open memory sysfs data\n");
1288		return -1;
1289	}
1290
1291	for_each_memory(phys, dir) {
1292		size = max(phys, size);
1293	}
1294
1295	size++;
1296
1297	n->set = bitmap_alloc(size);
1298	if (!n->set) {
1299		closedir(dir);
1300		return -ENOMEM;
1301	}
1302
1303	n->node = idx;
1304	n->size = size;
1305
1306	rewinddir(dir);
1307
1308	for_each_memory(phys, dir) {
1309		set_bit(phys, n->set);
1310	}
1311
1312	closedir(dir);
1313	return 0;
1314}
1315
1316static int memory_node__sort(const void *a, const void *b)
1317{
1318	const struct memory_node *na = a;
1319	const struct memory_node *nb = b;
1320
1321	return na->node - nb->node;
1322}
1323
1324static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1325{
1326	char path[PATH_MAX];
1327	struct dirent *ent;
1328	DIR *dir;
1329	u64 cnt = 0;
1330	int ret = 0;
1331
1332	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1333		  sysfs__mountpoint());
1334
1335	dir = opendir(path);
1336	if (!dir) {
1337		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1338			  __func__, path);
1339		return -1;
1340	}
1341
1342	while (!ret && (ent = readdir(dir))) {
1343		unsigned int idx;
1344		int r;
1345
1346		if (!strcmp(ent->d_name, ".") ||
1347		    !strcmp(ent->d_name, ".."))
1348			continue;
1349
1350		r = sscanf(ent->d_name, "node%u", &idx);
1351		if (r != 1)
1352			continue;
1353
1354		if (WARN_ONCE(cnt >= size,
1355			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1356			closedir(dir);
1357			return -1;
1358		}
1359
1360		ret = memory_node__read(&nodes[cnt++], idx);
1361	}
1362
1363	*cntp = cnt;
1364	closedir(dir);
1365
1366	if (!ret)
1367		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1368
1369	return ret;
1370}
1371
1372#define MAX_MEMORY_NODES 2000
1373
1374/*
1375 * The MEM_TOPOLOGY holds physical memory map for every
1376 * node in system. The format of data is as follows:
1377 *
1378 *  0 - version          | for future changes
1379 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1380 * 16 - count            | number of nodes
1381 *
1382 * For each node we store map of physical indexes for
1383 * each node:
1384 *
1385 * 32 - node id          | node index
1386 * 40 - size             | size of bitmap
1387 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1388 */
1389static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1390			      struct evlist *evlist __maybe_unused)
1391{
1392	static struct memory_node nodes[MAX_MEMORY_NODES];
1393	u64 bsize, version = 1, i, nr;
1394	int ret;
1395
1396	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1397			      (unsigned long long *) &bsize);
1398	if (ret)
1399		return ret;
1400
1401	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1402	if (ret)
1403		return ret;
1404
1405	ret = do_write(ff, &version, sizeof(version));
1406	if (ret < 0)
1407		goto out;
1408
1409	ret = do_write(ff, &bsize, sizeof(bsize));
1410	if (ret < 0)
1411		goto out;
1412
1413	ret = do_write(ff, &nr, sizeof(nr));
1414	if (ret < 0)
1415		goto out;
1416
1417	for (i = 0; i < nr; i++) {
1418		struct memory_node *n = &nodes[i];
1419
1420		#define _W(v)						\
1421			ret = do_write(ff, &n->v, sizeof(n->v));	\
1422			if (ret < 0)					\
1423				goto out;
1424
1425		_W(node)
1426		_W(size)
1427
1428		#undef _W
1429
1430		ret = do_write_bitmap(ff, n->set, n->size);
1431		if (ret < 0)
1432			goto out;
1433	}
1434
1435out:
1436	return ret;
1437}
1438
1439static int write_compressed(struct feat_fd *ff __maybe_unused,
1440			    struct evlist *evlist __maybe_unused)
1441{
1442	int ret;
1443
1444	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1445	if (ret)
1446		return ret;
1447
1448	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1449	if (ret)
1450		return ret;
1451
1452	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1453	if (ret)
1454		return ret;
1455
1456	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1457	if (ret)
1458		return ret;
1459
1460	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1461}
1462
1463static int write_per_cpu_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1464				  bool write_pmu)
1465{
1466	struct perf_pmu_caps *caps = NULL;
1467	int nr_caps;
1468	int ret;
1469
1470	nr_caps = perf_pmu__caps_parse(pmu);
1471	if (nr_caps < 0)
1472		return nr_caps;
1473
1474	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1475	if (ret < 0)
1476		return ret;
1477
1478	list_for_each_entry(caps, &pmu->caps, list) {
1479		ret = do_write_string(ff, caps->name);
1480		if (ret < 0)
1481			return ret;
1482
1483		ret = do_write_string(ff, caps->value);
1484		if (ret < 0)
1485			return ret;
1486	}
1487
1488	if (write_pmu) {
1489		ret = do_write_string(ff, pmu->name);
1490		if (ret < 0)
1491			return ret;
1492	}
1493
1494	return ret;
1495}
1496
1497static int write_cpu_pmu_caps(struct feat_fd *ff,
1498			      struct evlist *evlist __maybe_unused)
1499{
1500	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1501
1502	if (!cpu_pmu)
1503		return -ENOENT;
1504
1505	return write_per_cpu_pmu_caps(ff, cpu_pmu, false);
1506}
1507
1508static int write_hybrid_cpu_pmu_caps(struct feat_fd *ff,
1509				     struct evlist *evlist __maybe_unused)
1510{
1511	struct perf_pmu *pmu;
1512	u32 nr_pmu = perf_pmu__hybrid_pmu_num();
1513	int ret;
1514
1515	if (nr_pmu == 0)
1516		return -ENOENT;
1517
1518	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1519	if (ret < 0)
1520		return ret;
1521
1522	perf_pmu__for_each_hybrid_pmu(pmu) {
1523		ret = write_per_cpu_pmu_caps(ff, pmu, true);
1524		if (ret < 0)
1525			return ret;
1526	}
1527
1528	return 0;
1529}
1530
1531static void print_hostname(struct feat_fd *ff, FILE *fp)
1532{
1533	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1534}
1535
1536static void print_osrelease(struct feat_fd *ff, FILE *fp)
1537{
1538	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1539}
1540
1541static void print_arch(struct feat_fd *ff, FILE *fp)
1542{
1543	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1544}
1545
1546static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1547{
1548	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1549}
1550
1551static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1552{
1553	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1554	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1555}
1556
1557static void print_version(struct feat_fd *ff, FILE *fp)
1558{
1559	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1560}
1561
1562static void print_cmdline(struct feat_fd *ff, FILE *fp)
1563{
1564	int nr, i;
1565
1566	nr = ff->ph->env.nr_cmdline;
1567
1568	fprintf(fp, "# cmdline : ");
1569
1570	for (i = 0; i < nr; i++) {
1571		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1572		if (!argv_i) {
1573			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1574		} else {
1575			char *mem = argv_i;
1576			do {
1577				char *quote = strchr(argv_i, '\'');
1578				if (!quote)
1579					break;
1580				*quote++ = '\0';
1581				fprintf(fp, "%s\\\'", argv_i);
1582				argv_i = quote;
1583			} while (1);
1584			fprintf(fp, "%s ", argv_i);
1585			free(mem);
1586		}
1587	}
1588	fputc('\n', fp);
1589}
1590
1591static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1592{
1593	struct perf_header *ph = ff->ph;
1594	int cpu_nr = ph->env.nr_cpus_avail;
1595	int nr, i;
1596	char *str;
1597
1598	nr = ph->env.nr_sibling_cores;
1599	str = ph->env.sibling_cores;
1600
1601	for (i = 0; i < nr; i++) {
1602		fprintf(fp, "# sibling sockets : %s\n", str);
1603		str += strlen(str) + 1;
1604	}
1605
1606	if (ph->env.nr_sibling_dies) {
1607		nr = ph->env.nr_sibling_dies;
1608		str = ph->env.sibling_dies;
1609
1610		for (i = 0; i < nr; i++) {
1611			fprintf(fp, "# sibling dies    : %s\n", str);
1612			str += strlen(str) + 1;
1613		}
1614	}
1615
1616	nr = ph->env.nr_sibling_threads;
1617	str = ph->env.sibling_threads;
1618
1619	for (i = 0; i < nr; i++) {
1620		fprintf(fp, "# sibling threads : %s\n", str);
1621		str += strlen(str) + 1;
1622	}
1623
1624	if (ph->env.nr_sibling_dies) {
1625		if (ph->env.cpu != NULL) {
1626			for (i = 0; i < cpu_nr; i++)
1627				fprintf(fp, "# CPU %d: Core ID %d, "
1628					    "Die ID %d, Socket ID %d\n",
1629					    i, ph->env.cpu[i].core_id,
1630					    ph->env.cpu[i].die_id,
1631					    ph->env.cpu[i].socket_id);
1632		} else
1633			fprintf(fp, "# Core ID, Die ID and Socket ID "
1634				    "information is not available\n");
1635	} else {
1636		if (ph->env.cpu != NULL) {
1637			for (i = 0; i < cpu_nr; i++)
1638				fprintf(fp, "# CPU %d: Core ID %d, "
1639					    "Socket ID %d\n",
1640					    i, ph->env.cpu[i].core_id,
1641					    ph->env.cpu[i].socket_id);
1642		} else
1643			fprintf(fp, "# Core ID and Socket ID "
1644				    "information is not available\n");
1645	}
1646}
1647
1648static void print_clockid(struct feat_fd *ff, FILE *fp)
1649{
1650	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1651		ff->ph->env.clock.clockid_res_ns * 1000);
1652}
1653
1654static void print_clock_data(struct feat_fd *ff, FILE *fp)
1655{
1656	struct timespec clockid_ns;
1657	char tstr[64], date[64];
1658	struct timeval tod_ns;
1659	clockid_t clockid;
1660	struct tm ltime;
1661	u64 ref;
1662
1663	if (!ff->ph->env.clock.enabled) {
1664		fprintf(fp, "# reference time disabled\n");
1665		return;
1666	}
1667
1668	/* Compute TOD time. */
1669	ref = ff->ph->env.clock.tod_ns;
1670	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1671	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1672	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1673
1674	/* Compute clockid time. */
1675	ref = ff->ph->env.clock.clockid_ns;
1676	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1677	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1678	clockid_ns.tv_nsec = ref;
1679
1680	clockid = ff->ph->env.clock.clockid;
1681
1682	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1683		snprintf(tstr, sizeof(tstr), "<error>");
1684	else {
1685		strftime(date, sizeof(date), "%F %T", &ltime);
1686		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1687			  date, (int) tod_ns.tv_usec);
1688	}
1689
1690	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1691	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1692		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1693		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1694		    clockid_name(clockid));
1695}
1696
1697static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1698{
1699	int i;
1700	struct hybrid_node *n;
1701
1702	fprintf(fp, "# hybrid cpu system:\n");
1703	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1704		n = &ff->ph->env.hybrid_nodes[i];
1705		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1706	}
1707}
1708
1709static void print_dir_format(struct feat_fd *ff, FILE *fp)
1710{
1711	struct perf_session *session;
1712	struct perf_data *data;
1713
1714	session = container_of(ff->ph, struct perf_session, header);
1715	data = session->data;
1716
1717	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1718}
1719
1720#ifdef HAVE_LIBBPF_SUPPORT
1721static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1722{
1723	struct perf_env *env = &ff->ph->env;
1724	struct rb_root *root;
1725	struct rb_node *next;
1726
1727	down_read(&env->bpf_progs.lock);
1728
1729	root = &env->bpf_progs.infos;
1730	next = rb_first(root);
1731
1732	while (next) {
1733		struct bpf_prog_info_node *node;
1734
1735		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1736		next = rb_next(&node->rb_node);
1737
1738		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1739					       env, fp);
1740	}
1741
1742	up_read(&env->bpf_progs.lock);
1743}
1744
1745static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1746{
1747	struct perf_env *env = &ff->ph->env;
1748	struct rb_root *root;
1749	struct rb_node *next;
1750
1751	down_read(&env->bpf_progs.lock);
1752
1753	root = &env->bpf_progs.btfs;
1754	next = rb_first(root);
1755
1756	while (next) {
1757		struct btf_node *node;
1758
1759		node = rb_entry(next, struct btf_node, rb_node);
1760		next = rb_next(&node->rb_node);
1761		fprintf(fp, "# btf info of id %u\n", node->id);
1762	}
1763
1764	up_read(&env->bpf_progs.lock);
1765}
1766#endif // HAVE_LIBBPF_SUPPORT
1767
1768static void free_event_desc(struct evsel *events)
1769{
1770	struct evsel *evsel;
1771
1772	if (!events)
1773		return;
1774
1775	for (evsel = events; evsel->core.attr.size; evsel++) {
1776		zfree(&evsel->name);
1777		zfree(&evsel->core.id);
1778	}
1779
1780	free(events);
1781}
1782
1783static bool perf_attr_check(struct perf_event_attr *attr)
1784{
1785	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1786		pr_warning("Reserved bits are set unexpectedly. "
1787			   "Please update perf tool.\n");
1788		return false;
1789	}
1790
1791	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1792		pr_warning("Unknown sample type (0x%llx) is detected. "
1793			   "Please update perf tool.\n",
1794			   attr->sample_type);
1795		return false;
1796	}
1797
1798	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1799		pr_warning("Unknown read format (0x%llx) is detected. "
1800			   "Please update perf tool.\n",
1801			   attr->read_format);
1802		return false;
1803	}
1804
1805	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1806	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1807		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1808			   "Please update perf tool.\n",
1809			   attr->branch_sample_type);
1810
1811		return false;
1812	}
1813
1814	return true;
1815}
1816
1817static struct evsel *read_event_desc(struct feat_fd *ff)
1818{
1819	struct evsel *evsel, *events = NULL;
1820	u64 *id;
1821	void *buf = NULL;
1822	u32 nre, sz, nr, i, j;
1823	size_t msz;
1824
1825	/* number of events */
1826	if (do_read_u32(ff, &nre))
1827		goto error;
1828
1829	if (do_read_u32(ff, &sz))
1830		goto error;
1831
1832	/* buffer to hold on file attr struct */
1833	buf = malloc(sz);
1834	if (!buf)
1835		goto error;
1836
1837	/* the last event terminates with evsel->core.attr.size == 0: */
1838	events = calloc(nre + 1, sizeof(*events));
1839	if (!events)
1840		goto error;
1841
1842	msz = sizeof(evsel->core.attr);
1843	if (sz < msz)
1844		msz = sz;
1845
1846	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1847		evsel->core.idx = i;
1848
1849		/*
1850		 * must read entire on-file attr struct to
1851		 * sync up with layout.
1852		 */
1853		if (__do_read(ff, buf, sz))
1854			goto error;
1855
1856		if (ff->ph->needs_swap)
1857			perf_event__attr_swap(buf);
1858
1859		memcpy(&evsel->core.attr, buf, msz);
1860
1861		if (!perf_attr_check(&evsel->core.attr))
1862			goto error;
1863
1864		if (do_read_u32(ff, &nr))
1865			goto error;
1866
1867		if (ff->ph->needs_swap)
1868			evsel->needs_swap = true;
1869
1870		evsel->name = do_read_string(ff);
1871		if (!evsel->name)
1872			goto error;
1873
1874		if (!nr)
1875			continue;
1876
1877		id = calloc(nr, sizeof(*id));
1878		if (!id)
1879			goto error;
1880		evsel->core.ids = nr;
1881		evsel->core.id = id;
1882
1883		for (j = 0 ; j < nr; j++) {
1884			if (do_read_u64(ff, id))
1885				goto error;
1886			id++;
1887		}
1888	}
1889out:
1890	free(buf);
1891	return events;
1892error:
1893	free_event_desc(events);
1894	events = NULL;
1895	goto out;
1896}
1897
1898static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1899				void *priv __maybe_unused)
1900{
1901	return fprintf(fp, ", %s = %s", name, val);
1902}
1903
1904static void print_event_desc(struct feat_fd *ff, FILE *fp)
1905{
1906	struct evsel *evsel, *events;
1907	u32 j;
1908	u64 *id;
1909
1910	if (ff->events)
1911		events = ff->events;
1912	else
1913		events = read_event_desc(ff);
1914
1915	if (!events) {
1916		fprintf(fp, "# event desc: not available or unable to read\n");
1917		return;
1918	}
1919
1920	for (evsel = events; evsel->core.attr.size; evsel++) {
1921		fprintf(fp, "# event : name = %s, ", evsel->name);
1922
1923		if (evsel->core.ids) {
1924			fprintf(fp, ", id = {");
1925			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1926				if (j)
1927					fputc(',', fp);
1928				fprintf(fp, " %"PRIu64, *id);
1929			}
1930			fprintf(fp, " }");
1931		}
1932
1933		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1934
1935		fputc('\n', fp);
1936	}
1937
1938	free_event_desc(events);
1939	ff->events = NULL;
1940}
1941
1942static void print_total_mem(struct feat_fd *ff, FILE *fp)
1943{
1944	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1945}
1946
1947static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1948{
1949	int i;
1950	struct numa_node *n;
1951
1952	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1953		n = &ff->ph->env.numa_nodes[i];
1954
1955		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1956			    " free = %"PRIu64" kB\n",
1957			n->node, n->mem_total, n->mem_free);
1958
1959		fprintf(fp, "# node%u cpu list : ", n->node);
1960		cpu_map__fprintf(n->map, fp);
1961	}
1962}
1963
1964static void print_cpuid(struct feat_fd *ff, FILE *fp)
1965{
1966	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1967}
1968
1969static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1970{
1971	fprintf(fp, "# contains samples with branch stack\n");
1972}
1973
1974static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1975{
1976	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1977}
1978
1979static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1980{
1981	fprintf(fp, "# contains stat data\n");
1982}
1983
1984static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1985{
1986	int i;
1987
1988	fprintf(fp, "# CPU cache info:\n");
1989	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1990		fprintf(fp, "#  ");
1991		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1992	}
1993}
1994
1995static void print_compressed(struct feat_fd *ff, FILE *fp)
1996{
1997	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1998		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1999		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2000}
2001
2002static void print_per_cpu_pmu_caps(FILE *fp, int nr_caps, char *cpu_pmu_caps,
2003				   char *pmu_name)
2004{
2005	const char *delimiter;
2006	char *str, buf[128];
2007
2008	if (!nr_caps) {
2009		if (!pmu_name)
2010			fprintf(fp, "# cpu pmu capabilities: not available\n");
2011		else
2012			fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2013		return;
2014	}
2015
2016	if (!pmu_name)
2017		scnprintf(buf, sizeof(buf), "# cpu pmu capabilities: ");
2018	else
2019		scnprintf(buf, sizeof(buf), "# %s pmu capabilities: ", pmu_name);
2020
2021	delimiter = buf;
2022
2023	str = cpu_pmu_caps;
2024	while (nr_caps--) {
2025		fprintf(fp, "%s%s", delimiter, str);
2026		delimiter = ", ";
2027		str += strlen(str) + 1;
2028	}
2029
2030	fprintf(fp, "\n");
2031}
2032
2033static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2034{
2035	print_per_cpu_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2036			       ff->ph->env.cpu_pmu_caps, NULL);
2037}
2038
2039static void print_hybrid_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2040{
2041	struct hybrid_cpc_node *n;
2042
2043	for (int i = 0; i < ff->ph->env.nr_hybrid_cpc_nodes; i++) {
2044		n = &ff->ph->env.hybrid_cpc_nodes[i];
2045		print_per_cpu_pmu_caps(fp, n->nr_cpu_pmu_caps,
2046				       n->cpu_pmu_caps,
2047				       n->pmu_name);
2048	}
2049}
2050
2051static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2052{
2053	const char *delimiter = "# pmu mappings: ";
2054	char *str, *tmp;
2055	u32 pmu_num;
2056	u32 type;
2057
2058	pmu_num = ff->ph->env.nr_pmu_mappings;
2059	if (!pmu_num) {
2060		fprintf(fp, "# pmu mappings: not available\n");
2061		return;
2062	}
2063
2064	str = ff->ph->env.pmu_mappings;
2065
2066	while (pmu_num) {
2067		type = strtoul(str, &tmp, 0);
2068		if (*tmp != ':')
2069			goto error;
2070
2071		str = tmp + 1;
2072		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2073
2074		delimiter = ", ";
2075		str += strlen(str) + 1;
2076		pmu_num--;
2077	}
2078
2079	fprintf(fp, "\n");
2080
2081	if (!pmu_num)
2082		return;
2083error:
2084	fprintf(fp, "# pmu mappings: unable to read\n");
2085}
2086
2087static void print_group_desc(struct feat_fd *ff, FILE *fp)
2088{
2089	struct perf_session *session;
2090	struct evsel *evsel;
2091	u32 nr = 0;
2092
2093	session = container_of(ff->ph, struct perf_session, header);
2094
2095	evlist__for_each_entry(session->evlist, evsel) {
2096		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2097			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
 
 
2098
2099			nr = evsel->core.nr_members - 1;
2100		} else if (nr) {
2101			fprintf(fp, ",%s", evsel__name(evsel));
2102
2103			if (--nr == 0)
2104				fprintf(fp, "}\n");
2105		}
2106	}
2107}
2108
2109static void print_sample_time(struct feat_fd *ff, FILE *fp)
2110{
2111	struct perf_session *session;
2112	char time_buf[32];
2113	double d;
2114
2115	session = container_of(ff->ph, struct perf_session, header);
2116
2117	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2118				  time_buf, sizeof(time_buf));
2119	fprintf(fp, "# time of first sample : %s\n", time_buf);
2120
2121	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2122				  time_buf, sizeof(time_buf));
2123	fprintf(fp, "# time of last sample : %s\n", time_buf);
2124
2125	d = (double)(session->evlist->last_sample_time -
2126		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2127
2128	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2129}
2130
2131static void memory_node__fprintf(struct memory_node *n,
2132				 unsigned long long bsize, FILE *fp)
2133{
2134	char buf_map[100], buf_size[50];
2135	unsigned long long size;
2136
2137	size = bsize * bitmap_weight(n->set, n->size);
2138	unit_number__scnprintf(buf_size, 50, size);
2139
2140	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2141	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2142}
2143
2144static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2145{
2146	struct memory_node *nodes;
2147	int i, nr;
2148
2149	nodes = ff->ph->env.memory_nodes;
2150	nr    = ff->ph->env.nr_memory_nodes;
2151
2152	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2153		nr, ff->ph->env.memory_bsize);
2154
2155	for (i = 0; i < nr; i++) {
2156		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2157	}
2158}
2159
2160static int __event_process_build_id(struct perf_record_header_build_id *bev,
2161				    char *filename,
2162				    struct perf_session *session)
2163{
2164	int err = -1;
2165	struct machine *machine;
2166	u16 cpumode;
2167	struct dso *dso;
2168	enum dso_space_type dso_space;
2169
2170	machine = perf_session__findnew_machine(session, bev->pid);
2171	if (!machine)
2172		goto out;
2173
2174	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2175
2176	switch (cpumode) {
2177	case PERF_RECORD_MISC_KERNEL:
2178		dso_space = DSO_SPACE__KERNEL;
2179		break;
2180	case PERF_RECORD_MISC_GUEST_KERNEL:
2181		dso_space = DSO_SPACE__KERNEL_GUEST;
2182		break;
2183	case PERF_RECORD_MISC_USER:
2184	case PERF_RECORD_MISC_GUEST_USER:
2185		dso_space = DSO_SPACE__USER;
2186		break;
2187	default:
2188		goto out;
2189	}
2190
2191	dso = machine__findnew_dso(machine, filename);
2192	if (dso != NULL) {
2193		char sbuild_id[SBUILD_ID_SIZE];
2194		struct build_id bid;
2195		size_t size = BUILD_ID_SIZE;
2196
2197		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2198			size = bev->size;
2199
2200		build_id__init(&bid, bev->data, size);
2201		dso__set_build_id(dso, &bid);
2202
2203		if (dso_space != DSO_SPACE__USER) {
2204			struct kmod_path m = { .name = NULL, };
2205
2206			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2207				dso__set_module_info(dso, &m, machine);
 
 
2208
2209			dso->kernel = dso_space;
2210			free(m.name);
2211		}
2212
2213		build_id__sprintf(&dso->bid, sbuild_id);
2214		pr_debug("build id event received for %s: %s [%zu]\n",
2215			 dso->long_name, sbuild_id, size);
 
2216		dso__put(dso);
2217	}
2218
2219	err = 0;
2220out:
2221	return err;
2222}
2223
2224static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2225						 int input, u64 offset, u64 size)
2226{
2227	struct perf_session *session = container_of(header, struct perf_session, header);
2228	struct {
2229		struct perf_event_header   header;
2230		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2231		char			   filename[0];
2232	} old_bev;
2233	struct perf_record_header_build_id bev;
2234	char filename[PATH_MAX];
2235	u64 limit = offset + size;
2236
2237	while (offset < limit) {
2238		ssize_t len;
2239
2240		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2241			return -1;
2242
2243		if (header->needs_swap)
2244			perf_event_header__bswap(&old_bev.header);
2245
2246		len = old_bev.header.size - sizeof(old_bev);
2247		if (readn(input, filename, len) != len)
2248			return -1;
2249
2250		bev.header = old_bev.header;
2251
2252		/*
2253		 * As the pid is the missing value, we need to fill
2254		 * it properly. The header.misc value give us nice hint.
2255		 */
2256		bev.pid	= HOST_KERNEL_ID;
2257		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2258		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2259			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2260
2261		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2262		__event_process_build_id(&bev, filename, session);
2263
2264		offset += bev.header.size;
2265	}
2266
2267	return 0;
2268}
2269
2270static int perf_header__read_build_ids(struct perf_header *header,
2271				       int input, u64 offset, u64 size)
2272{
2273	struct perf_session *session = container_of(header, struct perf_session, header);
2274	struct perf_record_header_build_id bev;
2275	char filename[PATH_MAX];
2276	u64 limit = offset + size, orig_offset = offset;
2277	int err = -1;
2278
2279	while (offset < limit) {
2280		ssize_t len;
2281
2282		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2283			goto out;
2284
2285		if (header->needs_swap)
2286			perf_event_header__bswap(&bev.header);
2287
2288		len = bev.header.size - sizeof(bev);
2289		if (readn(input, filename, len) != len)
2290			goto out;
2291		/*
2292		 * The a1645ce1 changeset:
2293		 *
2294		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2295		 *
2296		 * Added a field to struct perf_record_header_build_id that broke the file
2297		 * format.
2298		 *
2299		 * Since the kernel build-id is the first entry, process the
2300		 * table using the old format if the well known
2301		 * '[kernel.kallsyms]' string for the kernel build-id has the
2302		 * first 4 characters chopped off (where the pid_t sits).
2303		 */
2304		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2305			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2306				return -1;
2307			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2308		}
2309
2310		__event_process_build_id(&bev, filename, session);
2311
2312		offset += bev.header.size;
2313	}
2314	err = 0;
2315out:
2316	return err;
2317}
2318
2319/* Macro for features that simply need to read and store a string. */
2320#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2321static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2322{\
2323	ff->ph->env.__feat_env = do_read_string(ff); \
2324	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2325}
2326
2327FEAT_PROCESS_STR_FUN(hostname, hostname);
2328FEAT_PROCESS_STR_FUN(osrelease, os_release);
2329FEAT_PROCESS_STR_FUN(version, version);
2330FEAT_PROCESS_STR_FUN(arch, arch);
2331FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2332FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2333
2334static int process_tracing_data(struct feat_fd *ff, void *data)
2335{
2336	ssize_t ret = trace_report(ff->fd, data, false);
2337
2338	return ret < 0 ? -1 : 0;
2339}
2340
2341static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2342{
2343	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2344		pr_debug("Failed to read buildids, continuing...\n");
2345	return 0;
2346}
2347
2348static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2349{
2350	int ret;
2351	u32 nr_cpus_avail, nr_cpus_online;
2352
2353	ret = do_read_u32(ff, &nr_cpus_avail);
2354	if (ret)
2355		return ret;
2356
2357	ret = do_read_u32(ff, &nr_cpus_online);
2358	if (ret)
2359		return ret;
2360	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2361	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2362	return 0;
2363}
2364
2365static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2366{
2367	u64 total_mem;
2368	int ret;
2369
2370	ret = do_read_u64(ff, &total_mem);
2371	if (ret)
2372		return -1;
2373	ff->ph->env.total_mem = (unsigned long long)total_mem;
2374	return 0;
2375}
2376
2377static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
 
2378{
2379	struct evsel *evsel;
2380
2381	evlist__for_each_entry(evlist, evsel) {
2382		if (evsel->core.idx == idx)
2383			return evsel;
2384	}
2385
2386	return NULL;
2387}
2388
2389static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
 
 
2390{
2391	struct evsel *evsel;
2392
2393	if (!event->name)
2394		return;
2395
2396	evsel = evlist__find_by_index(evlist, event->core.idx);
2397	if (!evsel)
2398		return;
2399
2400	if (evsel->name)
2401		return;
2402
2403	evsel->name = strdup(event->name);
2404}
2405
2406static int
2407process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2408{
2409	struct perf_session *session;
2410	struct evsel *evsel, *events = read_event_desc(ff);
2411
2412	if (!events)
2413		return 0;
2414
2415	session = container_of(ff->ph, struct perf_session, header);
2416
2417	if (session->data->is_pipe) {
2418		/* Save events for reading later by print_event_desc,
2419		 * since they can't be read again in pipe mode. */
2420		ff->events = events;
2421	}
2422
2423	for (evsel = events; evsel->core.attr.size; evsel++)
2424		evlist__set_event_name(session->evlist, evsel);
2425
2426	if (!session->data->is_pipe)
2427		free_event_desc(events);
2428
2429	return 0;
2430}
2431
2432static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2433{
2434	char *str, *cmdline = NULL, **argv = NULL;
2435	u32 nr, i, len = 0;
2436
2437	if (do_read_u32(ff, &nr))
2438		return -1;
2439
2440	ff->ph->env.nr_cmdline = nr;
2441
2442	cmdline = zalloc(ff->size + nr + 1);
2443	if (!cmdline)
2444		return -1;
2445
2446	argv = zalloc(sizeof(char *) * (nr + 1));
2447	if (!argv)
2448		goto error;
2449
2450	for (i = 0; i < nr; i++) {
2451		str = do_read_string(ff);
2452		if (!str)
2453			goto error;
2454
2455		argv[i] = cmdline + len;
2456		memcpy(argv[i], str, strlen(str) + 1);
2457		len += strlen(str) + 1;
2458		free(str);
2459	}
2460	ff->ph->env.cmdline = cmdline;
2461	ff->ph->env.cmdline_argv = (const char **) argv;
2462	return 0;
2463
2464error:
2465	free(argv);
2466	free(cmdline);
2467	return -1;
2468}
2469
2470static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2471{
2472	u32 nr, i;
2473	char *str;
2474	struct strbuf sb;
2475	int cpu_nr = ff->ph->env.nr_cpus_avail;
2476	u64 size = 0;
2477	struct perf_header *ph = ff->ph;
2478	bool do_core_id_test = true;
2479
2480	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2481	if (!ph->env.cpu)
2482		return -1;
2483
2484	if (do_read_u32(ff, &nr))
2485		goto free_cpu;
2486
2487	ph->env.nr_sibling_cores = nr;
2488	size += sizeof(u32);
2489	if (strbuf_init(&sb, 128) < 0)
2490		goto free_cpu;
2491
2492	for (i = 0; i < nr; i++) {
2493		str = do_read_string(ff);
2494		if (!str)
2495			goto error;
2496
2497		/* include a NULL character at the end */
2498		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2499			goto error;
2500		size += string_size(str);
2501		free(str);
2502	}
2503	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2504
2505	if (do_read_u32(ff, &nr))
2506		return -1;
2507
2508	ph->env.nr_sibling_threads = nr;
2509	size += sizeof(u32);
2510
2511	for (i = 0; i < nr; i++) {
2512		str = do_read_string(ff);
2513		if (!str)
2514			goto error;
2515
2516		/* include a NULL character at the end */
2517		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2518			goto error;
2519		size += string_size(str);
2520		free(str);
2521	}
2522	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2523
2524	/*
2525	 * The header may be from old perf,
2526	 * which doesn't include core id and socket id information.
2527	 */
2528	if (ff->size <= size) {
2529		zfree(&ph->env.cpu);
2530		return 0;
2531	}
2532
2533	/* On s390 the socket_id number is not related to the numbers of cpus.
2534	 * The socket_id number might be higher than the numbers of cpus.
2535	 * This depends on the configuration.
2536	 * AArch64 is the same.
2537	 */
2538	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2539			  || !strncmp(ph->env.arch, "aarch64", 7)))
2540		do_core_id_test = false;
2541
2542	for (i = 0; i < (u32)cpu_nr; i++) {
2543		if (do_read_u32(ff, &nr))
2544			goto free_cpu;
2545
2546		ph->env.cpu[i].core_id = nr;
2547		size += sizeof(u32);
2548
2549		if (do_read_u32(ff, &nr))
2550			goto free_cpu;
2551
2552		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2553			pr_debug("socket_id number is too big."
2554				 "You may need to upgrade the perf tool.\n");
2555			goto free_cpu;
2556		}
2557
2558		ph->env.cpu[i].socket_id = nr;
2559		size += sizeof(u32);
2560	}
2561
2562	/*
2563	 * The header may be from old perf,
2564	 * which doesn't include die information.
2565	 */
2566	if (ff->size <= size)
2567		return 0;
2568
2569	if (do_read_u32(ff, &nr))
2570		return -1;
2571
2572	ph->env.nr_sibling_dies = nr;
2573	size += sizeof(u32);
2574
2575	for (i = 0; i < nr; i++) {
2576		str = do_read_string(ff);
2577		if (!str)
2578			goto error;
2579
2580		/* include a NULL character at the end */
2581		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2582			goto error;
2583		size += string_size(str);
2584		free(str);
2585	}
2586	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2587
2588	for (i = 0; i < (u32)cpu_nr; i++) {
2589		if (do_read_u32(ff, &nr))
2590			goto free_cpu;
2591
2592		ph->env.cpu[i].die_id = nr;
2593	}
2594
2595	return 0;
2596
2597error:
2598	strbuf_release(&sb);
2599free_cpu:
2600	zfree(&ph->env.cpu);
2601	return -1;
2602}
2603
2604static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2605{
2606	struct numa_node *nodes, *n;
2607	u32 nr, i;
2608	char *str;
2609
2610	/* nr nodes */
2611	if (do_read_u32(ff, &nr))
2612		return -1;
2613
2614	nodes = zalloc(sizeof(*nodes) * nr);
2615	if (!nodes)
2616		return -ENOMEM;
2617
2618	for (i = 0; i < nr; i++) {
2619		n = &nodes[i];
2620
2621		/* node number */
2622		if (do_read_u32(ff, &n->node))
2623			goto error;
2624
2625		if (do_read_u64(ff, &n->mem_total))
2626			goto error;
2627
2628		if (do_read_u64(ff, &n->mem_free))
2629			goto error;
2630
2631		str = do_read_string(ff);
2632		if (!str)
2633			goto error;
2634
2635		n->map = perf_cpu_map__new(str);
2636		if (!n->map)
2637			goto error;
2638
2639		free(str);
2640	}
2641	ff->ph->env.nr_numa_nodes = nr;
2642	ff->ph->env.numa_nodes = nodes;
2643	return 0;
2644
2645error:
2646	free(nodes);
2647	return -1;
2648}
2649
2650static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2651{
2652	char *name;
2653	u32 pmu_num;
2654	u32 type;
2655	struct strbuf sb;
2656
2657	if (do_read_u32(ff, &pmu_num))
2658		return -1;
2659
2660	if (!pmu_num) {
2661		pr_debug("pmu mappings not available\n");
2662		return 0;
2663	}
2664
2665	ff->ph->env.nr_pmu_mappings = pmu_num;
2666	if (strbuf_init(&sb, 128) < 0)
2667		return -1;
2668
2669	while (pmu_num) {
2670		if (do_read_u32(ff, &type))
2671			goto error;
2672
2673		name = do_read_string(ff);
2674		if (!name)
2675			goto error;
2676
2677		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2678			goto error;
2679		/* include a NULL character at the end */
2680		if (strbuf_add(&sb, "", 1) < 0)
2681			goto error;
2682
2683		if (!strcmp(name, "msr"))
2684			ff->ph->env.msr_pmu_type = type;
2685
2686		free(name);
2687		pmu_num--;
2688	}
2689	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2690	return 0;
2691
2692error:
2693	strbuf_release(&sb);
2694	return -1;
2695}
2696
2697static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2698{
2699	size_t ret = -1;
2700	u32 i, nr, nr_groups;
2701	struct perf_session *session;
2702	struct evsel *evsel, *leader = NULL;
2703	struct group_desc {
2704		char *name;
2705		u32 leader_idx;
2706		u32 nr_members;
2707	} *desc;
2708
2709	if (do_read_u32(ff, &nr_groups))
2710		return -1;
2711
2712	ff->ph->env.nr_groups = nr_groups;
2713	if (!nr_groups) {
2714		pr_debug("group desc not available\n");
2715		return 0;
2716	}
2717
2718	desc = calloc(nr_groups, sizeof(*desc));
2719	if (!desc)
2720		return -1;
2721
2722	for (i = 0; i < nr_groups; i++) {
2723		desc[i].name = do_read_string(ff);
2724		if (!desc[i].name)
2725			goto out_free;
2726
2727		if (do_read_u32(ff, &desc[i].leader_idx))
2728			goto out_free;
2729
2730		if (do_read_u32(ff, &desc[i].nr_members))
2731			goto out_free;
2732	}
2733
2734	/*
2735	 * Rebuild group relationship based on the group_desc
2736	 */
2737	session = container_of(ff->ph, struct perf_session, header);
2738	session->evlist->core.nr_groups = nr_groups;
2739
2740	i = nr = 0;
2741	evlist__for_each_entry(session->evlist, evsel) {
2742		if (evsel->core.idx == (int) desc[i].leader_idx) {
2743			evsel__set_leader(evsel, evsel);
2744			/* {anon_group} is a dummy name */
2745			if (strcmp(desc[i].name, "{anon_group}")) {
2746				evsel->group_name = desc[i].name;
2747				desc[i].name = NULL;
2748			}
2749			evsel->core.nr_members = desc[i].nr_members;
2750
2751			if (i >= nr_groups || nr > 0) {
2752				pr_debug("invalid group desc\n");
2753				goto out_free;
2754			}
2755
2756			leader = evsel;
2757			nr = evsel->core.nr_members - 1;
2758			i++;
2759		} else if (nr) {
2760			/* This is a group member */
2761			evsel__set_leader(evsel, leader);
2762
2763			nr--;
2764		}
2765	}
2766
2767	if (i != nr_groups || nr != 0) {
2768		pr_debug("invalid group desc\n");
2769		goto out_free;
2770	}
2771
2772	ret = 0;
2773out_free:
2774	for (i = 0; i < nr_groups; i++)
2775		zfree(&desc[i].name);
2776	free(desc);
2777
2778	return ret;
2779}
2780
2781static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2782{
2783	struct perf_session *session;
2784	int err;
2785
2786	session = container_of(ff->ph, struct perf_session, header);
2787
2788	err = auxtrace_index__process(ff->fd, ff->size, session,
2789				      ff->ph->needs_swap);
2790	if (err < 0)
2791		pr_err("Failed to process auxtrace index\n");
2792	return err;
2793}
2794
2795static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2796{
2797	struct cpu_cache_level *caches;
2798	u32 cnt, i, version;
2799
2800	if (do_read_u32(ff, &version))
2801		return -1;
2802
2803	if (version != 1)
2804		return -1;
2805
2806	if (do_read_u32(ff, &cnt))
2807		return -1;
2808
2809	caches = zalloc(sizeof(*caches) * cnt);
2810	if (!caches)
2811		return -1;
2812
2813	for (i = 0; i < cnt; i++) {
2814		struct cpu_cache_level c;
2815
2816		#define _R(v)						\
2817			if (do_read_u32(ff, &c.v))\
2818				goto out_free_caches;			\
2819
2820		_R(level)
2821		_R(line_size)
2822		_R(sets)
2823		_R(ways)
2824		#undef _R
2825
2826		#define _R(v)					\
2827			c.v = do_read_string(ff);		\
2828			if (!c.v)				\
2829				goto out_free_caches;
2830
2831		_R(type)
2832		_R(size)
2833		_R(map)
2834		#undef _R
2835
2836		caches[i] = c;
2837	}
2838
2839	ff->ph->env.caches = caches;
2840	ff->ph->env.caches_cnt = cnt;
2841	return 0;
2842out_free_caches:
2843	free(caches);
2844	return -1;
2845}
2846
2847static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2848{
2849	struct perf_session *session;
2850	u64 first_sample_time, last_sample_time;
2851	int ret;
2852
2853	session = container_of(ff->ph, struct perf_session, header);
2854
2855	ret = do_read_u64(ff, &first_sample_time);
2856	if (ret)
2857		return -1;
2858
2859	ret = do_read_u64(ff, &last_sample_time);
2860	if (ret)
2861		return -1;
2862
2863	session->evlist->first_sample_time = first_sample_time;
2864	session->evlist->last_sample_time = last_sample_time;
2865	return 0;
2866}
2867
2868static int process_mem_topology(struct feat_fd *ff,
2869				void *data __maybe_unused)
2870{
2871	struct memory_node *nodes;
2872	u64 version, i, nr, bsize;
2873	int ret = -1;
2874
2875	if (do_read_u64(ff, &version))
2876		return -1;
2877
2878	if (version != 1)
2879		return -1;
2880
2881	if (do_read_u64(ff, &bsize))
2882		return -1;
2883
2884	if (do_read_u64(ff, &nr))
2885		return -1;
2886
2887	nodes = zalloc(sizeof(*nodes) * nr);
2888	if (!nodes)
2889		return -1;
2890
2891	for (i = 0; i < nr; i++) {
2892		struct memory_node n;
2893
2894		#define _R(v)				\
2895			if (do_read_u64(ff, &n.v))	\
2896				goto out;		\
2897
2898		_R(node)
2899		_R(size)
2900
2901		#undef _R
2902
2903		if (do_read_bitmap(ff, &n.set, &n.size))
2904			goto out;
2905
2906		nodes[i] = n;
2907	}
2908
2909	ff->ph->env.memory_bsize    = bsize;
2910	ff->ph->env.memory_nodes    = nodes;
2911	ff->ph->env.nr_memory_nodes = nr;
2912	ret = 0;
2913
2914out:
2915	if (ret)
2916		free(nodes);
2917	return ret;
2918}
2919
2920static int process_clockid(struct feat_fd *ff,
2921			   void *data __maybe_unused)
2922{
2923	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2924		return -1;
2925
2926	return 0;
2927}
2928
2929static int process_clock_data(struct feat_fd *ff,
2930			      void *_data __maybe_unused)
2931{
2932	u32 data32;
2933	u64 data64;
2934
2935	/* version */
2936	if (do_read_u32(ff, &data32))
2937		return -1;
2938
2939	if (data32 != 1)
2940		return -1;
2941
2942	/* clockid */
2943	if (do_read_u32(ff, &data32))
2944		return -1;
2945
2946	ff->ph->env.clock.clockid = data32;
2947
2948	/* TOD ref time */
2949	if (do_read_u64(ff, &data64))
2950		return -1;
2951
2952	ff->ph->env.clock.tod_ns = data64;
2953
2954	/* clockid ref time */
2955	if (do_read_u64(ff, &data64))
2956		return -1;
2957
2958	ff->ph->env.clock.clockid_ns = data64;
2959	ff->ph->env.clock.enabled = true;
2960	return 0;
2961}
2962
2963static int process_hybrid_topology(struct feat_fd *ff,
2964				   void *data __maybe_unused)
2965{
2966	struct hybrid_node *nodes, *n;
2967	u32 nr, i;
2968
2969	/* nr nodes */
2970	if (do_read_u32(ff, &nr))
2971		return -1;
2972
2973	nodes = zalloc(sizeof(*nodes) * nr);
2974	if (!nodes)
2975		return -ENOMEM;
2976
2977	for (i = 0; i < nr; i++) {
2978		n = &nodes[i];
2979
2980		n->pmu_name = do_read_string(ff);
2981		if (!n->pmu_name)
2982			goto error;
2983
2984		n->cpus = do_read_string(ff);
2985		if (!n->cpus)
2986			goto error;
2987	}
2988
2989	ff->ph->env.nr_hybrid_nodes = nr;
2990	ff->ph->env.hybrid_nodes = nodes;
2991	return 0;
2992
2993error:
2994	for (i = 0; i < nr; i++) {
2995		free(nodes[i].pmu_name);
2996		free(nodes[i].cpus);
2997	}
2998
2999	free(nodes);
3000	return -1;
3001}
3002
3003static int process_dir_format(struct feat_fd *ff,
3004			      void *_data __maybe_unused)
3005{
3006	struct perf_session *session;
3007	struct perf_data *data;
3008
3009	session = container_of(ff->ph, struct perf_session, header);
3010	data = session->data;
3011
3012	if (WARN_ON(!perf_data__is_dir(data)))
3013		return -1;
3014
3015	return do_read_u64(ff, &data->dir.version);
3016}
3017
3018#ifdef HAVE_LIBBPF_SUPPORT
3019static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3020{
3021	struct bpf_prog_info_linear *info_linear;
3022	struct bpf_prog_info_node *info_node;
3023	struct perf_env *env = &ff->ph->env;
3024	u32 count, i;
3025	int err = -1;
3026
3027	if (ff->ph->needs_swap) {
3028		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3029		return 0;
3030	}
3031
3032	if (do_read_u32(ff, &count))
3033		return -1;
3034
3035	down_write(&env->bpf_progs.lock);
3036
3037	for (i = 0; i < count; ++i) {
3038		u32 info_len, data_len;
3039
3040		info_linear = NULL;
3041		info_node = NULL;
3042		if (do_read_u32(ff, &info_len))
3043			goto out;
3044		if (do_read_u32(ff, &data_len))
3045			goto out;
3046
3047		if (info_len > sizeof(struct bpf_prog_info)) {
3048			pr_warning("detected invalid bpf_prog_info\n");
3049			goto out;
3050		}
3051
3052		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
3053				     data_len);
3054		if (!info_linear)
3055			goto out;
3056		info_linear->info_len = sizeof(struct bpf_prog_info);
3057		info_linear->data_len = data_len;
3058		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3059			goto out;
3060		if (__do_read(ff, &info_linear->info, info_len))
3061			goto out;
3062		if (info_len < sizeof(struct bpf_prog_info))
3063			memset(((void *)(&info_linear->info)) + info_len, 0,
3064			       sizeof(struct bpf_prog_info) - info_len);
3065
3066		if (__do_read(ff, info_linear->data, data_len))
3067			goto out;
3068
3069		info_node = malloc(sizeof(struct bpf_prog_info_node));
3070		if (!info_node)
3071			goto out;
3072
3073		/* after reading from file, translate offset to address */
3074		bpf_program__bpil_offs_to_addr(info_linear);
3075		info_node->info_linear = info_linear;
3076		perf_env__insert_bpf_prog_info(env, info_node);
3077	}
3078
3079	up_write(&env->bpf_progs.lock);
3080	return 0;
3081out:
3082	free(info_linear);
3083	free(info_node);
3084	up_write(&env->bpf_progs.lock);
3085	return err;
3086}
 
 
 
 
 
 
3087
3088static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3089{
3090	struct perf_env *env = &ff->ph->env;
3091	struct btf_node *node = NULL;
3092	u32 count, i;
3093	int err = -1;
3094
3095	if (ff->ph->needs_swap) {
3096		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3097		return 0;
3098	}
3099
3100	if (do_read_u32(ff, &count))
3101		return -1;
3102
3103	down_write(&env->bpf_progs.lock);
3104
3105	for (i = 0; i < count; ++i) {
3106		u32 id, data_size;
3107
3108		if (do_read_u32(ff, &id))
3109			goto out;
3110		if (do_read_u32(ff, &data_size))
3111			goto out;
3112
3113		node = malloc(sizeof(struct btf_node) + data_size);
3114		if (!node)
3115			goto out;
3116
3117		node->id = id;
3118		node->data_size = data_size;
3119
3120		if (__do_read(ff, node->data, data_size))
3121			goto out;
3122
3123		perf_env__insert_btf(env, node);
3124		node = NULL;
3125	}
3126
3127	err = 0;
3128out:
3129	up_write(&env->bpf_progs.lock);
3130	free(node);
3131	return err;
3132}
3133#endif // HAVE_LIBBPF_SUPPORT
3134
3135static int process_compressed(struct feat_fd *ff,
3136			      void *data __maybe_unused)
3137{
3138	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3139		return -1;
3140
3141	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3142		return -1;
3143
3144	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3145		return -1;
3146
3147	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3148		return -1;
3149
3150	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3151		return -1;
3152
3153	return 0;
3154}
3155
3156static int process_per_cpu_pmu_caps(struct feat_fd *ff, int *nr_cpu_pmu_caps,
3157				    char **cpu_pmu_caps,
3158				    unsigned int *max_branches)
3159{
3160	char *name, *value;
3161	struct strbuf sb;
3162	u32 nr_caps;
3163
3164	if (do_read_u32(ff, &nr_caps))
3165		return -1;
3166
3167	if (!nr_caps) {
3168		pr_debug("cpu pmu capabilities not available\n");
3169		return 0;
3170	}
3171
3172	*nr_cpu_pmu_caps = nr_caps;
3173
3174	if (strbuf_init(&sb, 128) < 0)
3175		return -1;
3176
3177	while (nr_caps--) {
3178		name = do_read_string(ff);
3179		if (!name)
3180			goto error;
3181
3182		value = do_read_string(ff);
3183		if (!value)
3184			goto free_name;
3185
3186		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3187			goto free_value;
3188
3189		/* include a NULL character at the end */
3190		if (strbuf_add(&sb, "", 1) < 0)
3191			goto free_value;
3192
3193		if (!strcmp(name, "branches"))
3194			*max_branches = atoi(value);
3195
3196		free(value);
3197		free(name);
3198	}
3199	*cpu_pmu_caps = strbuf_detach(&sb, NULL);
3200	return 0;
3201
3202free_value:
3203	free(value);
3204free_name:
3205	free(name);
3206error:
3207	strbuf_release(&sb);
3208	return -1;
3209}
3210
3211static int process_cpu_pmu_caps(struct feat_fd *ff,
3212				void *data __maybe_unused)
3213{
3214	return process_per_cpu_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3215					&ff->ph->env.cpu_pmu_caps,
3216					&ff->ph->env.max_branches);
3217}
3218
3219static int process_hybrid_cpu_pmu_caps(struct feat_fd *ff,
3220				       void *data __maybe_unused)
3221{
3222	struct hybrid_cpc_node *nodes;
3223	u32 nr_pmu, i;
3224	int ret;
3225
3226	if (do_read_u32(ff, &nr_pmu))
3227		return -1;
3228
3229	if (!nr_pmu) {
3230		pr_debug("hybrid cpu pmu capabilities not available\n");
3231		return 0;
3232	}
3233
3234	nodes = zalloc(sizeof(*nodes) * nr_pmu);
3235	if (!nodes)
3236		return -ENOMEM;
3237
3238	for (i = 0; i < nr_pmu; i++) {
3239		struct hybrid_cpc_node *n = &nodes[i];
3240
3241		ret = process_per_cpu_pmu_caps(ff, &n->nr_cpu_pmu_caps,
3242					       &n->cpu_pmu_caps,
3243					       &n->max_branches);
3244		if (ret)
3245			goto err;
3246
3247		n->pmu_name = do_read_string(ff);
3248		if (!n->pmu_name) {
3249			ret = -1;
3250			goto err;
3251		}
3252	}
3253
3254	ff->ph->env.nr_hybrid_cpc_nodes = nr_pmu;
3255	ff->ph->env.hybrid_cpc_nodes = nodes;
3256	return 0;
3257
3258err:
3259	for (i = 0; i < nr_pmu; i++) {
3260		free(nodes[i].cpu_pmu_caps);
3261		free(nodes[i].pmu_name);
3262	}
3263
3264	free(nodes);
3265	return ret;
3266}
3267
3268#define FEAT_OPR(n, func, __full_only) \
3269	[HEADER_##n] = {					\
3270		.name	    = __stringify(n),			\
3271		.write	    = write_##func,			\
3272		.print	    = print_##func,			\
3273		.full_only  = __full_only,			\
3274		.process    = process_##func,			\
3275		.synthesize = true				\
3276	}
3277
3278#define FEAT_OPN(n, func, __full_only) \
3279	[HEADER_##n] = {					\
3280		.name	    = __stringify(n),			\
3281		.write	    = write_##func,			\
3282		.print	    = print_##func,			\
3283		.full_only  = __full_only,			\
3284		.process    = process_##func			\
3285	}
3286
3287/* feature_ops not implemented: */
3288#define print_tracing_data	NULL
3289#define print_build_id		NULL
3290
3291#define process_branch_stack	NULL
3292#define process_stat		NULL
3293
3294// Only used in util/synthetic-events.c
3295const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3296
3297const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3298	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3299	FEAT_OPN(BUILD_ID,	build_id,	false),
3300	FEAT_OPR(HOSTNAME,	hostname,	false),
3301	FEAT_OPR(OSRELEASE,	osrelease,	false),
3302	FEAT_OPR(VERSION,	version,	false),
3303	FEAT_OPR(ARCH,		arch,		false),
3304	FEAT_OPR(NRCPUS,	nrcpus,		false),
3305	FEAT_OPR(CPUDESC,	cpudesc,	false),
3306	FEAT_OPR(CPUID,		cpuid,		false),
3307	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3308	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3309	FEAT_OPR(CMDLINE,	cmdline,	false),
3310	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3311	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3312	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3313	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3314	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3315	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3316	FEAT_OPN(STAT,		stat,		false),
3317	FEAT_OPN(CACHE,		cache,		true),
3318	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3319	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3320	FEAT_OPR(CLOCKID,	clockid,	false),
3321	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3322#ifdef HAVE_LIBBPF_SUPPORT
3323	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3324	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3325#endif
3326	FEAT_OPR(COMPRESSED,	compressed,	false),
3327	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3328	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3329	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3330	FEAT_OPR(HYBRID_CPU_PMU_CAPS,	hybrid_cpu_pmu_caps,	false),
3331};
3332
3333struct header_print_data {
3334	FILE *fp;
3335	bool full; /* extended list of headers */
3336};
3337
3338static int perf_file_section__fprintf_info(struct perf_file_section *section,
3339					   struct perf_header *ph,
3340					   int feat, int fd, void *data)
3341{
3342	struct header_print_data *hd = data;
3343	struct feat_fd ff;
3344
3345	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3346		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3347				"%d, continuing...\n", section->offset, feat);
3348		return 0;
3349	}
3350	if (feat >= HEADER_LAST_FEATURE) {
3351		pr_warning("unknown feature %d\n", feat);
3352		return 0;
3353	}
3354	if (!feat_ops[feat].print)
3355		return 0;
3356
3357	ff = (struct  feat_fd) {
3358		.fd = fd,
3359		.ph = ph,
3360	};
3361
3362	if (!feat_ops[feat].full_only || hd->full)
3363		feat_ops[feat].print(&ff, hd->fp);
3364	else
3365		fprintf(hd->fp, "# %s info available, use -I to display\n",
3366			feat_ops[feat].name);
3367
3368	return 0;
3369}
3370
3371int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3372{
3373	struct header_print_data hd;
3374	struct perf_header *header = &session->header;
3375	int fd = perf_data__fd(session->data);
3376	struct stat st;
3377	time_t stctime;
3378	int ret, bit;
3379
3380	hd.fp = fp;
3381	hd.full = full;
3382
3383	ret = fstat(fd, &st);
3384	if (ret == -1)
3385		return -1;
3386
3387	stctime = st.st_mtime;
3388	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3389
3390	fprintf(fp, "# header version : %u\n", header->version);
3391	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3392	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3393	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3394
3395	perf_header__process_sections(header, fd, &hd,
3396				      perf_file_section__fprintf_info);
3397
3398	if (session->data->is_pipe)
3399		return 0;
3400
3401	fprintf(fp, "# missing features: ");
3402	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3403		if (bit)
3404			fprintf(fp, "%s ", feat_ops[bit].name);
3405	}
3406
3407	fprintf(fp, "\n");
3408	return 0;
3409}
3410
3411static int do_write_feat(struct feat_fd *ff, int type,
3412			 struct perf_file_section **p,
3413			 struct evlist *evlist)
3414{
3415	int err;
3416	int ret = 0;
3417
3418	if (perf_header__has_feat(ff->ph, type)) {
3419		if (!feat_ops[type].write)
3420			return -1;
3421
3422		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3423			return -1;
3424
3425		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3426
3427		err = feat_ops[type].write(ff, evlist);
3428		if (err < 0) {
3429			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3430
3431			/* undo anything written */
3432			lseek(ff->fd, (*p)->offset, SEEK_SET);
3433
3434			return -1;
3435		}
3436		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3437		(*p)++;
3438	}
3439	return ret;
3440}
3441
3442static int perf_header__adds_write(struct perf_header *header,
3443				   struct evlist *evlist, int fd)
3444{
3445	int nr_sections;
3446	struct feat_fd ff;
3447	struct perf_file_section *feat_sec, *p;
3448	int sec_size;
3449	u64 sec_start;
3450	int feat;
3451	int err;
3452
3453	ff = (struct feat_fd){
3454		.fd  = fd,
3455		.ph = header,
3456	};
3457
3458	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3459	if (!nr_sections)
3460		return 0;
3461
3462	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3463	if (feat_sec == NULL)
3464		return -ENOMEM;
3465
3466	sec_size = sizeof(*feat_sec) * nr_sections;
3467
3468	sec_start = header->feat_offset;
3469	lseek(fd, sec_start + sec_size, SEEK_SET);
3470
3471	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3472		if (do_write_feat(&ff, feat, &p, evlist))
3473			perf_header__clear_feat(header, feat);
3474	}
3475
3476	lseek(fd, sec_start, SEEK_SET);
3477	/*
3478	 * may write more than needed due to dropped feature, but
3479	 * this is okay, reader will skip the missing entries
3480	 */
3481	err = do_write(&ff, feat_sec, sec_size);
3482	if (err < 0)
3483		pr_debug("failed to write feature section\n");
3484	free(feat_sec);
3485	return err;
3486}
3487
3488int perf_header__write_pipe(int fd)
3489{
3490	struct perf_pipe_file_header f_header;
3491	struct feat_fd ff;
3492	int err;
3493
3494	ff = (struct feat_fd){ .fd = fd };
3495
3496	f_header = (struct perf_pipe_file_header){
3497		.magic	   = PERF_MAGIC,
3498		.size	   = sizeof(f_header),
3499	};
3500
3501	err = do_write(&ff, &f_header, sizeof(f_header));
3502	if (err < 0) {
3503		pr_debug("failed to write perf pipe header\n");
3504		return err;
3505	}
3506
3507	return 0;
3508}
3509
3510int perf_session__write_header(struct perf_session *session,
3511			       struct evlist *evlist,
3512			       int fd, bool at_exit)
3513{
3514	struct perf_file_header f_header;
3515	struct perf_file_attr   f_attr;
3516	struct perf_header *header = &session->header;
3517	struct evsel *evsel;
3518	struct feat_fd ff;
3519	u64 attr_offset;
3520	int err;
3521
3522	ff = (struct feat_fd){ .fd = fd};
3523	lseek(fd, sizeof(f_header), SEEK_SET);
3524
3525	evlist__for_each_entry(session->evlist, evsel) {
3526		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3527		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3528		if (err < 0) {
3529			pr_debug("failed to write perf header\n");
3530			return err;
3531		}
3532	}
3533
3534	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3535
3536	evlist__for_each_entry(evlist, evsel) {
3537		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3538			/*
3539			 * We are likely in "perf inject" and have read
3540			 * from an older file. Update attr size so that
3541			 * reader gets the right offset to the ids.
3542			 */
3543			evsel->core.attr.size = sizeof(evsel->core.attr);
3544		}
3545		f_attr = (struct perf_file_attr){
3546			.attr = evsel->core.attr,
3547			.ids  = {
3548				.offset = evsel->id_offset,
3549				.size   = evsel->core.ids * sizeof(u64),
3550			}
3551		};
3552		err = do_write(&ff, &f_attr, sizeof(f_attr));
3553		if (err < 0) {
3554			pr_debug("failed to write perf header attribute\n");
3555			return err;
3556		}
3557	}
3558
3559	if (!header->data_offset)
3560		header->data_offset = lseek(fd, 0, SEEK_CUR);
3561	header->feat_offset = header->data_offset + header->data_size;
3562
3563	if (at_exit) {
3564		err = perf_header__adds_write(header, evlist, fd);
3565		if (err < 0)
3566			return err;
3567	}
3568
3569	f_header = (struct perf_file_header){
3570		.magic	   = PERF_MAGIC,
3571		.size	   = sizeof(f_header),
3572		.attr_size = sizeof(f_attr),
3573		.attrs = {
3574			.offset = attr_offset,
3575			.size   = evlist->core.nr_entries * sizeof(f_attr),
3576		},
3577		.data = {
3578			.offset = header->data_offset,
3579			.size	= header->data_size,
3580		},
3581		/* event_types is ignored, store zeros */
3582	};
3583
3584	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3585
3586	lseek(fd, 0, SEEK_SET);
3587	err = do_write(&ff, &f_header, sizeof(f_header));
3588	if (err < 0) {
3589		pr_debug("failed to write perf header\n");
3590		return err;
3591	}
3592	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3593
3594	return 0;
3595}
3596
3597static int perf_header__getbuffer64(struct perf_header *header,
3598				    int fd, void *buf, size_t size)
3599{
3600	if (readn(fd, buf, size) <= 0)
3601		return -1;
3602
3603	if (header->needs_swap)
3604		mem_bswap_64(buf, size);
3605
3606	return 0;
3607}
3608
3609int perf_header__process_sections(struct perf_header *header, int fd,
3610				  void *data,
3611				  int (*process)(struct perf_file_section *section,
3612						 struct perf_header *ph,
3613						 int feat, int fd, void *data))
3614{
3615	struct perf_file_section *feat_sec, *sec;
3616	int nr_sections;
3617	int sec_size;
3618	int feat;
3619	int err;
3620
3621	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3622	if (!nr_sections)
3623		return 0;
3624
3625	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3626	if (!feat_sec)
3627		return -1;
3628
3629	sec_size = sizeof(*feat_sec) * nr_sections;
3630
3631	lseek(fd, header->feat_offset, SEEK_SET);
3632
3633	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3634	if (err < 0)
3635		goto out_free;
3636
3637	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3638		err = process(sec++, header, feat, fd, data);
3639		if (err < 0)
3640			goto out_free;
3641	}
3642	err = 0;
3643out_free:
3644	free(feat_sec);
3645	return err;
3646}
3647
3648static const int attr_file_abi_sizes[] = {
3649	[0] = PERF_ATTR_SIZE_VER0,
3650	[1] = PERF_ATTR_SIZE_VER1,
3651	[2] = PERF_ATTR_SIZE_VER2,
3652	[3] = PERF_ATTR_SIZE_VER3,
3653	[4] = PERF_ATTR_SIZE_VER4,
3654	0,
3655};
3656
3657/*
3658 * In the legacy file format, the magic number is not used to encode endianness.
3659 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3660 * on ABI revisions, we need to try all combinations for all endianness to
3661 * detect the endianness.
3662 */
3663static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3664{
3665	uint64_t ref_size, attr_size;
3666	int i;
3667
3668	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3669		ref_size = attr_file_abi_sizes[i]
3670			 + sizeof(struct perf_file_section);
3671		if (hdr_sz != ref_size) {
3672			attr_size = bswap_64(hdr_sz);
3673			if (attr_size != ref_size)
3674				continue;
3675
3676			ph->needs_swap = true;
3677		}
3678		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3679			 i,
3680			 ph->needs_swap);
3681		return 0;
3682	}
3683	/* could not determine endianness */
3684	return -1;
3685}
3686
3687#define PERF_PIPE_HDR_VER0	16
3688
3689static const size_t attr_pipe_abi_sizes[] = {
3690	[0] = PERF_PIPE_HDR_VER0,
3691	0,
3692};
3693
3694/*
3695 * In the legacy pipe format, there is an implicit assumption that endianness
3696 * between host recording the samples, and host parsing the samples is the
3697 * same. This is not always the case given that the pipe output may always be
3698 * redirected into a file and analyzed on a different machine with possibly a
3699 * different endianness and perf_event ABI revisions in the perf tool itself.
3700 */
3701static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3702{
3703	u64 attr_size;
3704	int i;
3705
3706	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3707		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3708			attr_size = bswap_64(hdr_sz);
3709			if (attr_size != hdr_sz)
3710				continue;
3711
3712			ph->needs_swap = true;
3713		}
3714		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3715		return 0;
3716	}
3717	return -1;
3718}
3719
3720bool is_perf_magic(u64 magic)
3721{
3722	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3723		|| magic == __perf_magic2
3724		|| magic == __perf_magic2_sw)
3725		return true;
3726
3727	return false;
3728}
3729
3730static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3731			      bool is_pipe, struct perf_header *ph)
3732{
3733	int ret;
3734
3735	/* check for legacy format */
3736	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3737	if (ret == 0) {
3738		ph->version = PERF_HEADER_VERSION_1;
3739		pr_debug("legacy perf.data format\n");
3740		if (is_pipe)
3741			return try_all_pipe_abis(hdr_sz, ph);
3742
3743		return try_all_file_abis(hdr_sz, ph);
3744	}
3745	/*
3746	 * the new magic number serves two purposes:
3747	 * - unique number to identify actual perf.data files
3748	 * - encode endianness of file
3749	 */
3750	ph->version = PERF_HEADER_VERSION_2;
3751
3752	/* check magic number with one endianness */
3753	if (magic == __perf_magic2)
3754		return 0;
3755
3756	/* check magic number with opposite endianness */
3757	if (magic != __perf_magic2_sw)
3758		return -1;
3759
3760	ph->needs_swap = true;
3761
3762	return 0;
3763}
3764
3765int perf_file_header__read(struct perf_file_header *header,
3766			   struct perf_header *ph, int fd)
3767{
3768	ssize_t ret;
3769
3770	lseek(fd, 0, SEEK_SET);
3771
3772	ret = readn(fd, header, sizeof(*header));
3773	if (ret <= 0)
3774		return -1;
3775
3776	if (check_magic_endian(header->magic,
3777			       header->attr_size, false, ph) < 0) {
3778		pr_debug("magic/endian check failed\n");
3779		return -1;
3780	}
3781
3782	if (ph->needs_swap) {
3783		mem_bswap_64(header, offsetof(struct perf_file_header,
3784			     adds_features));
3785	}
3786
3787	if (header->size != sizeof(*header)) {
3788		/* Support the previous format */
3789		if (header->size == offsetof(typeof(*header), adds_features))
3790			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3791		else
3792			return -1;
3793	} else if (ph->needs_swap) {
3794		/*
3795		 * feature bitmap is declared as an array of unsigned longs --
3796		 * not good since its size can differ between the host that
3797		 * generated the data file and the host analyzing the file.
3798		 *
3799		 * We need to handle endianness, but we don't know the size of
3800		 * the unsigned long where the file was generated. Take a best
3801		 * guess at determining it: try 64-bit swap first (ie., file
3802		 * created on a 64-bit host), and check if the hostname feature
3803		 * bit is set (this feature bit is forced on as of fbe96f2).
3804		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3805		 * swap. If the hostname bit is still not set (e.g., older data
3806		 * file), punt and fallback to the original behavior --
3807		 * clearing all feature bits and setting buildid.
3808		 */
3809		mem_bswap_64(&header->adds_features,
3810			    BITS_TO_U64(HEADER_FEAT_BITS));
3811
3812		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3813			/* unswap as u64 */
3814			mem_bswap_64(&header->adds_features,
3815				    BITS_TO_U64(HEADER_FEAT_BITS));
3816
3817			/* unswap as u32 */
3818			mem_bswap_32(&header->adds_features,
3819				    BITS_TO_U32(HEADER_FEAT_BITS));
3820		}
3821
3822		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3823			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3824			set_bit(HEADER_BUILD_ID, header->adds_features);
3825		}
3826	}
3827
3828	memcpy(&ph->adds_features, &header->adds_features,
3829	       sizeof(ph->adds_features));
3830
3831	ph->data_offset  = header->data.offset;
3832	ph->data_size	 = header->data.size;
3833	ph->feat_offset  = header->data.offset + header->data.size;
3834	return 0;
3835}
3836
3837static int perf_file_section__process(struct perf_file_section *section,
3838				      struct perf_header *ph,
3839				      int feat, int fd, void *data)
3840{
3841	struct feat_fd fdd = {
3842		.fd	= fd,
3843		.ph	= ph,
3844		.size	= section->size,
3845		.offset	= section->offset,
3846	};
3847
3848	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3849		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3850			  "%d, continuing...\n", section->offset, feat);
3851		return 0;
3852	}
3853
3854	if (feat >= HEADER_LAST_FEATURE) {
3855		pr_debug("unknown feature %d, continuing...\n", feat);
3856		return 0;
3857	}
3858
3859	if (!feat_ops[feat].process)
3860		return 0;
3861
3862	return feat_ops[feat].process(&fdd, data);
3863}
3864
3865static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3866				       struct perf_header *ph,
3867				       struct perf_data* data,
3868				       bool repipe)
3869{
3870	struct feat_fd ff = {
3871		.fd = STDOUT_FILENO,
3872		.ph = ph,
3873	};
3874	ssize_t ret;
3875
3876	ret = perf_data__read(data, header, sizeof(*header));
3877	if (ret <= 0)
3878		return -1;
3879
3880	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3881		pr_debug("endian/magic failed\n");
3882		return -1;
3883	}
3884
3885	if (ph->needs_swap)
3886		header->size = bswap_64(header->size);
3887
3888	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3889		return -1;
3890
3891	return 0;
3892}
3893
3894static int perf_header__read_pipe(struct perf_session *session)
3895{
3896	struct perf_header *header = &session->header;
3897	struct perf_pipe_file_header f_header;
3898
3899	if (perf_file_header__read_pipe(&f_header, header, session->data,
 
3900					session->repipe) < 0) {
3901		pr_debug("incompatible file format\n");
3902		return -EINVAL;
3903	}
3904
3905	return f_header.size == sizeof(f_header) ? 0 : -1;
3906}
3907
3908static int read_attr(int fd, struct perf_header *ph,
3909		     struct perf_file_attr *f_attr)
3910{
3911	struct perf_event_attr *attr = &f_attr->attr;
3912	size_t sz, left;
3913	size_t our_sz = sizeof(f_attr->attr);
3914	ssize_t ret;
3915
3916	memset(f_attr, 0, sizeof(*f_attr));
3917
3918	/* read minimal guaranteed structure */
3919	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3920	if (ret <= 0) {
3921		pr_debug("cannot read %d bytes of header attr\n",
3922			 PERF_ATTR_SIZE_VER0);
3923		return -1;
3924	}
3925
3926	/* on file perf_event_attr size */
3927	sz = attr->size;
3928
3929	if (ph->needs_swap)
3930		sz = bswap_32(sz);
3931
3932	if (sz == 0) {
3933		/* assume ABI0 */
3934		sz =  PERF_ATTR_SIZE_VER0;
3935	} else if (sz > our_sz) {
3936		pr_debug("file uses a more recent and unsupported ABI"
3937			 " (%zu bytes extra)\n", sz - our_sz);
3938		return -1;
3939	}
3940	/* what we have not yet read and that we know about */
3941	left = sz - PERF_ATTR_SIZE_VER0;
3942	if (left) {
3943		void *ptr = attr;
3944		ptr += PERF_ATTR_SIZE_VER0;
3945
3946		ret = readn(fd, ptr, left);
3947	}
3948	/* read perf_file_section, ids are read in caller */
3949	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3950
3951	return ret <= 0 ? -1 : 0;
3952}
3953
3954static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
 
3955{
3956	struct tep_event *event;
3957	char bf[128];
3958
3959	/* already prepared */
3960	if (evsel->tp_format)
3961		return 0;
3962
3963	if (pevent == NULL) {
3964		pr_debug("broken or missing trace data\n");
3965		return -1;
3966	}
3967
3968	event = tep_find_event(pevent, evsel->core.attr.config);
3969	if (event == NULL) {
3970		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3971		return -1;
3972	}
3973
3974	if (!evsel->name) {
3975		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3976		evsel->name = strdup(bf);
3977		if (evsel->name == NULL)
3978			return -1;
3979	}
3980
3981	evsel->tp_format = event;
3982	return 0;
3983}
3984
3985static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
 
3986{
3987	struct evsel *pos;
3988
3989	evlist__for_each_entry(evlist, pos) {
3990		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3991		    evsel__prepare_tracepoint_event(pos, pevent))
3992			return -1;
3993	}
3994
3995	return 0;
3996}
3997
3998int perf_session__read_header(struct perf_session *session)
3999{
4000	struct perf_data *data = session->data;
4001	struct perf_header *header = &session->header;
4002	struct perf_file_header	f_header;
4003	struct perf_file_attr	f_attr;
4004	u64			f_id;
4005	int nr_attrs, nr_ids, i, j, err;
4006	int fd = perf_data__fd(data);
4007
4008	session->evlist = evlist__new();
4009	if (session->evlist == NULL)
4010		return -ENOMEM;
4011
4012	session->evlist->env = &header->env;
4013	session->machines.host.env = &header->env;
4014
4015	/*
4016	 * We can read 'pipe' data event from regular file,
4017	 * check for the pipe header regardless of source.
4018	 */
4019	err = perf_header__read_pipe(session);
4020	if (!err || perf_data__is_pipe(data)) {
4021		data->is_pipe = true;
4022		return err;
4023	}
4024
4025	if (perf_file_header__read(&f_header, header, fd) < 0)
4026		return -EINVAL;
4027
4028	if (header->needs_swap && data->in_place_update) {
4029		pr_err("In-place update not supported when byte-swapping is required\n");
4030		return -EINVAL;
4031	}
4032
4033	/*
4034	 * Sanity check that perf.data was written cleanly; data size is
4035	 * initialized to 0 and updated only if the on_exit function is run.
4036	 * If data size is still 0 then the file contains only partial
4037	 * information.  Just warn user and process it as much as it can.
4038	 */
4039	if (f_header.data.size == 0) {
4040		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4041			   "Was the 'perf record' command properly terminated?\n",
4042			   data->file.path);
4043	}
4044
4045	if (f_header.attr_size == 0) {
4046		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4047		       "Was the 'perf record' command properly terminated?\n",
4048		       data->file.path);
4049		return -EINVAL;
4050	}
4051
4052	nr_attrs = f_header.attrs.size / f_header.attr_size;
4053	lseek(fd, f_header.attrs.offset, SEEK_SET);
4054
4055	for (i = 0; i < nr_attrs; i++) {
4056		struct evsel *evsel;
4057		off_t tmp;
4058
4059		if (read_attr(fd, header, &f_attr) < 0)
4060			goto out_errno;
4061
4062		if (header->needs_swap) {
4063			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4064			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4065			perf_event__attr_swap(&f_attr.attr);
4066		}
4067
4068		tmp = lseek(fd, 0, SEEK_CUR);
4069		evsel = evsel__new(&f_attr.attr);
4070
4071		if (evsel == NULL)
4072			goto out_delete_evlist;
4073
4074		evsel->needs_swap = header->needs_swap;
4075		/*
4076		 * Do it before so that if perf_evsel__alloc_id fails, this
4077		 * entry gets purged too at evlist__delete().
4078		 */
4079		evlist__add(session->evlist, evsel);
4080
4081		nr_ids = f_attr.ids.size / sizeof(u64);
4082		/*
4083		 * We don't have the cpu and thread maps on the header, so
4084		 * for allocating the perf_sample_id table we fake 1 cpu and
4085		 * hattr->ids threads.
4086		 */
4087		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4088			goto out_delete_evlist;
4089
4090		lseek(fd, f_attr.ids.offset, SEEK_SET);
4091
4092		for (j = 0; j < nr_ids; j++) {
4093			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4094				goto out_errno;
4095
4096			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4097		}
4098
4099		lseek(fd, tmp, SEEK_SET);
4100	}
4101
4102	perf_header__process_sections(header, fd, &session->tevent,
4103				      perf_file_section__process);
4104
4105	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
 
4106		goto out_delete_evlist;
4107
4108	return 0;
4109out_errno:
4110	return -errno;
4111
4112out_delete_evlist:
4113	evlist__delete(session->evlist);
4114	session->evlist = NULL;
4115	return -ENOMEM;
4116}
4117
4118int perf_event__process_feature(struct perf_session *session,
4119				union perf_event *event)
4120{
4121	struct perf_tool *tool = session->tool;
4122	struct feat_fd ff = { .fd = 0 };
4123	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4124	int type = fe->header.type;
4125	u64 feat = fe->feat_id;
4126
4127	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4128		pr_warning("invalid record type %d in pipe-mode\n", type);
4129		return 0;
4130	}
4131	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4132		pr_warning("invalid record type %d in pipe-mode\n", type);
4133		return -1;
4134	}
4135
4136	if (!feat_ops[feat].process)
4137		return 0;
4138
4139	ff.buf  = (void *)fe->data;
4140	ff.size = event->header.size - sizeof(*fe);
4141	ff.ph = &session->header;
4142
4143	if (feat_ops[feat].process(&ff, NULL))
4144		return -1;
4145
4146	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4147		return 0;
4148
4149	if (!feat_ops[feat].full_only ||
4150	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4151		feat_ops[feat].print(&ff, stdout);
4152	} else {
4153		fprintf(stdout, "# %s info available, use -I to display\n",
4154			feat_ops[feat].name);
4155	}
4156
4157	return 0;
4158}
4159
4160size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4161{
4162	struct perf_record_event_update *ev = &event->event_update;
4163	struct perf_record_event_update_scale *ev_scale;
4164	struct perf_record_event_update_cpus *ev_cpus;
4165	struct perf_cpu_map *map;
4166	size_t ret;
4167
4168	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4169
4170	switch (ev->type) {
4171	case PERF_EVENT_UPDATE__SCALE:
4172		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4173		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
4174		break;
4175	case PERF_EVENT_UPDATE__UNIT:
4176		ret += fprintf(fp, "... unit:  %s\n", ev->data);
4177		break;
4178	case PERF_EVENT_UPDATE__NAME:
4179		ret += fprintf(fp, "... name:  %s\n", ev->data);
4180		break;
4181	case PERF_EVENT_UPDATE__CPUS:
4182		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4183		ret += fprintf(fp, "... ");
4184
4185		map = cpu_map__new_data(&ev_cpus->cpus);
4186		if (map)
4187			ret += cpu_map__fprintf(map, fp);
4188		else
4189			ret += fprintf(fp, "failed to get cpus\n");
4190		break;
4191	default:
4192		ret += fprintf(fp, "... unknown type\n");
4193		break;
4194	}
4195
4196	return ret;
4197}
4198
4199int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4200			     union perf_event *event,
4201			     struct evlist **pevlist)
4202{
4203	u32 i, ids, n_ids;
4204	struct evsel *evsel;
4205	struct evlist *evlist = *pevlist;
4206
4207	if (evlist == NULL) {
4208		*pevlist = evlist = evlist__new();
4209		if (evlist == NULL)
4210			return -ENOMEM;
4211	}
4212
4213	evsel = evsel__new(&event->attr.attr);
4214	if (evsel == NULL)
4215		return -ENOMEM;
4216
4217	evlist__add(evlist, evsel);
4218
4219	ids = event->header.size;
4220	ids -= (void *)&event->attr.id - (void *)event;
4221	n_ids = ids / sizeof(u64);
4222	/*
4223	 * We don't have the cpu and thread maps on the header, so
4224	 * for allocating the perf_sample_id table we fake 1 cpu and
4225	 * hattr->ids threads.
4226	 */
4227	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4228		return -ENOMEM;
4229
4230	for (i = 0; i < n_ids; i++) {
4231		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4232	}
4233
4234	return 0;
4235}
4236
4237int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4238				     union perf_event *event,
4239				     struct evlist **pevlist)
4240{
4241	struct perf_record_event_update *ev = &event->event_update;
4242	struct perf_record_event_update_scale *ev_scale;
4243	struct perf_record_event_update_cpus *ev_cpus;
4244	struct evlist *evlist;
4245	struct evsel *evsel;
4246	struct perf_cpu_map *map;
4247
4248	if (!pevlist || *pevlist == NULL)
4249		return -EINVAL;
4250
4251	evlist = *pevlist;
4252
4253	evsel = evlist__id2evsel(evlist, ev->id);
4254	if (evsel == NULL)
4255		return -EINVAL;
4256
4257	switch (ev->type) {
4258	case PERF_EVENT_UPDATE__UNIT:
4259		evsel->unit = strdup(ev->data);
4260		break;
4261	case PERF_EVENT_UPDATE__NAME:
4262		evsel->name = strdup(ev->data);
4263		break;
4264	case PERF_EVENT_UPDATE__SCALE:
4265		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4266		evsel->scale = ev_scale->scale;
4267		break;
4268	case PERF_EVENT_UPDATE__CPUS:
4269		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4270
4271		map = cpu_map__new_data(&ev_cpus->cpus);
4272		if (map)
4273			evsel->core.own_cpus = map;
4274		else
4275			pr_err("failed to get event_update cpus\n");
4276	default:
4277		break;
4278	}
4279
4280	return 0;
4281}
4282
4283int perf_event__process_tracing_data(struct perf_session *session,
4284				     union perf_event *event)
4285{
4286	ssize_t size_read, padding, size = event->tracing_data.size;
4287	int fd = perf_data__fd(session->data);
 
4288	char buf[BUFSIZ];
4289
4290	/*
4291	 * The pipe fd is already in proper place and in any case
4292	 * we can't move it, and we'd screw the case where we read
4293	 * 'pipe' data from regular file. The trace_report reads
4294	 * data from 'fd' so we need to set it directly behind the
4295	 * event, where the tracing data starts.
4296	 */
4297	if (!perf_data__is_pipe(session->data)) {
4298		off_t offset = lseek(fd, 0, SEEK_CUR);
4299
4300		/* setup for reading amidst mmap */
4301		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4302		      SEEK_SET);
4303	}
4304
4305	size_read = trace_report(fd, &session->tevent,
4306				 session->repipe);
4307	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4308
4309	if (readn(fd, buf, padding) < 0) {
4310		pr_err("%s: reading input file", __func__);
4311		return -1;
4312	}
4313	if (session->repipe) {
4314		int retw = write(STDOUT_FILENO, buf, padding);
4315		if (retw <= 0 || retw != padding) {
4316			pr_err("%s: repiping tracing data padding", __func__);
4317			return -1;
4318		}
4319	}
4320
4321	if (size_read + padding != size) {
4322		pr_err("%s: tracing data size mismatch", __func__);
4323		return -1;
4324	}
4325
4326	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
 
4327
4328	return size_read + padding;
4329}
4330
4331int perf_event__process_build_id(struct perf_session *session,
4332				 union perf_event *event)
4333{
4334	__event_process_build_id(&event->build_id,
4335				 event->build_id.filename,
4336				 session);
4337	return 0;
4338}