Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Virtual Memory Map support
  4 *
  5 * (C) 2007 sgi. Christoph Lameter.
  6 *
  7 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
  8 * virt_to_page, page_address() to be implemented as a base offset
  9 * calculation without memory access.
 10 *
 11 * However, virtual mappings need a page table and TLBs. Many Linux
 12 * architectures already map their physical space using 1-1 mappings
 13 * via TLBs. For those arches the virtual memory map is essentially
 14 * for free if we use the same page size as the 1-1 mappings. In that
 15 * case the overhead consists of a few additional pages that are
 16 * allocated to create a view of memory for vmemmap.
 17 *
 18 * The architecture is expected to provide a vmemmap_populate() function
 19 * to instantiate the mapping.
 20 */
 21#include <linux/mm.h>
 22#include <linux/mmzone.h>
 23#include <linux/memblock.h>
 24#include <linux/memremap.h>
 25#include <linux/highmem.h>
 26#include <linux/slab.h>
 27#include <linux/spinlock.h>
 28#include <linux/vmalloc.h>
 29#include <linux/sched.h>
 
 
 
 30#include <asm/dma.h>
 31#include <asm/pgalloc.h>
 32#include <asm/pgtable.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33
 34/*
 35 * Allocate a block of memory to be used to back the virtual memory map
 36 * or to back the page tables that are used to create the mapping.
 37 * Uses the main allocators if they are available, else bootmem.
 38 */
 39
 40static void * __ref __earlyonly_bootmem_alloc(int node,
 41				unsigned long size,
 42				unsigned long align,
 43				unsigned long goal)
 44{
 45	return memblock_alloc_try_nid_raw(size, align, goal,
 46					       MEMBLOCK_ALLOC_ACCESSIBLE, node);
 47}
 48
 49void * __meminit vmemmap_alloc_block(unsigned long size, int node)
 50{
 51	/* If the main allocator is up use that, fallback to bootmem. */
 52	if (slab_is_available()) {
 53		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
 54		int order = get_order(size);
 55		static bool warned;
 56		struct page *page;
 57
 58		page = alloc_pages_node(node, gfp_mask, order);
 59		if (page)
 60			return page_address(page);
 61
 62		if (!warned) {
 63			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
 64				   "vmemmap alloc failure: order:%u", order);
 65			warned = true;
 66		}
 67		return NULL;
 68	} else
 69		return __earlyonly_bootmem_alloc(node, size, size,
 70				__pa(MAX_DMA_ADDRESS));
 71}
 72
 
 
 
 73/* need to make sure size is all the same during early stage */
 74void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
 
 75{
 76	void *ptr = sparse_buffer_alloc(size);
 77
 
 
 
 
 78	if (!ptr)
 79		ptr = vmemmap_alloc_block(size, node);
 80	return ptr;
 81}
 82
 83static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
 84{
 85	return altmap->base_pfn + altmap->reserve + altmap->alloc
 86		+ altmap->align;
 87}
 88
 89static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
 90{
 91	unsigned long allocated = altmap->alloc + altmap->align;
 92
 93	if (altmap->free > allocated)
 94		return altmap->free - allocated;
 95	return 0;
 96}
 97
 98/**
 99 * altmap_alloc_block_buf - allocate pages from the device page map
100 * @altmap:	device page map
101 * @size:	size (in bytes) of the allocation
102 *
103 * Allocations are aligned to the size of the request.
104 */
105void * __meminit altmap_alloc_block_buf(unsigned long size,
106		struct vmem_altmap *altmap)
107{
108	unsigned long pfn, nr_pfns, nr_align;
109
110	if (size & ~PAGE_MASK) {
111		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
112				__func__, size);
113		return NULL;
114	}
115
116	pfn = vmem_altmap_next_pfn(altmap);
117	nr_pfns = size >> PAGE_SHIFT;
118	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
119	nr_align = ALIGN(pfn, nr_align) - pfn;
120	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
121		return NULL;
122
123	altmap->alloc += nr_pfns;
124	altmap->align += nr_align;
125	pfn += nr_align;
126
127	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
128			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
129	return __va(__pfn_to_phys(pfn));
130}
131
132void __meminit vmemmap_verify(pte_t *pte, int node,
133				unsigned long start, unsigned long end)
134{
135	unsigned long pfn = pte_pfn(*pte);
136	int actual_node = early_pfn_to_nid(pfn);
137
138	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
139		pr_warn("[%lx-%lx] potential offnode page_structs\n",
140			start, end - 1);
141}
142
143pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
 
144{
145	pte_t *pte = pte_offset_kernel(pmd, addr);
146	if (pte_none(*pte)) {
147		pte_t entry;
148		void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
 
 
149		if (!p)
150			return NULL;
151		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
152		set_pte_at(&init_mm, addr, pte, entry);
153	}
154	return pte;
155}
156
157static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
158{
159	void *p = vmemmap_alloc_block(size, node);
160
161	if (!p)
162		return NULL;
163	memset(p, 0, size);
164
165	return p;
166}
167
168pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
169{
170	pmd_t *pmd = pmd_offset(pud, addr);
171	if (pmd_none(*pmd)) {
172		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
173		if (!p)
174			return NULL;
175		pmd_populate_kernel(&init_mm, pmd, p);
176	}
177	return pmd;
178}
179
180pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
181{
182	pud_t *pud = pud_offset(p4d, addr);
183	if (pud_none(*pud)) {
184		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
185		if (!p)
186			return NULL;
187		pud_populate(&init_mm, pud, p);
188	}
189	return pud;
190}
191
192p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
193{
194	p4d_t *p4d = p4d_offset(pgd, addr);
195	if (p4d_none(*p4d)) {
196		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
197		if (!p)
198			return NULL;
199		p4d_populate(&init_mm, p4d, p);
200	}
201	return p4d;
202}
203
204pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
205{
206	pgd_t *pgd = pgd_offset_k(addr);
207	if (pgd_none(*pgd)) {
208		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
209		if (!p)
210			return NULL;
211		pgd_populate(&init_mm, pgd, p);
212	}
213	return pgd;
214}
215
216int __meminit vmemmap_populate_basepages(unsigned long start,
217					 unsigned long end, int node)
218{
219	unsigned long addr = start;
220	pgd_t *pgd;
221	p4d_t *p4d;
222	pud_t *pud;
223	pmd_t *pmd;
224	pte_t *pte;
225
226	for (; addr < end; addr += PAGE_SIZE) {
227		pgd = vmemmap_pgd_populate(addr, node);
228		if (!pgd)
229			return -ENOMEM;
230		p4d = vmemmap_p4d_populate(pgd, addr, node);
231		if (!p4d)
232			return -ENOMEM;
233		pud = vmemmap_pud_populate(p4d, addr, node);
234		if (!pud)
235			return -ENOMEM;
236		pmd = vmemmap_pmd_populate(pud, addr, node);
237		if (!pmd)
238			return -ENOMEM;
239		pte = vmemmap_pte_populate(pmd, addr, node);
240		if (!pte)
241			return -ENOMEM;
242		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
243	}
244
245	return 0;
246}
247
248struct page * __meminit __populate_section_memmap(unsigned long pfn,
249		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
250{
251	unsigned long start;
252	unsigned long end;
253
254	/*
255	 * The minimum granularity of memmap extensions is
256	 * PAGES_PER_SUBSECTION as allocations are tracked in the
257	 * 'subsection_map' bitmap of the section.
258	 */
259	end = ALIGN(pfn + nr_pages, PAGES_PER_SUBSECTION);
260	pfn &= PAGE_SUBSECTION_MASK;
261	nr_pages = end - pfn;
262
263	start = (unsigned long) pfn_to_page(pfn);
264	end = start + nr_pages * sizeof(struct page);
265
266	if (vmemmap_populate(start, end, nid, altmap))
267		return NULL;
268
269	return pfn_to_page(pfn);
270}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Virtual Memory Map support
  4 *
  5 * (C) 2007 sgi. Christoph Lameter.
  6 *
  7 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
  8 * virt_to_page, page_address() to be implemented as a base offset
  9 * calculation without memory access.
 10 *
 11 * However, virtual mappings need a page table and TLBs. Many Linux
 12 * architectures already map their physical space using 1-1 mappings
 13 * via TLBs. For those arches the virtual memory map is essentially
 14 * for free if we use the same page size as the 1-1 mappings. In that
 15 * case the overhead consists of a few additional pages that are
 16 * allocated to create a view of memory for vmemmap.
 17 *
 18 * The architecture is expected to provide a vmemmap_populate() function
 19 * to instantiate the mapping.
 20 */
 21#include <linux/mm.h>
 22#include <linux/mmzone.h>
 23#include <linux/memblock.h>
 24#include <linux/memremap.h>
 25#include <linux/highmem.h>
 26#include <linux/slab.h>
 27#include <linux/spinlock.h>
 28#include <linux/vmalloc.h>
 29#include <linux/sched.h>
 30#include <linux/pgtable.h>
 31#include <linux/bootmem_info.h>
 32
 33#include <asm/dma.h>
 34#include <asm/pgalloc.h>
 35#include <asm/tlbflush.h>
 36
 37/**
 38 * struct vmemmap_remap_walk - walk vmemmap page table
 39 *
 40 * @remap_pte:		called for each lowest-level entry (PTE).
 41 * @nr_walked:		the number of walked pte.
 42 * @reuse_page:		the page which is reused for the tail vmemmap pages.
 43 * @reuse_addr:		the virtual address of the @reuse_page page.
 44 * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
 45 *			or is mapped from.
 46 */
 47struct vmemmap_remap_walk {
 48	void (*remap_pte)(pte_t *pte, unsigned long addr,
 49			  struct vmemmap_remap_walk *walk);
 50	unsigned long nr_walked;
 51	struct page *reuse_page;
 52	unsigned long reuse_addr;
 53	struct list_head *vmemmap_pages;
 54};
 55
 56static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start,
 57				  struct vmemmap_remap_walk *walk)
 58{
 59	pmd_t __pmd;
 60	int i;
 61	unsigned long addr = start;
 62	struct page *page = pmd_page(*pmd);
 63	pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
 64
 65	if (!pgtable)
 66		return -ENOMEM;
 67
 68	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
 69
 70	for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
 71		pte_t entry, *pte;
 72		pgprot_t pgprot = PAGE_KERNEL;
 73
 74		entry = mk_pte(page + i, pgprot);
 75		pte = pte_offset_kernel(&__pmd, addr);
 76		set_pte_at(&init_mm, addr, pte, entry);
 77	}
 78
 79	/* Make pte visible before pmd. See comment in __pte_alloc(). */
 80	smp_wmb();
 81	pmd_populate_kernel(&init_mm, pmd, pgtable);
 82
 83	flush_tlb_kernel_range(start, start + PMD_SIZE);
 84
 85	return 0;
 86}
 87
 88static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
 89			      unsigned long end,
 90			      struct vmemmap_remap_walk *walk)
 91{
 92	pte_t *pte = pte_offset_kernel(pmd, addr);
 93
 94	/*
 95	 * The reuse_page is found 'first' in table walk before we start
 96	 * remapping (which is calling @walk->remap_pte).
 97	 */
 98	if (!walk->reuse_page) {
 99		walk->reuse_page = pte_page(*pte);
100		/*
101		 * Because the reuse address is part of the range that we are
102		 * walking, skip the reuse address range.
103		 */
104		addr += PAGE_SIZE;
105		pte++;
106		walk->nr_walked++;
107	}
108
109	for (; addr != end; addr += PAGE_SIZE, pte++) {
110		walk->remap_pte(pte, addr, walk);
111		walk->nr_walked++;
112	}
113}
114
115static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
116			     unsigned long end,
117			     struct vmemmap_remap_walk *walk)
118{
119	pmd_t *pmd;
120	unsigned long next;
121
122	pmd = pmd_offset(pud, addr);
123	do {
124		if (pmd_leaf(*pmd)) {
125			int ret;
126
127			ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK, walk);
128			if (ret)
129				return ret;
130		}
131		next = pmd_addr_end(addr, end);
132		vmemmap_pte_range(pmd, addr, next, walk);
133	} while (pmd++, addr = next, addr != end);
134
135	return 0;
136}
137
138static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
139			     unsigned long end,
140			     struct vmemmap_remap_walk *walk)
141{
142	pud_t *pud;
143	unsigned long next;
144
145	pud = pud_offset(p4d, addr);
146	do {
147		int ret;
148
149		next = pud_addr_end(addr, end);
150		ret = vmemmap_pmd_range(pud, addr, next, walk);
151		if (ret)
152			return ret;
153	} while (pud++, addr = next, addr != end);
154
155	return 0;
156}
157
158static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
159			     unsigned long end,
160			     struct vmemmap_remap_walk *walk)
161{
162	p4d_t *p4d;
163	unsigned long next;
164
165	p4d = p4d_offset(pgd, addr);
166	do {
167		int ret;
168
169		next = p4d_addr_end(addr, end);
170		ret = vmemmap_pud_range(p4d, addr, next, walk);
171		if (ret)
172			return ret;
173	} while (p4d++, addr = next, addr != end);
174
175	return 0;
176}
177
178static int vmemmap_remap_range(unsigned long start, unsigned long end,
179			       struct vmemmap_remap_walk *walk)
180{
181	unsigned long addr = start;
182	unsigned long next;
183	pgd_t *pgd;
184
185	VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
186	VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
187
188	pgd = pgd_offset_k(addr);
189	do {
190		int ret;
191
192		next = pgd_addr_end(addr, end);
193		ret = vmemmap_p4d_range(pgd, addr, next, walk);
194		if (ret)
195			return ret;
196	} while (pgd++, addr = next, addr != end);
197
198	/*
199	 * We only change the mapping of the vmemmap virtual address range
200	 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
201	 * belongs to the range.
202	 */
203	flush_tlb_kernel_range(start + PAGE_SIZE, end);
204
205	return 0;
206}
207
208/*
209 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
210 * allocator or buddy allocator. If the PG_reserved flag is set, it means
211 * that it allocated from the memblock allocator, just free it via the
212 * free_bootmem_page(). Otherwise, use __free_page().
213 */
214static inline void free_vmemmap_page(struct page *page)
215{
216	if (PageReserved(page))
217		free_bootmem_page(page);
218	else
219		__free_page(page);
220}
221
222/* Free a list of the vmemmap pages */
223static void free_vmemmap_page_list(struct list_head *list)
224{
225	struct page *page, *next;
226
227	list_for_each_entry_safe(page, next, list, lru) {
228		list_del(&page->lru);
229		free_vmemmap_page(page);
230	}
231}
232
233static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
234			      struct vmemmap_remap_walk *walk)
235{
236	/*
237	 * Remap the tail pages as read-only to catch illegal write operation
238	 * to the tail pages.
239	 */
240	pgprot_t pgprot = PAGE_KERNEL_RO;
241	pte_t entry = mk_pte(walk->reuse_page, pgprot);
242	struct page *page = pte_page(*pte);
243
244	list_add_tail(&page->lru, walk->vmemmap_pages);
245	set_pte_at(&init_mm, addr, pte, entry);
246}
247
248static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
249				struct vmemmap_remap_walk *walk)
250{
251	pgprot_t pgprot = PAGE_KERNEL;
252	struct page *page;
253	void *to;
254
255	BUG_ON(pte_page(*pte) != walk->reuse_page);
256
257	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
258	list_del(&page->lru);
259	to = page_to_virt(page);
260	copy_page(to, (void *)walk->reuse_addr);
261
262	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
263}
264
265/**
266 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
267 *			to the page which @reuse is mapped to, then free vmemmap
268 *			which the range are mapped to.
269 * @start:	start address of the vmemmap virtual address range that we want
270 *		to remap.
271 * @end:	end address of the vmemmap virtual address range that we want to
272 *		remap.
273 * @reuse:	reuse address.
274 *
275 * Return: %0 on success, negative error code otherwise.
276 */
277int vmemmap_remap_free(unsigned long start, unsigned long end,
278		       unsigned long reuse)
279{
280	int ret;
281	LIST_HEAD(vmemmap_pages);
282	struct vmemmap_remap_walk walk = {
283		.remap_pte	= vmemmap_remap_pte,
284		.reuse_addr	= reuse,
285		.vmemmap_pages	= &vmemmap_pages,
286	};
287
288	/*
289	 * In order to make remapping routine most efficient for the huge pages,
290	 * the routine of vmemmap page table walking has the following rules
291	 * (see more details from the vmemmap_pte_range()):
292	 *
293	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
294	 *   should be continuous.
295	 * - The @reuse address is part of the range [@reuse, @end) that we are
296	 *   walking which is passed to vmemmap_remap_range().
297	 * - The @reuse address is the first in the complete range.
298	 *
299	 * So we need to make sure that @start and @reuse meet the above rules.
300	 */
301	BUG_ON(start - reuse != PAGE_SIZE);
302
303	mmap_write_lock(&init_mm);
304	ret = vmemmap_remap_range(reuse, end, &walk);
305	mmap_write_downgrade(&init_mm);
306
307	if (ret && walk.nr_walked) {
308		end = reuse + walk.nr_walked * PAGE_SIZE;
309		/*
310		 * vmemmap_pages contains pages from the previous
311		 * vmemmap_remap_range call which failed.  These
312		 * are pages which were removed from the vmemmap.
313		 * They will be restored in the following call.
314		 */
315		walk = (struct vmemmap_remap_walk) {
316			.remap_pte	= vmemmap_restore_pte,
317			.reuse_addr	= reuse,
318			.vmemmap_pages	= &vmemmap_pages,
319		};
320
321		vmemmap_remap_range(reuse, end, &walk);
322	}
323	mmap_read_unlock(&init_mm);
324
325	free_vmemmap_page_list(&vmemmap_pages);
326
327	return ret;
328}
329
330static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
331				   gfp_t gfp_mask, struct list_head *list)
332{
333	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
334	int nid = page_to_nid((struct page *)start);
335	struct page *page, *next;
336
337	while (nr_pages--) {
338		page = alloc_pages_node(nid, gfp_mask, 0);
339		if (!page)
340			goto out;
341		list_add_tail(&page->lru, list);
342	}
343
344	return 0;
345out:
346	list_for_each_entry_safe(page, next, list, lru)
347		__free_pages(page, 0);
348	return -ENOMEM;
349}
350
351/**
352 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
353 *			 to the page which is from the @vmemmap_pages
354 *			 respectively.
355 * @start:	start address of the vmemmap virtual address range that we want
356 *		to remap.
357 * @end:	end address of the vmemmap virtual address range that we want to
358 *		remap.
359 * @reuse:	reuse address.
360 * @gfp_mask:	GFP flag for allocating vmemmap pages.
361 *
362 * Return: %0 on success, negative error code otherwise.
363 */
364int vmemmap_remap_alloc(unsigned long start, unsigned long end,
365			unsigned long reuse, gfp_t gfp_mask)
366{
367	LIST_HEAD(vmemmap_pages);
368	struct vmemmap_remap_walk walk = {
369		.remap_pte	= vmemmap_restore_pte,
370		.reuse_addr	= reuse,
371		.vmemmap_pages	= &vmemmap_pages,
372	};
373
374	/* See the comment in the vmemmap_remap_free(). */
375	BUG_ON(start - reuse != PAGE_SIZE);
376
377	if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
378		return -ENOMEM;
379
380	mmap_read_lock(&init_mm);
381	vmemmap_remap_range(reuse, end, &walk);
382	mmap_read_unlock(&init_mm);
383
384	return 0;
385}
386
387/*
388 * Allocate a block of memory to be used to back the virtual memory map
389 * or to back the page tables that are used to create the mapping.
390 * Uses the main allocators if they are available, else bootmem.
391 */
392
393static void * __ref __earlyonly_bootmem_alloc(int node,
394				unsigned long size,
395				unsigned long align,
396				unsigned long goal)
397{
398	return memblock_alloc_try_nid_raw(size, align, goal,
399					       MEMBLOCK_ALLOC_ACCESSIBLE, node);
400}
401
402void * __meminit vmemmap_alloc_block(unsigned long size, int node)
403{
404	/* If the main allocator is up use that, fallback to bootmem. */
405	if (slab_is_available()) {
406		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
407		int order = get_order(size);
408		static bool warned;
409		struct page *page;
410
411		page = alloc_pages_node(node, gfp_mask, order);
412		if (page)
413			return page_address(page);
414
415		if (!warned) {
416			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
417				   "vmemmap alloc failure: order:%u", order);
418			warned = true;
419		}
420		return NULL;
421	} else
422		return __earlyonly_bootmem_alloc(node, size, size,
423				__pa(MAX_DMA_ADDRESS));
424}
425
426static void * __meminit altmap_alloc_block_buf(unsigned long size,
427					       struct vmem_altmap *altmap);
428
429/* need to make sure size is all the same during early stage */
430void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
431					 struct vmem_altmap *altmap)
432{
433	void *ptr;
434
435	if (altmap)
436		return altmap_alloc_block_buf(size, altmap);
437
438	ptr = sparse_buffer_alloc(size);
439	if (!ptr)
440		ptr = vmemmap_alloc_block(size, node);
441	return ptr;
442}
443
444static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
445{
446	return altmap->base_pfn + altmap->reserve + altmap->alloc
447		+ altmap->align;
448}
449
450static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
451{
452	unsigned long allocated = altmap->alloc + altmap->align;
453
454	if (altmap->free > allocated)
455		return altmap->free - allocated;
456	return 0;
457}
458
459static void * __meminit altmap_alloc_block_buf(unsigned long size,
460					       struct vmem_altmap *altmap)
 
 
 
 
 
 
 
461{
462	unsigned long pfn, nr_pfns, nr_align;
463
464	if (size & ~PAGE_MASK) {
465		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
466				__func__, size);
467		return NULL;
468	}
469
470	pfn = vmem_altmap_next_pfn(altmap);
471	nr_pfns = size >> PAGE_SHIFT;
472	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
473	nr_align = ALIGN(pfn, nr_align) - pfn;
474	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
475		return NULL;
476
477	altmap->alloc += nr_pfns;
478	altmap->align += nr_align;
479	pfn += nr_align;
480
481	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
482			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
483	return __va(__pfn_to_phys(pfn));
484}
485
486void __meminit vmemmap_verify(pte_t *pte, int node,
487				unsigned long start, unsigned long end)
488{
489	unsigned long pfn = pte_pfn(*pte);
490	int actual_node = early_pfn_to_nid(pfn);
491
492	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
493		pr_warn("[%lx-%lx] potential offnode page_structs\n",
494			start, end - 1);
495}
496
497pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
498				       struct vmem_altmap *altmap)
499{
500	pte_t *pte = pte_offset_kernel(pmd, addr);
501	if (pte_none(*pte)) {
502		pte_t entry;
503		void *p;
504
505		p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
506		if (!p)
507			return NULL;
508		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
509		set_pte_at(&init_mm, addr, pte, entry);
510	}
511	return pte;
512}
513
514static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
515{
516	void *p = vmemmap_alloc_block(size, node);
517
518	if (!p)
519		return NULL;
520	memset(p, 0, size);
521
522	return p;
523}
524
525pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
526{
527	pmd_t *pmd = pmd_offset(pud, addr);
528	if (pmd_none(*pmd)) {
529		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
530		if (!p)
531			return NULL;
532		pmd_populate_kernel(&init_mm, pmd, p);
533	}
534	return pmd;
535}
536
537pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
538{
539	pud_t *pud = pud_offset(p4d, addr);
540	if (pud_none(*pud)) {
541		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
542		if (!p)
543			return NULL;
544		pud_populate(&init_mm, pud, p);
545	}
546	return pud;
547}
548
549p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
550{
551	p4d_t *p4d = p4d_offset(pgd, addr);
552	if (p4d_none(*p4d)) {
553		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
554		if (!p)
555			return NULL;
556		p4d_populate(&init_mm, p4d, p);
557	}
558	return p4d;
559}
560
561pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
562{
563	pgd_t *pgd = pgd_offset_k(addr);
564	if (pgd_none(*pgd)) {
565		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
566		if (!p)
567			return NULL;
568		pgd_populate(&init_mm, pgd, p);
569	}
570	return pgd;
571}
572
573int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
574					 int node, struct vmem_altmap *altmap)
575{
576	unsigned long addr = start;
577	pgd_t *pgd;
578	p4d_t *p4d;
579	pud_t *pud;
580	pmd_t *pmd;
581	pte_t *pte;
582
583	for (; addr < end; addr += PAGE_SIZE) {
584		pgd = vmemmap_pgd_populate(addr, node);
585		if (!pgd)
586			return -ENOMEM;
587		p4d = vmemmap_p4d_populate(pgd, addr, node);
588		if (!p4d)
589			return -ENOMEM;
590		pud = vmemmap_pud_populate(p4d, addr, node);
591		if (!pud)
592			return -ENOMEM;
593		pmd = vmemmap_pmd_populate(pud, addr, node);
594		if (!pmd)
595			return -ENOMEM;
596		pte = vmemmap_pte_populate(pmd, addr, node, altmap);
597		if (!pte)
598			return -ENOMEM;
599		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
600	}
601
602	return 0;
603}
604
605struct page * __meminit __populate_section_memmap(unsigned long pfn,
606		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
607{
608	unsigned long start = (unsigned long) pfn_to_page(pfn);
609	unsigned long end = start + nr_pages * sizeof(struct page);
610
611	if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
612		!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
613		return NULL;
 
 
 
 
 
 
 
 
614
615	if (vmemmap_populate(start, end, nid, altmap))
616		return NULL;
617
618	return pfn_to_page(pfn);
619}