Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/dax.h>
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
31#include <linux/pagevec.h>
32#include <linux/mpage.h>
33#include <linux/namei.h>
34#include <linux/uio.h>
35#include <linux/bio.h>
36#include <linux/workqueue.h>
37#include <linux/kernel.h>
38#include <linux/printk.h>
39#include <linux/slab.h>
40#include <linux/bitops.h>
41#include <linux/iomap.h>
42#include <linux/iversion.h>
43
44#include "ext4_jbd2.h"
45#include "xattr.h"
46#include "acl.h"
47#include "truncate.h"
48
49#include <trace/events/ext4.h>
50
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
53static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55{
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u32 csum;
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
61
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
77 }
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
80 }
81
82 return csum;
83}
84
85static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
87{
88 __u32 provided, calculated;
89
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
93 return 1;
94
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
102
103 return provided == calculated;
104}
105
106static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
108{
109 __u32 csum;
110
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
114 return;
115
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121}
122
123static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
125{
126 trace_ext4_begin_ordered_truncate(inode, new_size);
127 /*
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
132 */
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
138}
139
140static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
146
147/*
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150 */
151int ext4_inode_is_fast_symlink(struct inode *inode)
152{
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157 if (ext4_has_inline_data(inode))
158 return 0;
159
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 }
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
164}
165
166/*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
171int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 int nblocks)
173{
174 int ret;
175
176 /*
177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
181 */
182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 jbd_debug(2, "restarting handle %p\n", handle);
184 up_write(&EXT4_I(inode)->i_data_sem);
185 ret = ext4_journal_restart(handle, nblocks);
186 down_write(&EXT4_I(inode)->i_data_sem);
187 ext4_discard_preallocations(inode);
188
189 return ret;
190}
191
192/*
193 * Called at the last iput() if i_nlink is zero.
194 */
195void ext4_evict_inode(struct inode *inode)
196{
197 handle_t *handle;
198 int err;
199 int extra_credits = 3;
200 struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202 trace_ext4_evict_inode(inode);
203
204 if (inode->i_nlink) {
205 /*
206 * When journalling data dirty buffers are tracked only in the
207 * journal. So although mm thinks everything is clean and
208 * ready for reaping the inode might still have some pages to
209 * write in the running transaction or waiting to be
210 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 * (via truncate_inode_pages()) to discard these buffers can
212 * cause data loss. Also even if we did not discard these
213 * buffers, we would have no way to find them after the inode
214 * is reaped and thus user could see stale data if he tries to
215 * read them before the transaction is checkpointed. So be
216 * careful and force everything to disk here... We use
217 * ei->i_datasync_tid to store the newest transaction
218 * containing inode's data.
219 *
220 * Note that directories do not have this problem because they
221 * don't use page cache.
222 */
223 if (inode->i_ino != EXT4_JOURNAL_INO &&
224 ext4_should_journal_data(inode) &&
225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 inode->i_data.nrpages) {
227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230 jbd2_complete_transaction(journal, commit_tid);
231 filemap_write_and_wait(&inode->i_data);
232 }
233 truncate_inode_pages_final(&inode->i_data);
234
235 goto no_delete;
236 }
237
238 if (is_bad_inode(inode))
239 goto no_delete;
240 dquot_initialize(inode);
241
242 if (ext4_should_order_data(inode))
243 ext4_begin_ordered_truncate(inode, 0);
244 truncate_inode_pages_final(&inode->i_data);
245
246 /*
247 * Protect us against freezing - iput() caller didn't have to have any
248 * protection against it
249 */
250 sb_start_intwrite(inode->i_sb);
251
252 if (!IS_NOQUOTA(inode))
253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode)+extra_credits);
257 if (IS_ERR(handle)) {
258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 /*
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
262 * cleaned up.
263 */
264 ext4_orphan_del(NULL, inode);
265 sb_end_intwrite(inode->i_sb);
266 goto no_delete;
267 }
268
269 if (IS_SYNC(inode))
270 ext4_handle_sync(handle);
271
272 /*
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
278 */
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 inode->i_size = 0;
282 err = ext4_mark_inode_dirty(handle, inode);
283 if (err) {
284 ext4_warning(inode->i_sb,
285 "couldn't mark inode dirty (err %d)", err);
286 goto stop_handle;
287 }
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
290 if (err) {
291 ext4_error(inode->i_sb,
292 "couldn't truncate inode %lu (err %d)",
293 inode->i_ino, err);
294 goto stop_handle;
295 }
296 }
297
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 extra_credits);
301 if (err) {
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303stop_handle:
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
309 }
310
311 /*
312 * Kill off the orphan record which ext4_truncate created.
313 * AKPM: I think this can be inside the above `if'.
314 * Note that ext4_orphan_del() has to be able to cope with the
315 * deletion of a non-existent orphan - this is because we don't
316 * know if ext4_truncate() actually created an orphan record.
317 * (Well, we could do this if we need to, but heck - it works)
318 */
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
321
322 /*
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
328 */
329 if (ext4_mark_inode_dirty(handle, inode))
330 /* If that failed, just do the required in-core inode clear. */
331 ext4_clear_inode(inode);
332 else
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
337 return;
338no_delete:
339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
340}
341
342#ifdef CONFIG_QUOTA
343qsize_t *ext4_get_reserved_space(struct inode *inode)
344{
345 return &EXT4_I(inode)->i_reserved_quota;
346}
347#endif
348
349/*
350 * Called with i_data_sem down, which is important since we can call
351 * ext4_discard_preallocations() from here.
352 */
353void ext4_da_update_reserve_space(struct inode *inode,
354 int used, int quota_claim)
355{
356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 struct ext4_inode_info *ei = EXT4_I(inode);
358
359 spin_lock(&ei->i_block_reservation_lock);
360 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 if (unlikely(used > ei->i_reserved_data_blocks)) {
362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 "with only %d reserved data blocks",
364 __func__, inode->i_ino, used,
365 ei->i_reserved_data_blocks);
366 WARN_ON(1);
367 used = ei->i_reserved_data_blocks;
368 }
369
370 /* Update per-inode reservations */
371 ei->i_reserved_data_blocks -= used;
372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376 /* Update quota subsystem for data blocks */
377 if (quota_claim)
378 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 else {
380 /*
381 * We did fallocate with an offset that is already delayed
382 * allocated. So on delayed allocated writeback we should
383 * not re-claim the quota for fallocated blocks.
384 */
385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386 }
387
388 /*
389 * If we have done all the pending block allocations and if
390 * there aren't any writers on the inode, we can discard the
391 * inode's preallocations.
392 */
393 if ((ei->i_reserved_data_blocks == 0) &&
394 !inode_is_open_for_write(inode))
395 ext4_discard_preallocations(inode);
396}
397
398static int __check_block_validity(struct inode *inode, const char *func,
399 unsigned int line,
400 struct ext4_map_blocks *map)
401{
402 if (ext4_has_feature_journal(inode->i_sb) &&
403 (inode->i_ino ==
404 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
405 return 0;
406 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
407 map->m_len)) {
408 ext4_error_inode(inode, func, line, map->m_pblk,
409 "lblock %lu mapped to illegal pblock %llu "
410 "(length %d)", (unsigned long) map->m_lblk,
411 map->m_pblk, map->m_len);
412 return -EFSCORRUPTED;
413 }
414 return 0;
415}
416
417int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418 ext4_lblk_t len)
419{
420 int ret;
421
422 if (IS_ENCRYPTED(inode))
423 return fscrypt_zeroout_range(inode, lblk, pblk, len);
424
425 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426 if (ret > 0)
427 ret = 0;
428
429 return ret;
430}
431
432#define check_block_validity(inode, map) \
433 __check_block_validity((inode), __func__, __LINE__, (map))
434
435#ifdef ES_AGGRESSIVE_TEST
436static void ext4_map_blocks_es_recheck(handle_t *handle,
437 struct inode *inode,
438 struct ext4_map_blocks *es_map,
439 struct ext4_map_blocks *map,
440 int flags)
441{
442 int retval;
443
444 map->m_flags = 0;
445 /*
446 * There is a race window that the result is not the same.
447 * e.g. xfstests #223 when dioread_nolock enables. The reason
448 * is that we lookup a block mapping in extent status tree with
449 * out taking i_data_sem. So at the time the unwritten extent
450 * could be converted.
451 */
452 down_read(&EXT4_I(inode)->i_data_sem);
453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454 retval = ext4_ext_map_blocks(handle, inode, map, flags &
455 EXT4_GET_BLOCKS_KEEP_SIZE);
456 } else {
457 retval = ext4_ind_map_blocks(handle, inode, map, flags &
458 EXT4_GET_BLOCKS_KEEP_SIZE);
459 }
460 up_read((&EXT4_I(inode)->i_data_sem));
461
462 /*
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
465 */
466 if (es_map->m_lblk != map->m_lblk ||
467 es_map->m_flags != map->m_flags ||
468 es_map->m_pblk != map->m_pblk) {
469 printk("ES cache assertion failed for inode: %lu "
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode->i_ino, es_map->m_lblk, es_map->m_len,
473 es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 map->m_len, map->m_pblk, map->m_flags,
475 retval, flags);
476 }
477}
478#endif /* ES_AGGRESSIVE_TEST */
479
480/*
481 * The ext4_map_blocks() function tries to look up the requested blocks,
482 * and returns if the blocks are already mapped.
483 *
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
486 * mapped.
487 *
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490 * based files
491 *
492 * On success, it returns the number of blocks being mapped or allocated. if
493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
497 * that case, @map is returned as unmapped but we still do fill map->m_len to
498 * indicate the length of a hole starting at map->m_lblk.
499 *
500 * It returns the error in case of allocation failure.
501 */
502int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 struct ext4_map_blocks *map, int flags)
504{
505 struct extent_status es;
506 int retval;
507 int ret = 0;
508#ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map;
510
511 memcpy(&orig_map, map, sizeof(*map));
512#endif
513
514 map->m_flags = 0;
515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 (unsigned long) map->m_lblk);
518
519 /*
520 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 */
522 if (unlikely(map->m_len > INT_MAX))
523 map->m_len = INT_MAX;
524
525 /* We can handle the block number less than EXT_MAX_BLOCKS */
526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527 return -EFSCORRUPTED;
528
529 /* Lookup extent status tree firstly */
530 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 map->m_pblk = ext4_es_pblock(&es) +
533 map->m_lblk - es.es_lblk;
534 map->m_flags |= ext4_es_is_written(&es) ?
535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 retval = es.es_len - (map->m_lblk - es.es_lblk);
537 if (retval > map->m_len)
538 retval = map->m_len;
539 map->m_len = retval;
540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 map->m_pblk = 0;
542 retval = es.es_len - (map->m_lblk - es.es_lblk);
543 if (retval > map->m_len)
544 retval = map->m_len;
545 map->m_len = retval;
546 retval = 0;
547 } else {
548 BUG();
549 }
550#ifdef ES_AGGRESSIVE_TEST
551 ext4_map_blocks_es_recheck(handle, inode, map,
552 &orig_map, flags);
553#endif
554 goto found;
555 }
556
557 /*
558 * Try to see if we can get the block without requesting a new
559 * file system block.
560 */
561 down_read(&EXT4_I(inode)->i_data_sem);
562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 retval = ext4_ext_map_blocks(handle, inode, map, flags &
564 EXT4_GET_BLOCKS_KEEP_SIZE);
565 } else {
566 retval = ext4_ind_map_blocks(handle, inode, map, flags &
567 EXT4_GET_BLOCKS_KEEP_SIZE);
568 }
569 if (retval > 0) {
570 unsigned int status;
571
572 if (unlikely(retval != map->m_len)) {
573 ext4_warning(inode->i_sb,
574 "ES len assertion failed for inode "
575 "%lu: retval %d != map->m_len %d",
576 inode->i_ino, retval, map->m_len);
577 WARN_ON(1);
578 }
579
580 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
583 !(status & EXTENT_STATUS_WRITTEN) &&
584 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
585 map->m_lblk + map->m_len - 1))
586 status |= EXTENT_STATUS_DELAYED;
587 ret = ext4_es_insert_extent(inode, map->m_lblk,
588 map->m_len, map->m_pblk, status);
589 if (ret < 0)
590 retval = ret;
591 }
592 up_read((&EXT4_I(inode)->i_data_sem));
593
594found:
595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
596 ret = check_block_validity(inode, map);
597 if (ret != 0)
598 return ret;
599 }
600
601 /* If it is only a block(s) look up */
602 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603 return retval;
604
605 /*
606 * Returns if the blocks have already allocated
607 *
608 * Note that if blocks have been preallocated
609 * ext4_ext_get_block() returns the create = 0
610 * with buffer head unmapped.
611 */
612 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
613 /*
614 * If we need to convert extent to unwritten
615 * we continue and do the actual work in
616 * ext4_ext_map_blocks()
617 */
618 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619 return retval;
620
621 /*
622 * Here we clear m_flags because after allocating an new extent,
623 * it will be set again.
624 */
625 map->m_flags &= ~EXT4_MAP_FLAGS;
626
627 /*
628 * New blocks allocate and/or writing to unwritten extent
629 * will possibly result in updating i_data, so we take
630 * the write lock of i_data_sem, and call get_block()
631 * with create == 1 flag.
632 */
633 down_write(&EXT4_I(inode)->i_data_sem);
634
635 /*
636 * We need to check for EXT4 here because migrate
637 * could have changed the inode type in between
638 */
639 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
640 retval = ext4_ext_map_blocks(handle, inode, map, flags);
641 } else {
642 retval = ext4_ind_map_blocks(handle, inode, map, flags);
643
644 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
645 /*
646 * We allocated new blocks which will result in
647 * i_data's format changing. Force the migrate
648 * to fail by clearing migrate flags
649 */
650 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651 }
652
653 /*
654 * Update reserved blocks/metadata blocks after successful
655 * block allocation which had been deferred till now. We don't
656 * support fallocate for non extent files. So we can update
657 * reserve space here.
658 */
659 if ((retval > 0) &&
660 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
661 ext4_da_update_reserve_space(inode, retval, 1);
662 }
663
664 if (retval > 0) {
665 unsigned int status;
666
667 if (unlikely(retval != map->m_len)) {
668 ext4_warning(inode->i_sb,
669 "ES len assertion failed for inode "
670 "%lu: retval %d != map->m_len %d",
671 inode->i_ino, retval, map->m_len);
672 WARN_ON(1);
673 }
674
675 /*
676 * We have to zeroout blocks before inserting them into extent
677 * status tree. Otherwise someone could look them up there and
678 * use them before they are really zeroed. We also have to
679 * unmap metadata before zeroing as otherwise writeback can
680 * overwrite zeros with stale data from block device.
681 */
682 if (flags & EXT4_GET_BLOCKS_ZERO &&
683 map->m_flags & EXT4_MAP_MAPPED &&
684 map->m_flags & EXT4_MAP_NEW) {
685 ret = ext4_issue_zeroout(inode, map->m_lblk,
686 map->m_pblk, map->m_len);
687 if (ret) {
688 retval = ret;
689 goto out_sem;
690 }
691 }
692
693 /*
694 * If the extent has been zeroed out, we don't need to update
695 * extent status tree.
696 */
697 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
698 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
699 if (ext4_es_is_written(&es))
700 goto out_sem;
701 }
702 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
705 !(status & EXTENT_STATUS_WRITTEN) &&
706 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707 map->m_lblk + map->m_len - 1))
708 status |= EXTENT_STATUS_DELAYED;
709 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710 map->m_pblk, status);
711 if (ret < 0) {
712 retval = ret;
713 goto out_sem;
714 }
715 }
716
717out_sem:
718 up_write((&EXT4_I(inode)->i_data_sem));
719 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
720 ret = check_block_validity(inode, map);
721 if (ret != 0)
722 return ret;
723
724 /*
725 * Inodes with freshly allocated blocks where contents will be
726 * visible after transaction commit must be on transaction's
727 * ordered data list.
728 */
729 if (map->m_flags & EXT4_MAP_NEW &&
730 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
731 !(flags & EXT4_GET_BLOCKS_ZERO) &&
732 !ext4_is_quota_file(inode) &&
733 ext4_should_order_data(inode)) {
734 loff_t start_byte =
735 (loff_t)map->m_lblk << inode->i_blkbits;
736 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
737
738 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
739 ret = ext4_jbd2_inode_add_wait(handle, inode,
740 start_byte, length);
741 else
742 ret = ext4_jbd2_inode_add_write(handle, inode,
743 start_byte, length);
744 if (ret)
745 return ret;
746 }
747 }
748 return retval;
749}
750
751/*
752 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
753 * we have to be careful as someone else may be manipulating b_state as well.
754 */
755static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
756{
757 unsigned long old_state;
758 unsigned long new_state;
759
760 flags &= EXT4_MAP_FLAGS;
761
762 /* Dummy buffer_head? Set non-atomically. */
763 if (!bh->b_page) {
764 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
765 return;
766 }
767 /*
768 * Someone else may be modifying b_state. Be careful! This is ugly but
769 * once we get rid of using bh as a container for mapping information
770 * to pass to / from get_block functions, this can go away.
771 */
772 do {
773 old_state = READ_ONCE(bh->b_state);
774 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
775 } while (unlikely(
776 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
777}
778
779static int _ext4_get_block(struct inode *inode, sector_t iblock,
780 struct buffer_head *bh, int flags)
781{
782 struct ext4_map_blocks map;
783 int ret = 0;
784
785 if (ext4_has_inline_data(inode))
786 return -ERANGE;
787
788 map.m_lblk = iblock;
789 map.m_len = bh->b_size >> inode->i_blkbits;
790
791 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
792 flags);
793 if (ret > 0) {
794 map_bh(bh, inode->i_sb, map.m_pblk);
795 ext4_update_bh_state(bh, map.m_flags);
796 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
797 ret = 0;
798 } else if (ret == 0) {
799 /* hole case, need to fill in bh->b_size */
800 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
801 }
802 return ret;
803}
804
805int ext4_get_block(struct inode *inode, sector_t iblock,
806 struct buffer_head *bh, int create)
807{
808 return _ext4_get_block(inode, iblock, bh,
809 create ? EXT4_GET_BLOCKS_CREATE : 0);
810}
811
812/*
813 * Get block function used when preparing for buffered write if we require
814 * creating an unwritten extent if blocks haven't been allocated. The extent
815 * will be converted to written after the IO is complete.
816 */
817int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
818 struct buffer_head *bh_result, int create)
819{
820 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
821 inode->i_ino, create);
822 return _ext4_get_block(inode, iblock, bh_result,
823 EXT4_GET_BLOCKS_IO_CREATE_EXT);
824}
825
826/* Maximum number of blocks we map for direct IO at once. */
827#define DIO_MAX_BLOCKS 4096
828
829/*
830 * Get blocks function for the cases that need to start a transaction -
831 * generally difference cases of direct IO and DAX IO. It also handles retries
832 * in case of ENOSPC.
833 */
834static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
835 struct buffer_head *bh_result, int flags)
836{
837 int dio_credits;
838 handle_t *handle;
839 int retries = 0;
840 int ret;
841
842 /* Trim mapping request to maximum we can map at once for DIO */
843 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
844 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
845 dio_credits = ext4_chunk_trans_blocks(inode,
846 bh_result->b_size >> inode->i_blkbits);
847retry:
848 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
849 if (IS_ERR(handle))
850 return PTR_ERR(handle);
851
852 ret = _ext4_get_block(inode, iblock, bh_result, flags);
853 ext4_journal_stop(handle);
854
855 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
856 goto retry;
857 return ret;
858}
859
860/* Get block function for DIO reads and writes to inodes without extents */
861int ext4_dio_get_block(struct inode *inode, sector_t iblock,
862 struct buffer_head *bh, int create)
863{
864 /* We don't expect handle for direct IO */
865 WARN_ON_ONCE(ext4_journal_current_handle());
866
867 if (!create)
868 return _ext4_get_block(inode, iblock, bh, 0);
869 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
870}
871
872/*
873 * Get block function for AIO DIO writes when we create unwritten extent if
874 * blocks are not allocated yet. The extent will be converted to written
875 * after IO is complete.
876 */
877static int ext4_dio_get_block_unwritten_async(struct inode *inode,
878 sector_t iblock, struct buffer_head *bh_result, int create)
879{
880 int ret;
881
882 /* We don't expect handle for direct IO */
883 WARN_ON_ONCE(ext4_journal_current_handle());
884
885 ret = ext4_get_block_trans(inode, iblock, bh_result,
886 EXT4_GET_BLOCKS_IO_CREATE_EXT);
887
888 /*
889 * When doing DIO using unwritten extents, we need io_end to convert
890 * unwritten extents to written on IO completion. We allocate io_end
891 * once we spot unwritten extent and store it in b_private. Generic
892 * DIO code keeps b_private set and furthermore passes the value to
893 * our completion callback in 'private' argument.
894 */
895 if (!ret && buffer_unwritten(bh_result)) {
896 if (!bh_result->b_private) {
897 ext4_io_end_t *io_end;
898
899 io_end = ext4_init_io_end(inode, GFP_KERNEL);
900 if (!io_end)
901 return -ENOMEM;
902 bh_result->b_private = io_end;
903 ext4_set_io_unwritten_flag(inode, io_end);
904 }
905 set_buffer_defer_completion(bh_result);
906 }
907
908 return ret;
909}
910
911/*
912 * Get block function for non-AIO DIO writes when we create unwritten extent if
913 * blocks are not allocated yet. The extent will be converted to written
914 * after IO is complete by ext4_direct_IO_write().
915 */
916static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
917 sector_t iblock, struct buffer_head *bh_result, int create)
918{
919 int ret;
920
921 /* We don't expect handle for direct IO */
922 WARN_ON_ONCE(ext4_journal_current_handle());
923
924 ret = ext4_get_block_trans(inode, iblock, bh_result,
925 EXT4_GET_BLOCKS_IO_CREATE_EXT);
926
927 /*
928 * Mark inode as having pending DIO writes to unwritten extents.
929 * ext4_direct_IO_write() checks this flag and converts extents to
930 * written.
931 */
932 if (!ret && buffer_unwritten(bh_result))
933 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
934
935 return ret;
936}
937
938static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
939 struct buffer_head *bh_result, int create)
940{
941 int ret;
942
943 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
944 inode->i_ino, create);
945 /* We don't expect handle for direct IO */
946 WARN_ON_ONCE(ext4_journal_current_handle());
947
948 ret = _ext4_get_block(inode, iblock, bh_result, 0);
949 /*
950 * Blocks should have been preallocated! ext4_file_write_iter() checks
951 * that.
952 */
953 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
954
955 return ret;
956}
957
958
959/*
960 * `handle' can be NULL if create is zero
961 */
962struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
963 ext4_lblk_t block, int map_flags)
964{
965 struct ext4_map_blocks map;
966 struct buffer_head *bh;
967 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
968 int err;
969
970 J_ASSERT(handle != NULL || create == 0);
971
972 map.m_lblk = block;
973 map.m_len = 1;
974 err = ext4_map_blocks(handle, inode, &map, map_flags);
975
976 if (err == 0)
977 return create ? ERR_PTR(-ENOSPC) : NULL;
978 if (err < 0)
979 return ERR_PTR(err);
980
981 bh = sb_getblk(inode->i_sb, map.m_pblk);
982 if (unlikely(!bh))
983 return ERR_PTR(-ENOMEM);
984 if (map.m_flags & EXT4_MAP_NEW) {
985 J_ASSERT(create != 0);
986 J_ASSERT(handle != NULL);
987
988 /*
989 * Now that we do not always journal data, we should
990 * keep in mind whether this should always journal the
991 * new buffer as metadata. For now, regular file
992 * writes use ext4_get_block instead, so it's not a
993 * problem.
994 */
995 lock_buffer(bh);
996 BUFFER_TRACE(bh, "call get_create_access");
997 err = ext4_journal_get_create_access(handle, bh);
998 if (unlikely(err)) {
999 unlock_buffer(bh);
1000 goto errout;
1001 }
1002 if (!buffer_uptodate(bh)) {
1003 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1004 set_buffer_uptodate(bh);
1005 }
1006 unlock_buffer(bh);
1007 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1008 err = ext4_handle_dirty_metadata(handle, inode, bh);
1009 if (unlikely(err))
1010 goto errout;
1011 } else
1012 BUFFER_TRACE(bh, "not a new buffer");
1013 return bh;
1014errout:
1015 brelse(bh);
1016 return ERR_PTR(err);
1017}
1018
1019struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1020 ext4_lblk_t block, int map_flags)
1021{
1022 struct buffer_head *bh;
1023
1024 bh = ext4_getblk(handle, inode, block, map_flags);
1025 if (IS_ERR(bh))
1026 return bh;
1027 if (!bh || ext4_buffer_uptodate(bh))
1028 return bh;
1029 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1030 wait_on_buffer(bh);
1031 if (buffer_uptodate(bh))
1032 return bh;
1033 put_bh(bh);
1034 return ERR_PTR(-EIO);
1035}
1036
1037/* Read a contiguous batch of blocks. */
1038int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1039 bool wait, struct buffer_head **bhs)
1040{
1041 int i, err;
1042
1043 for (i = 0; i < bh_count; i++) {
1044 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1045 if (IS_ERR(bhs[i])) {
1046 err = PTR_ERR(bhs[i]);
1047 bh_count = i;
1048 goto out_brelse;
1049 }
1050 }
1051
1052 for (i = 0; i < bh_count; i++)
1053 /* Note that NULL bhs[i] is valid because of holes. */
1054 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1055 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1056 &bhs[i]);
1057
1058 if (!wait)
1059 return 0;
1060
1061 for (i = 0; i < bh_count; i++)
1062 if (bhs[i])
1063 wait_on_buffer(bhs[i]);
1064
1065 for (i = 0; i < bh_count; i++) {
1066 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1067 err = -EIO;
1068 goto out_brelse;
1069 }
1070 }
1071 return 0;
1072
1073out_brelse:
1074 for (i = 0; i < bh_count; i++) {
1075 brelse(bhs[i]);
1076 bhs[i] = NULL;
1077 }
1078 return err;
1079}
1080
1081int ext4_walk_page_buffers(handle_t *handle,
1082 struct buffer_head *head,
1083 unsigned from,
1084 unsigned to,
1085 int *partial,
1086 int (*fn)(handle_t *handle,
1087 struct buffer_head *bh))
1088{
1089 struct buffer_head *bh;
1090 unsigned block_start, block_end;
1091 unsigned blocksize = head->b_size;
1092 int err, ret = 0;
1093 struct buffer_head *next;
1094
1095 for (bh = head, block_start = 0;
1096 ret == 0 && (bh != head || !block_start);
1097 block_start = block_end, bh = next) {
1098 next = bh->b_this_page;
1099 block_end = block_start + blocksize;
1100 if (block_end <= from || block_start >= to) {
1101 if (partial && !buffer_uptodate(bh))
1102 *partial = 1;
1103 continue;
1104 }
1105 err = (*fn)(handle, bh);
1106 if (!ret)
1107 ret = err;
1108 }
1109 return ret;
1110}
1111
1112/*
1113 * To preserve ordering, it is essential that the hole instantiation and
1114 * the data write be encapsulated in a single transaction. We cannot
1115 * close off a transaction and start a new one between the ext4_get_block()
1116 * and the commit_write(). So doing the jbd2_journal_start at the start of
1117 * prepare_write() is the right place.
1118 *
1119 * Also, this function can nest inside ext4_writepage(). In that case, we
1120 * *know* that ext4_writepage() has generated enough buffer credits to do the
1121 * whole page. So we won't block on the journal in that case, which is good,
1122 * because the caller may be PF_MEMALLOC.
1123 *
1124 * By accident, ext4 can be reentered when a transaction is open via
1125 * quota file writes. If we were to commit the transaction while thus
1126 * reentered, there can be a deadlock - we would be holding a quota
1127 * lock, and the commit would never complete if another thread had a
1128 * transaction open and was blocking on the quota lock - a ranking
1129 * violation.
1130 *
1131 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1132 * will _not_ run commit under these circumstances because handle->h_ref
1133 * is elevated. We'll still have enough credits for the tiny quotafile
1134 * write.
1135 */
1136int do_journal_get_write_access(handle_t *handle,
1137 struct buffer_head *bh)
1138{
1139 int dirty = buffer_dirty(bh);
1140 int ret;
1141
1142 if (!buffer_mapped(bh) || buffer_freed(bh))
1143 return 0;
1144 /*
1145 * __block_write_begin() could have dirtied some buffers. Clean
1146 * the dirty bit as jbd2_journal_get_write_access() could complain
1147 * otherwise about fs integrity issues. Setting of the dirty bit
1148 * by __block_write_begin() isn't a real problem here as we clear
1149 * the bit before releasing a page lock and thus writeback cannot
1150 * ever write the buffer.
1151 */
1152 if (dirty)
1153 clear_buffer_dirty(bh);
1154 BUFFER_TRACE(bh, "get write access");
1155 ret = ext4_journal_get_write_access(handle, bh);
1156 if (!ret && dirty)
1157 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1158 return ret;
1159}
1160
1161#ifdef CONFIG_FS_ENCRYPTION
1162static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1163 get_block_t *get_block)
1164{
1165 unsigned from = pos & (PAGE_SIZE - 1);
1166 unsigned to = from + len;
1167 struct inode *inode = page->mapping->host;
1168 unsigned block_start, block_end;
1169 sector_t block;
1170 int err = 0;
1171 unsigned blocksize = inode->i_sb->s_blocksize;
1172 unsigned bbits;
1173 struct buffer_head *bh, *head, *wait[2];
1174 int nr_wait = 0;
1175 int i;
1176
1177 BUG_ON(!PageLocked(page));
1178 BUG_ON(from > PAGE_SIZE);
1179 BUG_ON(to > PAGE_SIZE);
1180 BUG_ON(from > to);
1181
1182 if (!page_has_buffers(page))
1183 create_empty_buffers(page, blocksize, 0);
1184 head = page_buffers(page);
1185 bbits = ilog2(blocksize);
1186 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1187
1188 for (bh = head, block_start = 0; bh != head || !block_start;
1189 block++, block_start = block_end, bh = bh->b_this_page) {
1190 block_end = block_start + blocksize;
1191 if (block_end <= from || block_start >= to) {
1192 if (PageUptodate(page)) {
1193 if (!buffer_uptodate(bh))
1194 set_buffer_uptodate(bh);
1195 }
1196 continue;
1197 }
1198 if (buffer_new(bh))
1199 clear_buffer_new(bh);
1200 if (!buffer_mapped(bh)) {
1201 WARN_ON(bh->b_size != blocksize);
1202 err = get_block(inode, block, bh, 1);
1203 if (err)
1204 break;
1205 if (buffer_new(bh)) {
1206 if (PageUptodate(page)) {
1207 clear_buffer_new(bh);
1208 set_buffer_uptodate(bh);
1209 mark_buffer_dirty(bh);
1210 continue;
1211 }
1212 if (block_end > to || block_start < from)
1213 zero_user_segments(page, to, block_end,
1214 block_start, from);
1215 continue;
1216 }
1217 }
1218 if (PageUptodate(page)) {
1219 if (!buffer_uptodate(bh))
1220 set_buffer_uptodate(bh);
1221 continue;
1222 }
1223 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1224 !buffer_unwritten(bh) &&
1225 (block_start < from || block_end > to)) {
1226 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1227 wait[nr_wait++] = bh;
1228 }
1229 }
1230 /*
1231 * If we issued read requests, let them complete.
1232 */
1233 for (i = 0; i < nr_wait; i++) {
1234 wait_on_buffer(wait[i]);
1235 if (!buffer_uptodate(wait[i]))
1236 err = -EIO;
1237 }
1238 if (unlikely(err)) {
1239 page_zero_new_buffers(page, from, to);
1240 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1241 for (i = 0; i < nr_wait; i++) {
1242 int err2;
1243
1244 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1245 bh_offset(wait[i]));
1246 if (err2) {
1247 clear_buffer_uptodate(wait[i]);
1248 err = err2;
1249 }
1250 }
1251 }
1252
1253 return err;
1254}
1255#endif
1256
1257static int ext4_write_begin(struct file *file, struct address_space *mapping,
1258 loff_t pos, unsigned len, unsigned flags,
1259 struct page **pagep, void **fsdata)
1260{
1261 struct inode *inode = mapping->host;
1262 int ret, needed_blocks;
1263 handle_t *handle;
1264 int retries = 0;
1265 struct page *page;
1266 pgoff_t index;
1267 unsigned from, to;
1268
1269 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1270 return -EIO;
1271
1272 trace_ext4_write_begin(inode, pos, len, flags);
1273 /*
1274 * Reserve one block more for addition to orphan list in case
1275 * we allocate blocks but write fails for some reason
1276 */
1277 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1278 index = pos >> PAGE_SHIFT;
1279 from = pos & (PAGE_SIZE - 1);
1280 to = from + len;
1281
1282 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1283 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1284 flags, pagep);
1285 if (ret < 0)
1286 return ret;
1287 if (ret == 1)
1288 return 0;
1289 }
1290
1291 /*
1292 * grab_cache_page_write_begin() can take a long time if the
1293 * system is thrashing due to memory pressure, or if the page
1294 * is being written back. So grab it first before we start
1295 * the transaction handle. This also allows us to allocate
1296 * the page (if needed) without using GFP_NOFS.
1297 */
1298retry_grab:
1299 page = grab_cache_page_write_begin(mapping, index, flags);
1300 if (!page)
1301 return -ENOMEM;
1302 unlock_page(page);
1303
1304retry_journal:
1305 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1306 if (IS_ERR(handle)) {
1307 put_page(page);
1308 return PTR_ERR(handle);
1309 }
1310
1311 lock_page(page);
1312 if (page->mapping != mapping) {
1313 /* The page got truncated from under us */
1314 unlock_page(page);
1315 put_page(page);
1316 ext4_journal_stop(handle);
1317 goto retry_grab;
1318 }
1319 /* In case writeback began while the page was unlocked */
1320 wait_for_stable_page(page);
1321
1322#ifdef CONFIG_FS_ENCRYPTION
1323 if (ext4_should_dioread_nolock(inode))
1324 ret = ext4_block_write_begin(page, pos, len,
1325 ext4_get_block_unwritten);
1326 else
1327 ret = ext4_block_write_begin(page, pos, len,
1328 ext4_get_block);
1329#else
1330 if (ext4_should_dioread_nolock(inode))
1331 ret = __block_write_begin(page, pos, len,
1332 ext4_get_block_unwritten);
1333 else
1334 ret = __block_write_begin(page, pos, len, ext4_get_block);
1335#endif
1336 if (!ret && ext4_should_journal_data(inode)) {
1337 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1338 from, to, NULL,
1339 do_journal_get_write_access);
1340 }
1341
1342 if (ret) {
1343 bool extended = (pos + len > inode->i_size) &&
1344 !ext4_verity_in_progress(inode);
1345
1346 unlock_page(page);
1347 /*
1348 * __block_write_begin may have instantiated a few blocks
1349 * outside i_size. Trim these off again. Don't need
1350 * i_size_read because we hold i_mutex.
1351 *
1352 * Add inode to orphan list in case we crash before
1353 * truncate finishes
1354 */
1355 if (extended && ext4_can_truncate(inode))
1356 ext4_orphan_add(handle, inode);
1357
1358 ext4_journal_stop(handle);
1359 if (extended) {
1360 ext4_truncate_failed_write(inode);
1361 /*
1362 * If truncate failed early the inode might
1363 * still be on the orphan list; we need to
1364 * make sure the inode is removed from the
1365 * orphan list in that case.
1366 */
1367 if (inode->i_nlink)
1368 ext4_orphan_del(NULL, inode);
1369 }
1370
1371 if (ret == -ENOSPC &&
1372 ext4_should_retry_alloc(inode->i_sb, &retries))
1373 goto retry_journal;
1374 put_page(page);
1375 return ret;
1376 }
1377 *pagep = page;
1378 return ret;
1379}
1380
1381/* For write_end() in data=journal mode */
1382static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1383{
1384 int ret;
1385 if (!buffer_mapped(bh) || buffer_freed(bh))
1386 return 0;
1387 set_buffer_uptodate(bh);
1388 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1389 clear_buffer_meta(bh);
1390 clear_buffer_prio(bh);
1391 return ret;
1392}
1393
1394/*
1395 * We need to pick up the new inode size which generic_commit_write gave us
1396 * `file' can be NULL - eg, when called from page_symlink().
1397 *
1398 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1399 * buffers are managed internally.
1400 */
1401static int ext4_write_end(struct file *file,
1402 struct address_space *mapping,
1403 loff_t pos, unsigned len, unsigned copied,
1404 struct page *page, void *fsdata)
1405{
1406 handle_t *handle = ext4_journal_current_handle();
1407 struct inode *inode = mapping->host;
1408 loff_t old_size = inode->i_size;
1409 int ret = 0, ret2;
1410 int i_size_changed = 0;
1411 int inline_data = ext4_has_inline_data(inode);
1412 bool verity = ext4_verity_in_progress(inode);
1413
1414 trace_ext4_write_end(inode, pos, len, copied);
1415 if (inline_data) {
1416 ret = ext4_write_inline_data_end(inode, pos, len,
1417 copied, page);
1418 if (ret < 0) {
1419 unlock_page(page);
1420 put_page(page);
1421 goto errout;
1422 }
1423 copied = ret;
1424 } else
1425 copied = block_write_end(file, mapping, pos,
1426 len, copied, page, fsdata);
1427 /*
1428 * it's important to update i_size while still holding page lock:
1429 * page writeout could otherwise come in and zero beyond i_size.
1430 *
1431 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1432 * blocks are being written past EOF, so skip the i_size update.
1433 */
1434 if (!verity)
1435 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1436 unlock_page(page);
1437 put_page(page);
1438
1439 if (old_size < pos && !verity)
1440 pagecache_isize_extended(inode, old_size, pos);
1441 /*
1442 * Don't mark the inode dirty under page lock. First, it unnecessarily
1443 * makes the holding time of page lock longer. Second, it forces lock
1444 * ordering of page lock and transaction start for journaling
1445 * filesystems.
1446 */
1447 if (i_size_changed || inline_data)
1448 ext4_mark_inode_dirty(handle, inode);
1449
1450 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1451 /* if we have allocated more blocks and copied
1452 * less. We will have blocks allocated outside
1453 * inode->i_size. So truncate them
1454 */
1455 ext4_orphan_add(handle, inode);
1456errout:
1457 ret2 = ext4_journal_stop(handle);
1458 if (!ret)
1459 ret = ret2;
1460
1461 if (pos + len > inode->i_size && !verity) {
1462 ext4_truncate_failed_write(inode);
1463 /*
1464 * If truncate failed early the inode might still be
1465 * on the orphan list; we need to make sure the inode
1466 * is removed from the orphan list in that case.
1467 */
1468 if (inode->i_nlink)
1469 ext4_orphan_del(NULL, inode);
1470 }
1471
1472 return ret ? ret : copied;
1473}
1474
1475/*
1476 * This is a private version of page_zero_new_buffers() which doesn't
1477 * set the buffer to be dirty, since in data=journalled mode we need
1478 * to call ext4_handle_dirty_metadata() instead.
1479 */
1480static void ext4_journalled_zero_new_buffers(handle_t *handle,
1481 struct page *page,
1482 unsigned from, unsigned to)
1483{
1484 unsigned int block_start = 0, block_end;
1485 struct buffer_head *head, *bh;
1486
1487 bh = head = page_buffers(page);
1488 do {
1489 block_end = block_start + bh->b_size;
1490 if (buffer_new(bh)) {
1491 if (block_end > from && block_start < to) {
1492 if (!PageUptodate(page)) {
1493 unsigned start, size;
1494
1495 start = max(from, block_start);
1496 size = min(to, block_end) - start;
1497
1498 zero_user(page, start, size);
1499 write_end_fn(handle, bh);
1500 }
1501 clear_buffer_new(bh);
1502 }
1503 }
1504 block_start = block_end;
1505 bh = bh->b_this_page;
1506 } while (bh != head);
1507}
1508
1509static int ext4_journalled_write_end(struct file *file,
1510 struct address_space *mapping,
1511 loff_t pos, unsigned len, unsigned copied,
1512 struct page *page, void *fsdata)
1513{
1514 handle_t *handle = ext4_journal_current_handle();
1515 struct inode *inode = mapping->host;
1516 loff_t old_size = inode->i_size;
1517 int ret = 0, ret2;
1518 int partial = 0;
1519 unsigned from, to;
1520 int size_changed = 0;
1521 int inline_data = ext4_has_inline_data(inode);
1522 bool verity = ext4_verity_in_progress(inode);
1523
1524 trace_ext4_journalled_write_end(inode, pos, len, copied);
1525 from = pos & (PAGE_SIZE - 1);
1526 to = from + len;
1527
1528 BUG_ON(!ext4_handle_valid(handle));
1529
1530 if (inline_data) {
1531 ret = ext4_write_inline_data_end(inode, pos, len,
1532 copied, page);
1533 if (ret < 0) {
1534 unlock_page(page);
1535 put_page(page);
1536 goto errout;
1537 }
1538 copied = ret;
1539 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1540 copied = 0;
1541 ext4_journalled_zero_new_buffers(handle, page, from, to);
1542 } else {
1543 if (unlikely(copied < len))
1544 ext4_journalled_zero_new_buffers(handle, page,
1545 from + copied, to);
1546 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1547 from + copied, &partial,
1548 write_end_fn);
1549 if (!partial)
1550 SetPageUptodate(page);
1551 }
1552 if (!verity)
1553 size_changed = ext4_update_inode_size(inode, pos + copied);
1554 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1555 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1556 unlock_page(page);
1557 put_page(page);
1558
1559 if (old_size < pos && !verity)
1560 pagecache_isize_extended(inode, old_size, pos);
1561
1562 if (size_changed || inline_data) {
1563 ret2 = ext4_mark_inode_dirty(handle, inode);
1564 if (!ret)
1565 ret = ret2;
1566 }
1567
1568 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1569 /* if we have allocated more blocks and copied
1570 * less. We will have blocks allocated outside
1571 * inode->i_size. So truncate them
1572 */
1573 ext4_orphan_add(handle, inode);
1574
1575errout:
1576 ret2 = ext4_journal_stop(handle);
1577 if (!ret)
1578 ret = ret2;
1579 if (pos + len > inode->i_size && !verity) {
1580 ext4_truncate_failed_write(inode);
1581 /*
1582 * If truncate failed early the inode might still be
1583 * on the orphan list; we need to make sure the inode
1584 * is removed from the orphan list in that case.
1585 */
1586 if (inode->i_nlink)
1587 ext4_orphan_del(NULL, inode);
1588 }
1589
1590 return ret ? ret : copied;
1591}
1592
1593/*
1594 * Reserve space for a single cluster
1595 */
1596static int ext4_da_reserve_space(struct inode *inode)
1597{
1598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599 struct ext4_inode_info *ei = EXT4_I(inode);
1600 int ret;
1601
1602 /*
1603 * We will charge metadata quota at writeout time; this saves
1604 * us from metadata over-estimation, though we may go over by
1605 * a small amount in the end. Here we just reserve for data.
1606 */
1607 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1608 if (ret)
1609 return ret;
1610
1611 spin_lock(&ei->i_block_reservation_lock);
1612 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1613 spin_unlock(&ei->i_block_reservation_lock);
1614 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1615 return -ENOSPC;
1616 }
1617 ei->i_reserved_data_blocks++;
1618 trace_ext4_da_reserve_space(inode);
1619 spin_unlock(&ei->i_block_reservation_lock);
1620
1621 return 0; /* success */
1622}
1623
1624void ext4_da_release_space(struct inode *inode, int to_free)
1625{
1626 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627 struct ext4_inode_info *ei = EXT4_I(inode);
1628
1629 if (!to_free)
1630 return; /* Nothing to release, exit */
1631
1632 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1633
1634 trace_ext4_da_release_space(inode, to_free);
1635 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1636 /*
1637 * if there aren't enough reserved blocks, then the
1638 * counter is messed up somewhere. Since this
1639 * function is called from invalidate page, it's
1640 * harmless to return without any action.
1641 */
1642 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1643 "ino %lu, to_free %d with only %d reserved "
1644 "data blocks", inode->i_ino, to_free,
1645 ei->i_reserved_data_blocks);
1646 WARN_ON(1);
1647 to_free = ei->i_reserved_data_blocks;
1648 }
1649 ei->i_reserved_data_blocks -= to_free;
1650
1651 /* update fs dirty data blocks counter */
1652 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1653
1654 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1655
1656 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1657}
1658
1659/*
1660 * Delayed allocation stuff
1661 */
1662
1663struct mpage_da_data {
1664 struct inode *inode;
1665 struct writeback_control *wbc;
1666
1667 pgoff_t first_page; /* The first page to write */
1668 pgoff_t next_page; /* Current page to examine */
1669 pgoff_t last_page; /* Last page to examine */
1670 /*
1671 * Extent to map - this can be after first_page because that can be
1672 * fully mapped. We somewhat abuse m_flags to store whether the extent
1673 * is delalloc or unwritten.
1674 */
1675 struct ext4_map_blocks map;
1676 struct ext4_io_submit io_submit; /* IO submission data */
1677 unsigned int do_map:1;
1678};
1679
1680static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1681 bool invalidate)
1682{
1683 int nr_pages, i;
1684 pgoff_t index, end;
1685 struct pagevec pvec;
1686 struct inode *inode = mpd->inode;
1687 struct address_space *mapping = inode->i_mapping;
1688
1689 /* This is necessary when next_page == 0. */
1690 if (mpd->first_page >= mpd->next_page)
1691 return;
1692
1693 index = mpd->first_page;
1694 end = mpd->next_page - 1;
1695 if (invalidate) {
1696 ext4_lblk_t start, last;
1697 start = index << (PAGE_SHIFT - inode->i_blkbits);
1698 last = end << (PAGE_SHIFT - inode->i_blkbits);
1699 ext4_es_remove_extent(inode, start, last - start + 1);
1700 }
1701
1702 pagevec_init(&pvec);
1703 while (index <= end) {
1704 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1705 if (nr_pages == 0)
1706 break;
1707 for (i = 0; i < nr_pages; i++) {
1708 struct page *page = pvec.pages[i];
1709
1710 BUG_ON(!PageLocked(page));
1711 BUG_ON(PageWriteback(page));
1712 if (invalidate) {
1713 if (page_mapped(page))
1714 clear_page_dirty_for_io(page);
1715 block_invalidatepage(page, 0, PAGE_SIZE);
1716 ClearPageUptodate(page);
1717 }
1718 unlock_page(page);
1719 }
1720 pagevec_release(&pvec);
1721 }
1722}
1723
1724static void ext4_print_free_blocks(struct inode *inode)
1725{
1726 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1727 struct super_block *sb = inode->i_sb;
1728 struct ext4_inode_info *ei = EXT4_I(inode);
1729
1730 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1731 EXT4_C2B(EXT4_SB(inode->i_sb),
1732 ext4_count_free_clusters(sb)));
1733 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1734 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1735 (long long) EXT4_C2B(EXT4_SB(sb),
1736 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1737 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1738 (long long) EXT4_C2B(EXT4_SB(sb),
1739 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1740 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1741 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1742 ei->i_reserved_data_blocks);
1743 return;
1744}
1745
1746static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1747{
1748 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1749}
1750
1751/*
1752 * ext4_insert_delayed_block - adds a delayed block to the extents status
1753 * tree, incrementing the reserved cluster/block
1754 * count or making a pending reservation
1755 * where needed
1756 *
1757 * @inode - file containing the newly added block
1758 * @lblk - logical block to be added
1759 *
1760 * Returns 0 on success, negative error code on failure.
1761 */
1762static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1763{
1764 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1765 int ret;
1766 bool allocated = false;
1767
1768 /*
1769 * If the cluster containing lblk is shared with a delayed,
1770 * written, or unwritten extent in a bigalloc file system, it's
1771 * already been accounted for and does not need to be reserved.
1772 * A pending reservation must be made for the cluster if it's
1773 * shared with a written or unwritten extent and doesn't already
1774 * have one. Written and unwritten extents can be purged from the
1775 * extents status tree if the system is under memory pressure, so
1776 * it's necessary to examine the extent tree if a search of the
1777 * extents status tree doesn't get a match.
1778 */
1779 if (sbi->s_cluster_ratio == 1) {
1780 ret = ext4_da_reserve_space(inode);
1781 if (ret != 0) /* ENOSPC */
1782 goto errout;
1783 } else { /* bigalloc */
1784 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1785 if (!ext4_es_scan_clu(inode,
1786 &ext4_es_is_mapped, lblk)) {
1787 ret = ext4_clu_mapped(inode,
1788 EXT4_B2C(sbi, lblk));
1789 if (ret < 0)
1790 goto errout;
1791 if (ret == 0) {
1792 ret = ext4_da_reserve_space(inode);
1793 if (ret != 0) /* ENOSPC */
1794 goto errout;
1795 } else {
1796 allocated = true;
1797 }
1798 } else {
1799 allocated = true;
1800 }
1801 }
1802 }
1803
1804 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1805
1806errout:
1807 return ret;
1808}
1809
1810/*
1811 * This function is grabs code from the very beginning of
1812 * ext4_map_blocks, but assumes that the caller is from delayed write
1813 * time. This function looks up the requested blocks and sets the
1814 * buffer delay bit under the protection of i_data_sem.
1815 */
1816static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1817 struct ext4_map_blocks *map,
1818 struct buffer_head *bh)
1819{
1820 struct extent_status es;
1821 int retval;
1822 sector_t invalid_block = ~((sector_t) 0xffff);
1823#ifdef ES_AGGRESSIVE_TEST
1824 struct ext4_map_blocks orig_map;
1825
1826 memcpy(&orig_map, map, sizeof(*map));
1827#endif
1828
1829 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1830 invalid_block = ~0;
1831
1832 map->m_flags = 0;
1833 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1834 "logical block %lu\n", inode->i_ino, map->m_len,
1835 (unsigned long) map->m_lblk);
1836
1837 /* Lookup extent status tree firstly */
1838 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1839 if (ext4_es_is_hole(&es)) {
1840 retval = 0;
1841 down_read(&EXT4_I(inode)->i_data_sem);
1842 goto add_delayed;
1843 }
1844
1845 /*
1846 * Delayed extent could be allocated by fallocate.
1847 * So we need to check it.
1848 */
1849 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1850 map_bh(bh, inode->i_sb, invalid_block);
1851 set_buffer_new(bh);
1852 set_buffer_delay(bh);
1853 return 0;
1854 }
1855
1856 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1857 retval = es.es_len - (iblock - es.es_lblk);
1858 if (retval > map->m_len)
1859 retval = map->m_len;
1860 map->m_len = retval;
1861 if (ext4_es_is_written(&es))
1862 map->m_flags |= EXT4_MAP_MAPPED;
1863 else if (ext4_es_is_unwritten(&es))
1864 map->m_flags |= EXT4_MAP_UNWRITTEN;
1865 else
1866 BUG();
1867
1868#ifdef ES_AGGRESSIVE_TEST
1869 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1870#endif
1871 return retval;
1872 }
1873
1874 /*
1875 * Try to see if we can get the block without requesting a new
1876 * file system block.
1877 */
1878 down_read(&EXT4_I(inode)->i_data_sem);
1879 if (ext4_has_inline_data(inode))
1880 retval = 0;
1881 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1882 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1883 else
1884 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1885
1886add_delayed:
1887 if (retval == 0) {
1888 int ret;
1889
1890 /*
1891 * XXX: __block_prepare_write() unmaps passed block,
1892 * is it OK?
1893 */
1894
1895 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1896 if (ret != 0) {
1897 retval = ret;
1898 goto out_unlock;
1899 }
1900
1901 map_bh(bh, inode->i_sb, invalid_block);
1902 set_buffer_new(bh);
1903 set_buffer_delay(bh);
1904 } else if (retval > 0) {
1905 int ret;
1906 unsigned int status;
1907
1908 if (unlikely(retval != map->m_len)) {
1909 ext4_warning(inode->i_sb,
1910 "ES len assertion failed for inode "
1911 "%lu: retval %d != map->m_len %d",
1912 inode->i_ino, retval, map->m_len);
1913 WARN_ON(1);
1914 }
1915
1916 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1917 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1918 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1919 map->m_pblk, status);
1920 if (ret != 0)
1921 retval = ret;
1922 }
1923
1924out_unlock:
1925 up_read((&EXT4_I(inode)->i_data_sem));
1926
1927 return retval;
1928}
1929
1930/*
1931 * This is a special get_block_t callback which is used by
1932 * ext4_da_write_begin(). It will either return mapped block or
1933 * reserve space for a single block.
1934 *
1935 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1936 * We also have b_blocknr = -1 and b_bdev initialized properly
1937 *
1938 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1939 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1940 * initialized properly.
1941 */
1942int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1943 struct buffer_head *bh, int create)
1944{
1945 struct ext4_map_blocks map;
1946 int ret = 0;
1947
1948 BUG_ON(create == 0);
1949 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1950
1951 map.m_lblk = iblock;
1952 map.m_len = 1;
1953
1954 /*
1955 * first, we need to know whether the block is allocated already
1956 * preallocated blocks are unmapped but should treated
1957 * the same as allocated blocks.
1958 */
1959 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1960 if (ret <= 0)
1961 return ret;
1962
1963 map_bh(bh, inode->i_sb, map.m_pblk);
1964 ext4_update_bh_state(bh, map.m_flags);
1965
1966 if (buffer_unwritten(bh)) {
1967 /* A delayed write to unwritten bh should be marked
1968 * new and mapped. Mapped ensures that we don't do
1969 * get_block multiple times when we write to the same
1970 * offset and new ensures that we do proper zero out
1971 * for partial write.
1972 */
1973 set_buffer_new(bh);
1974 set_buffer_mapped(bh);
1975 }
1976 return 0;
1977}
1978
1979static int bget_one(handle_t *handle, struct buffer_head *bh)
1980{
1981 get_bh(bh);
1982 return 0;
1983}
1984
1985static int bput_one(handle_t *handle, struct buffer_head *bh)
1986{
1987 put_bh(bh);
1988 return 0;
1989}
1990
1991static int __ext4_journalled_writepage(struct page *page,
1992 unsigned int len)
1993{
1994 struct address_space *mapping = page->mapping;
1995 struct inode *inode = mapping->host;
1996 struct buffer_head *page_bufs = NULL;
1997 handle_t *handle = NULL;
1998 int ret = 0, err = 0;
1999 int inline_data = ext4_has_inline_data(inode);
2000 struct buffer_head *inode_bh = NULL;
2001
2002 ClearPageChecked(page);
2003
2004 if (inline_data) {
2005 BUG_ON(page->index != 0);
2006 BUG_ON(len > ext4_get_max_inline_size(inode));
2007 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2008 if (inode_bh == NULL)
2009 goto out;
2010 } else {
2011 page_bufs = page_buffers(page);
2012 if (!page_bufs) {
2013 BUG();
2014 goto out;
2015 }
2016 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2017 NULL, bget_one);
2018 }
2019 /*
2020 * We need to release the page lock before we start the
2021 * journal, so grab a reference so the page won't disappear
2022 * out from under us.
2023 */
2024 get_page(page);
2025 unlock_page(page);
2026
2027 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2028 ext4_writepage_trans_blocks(inode));
2029 if (IS_ERR(handle)) {
2030 ret = PTR_ERR(handle);
2031 put_page(page);
2032 goto out_no_pagelock;
2033 }
2034 BUG_ON(!ext4_handle_valid(handle));
2035
2036 lock_page(page);
2037 put_page(page);
2038 if (page->mapping != mapping) {
2039 /* The page got truncated from under us */
2040 ext4_journal_stop(handle);
2041 ret = 0;
2042 goto out;
2043 }
2044
2045 if (inline_data) {
2046 ret = ext4_mark_inode_dirty(handle, inode);
2047 } else {
2048 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2049 do_journal_get_write_access);
2050
2051 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2052 write_end_fn);
2053 }
2054 if (ret == 0)
2055 ret = err;
2056 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2057 err = ext4_journal_stop(handle);
2058 if (!ret)
2059 ret = err;
2060
2061 if (!ext4_has_inline_data(inode))
2062 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2063 NULL, bput_one);
2064 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2065out:
2066 unlock_page(page);
2067out_no_pagelock:
2068 brelse(inode_bh);
2069 return ret;
2070}
2071
2072/*
2073 * Note that we don't need to start a transaction unless we're journaling data
2074 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2075 * need to file the inode to the transaction's list in ordered mode because if
2076 * we are writing back data added by write(), the inode is already there and if
2077 * we are writing back data modified via mmap(), no one guarantees in which
2078 * transaction the data will hit the disk. In case we are journaling data, we
2079 * cannot start transaction directly because transaction start ranks above page
2080 * lock so we have to do some magic.
2081 *
2082 * This function can get called via...
2083 * - ext4_writepages after taking page lock (have journal handle)
2084 * - journal_submit_inode_data_buffers (no journal handle)
2085 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2086 * - grab_page_cache when doing write_begin (have journal handle)
2087 *
2088 * We don't do any block allocation in this function. If we have page with
2089 * multiple blocks we need to write those buffer_heads that are mapped. This
2090 * is important for mmaped based write. So if we do with blocksize 1K
2091 * truncate(f, 1024);
2092 * a = mmap(f, 0, 4096);
2093 * a[0] = 'a';
2094 * truncate(f, 4096);
2095 * we have in the page first buffer_head mapped via page_mkwrite call back
2096 * but other buffer_heads would be unmapped but dirty (dirty done via the
2097 * do_wp_page). So writepage should write the first block. If we modify
2098 * the mmap area beyond 1024 we will again get a page_fault and the
2099 * page_mkwrite callback will do the block allocation and mark the
2100 * buffer_heads mapped.
2101 *
2102 * We redirty the page if we have any buffer_heads that is either delay or
2103 * unwritten in the page.
2104 *
2105 * We can get recursively called as show below.
2106 *
2107 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2108 * ext4_writepage()
2109 *
2110 * But since we don't do any block allocation we should not deadlock.
2111 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2112 */
2113static int ext4_writepage(struct page *page,
2114 struct writeback_control *wbc)
2115{
2116 int ret = 0;
2117 loff_t size;
2118 unsigned int len;
2119 struct buffer_head *page_bufs = NULL;
2120 struct inode *inode = page->mapping->host;
2121 struct ext4_io_submit io_submit;
2122 bool keep_towrite = false;
2123
2124 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2125 ext4_invalidatepage(page, 0, PAGE_SIZE);
2126 unlock_page(page);
2127 return -EIO;
2128 }
2129
2130 trace_ext4_writepage(page);
2131 size = i_size_read(inode);
2132 if (page->index == size >> PAGE_SHIFT &&
2133 !ext4_verity_in_progress(inode))
2134 len = size & ~PAGE_MASK;
2135 else
2136 len = PAGE_SIZE;
2137
2138 page_bufs = page_buffers(page);
2139 /*
2140 * We cannot do block allocation or other extent handling in this
2141 * function. If there are buffers needing that, we have to redirty
2142 * the page. But we may reach here when we do a journal commit via
2143 * journal_submit_inode_data_buffers() and in that case we must write
2144 * allocated buffers to achieve data=ordered mode guarantees.
2145 *
2146 * Also, if there is only one buffer per page (the fs block
2147 * size == the page size), if one buffer needs block
2148 * allocation or needs to modify the extent tree to clear the
2149 * unwritten flag, we know that the page can't be written at
2150 * all, so we might as well refuse the write immediately.
2151 * Unfortunately if the block size != page size, we can't as
2152 * easily detect this case using ext4_walk_page_buffers(), but
2153 * for the extremely common case, this is an optimization that
2154 * skips a useless round trip through ext4_bio_write_page().
2155 */
2156 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2157 ext4_bh_delay_or_unwritten)) {
2158 redirty_page_for_writepage(wbc, page);
2159 if ((current->flags & PF_MEMALLOC) ||
2160 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2161 /*
2162 * For memory cleaning there's no point in writing only
2163 * some buffers. So just bail out. Warn if we came here
2164 * from direct reclaim.
2165 */
2166 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2167 == PF_MEMALLOC);
2168 unlock_page(page);
2169 return 0;
2170 }
2171 keep_towrite = true;
2172 }
2173
2174 if (PageChecked(page) && ext4_should_journal_data(inode))
2175 /*
2176 * It's mmapped pagecache. Add buffers and journal it. There
2177 * doesn't seem much point in redirtying the page here.
2178 */
2179 return __ext4_journalled_writepage(page, len);
2180
2181 ext4_io_submit_init(&io_submit, wbc);
2182 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2183 if (!io_submit.io_end) {
2184 redirty_page_for_writepage(wbc, page);
2185 unlock_page(page);
2186 return -ENOMEM;
2187 }
2188 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2189 ext4_io_submit(&io_submit);
2190 /* Drop io_end reference we got from init */
2191 ext4_put_io_end_defer(io_submit.io_end);
2192 return ret;
2193}
2194
2195static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2196{
2197 int len;
2198 loff_t size;
2199 int err;
2200
2201 BUG_ON(page->index != mpd->first_page);
2202 clear_page_dirty_for_io(page);
2203 /*
2204 * We have to be very careful here! Nothing protects writeback path
2205 * against i_size changes and the page can be writeably mapped into
2206 * page tables. So an application can be growing i_size and writing
2207 * data through mmap while writeback runs. clear_page_dirty_for_io()
2208 * write-protects our page in page tables and the page cannot get
2209 * written to again until we release page lock. So only after
2210 * clear_page_dirty_for_io() we are safe to sample i_size for
2211 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2212 * on the barrier provided by TestClearPageDirty in
2213 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2214 * after page tables are updated.
2215 */
2216 size = i_size_read(mpd->inode);
2217 if (page->index == size >> PAGE_SHIFT &&
2218 !ext4_verity_in_progress(mpd->inode))
2219 len = size & ~PAGE_MASK;
2220 else
2221 len = PAGE_SIZE;
2222 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2223 if (!err)
2224 mpd->wbc->nr_to_write--;
2225 mpd->first_page++;
2226
2227 return err;
2228}
2229
2230#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2231
2232/*
2233 * mballoc gives us at most this number of blocks...
2234 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2235 * The rest of mballoc seems to handle chunks up to full group size.
2236 */
2237#define MAX_WRITEPAGES_EXTENT_LEN 2048
2238
2239/*
2240 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2241 *
2242 * @mpd - extent of blocks
2243 * @lblk - logical number of the block in the file
2244 * @bh - buffer head we want to add to the extent
2245 *
2246 * The function is used to collect contig. blocks in the same state. If the
2247 * buffer doesn't require mapping for writeback and we haven't started the
2248 * extent of buffers to map yet, the function returns 'true' immediately - the
2249 * caller can write the buffer right away. Otherwise the function returns true
2250 * if the block has been added to the extent, false if the block couldn't be
2251 * added.
2252 */
2253static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2254 struct buffer_head *bh)
2255{
2256 struct ext4_map_blocks *map = &mpd->map;
2257
2258 /* Buffer that doesn't need mapping for writeback? */
2259 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2260 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2261 /* So far no extent to map => we write the buffer right away */
2262 if (map->m_len == 0)
2263 return true;
2264 return false;
2265 }
2266
2267 /* First block in the extent? */
2268 if (map->m_len == 0) {
2269 /* We cannot map unless handle is started... */
2270 if (!mpd->do_map)
2271 return false;
2272 map->m_lblk = lblk;
2273 map->m_len = 1;
2274 map->m_flags = bh->b_state & BH_FLAGS;
2275 return true;
2276 }
2277
2278 /* Don't go larger than mballoc is willing to allocate */
2279 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2280 return false;
2281
2282 /* Can we merge the block to our big extent? */
2283 if (lblk == map->m_lblk + map->m_len &&
2284 (bh->b_state & BH_FLAGS) == map->m_flags) {
2285 map->m_len++;
2286 return true;
2287 }
2288 return false;
2289}
2290
2291/*
2292 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2293 *
2294 * @mpd - extent of blocks for mapping
2295 * @head - the first buffer in the page
2296 * @bh - buffer we should start processing from
2297 * @lblk - logical number of the block in the file corresponding to @bh
2298 *
2299 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2300 * the page for IO if all buffers in this page were mapped and there's no
2301 * accumulated extent of buffers to map or add buffers in the page to the
2302 * extent of buffers to map. The function returns 1 if the caller can continue
2303 * by processing the next page, 0 if it should stop adding buffers to the
2304 * extent to map because we cannot extend it anymore. It can also return value
2305 * < 0 in case of error during IO submission.
2306 */
2307static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2308 struct buffer_head *head,
2309 struct buffer_head *bh,
2310 ext4_lblk_t lblk)
2311{
2312 struct inode *inode = mpd->inode;
2313 int err;
2314 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2315 >> inode->i_blkbits;
2316
2317 if (ext4_verity_in_progress(inode))
2318 blocks = EXT_MAX_BLOCKS;
2319
2320 do {
2321 BUG_ON(buffer_locked(bh));
2322
2323 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2324 /* Found extent to map? */
2325 if (mpd->map.m_len)
2326 return 0;
2327 /* Buffer needs mapping and handle is not started? */
2328 if (!mpd->do_map)
2329 return 0;
2330 /* Everything mapped so far and we hit EOF */
2331 break;
2332 }
2333 } while (lblk++, (bh = bh->b_this_page) != head);
2334 /* So far everything mapped? Submit the page for IO. */
2335 if (mpd->map.m_len == 0) {
2336 err = mpage_submit_page(mpd, head->b_page);
2337 if (err < 0)
2338 return err;
2339 }
2340 return lblk < blocks;
2341}
2342
2343/*
2344 * mpage_map_buffers - update buffers corresponding to changed extent and
2345 * submit fully mapped pages for IO
2346 *
2347 * @mpd - description of extent to map, on return next extent to map
2348 *
2349 * Scan buffers corresponding to changed extent (we expect corresponding pages
2350 * to be already locked) and update buffer state according to new extent state.
2351 * We map delalloc buffers to their physical location, clear unwritten bits,
2352 * and mark buffers as uninit when we perform writes to unwritten extents
2353 * and do extent conversion after IO is finished. If the last page is not fully
2354 * mapped, we update @map to the next extent in the last page that needs
2355 * mapping. Otherwise we submit the page for IO.
2356 */
2357static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2358{
2359 struct pagevec pvec;
2360 int nr_pages, i;
2361 struct inode *inode = mpd->inode;
2362 struct buffer_head *head, *bh;
2363 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2364 pgoff_t start, end;
2365 ext4_lblk_t lblk;
2366 sector_t pblock;
2367 int err;
2368
2369 start = mpd->map.m_lblk >> bpp_bits;
2370 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2371 lblk = start << bpp_bits;
2372 pblock = mpd->map.m_pblk;
2373
2374 pagevec_init(&pvec);
2375 while (start <= end) {
2376 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2377 &start, end);
2378 if (nr_pages == 0)
2379 break;
2380 for (i = 0; i < nr_pages; i++) {
2381 struct page *page = pvec.pages[i];
2382
2383 bh = head = page_buffers(page);
2384 do {
2385 if (lblk < mpd->map.m_lblk)
2386 continue;
2387 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2388 /*
2389 * Buffer after end of mapped extent.
2390 * Find next buffer in the page to map.
2391 */
2392 mpd->map.m_len = 0;
2393 mpd->map.m_flags = 0;
2394 /*
2395 * FIXME: If dioread_nolock supports
2396 * blocksize < pagesize, we need to make
2397 * sure we add size mapped so far to
2398 * io_end->size as the following call
2399 * can submit the page for IO.
2400 */
2401 err = mpage_process_page_bufs(mpd, head,
2402 bh, lblk);
2403 pagevec_release(&pvec);
2404 if (err > 0)
2405 err = 0;
2406 return err;
2407 }
2408 if (buffer_delay(bh)) {
2409 clear_buffer_delay(bh);
2410 bh->b_blocknr = pblock++;
2411 }
2412 clear_buffer_unwritten(bh);
2413 } while (lblk++, (bh = bh->b_this_page) != head);
2414
2415 /*
2416 * FIXME: This is going to break if dioread_nolock
2417 * supports blocksize < pagesize as we will try to
2418 * convert potentially unmapped parts of inode.
2419 */
2420 mpd->io_submit.io_end->size += PAGE_SIZE;
2421 /* Page fully mapped - let IO run! */
2422 err = mpage_submit_page(mpd, page);
2423 if (err < 0) {
2424 pagevec_release(&pvec);
2425 return err;
2426 }
2427 }
2428 pagevec_release(&pvec);
2429 }
2430 /* Extent fully mapped and matches with page boundary. We are done. */
2431 mpd->map.m_len = 0;
2432 mpd->map.m_flags = 0;
2433 return 0;
2434}
2435
2436static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2437{
2438 struct inode *inode = mpd->inode;
2439 struct ext4_map_blocks *map = &mpd->map;
2440 int get_blocks_flags;
2441 int err, dioread_nolock;
2442
2443 trace_ext4_da_write_pages_extent(inode, map);
2444 /*
2445 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2446 * to convert an unwritten extent to be initialized (in the case
2447 * where we have written into one or more preallocated blocks). It is
2448 * possible that we're going to need more metadata blocks than
2449 * previously reserved. However we must not fail because we're in
2450 * writeback and there is nothing we can do about it so it might result
2451 * in data loss. So use reserved blocks to allocate metadata if
2452 * possible.
2453 *
2454 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2455 * the blocks in question are delalloc blocks. This indicates
2456 * that the blocks and quotas has already been checked when
2457 * the data was copied into the page cache.
2458 */
2459 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2460 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2461 EXT4_GET_BLOCKS_IO_SUBMIT;
2462 dioread_nolock = ext4_should_dioread_nolock(inode);
2463 if (dioread_nolock)
2464 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2465 if (map->m_flags & (1 << BH_Delay))
2466 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2467
2468 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2469 if (err < 0)
2470 return err;
2471 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2472 if (!mpd->io_submit.io_end->handle &&
2473 ext4_handle_valid(handle)) {
2474 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2475 handle->h_rsv_handle = NULL;
2476 }
2477 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2478 }
2479
2480 BUG_ON(map->m_len == 0);
2481 return 0;
2482}
2483
2484/*
2485 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2486 * mpd->len and submit pages underlying it for IO
2487 *
2488 * @handle - handle for journal operations
2489 * @mpd - extent to map
2490 * @give_up_on_write - we set this to true iff there is a fatal error and there
2491 * is no hope of writing the data. The caller should discard
2492 * dirty pages to avoid infinite loops.
2493 *
2494 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2495 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2496 * them to initialized or split the described range from larger unwritten
2497 * extent. Note that we need not map all the described range since allocation
2498 * can return less blocks or the range is covered by more unwritten extents. We
2499 * cannot map more because we are limited by reserved transaction credits. On
2500 * the other hand we always make sure that the last touched page is fully
2501 * mapped so that it can be written out (and thus forward progress is
2502 * guaranteed). After mapping we submit all mapped pages for IO.
2503 */
2504static int mpage_map_and_submit_extent(handle_t *handle,
2505 struct mpage_da_data *mpd,
2506 bool *give_up_on_write)
2507{
2508 struct inode *inode = mpd->inode;
2509 struct ext4_map_blocks *map = &mpd->map;
2510 int err;
2511 loff_t disksize;
2512 int progress = 0;
2513
2514 mpd->io_submit.io_end->offset =
2515 ((loff_t)map->m_lblk) << inode->i_blkbits;
2516 do {
2517 err = mpage_map_one_extent(handle, mpd);
2518 if (err < 0) {
2519 struct super_block *sb = inode->i_sb;
2520
2521 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2522 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2523 goto invalidate_dirty_pages;
2524 /*
2525 * Let the uper layers retry transient errors.
2526 * In the case of ENOSPC, if ext4_count_free_blocks()
2527 * is non-zero, a commit should free up blocks.
2528 */
2529 if ((err == -ENOMEM) ||
2530 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2531 if (progress)
2532 goto update_disksize;
2533 return err;
2534 }
2535 ext4_msg(sb, KERN_CRIT,
2536 "Delayed block allocation failed for "
2537 "inode %lu at logical offset %llu with"
2538 " max blocks %u with error %d",
2539 inode->i_ino,
2540 (unsigned long long)map->m_lblk,
2541 (unsigned)map->m_len, -err);
2542 ext4_msg(sb, KERN_CRIT,
2543 "This should not happen!! Data will "
2544 "be lost\n");
2545 if (err == -ENOSPC)
2546 ext4_print_free_blocks(inode);
2547 invalidate_dirty_pages:
2548 *give_up_on_write = true;
2549 return err;
2550 }
2551 progress = 1;
2552 /*
2553 * Update buffer state, submit mapped pages, and get us new
2554 * extent to map
2555 */
2556 err = mpage_map_and_submit_buffers(mpd);
2557 if (err < 0)
2558 goto update_disksize;
2559 } while (map->m_len);
2560
2561update_disksize:
2562 /*
2563 * Update on-disk size after IO is submitted. Races with
2564 * truncate are avoided by checking i_size under i_data_sem.
2565 */
2566 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2567 if (disksize > EXT4_I(inode)->i_disksize) {
2568 int err2;
2569 loff_t i_size;
2570
2571 down_write(&EXT4_I(inode)->i_data_sem);
2572 i_size = i_size_read(inode);
2573 if (disksize > i_size)
2574 disksize = i_size;
2575 if (disksize > EXT4_I(inode)->i_disksize)
2576 EXT4_I(inode)->i_disksize = disksize;
2577 up_write(&EXT4_I(inode)->i_data_sem);
2578 err2 = ext4_mark_inode_dirty(handle, inode);
2579 if (err2)
2580 ext4_error(inode->i_sb,
2581 "Failed to mark inode %lu dirty",
2582 inode->i_ino);
2583 if (!err)
2584 err = err2;
2585 }
2586 return err;
2587}
2588
2589/*
2590 * Calculate the total number of credits to reserve for one writepages
2591 * iteration. This is called from ext4_writepages(). We map an extent of
2592 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2593 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2594 * bpp - 1 blocks in bpp different extents.
2595 */
2596static int ext4_da_writepages_trans_blocks(struct inode *inode)
2597{
2598 int bpp = ext4_journal_blocks_per_page(inode);
2599
2600 return ext4_meta_trans_blocks(inode,
2601 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2602}
2603
2604/*
2605 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2606 * and underlying extent to map
2607 *
2608 * @mpd - where to look for pages
2609 *
2610 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2611 * IO immediately. When we find a page which isn't mapped we start accumulating
2612 * extent of buffers underlying these pages that needs mapping (formed by
2613 * either delayed or unwritten buffers). We also lock the pages containing
2614 * these buffers. The extent found is returned in @mpd structure (starting at
2615 * mpd->lblk with length mpd->len blocks).
2616 *
2617 * Note that this function can attach bios to one io_end structure which are
2618 * neither logically nor physically contiguous. Although it may seem as an
2619 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2620 * case as we need to track IO to all buffers underlying a page in one io_end.
2621 */
2622static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2623{
2624 struct address_space *mapping = mpd->inode->i_mapping;
2625 struct pagevec pvec;
2626 unsigned int nr_pages;
2627 long left = mpd->wbc->nr_to_write;
2628 pgoff_t index = mpd->first_page;
2629 pgoff_t end = mpd->last_page;
2630 xa_mark_t tag;
2631 int i, err = 0;
2632 int blkbits = mpd->inode->i_blkbits;
2633 ext4_lblk_t lblk;
2634 struct buffer_head *head;
2635
2636 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2637 tag = PAGECACHE_TAG_TOWRITE;
2638 else
2639 tag = PAGECACHE_TAG_DIRTY;
2640
2641 pagevec_init(&pvec);
2642 mpd->map.m_len = 0;
2643 mpd->next_page = index;
2644 while (index <= end) {
2645 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2646 tag);
2647 if (nr_pages == 0)
2648 goto out;
2649
2650 for (i = 0; i < nr_pages; i++) {
2651 struct page *page = pvec.pages[i];
2652
2653 /*
2654 * Accumulated enough dirty pages? This doesn't apply
2655 * to WB_SYNC_ALL mode. For integrity sync we have to
2656 * keep going because someone may be concurrently
2657 * dirtying pages, and we might have synced a lot of
2658 * newly appeared dirty pages, but have not synced all
2659 * of the old dirty pages.
2660 */
2661 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2662 goto out;
2663
2664 /* If we can't merge this page, we are done. */
2665 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2666 goto out;
2667
2668 lock_page(page);
2669 /*
2670 * If the page is no longer dirty, or its mapping no
2671 * longer corresponds to inode we are writing (which
2672 * means it has been truncated or invalidated), or the
2673 * page is already under writeback and we are not doing
2674 * a data integrity writeback, skip the page
2675 */
2676 if (!PageDirty(page) ||
2677 (PageWriteback(page) &&
2678 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2679 unlikely(page->mapping != mapping)) {
2680 unlock_page(page);
2681 continue;
2682 }
2683
2684 wait_on_page_writeback(page);
2685 BUG_ON(PageWriteback(page));
2686
2687 if (mpd->map.m_len == 0)
2688 mpd->first_page = page->index;
2689 mpd->next_page = page->index + 1;
2690 /* Add all dirty buffers to mpd */
2691 lblk = ((ext4_lblk_t)page->index) <<
2692 (PAGE_SHIFT - blkbits);
2693 head = page_buffers(page);
2694 err = mpage_process_page_bufs(mpd, head, head, lblk);
2695 if (err <= 0)
2696 goto out;
2697 err = 0;
2698 left--;
2699 }
2700 pagevec_release(&pvec);
2701 cond_resched();
2702 }
2703 return 0;
2704out:
2705 pagevec_release(&pvec);
2706 return err;
2707}
2708
2709static int ext4_writepages(struct address_space *mapping,
2710 struct writeback_control *wbc)
2711{
2712 pgoff_t writeback_index = 0;
2713 long nr_to_write = wbc->nr_to_write;
2714 int range_whole = 0;
2715 int cycled = 1;
2716 handle_t *handle = NULL;
2717 struct mpage_da_data mpd;
2718 struct inode *inode = mapping->host;
2719 int needed_blocks, rsv_blocks = 0, ret = 0;
2720 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2721 bool done;
2722 struct blk_plug plug;
2723 bool give_up_on_write = false;
2724
2725 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2726 return -EIO;
2727
2728 percpu_down_read(&sbi->s_journal_flag_rwsem);
2729 trace_ext4_writepages(inode, wbc);
2730
2731 /*
2732 * No pages to write? This is mainly a kludge to avoid starting
2733 * a transaction for special inodes like journal inode on last iput()
2734 * because that could violate lock ordering on umount
2735 */
2736 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2737 goto out_writepages;
2738
2739 if (ext4_should_journal_data(inode)) {
2740 ret = generic_writepages(mapping, wbc);
2741 goto out_writepages;
2742 }
2743
2744 /*
2745 * If the filesystem has aborted, it is read-only, so return
2746 * right away instead of dumping stack traces later on that
2747 * will obscure the real source of the problem. We test
2748 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2749 * the latter could be true if the filesystem is mounted
2750 * read-only, and in that case, ext4_writepages should
2751 * *never* be called, so if that ever happens, we would want
2752 * the stack trace.
2753 */
2754 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2755 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2756 ret = -EROFS;
2757 goto out_writepages;
2758 }
2759
2760 /*
2761 * If we have inline data and arrive here, it means that
2762 * we will soon create the block for the 1st page, so
2763 * we'd better clear the inline data here.
2764 */
2765 if (ext4_has_inline_data(inode)) {
2766 /* Just inode will be modified... */
2767 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2768 if (IS_ERR(handle)) {
2769 ret = PTR_ERR(handle);
2770 goto out_writepages;
2771 }
2772 BUG_ON(ext4_test_inode_state(inode,
2773 EXT4_STATE_MAY_INLINE_DATA));
2774 ext4_destroy_inline_data(handle, inode);
2775 ext4_journal_stop(handle);
2776 }
2777
2778 if (ext4_should_dioread_nolock(inode)) {
2779 /*
2780 * We may need to convert up to one extent per block in
2781 * the page and we may dirty the inode.
2782 */
2783 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2784 PAGE_SIZE >> inode->i_blkbits);
2785 }
2786
2787 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2788 range_whole = 1;
2789
2790 if (wbc->range_cyclic) {
2791 writeback_index = mapping->writeback_index;
2792 if (writeback_index)
2793 cycled = 0;
2794 mpd.first_page = writeback_index;
2795 mpd.last_page = -1;
2796 } else {
2797 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2798 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2799 }
2800
2801 mpd.inode = inode;
2802 mpd.wbc = wbc;
2803 ext4_io_submit_init(&mpd.io_submit, wbc);
2804retry:
2805 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2806 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2807 done = false;
2808 blk_start_plug(&plug);
2809
2810 /*
2811 * First writeback pages that don't need mapping - we can avoid
2812 * starting a transaction unnecessarily and also avoid being blocked
2813 * in the block layer on device congestion while having transaction
2814 * started.
2815 */
2816 mpd.do_map = 0;
2817 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2818 if (!mpd.io_submit.io_end) {
2819 ret = -ENOMEM;
2820 goto unplug;
2821 }
2822 ret = mpage_prepare_extent_to_map(&mpd);
2823 /* Unlock pages we didn't use */
2824 mpage_release_unused_pages(&mpd, false);
2825 /* Submit prepared bio */
2826 ext4_io_submit(&mpd.io_submit);
2827 ext4_put_io_end_defer(mpd.io_submit.io_end);
2828 mpd.io_submit.io_end = NULL;
2829 if (ret < 0)
2830 goto unplug;
2831
2832 while (!done && mpd.first_page <= mpd.last_page) {
2833 /* For each extent of pages we use new io_end */
2834 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2835 if (!mpd.io_submit.io_end) {
2836 ret = -ENOMEM;
2837 break;
2838 }
2839
2840 /*
2841 * We have two constraints: We find one extent to map and we
2842 * must always write out whole page (makes a difference when
2843 * blocksize < pagesize) so that we don't block on IO when we
2844 * try to write out the rest of the page. Journalled mode is
2845 * not supported by delalloc.
2846 */
2847 BUG_ON(ext4_should_journal_data(inode));
2848 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2849
2850 /* start a new transaction */
2851 handle = ext4_journal_start_with_reserve(inode,
2852 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2853 if (IS_ERR(handle)) {
2854 ret = PTR_ERR(handle);
2855 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2856 "%ld pages, ino %lu; err %d", __func__,
2857 wbc->nr_to_write, inode->i_ino, ret);
2858 /* Release allocated io_end */
2859 ext4_put_io_end(mpd.io_submit.io_end);
2860 mpd.io_submit.io_end = NULL;
2861 break;
2862 }
2863 mpd.do_map = 1;
2864
2865 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2866 ret = mpage_prepare_extent_to_map(&mpd);
2867 if (!ret) {
2868 if (mpd.map.m_len)
2869 ret = mpage_map_and_submit_extent(handle, &mpd,
2870 &give_up_on_write);
2871 else {
2872 /*
2873 * We scanned the whole range (or exhausted
2874 * nr_to_write), submitted what was mapped and
2875 * didn't find anything needing mapping. We are
2876 * done.
2877 */
2878 done = true;
2879 }
2880 }
2881 /*
2882 * Caution: If the handle is synchronous,
2883 * ext4_journal_stop() can wait for transaction commit
2884 * to finish which may depend on writeback of pages to
2885 * complete or on page lock to be released. In that
2886 * case, we have to wait until after after we have
2887 * submitted all the IO, released page locks we hold,
2888 * and dropped io_end reference (for extent conversion
2889 * to be able to complete) before stopping the handle.
2890 */
2891 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2892 ext4_journal_stop(handle);
2893 handle = NULL;
2894 mpd.do_map = 0;
2895 }
2896 /* Unlock pages we didn't use */
2897 mpage_release_unused_pages(&mpd, give_up_on_write);
2898 /* Submit prepared bio */
2899 ext4_io_submit(&mpd.io_submit);
2900
2901 /*
2902 * Drop our io_end reference we got from init. We have
2903 * to be careful and use deferred io_end finishing if
2904 * we are still holding the transaction as we can
2905 * release the last reference to io_end which may end
2906 * up doing unwritten extent conversion.
2907 */
2908 if (handle) {
2909 ext4_put_io_end_defer(mpd.io_submit.io_end);
2910 ext4_journal_stop(handle);
2911 } else
2912 ext4_put_io_end(mpd.io_submit.io_end);
2913 mpd.io_submit.io_end = NULL;
2914
2915 if (ret == -ENOSPC && sbi->s_journal) {
2916 /*
2917 * Commit the transaction which would
2918 * free blocks released in the transaction
2919 * and try again
2920 */
2921 jbd2_journal_force_commit_nested(sbi->s_journal);
2922 ret = 0;
2923 continue;
2924 }
2925 /* Fatal error - ENOMEM, EIO... */
2926 if (ret)
2927 break;
2928 }
2929unplug:
2930 blk_finish_plug(&plug);
2931 if (!ret && !cycled && wbc->nr_to_write > 0) {
2932 cycled = 1;
2933 mpd.last_page = writeback_index - 1;
2934 mpd.first_page = 0;
2935 goto retry;
2936 }
2937
2938 /* Update index */
2939 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2940 /*
2941 * Set the writeback_index so that range_cyclic
2942 * mode will write it back later
2943 */
2944 mapping->writeback_index = mpd.first_page;
2945
2946out_writepages:
2947 trace_ext4_writepages_result(inode, wbc, ret,
2948 nr_to_write - wbc->nr_to_write);
2949 percpu_up_read(&sbi->s_journal_flag_rwsem);
2950 return ret;
2951}
2952
2953static int ext4_dax_writepages(struct address_space *mapping,
2954 struct writeback_control *wbc)
2955{
2956 int ret;
2957 long nr_to_write = wbc->nr_to_write;
2958 struct inode *inode = mapping->host;
2959 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2960
2961 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2962 return -EIO;
2963
2964 percpu_down_read(&sbi->s_journal_flag_rwsem);
2965 trace_ext4_writepages(inode, wbc);
2966
2967 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2968 trace_ext4_writepages_result(inode, wbc, ret,
2969 nr_to_write - wbc->nr_to_write);
2970 percpu_up_read(&sbi->s_journal_flag_rwsem);
2971 return ret;
2972}
2973
2974static int ext4_nonda_switch(struct super_block *sb)
2975{
2976 s64 free_clusters, dirty_clusters;
2977 struct ext4_sb_info *sbi = EXT4_SB(sb);
2978
2979 /*
2980 * switch to non delalloc mode if we are running low
2981 * on free block. The free block accounting via percpu
2982 * counters can get slightly wrong with percpu_counter_batch getting
2983 * accumulated on each CPU without updating global counters
2984 * Delalloc need an accurate free block accounting. So switch
2985 * to non delalloc when we are near to error range.
2986 */
2987 free_clusters =
2988 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2989 dirty_clusters =
2990 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2991 /*
2992 * Start pushing delalloc when 1/2 of free blocks are dirty.
2993 */
2994 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2995 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2996
2997 if (2 * free_clusters < 3 * dirty_clusters ||
2998 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2999 /*
3000 * free block count is less than 150% of dirty blocks
3001 * or free blocks is less than watermark
3002 */
3003 return 1;
3004 }
3005 return 0;
3006}
3007
3008/* We always reserve for an inode update; the superblock could be there too */
3009static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3010{
3011 if (likely(ext4_has_feature_large_file(inode->i_sb)))
3012 return 1;
3013
3014 if (pos + len <= 0x7fffffffULL)
3015 return 1;
3016
3017 /* We might need to update the superblock to set LARGE_FILE */
3018 return 2;
3019}
3020
3021static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3022 loff_t pos, unsigned len, unsigned flags,
3023 struct page **pagep, void **fsdata)
3024{
3025 int ret, retries = 0;
3026 struct page *page;
3027 pgoff_t index;
3028 struct inode *inode = mapping->host;
3029 handle_t *handle;
3030
3031 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3032 return -EIO;
3033
3034 index = pos >> PAGE_SHIFT;
3035
3036 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
3037 ext4_verity_in_progress(inode)) {
3038 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3039 return ext4_write_begin(file, mapping, pos,
3040 len, flags, pagep, fsdata);
3041 }
3042 *fsdata = (void *)0;
3043 trace_ext4_da_write_begin(inode, pos, len, flags);
3044
3045 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3046 ret = ext4_da_write_inline_data_begin(mapping, inode,
3047 pos, len, flags,
3048 pagep, fsdata);
3049 if (ret < 0)
3050 return ret;
3051 if (ret == 1)
3052 return 0;
3053 }
3054
3055 /*
3056 * grab_cache_page_write_begin() can take a long time if the
3057 * system is thrashing due to memory pressure, or if the page
3058 * is being written back. So grab it first before we start
3059 * the transaction handle. This also allows us to allocate
3060 * the page (if needed) without using GFP_NOFS.
3061 */
3062retry_grab:
3063 page = grab_cache_page_write_begin(mapping, index, flags);
3064 if (!page)
3065 return -ENOMEM;
3066 unlock_page(page);
3067
3068 /*
3069 * With delayed allocation, we don't log the i_disksize update
3070 * if there is delayed block allocation. But we still need
3071 * to journalling the i_disksize update if writes to the end
3072 * of file which has an already mapped buffer.
3073 */
3074retry_journal:
3075 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3076 ext4_da_write_credits(inode, pos, len));
3077 if (IS_ERR(handle)) {
3078 put_page(page);
3079 return PTR_ERR(handle);
3080 }
3081
3082 lock_page(page);
3083 if (page->mapping != mapping) {
3084 /* The page got truncated from under us */
3085 unlock_page(page);
3086 put_page(page);
3087 ext4_journal_stop(handle);
3088 goto retry_grab;
3089 }
3090 /* In case writeback began while the page was unlocked */
3091 wait_for_stable_page(page);
3092
3093#ifdef CONFIG_FS_ENCRYPTION
3094 ret = ext4_block_write_begin(page, pos, len,
3095 ext4_da_get_block_prep);
3096#else
3097 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3098#endif
3099 if (ret < 0) {
3100 unlock_page(page);
3101 ext4_journal_stop(handle);
3102 /*
3103 * block_write_begin may have instantiated a few blocks
3104 * outside i_size. Trim these off again. Don't need
3105 * i_size_read because we hold i_mutex.
3106 */
3107 if (pos + len > inode->i_size)
3108 ext4_truncate_failed_write(inode);
3109
3110 if (ret == -ENOSPC &&
3111 ext4_should_retry_alloc(inode->i_sb, &retries))
3112 goto retry_journal;
3113
3114 put_page(page);
3115 return ret;
3116 }
3117
3118 *pagep = page;
3119 return ret;
3120}
3121
3122/*
3123 * Check if we should update i_disksize
3124 * when write to the end of file but not require block allocation
3125 */
3126static int ext4_da_should_update_i_disksize(struct page *page,
3127 unsigned long offset)
3128{
3129 struct buffer_head *bh;
3130 struct inode *inode = page->mapping->host;
3131 unsigned int idx;
3132 int i;
3133
3134 bh = page_buffers(page);
3135 idx = offset >> inode->i_blkbits;
3136
3137 for (i = 0; i < idx; i++)
3138 bh = bh->b_this_page;
3139
3140 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3141 return 0;
3142 return 1;
3143}
3144
3145static int ext4_da_write_end(struct file *file,
3146 struct address_space *mapping,
3147 loff_t pos, unsigned len, unsigned copied,
3148 struct page *page, void *fsdata)
3149{
3150 struct inode *inode = mapping->host;
3151 int ret = 0, ret2;
3152 handle_t *handle = ext4_journal_current_handle();
3153 loff_t new_i_size;
3154 unsigned long start, end;
3155 int write_mode = (int)(unsigned long)fsdata;
3156
3157 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3158 return ext4_write_end(file, mapping, pos,
3159 len, copied, page, fsdata);
3160
3161 trace_ext4_da_write_end(inode, pos, len, copied);
3162 start = pos & (PAGE_SIZE - 1);
3163 end = start + copied - 1;
3164
3165 /*
3166 * generic_write_end() will run mark_inode_dirty() if i_size
3167 * changes. So let's piggyback the i_disksize mark_inode_dirty
3168 * into that.
3169 */
3170 new_i_size = pos + copied;
3171 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3172 if (ext4_has_inline_data(inode) ||
3173 ext4_da_should_update_i_disksize(page, end)) {
3174 ext4_update_i_disksize(inode, new_i_size);
3175 /* We need to mark inode dirty even if
3176 * new_i_size is less that inode->i_size
3177 * bu greater than i_disksize.(hint delalloc)
3178 */
3179 ext4_mark_inode_dirty(handle, inode);
3180 }
3181 }
3182
3183 if (write_mode != CONVERT_INLINE_DATA &&
3184 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3185 ext4_has_inline_data(inode))
3186 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3187 page);
3188 else
3189 ret2 = generic_write_end(file, mapping, pos, len, copied,
3190 page, fsdata);
3191
3192 copied = ret2;
3193 if (ret2 < 0)
3194 ret = ret2;
3195 ret2 = ext4_journal_stop(handle);
3196 if (!ret)
3197 ret = ret2;
3198
3199 return ret ? ret : copied;
3200}
3201
3202/*
3203 * Force all delayed allocation blocks to be allocated for a given inode.
3204 */
3205int ext4_alloc_da_blocks(struct inode *inode)
3206{
3207 trace_ext4_alloc_da_blocks(inode);
3208
3209 if (!EXT4_I(inode)->i_reserved_data_blocks)
3210 return 0;
3211
3212 /*
3213 * We do something simple for now. The filemap_flush() will
3214 * also start triggering a write of the data blocks, which is
3215 * not strictly speaking necessary (and for users of
3216 * laptop_mode, not even desirable). However, to do otherwise
3217 * would require replicating code paths in:
3218 *
3219 * ext4_writepages() ->
3220 * write_cache_pages() ---> (via passed in callback function)
3221 * __mpage_da_writepage() -->
3222 * mpage_add_bh_to_extent()
3223 * mpage_da_map_blocks()
3224 *
3225 * The problem is that write_cache_pages(), located in
3226 * mm/page-writeback.c, marks pages clean in preparation for
3227 * doing I/O, which is not desirable if we're not planning on
3228 * doing I/O at all.
3229 *
3230 * We could call write_cache_pages(), and then redirty all of
3231 * the pages by calling redirty_page_for_writepage() but that
3232 * would be ugly in the extreme. So instead we would need to
3233 * replicate parts of the code in the above functions,
3234 * simplifying them because we wouldn't actually intend to
3235 * write out the pages, but rather only collect contiguous
3236 * logical block extents, call the multi-block allocator, and
3237 * then update the buffer heads with the block allocations.
3238 *
3239 * For now, though, we'll cheat by calling filemap_flush(),
3240 * which will map the blocks, and start the I/O, but not
3241 * actually wait for the I/O to complete.
3242 */
3243 return filemap_flush(inode->i_mapping);
3244}
3245
3246/*
3247 * bmap() is special. It gets used by applications such as lilo and by
3248 * the swapper to find the on-disk block of a specific piece of data.
3249 *
3250 * Naturally, this is dangerous if the block concerned is still in the
3251 * journal. If somebody makes a swapfile on an ext4 data-journaling
3252 * filesystem and enables swap, then they may get a nasty shock when the
3253 * data getting swapped to that swapfile suddenly gets overwritten by
3254 * the original zero's written out previously to the journal and
3255 * awaiting writeback in the kernel's buffer cache.
3256 *
3257 * So, if we see any bmap calls here on a modified, data-journaled file,
3258 * take extra steps to flush any blocks which might be in the cache.
3259 */
3260static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3261{
3262 struct inode *inode = mapping->host;
3263 journal_t *journal;
3264 int err;
3265
3266 /*
3267 * We can get here for an inline file via the FIBMAP ioctl
3268 */
3269 if (ext4_has_inline_data(inode))
3270 return 0;
3271
3272 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3273 test_opt(inode->i_sb, DELALLOC)) {
3274 /*
3275 * With delalloc we want to sync the file
3276 * so that we can make sure we allocate
3277 * blocks for file
3278 */
3279 filemap_write_and_wait(mapping);
3280 }
3281
3282 if (EXT4_JOURNAL(inode) &&
3283 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3284 /*
3285 * This is a REALLY heavyweight approach, but the use of
3286 * bmap on dirty files is expected to be extremely rare:
3287 * only if we run lilo or swapon on a freshly made file
3288 * do we expect this to happen.
3289 *
3290 * (bmap requires CAP_SYS_RAWIO so this does not
3291 * represent an unprivileged user DOS attack --- we'd be
3292 * in trouble if mortal users could trigger this path at
3293 * will.)
3294 *
3295 * NB. EXT4_STATE_JDATA is not set on files other than
3296 * regular files. If somebody wants to bmap a directory
3297 * or symlink and gets confused because the buffer
3298 * hasn't yet been flushed to disk, they deserve
3299 * everything they get.
3300 */
3301
3302 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3303 journal = EXT4_JOURNAL(inode);
3304 jbd2_journal_lock_updates(journal);
3305 err = jbd2_journal_flush(journal);
3306 jbd2_journal_unlock_updates(journal);
3307
3308 if (err)
3309 return 0;
3310 }
3311
3312 return generic_block_bmap(mapping, block, ext4_get_block);
3313}
3314
3315static int ext4_readpage(struct file *file, struct page *page)
3316{
3317 int ret = -EAGAIN;
3318 struct inode *inode = page->mapping->host;
3319
3320 trace_ext4_readpage(page);
3321
3322 if (ext4_has_inline_data(inode))
3323 ret = ext4_readpage_inline(inode, page);
3324
3325 if (ret == -EAGAIN)
3326 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3327 false);
3328
3329 return ret;
3330}
3331
3332static int
3333ext4_readpages(struct file *file, struct address_space *mapping,
3334 struct list_head *pages, unsigned nr_pages)
3335{
3336 struct inode *inode = mapping->host;
3337
3338 /* If the file has inline data, no need to do readpages. */
3339 if (ext4_has_inline_data(inode))
3340 return 0;
3341
3342 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3343}
3344
3345static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346 unsigned int length)
3347{
3348 trace_ext4_invalidatepage(page, offset, length);
3349
3350 /* No journalling happens on data buffers when this function is used */
3351 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3352
3353 block_invalidatepage(page, offset, length);
3354}
3355
3356static int __ext4_journalled_invalidatepage(struct page *page,
3357 unsigned int offset,
3358 unsigned int length)
3359{
3360 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3361
3362 trace_ext4_journalled_invalidatepage(page, offset, length);
3363
3364 /*
3365 * If it's a full truncate we just forget about the pending dirtying
3366 */
3367 if (offset == 0 && length == PAGE_SIZE)
3368 ClearPageChecked(page);
3369
3370 return jbd2_journal_invalidatepage(journal, page, offset, length);
3371}
3372
3373/* Wrapper for aops... */
3374static void ext4_journalled_invalidatepage(struct page *page,
3375 unsigned int offset,
3376 unsigned int length)
3377{
3378 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3379}
3380
3381static int ext4_releasepage(struct page *page, gfp_t wait)
3382{
3383 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3384
3385 trace_ext4_releasepage(page);
3386
3387 /* Page has dirty journalled data -> cannot release */
3388 if (PageChecked(page))
3389 return 0;
3390 if (journal)
3391 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3392 else
3393 return try_to_free_buffers(page);
3394}
3395
3396static bool ext4_inode_datasync_dirty(struct inode *inode)
3397{
3398 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3399
3400 if (journal)
3401 return !jbd2_transaction_committed(journal,
3402 EXT4_I(inode)->i_datasync_tid);
3403 /* Any metadata buffers to write? */
3404 if (!list_empty(&inode->i_mapping->private_list))
3405 return true;
3406 return inode->i_state & I_DIRTY_DATASYNC;
3407}
3408
3409static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3410 unsigned flags, struct iomap *iomap)
3411{
3412 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3413 unsigned int blkbits = inode->i_blkbits;
3414 unsigned long first_block, last_block;
3415 struct ext4_map_blocks map;
3416 bool delalloc = false;
3417 int ret;
3418
3419 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3420 return -EINVAL;
3421 first_block = offset >> blkbits;
3422 last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3423 EXT4_MAX_LOGICAL_BLOCK);
3424
3425 if (flags & IOMAP_REPORT) {
3426 if (ext4_has_inline_data(inode)) {
3427 ret = ext4_inline_data_iomap(inode, iomap);
3428 if (ret != -EAGAIN) {
3429 if (ret == 0 && offset >= iomap->length)
3430 ret = -ENOENT;
3431 return ret;
3432 }
3433 }
3434 } else {
3435 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3436 return -ERANGE;
3437 }
3438
3439 map.m_lblk = first_block;
3440 map.m_len = last_block - first_block + 1;
3441
3442 if (flags & IOMAP_REPORT) {
3443 ret = ext4_map_blocks(NULL, inode, &map, 0);
3444 if (ret < 0)
3445 return ret;
3446
3447 if (ret == 0) {
3448 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3449 struct extent_status es;
3450
3451 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3452 map.m_lblk, end, &es);
3453
3454 if (!es.es_len || es.es_lblk > end) {
3455 /* entire range is a hole */
3456 } else if (es.es_lblk > map.m_lblk) {
3457 /* range starts with a hole */
3458 map.m_len = es.es_lblk - map.m_lblk;
3459 } else {
3460 ext4_lblk_t offs = 0;
3461
3462 if (es.es_lblk < map.m_lblk)
3463 offs = map.m_lblk - es.es_lblk;
3464 map.m_lblk = es.es_lblk + offs;
3465 map.m_len = es.es_len - offs;
3466 delalloc = true;
3467 }
3468 }
3469 } else if (flags & IOMAP_WRITE) {
3470 int dio_credits;
3471 handle_t *handle;
3472 int retries = 0;
3473
3474 /* Trim mapping request to maximum we can map at once for DIO */
3475 if (map.m_len > DIO_MAX_BLOCKS)
3476 map.m_len = DIO_MAX_BLOCKS;
3477 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3478retry:
3479 /*
3480 * Either we allocate blocks and then we don't get unwritten
3481 * extent so we have reserved enough credits, or the blocks
3482 * are already allocated and unwritten and in that case
3483 * extent conversion fits in the credits as well.
3484 */
3485 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3486 dio_credits);
3487 if (IS_ERR(handle))
3488 return PTR_ERR(handle);
3489
3490 ret = ext4_map_blocks(handle, inode, &map,
3491 EXT4_GET_BLOCKS_CREATE_ZERO);
3492 if (ret < 0) {
3493 ext4_journal_stop(handle);
3494 if (ret == -ENOSPC &&
3495 ext4_should_retry_alloc(inode->i_sb, &retries))
3496 goto retry;
3497 return ret;
3498 }
3499
3500 /*
3501 * If we added blocks beyond i_size, we need to make sure they
3502 * will get truncated if we crash before updating i_size in
3503 * ext4_iomap_end(). For faults we don't need to do that (and
3504 * even cannot because for orphan list operations inode_lock is
3505 * required) - if we happen to instantiate block beyond i_size,
3506 * it is because we race with truncate which has already added
3507 * the inode to the orphan list.
3508 */
3509 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3510 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3511 int err;
3512
3513 err = ext4_orphan_add(handle, inode);
3514 if (err < 0) {
3515 ext4_journal_stop(handle);
3516 return err;
3517 }
3518 }
3519 ext4_journal_stop(handle);
3520 } else {
3521 ret = ext4_map_blocks(NULL, inode, &map, 0);
3522 if (ret < 0)
3523 return ret;
3524 }
3525
3526 iomap->flags = 0;
3527 if (ext4_inode_datasync_dirty(inode))
3528 iomap->flags |= IOMAP_F_DIRTY;
3529 iomap->bdev = inode->i_sb->s_bdev;
3530 iomap->dax_dev = sbi->s_daxdev;
3531 iomap->offset = (u64)first_block << blkbits;
3532 iomap->length = (u64)map.m_len << blkbits;
3533
3534 if (ret == 0) {
3535 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3536 iomap->addr = IOMAP_NULL_ADDR;
3537 } else {
3538 if (map.m_flags & EXT4_MAP_MAPPED) {
3539 iomap->type = IOMAP_MAPPED;
3540 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3541 iomap->type = IOMAP_UNWRITTEN;
3542 } else {
3543 WARN_ON_ONCE(1);
3544 return -EIO;
3545 }
3546 iomap->addr = (u64)map.m_pblk << blkbits;
3547 }
3548
3549 if (map.m_flags & EXT4_MAP_NEW)
3550 iomap->flags |= IOMAP_F_NEW;
3551
3552 return 0;
3553}
3554
3555static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3556 ssize_t written, unsigned flags, struct iomap *iomap)
3557{
3558 int ret = 0;
3559 handle_t *handle;
3560 int blkbits = inode->i_blkbits;
3561 bool truncate = false;
3562
3563 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3564 return 0;
3565
3566 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3567 if (IS_ERR(handle)) {
3568 ret = PTR_ERR(handle);
3569 goto orphan_del;
3570 }
3571 if (ext4_update_inode_size(inode, offset + written))
3572 ext4_mark_inode_dirty(handle, inode);
3573 /*
3574 * We may need to truncate allocated but not written blocks beyond EOF.
3575 */
3576 if (iomap->offset + iomap->length >
3577 ALIGN(inode->i_size, 1 << blkbits)) {
3578 ext4_lblk_t written_blk, end_blk;
3579
3580 written_blk = (offset + written) >> blkbits;
3581 end_blk = (offset + length) >> blkbits;
3582 if (written_blk < end_blk && ext4_can_truncate(inode))
3583 truncate = true;
3584 }
3585 /*
3586 * Remove inode from orphan list if we were extending a inode and
3587 * everything went fine.
3588 */
3589 if (!truncate && inode->i_nlink &&
3590 !list_empty(&EXT4_I(inode)->i_orphan))
3591 ext4_orphan_del(handle, inode);
3592 ext4_journal_stop(handle);
3593 if (truncate) {
3594 ext4_truncate_failed_write(inode);
3595orphan_del:
3596 /*
3597 * If truncate failed early the inode might still be on the
3598 * orphan list; we need to make sure the inode is removed from
3599 * the orphan list in that case.
3600 */
3601 if (inode->i_nlink)
3602 ext4_orphan_del(NULL, inode);
3603 }
3604 return ret;
3605}
3606
3607const struct iomap_ops ext4_iomap_ops = {
3608 .iomap_begin = ext4_iomap_begin,
3609 .iomap_end = ext4_iomap_end,
3610};
3611
3612static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3613 ssize_t size, void *private)
3614{
3615 ext4_io_end_t *io_end = private;
3616
3617 /* if not async direct IO just return */
3618 if (!io_end)
3619 return 0;
3620
3621 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3622 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3623 io_end, io_end->inode->i_ino, iocb, offset, size);
3624
3625 /*
3626 * Error during AIO DIO. We cannot convert unwritten extents as the
3627 * data was not written. Just clear the unwritten flag and drop io_end.
3628 */
3629 if (size <= 0) {
3630 ext4_clear_io_unwritten_flag(io_end);
3631 size = 0;
3632 }
3633 io_end->offset = offset;
3634 io_end->size = size;
3635 ext4_put_io_end(io_end);
3636
3637 return 0;
3638}
3639
3640/*
3641 * Handling of direct IO writes.
3642 *
3643 * For ext4 extent files, ext4 will do direct-io write even to holes,
3644 * preallocated extents, and those write extend the file, no need to
3645 * fall back to buffered IO.
3646 *
3647 * For holes, we fallocate those blocks, mark them as unwritten
3648 * If those blocks were preallocated, we mark sure they are split, but
3649 * still keep the range to write as unwritten.
3650 *
3651 * The unwritten extents will be converted to written when DIO is completed.
3652 * For async direct IO, since the IO may still pending when return, we
3653 * set up an end_io call back function, which will do the conversion
3654 * when async direct IO completed.
3655 *
3656 * If the O_DIRECT write will extend the file then add this inode to the
3657 * orphan list. So recovery will truncate it back to the original size
3658 * if the machine crashes during the write.
3659 *
3660 */
3661static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3662{
3663 struct file *file = iocb->ki_filp;
3664 struct inode *inode = file->f_mapping->host;
3665 struct ext4_inode_info *ei = EXT4_I(inode);
3666 ssize_t ret;
3667 loff_t offset = iocb->ki_pos;
3668 size_t count = iov_iter_count(iter);
3669 int overwrite = 0;
3670 get_block_t *get_block_func = NULL;
3671 int dio_flags = 0;
3672 loff_t final_size = offset + count;
3673 int orphan = 0;
3674 handle_t *handle;
3675
3676 if (final_size > inode->i_size || final_size > ei->i_disksize) {
3677 /* Credits for sb + inode write */
3678 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3679 if (IS_ERR(handle)) {
3680 ret = PTR_ERR(handle);
3681 goto out;
3682 }
3683 ret = ext4_orphan_add(handle, inode);
3684 if (ret) {
3685 ext4_journal_stop(handle);
3686 goto out;
3687 }
3688 orphan = 1;
3689 ext4_update_i_disksize(inode, inode->i_size);
3690 ext4_journal_stop(handle);
3691 }
3692
3693 BUG_ON(iocb->private == NULL);
3694
3695 /*
3696 * Make all waiters for direct IO properly wait also for extent
3697 * conversion. This also disallows race between truncate() and
3698 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3699 */
3700 inode_dio_begin(inode);
3701
3702 /* If we do a overwrite dio, i_mutex locking can be released */
3703 overwrite = *((int *)iocb->private);
3704
3705 if (overwrite)
3706 inode_unlock(inode);
3707
3708 /*
3709 * For extent mapped files we could direct write to holes and fallocate.
3710 *
3711 * Allocated blocks to fill the hole are marked as unwritten to prevent
3712 * parallel buffered read to expose the stale data before DIO complete
3713 * the data IO.
3714 *
3715 * As to previously fallocated extents, ext4 get_block will just simply
3716 * mark the buffer mapped but still keep the extents unwritten.
3717 *
3718 * For non AIO case, we will convert those unwritten extents to written
3719 * after return back from blockdev_direct_IO. That way we save us from
3720 * allocating io_end structure and also the overhead of offloading
3721 * the extent convertion to a workqueue.
3722 *
3723 * For async DIO, the conversion needs to be deferred when the
3724 * IO is completed. The ext4 end_io callback function will be
3725 * called to take care of the conversion work. Here for async
3726 * case, we allocate an io_end structure to hook to the iocb.
3727 */
3728 iocb->private = NULL;
3729 if (overwrite)
3730 get_block_func = ext4_dio_get_block_overwrite;
3731 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3732 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3733 get_block_func = ext4_dio_get_block;
3734 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3735 } else if (is_sync_kiocb(iocb)) {
3736 get_block_func = ext4_dio_get_block_unwritten_sync;
3737 dio_flags = DIO_LOCKING;
3738 } else {
3739 get_block_func = ext4_dio_get_block_unwritten_async;
3740 dio_flags = DIO_LOCKING;
3741 }
3742 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3743 get_block_func, ext4_end_io_dio, NULL,
3744 dio_flags);
3745
3746 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3747 EXT4_STATE_DIO_UNWRITTEN)) {
3748 int err;
3749 /*
3750 * for non AIO case, since the IO is already
3751 * completed, we could do the conversion right here
3752 */
3753 err = ext4_convert_unwritten_extents(NULL, inode,
3754 offset, ret);
3755 if (err < 0)
3756 ret = err;
3757 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3758 }
3759
3760 inode_dio_end(inode);
3761 /* take i_mutex locking again if we do a ovewrite dio */
3762 if (overwrite)
3763 inode_lock(inode);
3764
3765 if (ret < 0 && final_size > inode->i_size)
3766 ext4_truncate_failed_write(inode);
3767
3768 /* Handle extending of i_size after direct IO write */
3769 if (orphan) {
3770 int err;
3771
3772 /* Credits for sb + inode write */
3773 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3774 if (IS_ERR(handle)) {
3775 /*
3776 * We wrote the data but cannot extend
3777 * i_size. Bail out. In async io case, we do
3778 * not return error here because we have
3779 * already submmitted the corresponding
3780 * bio. Returning error here makes the caller
3781 * think that this IO is done and failed
3782 * resulting in race with bio's completion
3783 * handler.
3784 */
3785 if (!ret)
3786 ret = PTR_ERR(handle);
3787 if (inode->i_nlink)
3788 ext4_orphan_del(NULL, inode);
3789
3790 goto out;
3791 }
3792 if (inode->i_nlink)
3793 ext4_orphan_del(handle, inode);
3794 if (ret > 0) {
3795 loff_t end = offset + ret;
3796 if (end > inode->i_size || end > ei->i_disksize) {
3797 ext4_update_i_disksize(inode, end);
3798 if (end > inode->i_size)
3799 i_size_write(inode, end);
3800 /*
3801 * We're going to return a positive `ret'
3802 * here due to non-zero-length I/O, so there's
3803 * no way of reporting error returns from
3804 * ext4_mark_inode_dirty() to userspace. So
3805 * ignore it.
3806 */
3807 ext4_mark_inode_dirty(handle, inode);
3808 }
3809 }
3810 err = ext4_journal_stop(handle);
3811 if (ret == 0)
3812 ret = err;
3813 }
3814out:
3815 return ret;
3816}
3817
3818static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3819{
3820 struct address_space *mapping = iocb->ki_filp->f_mapping;
3821 struct inode *inode = mapping->host;
3822 size_t count = iov_iter_count(iter);
3823 ssize_t ret;
3824
3825 /*
3826 * Shared inode_lock is enough for us - it protects against concurrent
3827 * writes & truncates and since we take care of writing back page cache,
3828 * we are protected against page writeback as well.
3829 */
3830 inode_lock_shared(inode);
3831 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3832 iocb->ki_pos + count - 1);
3833 if (ret)
3834 goto out_unlock;
3835 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3836 iter, ext4_dio_get_block, NULL, NULL, 0);
3837out_unlock:
3838 inode_unlock_shared(inode);
3839 return ret;
3840}
3841
3842static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3843{
3844 struct file *file = iocb->ki_filp;
3845 struct inode *inode = file->f_mapping->host;
3846 size_t count = iov_iter_count(iter);
3847 loff_t offset = iocb->ki_pos;
3848 ssize_t ret;
3849
3850#ifdef CONFIG_FS_ENCRYPTION
3851 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3852 return 0;
3853#endif
3854 if (fsverity_active(inode))
3855 return 0;
3856
3857 /*
3858 * If we are doing data journalling we don't support O_DIRECT
3859 */
3860 if (ext4_should_journal_data(inode))
3861 return 0;
3862
3863 /* Let buffer I/O handle the inline data case. */
3864 if (ext4_has_inline_data(inode))
3865 return 0;
3866
3867 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3868 if (iov_iter_rw(iter) == READ)
3869 ret = ext4_direct_IO_read(iocb, iter);
3870 else
3871 ret = ext4_direct_IO_write(iocb, iter);
3872 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3873 return ret;
3874}
3875
3876/*
3877 * Pages can be marked dirty completely asynchronously from ext4's journalling
3878 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3879 * much here because ->set_page_dirty is called under VFS locks. The page is
3880 * not necessarily locked.
3881 *
3882 * We cannot just dirty the page and leave attached buffers clean, because the
3883 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3884 * or jbddirty because all the journalling code will explode.
3885 *
3886 * So what we do is to mark the page "pending dirty" and next time writepage
3887 * is called, propagate that into the buffers appropriately.
3888 */
3889static int ext4_journalled_set_page_dirty(struct page *page)
3890{
3891 SetPageChecked(page);
3892 return __set_page_dirty_nobuffers(page);
3893}
3894
3895static int ext4_set_page_dirty(struct page *page)
3896{
3897 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3898 WARN_ON_ONCE(!page_has_buffers(page));
3899 return __set_page_dirty_buffers(page);
3900}
3901
3902static const struct address_space_operations ext4_aops = {
3903 .readpage = ext4_readpage,
3904 .readpages = ext4_readpages,
3905 .writepage = ext4_writepage,
3906 .writepages = ext4_writepages,
3907 .write_begin = ext4_write_begin,
3908 .write_end = ext4_write_end,
3909 .set_page_dirty = ext4_set_page_dirty,
3910 .bmap = ext4_bmap,
3911 .invalidatepage = ext4_invalidatepage,
3912 .releasepage = ext4_releasepage,
3913 .direct_IO = ext4_direct_IO,
3914 .migratepage = buffer_migrate_page,
3915 .is_partially_uptodate = block_is_partially_uptodate,
3916 .error_remove_page = generic_error_remove_page,
3917};
3918
3919static const struct address_space_operations ext4_journalled_aops = {
3920 .readpage = ext4_readpage,
3921 .readpages = ext4_readpages,
3922 .writepage = ext4_writepage,
3923 .writepages = ext4_writepages,
3924 .write_begin = ext4_write_begin,
3925 .write_end = ext4_journalled_write_end,
3926 .set_page_dirty = ext4_journalled_set_page_dirty,
3927 .bmap = ext4_bmap,
3928 .invalidatepage = ext4_journalled_invalidatepage,
3929 .releasepage = ext4_releasepage,
3930 .direct_IO = ext4_direct_IO,
3931 .is_partially_uptodate = block_is_partially_uptodate,
3932 .error_remove_page = generic_error_remove_page,
3933};
3934
3935static const struct address_space_operations ext4_da_aops = {
3936 .readpage = ext4_readpage,
3937 .readpages = ext4_readpages,
3938 .writepage = ext4_writepage,
3939 .writepages = ext4_writepages,
3940 .write_begin = ext4_da_write_begin,
3941 .write_end = ext4_da_write_end,
3942 .set_page_dirty = ext4_set_page_dirty,
3943 .bmap = ext4_bmap,
3944 .invalidatepage = ext4_invalidatepage,
3945 .releasepage = ext4_releasepage,
3946 .direct_IO = ext4_direct_IO,
3947 .migratepage = buffer_migrate_page,
3948 .is_partially_uptodate = block_is_partially_uptodate,
3949 .error_remove_page = generic_error_remove_page,
3950};
3951
3952static const struct address_space_operations ext4_dax_aops = {
3953 .writepages = ext4_dax_writepages,
3954 .direct_IO = noop_direct_IO,
3955 .set_page_dirty = noop_set_page_dirty,
3956 .bmap = ext4_bmap,
3957 .invalidatepage = noop_invalidatepage,
3958};
3959
3960void ext4_set_aops(struct inode *inode)
3961{
3962 switch (ext4_inode_journal_mode(inode)) {
3963 case EXT4_INODE_ORDERED_DATA_MODE:
3964 case EXT4_INODE_WRITEBACK_DATA_MODE:
3965 break;
3966 case EXT4_INODE_JOURNAL_DATA_MODE:
3967 inode->i_mapping->a_ops = &ext4_journalled_aops;
3968 return;
3969 default:
3970 BUG();
3971 }
3972 if (IS_DAX(inode))
3973 inode->i_mapping->a_ops = &ext4_dax_aops;
3974 else if (test_opt(inode->i_sb, DELALLOC))
3975 inode->i_mapping->a_ops = &ext4_da_aops;
3976 else
3977 inode->i_mapping->a_ops = &ext4_aops;
3978}
3979
3980static int __ext4_block_zero_page_range(handle_t *handle,
3981 struct address_space *mapping, loff_t from, loff_t length)
3982{
3983 ext4_fsblk_t index = from >> PAGE_SHIFT;
3984 unsigned offset = from & (PAGE_SIZE-1);
3985 unsigned blocksize, pos;
3986 ext4_lblk_t iblock;
3987 struct inode *inode = mapping->host;
3988 struct buffer_head *bh;
3989 struct page *page;
3990 int err = 0;
3991
3992 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3993 mapping_gfp_constraint(mapping, ~__GFP_FS));
3994 if (!page)
3995 return -ENOMEM;
3996
3997 blocksize = inode->i_sb->s_blocksize;
3998
3999 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4000
4001 if (!page_has_buffers(page))
4002 create_empty_buffers(page, blocksize, 0);
4003
4004 /* Find the buffer that contains "offset" */
4005 bh = page_buffers(page);
4006 pos = blocksize;
4007 while (offset >= pos) {
4008 bh = bh->b_this_page;
4009 iblock++;
4010 pos += blocksize;
4011 }
4012 if (buffer_freed(bh)) {
4013 BUFFER_TRACE(bh, "freed: skip");
4014 goto unlock;
4015 }
4016 if (!buffer_mapped(bh)) {
4017 BUFFER_TRACE(bh, "unmapped");
4018 ext4_get_block(inode, iblock, bh, 0);
4019 /* unmapped? It's a hole - nothing to do */
4020 if (!buffer_mapped(bh)) {
4021 BUFFER_TRACE(bh, "still unmapped");
4022 goto unlock;
4023 }
4024 }
4025
4026 /* Ok, it's mapped. Make sure it's up-to-date */
4027 if (PageUptodate(page))
4028 set_buffer_uptodate(bh);
4029
4030 if (!buffer_uptodate(bh)) {
4031 err = -EIO;
4032 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4033 wait_on_buffer(bh);
4034 /* Uhhuh. Read error. Complain and punt. */
4035 if (!buffer_uptodate(bh))
4036 goto unlock;
4037 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4038 /* We expect the key to be set. */
4039 BUG_ON(!fscrypt_has_encryption_key(inode));
4040 WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
4041 page, blocksize, bh_offset(bh)));
4042 }
4043 }
4044 if (ext4_should_journal_data(inode)) {
4045 BUFFER_TRACE(bh, "get write access");
4046 err = ext4_journal_get_write_access(handle, bh);
4047 if (err)
4048 goto unlock;
4049 }
4050 zero_user(page, offset, length);
4051 BUFFER_TRACE(bh, "zeroed end of block");
4052
4053 if (ext4_should_journal_data(inode)) {
4054 err = ext4_handle_dirty_metadata(handle, inode, bh);
4055 } else {
4056 err = 0;
4057 mark_buffer_dirty(bh);
4058 if (ext4_should_order_data(inode))
4059 err = ext4_jbd2_inode_add_write(handle, inode, from,
4060 length);
4061 }
4062
4063unlock:
4064 unlock_page(page);
4065 put_page(page);
4066 return err;
4067}
4068
4069/*
4070 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4071 * starting from file offset 'from'. The range to be zero'd must
4072 * be contained with in one block. If the specified range exceeds
4073 * the end of the block it will be shortened to end of the block
4074 * that cooresponds to 'from'
4075 */
4076static int ext4_block_zero_page_range(handle_t *handle,
4077 struct address_space *mapping, loff_t from, loff_t length)
4078{
4079 struct inode *inode = mapping->host;
4080 unsigned offset = from & (PAGE_SIZE-1);
4081 unsigned blocksize = inode->i_sb->s_blocksize;
4082 unsigned max = blocksize - (offset & (blocksize - 1));
4083
4084 /*
4085 * correct length if it does not fall between
4086 * 'from' and the end of the block
4087 */
4088 if (length > max || length < 0)
4089 length = max;
4090
4091 if (IS_DAX(inode)) {
4092 return iomap_zero_range(inode, from, length, NULL,
4093 &ext4_iomap_ops);
4094 }
4095 return __ext4_block_zero_page_range(handle, mapping, from, length);
4096}
4097
4098/*
4099 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4100 * up to the end of the block which corresponds to `from'.
4101 * This required during truncate. We need to physically zero the tail end
4102 * of that block so it doesn't yield old data if the file is later grown.
4103 */
4104static int ext4_block_truncate_page(handle_t *handle,
4105 struct address_space *mapping, loff_t from)
4106{
4107 unsigned offset = from & (PAGE_SIZE-1);
4108 unsigned length;
4109 unsigned blocksize;
4110 struct inode *inode = mapping->host;
4111
4112 /* If we are processing an encrypted inode during orphan list handling */
4113 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4114 return 0;
4115
4116 blocksize = inode->i_sb->s_blocksize;
4117 length = blocksize - (offset & (blocksize - 1));
4118
4119 return ext4_block_zero_page_range(handle, mapping, from, length);
4120}
4121
4122int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4123 loff_t lstart, loff_t length)
4124{
4125 struct super_block *sb = inode->i_sb;
4126 struct address_space *mapping = inode->i_mapping;
4127 unsigned partial_start, partial_end;
4128 ext4_fsblk_t start, end;
4129 loff_t byte_end = (lstart + length - 1);
4130 int err = 0;
4131
4132 partial_start = lstart & (sb->s_blocksize - 1);
4133 partial_end = byte_end & (sb->s_blocksize - 1);
4134
4135 start = lstart >> sb->s_blocksize_bits;
4136 end = byte_end >> sb->s_blocksize_bits;
4137
4138 /* Handle partial zero within the single block */
4139 if (start == end &&
4140 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4141 err = ext4_block_zero_page_range(handle, mapping,
4142 lstart, length);
4143 return err;
4144 }
4145 /* Handle partial zero out on the start of the range */
4146 if (partial_start) {
4147 err = ext4_block_zero_page_range(handle, mapping,
4148 lstart, sb->s_blocksize);
4149 if (err)
4150 return err;
4151 }
4152 /* Handle partial zero out on the end of the range */
4153 if (partial_end != sb->s_blocksize - 1)
4154 err = ext4_block_zero_page_range(handle, mapping,
4155 byte_end - partial_end,
4156 partial_end + 1);
4157 return err;
4158}
4159
4160int ext4_can_truncate(struct inode *inode)
4161{
4162 if (S_ISREG(inode->i_mode))
4163 return 1;
4164 if (S_ISDIR(inode->i_mode))
4165 return 1;
4166 if (S_ISLNK(inode->i_mode))
4167 return !ext4_inode_is_fast_symlink(inode);
4168 return 0;
4169}
4170
4171/*
4172 * We have to make sure i_disksize gets properly updated before we truncate
4173 * page cache due to hole punching or zero range. Otherwise i_disksize update
4174 * can get lost as it may have been postponed to submission of writeback but
4175 * that will never happen after we truncate page cache.
4176 */
4177int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4178 loff_t len)
4179{
4180 handle_t *handle;
4181 loff_t size = i_size_read(inode);
4182
4183 WARN_ON(!inode_is_locked(inode));
4184 if (offset > size || offset + len < size)
4185 return 0;
4186
4187 if (EXT4_I(inode)->i_disksize >= size)
4188 return 0;
4189
4190 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4191 if (IS_ERR(handle))
4192 return PTR_ERR(handle);
4193 ext4_update_i_disksize(inode, size);
4194 ext4_mark_inode_dirty(handle, inode);
4195 ext4_journal_stop(handle);
4196
4197 return 0;
4198}
4199
4200static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4201{
4202 up_write(&ei->i_mmap_sem);
4203 schedule();
4204 down_write(&ei->i_mmap_sem);
4205}
4206
4207int ext4_break_layouts(struct inode *inode)
4208{
4209 struct ext4_inode_info *ei = EXT4_I(inode);
4210 struct page *page;
4211 int error;
4212
4213 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4214 return -EINVAL;
4215
4216 do {
4217 page = dax_layout_busy_page(inode->i_mapping);
4218 if (!page)
4219 return 0;
4220
4221 error = ___wait_var_event(&page->_refcount,
4222 atomic_read(&page->_refcount) == 1,
4223 TASK_INTERRUPTIBLE, 0, 0,
4224 ext4_wait_dax_page(ei));
4225 } while (error == 0);
4226
4227 return error;
4228}
4229
4230/*
4231 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4232 * associated with the given offset and length
4233 *
4234 * @inode: File inode
4235 * @offset: The offset where the hole will begin
4236 * @len: The length of the hole
4237 *
4238 * Returns: 0 on success or negative on failure
4239 */
4240
4241int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4242{
4243 struct super_block *sb = inode->i_sb;
4244 ext4_lblk_t first_block, stop_block;
4245 struct address_space *mapping = inode->i_mapping;
4246 loff_t first_block_offset, last_block_offset;
4247 handle_t *handle;
4248 unsigned int credits;
4249 int ret = 0;
4250
4251 if (!S_ISREG(inode->i_mode))
4252 return -EOPNOTSUPP;
4253
4254 trace_ext4_punch_hole(inode, offset, length, 0);
4255
4256 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4257 if (ext4_has_inline_data(inode)) {
4258 down_write(&EXT4_I(inode)->i_mmap_sem);
4259 ret = ext4_convert_inline_data(inode);
4260 up_write(&EXT4_I(inode)->i_mmap_sem);
4261 if (ret)
4262 return ret;
4263 }
4264
4265 /*
4266 * Write out all dirty pages to avoid race conditions
4267 * Then release them.
4268 */
4269 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4270 ret = filemap_write_and_wait_range(mapping, offset,
4271 offset + length - 1);
4272 if (ret)
4273 return ret;
4274 }
4275
4276 inode_lock(inode);
4277
4278 /* No need to punch hole beyond i_size */
4279 if (offset >= inode->i_size)
4280 goto out_mutex;
4281
4282 /*
4283 * If the hole extends beyond i_size, set the hole
4284 * to end after the page that contains i_size
4285 */
4286 if (offset + length > inode->i_size) {
4287 length = inode->i_size +
4288 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4289 offset;
4290 }
4291
4292 if (offset & (sb->s_blocksize - 1) ||
4293 (offset + length) & (sb->s_blocksize - 1)) {
4294 /*
4295 * Attach jinode to inode for jbd2 if we do any zeroing of
4296 * partial block
4297 */
4298 ret = ext4_inode_attach_jinode(inode);
4299 if (ret < 0)
4300 goto out_mutex;
4301
4302 }
4303
4304 /* Wait all existing dio workers, newcomers will block on i_mutex */
4305 inode_dio_wait(inode);
4306
4307 /*
4308 * Prevent page faults from reinstantiating pages we have released from
4309 * page cache.
4310 */
4311 down_write(&EXT4_I(inode)->i_mmap_sem);
4312
4313 ret = ext4_break_layouts(inode);
4314 if (ret)
4315 goto out_dio;
4316
4317 first_block_offset = round_up(offset, sb->s_blocksize);
4318 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4319
4320 /* Now release the pages and zero block aligned part of pages*/
4321 if (last_block_offset > first_block_offset) {
4322 ret = ext4_update_disksize_before_punch(inode, offset, length);
4323 if (ret)
4324 goto out_dio;
4325 truncate_pagecache_range(inode, first_block_offset,
4326 last_block_offset);
4327 }
4328
4329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4330 credits = ext4_writepage_trans_blocks(inode);
4331 else
4332 credits = ext4_blocks_for_truncate(inode);
4333 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4334 if (IS_ERR(handle)) {
4335 ret = PTR_ERR(handle);
4336 ext4_std_error(sb, ret);
4337 goto out_dio;
4338 }
4339
4340 ret = ext4_zero_partial_blocks(handle, inode, offset,
4341 length);
4342 if (ret)
4343 goto out_stop;
4344
4345 first_block = (offset + sb->s_blocksize - 1) >>
4346 EXT4_BLOCK_SIZE_BITS(sb);
4347 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4348
4349 /* If there are blocks to remove, do it */
4350 if (stop_block > first_block) {
4351
4352 down_write(&EXT4_I(inode)->i_data_sem);
4353 ext4_discard_preallocations(inode);
4354
4355 ret = ext4_es_remove_extent(inode, first_block,
4356 stop_block - first_block);
4357 if (ret) {
4358 up_write(&EXT4_I(inode)->i_data_sem);
4359 goto out_stop;
4360 }
4361
4362 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4363 ret = ext4_ext_remove_space(inode, first_block,
4364 stop_block - 1);
4365 else
4366 ret = ext4_ind_remove_space(handle, inode, first_block,
4367 stop_block);
4368
4369 up_write(&EXT4_I(inode)->i_data_sem);
4370 }
4371 if (IS_SYNC(inode))
4372 ext4_handle_sync(handle);
4373
4374 inode->i_mtime = inode->i_ctime = current_time(inode);
4375 ext4_mark_inode_dirty(handle, inode);
4376 if (ret >= 0)
4377 ext4_update_inode_fsync_trans(handle, inode, 1);
4378out_stop:
4379 ext4_journal_stop(handle);
4380out_dio:
4381 up_write(&EXT4_I(inode)->i_mmap_sem);
4382out_mutex:
4383 inode_unlock(inode);
4384 return ret;
4385}
4386
4387int ext4_inode_attach_jinode(struct inode *inode)
4388{
4389 struct ext4_inode_info *ei = EXT4_I(inode);
4390 struct jbd2_inode *jinode;
4391
4392 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4393 return 0;
4394
4395 jinode = jbd2_alloc_inode(GFP_KERNEL);
4396 spin_lock(&inode->i_lock);
4397 if (!ei->jinode) {
4398 if (!jinode) {
4399 spin_unlock(&inode->i_lock);
4400 return -ENOMEM;
4401 }
4402 ei->jinode = jinode;
4403 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4404 jinode = NULL;
4405 }
4406 spin_unlock(&inode->i_lock);
4407 if (unlikely(jinode != NULL))
4408 jbd2_free_inode(jinode);
4409 return 0;
4410}
4411
4412/*
4413 * ext4_truncate()
4414 *
4415 * We block out ext4_get_block() block instantiations across the entire
4416 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4417 * simultaneously on behalf of the same inode.
4418 *
4419 * As we work through the truncate and commit bits of it to the journal there
4420 * is one core, guiding principle: the file's tree must always be consistent on
4421 * disk. We must be able to restart the truncate after a crash.
4422 *
4423 * The file's tree may be transiently inconsistent in memory (although it
4424 * probably isn't), but whenever we close off and commit a journal transaction,
4425 * the contents of (the filesystem + the journal) must be consistent and
4426 * restartable. It's pretty simple, really: bottom up, right to left (although
4427 * left-to-right works OK too).
4428 *
4429 * Note that at recovery time, journal replay occurs *before* the restart of
4430 * truncate against the orphan inode list.
4431 *
4432 * The committed inode has the new, desired i_size (which is the same as
4433 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4434 * that this inode's truncate did not complete and it will again call
4435 * ext4_truncate() to have another go. So there will be instantiated blocks
4436 * to the right of the truncation point in a crashed ext4 filesystem. But
4437 * that's fine - as long as they are linked from the inode, the post-crash
4438 * ext4_truncate() run will find them and release them.
4439 */
4440int ext4_truncate(struct inode *inode)
4441{
4442 struct ext4_inode_info *ei = EXT4_I(inode);
4443 unsigned int credits;
4444 int err = 0;
4445 handle_t *handle;
4446 struct address_space *mapping = inode->i_mapping;
4447
4448 /*
4449 * There is a possibility that we're either freeing the inode
4450 * or it's a completely new inode. In those cases we might not
4451 * have i_mutex locked because it's not necessary.
4452 */
4453 if (!(inode->i_state & (I_NEW|I_FREEING)))
4454 WARN_ON(!inode_is_locked(inode));
4455 trace_ext4_truncate_enter(inode);
4456
4457 if (!ext4_can_truncate(inode))
4458 return 0;
4459
4460 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4461
4462 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4463 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4464
4465 if (ext4_has_inline_data(inode)) {
4466 int has_inline = 1;
4467
4468 err = ext4_inline_data_truncate(inode, &has_inline);
4469 if (err)
4470 return err;
4471 if (has_inline)
4472 return 0;
4473 }
4474
4475 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4476 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4477 if (ext4_inode_attach_jinode(inode) < 0)
4478 return 0;
4479 }
4480
4481 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4482 credits = ext4_writepage_trans_blocks(inode);
4483 else
4484 credits = ext4_blocks_for_truncate(inode);
4485
4486 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4487 if (IS_ERR(handle))
4488 return PTR_ERR(handle);
4489
4490 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4491 ext4_block_truncate_page(handle, mapping, inode->i_size);
4492
4493 /*
4494 * We add the inode to the orphan list, so that if this
4495 * truncate spans multiple transactions, and we crash, we will
4496 * resume the truncate when the filesystem recovers. It also
4497 * marks the inode dirty, to catch the new size.
4498 *
4499 * Implication: the file must always be in a sane, consistent
4500 * truncatable state while each transaction commits.
4501 */
4502 err = ext4_orphan_add(handle, inode);
4503 if (err)
4504 goto out_stop;
4505
4506 down_write(&EXT4_I(inode)->i_data_sem);
4507
4508 ext4_discard_preallocations(inode);
4509
4510 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4511 err = ext4_ext_truncate(handle, inode);
4512 else
4513 ext4_ind_truncate(handle, inode);
4514
4515 up_write(&ei->i_data_sem);
4516 if (err)
4517 goto out_stop;
4518
4519 if (IS_SYNC(inode))
4520 ext4_handle_sync(handle);
4521
4522out_stop:
4523 /*
4524 * If this was a simple ftruncate() and the file will remain alive,
4525 * then we need to clear up the orphan record which we created above.
4526 * However, if this was a real unlink then we were called by
4527 * ext4_evict_inode(), and we allow that function to clean up the
4528 * orphan info for us.
4529 */
4530 if (inode->i_nlink)
4531 ext4_orphan_del(handle, inode);
4532
4533 inode->i_mtime = inode->i_ctime = current_time(inode);
4534 ext4_mark_inode_dirty(handle, inode);
4535 ext4_journal_stop(handle);
4536
4537 trace_ext4_truncate_exit(inode);
4538 return err;
4539}
4540
4541/*
4542 * ext4_get_inode_loc returns with an extra refcount against the inode's
4543 * underlying buffer_head on success. If 'in_mem' is true, we have all
4544 * data in memory that is needed to recreate the on-disk version of this
4545 * inode.
4546 */
4547static int __ext4_get_inode_loc(struct inode *inode,
4548 struct ext4_iloc *iloc, int in_mem)
4549{
4550 struct ext4_group_desc *gdp;
4551 struct buffer_head *bh;
4552 struct super_block *sb = inode->i_sb;
4553 ext4_fsblk_t block;
4554 struct blk_plug plug;
4555 int inodes_per_block, inode_offset;
4556
4557 iloc->bh = NULL;
4558 if (inode->i_ino < EXT4_ROOT_INO ||
4559 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4560 return -EFSCORRUPTED;
4561
4562 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4563 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4564 if (!gdp)
4565 return -EIO;
4566
4567 /*
4568 * Figure out the offset within the block group inode table
4569 */
4570 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4571 inode_offset = ((inode->i_ino - 1) %
4572 EXT4_INODES_PER_GROUP(sb));
4573 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4574 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4575
4576 bh = sb_getblk(sb, block);
4577 if (unlikely(!bh))
4578 return -ENOMEM;
4579 if (!buffer_uptodate(bh)) {
4580 lock_buffer(bh);
4581
4582 /*
4583 * If the buffer has the write error flag, we have failed
4584 * to write out another inode in the same block. In this
4585 * case, we don't have to read the block because we may
4586 * read the old inode data successfully.
4587 */
4588 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4589 set_buffer_uptodate(bh);
4590
4591 if (buffer_uptodate(bh)) {
4592 /* someone brought it uptodate while we waited */
4593 unlock_buffer(bh);
4594 goto has_buffer;
4595 }
4596
4597 /*
4598 * If we have all information of the inode in memory and this
4599 * is the only valid inode in the block, we need not read the
4600 * block.
4601 */
4602 if (in_mem) {
4603 struct buffer_head *bitmap_bh;
4604 int i, start;
4605
4606 start = inode_offset & ~(inodes_per_block - 1);
4607
4608 /* Is the inode bitmap in cache? */
4609 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4610 if (unlikely(!bitmap_bh))
4611 goto make_io;
4612
4613 /*
4614 * If the inode bitmap isn't in cache then the
4615 * optimisation may end up performing two reads instead
4616 * of one, so skip it.
4617 */
4618 if (!buffer_uptodate(bitmap_bh)) {
4619 brelse(bitmap_bh);
4620 goto make_io;
4621 }
4622 for (i = start; i < start + inodes_per_block; i++) {
4623 if (i == inode_offset)
4624 continue;
4625 if (ext4_test_bit(i, bitmap_bh->b_data))
4626 break;
4627 }
4628 brelse(bitmap_bh);
4629 if (i == start + inodes_per_block) {
4630 /* all other inodes are free, so skip I/O */
4631 memset(bh->b_data, 0, bh->b_size);
4632 set_buffer_uptodate(bh);
4633 unlock_buffer(bh);
4634 goto has_buffer;
4635 }
4636 }
4637
4638make_io:
4639 /*
4640 * If we need to do any I/O, try to pre-readahead extra
4641 * blocks from the inode table.
4642 */
4643 blk_start_plug(&plug);
4644 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4645 ext4_fsblk_t b, end, table;
4646 unsigned num;
4647 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4648
4649 table = ext4_inode_table(sb, gdp);
4650 /* s_inode_readahead_blks is always a power of 2 */
4651 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4652 if (table > b)
4653 b = table;
4654 end = b + ra_blks;
4655 num = EXT4_INODES_PER_GROUP(sb);
4656 if (ext4_has_group_desc_csum(sb))
4657 num -= ext4_itable_unused_count(sb, gdp);
4658 table += num / inodes_per_block;
4659 if (end > table)
4660 end = table;
4661 while (b <= end)
4662 sb_breadahead(sb, b++);
4663 }
4664
4665 /*
4666 * There are other valid inodes in the buffer, this inode
4667 * has in-inode xattrs, or we don't have this inode in memory.
4668 * Read the block from disk.
4669 */
4670 trace_ext4_load_inode(inode);
4671 get_bh(bh);
4672 bh->b_end_io = end_buffer_read_sync;
4673 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4674 blk_finish_plug(&plug);
4675 wait_on_buffer(bh);
4676 if (!buffer_uptodate(bh)) {
4677 EXT4_ERROR_INODE_BLOCK(inode, block,
4678 "unable to read itable block");
4679 brelse(bh);
4680 return -EIO;
4681 }
4682 }
4683has_buffer:
4684 iloc->bh = bh;
4685 return 0;
4686}
4687
4688int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4689{
4690 /* We have all inode data except xattrs in memory here. */
4691 return __ext4_get_inode_loc(inode, iloc,
4692 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4693}
4694
4695static bool ext4_should_use_dax(struct inode *inode)
4696{
4697 if (!test_opt(inode->i_sb, DAX))
4698 return false;
4699 if (!S_ISREG(inode->i_mode))
4700 return false;
4701 if (ext4_should_journal_data(inode))
4702 return false;
4703 if (ext4_has_inline_data(inode))
4704 return false;
4705 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4706 return false;
4707 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4708 return false;
4709 return true;
4710}
4711
4712void ext4_set_inode_flags(struct inode *inode)
4713{
4714 unsigned int flags = EXT4_I(inode)->i_flags;
4715 unsigned int new_fl = 0;
4716
4717 if (flags & EXT4_SYNC_FL)
4718 new_fl |= S_SYNC;
4719 if (flags & EXT4_APPEND_FL)
4720 new_fl |= S_APPEND;
4721 if (flags & EXT4_IMMUTABLE_FL)
4722 new_fl |= S_IMMUTABLE;
4723 if (flags & EXT4_NOATIME_FL)
4724 new_fl |= S_NOATIME;
4725 if (flags & EXT4_DIRSYNC_FL)
4726 new_fl |= S_DIRSYNC;
4727 if (ext4_should_use_dax(inode))
4728 new_fl |= S_DAX;
4729 if (flags & EXT4_ENCRYPT_FL)
4730 new_fl |= S_ENCRYPTED;
4731 if (flags & EXT4_CASEFOLD_FL)
4732 new_fl |= S_CASEFOLD;
4733 if (flags & EXT4_VERITY_FL)
4734 new_fl |= S_VERITY;
4735 inode_set_flags(inode, new_fl,
4736 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4737 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4738}
4739
4740static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4741 struct ext4_inode_info *ei)
4742{
4743 blkcnt_t i_blocks ;
4744 struct inode *inode = &(ei->vfs_inode);
4745 struct super_block *sb = inode->i_sb;
4746
4747 if (ext4_has_feature_huge_file(sb)) {
4748 /* we are using combined 48 bit field */
4749 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4750 le32_to_cpu(raw_inode->i_blocks_lo);
4751 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4752 /* i_blocks represent file system block size */
4753 return i_blocks << (inode->i_blkbits - 9);
4754 } else {
4755 return i_blocks;
4756 }
4757 } else {
4758 return le32_to_cpu(raw_inode->i_blocks_lo);
4759 }
4760}
4761
4762static inline int ext4_iget_extra_inode(struct inode *inode,
4763 struct ext4_inode *raw_inode,
4764 struct ext4_inode_info *ei)
4765{
4766 __le32 *magic = (void *)raw_inode +
4767 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4768
4769 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4770 EXT4_INODE_SIZE(inode->i_sb) &&
4771 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4772 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4773 return ext4_find_inline_data_nolock(inode);
4774 } else
4775 EXT4_I(inode)->i_inline_off = 0;
4776 return 0;
4777}
4778
4779int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4780{
4781 if (!ext4_has_feature_project(inode->i_sb))
4782 return -EOPNOTSUPP;
4783 *projid = EXT4_I(inode)->i_projid;
4784 return 0;
4785}
4786
4787/*
4788 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4789 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4790 * set.
4791 */
4792static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4793{
4794 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4795 inode_set_iversion_raw(inode, val);
4796 else
4797 inode_set_iversion_queried(inode, val);
4798}
4799static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4800{
4801 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4802 return inode_peek_iversion_raw(inode);
4803 else
4804 return inode_peek_iversion(inode);
4805}
4806
4807struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4808 ext4_iget_flags flags, const char *function,
4809 unsigned int line)
4810{
4811 struct ext4_iloc iloc;
4812 struct ext4_inode *raw_inode;
4813 struct ext4_inode_info *ei;
4814 struct inode *inode;
4815 journal_t *journal = EXT4_SB(sb)->s_journal;
4816 long ret;
4817 loff_t size;
4818 int block;
4819 uid_t i_uid;
4820 gid_t i_gid;
4821 projid_t i_projid;
4822
4823 if ((!(flags & EXT4_IGET_SPECIAL) &&
4824 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4825 (ino < EXT4_ROOT_INO) ||
4826 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4827 if (flags & EXT4_IGET_HANDLE)
4828 return ERR_PTR(-ESTALE);
4829 __ext4_error(sb, function, line,
4830 "inode #%lu: comm %s: iget: illegal inode #",
4831 ino, current->comm);
4832 return ERR_PTR(-EFSCORRUPTED);
4833 }
4834
4835 inode = iget_locked(sb, ino);
4836 if (!inode)
4837 return ERR_PTR(-ENOMEM);
4838 if (!(inode->i_state & I_NEW))
4839 return inode;
4840
4841 ei = EXT4_I(inode);
4842 iloc.bh = NULL;
4843
4844 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4845 if (ret < 0)
4846 goto bad_inode;
4847 raw_inode = ext4_raw_inode(&iloc);
4848
4849 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4850 ext4_error_inode(inode, function, line, 0,
4851 "iget: root inode unallocated");
4852 ret = -EFSCORRUPTED;
4853 goto bad_inode;
4854 }
4855
4856 if ((flags & EXT4_IGET_HANDLE) &&
4857 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4858 ret = -ESTALE;
4859 goto bad_inode;
4860 }
4861
4862 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4863 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4864 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4865 EXT4_INODE_SIZE(inode->i_sb) ||
4866 (ei->i_extra_isize & 3)) {
4867 ext4_error_inode(inode, function, line, 0,
4868 "iget: bad extra_isize %u "
4869 "(inode size %u)",
4870 ei->i_extra_isize,
4871 EXT4_INODE_SIZE(inode->i_sb));
4872 ret = -EFSCORRUPTED;
4873 goto bad_inode;
4874 }
4875 } else
4876 ei->i_extra_isize = 0;
4877
4878 /* Precompute checksum seed for inode metadata */
4879 if (ext4_has_metadata_csum(sb)) {
4880 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4881 __u32 csum;
4882 __le32 inum = cpu_to_le32(inode->i_ino);
4883 __le32 gen = raw_inode->i_generation;
4884 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4885 sizeof(inum));
4886 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4887 sizeof(gen));
4888 }
4889
4890 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4891 ext4_error_inode(inode, function, line, 0,
4892 "iget: checksum invalid");
4893 ret = -EFSBADCRC;
4894 goto bad_inode;
4895 }
4896
4897 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4898 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4899 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4900 if (ext4_has_feature_project(sb) &&
4901 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4902 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4903 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4904 else
4905 i_projid = EXT4_DEF_PROJID;
4906
4907 if (!(test_opt(inode->i_sb, NO_UID32))) {
4908 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4909 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4910 }
4911 i_uid_write(inode, i_uid);
4912 i_gid_write(inode, i_gid);
4913 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4914 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4915
4916 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4917 ei->i_inline_off = 0;
4918 ei->i_dir_start_lookup = 0;
4919 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4920 /* We now have enough fields to check if the inode was active or not.
4921 * This is needed because nfsd might try to access dead inodes
4922 * the test is that same one that e2fsck uses
4923 * NeilBrown 1999oct15
4924 */
4925 if (inode->i_nlink == 0) {
4926 if ((inode->i_mode == 0 ||
4927 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4928 ino != EXT4_BOOT_LOADER_INO) {
4929 /* this inode is deleted */
4930 ret = -ESTALE;
4931 goto bad_inode;
4932 }
4933 /* The only unlinked inodes we let through here have
4934 * valid i_mode and are being read by the orphan
4935 * recovery code: that's fine, we're about to complete
4936 * the process of deleting those.
4937 * OR it is the EXT4_BOOT_LOADER_INO which is
4938 * not initialized on a new filesystem. */
4939 }
4940 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4941 ext4_set_inode_flags(inode);
4942 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4943 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4944 if (ext4_has_feature_64bit(sb))
4945 ei->i_file_acl |=
4946 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4947 inode->i_size = ext4_isize(sb, raw_inode);
4948 if ((size = i_size_read(inode)) < 0) {
4949 ext4_error_inode(inode, function, line, 0,
4950 "iget: bad i_size value: %lld", size);
4951 ret = -EFSCORRUPTED;
4952 goto bad_inode;
4953 }
4954 ei->i_disksize = inode->i_size;
4955#ifdef CONFIG_QUOTA
4956 ei->i_reserved_quota = 0;
4957#endif
4958 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4959 ei->i_block_group = iloc.block_group;
4960 ei->i_last_alloc_group = ~0;
4961 /*
4962 * NOTE! The in-memory inode i_data array is in little-endian order
4963 * even on big-endian machines: we do NOT byteswap the block numbers!
4964 */
4965 for (block = 0; block < EXT4_N_BLOCKS; block++)
4966 ei->i_data[block] = raw_inode->i_block[block];
4967 INIT_LIST_HEAD(&ei->i_orphan);
4968
4969 /*
4970 * Set transaction id's of transactions that have to be committed
4971 * to finish f[data]sync. We set them to currently running transaction
4972 * as we cannot be sure that the inode or some of its metadata isn't
4973 * part of the transaction - the inode could have been reclaimed and
4974 * now it is reread from disk.
4975 */
4976 if (journal) {
4977 transaction_t *transaction;
4978 tid_t tid;
4979
4980 read_lock(&journal->j_state_lock);
4981 if (journal->j_running_transaction)
4982 transaction = journal->j_running_transaction;
4983 else
4984 transaction = journal->j_committing_transaction;
4985 if (transaction)
4986 tid = transaction->t_tid;
4987 else
4988 tid = journal->j_commit_sequence;
4989 read_unlock(&journal->j_state_lock);
4990 ei->i_sync_tid = tid;
4991 ei->i_datasync_tid = tid;
4992 }
4993
4994 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4995 if (ei->i_extra_isize == 0) {
4996 /* The extra space is currently unused. Use it. */
4997 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4998 ei->i_extra_isize = sizeof(struct ext4_inode) -
4999 EXT4_GOOD_OLD_INODE_SIZE;
5000 } else {
5001 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5002 if (ret)
5003 goto bad_inode;
5004 }
5005 }
5006
5007 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5008 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5009 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5010 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5011
5012 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5013 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5014
5015 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5016 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5017 ivers |=
5018 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5019 }
5020 ext4_inode_set_iversion_queried(inode, ivers);
5021 }
5022
5023 ret = 0;
5024 if (ei->i_file_acl &&
5025 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5026 ext4_error_inode(inode, function, line, 0,
5027 "iget: bad extended attribute block %llu",
5028 ei->i_file_acl);
5029 ret = -EFSCORRUPTED;
5030 goto bad_inode;
5031 } else if (!ext4_has_inline_data(inode)) {
5032 /* validate the block references in the inode */
5033 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5034 (S_ISLNK(inode->i_mode) &&
5035 !ext4_inode_is_fast_symlink(inode))) {
5036 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5037 ret = ext4_ext_check_inode(inode);
5038 else
5039 ret = ext4_ind_check_inode(inode);
5040 }
5041 }
5042 if (ret)
5043 goto bad_inode;
5044
5045 if (S_ISREG(inode->i_mode)) {
5046 inode->i_op = &ext4_file_inode_operations;
5047 inode->i_fop = &ext4_file_operations;
5048 ext4_set_aops(inode);
5049 } else if (S_ISDIR(inode->i_mode)) {
5050 inode->i_op = &ext4_dir_inode_operations;
5051 inode->i_fop = &ext4_dir_operations;
5052 } else if (S_ISLNK(inode->i_mode)) {
5053 /* VFS does not allow setting these so must be corruption */
5054 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5055 ext4_error_inode(inode, function, line, 0,
5056 "iget: immutable or append flags "
5057 "not allowed on symlinks");
5058 ret = -EFSCORRUPTED;
5059 goto bad_inode;
5060 }
5061 if (IS_ENCRYPTED(inode)) {
5062 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5063 ext4_set_aops(inode);
5064 } else if (ext4_inode_is_fast_symlink(inode)) {
5065 inode->i_link = (char *)ei->i_data;
5066 inode->i_op = &ext4_fast_symlink_inode_operations;
5067 nd_terminate_link(ei->i_data, inode->i_size,
5068 sizeof(ei->i_data) - 1);
5069 } else {
5070 inode->i_op = &ext4_symlink_inode_operations;
5071 ext4_set_aops(inode);
5072 }
5073 inode_nohighmem(inode);
5074 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5075 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5076 inode->i_op = &ext4_special_inode_operations;
5077 if (raw_inode->i_block[0])
5078 init_special_inode(inode, inode->i_mode,
5079 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5080 else
5081 init_special_inode(inode, inode->i_mode,
5082 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5083 } else if (ino == EXT4_BOOT_LOADER_INO) {
5084 make_bad_inode(inode);
5085 } else {
5086 ret = -EFSCORRUPTED;
5087 ext4_error_inode(inode, function, line, 0,
5088 "iget: bogus i_mode (%o)", inode->i_mode);
5089 goto bad_inode;
5090 }
5091 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5092 ext4_error_inode(inode, function, line, 0,
5093 "casefold flag without casefold feature");
5094 brelse(iloc.bh);
5095
5096 unlock_new_inode(inode);
5097 return inode;
5098
5099bad_inode:
5100 brelse(iloc.bh);
5101 iget_failed(inode);
5102 return ERR_PTR(ret);
5103}
5104
5105static int ext4_inode_blocks_set(handle_t *handle,
5106 struct ext4_inode *raw_inode,
5107 struct ext4_inode_info *ei)
5108{
5109 struct inode *inode = &(ei->vfs_inode);
5110 u64 i_blocks = inode->i_blocks;
5111 struct super_block *sb = inode->i_sb;
5112
5113 if (i_blocks <= ~0U) {
5114 /*
5115 * i_blocks can be represented in a 32 bit variable
5116 * as multiple of 512 bytes
5117 */
5118 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5119 raw_inode->i_blocks_high = 0;
5120 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5121 return 0;
5122 }
5123 if (!ext4_has_feature_huge_file(sb))
5124 return -EFBIG;
5125
5126 if (i_blocks <= 0xffffffffffffULL) {
5127 /*
5128 * i_blocks can be represented in a 48 bit variable
5129 * as multiple of 512 bytes
5130 */
5131 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5132 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5133 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5134 } else {
5135 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5136 /* i_block is stored in file system block size */
5137 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5138 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5139 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5140 }
5141 return 0;
5142}
5143
5144struct other_inode {
5145 unsigned long orig_ino;
5146 struct ext4_inode *raw_inode;
5147};
5148
5149static int other_inode_match(struct inode * inode, unsigned long ino,
5150 void *data)
5151{
5152 struct other_inode *oi = (struct other_inode *) data;
5153
5154 if ((inode->i_ino != ino) ||
5155 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5156 I_DIRTY_INODE)) ||
5157 ((inode->i_state & I_DIRTY_TIME) == 0))
5158 return 0;
5159 spin_lock(&inode->i_lock);
5160 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5161 I_DIRTY_INODE)) == 0) &&
5162 (inode->i_state & I_DIRTY_TIME)) {
5163 struct ext4_inode_info *ei = EXT4_I(inode);
5164
5165 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5166 spin_unlock(&inode->i_lock);
5167
5168 spin_lock(&ei->i_raw_lock);
5169 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5170 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5171 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5172 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5173 spin_unlock(&ei->i_raw_lock);
5174 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5175 return -1;
5176 }
5177 spin_unlock(&inode->i_lock);
5178 return -1;
5179}
5180
5181/*
5182 * Opportunistically update the other time fields for other inodes in
5183 * the same inode table block.
5184 */
5185static void ext4_update_other_inodes_time(struct super_block *sb,
5186 unsigned long orig_ino, char *buf)
5187{
5188 struct other_inode oi;
5189 unsigned long ino;
5190 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5191 int inode_size = EXT4_INODE_SIZE(sb);
5192
5193 oi.orig_ino = orig_ino;
5194 /*
5195 * Calculate the first inode in the inode table block. Inode
5196 * numbers are one-based. That is, the first inode in a block
5197 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5198 */
5199 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5200 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5201 if (ino == orig_ino)
5202 continue;
5203 oi.raw_inode = (struct ext4_inode *) buf;
5204 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5205 }
5206}
5207
5208/*
5209 * Post the struct inode info into an on-disk inode location in the
5210 * buffer-cache. This gobbles the caller's reference to the
5211 * buffer_head in the inode location struct.
5212 *
5213 * The caller must have write access to iloc->bh.
5214 */
5215static int ext4_do_update_inode(handle_t *handle,
5216 struct inode *inode,
5217 struct ext4_iloc *iloc)
5218{
5219 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5220 struct ext4_inode_info *ei = EXT4_I(inode);
5221 struct buffer_head *bh = iloc->bh;
5222 struct super_block *sb = inode->i_sb;
5223 int err = 0, rc, block;
5224 int need_datasync = 0, set_large_file = 0;
5225 uid_t i_uid;
5226 gid_t i_gid;
5227 projid_t i_projid;
5228
5229 spin_lock(&ei->i_raw_lock);
5230
5231 /* For fields not tracked in the in-memory inode,
5232 * initialise them to zero for new inodes. */
5233 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5234 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5235
5236 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5237 i_uid = i_uid_read(inode);
5238 i_gid = i_gid_read(inode);
5239 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5240 if (!(test_opt(inode->i_sb, NO_UID32))) {
5241 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5242 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5243/*
5244 * Fix up interoperability with old kernels. Otherwise, old inodes get
5245 * re-used with the upper 16 bits of the uid/gid intact
5246 */
5247 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5248 raw_inode->i_uid_high = 0;
5249 raw_inode->i_gid_high = 0;
5250 } else {
5251 raw_inode->i_uid_high =
5252 cpu_to_le16(high_16_bits(i_uid));
5253 raw_inode->i_gid_high =
5254 cpu_to_le16(high_16_bits(i_gid));
5255 }
5256 } else {
5257 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5258 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5259 raw_inode->i_uid_high = 0;
5260 raw_inode->i_gid_high = 0;
5261 }
5262 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5263
5264 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5265 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5266 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5267 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5268
5269 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5270 if (err) {
5271 spin_unlock(&ei->i_raw_lock);
5272 goto out_brelse;
5273 }
5274 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5275 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5276 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5277 raw_inode->i_file_acl_high =
5278 cpu_to_le16(ei->i_file_acl >> 32);
5279 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5280 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5281 ext4_isize_set(raw_inode, ei->i_disksize);
5282 need_datasync = 1;
5283 }
5284 if (ei->i_disksize > 0x7fffffffULL) {
5285 if (!ext4_has_feature_large_file(sb) ||
5286 EXT4_SB(sb)->s_es->s_rev_level ==
5287 cpu_to_le32(EXT4_GOOD_OLD_REV))
5288 set_large_file = 1;
5289 }
5290 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5291 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5292 if (old_valid_dev(inode->i_rdev)) {
5293 raw_inode->i_block[0] =
5294 cpu_to_le32(old_encode_dev(inode->i_rdev));
5295 raw_inode->i_block[1] = 0;
5296 } else {
5297 raw_inode->i_block[0] = 0;
5298 raw_inode->i_block[1] =
5299 cpu_to_le32(new_encode_dev(inode->i_rdev));
5300 raw_inode->i_block[2] = 0;
5301 }
5302 } else if (!ext4_has_inline_data(inode)) {
5303 for (block = 0; block < EXT4_N_BLOCKS; block++)
5304 raw_inode->i_block[block] = ei->i_data[block];
5305 }
5306
5307 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5308 u64 ivers = ext4_inode_peek_iversion(inode);
5309
5310 raw_inode->i_disk_version = cpu_to_le32(ivers);
5311 if (ei->i_extra_isize) {
5312 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5313 raw_inode->i_version_hi =
5314 cpu_to_le32(ivers >> 32);
5315 raw_inode->i_extra_isize =
5316 cpu_to_le16(ei->i_extra_isize);
5317 }
5318 }
5319
5320 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5321 i_projid != EXT4_DEF_PROJID);
5322
5323 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5324 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5325 raw_inode->i_projid = cpu_to_le32(i_projid);
5326
5327 ext4_inode_csum_set(inode, raw_inode, ei);
5328 spin_unlock(&ei->i_raw_lock);
5329 if (inode->i_sb->s_flags & SB_LAZYTIME)
5330 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5331 bh->b_data);
5332
5333 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5334 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5335 if (!err)
5336 err = rc;
5337 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5338 if (set_large_file) {
5339 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5340 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5341 if (err)
5342 goto out_brelse;
5343 ext4_set_feature_large_file(sb);
5344 ext4_handle_sync(handle);
5345 err = ext4_handle_dirty_super(handle, sb);
5346 }
5347 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5348out_brelse:
5349 brelse(bh);
5350 ext4_std_error(inode->i_sb, err);
5351 return err;
5352}
5353
5354/*
5355 * ext4_write_inode()
5356 *
5357 * We are called from a few places:
5358 *
5359 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5360 * Here, there will be no transaction running. We wait for any running
5361 * transaction to commit.
5362 *
5363 * - Within flush work (sys_sync(), kupdate and such).
5364 * We wait on commit, if told to.
5365 *
5366 * - Within iput_final() -> write_inode_now()
5367 * We wait on commit, if told to.
5368 *
5369 * In all cases it is actually safe for us to return without doing anything,
5370 * because the inode has been copied into a raw inode buffer in
5371 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5372 * writeback.
5373 *
5374 * Note that we are absolutely dependent upon all inode dirtiers doing the
5375 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5376 * which we are interested.
5377 *
5378 * It would be a bug for them to not do this. The code:
5379 *
5380 * mark_inode_dirty(inode)
5381 * stuff();
5382 * inode->i_size = expr;
5383 *
5384 * is in error because write_inode() could occur while `stuff()' is running,
5385 * and the new i_size will be lost. Plus the inode will no longer be on the
5386 * superblock's dirty inode list.
5387 */
5388int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5389{
5390 int err;
5391
5392 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5393 sb_rdonly(inode->i_sb))
5394 return 0;
5395
5396 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5397 return -EIO;
5398
5399 if (EXT4_SB(inode->i_sb)->s_journal) {
5400 if (ext4_journal_current_handle()) {
5401 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5402 dump_stack();
5403 return -EIO;
5404 }
5405
5406 /*
5407 * No need to force transaction in WB_SYNC_NONE mode. Also
5408 * ext4_sync_fs() will force the commit after everything is
5409 * written.
5410 */
5411 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5412 return 0;
5413
5414 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5415 EXT4_I(inode)->i_sync_tid);
5416 } else {
5417 struct ext4_iloc iloc;
5418
5419 err = __ext4_get_inode_loc(inode, &iloc, 0);
5420 if (err)
5421 return err;
5422 /*
5423 * sync(2) will flush the whole buffer cache. No need to do
5424 * it here separately for each inode.
5425 */
5426 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5427 sync_dirty_buffer(iloc.bh);
5428 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5429 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5430 "IO error syncing inode");
5431 err = -EIO;
5432 }
5433 brelse(iloc.bh);
5434 }
5435 return err;
5436}
5437
5438/*
5439 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5440 * buffers that are attached to a page stradding i_size and are undergoing
5441 * commit. In that case we have to wait for commit to finish and try again.
5442 */
5443static void ext4_wait_for_tail_page_commit(struct inode *inode)
5444{
5445 struct page *page;
5446 unsigned offset;
5447 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5448 tid_t commit_tid = 0;
5449 int ret;
5450
5451 offset = inode->i_size & (PAGE_SIZE - 1);
5452 /*
5453 * All buffers in the last page remain valid? Then there's nothing to
5454 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5455 * blocksize case
5456 */
5457 if (offset > PAGE_SIZE - i_blocksize(inode))
5458 return;
5459 while (1) {
5460 page = find_lock_page(inode->i_mapping,
5461 inode->i_size >> PAGE_SHIFT);
5462 if (!page)
5463 return;
5464 ret = __ext4_journalled_invalidatepage(page, offset,
5465 PAGE_SIZE - offset);
5466 unlock_page(page);
5467 put_page(page);
5468 if (ret != -EBUSY)
5469 return;
5470 commit_tid = 0;
5471 read_lock(&journal->j_state_lock);
5472 if (journal->j_committing_transaction)
5473 commit_tid = journal->j_committing_transaction->t_tid;
5474 read_unlock(&journal->j_state_lock);
5475 if (commit_tid)
5476 jbd2_log_wait_commit(journal, commit_tid);
5477 }
5478}
5479
5480/*
5481 * ext4_setattr()
5482 *
5483 * Called from notify_change.
5484 *
5485 * We want to trap VFS attempts to truncate the file as soon as
5486 * possible. In particular, we want to make sure that when the VFS
5487 * shrinks i_size, we put the inode on the orphan list and modify
5488 * i_disksize immediately, so that during the subsequent flushing of
5489 * dirty pages and freeing of disk blocks, we can guarantee that any
5490 * commit will leave the blocks being flushed in an unused state on
5491 * disk. (On recovery, the inode will get truncated and the blocks will
5492 * be freed, so we have a strong guarantee that no future commit will
5493 * leave these blocks visible to the user.)
5494 *
5495 * Another thing we have to assure is that if we are in ordered mode
5496 * and inode is still attached to the committing transaction, we must
5497 * we start writeout of all the dirty pages which are being truncated.
5498 * This way we are sure that all the data written in the previous
5499 * transaction are already on disk (truncate waits for pages under
5500 * writeback).
5501 *
5502 * Called with inode->i_mutex down.
5503 */
5504int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5505{
5506 struct inode *inode = d_inode(dentry);
5507 int error, rc = 0;
5508 int orphan = 0;
5509 const unsigned int ia_valid = attr->ia_valid;
5510
5511 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5512 return -EIO;
5513
5514 if (unlikely(IS_IMMUTABLE(inode)))
5515 return -EPERM;
5516
5517 if (unlikely(IS_APPEND(inode) &&
5518 (ia_valid & (ATTR_MODE | ATTR_UID |
5519 ATTR_GID | ATTR_TIMES_SET))))
5520 return -EPERM;
5521
5522 error = setattr_prepare(dentry, attr);
5523 if (error)
5524 return error;
5525
5526 error = fscrypt_prepare_setattr(dentry, attr);
5527 if (error)
5528 return error;
5529
5530 error = fsverity_prepare_setattr(dentry, attr);
5531 if (error)
5532 return error;
5533
5534 if (is_quota_modification(inode, attr)) {
5535 error = dquot_initialize(inode);
5536 if (error)
5537 return error;
5538 }
5539 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5540 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5541 handle_t *handle;
5542
5543 /* (user+group)*(old+new) structure, inode write (sb,
5544 * inode block, ? - but truncate inode update has it) */
5545 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5546 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5547 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5548 if (IS_ERR(handle)) {
5549 error = PTR_ERR(handle);
5550 goto err_out;
5551 }
5552
5553 /* dquot_transfer() calls back ext4_get_inode_usage() which
5554 * counts xattr inode references.
5555 */
5556 down_read(&EXT4_I(inode)->xattr_sem);
5557 error = dquot_transfer(inode, attr);
5558 up_read(&EXT4_I(inode)->xattr_sem);
5559
5560 if (error) {
5561 ext4_journal_stop(handle);
5562 return error;
5563 }
5564 /* Update corresponding info in inode so that everything is in
5565 * one transaction */
5566 if (attr->ia_valid & ATTR_UID)
5567 inode->i_uid = attr->ia_uid;
5568 if (attr->ia_valid & ATTR_GID)
5569 inode->i_gid = attr->ia_gid;
5570 error = ext4_mark_inode_dirty(handle, inode);
5571 ext4_journal_stop(handle);
5572 }
5573
5574 if (attr->ia_valid & ATTR_SIZE) {
5575 handle_t *handle;
5576 loff_t oldsize = inode->i_size;
5577 int shrink = (attr->ia_size < inode->i_size);
5578
5579 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5580 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5581
5582 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5583 return -EFBIG;
5584 }
5585 if (!S_ISREG(inode->i_mode))
5586 return -EINVAL;
5587
5588 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5589 inode_inc_iversion(inode);
5590
5591 if (shrink) {
5592 if (ext4_should_order_data(inode)) {
5593 error = ext4_begin_ordered_truncate(inode,
5594 attr->ia_size);
5595 if (error)
5596 goto err_out;
5597 }
5598 /*
5599 * Blocks are going to be removed from the inode. Wait
5600 * for dio in flight.
5601 */
5602 inode_dio_wait(inode);
5603 }
5604
5605 down_write(&EXT4_I(inode)->i_mmap_sem);
5606
5607 rc = ext4_break_layouts(inode);
5608 if (rc) {
5609 up_write(&EXT4_I(inode)->i_mmap_sem);
5610 return rc;
5611 }
5612
5613 if (attr->ia_size != inode->i_size) {
5614 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5615 if (IS_ERR(handle)) {
5616 error = PTR_ERR(handle);
5617 goto out_mmap_sem;
5618 }
5619 if (ext4_handle_valid(handle) && shrink) {
5620 error = ext4_orphan_add(handle, inode);
5621 orphan = 1;
5622 }
5623 /*
5624 * Update c/mtime on truncate up, ext4_truncate() will
5625 * update c/mtime in shrink case below
5626 */
5627 if (!shrink) {
5628 inode->i_mtime = current_time(inode);
5629 inode->i_ctime = inode->i_mtime;
5630 }
5631 down_write(&EXT4_I(inode)->i_data_sem);
5632 EXT4_I(inode)->i_disksize = attr->ia_size;
5633 rc = ext4_mark_inode_dirty(handle, inode);
5634 if (!error)
5635 error = rc;
5636 /*
5637 * We have to update i_size under i_data_sem together
5638 * with i_disksize to avoid races with writeback code
5639 * running ext4_wb_update_i_disksize().
5640 */
5641 if (!error)
5642 i_size_write(inode, attr->ia_size);
5643 up_write(&EXT4_I(inode)->i_data_sem);
5644 ext4_journal_stop(handle);
5645 if (error)
5646 goto out_mmap_sem;
5647 if (!shrink) {
5648 pagecache_isize_extended(inode, oldsize,
5649 inode->i_size);
5650 } else if (ext4_should_journal_data(inode)) {
5651 ext4_wait_for_tail_page_commit(inode);
5652 }
5653 }
5654
5655 /*
5656 * Truncate pagecache after we've waited for commit
5657 * in data=journal mode to make pages freeable.
5658 */
5659 truncate_pagecache(inode, inode->i_size);
5660 /*
5661 * Call ext4_truncate() even if i_size didn't change to
5662 * truncate possible preallocated blocks.
5663 */
5664 if (attr->ia_size <= oldsize) {
5665 rc = ext4_truncate(inode);
5666 if (rc)
5667 error = rc;
5668 }
5669out_mmap_sem:
5670 up_write(&EXT4_I(inode)->i_mmap_sem);
5671 }
5672
5673 if (!error) {
5674 setattr_copy(inode, attr);
5675 mark_inode_dirty(inode);
5676 }
5677
5678 /*
5679 * If the call to ext4_truncate failed to get a transaction handle at
5680 * all, we need to clean up the in-core orphan list manually.
5681 */
5682 if (orphan && inode->i_nlink)
5683 ext4_orphan_del(NULL, inode);
5684
5685 if (!error && (ia_valid & ATTR_MODE))
5686 rc = posix_acl_chmod(inode, inode->i_mode);
5687
5688err_out:
5689 ext4_std_error(inode->i_sb, error);
5690 if (!error)
5691 error = rc;
5692 return error;
5693}
5694
5695int ext4_getattr(const struct path *path, struct kstat *stat,
5696 u32 request_mask, unsigned int query_flags)
5697{
5698 struct inode *inode = d_inode(path->dentry);
5699 struct ext4_inode *raw_inode;
5700 struct ext4_inode_info *ei = EXT4_I(inode);
5701 unsigned int flags;
5702
5703 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5704 stat->result_mask |= STATX_BTIME;
5705 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5706 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5707 }
5708
5709 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5710 if (flags & EXT4_APPEND_FL)
5711 stat->attributes |= STATX_ATTR_APPEND;
5712 if (flags & EXT4_COMPR_FL)
5713 stat->attributes |= STATX_ATTR_COMPRESSED;
5714 if (flags & EXT4_ENCRYPT_FL)
5715 stat->attributes |= STATX_ATTR_ENCRYPTED;
5716 if (flags & EXT4_IMMUTABLE_FL)
5717 stat->attributes |= STATX_ATTR_IMMUTABLE;
5718 if (flags & EXT4_NODUMP_FL)
5719 stat->attributes |= STATX_ATTR_NODUMP;
5720
5721 stat->attributes_mask |= (STATX_ATTR_APPEND |
5722 STATX_ATTR_COMPRESSED |
5723 STATX_ATTR_ENCRYPTED |
5724 STATX_ATTR_IMMUTABLE |
5725 STATX_ATTR_NODUMP);
5726
5727 generic_fillattr(inode, stat);
5728 return 0;
5729}
5730
5731int ext4_file_getattr(const struct path *path, struct kstat *stat,
5732 u32 request_mask, unsigned int query_flags)
5733{
5734 struct inode *inode = d_inode(path->dentry);
5735 u64 delalloc_blocks;
5736
5737 ext4_getattr(path, stat, request_mask, query_flags);
5738
5739 /*
5740 * If there is inline data in the inode, the inode will normally not
5741 * have data blocks allocated (it may have an external xattr block).
5742 * Report at least one sector for such files, so tools like tar, rsync,
5743 * others don't incorrectly think the file is completely sparse.
5744 */
5745 if (unlikely(ext4_has_inline_data(inode)))
5746 stat->blocks += (stat->size + 511) >> 9;
5747
5748 /*
5749 * We can't update i_blocks if the block allocation is delayed
5750 * otherwise in the case of system crash before the real block
5751 * allocation is done, we will have i_blocks inconsistent with
5752 * on-disk file blocks.
5753 * We always keep i_blocks updated together with real
5754 * allocation. But to not confuse with user, stat
5755 * will return the blocks that include the delayed allocation
5756 * blocks for this file.
5757 */
5758 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5759 EXT4_I(inode)->i_reserved_data_blocks);
5760 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5761 return 0;
5762}
5763
5764static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5765 int pextents)
5766{
5767 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5768 return ext4_ind_trans_blocks(inode, lblocks);
5769 return ext4_ext_index_trans_blocks(inode, pextents);
5770}
5771
5772/*
5773 * Account for index blocks, block groups bitmaps and block group
5774 * descriptor blocks if modify datablocks and index blocks
5775 * worse case, the indexs blocks spread over different block groups
5776 *
5777 * If datablocks are discontiguous, they are possible to spread over
5778 * different block groups too. If they are contiguous, with flexbg,
5779 * they could still across block group boundary.
5780 *
5781 * Also account for superblock, inode, quota and xattr blocks
5782 */
5783static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5784 int pextents)
5785{
5786 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5787 int gdpblocks;
5788 int idxblocks;
5789 int ret = 0;
5790
5791 /*
5792 * How many index blocks need to touch to map @lblocks logical blocks
5793 * to @pextents physical extents?
5794 */
5795 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5796
5797 ret = idxblocks;
5798
5799 /*
5800 * Now let's see how many group bitmaps and group descriptors need
5801 * to account
5802 */
5803 groups = idxblocks + pextents;
5804 gdpblocks = groups;
5805 if (groups > ngroups)
5806 groups = ngroups;
5807 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5808 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5809
5810 /* bitmaps and block group descriptor blocks */
5811 ret += groups + gdpblocks;
5812
5813 /* Blocks for super block, inode, quota and xattr blocks */
5814 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5815
5816 return ret;
5817}
5818
5819/*
5820 * Calculate the total number of credits to reserve to fit
5821 * the modification of a single pages into a single transaction,
5822 * which may include multiple chunks of block allocations.
5823 *
5824 * This could be called via ext4_write_begin()
5825 *
5826 * We need to consider the worse case, when
5827 * one new block per extent.
5828 */
5829int ext4_writepage_trans_blocks(struct inode *inode)
5830{
5831 int bpp = ext4_journal_blocks_per_page(inode);
5832 int ret;
5833
5834 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5835
5836 /* Account for data blocks for journalled mode */
5837 if (ext4_should_journal_data(inode))
5838 ret += bpp;
5839 return ret;
5840}
5841
5842/*
5843 * Calculate the journal credits for a chunk of data modification.
5844 *
5845 * This is called from DIO, fallocate or whoever calling
5846 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5847 *
5848 * journal buffers for data blocks are not included here, as DIO
5849 * and fallocate do no need to journal data buffers.
5850 */
5851int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5852{
5853 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5854}
5855
5856/*
5857 * The caller must have previously called ext4_reserve_inode_write().
5858 * Give this, we know that the caller already has write access to iloc->bh.
5859 */
5860int ext4_mark_iloc_dirty(handle_t *handle,
5861 struct inode *inode, struct ext4_iloc *iloc)
5862{
5863 int err = 0;
5864
5865 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5866 put_bh(iloc->bh);
5867 return -EIO;
5868 }
5869 if (IS_I_VERSION(inode))
5870 inode_inc_iversion(inode);
5871
5872 /* the do_update_inode consumes one bh->b_count */
5873 get_bh(iloc->bh);
5874
5875 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5876 err = ext4_do_update_inode(handle, inode, iloc);
5877 put_bh(iloc->bh);
5878 return err;
5879}
5880
5881/*
5882 * On success, We end up with an outstanding reference count against
5883 * iloc->bh. This _must_ be cleaned up later.
5884 */
5885
5886int
5887ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5888 struct ext4_iloc *iloc)
5889{
5890 int err;
5891
5892 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5893 return -EIO;
5894
5895 err = ext4_get_inode_loc(inode, iloc);
5896 if (!err) {
5897 BUFFER_TRACE(iloc->bh, "get_write_access");
5898 err = ext4_journal_get_write_access(handle, iloc->bh);
5899 if (err) {
5900 brelse(iloc->bh);
5901 iloc->bh = NULL;
5902 }
5903 }
5904 ext4_std_error(inode->i_sb, err);
5905 return err;
5906}
5907
5908static int __ext4_expand_extra_isize(struct inode *inode,
5909 unsigned int new_extra_isize,
5910 struct ext4_iloc *iloc,
5911 handle_t *handle, int *no_expand)
5912{
5913 struct ext4_inode *raw_inode;
5914 struct ext4_xattr_ibody_header *header;
5915 int error;
5916
5917 raw_inode = ext4_raw_inode(iloc);
5918
5919 header = IHDR(inode, raw_inode);
5920
5921 /* No extended attributes present */
5922 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5923 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5924 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5925 EXT4_I(inode)->i_extra_isize, 0,
5926 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5927 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5928 return 0;
5929 }
5930
5931 /* try to expand with EAs present */
5932 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5933 raw_inode, handle);
5934 if (error) {
5935 /*
5936 * Inode size expansion failed; don't try again
5937 */
5938 *no_expand = 1;
5939 }
5940
5941 return error;
5942}
5943
5944/*
5945 * Expand an inode by new_extra_isize bytes.
5946 * Returns 0 on success or negative error number on failure.
5947 */
5948static int ext4_try_to_expand_extra_isize(struct inode *inode,
5949 unsigned int new_extra_isize,
5950 struct ext4_iloc iloc,
5951 handle_t *handle)
5952{
5953 int no_expand;
5954 int error;
5955
5956 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5957 return -EOVERFLOW;
5958
5959 /*
5960 * In nojournal mode, we can immediately attempt to expand
5961 * the inode. When journaled, we first need to obtain extra
5962 * buffer credits since we may write into the EA block
5963 * with this same handle. If journal_extend fails, then it will
5964 * only result in a minor loss of functionality for that inode.
5965 * If this is felt to be critical, then e2fsck should be run to
5966 * force a large enough s_min_extra_isize.
5967 */
5968 if (ext4_handle_valid(handle) &&
5969 jbd2_journal_extend(handle,
5970 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5971 return -ENOSPC;
5972
5973 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5974 return -EBUSY;
5975
5976 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5977 handle, &no_expand);
5978 ext4_write_unlock_xattr(inode, &no_expand);
5979
5980 return error;
5981}
5982
5983int ext4_expand_extra_isize(struct inode *inode,
5984 unsigned int new_extra_isize,
5985 struct ext4_iloc *iloc)
5986{
5987 handle_t *handle;
5988 int no_expand;
5989 int error, rc;
5990
5991 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5992 brelse(iloc->bh);
5993 return -EOVERFLOW;
5994 }
5995
5996 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5997 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5998 if (IS_ERR(handle)) {
5999 error = PTR_ERR(handle);
6000 brelse(iloc->bh);
6001 return error;
6002 }
6003
6004 ext4_write_lock_xattr(inode, &no_expand);
6005
6006 BUFFER_TRACE(iloc->bh, "get_write_access");
6007 error = ext4_journal_get_write_access(handle, iloc->bh);
6008 if (error) {
6009 brelse(iloc->bh);
6010 goto out_stop;
6011 }
6012
6013 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6014 handle, &no_expand);
6015
6016 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6017 if (!error)
6018 error = rc;
6019
6020 ext4_write_unlock_xattr(inode, &no_expand);
6021out_stop:
6022 ext4_journal_stop(handle);
6023 return error;
6024}
6025
6026/*
6027 * What we do here is to mark the in-core inode as clean with respect to inode
6028 * dirtiness (it may still be data-dirty).
6029 * This means that the in-core inode may be reaped by prune_icache
6030 * without having to perform any I/O. This is a very good thing,
6031 * because *any* task may call prune_icache - even ones which
6032 * have a transaction open against a different journal.
6033 *
6034 * Is this cheating? Not really. Sure, we haven't written the
6035 * inode out, but prune_icache isn't a user-visible syncing function.
6036 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6037 * we start and wait on commits.
6038 */
6039int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6040{
6041 struct ext4_iloc iloc;
6042 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6043 int err;
6044
6045 might_sleep();
6046 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6047 err = ext4_reserve_inode_write(handle, inode, &iloc);
6048 if (err)
6049 return err;
6050
6051 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6052 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6053 iloc, handle);
6054
6055 return ext4_mark_iloc_dirty(handle, inode, &iloc);
6056}
6057
6058/*
6059 * ext4_dirty_inode() is called from __mark_inode_dirty()
6060 *
6061 * We're really interested in the case where a file is being extended.
6062 * i_size has been changed by generic_commit_write() and we thus need
6063 * to include the updated inode in the current transaction.
6064 *
6065 * Also, dquot_alloc_block() will always dirty the inode when blocks
6066 * are allocated to the file.
6067 *
6068 * If the inode is marked synchronous, we don't honour that here - doing
6069 * so would cause a commit on atime updates, which we don't bother doing.
6070 * We handle synchronous inodes at the highest possible level.
6071 *
6072 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
6073 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6074 * to copy into the on-disk inode structure are the timestamp files.
6075 */
6076void ext4_dirty_inode(struct inode *inode, int flags)
6077{
6078 handle_t *handle;
6079
6080 if (flags == I_DIRTY_TIME)
6081 return;
6082 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6083 if (IS_ERR(handle))
6084 goto out;
6085
6086 ext4_mark_inode_dirty(handle, inode);
6087
6088 ext4_journal_stop(handle);
6089out:
6090 return;
6091}
6092
6093int ext4_change_inode_journal_flag(struct inode *inode, int val)
6094{
6095 journal_t *journal;
6096 handle_t *handle;
6097 int err;
6098 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6099
6100 /*
6101 * We have to be very careful here: changing a data block's
6102 * journaling status dynamically is dangerous. If we write a
6103 * data block to the journal, change the status and then delete
6104 * that block, we risk forgetting to revoke the old log record
6105 * from the journal and so a subsequent replay can corrupt data.
6106 * So, first we make sure that the journal is empty and that
6107 * nobody is changing anything.
6108 */
6109
6110 journal = EXT4_JOURNAL(inode);
6111 if (!journal)
6112 return 0;
6113 if (is_journal_aborted(journal))
6114 return -EROFS;
6115
6116 /* Wait for all existing dio workers */
6117 inode_dio_wait(inode);
6118
6119 /*
6120 * Before flushing the journal and switching inode's aops, we have
6121 * to flush all dirty data the inode has. There can be outstanding
6122 * delayed allocations, there can be unwritten extents created by
6123 * fallocate or buffered writes in dioread_nolock mode covered by
6124 * dirty data which can be converted only after flushing the dirty
6125 * data (and journalled aops don't know how to handle these cases).
6126 */
6127 if (val) {
6128 down_write(&EXT4_I(inode)->i_mmap_sem);
6129 err = filemap_write_and_wait(inode->i_mapping);
6130 if (err < 0) {
6131 up_write(&EXT4_I(inode)->i_mmap_sem);
6132 return err;
6133 }
6134 }
6135
6136 percpu_down_write(&sbi->s_journal_flag_rwsem);
6137 jbd2_journal_lock_updates(journal);
6138
6139 /*
6140 * OK, there are no updates running now, and all cached data is
6141 * synced to disk. We are now in a completely consistent state
6142 * which doesn't have anything in the journal, and we know that
6143 * no filesystem updates are running, so it is safe to modify
6144 * the inode's in-core data-journaling state flag now.
6145 */
6146
6147 if (val)
6148 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6149 else {
6150 err = jbd2_journal_flush(journal);
6151 if (err < 0) {
6152 jbd2_journal_unlock_updates(journal);
6153 percpu_up_write(&sbi->s_journal_flag_rwsem);
6154 return err;
6155 }
6156 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6157 }
6158 ext4_set_aops(inode);
6159
6160 jbd2_journal_unlock_updates(journal);
6161 percpu_up_write(&sbi->s_journal_flag_rwsem);
6162
6163 if (val)
6164 up_write(&EXT4_I(inode)->i_mmap_sem);
6165
6166 /* Finally we can mark the inode as dirty. */
6167
6168 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6169 if (IS_ERR(handle))
6170 return PTR_ERR(handle);
6171
6172 err = ext4_mark_inode_dirty(handle, inode);
6173 ext4_handle_sync(handle);
6174 ext4_journal_stop(handle);
6175 ext4_std_error(inode->i_sb, err);
6176
6177 return err;
6178}
6179
6180static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6181{
6182 return !buffer_mapped(bh);
6183}
6184
6185vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6186{
6187 struct vm_area_struct *vma = vmf->vma;
6188 struct page *page = vmf->page;
6189 loff_t size;
6190 unsigned long len;
6191 int err;
6192 vm_fault_t ret;
6193 struct file *file = vma->vm_file;
6194 struct inode *inode = file_inode(file);
6195 struct address_space *mapping = inode->i_mapping;
6196 handle_t *handle;
6197 get_block_t *get_block;
6198 int retries = 0;
6199
6200 if (unlikely(IS_IMMUTABLE(inode)))
6201 return VM_FAULT_SIGBUS;
6202
6203 sb_start_pagefault(inode->i_sb);
6204 file_update_time(vma->vm_file);
6205
6206 down_read(&EXT4_I(inode)->i_mmap_sem);
6207
6208 err = ext4_convert_inline_data(inode);
6209 if (err)
6210 goto out_ret;
6211
6212 /* Delalloc case is easy... */
6213 if (test_opt(inode->i_sb, DELALLOC) &&
6214 !ext4_should_journal_data(inode) &&
6215 !ext4_nonda_switch(inode->i_sb)) {
6216 do {
6217 err = block_page_mkwrite(vma, vmf,
6218 ext4_da_get_block_prep);
6219 } while (err == -ENOSPC &&
6220 ext4_should_retry_alloc(inode->i_sb, &retries));
6221 goto out_ret;
6222 }
6223
6224 lock_page(page);
6225 size = i_size_read(inode);
6226 /* Page got truncated from under us? */
6227 if (page->mapping != mapping || page_offset(page) > size) {
6228 unlock_page(page);
6229 ret = VM_FAULT_NOPAGE;
6230 goto out;
6231 }
6232
6233 if (page->index == size >> PAGE_SHIFT)
6234 len = size & ~PAGE_MASK;
6235 else
6236 len = PAGE_SIZE;
6237 /*
6238 * Return if we have all the buffers mapped. This avoids the need to do
6239 * journal_start/journal_stop which can block and take a long time
6240 */
6241 if (page_has_buffers(page)) {
6242 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6243 0, len, NULL,
6244 ext4_bh_unmapped)) {
6245 /* Wait so that we don't change page under IO */
6246 wait_for_stable_page(page);
6247 ret = VM_FAULT_LOCKED;
6248 goto out;
6249 }
6250 }
6251 unlock_page(page);
6252 /* OK, we need to fill the hole... */
6253 if (ext4_should_dioread_nolock(inode))
6254 get_block = ext4_get_block_unwritten;
6255 else
6256 get_block = ext4_get_block;
6257retry_alloc:
6258 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6259 ext4_writepage_trans_blocks(inode));
6260 if (IS_ERR(handle)) {
6261 ret = VM_FAULT_SIGBUS;
6262 goto out;
6263 }
6264 err = block_page_mkwrite(vma, vmf, get_block);
6265 if (!err && ext4_should_journal_data(inode)) {
6266 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6267 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6268 unlock_page(page);
6269 ret = VM_FAULT_SIGBUS;
6270 ext4_journal_stop(handle);
6271 goto out;
6272 }
6273 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6274 }
6275 ext4_journal_stop(handle);
6276 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6277 goto retry_alloc;
6278out_ret:
6279 ret = block_page_mkwrite_return(err);
6280out:
6281 up_read(&EXT4_I(inode)->i_mmap_sem);
6282 sb_end_pagefault(inode->i_sb);
6283 return ret;
6284}
6285
6286vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6287{
6288 struct inode *inode = file_inode(vmf->vma->vm_file);
6289 vm_fault_t ret;
6290
6291 down_read(&EXT4_I(inode)->i_mmap_sem);
6292 ret = filemap_fault(vmf);
6293 up_read(&EXT4_I(inode)->i_mmap_sem);
6294
6295 return ret;
6296}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/mount.h>
24#include <linux/time.h>
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/dax.h>
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
32#include <linux/pagevec.h>
33#include <linux/mpage.h>
34#include <linux/namei.h>
35#include <linux/uio.h>
36#include <linux/bio.h>
37#include <linux/workqueue.h>
38#include <linux/kernel.h>
39#include <linux/printk.h>
40#include <linux/slab.h>
41#include <linux/bitops.h>
42#include <linux/iomap.h>
43#include <linux/iversion.h>
44
45#include "ext4_jbd2.h"
46#include "xattr.h"
47#include "acl.h"
48#include "truncate.h"
49
50#include <trace/events/ext4.h>
51
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u32 csum;
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
60
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
76 }
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 }
80
81 return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86{
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103}
104
105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107{
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124{
125 trace_ext4_begin_ordered_truncate(inode, new_size);
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
137}
138
139static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
141static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 int pextents);
145
146/*
147 * Test whether an inode is a fast symlink.
148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 */
150int ext4_inode_is_fast_symlink(struct inode *inode)
151{
152 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153 int ea_blocks = EXT4_I(inode)->i_file_acl ?
154 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155
156 if (ext4_has_inline_data(inode))
157 return 0;
158
159 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 }
161 return S_ISLNK(inode->i_mode) && inode->i_size &&
162 (inode->i_size < EXT4_N_BLOCKS * 4);
163}
164
165/*
166 * Called at the last iput() if i_nlink is zero.
167 */
168void ext4_evict_inode(struct inode *inode)
169{
170 handle_t *handle;
171 int err;
172 /*
173 * Credits for final inode cleanup and freeing:
174 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
175 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 */
177 int extra_credits = 6;
178 struct ext4_xattr_inode_array *ea_inode_array = NULL;
179 bool freeze_protected = false;
180
181 trace_ext4_evict_inode(inode);
182
183 if (inode->i_nlink) {
184 /*
185 * When journalling data dirty buffers are tracked only in the
186 * journal. So although mm thinks everything is clean and
187 * ready for reaping the inode might still have some pages to
188 * write in the running transaction or waiting to be
189 * checkpointed. Thus calling jbd2_journal_invalidatepage()
190 * (via truncate_inode_pages()) to discard these buffers can
191 * cause data loss. Also even if we did not discard these
192 * buffers, we would have no way to find them after the inode
193 * is reaped and thus user could see stale data if he tries to
194 * read them before the transaction is checkpointed. So be
195 * careful and force everything to disk here... We use
196 * ei->i_datasync_tid to store the newest transaction
197 * containing inode's data.
198 *
199 * Note that directories do not have this problem because they
200 * don't use page cache.
201 */
202 if (inode->i_ino != EXT4_JOURNAL_INO &&
203 ext4_should_journal_data(inode) &&
204 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205 inode->i_data.nrpages) {
206 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208
209 jbd2_complete_transaction(journal, commit_tid);
210 filemap_write_and_wait(&inode->i_data);
211 }
212 truncate_inode_pages_final(&inode->i_data);
213
214 goto no_delete;
215 }
216
217 if (is_bad_inode(inode))
218 goto no_delete;
219 dquot_initialize(inode);
220
221 if (ext4_should_order_data(inode))
222 ext4_begin_ordered_truncate(inode, 0);
223 truncate_inode_pages_final(&inode->i_data);
224
225 /*
226 * For inodes with journalled data, transaction commit could have
227 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
228 * flag but we still need to remove the inode from the writeback lists.
229 */
230 if (!list_empty_careful(&inode->i_io_list)) {
231 WARN_ON_ONCE(!ext4_should_journal_data(inode));
232 inode_io_list_del(inode);
233 }
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it. When we are in a running transaction though,
238 * we are already protected against freezing and we cannot grab further
239 * protection due to lock ordering constraints.
240 */
241 if (!ext4_journal_current_handle()) {
242 sb_start_intwrite(inode->i_sb);
243 freeze_protected = true;
244 }
245
246 if (!IS_NOQUOTA(inode))
247 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
248
249 /*
250 * Block bitmap, group descriptor, and inode are accounted in both
251 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252 */
253 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
254 ext4_blocks_for_truncate(inode) + extra_credits - 3);
255 if (IS_ERR(handle)) {
256 ext4_std_error(inode->i_sb, PTR_ERR(handle));
257 /*
258 * If we're going to skip the normal cleanup, we still need to
259 * make sure that the in-core orphan linked list is properly
260 * cleaned up.
261 */
262 ext4_orphan_del(NULL, inode);
263 if (freeze_protected)
264 sb_end_intwrite(inode->i_sb);
265 goto no_delete;
266 }
267
268 if (IS_SYNC(inode))
269 ext4_handle_sync(handle);
270
271 /*
272 * Set inode->i_size to 0 before calling ext4_truncate(). We need
273 * special handling of symlinks here because i_size is used to
274 * determine whether ext4_inode_info->i_data contains symlink data or
275 * block mappings. Setting i_size to 0 will remove its fast symlink
276 * status. Erase i_data so that it becomes a valid empty block map.
277 */
278 if (ext4_inode_is_fast_symlink(inode))
279 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280 inode->i_size = 0;
281 err = ext4_mark_inode_dirty(handle, inode);
282 if (err) {
283 ext4_warning(inode->i_sb,
284 "couldn't mark inode dirty (err %d)", err);
285 goto stop_handle;
286 }
287 if (inode->i_blocks) {
288 err = ext4_truncate(inode);
289 if (err) {
290 ext4_error_err(inode->i_sb, -err,
291 "couldn't truncate inode %lu (err %d)",
292 inode->i_ino, err);
293 goto stop_handle;
294 }
295 }
296
297 /* Remove xattr references. */
298 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299 extra_credits);
300 if (err) {
301 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302stop_handle:
303 ext4_journal_stop(handle);
304 ext4_orphan_del(NULL, inode);
305 if (freeze_protected)
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
309 }
310
311 /*
312 * Kill off the orphan record which ext4_truncate created.
313 * AKPM: I think this can be inside the above `if'.
314 * Note that ext4_orphan_del() has to be able to cope with the
315 * deletion of a non-existent orphan - this is because we don't
316 * know if ext4_truncate() actually created an orphan record.
317 * (Well, we could do this if we need to, but heck - it works)
318 */
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
321
322 /*
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
328 */
329 if (ext4_mark_inode_dirty(handle, inode))
330 /* If that failed, just do the required in-core inode clear. */
331 ext4_clear_inode(inode);
332 else
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
335 if (freeze_protected)
336 sb_end_intwrite(inode->i_sb);
337 ext4_xattr_inode_array_free(ea_inode_array);
338 return;
339no_delete:
340 if (!list_empty(&EXT4_I(inode)->i_fc_list))
341 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
342 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
343}
344
345#ifdef CONFIG_QUOTA
346qsize_t *ext4_get_reserved_space(struct inode *inode)
347{
348 return &EXT4_I(inode)->i_reserved_quota;
349}
350#endif
351
352/*
353 * Called with i_data_sem down, which is important since we can call
354 * ext4_discard_preallocations() from here.
355 */
356void ext4_da_update_reserve_space(struct inode *inode,
357 int used, int quota_claim)
358{
359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
360 struct ext4_inode_info *ei = EXT4_I(inode);
361
362 spin_lock(&ei->i_block_reservation_lock);
363 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
364 if (unlikely(used > ei->i_reserved_data_blocks)) {
365 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
366 "with only %d reserved data blocks",
367 __func__, inode->i_ino, used,
368 ei->i_reserved_data_blocks);
369 WARN_ON(1);
370 used = ei->i_reserved_data_blocks;
371 }
372
373 /* Update per-inode reservations */
374 ei->i_reserved_data_blocks -= used;
375 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376
377 spin_unlock(&ei->i_block_reservation_lock);
378
379 /* Update quota subsystem for data blocks */
380 if (quota_claim)
381 dquot_claim_block(inode, EXT4_C2B(sbi, used));
382 else {
383 /*
384 * We did fallocate with an offset that is already delayed
385 * allocated. So on delayed allocated writeback we should
386 * not re-claim the quota for fallocated blocks.
387 */
388 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389 }
390
391 /*
392 * If we have done all the pending block allocations and if
393 * there aren't any writers on the inode, we can discard the
394 * inode's preallocations.
395 */
396 if ((ei->i_reserved_data_blocks == 0) &&
397 !inode_is_open_for_write(inode))
398 ext4_discard_preallocations(inode, 0);
399}
400
401static int __check_block_validity(struct inode *inode, const char *func,
402 unsigned int line,
403 struct ext4_map_blocks *map)
404{
405 if (ext4_has_feature_journal(inode->i_sb) &&
406 (inode->i_ino ==
407 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408 return 0;
409 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
410 ext4_error_inode(inode, func, line, map->m_pblk,
411 "lblock %lu mapped to illegal pblock %llu "
412 "(length %d)", (unsigned long) map->m_lblk,
413 map->m_pblk, map->m_len);
414 return -EFSCORRUPTED;
415 }
416 return 0;
417}
418
419int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
420 ext4_lblk_t len)
421{
422 int ret;
423
424 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
425 return fscrypt_zeroout_range(inode, lblk, pblk, len);
426
427 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
428 if (ret > 0)
429 ret = 0;
430
431 return ret;
432}
433
434#define check_block_validity(inode, map) \
435 __check_block_validity((inode), __func__, __LINE__, (map))
436
437#ifdef ES_AGGRESSIVE_TEST
438static void ext4_map_blocks_es_recheck(handle_t *handle,
439 struct inode *inode,
440 struct ext4_map_blocks *es_map,
441 struct ext4_map_blocks *map,
442 int flags)
443{
444 int retval;
445
446 map->m_flags = 0;
447 /*
448 * There is a race window that the result is not the same.
449 * e.g. xfstests #223 when dioread_nolock enables. The reason
450 * is that we lookup a block mapping in extent status tree with
451 * out taking i_data_sem. So at the time the unwritten extent
452 * could be converted.
453 */
454 down_read(&EXT4_I(inode)->i_data_sem);
455 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
456 retval = ext4_ext_map_blocks(handle, inode, map, 0);
457 } else {
458 retval = ext4_ind_map_blocks(handle, inode, map, 0);
459 }
460 up_read((&EXT4_I(inode)->i_data_sem));
461
462 /*
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
465 */
466 if (es_map->m_lblk != map->m_lblk ||
467 es_map->m_flags != map->m_flags ||
468 es_map->m_pblk != map->m_pblk) {
469 printk("ES cache assertion failed for inode: %lu "
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode->i_ino, es_map->m_lblk, es_map->m_len,
473 es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 map->m_len, map->m_pblk, map->m_flags,
475 retval, flags);
476 }
477}
478#endif /* ES_AGGRESSIVE_TEST */
479
480/*
481 * The ext4_map_blocks() function tries to look up the requested blocks,
482 * and returns if the blocks are already mapped.
483 *
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
486 * mapped.
487 *
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490 * based files
491 *
492 * On success, it returns the number of blocks being mapped or allocated. if
493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
497 * that case, @map is returned as unmapped but we still do fill map->m_len to
498 * indicate the length of a hole starting at map->m_lblk.
499 *
500 * It returns the error in case of allocation failure.
501 */
502int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 struct ext4_map_blocks *map, int flags)
504{
505 struct extent_status es;
506 int retval;
507 int ret = 0;
508#ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map;
510
511 memcpy(&orig_map, map, sizeof(*map));
512#endif
513
514 map->m_flags = 0;
515 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
516 flags, map->m_len, (unsigned long) map->m_lblk);
517
518 /*
519 * ext4_map_blocks returns an int, and m_len is an unsigned int
520 */
521 if (unlikely(map->m_len > INT_MAX))
522 map->m_len = INT_MAX;
523
524 /* We can handle the block number less than EXT_MAX_BLOCKS */
525 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
526 return -EFSCORRUPTED;
527
528 /* Lookup extent status tree firstly */
529 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
530 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 map->m_pblk = ext4_es_pblock(&es) +
533 map->m_lblk - es.es_lblk;
534 map->m_flags |= ext4_es_is_written(&es) ?
535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 retval = es.es_len - (map->m_lblk - es.es_lblk);
537 if (retval > map->m_len)
538 retval = map->m_len;
539 map->m_len = retval;
540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 map->m_pblk = 0;
542 retval = es.es_len - (map->m_lblk - es.es_lblk);
543 if (retval > map->m_len)
544 retval = map->m_len;
545 map->m_len = retval;
546 retval = 0;
547 } else {
548 BUG();
549 }
550#ifdef ES_AGGRESSIVE_TEST
551 ext4_map_blocks_es_recheck(handle, inode, map,
552 &orig_map, flags);
553#endif
554 goto found;
555 }
556
557 /*
558 * Try to see if we can get the block without requesting a new
559 * file system block.
560 */
561 down_read(&EXT4_I(inode)->i_data_sem);
562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 retval = ext4_ext_map_blocks(handle, inode, map, 0);
564 } else {
565 retval = ext4_ind_map_blocks(handle, inode, map, 0);
566 }
567 if (retval > 0) {
568 unsigned int status;
569
570 if (unlikely(retval != map->m_len)) {
571 ext4_warning(inode->i_sb,
572 "ES len assertion failed for inode "
573 "%lu: retval %d != map->m_len %d",
574 inode->i_ino, retval, map->m_len);
575 WARN_ON(1);
576 }
577
578 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
579 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
580 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
581 !(status & EXTENT_STATUS_WRITTEN) &&
582 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
583 map->m_lblk + map->m_len - 1))
584 status |= EXTENT_STATUS_DELAYED;
585 ret = ext4_es_insert_extent(inode, map->m_lblk,
586 map->m_len, map->m_pblk, status);
587 if (ret < 0)
588 retval = ret;
589 }
590 up_read((&EXT4_I(inode)->i_data_sem));
591
592found:
593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
594 ret = check_block_validity(inode, map);
595 if (ret != 0)
596 return ret;
597 }
598
599 /* If it is only a block(s) look up */
600 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
601 return retval;
602
603 /*
604 * Returns if the blocks have already allocated
605 *
606 * Note that if blocks have been preallocated
607 * ext4_ext_get_block() returns the create = 0
608 * with buffer head unmapped.
609 */
610 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611 /*
612 * If we need to convert extent to unwritten
613 * we continue and do the actual work in
614 * ext4_ext_map_blocks()
615 */
616 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
617 return retval;
618
619 /*
620 * Here we clear m_flags because after allocating an new extent,
621 * it will be set again.
622 */
623 map->m_flags &= ~EXT4_MAP_FLAGS;
624
625 /*
626 * New blocks allocate and/or writing to unwritten extent
627 * will possibly result in updating i_data, so we take
628 * the write lock of i_data_sem, and call get_block()
629 * with create == 1 flag.
630 */
631 down_write(&EXT4_I(inode)->i_data_sem);
632
633 /*
634 * We need to check for EXT4 here because migrate
635 * could have changed the inode type in between
636 */
637 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
638 retval = ext4_ext_map_blocks(handle, inode, map, flags);
639 } else {
640 retval = ext4_ind_map_blocks(handle, inode, map, flags);
641
642 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643 /*
644 * We allocated new blocks which will result in
645 * i_data's format changing. Force the migrate
646 * to fail by clearing migrate flags
647 */
648 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
649 }
650
651 /*
652 * Update reserved blocks/metadata blocks after successful
653 * block allocation which had been deferred till now. We don't
654 * support fallocate for non extent files. So we can update
655 * reserve space here.
656 */
657 if ((retval > 0) &&
658 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
659 ext4_da_update_reserve_space(inode, retval, 1);
660 }
661
662 if (retval > 0) {
663 unsigned int status;
664
665 if (unlikely(retval != map->m_len)) {
666 ext4_warning(inode->i_sb,
667 "ES len assertion failed for inode "
668 "%lu: retval %d != map->m_len %d",
669 inode->i_ino, retval, map->m_len);
670 WARN_ON(1);
671 }
672
673 /*
674 * We have to zeroout blocks before inserting them into extent
675 * status tree. Otherwise someone could look them up there and
676 * use them before they are really zeroed. We also have to
677 * unmap metadata before zeroing as otherwise writeback can
678 * overwrite zeros with stale data from block device.
679 */
680 if (flags & EXT4_GET_BLOCKS_ZERO &&
681 map->m_flags & EXT4_MAP_MAPPED &&
682 map->m_flags & EXT4_MAP_NEW) {
683 ret = ext4_issue_zeroout(inode, map->m_lblk,
684 map->m_pblk, map->m_len);
685 if (ret) {
686 retval = ret;
687 goto out_sem;
688 }
689 }
690
691 /*
692 * If the extent has been zeroed out, we don't need to update
693 * extent status tree.
694 */
695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
697 if (ext4_es_is_written(&es))
698 goto out_sem;
699 }
700 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 !(status & EXTENT_STATUS_WRITTEN) &&
704 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705 map->m_lblk + map->m_len - 1))
706 status |= EXTENT_STATUS_DELAYED;
707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 map->m_pblk, status);
709 if (ret < 0) {
710 retval = ret;
711 goto out_sem;
712 }
713 }
714
715out_sem:
716 up_write((&EXT4_I(inode)->i_data_sem));
717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 ret = check_block_validity(inode, map);
719 if (ret != 0)
720 return ret;
721
722 /*
723 * Inodes with freshly allocated blocks where contents will be
724 * visible after transaction commit must be on transaction's
725 * ordered data list.
726 */
727 if (map->m_flags & EXT4_MAP_NEW &&
728 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 !ext4_is_quota_file(inode) &&
731 ext4_should_order_data(inode)) {
732 loff_t start_byte =
733 (loff_t)map->m_lblk << inode->i_blkbits;
734 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735
736 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
737 ret = ext4_jbd2_inode_add_wait(handle, inode,
738 start_byte, length);
739 else
740 ret = ext4_jbd2_inode_add_write(handle, inode,
741 start_byte, length);
742 if (ret)
743 return ret;
744 }
745 ext4_fc_track_range(handle, inode, map->m_lblk,
746 map->m_lblk + map->m_len - 1);
747 }
748
749 if (retval < 0)
750 ext_debug(inode, "failed with err %d\n", retval);
751 return retval;
752}
753
754/*
755 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
756 * we have to be careful as someone else may be manipulating b_state as well.
757 */
758static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759{
760 unsigned long old_state;
761 unsigned long new_state;
762
763 flags &= EXT4_MAP_FLAGS;
764
765 /* Dummy buffer_head? Set non-atomically. */
766 if (!bh->b_page) {
767 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
768 return;
769 }
770 /*
771 * Someone else may be modifying b_state. Be careful! This is ugly but
772 * once we get rid of using bh as a container for mapping information
773 * to pass to / from get_block functions, this can go away.
774 */
775 do {
776 old_state = READ_ONCE(bh->b_state);
777 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
778 } while (unlikely(
779 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
780}
781
782static int _ext4_get_block(struct inode *inode, sector_t iblock,
783 struct buffer_head *bh, int flags)
784{
785 struct ext4_map_blocks map;
786 int ret = 0;
787
788 if (ext4_has_inline_data(inode))
789 return -ERANGE;
790
791 map.m_lblk = iblock;
792 map.m_len = bh->b_size >> inode->i_blkbits;
793
794 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
795 flags);
796 if (ret > 0) {
797 map_bh(bh, inode->i_sb, map.m_pblk);
798 ext4_update_bh_state(bh, map.m_flags);
799 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800 ret = 0;
801 } else if (ret == 0) {
802 /* hole case, need to fill in bh->b_size */
803 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
804 }
805 return ret;
806}
807
808int ext4_get_block(struct inode *inode, sector_t iblock,
809 struct buffer_head *bh, int create)
810{
811 return _ext4_get_block(inode, iblock, bh,
812 create ? EXT4_GET_BLOCKS_CREATE : 0);
813}
814
815/*
816 * Get block function used when preparing for buffered write if we require
817 * creating an unwritten extent if blocks haven't been allocated. The extent
818 * will be converted to written after the IO is complete.
819 */
820int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
821 struct buffer_head *bh_result, int create)
822{
823 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
824 inode->i_ino, create);
825 return _ext4_get_block(inode, iblock, bh_result,
826 EXT4_GET_BLOCKS_IO_CREATE_EXT);
827}
828
829/* Maximum number of blocks we map for direct IO at once. */
830#define DIO_MAX_BLOCKS 4096
831
832/*
833 * `handle' can be NULL if create is zero
834 */
835struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
836 ext4_lblk_t block, int map_flags)
837{
838 struct ext4_map_blocks map;
839 struct buffer_head *bh;
840 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
841 int err;
842
843 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844 || handle != NULL || create == 0);
845
846 map.m_lblk = block;
847 map.m_len = 1;
848 err = ext4_map_blocks(handle, inode, &map, map_flags);
849
850 if (err == 0)
851 return create ? ERR_PTR(-ENOSPC) : NULL;
852 if (err < 0)
853 return ERR_PTR(err);
854
855 bh = sb_getblk(inode->i_sb, map.m_pblk);
856 if (unlikely(!bh))
857 return ERR_PTR(-ENOMEM);
858 if (map.m_flags & EXT4_MAP_NEW) {
859 ASSERT(create != 0);
860 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861 || (handle != NULL));
862
863 /*
864 * Now that we do not always journal data, we should
865 * keep in mind whether this should always journal the
866 * new buffer as metadata. For now, regular file
867 * writes use ext4_get_block instead, so it's not a
868 * problem.
869 */
870 lock_buffer(bh);
871 BUFFER_TRACE(bh, "call get_create_access");
872 err = ext4_journal_get_create_access(handle, bh);
873 if (unlikely(err)) {
874 unlock_buffer(bh);
875 goto errout;
876 }
877 if (!buffer_uptodate(bh)) {
878 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 set_buffer_uptodate(bh);
880 }
881 unlock_buffer(bh);
882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 err = ext4_handle_dirty_metadata(handle, inode, bh);
884 if (unlikely(err))
885 goto errout;
886 } else
887 BUFFER_TRACE(bh, "not a new buffer");
888 return bh;
889errout:
890 brelse(bh);
891 return ERR_PTR(err);
892}
893
894struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895 ext4_lblk_t block, int map_flags)
896{
897 struct buffer_head *bh;
898 int ret;
899
900 bh = ext4_getblk(handle, inode, block, map_flags);
901 if (IS_ERR(bh))
902 return bh;
903 if (!bh || ext4_buffer_uptodate(bh))
904 return bh;
905
906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907 if (ret) {
908 put_bh(bh);
909 return ERR_PTR(ret);
910 }
911 return bh;
912}
913
914/* Read a contiguous batch of blocks. */
915int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 bool wait, struct buffer_head **bhs)
917{
918 int i, err;
919
920 for (i = 0; i < bh_count; i++) {
921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 if (IS_ERR(bhs[i])) {
923 err = PTR_ERR(bhs[i]);
924 bh_count = i;
925 goto out_brelse;
926 }
927 }
928
929 for (i = 0; i < bh_count; i++)
930 /* Note that NULL bhs[i] is valid because of holes. */
931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933
934 if (!wait)
935 return 0;
936
937 for (i = 0; i < bh_count; i++)
938 if (bhs[i])
939 wait_on_buffer(bhs[i]);
940
941 for (i = 0; i < bh_count; i++) {
942 if (bhs[i] && !buffer_uptodate(bhs[i])) {
943 err = -EIO;
944 goto out_brelse;
945 }
946 }
947 return 0;
948
949out_brelse:
950 for (i = 0; i < bh_count; i++) {
951 brelse(bhs[i]);
952 bhs[i] = NULL;
953 }
954 return err;
955}
956
957int ext4_walk_page_buffers(handle_t *handle,
958 struct buffer_head *head,
959 unsigned from,
960 unsigned to,
961 int *partial,
962 int (*fn)(handle_t *handle,
963 struct buffer_head *bh))
964{
965 struct buffer_head *bh;
966 unsigned block_start, block_end;
967 unsigned blocksize = head->b_size;
968 int err, ret = 0;
969 struct buffer_head *next;
970
971 for (bh = head, block_start = 0;
972 ret == 0 && (bh != head || !block_start);
973 block_start = block_end, bh = next) {
974 next = bh->b_this_page;
975 block_end = block_start + blocksize;
976 if (block_end <= from || block_start >= to) {
977 if (partial && !buffer_uptodate(bh))
978 *partial = 1;
979 continue;
980 }
981 err = (*fn)(handle, bh);
982 if (!ret)
983 ret = err;
984 }
985 return ret;
986}
987
988/*
989 * To preserve ordering, it is essential that the hole instantiation and
990 * the data write be encapsulated in a single transaction. We cannot
991 * close off a transaction and start a new one between the ext4_get_block()
992 * and the commit_write(). So doing the jbd2_journal_start at the start of
993 * prepare_write() is the right place.
994 *
995 * Also, this function can nest inside ext4_writepage(). In that case, we
996 * *know* that ext4_writepage() has generated enough buffer credits to do the
997 * whole page. So we won't block on the journal in that case, which is good,
998 * because the caller may be PF_MEMALLOC.
999 *
1000 * By accident, ext4 can be reentered when a transaction is open via
1001 * quota file writes. If we were to commit the transaction while thus
1002 * reentered, there can be a deadlock - we would be holding a quota
1003 * lock, and the commit would never complete if another thread had a
1004 * transaction open and was blocking on the quota lock - a ranking
1005 * violation.
1006 *
1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008 * will _not_ run commit under these circumstances because handle->h_ref
1009 * is elevated. We'll still have enough credits for the tiny quotafile
1010 * write.
1011 */
1012int do_journal_get_write_access(handle_t *handle,
1013 struct buffer_head *bh)
1014{
1015 int dirty = buffer_dirty(bh);
1016 int ret;
1017
1018 if (!buffer_mapped(bh) || buffer_freed(bh))
1019 return 0;
1020 /*
1021 * __block_write_begin() could have dirtied some buffers. Clean
1022 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 * otherwise about fs integrity issues. Setting of the dirty bit
1024 * by __block_write_begin() isn't a real problem here as we clear
1025 * the bit before releasing a page lock and thus writeback cannot
1026 * ever write the buffer.
1027 */
1028 if (dirty)
1029 clear_buffer_dirty(bh);
1030 BUFFER_TRACE(bh, "get write access");
1031 ret = ext4_journal_get_write_access(handle, bh);
1032 if (!ret && dirty)
1033 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034 return ret;
1035}
1036
1037#ifdef CONFIG_FS_ENCRYPTION
1038static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1039 get_block_t *get_block)
1040{
1041 unsigned from = pos & (PAGE_SIZE - 1);
1042 unsigned to = from + len;
1043 struct inode *inode = page->mapping->host;
1044 unsigned block_start, block_end;
1045 sector_t block;
1046 int err = 0;
1047 unsigned blocksize = inode->i_sb->s_blocksize;
1048 unsigned bbits;
1049 struct buffer_head *bh, *head, *wait[2];
1050 int nr_wait = 0;
1051 int i;
1052
1053 BUG_ON(!PageLocked(page));
1054 BUG_ON(from > PAGE_SIZE);
1055 BUG_ON(to > PAGE_SIZE);
1056 BUG_ON(from > to);
1057
1058 if (!page_has_buffers(page))
1059 create_empty_buffers(page, blocksize, 0);
1060 head = page_buffers(page);
1061 bbits = ilog2(blocksize);
1062 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1063
1064 for (bh = head, block_start = 0; bh != head || !block_start;
1065 block++, block_start = block_end, bh = bh->b_this_page) {
1066 block_end = block_start + blocksize;
1067 if (block_end <= from || block_start >= to) {
1068 if (PageUptodate(page)) {
1069 set_buffer_uptodate(bh);
1070 }
1071 continue;
1072 }
1073 if (buffer_new(bh))
1074 clear_buffer_new(bh);
1075 if (!buffer_mapped(bh)) {
1076 WARN_ON(bh->b_size != blocksize);
1077 err = get_block(inode, block, bh, 1);
1078 if (err)
1079 break;
1080 if (buffer_new(bh)) {
1081 if (PageUptodate(page)) {
1082 clear_buffer_new(bh);
1083 set_buffer_uptodate(bh);
1084 mark_buffer_dirty(bh);
1085 continue;
1086 }
1087 if (block_end > to || block_start < from)
1088 zero_user_segments(page, to, block_end,
1089 block_start, from);
1090 continue;
1091 }
1092 }
1093 if (PageUptodate(page)) {
1094 set_buffer_uptodate(bh);
1095 continue;
1096 }
1097 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1098 !buffer_unwritten(bh) &&
1099 (block_start < from || block_end > to)) {
1100 ext4_read_bh_lock(bh, 0, false);
1101 wait[nr_wait++] = bh;
1102 }
1103 }
1104 /*
1105 * If we issued read requests, let them complete.
1106 */
1107 for (i = 0; i < nr_wait; i++) {
1108 wait_on_buffer(wait[i]);
1109 if (!buffer_uptodate(wait[i]))
1110 err = -EIO;
1111 }
1112 if (unlikely(err)) {
1113 page_zero_new_buffers(page, from, to);
1114 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1115 for (i = 0; i < nr_wait; i++) {
1116 int err2;
1117
1118 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1119 bh_offset(wait[i]));
1120 if (err2) {
1121 clear_buffer_uptodate(wait[i]);
1122 err = err2;
1123 }
1124 }
1125 }
1126
1127 return err;
1128}
1129#endif
1130
1131static int ext4_write_begin(struct file *file, struct address_space *mapping,
1132 loff_t pos, unsigned len, unsigned flags,
1133 struct page **pagep, void **fsdata)
1134{
1135 struct inode *inode = mapping->host;
1136 int ret, needed_blocks;
1137 handle_t *handle;
1138 int retries = 0;
1139 struct page *page;
1140 pgoff_t index;
1141 unsigned from, to;
1142
1143 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1144 return -EIO;
1145
1146 trace_ext4_write_begin(inode, pos, len, flags);
1147 /*
1148 * Reserve one block more for addition to orphan list in case
1149 * we allocate blocks but write fails for some reason
1150 */
1151 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1152 index = pos >> PAGE_SHIFT;
1153 from = pos & (PAGE_SIZE - 1);
1154 to = from + len;
1155
1156 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1157 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1158 flags, pagep);
1159 if (ret < 0)
1160 return ret;
1161 if (ret == 1)
1162 return 0;
1163 }
1164
1165 /*
1166 * grab_cache_page_write_begin() can take a long time if the
1167 * system is thrashing due to memory pressure, or if the page
1168 * is being written back. So grab it first before we start
1169 * the transaction handle. This also allows us to allocate
1170 * the page (if needed) without using GFP_NOFS.
1171 */
1172retry_grab:
1173 page = grab_cache_page_write_begin(mapping, index, flags);
1174 if (!page)
1175 return -ENOMEM;
1176 unlock_page(page);
1177
1178retry_journal:
1179 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1180 if (IS_ERR(handle)) {
1181 put_page(page);
1182 return PTR_ERR(handle);
1183 }
1184
1185 lock_page(page);
1186 if (page->mapping != mapping) {
1187 /* The page got truncated from under us */
1188 unlock_page(page);
1189 put_page(page);
1190 ext4_journal_stop(handle);
1191 goto retry_grab;
1192 }
1193 /* In case writeback began while the page was unlocked */
1194 wait_for_stable_page(page);
1195
1196#ifdef CONFIG_FS_ENCRYPTION
1197 if (ext4_should_dioread_nolock(inode))
1198 ret = ext4_block_write_begin(page, pos, len,
1199 ext4_get_block_unwritten);
1200 else
1201 ret = ext4_block_write_begin(page, pos, len,
1202 ext4_get_block);
1203#else
1204 if (ext4_should_dioread_nolock(inode))
1205 ret = __block_write_begin(page, pos, len,
1206 ext4_get_block_unwritten);
1207 else
1208 ret = __block_write_begin(page, pos, len, ext4_get_block);
1209#endif
1210 if (!ret && ext4_should_journal_data(inode)) {
1211 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1212 from, to, NULL,
1213 do_journal_get_write_access);
1214 }
1215
1216 if (ret) {
1217 bool extended = (pos + len > inode->i_size) &&
1218 !ext4_verity_in_progress(inode);
1219
1220 unlock_page(page);
1221 /*
1222 * __block_write_begin may have instantiated a few blocks
1223 * outside i_size. Trim these off again. Don't need
1224 * i_size_read because we hold i_mutex.
1225 *
1226 * Add inode to orphan list in case we crash before
1227 * truncate finishes
1228 */
1229 if (extended && ext4_can_truncate(inode))
1230 ext4_orphan_add(handle, inode);
1231
1232 ext4_journal_stop(handle);
1233 if (extended) {
1234 ext4_truncate_failed_write(inode);
1235 /*
1236 * If truncate failed early the inode might
1237 * still be on the orphan list; we need to
1238 * make sure the inode is removed from the
1239 * orphan list in that case.
1240 */
1241 if (inode->i_nlink)
1242 ext4_orphan_del(NULL, inode);
1243 }
1244
1245 if (ret == -ENOSPC &&
1246 ext4_should_retry_alloc(inode->i_sb, &retries))
1247 goto retry_journal;
1248 put_page(page);
1249 return ret;
1250 }
1251 *pagep = page;
1252 return ret;
1253}
1254
1255/* For write_end() in data=journal mode */
1256static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1257{
1258 int ret;
1259 if (!buffer_mapped(bh) || buffer_freed(bh))
1260 return 0;
1261 set_buffer_uptodate(bh);
1262 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1263 clear_buffer_meta(bh);
1264 clear_buffer_prio(bh);
1265 return ret;
1266}
1267
1268/*
1269 * We need to pick up the new inode size which generic_commit_write gave us
1270 * `file' can be NULL - eg, when called from page_symlink().
1271 *
1272 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1273 * buffers are managed internally.
1274 */
1275static int ext4_write_end(struct file *file,
1276 struct address_space *mapping,
1277 loff_t pos, unsigned len, unsigned copied,
1278 struct page *page, void *fsdata)
1279{
1280 handle_t *handle = ext4_journal_current_handle();
1281 struct inode *inode = mapping->host;
1282 loff_t old_size = inode->i_size;
1283 int ret = 0, ret2;
1284 int i_size_changed = 0;
1285 int inline_data = ext4_has_inline_data(inode);
1286 bool verity = ext4_verity_in_progress(inode);
1287
1288 trace_ext4_write_end(inode, pos, len, copied);
1289 if (inline_data) {
1290 ret = ext4_write_inline_data_end(inode, pos, len,
1291 copied, page);
1292 if (ret < 0) {
1293 unlock_page(page);
1294 put_page(page);
1295 goto errout;
1296 }
1297 copied = ret;
1298 ret = 0;
1299 } else
1300 copied = block_write_end(file, mapping, pos,
1301 len, copied, page, fsdata);
1302 /*
1303 * it's important to update i_size while still holding page lock:
1304 * page writeout could otherwise come in and zero beyond i_size.
1305 *
1306 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1307 * blocks are being written past EOF, so skip the i_size update.
1308 */
1309 if (!verity)
1310 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1311 unlock_page(page);
1312 put_page(page);
1313
1314 if (old_size < pos && !verity)
1315 pagecache_isize_extended(inode, old_size, pos);
1316 /*
1317 * Don't mark the inode dirty under page lock. First, it unnecessarily
1318 * makes the holding time of page lock longer. Second, it forces lock
1319 * ordering of page lock and transaction start for journaling
1320 * filesystems.
1321 */
1322 if (i_size_changed || inline_data)
1323 ret = ext4_mark_inode_dirty(handle, inode);
1324
1325errout:
1326 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1327 /* if we have allocated more blocks and copied
1328 * less. We will have blocks allocated outside
1329 * inode->i_size. So truncate them
1330 */
1331 ext4_orphan_add(handle, inode);
1332
1333 ret2 = ext4_journal_stop(handle);
1334 if (!ret)
1335 ret = ret2;
1336
1337 if (pos + len > inode->i_size && !verity) {
1338 ext4_truncate_failed_write(inode);
1339 /*
1340 * If truncate failed early the inode might still be
1341 * on the orphan list; we need to make sure the inode
1342 * is removed from the orphan list in that case.
1343 */
1344 if (inode->i_nlink)
1345 ext4_orphan_del(NULL, inode);
1346 }
1347
1348 return ret ? ret : copied;
1349}
1350
1351/*
1352 * This is a private version of page_zero_new_buffers() which doesn't
1353 * set the buffer to be dirty, since in data=journalled mode we need
1354 * to call ext4_handle_dirty_metadata() instead.
1355 */
1356static void ext4_journalled_zero_new_buffers(handle_t *handle,
1357 struct page *page,
1358 unsigned from, unsigned to)
1359{
1360 unsigned int block_start = 0, block_end;
1361 struct buffer_head *head, *bh;
1362
1363 bh = head = page_buffers(page);
1364 do {
1365 block_end = block_start + bh->b_size;
1366 if (buffer_new(bh)) {
1367 if (block_end > from && block_start < to) {
1368 if (!PageUptodate(page)) {
1369 unsigned start, size;
1370
1371 start = max(from, block_start);
1372 size = min(to, block_end) - start;
1373
1374 zero_user(page, start, size);
1375 write_end_fn(handle, bh);
1376 }
1377 clear_buffer_new(bh);
1378 }
1379 }
1380 block_start = block_end;
1381 bh = bh->b_this_page;
1382 } while (bh != head);
1383}
1384
1385static int ext4_journalled_write_end(struct file *file,
1386 struct address_space *mapping,
1387 loff_t pos, unsigned len, unsigned copied,
1388 struct page *page, void *fsdata)
1389{
1390 handle_t *handle = ext4_journal_current_handle();
1391 struct inode *inode = mapping->host;
1392 loff_t old_size = inode->i_size;
1393 int ret = 0, ret2;
1394 int partial = 0;
1395 unsigned from, to;
1396 int size_changed = 0;
1397 int inline_data = ext4_has_inline_data(inode);
1398 bool verity = ext4_verity_in_progress(inode);
1399
1400 trace_ext4_journalled_write_end(inode, pos, len, copied);
1401 from = pos & (PAGE_SIZE - 1);
1402 to = from + len;
1403
1404 BUG_ON(!ext4_handle_valid(handle));
1405
1406 if (inline_data) {
1407 ret = ext4_write_inline_data_end(inode, pos, len,
1408 copied, page);
1409 if (ret < 0) {
1410 unlock_page(page);
1411 put_page(page);
1412 goto errout;
1413 }
1414 copied = ret;
1415 ret = 0;
1416 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1417 copied = 0;
1418 ext4_journalled_zero_new_buffers(handle, page, from, to);
1419 } else {
1420 if (unlikely(copied < len))
1421 ext4_journalled_zero_new_buffers(handle, page,
1422 from + copied, to);
1423 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1424 from + copied, &partial,
1425 write_end_fn);
1426 if (!partial)
1427 SetPageUptodate(page);
1428 }
1429 if (!verity)
1430 size_changed = ext4_update_inode_size(inode, pos + copied);
1431 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1432 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1433 unlock_page(page);
1434 put_page(page);
1435
1436 if (old_size < pos && !verity)
1437 pagecache_isize_extended(inode, old_size, pos);
1438
1439 if (size_changed || inline_data) {
1440 ret2 = ext4_mark_inode_dirty(handle, inode);
1441 if (!ret)
1442 ret = ret2;
1443 }
1444
1445errout:
1446 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1447 /* if we have allocated more blocks and copied
1448 * less. We will have blocks allocated outside
1449 * inode->i_size. So truncate them
1450 */
1451 ext4_orphan_add(handle, inode);
1452
1453 ret2 = ext4_journal_stop(handle);
1454 if (!ret)
1455 ret = ret2;
1456 if (pos + len > inode->i_size && !verity) {
1457 ext4_truncate_failed_write(inode);
1458 /*
1459 * If truncate failed early the inode might still be
1460 * on the orphan list; we need to make sure the inode
1461 * is removed from the orphan list in that case.
1462 */
1463 if (inode->i_nlink)
1464 ext4_orphan_del(NULL, inode);
1465 }
1466
1467 return ret ? ret : copied;
1468}
1469
1470/*
1471 * Reserve space for a single cluster
1472 */
1473static int ext4_da_reserve_space(struct inode *inode)
1474{
1475 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476 struct ext4_inode_info *ei = EXT4_I(inode);
1477 int ret;
1478
1479 /*
1480 * We will charge metadata quota at writeout time; this saves
1481 * us from metadata over-estimation, though we may go over by
1482 * a small amount in the end. Here we just reserve for data.
1483 */
1484 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1485 if (ret)
1486 return ret;
1487
1488 spin_lock(&ei->i_block_reservation_lock);
1489 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1490 spin_unlock(&ei->i_block_reservation_lock);
1491 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1492 return -ENOSPC;
1493 }
1494 ei->i_reserved_data_blocks++;
1495 trace_ext4_da_reserve_space(inode);
1496 spin_unlock(&ei->i_block_reservation_lock);
1497
1498 return 0; /* success */
1499}
1500
1501void ext4_da_release_space(struct inode *inode, int to_free)
1502{
1503 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504 struct ext4_inode_info *ei = EXT4_I(inode);
1505
1506 if (!to_free)
1507 return; /* Nothing to release, exit */
1508
1509 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510
1511 trace_ext4_da_release_space(inode, to_free);
1512 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513 /*
1514 * if there aren't enough reserved blocks, then the
1515 * counter is messed up somewhere. Since this
1516 * function is called from invalidate page, it's
1517 * harmless to return without any action.
1518 */
1519 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520 "ino %lu, to_free %d with only %d reserved "
1521 "data blocks", inode->i_ino, to_free,
1522 ei->i_reserved_data_blocks);
1523 WARN_ON(1);
1524 to_free = ei->i_reserved_data_blocks;
1525 }
1526 ei->i_reserved_data_blocks -= to_free;
1527
1528 /* update fs dirty data blocks counter */
1529 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530
1531 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532
1533 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1534}
1535
1536/*
1537 * Delayed allocation stuff
1538 */
1539
1540struct mpage_da_data {
1541 struct inode *inode;
1542 struct writeback_control *wbc;
1543
1544 pgoff_t first_page; /* The first page to write */
1545 pgoff_t next_page; /* Current page to examine */
1546 pgoff_t last_page; /* Last page to examine */
1547 /*
1548 * Extent to map - this can be after first_page because that can be
1549 * fully mapped. We somewhat abuse m_flags to store whether the extent
1550 * is delalloc or unwritten.
1551 */
1552 struct ext4_map_blocks map;
1553 struct ext4_io_submit io_submit; /* IO submission data */
1554 unsigned int do_map:1;
1555 unsigned int scanned_until_end:1;
1556};
1557
1558static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1559 bool invalidate)
1560{
1561 int nr_pages, i;
1562 pgoff_t index, end;
1563 struct pagevec pvec;
1564 struct inode *inode = mpd->inode;
1565 struct address_space *mapping = inode->i_mapping;
1566
1567 /* This is necessary when next_page == 0. */
1568 if (mpd->first_page >= mpd->next_page)
1569 return;
1570
1571 mpd->scanned_until_end = 0;
1572 index = mpd->first_page;
1573 end = mpd->next_page - 1;
1574 if (invalidate) {
1575 ext4_lblk_t start, last;
1576 start = index << (PAGE_SHIFT - inode->i_blkbits);
1577 last = end << (PAGE_SHIFT - inode->i_blkbits);
1578 ext4_es_remove_extent(inode, start, last - start + 1);
1579 }
1580
1581 pagevec_init(&pvec);
1582 while (index <= end) {
1583 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1584 if (nr_pages == 0)
1585 break;
1586 for (i = 0; i < nr_pages; i++) {
1587 struct page *page = pvec.pages[i];
1588
1589 BUG_ON(!PageLocked(page));
1590 BUG_ON(PageWriteback(page));
1591 if (invalidate) {
1592 if (page_mapped(page))
1593 clear_page_dirty_for_io(page);
1594 block_invalidatepage(page, 0, PAGE_SIZE);
1595 ClearPageUptodate(page);
1596 }
1597 unlock_page(page);
1598 }
1599 pagevec_release(&pvec);
1600 }
1601}
1602
1603static void ext4_print_free_blocks(struct inode *inode)
1604{
1605 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1606 struct super_block *sb = inode->i_sb;
1607 struct ext4_inode_info *ei = EXT4_I(inode);
1608
1609 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1610 EXT4_C2B(EXT4_SB(inode->i_sb),
1611 ext4_count_free_clusters(sb)));
1612 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1613 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1614 (long long) EXT4_C2B(EXT4_SB(sb),
1615 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1616 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1617 (long long) EXT4_C2B(EXT4_SB(sb),
1618 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1619 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1620 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1621 ei->i_reserved_data_blocks);
1622 return;
1623}
1624
1625static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1626{
1627 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1628}
1629
1630/*
1631 * ext4_insert_delayed_block - adds a delayed block to the extents status
1632 * tree, incrementing the reserved cluster/block
1633 * count or making a pending reservation
1634 * where needed
1635 *
1636 * @inode - file containing the newly added block
1637 * @lblk - logical block to be added
1638 *
1639 * Returns 0 on success, negative error code on failure.
1640 */
1641static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1642{
1643 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1644 int ret;
1645 bool allocated = false;
1646 bool reserved = false;
1647
1648 /*
1649 * If the cluster containing lblk is shared with a delayed,
1650 * written, or unwritten extent in a bigalloc file system, it's
1651 * already been accounted for and does not need to be reserved.
1652 * A pending reservation must be made for the cluster if it's
1653 * shared with a written or unwritten extent and doesn't already
1654 * have one. Written and unwritten extents can be purged from the
1655 * extents status tree if the system is under memory pressure, so
1656 * it's necessary to examine the extent tree if a search of the
1657 * extents status tree doesn't get a match.
1658 */
1659 if (sbi->s_cluster_ratio == 1) {
1660 ret = ext4_da_reserve_space(inode);
1661 if (ret != 0) /* ENOSPC */
1662 goto errout;
1663 reserved = true;
1664 } else { /* bigalloc */
1665 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1666 if (!ext4_es_scan_clu(inode,
1667 &ext4_es_is_mapped, lblk)) {
1668 ret = ext4_clu_mapped(inode,
1669 EXT4_B2C(sbi, lblk));
1670 if (ret < 0)
1671 goto errout;
1672 if (ret == 0) {
1673 ret = ext4_da_reserve_space(inode);
1674 if (ret != 0) /* ENOSPC */
1675 goto errout;
1676 reserved = true;
1677 } else {
1678 allocated = true;
1679 }
1680 } else {
1681 allocated = true;
1682 }
1683 }
1684 }
1685
1686 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1687 if (ret && reserved)
1688 ext4_da_release_space(inode, 1);
1689
1690errout:
1691 return ret;
1692}
1693
1694/*
1695 * This function is grabs code from the very beginning of
1696 * ext4_map_blocks, but assumes that the caller is from delayed write
1697 * time. This function looks up the requested blocks and sets the
1698 * buffer delay bit under the protection of i_data_sem.
1699 */
1700static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1701 struct ext4_map_blocks *map,
1702 struct buffer_head *bh)
1703{
1704 struct extent_status es;
1705 int retval;
1706 sector_t invalid_block = ~((sector_t) 0xffff);
1707#ifdef ES_AGGRESSIVE_TEST
1708 struct ext4_map_blocks orig_map;
1709
1710 memcpy(&orig_map, map, sizeof(*map));
1711#endif
1712
1713 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1714 invalid_block = ~0;
1715
1716 map->m_flags = 0;
1717 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1718 (unsigned long) map->m_lblk);
1719
1720 /* Lookup extent status tree firstly */
1721 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1722 if (ext4_es_is_hole(&es)) {
1723 retval = 0;
1724 down_read(&EXT4_I(inode)->i_data_sem);
1725 goto add_delayed;
1726 }
1727
1728 /*
1729 * Delayed extent could be allocated by fallocate.
1730 * So we need to check it.
1731 */
1732 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1733 map_bh(bh, inode->i_sb, invalid_block);
1734 set_buffer_new(bh);
1735 set_buffer_delay(bh);
1736 return 0;
1737 }
1738
1739 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1740 retval = es.es_len - (iblock - es.es_lblk);
1741 if (retval > map->m_len)
1742 retval = map->m_len;
1743 map->m_len = retval;
1744 if (ext4_es_is_written(&es))
1745 map->m_flags |= EXT4_MAP_MAPPED;
1746 else if (ext4_es_is_unwritten(&es))
1747 map->m_flags |= EXT4_MAP_UNWRITTEN;
1748 else
1749 BUG();
1750
1751#ifdef ES_AGGRESSIVE_TEST
1752 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1753#endif
1754 return retval;
1755 }
1756
1757 /*
1758 * Try to see if we can get the block without requesting a new
1759 * file system block.
1760 */
1761 down_read(&EXT4_I(inode)->i_data_sem);
1762 if (ext4_has_inline_data(inode))
1763 retval = 0;
1764 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1765 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1766 else
1767 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1768
1769add_delayed:
1770 if (retval == 0) {
1771 int ret;
1772
1773 /*
1774 * XXX: __block_prepare_write() unmaps passed block,
1775 * is it OK?
1776 */
1777
1778 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1779 if (ret != 0) {
1780 retval = ret;
1781 goto out_unlock;
1782 }
1783
1784 map_bh(bh, inode->i_sb, invalid_block);
1785 set_buffer_new(bh);
1786 set_buffer_delay(bh);
1787 } else if (retval > 0) {
1788 int ret;
1789 unsigned int status;
1790
1791 if (unlikely(retval != map->m_len)) {
1792 ext4_warning(inode->i_sb,
1793 "ES len assertion failed for inode "
1794 "%lu: retval %d != map->m_len %d",
1795 inode->i_ino, retval, map->m_len);
1796 WARN_ON(1);
1797 }
1798
1799 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1800 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1801 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1802 map->m_pblk, status);
1803 if (ret != 0)
1804 retval = ret;
1805 }
1806
1807out_unlock:
1808 up_read((&EXT4_I(inode)->i_data_sem));
1809
1810 return retval;
1811}
1812
1813/*
1814 * This is a special get_block_t callback which is used by
1815 * ext4_da_write_begin(). It will either return mapped block or
1816 * reserve space for a single block.
1817 *
1818 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1819 * We also have b_blocknr = -1 and b_bdev initialized properly
1820 *
1821 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1822 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1823 * initialized properly.
1824 */
1825int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1826 struct buffer_head *bh, int create)
1827{
1828 struct ext4_map_blocks map;
1829 int ret = 0;
1830
1831 BUG_ON(create == 0);
1832 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1833
1834 map.m_lblk = iblock;
1835 map.m_len = 1;
1836
1837 /*
1838 * first, we need to know whether the block is allocated already
1839 * preallocated blocks are unmapped but should treated
1840 * the same as allocated blocks.
1841 */
1842 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1843 if (ret <= 0)
1844 return ret;
1845
1846 map_bh(bh, inode->i_sb, map.m_pblk);
1847 ext4_update_bh_state(bh, map.m_flags);
1848
1849 if (buffer_unwritten(bh)) {
1850 /* A delayed write to unwritten bh should be marked
1851 * new and mapped. Mapped ensures that we don't do
1852 * get_block multiple times when we write to the same
1853 * offset and new ensures that we do proper zero out
1854 * for partial write.
1855 */
1856 set_buffer_new(bh);
1857 set_buffer_mapped(bh);
1858 }
1859 return 0;
1860}
1861
1862static int bget_one(handle_t *handle, struct buffer_head *bh)
1863{
1864 get_bh(bh);
1865 return 0;
1866}
1867
1868static int bput_one(handle_t *handle, struct buffer_head *bh)
1869{
1870 put_bh(bh);
1871 return 0;
1872}
1873
1874static int __ext4_journalled_writepage(struct page *page,
1875 unsigned int len)
1876{
1877 struct address_space *mapping = page->mapping;
1878 struct inode *inode = mapping->host;
1879 struct buffer_head *page_bufs = NULL;
1880 handle_t *handle = NULL;
1881 int ret = 0, err = 0;
1882 int inline_data = ext4_has_inline_data(inode);
1883 struct buffer_head *inode_bh = NULL;
1884
1885 ClearPageChecked(page);
1886
1887 if (inline_data) {
1888 BUG_ON(page->index != 0);
1889 BUG_ON(len > ext4_get_max_inline_size(inode));
1890 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1891 if (inode_bh == NULL)
1892 goto out;
1893 } else {
1894 page_bufs = page_buffers(page);
1895 if (!page_bufs) {
1896 BUG();
1897 goto out;
1898 }
1899 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1900 NULL, bget_one);
1901 }
1902 /*
1903 * We need to release the page lock before we start the
1904 * journal, so grab a reference so the page won't disappear
1905 * out from under us.
1906 */
1907 get_page(page);
1908 unlock_page(page);
1909
1910 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1911 ext4_writepage_trans_blocks(inode));
1912 if (IS_ERR(handle)) {
1913 ret = PTR_ERR(handle);
1914 put_page(page);
1915 goto out_no_pagelock;
1916 }
1917 BUG_ON(!ext4_handle_valid(handle));
1918
1919 lock_page(page);
1920 put_page(page);
1921 if (page->mapping != mapping) {
1922 /* The page got truncated from under us */
1923 ext4_journal_stop(handle);
1924 ret = 0;
1925 goto out;
1926 }
1927
1928 if (inline_data) {
1929 ret = ext4_mark_inode_dirty(handle, inode);
1930 } else {
1931 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1932 do_journal_get_write_access);
1933
1934 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1935 write_end_fn);
1936 }
1937 if (ret == 0)
1938 ret = err;
1939 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1940 if (ret == 0)
1941 ret = err;
1942 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1943 err = ext4_journal_stop(handle);
1944 if (!ret)
1945 ret = err;
1946
1947 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1948out:
1949 unlock_page(page);
1950out_no_pagelock:
1951 if (!inline_data && page_bufs)
1952 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1953 NULL, bput_one);
1954 brelse(inode_bh);
1955 return ret;
1956}
1957
1958/*
1959 * Note that we don't need to start a transaction unless we're journaling data
1960 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1961 * need to file the inode to the transaction's list in ordered mode because if
1962 * we are writing back data added by write(), the inode is already there and if
1963 * we are writing back data modified via mmap(), no one guarantees in which
1964 * transaction the data will hit the disk. In case we are journaling data, we
1965 * cannot start transaction directly because transaction start ranks above page
1966 * lock so we have to do some magic.
1967 *
1968 * This function can get called via...
1969 * - ext4_writepages after taking page lock (have journal handle)
1970 * - journal_submit_inode_data_buffers (no journal handle)
1971 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1972 * - grab_page_cache when doing write_begin (have journal handle)
1973 *
1974 * We don't do any block allocation in this function. If we have page with
1975 * multiple blocks we need to write those buffer_heads that are mapped. This
1976 * is important for mmaped based write. So if we do with blocksize 1K
1977 * truncate(f, 1024);
1978 * a = mmap(f, 0, 4096);
1979 * a[0] = 'a';
1980 * truncate(f, 4096);
1981 * we have in the page first buffer_head mapped via page_mkwrite call back
1982 * but other buffer_heads would be unmapped but dirty (dirty done via the
1983 * do_wp_page). So writepage should write the first block. If we modify
1984 * the mmap area beyond 1024 we will again get a page_fault and the
1985 * page_mkwrite callback will do the block allocation and mark the
1986 * buffer_heads mapped.
1987 *
1988 * We redirty the page if we have any buffer_heads that is either delay or
1989 * unwritten in the page.
1990 *
1991 * We can get recursively called as show below.
1992 *
1993 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1994 * ext4_writepage()
1995 *
1996 * But since we don't do any block allocation we should not deadlock.
1997 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1998 */
1999static int ext4_writepage(struct page *page,
2000 struct writeback_control *wbc)
2001{
2002 int ret = 0;
2003 loff_t size;
2004 unsigned int len;
2005 struct buffer_head *page_bufs = NULL;
2006 struct inode *inode = page->mapping->host;
2007 struct ext4_io_submit io_submit;
2008 bool keep_towrite = false;
2009
2010 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2011 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2012 unlock_page(page);
2013 return -EIO;
2014 }
2015
2016 trace_ext4_writepage(page);
2017 size = i_size_read(inode);
2018 if (page->index == size >> PAGE_SHIFT &&
2019 !ext4_verity_in_progress(inode))
2020 len = size & ~PAGE_MASK;
2021 else
2022 len = PAGE_SIZE;
2023
2024 page_bufs = page_buffers(page);
2025 /*
2026 * We cannot do block allocation or other extent handling in this
2027 * function. If there are buffers needing that, we have to redirty
2028 * the page. But we may reach here when we do a journal commit via
2029 * journal_submit_inode_data_buffers() and in that case we must write
2030 * allocated buffers to achieve data=ordered mode guarantees.
2031 *
2032 * Also, if there is only one buffer per page (the fs block
2033 * size == the page size), if one buffer needs block
2034 * allocation or needs to modify the extent tree to clear the
2035 * unwritten flag, we know that the page can't be written at
2036 * all, so we might as well refuse the write immediately.
2037 * Unfortunately if the block size != page size, we can't as
2038 * easily detect this case using ext4_walk_page_buffers(), but
2039 * for the extremely common case, this is an optimization that
2040 * skips a useless round trip through ext4_bio_write_page().
2041 */
2042 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2043 ext4_bh_delay_or_unwritten)) {
2044 redirty_page_for_writepage(wbc, page);
2045 if ((current->flags & PF_MEMALLOC) ||
2046 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2047 /*
2048 * For memory cleaning there's no point in writing only
2049 * some buffers. So just bail out. Warn if we came here
2050 * from direct reclaim.
2051 */
2052 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2053 == PF_MEMALLOC);
2054 unlock_page(page);
2055 return 0;
2056 }
2057 keep_towrite = true;
2058 }
2059
2060 if (PageChecked(page) && ext4_should_journal_data(inode))
2061 /*
2062 * It's mmapped pagecache. Add buffers and journal it. There
2063 * doesn't seem much point in redirtying the page here.
2064 */
2065 return __ext4_journalled_writepage(page, len);
2066
2067 ext4_io_submit_init(&io_submit, wbc);
2068 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2069 if (!io_submit.io_end) {
2070 redirty_page_for_writepage(wbc, page);
2071 unlock_page(page);
2072 return -ENOMEM;
2073 }
2074 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2075 ext4_io_submit(&io_submit);
2076 /* Drop io_end reference we got from init */
2077 ext4_put_io_end_defer(io_submit.io_end);
2078 return ret;
2079}
2080
2081static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2082{
2083 int len;
2084 loff_t size;
2085 int err;
2086
2087 BUG_ON(page->index != mpd->first_page);
2088 clear_page_dirty_for_io(page);
2089 /*
2090 * We have to be very careful here! Nothing protects writeback path
2091 * against i_size changes and the page can be writeably mapped into
2092 * page tables. So an application can be growing i_size and writing
2093 * data through mmap while writeback runs. clear_page_dirty_for_io()
2094 * write-protects our page in page tables and the page cannot get
2095 * written to again until we release page lock. So only after
2096 * clear_page_dirty_for_io() we are safe to sample i_size for
2097 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2098 * on the barrier provided by TestClearPageDirty in
2099 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2100 * after page tables are updated.
2101 */
2102 size = i_size_read(mpd->inode);
2103 if (page->index == size >> PAGE_SHIFT &&
2104 !ext4_verity_in_progress(mpd->inode))
2105 len = size & ~PAGE_MASK;
2106 else
2107 len = PAGE_SIZE;
2108 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2109 if (!err)
2110 mpd->wbc->nr_to_write--;
2111 mpd->first_page++;
2112
2113 return err;
2114}
2115
2116#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2117
2118/*
2119 * mballoc gives us at most this number of blocks...
2120 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2121 * The rest of mballoc seems to handle chunks up to full group size.
2122 */
2123#define MAX_WRITEPAGES_EXTENT_LEN 2048
2124
2125/*
2126 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2127 *
2128 * @mpd - extent of blocks
2129 * @lblk - logical number of the block in the file
2130 * @bh - buffer head we want to add to the extent
2131 *
2132 * The function is used to collect contig. blocks in the same state. If the
2133 * buffer doesn't require mapping for writeback and we haven't started the
2134 * extent of buffers to map yet, the function returns 'true' immediately - the
2135 * caller can write the buffer right away. Otherwise the function returns true
2136 * if the block has been added to the extent, false if the block couldn't be
2137 * added.
2138 */
2139static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2140 struct buffer_head *bh)
2141{
2142 struct ext4_map_blocks *map = &mpd->map;
2143
2144 /* Buffer that doesn't need mapping for writeback? */
2145 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2146 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2147 /* So far no extent to map => we write the buffer right away */
2148 if (map->m_len == 0)
2149 return true;
2150 return false;
2151 }
2152
2153 /* First block in the extent? */
2154 if (map->m_len == 0) {
2155 /* We cannot map unless handle is started... */
2156 if (!mpd->do_map)
2157 return false;
2158 map->m_lblk = lblk;
2159 map->m_len = 1;
2160 map->m_flags = bh->b_state & BH_FLAGS;
2161 return true;
2162 }
2163
2164 /* Don't go larger than mballoc is willing to allocate */
2165 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2166 return false;
2167
2168 /* Can we merge the block to our big extent? */
2169 if (lblk == map->m_lblk + map->m_len &&
2170 (bh->b_state & BH_FLAGS) == map->m_flags) {
2171 map->m_len++;
2172 return true;
2173 }
2174 return false;
2175}
2176
2177/*
2178 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2179 *
2180 * @mpd - extent of blocks for mapping
2181 * @head - the first buffer in the page
2182 * @bh - buffer we should start processing from
2183 * @lblk - logical number of the block in the file corresponding to @bh
2184 *
2185 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2186 * the page for IO if all buffers in this page were mapped and there's no
2187 * accumulated extent of buffers to map or add buffers in the page to the
2188 * extent of buffers to map. The function returns 1 if the caller can continue
2189 * by processing the next page, 0 if it should stop adding buffers to the
2190 * extent to map because we cannot extend it anymore. It can also return value
2191 * < 0 in case of error during IO submission.
2192 */
2193static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2194 struct buffer_head *head,
2195 struct buffer_head *bh,
2196 ext4_lblk_t lblk)
2197{
2198 struct inode *inode = mpd->inode;
2199 int err;
2200 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2201 >> inode->i_blkbits;
2202
2203 if (ext4_verity_in_progress(inode))
2204 blocks = EXT_MAX_BLOCKS;
2205
2206 do {
2207 BUG_ON(buffer_locked(bh));
2208
2209 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2210 /* Found extent to map? */
2211 if (mpd->map.m_len)
2212 return 0;
2213 /* Buffer needs mapping and handle is not started? */
2214 if (!mpd->do_map)
2215 return 0;
2216 /* Everything mapped so far and we hit EOF */
2217 break;
2218 }
2219 } while (lblk++, (bh = bh->b_this_page) != head);
2220 /* So far everything mapped? Submit the page for IO. */
2221 if (mpd->map.m_len == 0) {
2222 err = mpage_submit_page(mpd, head->b_page);
2223 if (err < 0)
2224 return err;
2225 }
2226 if (lblk >= blocks) {
2227 mpd->scanned_until_end = 1;
2228 return 0;
2229 }
2230 return 1;
2231}
2232
2233/*
2234 * mpage_process_page - update page buffers corresponding to changed extent and
2235 * may submit fully mapped page for IO
2236 *
2237 * @mpd - description of extent to map, on return next extent to map
2238 * @m_lblk - logical block mapping.
2239 * @m_pblk - corresponding physical mapping.
2240 * @map_bh - determines on return whether this page requires any further
2241 * mapping or not.
2242 * Scan given page buffers corresponding to changed extent and update buffer
2243 * state according to new extent state.
2244 * We map delalloc buffers to their physical location, clear unwritten bits.
2245 * If the given page is not fully mapped, we update @map to the next extent in
2246 * the given page that needs mapping & return @map_bh as true.
2247 */
2248static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2249 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2250 bool *map_bh)
2251{
2252 struct buffer_head *head, *bh;
2253 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2254 ext4_lblk_t lblk = *m_lblk;
2255 ext4_fsblk_t pblock = *m_pblk;
2256 int err = 0;
2257 int blkbits = mpd->inode->i_blkbits;
2258 ssize_t io_end_size = 0;
2259 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2260
2261 bh = head = page_buffers(page);
2262 do {
2263 if (lblk < mpd->map.m_lblk)
2264 continue;
2265 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2266 /*
2267 * Buffer after end of mapped extent.
2268 * Find next buffer in the page to map.
2269 */
2270 mpd->map.m_len = 0;
2271 mpd->map.m_flags = 0;
2272 io_end_vec->size += io_end_size;
2273 io_end_size = 0;
2274
2275 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2276 if (err > 0)
2277 err = 0;
2278 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2279 io_end_vec = ext4_alloc_io_end_vec(io_end);
2280 if (IS_ERR(io_end_vec)) {
2281 err = PTR_ERR(io_end_vec);
2282 goto out;
2283 }
2284 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2285 }
2286 *map_bh = true;
2287 goto out;
2288 }
2289 if (buffer_delay(bh)) {
2290 clear_buffer_delay(bh);
2291 bh->b_blocknr = pblock++;
2292 }
2293 clear_buffer_unwritten(bh);
2294 io_end_size += (1 << blkbits);
2295 } while (lblk++, (bh = bh->b_this_page) != head);
2296
2297 io_end_vec->size += io_end_size;
2298 io_end_size = 0;
2299 *map_bh = false;
2300out:
2301 *m_lblk = lblk;
2302 *m_pblk = pblock;
2303 return err;
2304}
2305
2306/*
2307 * mpage_map_buffers - update buffers corresponding to changed extent and
2308 * submit fully mapped pages for IO
2309 *
2310 * @mpd - description of extent to map, on return next extent to map
2311 *
2312 * Scan buffers corresponding to changed extent (we expect corresponding pages
2313 * to be already locked) and update buffer state according to new extent state.
2314 * We map delalloc buffers to their physical location, clear unwritten bits,
2315 * and mark buffers as uninit when we perform writes to unwritten extents
2316 * and do extent conversion after IO is finished. If the last page is not fully
2317 * mapped, we update @map to the next extent in the last page that needs
2318 * mapping. Otherwise we submit the page for IO.
2319 */
2320static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2321{
2322 struct pagevec pvec;
2323 int nr_pages, i;
2324 struct inode *inode = mpd->inode;
2325 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2326 pgoff_t start, end;
2327 ext4_lblk_t lblk;
2328 ext4_fsblk_t pblock;
2329 int err;
2330 bool map_bh = false;
2331
2332 start = mpd->map.m_lblk >> bpp_bits;
2333 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2334 lblk = start << bpp_bits;
2335 pblock = mpd->map.m_pblk;
2336
2337 pagevec_init(&pvec);
2338 while (start <= end) {
2339 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2340 &start, end);
2341 if (nr_pages == 0)
2342 break;
2343 for (i = 0; i < nr_pages; i++) {
2344 struct page *page = pvec.pages[i];
2345
2346 err = mpage_process_page(mpd, page, &lblk, &pblock,
2347 &map_bh);
2348 /*
2349 * If map_bh is true, means page may require further bh
2350 * mapping, or maybe the page was submitted for IO.
2351 * So we return to call further extent mapping.
2352 */
2353 if (err < 0 || map_bh)
2354 goto out;
2355 /* Page fully mapped - let IO run! */
2356 err = mpage_submit_page(mpd, page);
2357 if (err < 0)
2358 goto out;
2359 }
2360 pagevec_release(&pvec);
2361 }
2362 /* Extent fully mapped and matches with page boundary. We are done. */
2363 mpd->map.m_len = 0;
2364 mpd->map.m_flags = 0;
2365 return 0;
2366out:
2367 pagevec_release(&pvec);
2368 return err;
2369}
2370
2371static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2372{
2373 struct inode *inode = mpd->inode;
2374 struct ext4_map_blocks *map = &mpd->map;
2375 int get_blocks_flags;
2376 int err, dioread_nolock;
2377
2378 trace_ext4_da_write_pages_extent(inode, map);
2379 /*
2380 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2381 * to convert an unwritten extent to be initialized (in the case
2382 * where we have written into one or more preallocated blocks). It is
2383 * possible that we're going to need more metadata blocks than
2384 * previously reserved. However we must not fail because we're in
2385 * writeback and there is nothing we can do about it so it might result
2386 * in data loss. So use reserved blocks to allocate metadata if
2387 * possible.
2388 *
2389 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2390 * the blocks in question are delalloc blocks. This indicates
2391 * that the blocks and quotas has already been checked when
2392 * the data was copied into the page cache.
2393 */
2394 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2395 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2396 EXT4_GET_BLOCKS_IO_SUBMIT;
2397 dioread_nolock = ext4_should_dioread_nolock(inode);
2398 if (dioread_nolock)
2399 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2400 if (map->m_flags & BIT(BH_Delay))
2401 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2402
2403 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2404 if (err < 0)
2405 return err;
2406 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2407 if (!mpd->io_submit.io_end->handle &&
2408 ext4_handle_valid(handle)) {
2409 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2410 handle->h_rsv_handle = NULL;
2411 }
2412 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2413 }
2414
2415 BUG_ON(map->m_len == 0);
2416 return 0;
2417}
2418
2419/*
2420 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2421 * mpd->len and submit pages underlying it for IO
2422 *
2423 * @handle - handle for journal operations
2424 * @mpd - extent to map
2425 * @give_up_on_write - we set this to true iff there is a fatal error and there
2426 * is no hope of writing the data. The caller should discard
2427 * dirty pages to avoid infinite loops.
2428 *
2429 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2430 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2431 * them to initialized or split the described range from larger unwritten
2432 * extent. Note that we need not map all the described range since allocation
2433 * can return less blocks or the range is covered by more unwritten extents. We
2434 * cannot map more because we are limited by reserved transaction credits. On
2435 * the other hand we always make sure that the last touched page is fully
2436 * mapped so that it can be written out (and thus forward progress is
2437 * guaranteed). After mapping we submit all mapped pages for IO.
2438 */
2439static int mpage_map_and_submit_extent(handle_t *handle,
2440 struct mpage_da_data *mpd,
2441 bool *give_up_on_write)
2442{
2443 struct inode *inode = mpd->inode;
2444 struct ext4_map_blocks *map = &mpd->map;
2445 int err;
2446 loff_t disksize;
2447 int progress = 0;
2448 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2449 struct ext4_io_end_vec *io_end_vec;
2450
2451 io_end_vec = ext4_alloc_io_end_vec(io_end);
2452 if (IS_ERR(io_end_vec))
2453 return PTR_ERR(io_end_vec);
2454 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2455 do {
2456 err = mpage_map_one_extent(handle, mpd);
2457 if (err < 0) {
2458 struct super_block *sb = inode->i_sb;
2459
2460 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2461 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2462 goto invalidate_dirty_pages;
2463 /*
2464 * Let the uper layers retry transient errors.
2465 * In the case of ENOSPC, if ext4_count_free_blocks()
2466 * is non-zero, a commit should free up blocks.
2467 */
2468 if ((err == -ENOMEM) ||
2469 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2470 if (progress)
2471 goto update_disksize;
2472 return err;
2473 }
2474 ext4_msg(sb, KERN_CRIT,
2475 "Delayed block allocation failed for "
2476 "inode %lu at logical offset %llu with"
2477 " max blocks %u with error %d",
2478 inode->i_ino,
2479 (unsigned long long)map->m_lblk,
2480 (unsigned)map->m_len, -err);
2481 ext4_msg(sb, KERN_CRIT,
2482 "This should not happen!! Data will "
2483 "be lost\n");
2484 if (err == -ENOSPC)
2485 ext4_print_free_blocks(inode);
2486 invalidate_dirty_pages:
2487 *give_up_on_write = true;
2488 return err;
2489 }
2490 progress = 1;
2491 /*
2492 * Update buffer state, submit mapped pages, and get us new
2493 * extent to map
2494 */
2495 err = mpage_map_and_submit_buffers(mpd);
2496 if (err < 0)
2497 goto update_disksize;
2498 } while (map->m_len);
2499
2500update_disksize:
2501 /*
2502 * Update on-disk size after IO is submitted. Races with
2503 * truncate are avoided by checking i_size under i_data_sem.
2504 */
2505 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2506 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2507 int err2;
2508 loff_t i_size;
2509
2510 down_write(&EXT4_I(inode)->i_data_sem);
2511 i_size = i_size_read(inode);
2512 if (disksize > i_size)
2513 disksize = i_size;
2514 if (disksize > EXT4_I(inode)->i_disksize)
2515 EXT4_I(inode)->i_disksize = disksize;
2516 up_write(&EXT4_I(inode)->i_data_sem);
2517 err2 = ext4_mark_inode_dirty(handle, inode);
2518 if (err2) {
2519 ext4_error_err(inode->i_sb, -err2,
2520 "Failed to mark inode %lu dirty",
2521 inode->i_ino);
2522 }
2523 if (!err)
2524 err = err2;
2525 }
2526 return err;
2527}
2528
2529/*
2530 * Calculate the total number of credits to reserve for one writepages
2531 * iteration. This is called from ext4_writepages(). We map an extent of
2532 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2533 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2534 * bpp - 1 blocks in bpp different extents.
2535 */
2536static int ext4_da_writepages_trans_blocks(struct inode *inode)
2537{
2538 int bpp = ext4_journal_blocks_per_page(inode);
2539
2540 return ext4_meta_trans_blocks(inode,
2541 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2542}
2543
2544/*
2545 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2546 * and underlying extent to map
2547 *
2548 * @mpd - where to look for pages
2549 *
2550 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2551 * IO immediately. When we find a page which isn't mapped we start accumulating
2552 * extent of buffers underlying these pages that needs mapping (formed by
2553 * either delayed or unwritten buffers). We also lock the pages containing
2554 * these buffers. The extent found is returned in @mpd structure (starting at
2555 * mpd->lblk with length mpd->len blocks).
2556 *
2557 * Note that this function can attach bios to one io_end structure which are
2558 * neither logically nor physically contiguous. Although it may seem as an
2559 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2560 * case as we need to track IO to all buffers underlying a page in one io_end.
2561 */
2562static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2563{
2564 struct address_space *mapping = mpd->inode->i_mapping;
2565 struct pagevec pvec;
2566 unsigned int nr_pages;
2567 long left = mpd->wbc->nr_to_write;
2568 pgoff_t index = mpd->first_page;
2569 pgoff_t end = mpd->last_page;
2570 xa_mark_t tag;
2571 int i, err = 0;
2572 int blkbits = mpd->inode->i_blkbits;
2573 ext4_lblk_t lblk;
2574 struct buffer_head *head;
2575
2576 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2577 tag = PAGECACHE_TAG_TOWRITE;
2578 else
2579 tag = PAGECACHE_TAG_DIRTY;
2580
2581 pagevec_init(&pvec);
2582 mpd->map.m_len = 0;
2583 mpd->next_page = index;
2584 while (index <= end) {
2585 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2586 tag);
2587 if (nr_pages == 0)
2588 break;
2589
2590 for (i = 0; i < nr_pages; i++) {
2591 struct page *page = pvec.pages[i];
2592
2593 /*
2594 * Accumulated enough dirty pages? This doesn't apply
2595 * to WB_SYNC_ALL mode. For integrity sync we have to
2596 * keep going because someone may be concurrently
2597 * dirtying pages, and we might have synced a lot of
2598 * newly appeared dirty pages, but have not synced all
2599 * of the old dirty pages.
2600 */
2601 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2602 goto out;
2603
2604 /* If we can't merge this page, we are done. */
2605 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2606 goto out;
2607
2608 lock_page(page);
2609 /*
2610 * If the page is no longer dirty, or its mapping no
2611 * longer corresponds to inode we are writing (which
2612 * means it has been truncated or invalidated), or the
2613 * page is already under writeback and we are not doing
2614 * a data integrity writeback, skip the page
2615 */
2616 if (!PageDirty(page) ||
2617 (PageWriteback(page) &&
2618 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2619 unlikely(page->mapping != mapping)) {
2620 unlock_page(page);
2621 continue;
2622 }
2623
2624 wait_on_page_writeback(page);
2625 BUG_ON(PageWriteback(page));
2626
2627 if (mpd->map.m_len == 0)
2628 mpd->first_page = page->index;
2629 mpd->next_page = page->index + 1;
2630 /* Add all dirty buffers to mpd */
2631 lblk = ((ext4_lblk_t)page->index) <<
2632 (PAGE_SHIFT - blkbits);
2633 head = page_buffers(page);
2634 err = mpage_process_page_bufs(mpd, head, head, lblk);
2635 if (err <= 0)
2636 goto out;
2637 err = 0;
2638 left--;
2639 }
2640 pagevec_release(&pvec);
2641 cond_resched();
2642 }
2643 mpd->scanned_until_end = 1;
2644 return 0;
2645out:
2646 pagevec_release(&pvec);
2647 return err;
2648}
2649
2650static int ext4_writepages(struct address_space *mapping,
2651 struct writeback_control *wbc)
2652{
2653 pgoff_t writeback_index = 0;
2654 long nr_to_write = wbc->nr_to_write;
2655 int range_whole = 0;
2656 int cycled = 1;
2657 handle_t *handle = NULL;
2658 struct mpage_da_data mpd;
2659 struct inode *inode = mapping->host;
2660 int needed_blocks, rsv_blocks = 0, ret = 0;
2661 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2662 struct blk_plug plug;
2663 bool give_up_on_write = false;
2664
2665 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2666 return -EIO;
2667
2668 percpu_down_read(&sbi->s_writepages_rwsem);
2669 trace_ext4_writepages(inode, wbc);
2670
2671 /*
2672 * No pages to write? This is mainly a kludge to avoid starting
2673 * a transaction for special inodes like journal inode on last iput()
2674 * because that could violate lock ordering on umount
2675 */
2676 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2677 goto out_writepages;
2678
2679 if (ext4_should_journal_data(inode)) {
2680 ret = generic_writepages(mapping, wbc);
2681 goto out_writepages;
2682 }
2683
2684 /*
2685 * If the filesystem has aborted, it is read-only, so return
2686 * right away instead of dumping stack traces later on that
2687 * will obscure the real source of the problem. We test
2688 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2689 * the latter could be true if the filesystem is mounted
2690 * read-only, and in that case, ext4_writepages should
2691 * *never* be called, so if that ever happens, we would want
2692 * the stack trace.
2693 */
2694 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2695 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2696 ret = -EROFS;
2697 goto out_writepages;
2698 }
2699
2700 /*
2701 * If we have inline data and arrive here, it means that
2702 * we will soon create the block for the 1st page, so
2703 * we'd better clear the inline data here.
2704 */
2705 if (ext4_has_inline_data(inode)) {
2706 /* Just inode will be modified... */
2707 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2708 if (IS_ERR(handle)) {
2709 ret = PTR_ERR(handle);
2710 goto out_writepages;
2711 }
2712 BUG_ON(ext4_test_inode_state(inode,
2713 EXT4_STATE_MAY_INLINE_DATA));
2714 ext4_destroy_inline_data(handle, inode);
2715 ext4_journal_stop(handle);
2716 }
2717
2718 if (ext4_should_dioread_nolock(inode)) {
2719 /*
2720 * We may need to convert up to one extent per block in
2721 * the page and we may dirty the inode.
2722 */
2723 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2724 PAGE_SIZE >> inode->i_blkbits);
2725 }
2726
2727 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2728 range_whole = 1;
2729
2730 if (wbc->range_cyclic) {
2731 writeback_index = mapping->writeback_index;
2732 if (writeback_index)
2733 cycled = 0;
2734 mpd.first_page = writeback_index;
2735 mpd.last_page = -1;
2736 } else {
2737 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2738 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2739 }
2740
2741 mpd.inode = inode;
2742 mpd.wbc = wbc;
2743 ext4_io_submit_init(&mpd.io_submit, wbc);
2744retry:
2745 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2746 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2747 blk_start_plug(&plug);
2748
2749 /*
2750 * First writeback pages that don't need mapping - we can avoid
2751 * starting a transaction unnecessarily and also avoid being blocked
2752 * in the block layer on device congestion while having transaction
2753 * started.
2754 */
2755 mpd.do_map = 0;
2756 mpd.scanned_until_end = 0;
2757 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2758 if (!mpd.io_submit.io_end) {
2759 ret = -ENOMEM;
2760 goto unplug;
2761 }
2762 ret = mpage_prepare_extent_to_map(&mpd);
2763 /* Unlock pages we didn't use */
2764 mpage_release_unused_pages(&mpd, false);
2765 /* Submit prepared bio */
2766 ext4_io_submit(&mpd.io_submit);
2767 ext4_put_io_end_defer(mpd.io_submit.io_end);
2768 mpd.io_submit.io_end = NULL;
2769 if (ret < 0)
2770 goto unplug;
2771
2772 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2773 /* For each extent of pages we use new io_end */
2774 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2775 if (!mpd.io_submit.io_end) {
2776 ret = -ENOMEM;
2777 break;
2778 }
2779
2780 /*
2781 * We have two constraints: We find one extent to map and we
2782 * must always write out whole page (makes a difference when
2783 * blocksize < pagesize) so that we don't block on IO when we
2784 * try to write out the rest of the page. Journalled mode is
2785 * not supported by delalloc.
2786 */
2787 BUG_ON(ext4_should_journal_data(inode));
2788 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2789
2790 /* start a new transaction */
2791 handle = ext4_journal_start_with_reserve(inode,
2792 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2793 if (IS_ERR(handle)) {
2794 ret = PTR_ERR(handle);
2795 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2796 "%ld pages, ino %lu; err %d", __func__,
2797 wbc->nr_to_write, inode->i_ino, ret);
2798 /* Release allocated io_end */
2799 ext4_put_io_end(mpd.io_submit.io_end);
2800 mpd.io_submit.io_end = NULL;
2801 break;
2802 }
2803 mpd.do_map = 1;
2804
2805 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2806 ret = mpage_prepare_extent_to_map(&mpd);
2807 if (!ret && mpd.map.m_len)
2808 ret = mpage_map_and_submit_extent(handle, &mpd,
2809 &give_up_on_write);
2810 /*
2811 * Caution: If the handle is synchronous,
2812 * ext4_journal_stop() can wait for transaction commit
2813 * to finish which may depend on writeback of pages to
2814 * complete or on page lock to be released. In that
2815 * case, we have to wait until after we have
2816 * submitted all the IO, released page locks we hold,
2817 * and dropped io_end reference (for extent conversion
2818 * to be able to complete) before stopping the handle.
2819 */
2820 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2821 ext4_journal_stop(handle);
2822 handle = NULL;
2823 mpd.do_map = 0;
2824 }
2825 /* Unlock pages we didn't use */
2826 mpage_release_unused_pages(&mpd, give_up_on_write);
2827 /* Submit prepared bio */
2828 ext4_io_submit(&mpd.io_submit);
2829
2830 /*
2831 * Drop our io_end reference we got from init. We have
2832 * to be careful and use deferred io_end finishing if
2833 * we are still holding the transaction as we can
2834 * release the last reference to io_end which may end
2835 * up doing unwritten extent conversion.
2836 */
2837 if (handle) {
2838 ext4_put_io_end_defer(mpd.io_submit.io_end);
2839 ext4_journal_stop(handle);
2840 } else
2841 ext4_put_io_end(mpd.io_submit.io_end);
2842 mpd.io_submit.io_end = NULL;
2843
2844 if (ret == -ENOSPC && sbi->s_journal) {
2845 /*
2846 * Commit the transaction which would
2847 * free blocks released in the transaction
2848 * and try again
2849 */
2850 jbd2_journal_force_commit_nested(sbi->s_journal);
2851 ret = 0;
2852 continue;
2853 }
2854 /* Fatal error - ENOMEM, EIO... */
2855 if (ret)
2856 break;
2857 }
2858unplug:
2859 blk_finish_plug(&plug);
2860 if (!ret && !cycled && wbc->nr_to_write > 0) {
2861 cycled = 1;
2862 mpd.last_page = writeback_index - 1;
2863 mpd.first_page = 0;
2864 goto retry;
2865 }
2866
2867 /* Update index */
2868 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2869 /*
2870 * Set the writeback_index so that range_cyclic
2871 * mode will write it back later
2872 */
2873 mapping->writeback_index = mpd.first_page;
2874
2875out_writepages:
2876 trace_ext4_writepages_result(inode, wbc, ret,
2877 nr_to_write - wbc->nr_to_write);
2878 percpu_up_read(&sbi->s_writepages_rwsem);
2879 return ret;
2880}
2881
2882static int ext4_dax_writepages(struct address_space *mapping,
2883 struct writeback_control *wbc)
2884{
2885 int ret;
2886 long nr_to_write = wbc->nr_to_write;
2887 struct inode *inode = mapping->host;
2888 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2889
2890 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2891 return -EIO;
2892
2893 percpu_down_read(&sbi->s_writepages_rwsem);
2894 trace_ext4_writepages(inode, wbc);
2895
2896 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2897 trace_ext4_writepages_result(inode, wbc, ret,
2898 nr_to_write - wbc->nr_to_write);
2899 percpu_up_read(&sbi->s_writepages_rwsem);
2900 return ret;
2901}
2902
2903static int ext4_nonda_switch(struct super_block *sb)
2904{
2905 s64 free_clusters, dirty_clusters;
2906 struct ext4_sb_info *sbi = EXT4_SB(sb);
2907
2908 /*
2909 * switch to non delalloc mode if we are running low
2910 * on free block. The free block accounting via percpu
2911 * counters can get slightly wrong with percpu_counter_batch getting
2912 * accumulated on each CPU without updating global counters
2913 * Delalloc need an accurate free block accounting. So switch
2914 * to non delalloc when we are near to error range.
2915 */
2916 free_clusters =
2917 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2918 dirty_clusters =
2919 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2920 /*
2921 * Start pushing delalloc when 1/2 of free blocks are dirty.
2922 */
2923 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2924 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2925
2926 if (2 * free_clusters < 3 * dirty_clusters ||
2927 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2928 /*
2929 * free block count is less than 150% of dirty blocks
2930 * or free blocks is less than watermark
2931 */
2932 return 1;
2933 }
2934 return 0;
2935}
2936
2937/* We always reserve for an inode update; the superblock could be there too */
2938static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2939{
2940 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2941 return 1;
2942
2943 if (pos + len <= 0x7fffffffULL)
2944 return 1;
2945
2946 /* We might need to update the superblock to set LARGE_FILE */
2947 return 2;
2948}
2949
2950static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2951 loff_t pos, unsigned len, unsigned flags,
2952 struct page **pagep, void **fsdata)
2953{
2954 int ret, retries = 0;
2955 struct page *page;
2956 pgoff_t index;
2957 struct inode *inode = mapping->host;
2958 handle_t *handle;
2959
2960 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2961 return -EIO;
2962
2963 index = pos >> PAGE_SHIFT;
2964
2965 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2966 ext4_verity_in_progress(inode)) {
2967 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2968 return ext4_write_begin(file, mapping, pos,
2969 len, flags, pagep, fsdata);
2970 }
2971 *fsdata = (void *)0;
2972 trace_ext4_da_write_begin(inode, pos, len, flags);
2973
2974 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2975 ret = ext4_da_write_inline_data_begin(mapping, inode,
2976 pos, len, flags,
2977 pagep, fsdata);
2978 if (ret < 0)
2979 return ret;
2980 if (ret == 1)
2981 return 0;
2982 }
2983
2984 /*
2985 * grab_cache_page_write_begin() can take a long time if the
2986 * system is thrashing due to memory pressure, or if the page
2987 * is being written back. So grab it first before we start
2988 * the transaction handle. This also allows us to allocate
2989 * the page (if needed) without using GFP_NOFS.
2990 */
2991retry_grab:
2992 page = grab_cache_page_write_begin(mapping, index, flags);
2993 if (!page)
2994 return -ENOMEM;
2995 unlock_page(page);
2996
2997 /*
2998 * With delayed allocation, we don't log the i_disksize update
2999 * if there is delayed block allocation. But we still need
3000 * to journalling the i_disksize update if writes to the end
3001 * of file which has an already mapped buffer.
3002 */
3003retry_journal:
3004 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3005 ext4_da_write_credits(inode, pos, len));
3006 if (IS_ERR(handle)) {
3007 put_page(page);
3008 return PTR_ERR(handle);
3009 }
3010
3011 lock_page(page);
3012 if (page->mapping != mapping) {
3013 /* The page got truncated from under us */
3014 unlock_page(page);
3015 put_page(page);
3016 ext4_journal_stop(handle);
3017 goto retry_grab;
3018 }
3019 /* In case writeback began while the page was unlocked */
3020 wait_for_stable_page(page);
3021
3022#ifdef CONFIG_FS_ENCRYPTION
3023 ret = ext4_block_write_begin(page, pos, len,
3024 ext4_da_get_block_prep);
3025#else
3026 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3027#endif
3028 if (ret < 0) {
3029 unlock_page(page);
3030 ext4_journal_stop(handle);
3031 /*
3032 * block_write_begin may have instantiated a few blocks
3033 * outside i_size. Trim these off again. Don't need
3034 * i_size_read because we hold i_mutex.
3035 */
3036 if (pos + len > inode->i_size)
3037 ext4_truncate_failed_write(inode);
3038
3039 if (ret == -ENOSPC &&
3040 ext4_should_retry_alloc(inode->i_sb, &retries))
3041 goto retry_journal;
3042
3043 put_page(page);
3044 return ret;
3045 }
3046
3047 *pagep = page;
3048 return ret;
3049}
3050
3051/*
3052 * Check if we should update i_disksize
3053 * when write to the end of file but not require block allocation
3054 */
3055static int ext4_da_should_update_i_disksize(struct page *page,
3056 unsigned long offset)
3057{
3058 struct buffer_head *bh;
3059 struct inode *inode = page->mapping->host;
3060 unsigned int idx;
3061 int i;
3062
3063 bh = page_buffers(page);
3064 idx = offset >> inode->i_blkbits;
3065
3066 for (i = 0; i < idx; i++)
3067 bh = bh->b_this_page;
3068
3069 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3070 return 0;
3071 return 1;
3072}
3073
3074static int ext4_da_write_end(struct file *file,
3075 struct address_space *mapping,
3076 loff_t pos, unsigned len, unsigned copied,
3077 struct page *page, void *fsdata)
3078{
3079 struct inode *inode = mapping->host;
3080 int ret = 0, ret2;
3081 handle_t *handle = ext4_journal_current_handle();
3082 loff_t new_i_size;
3083 unsigned long start, end;
3084 int write_mode = (int)(unsigned long)fsdata;
3085
3086 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3087 return ext4_write_end(file, mapping, pos,
3088 len, copied, page, fsdata);
3089
3090 trace_ext4_da_write_end(inode, pos, len, copied);
3091 start = pos & (PAGE_SIZE - 1);
3092 end = start + copied - 1;
3093
3094 /*
3095 * Since we are holding inode lock, we are sure i_disksize <=
3096 * i_size. We also know that if i_disksize < i_size, there are
3097 * delalloc writes pending in the range upto i_size. If the end of
3098 * the current write is <= i_size, there's no need to touch
3099 * i_disksize since writeback will push i_disksize upto i_size
3100 * eventually. If the end of the current write is > i_size and
3101 * inside an allocated block (ext4_da_should_update_i_disksize()
3102 * check), we need to update i_disksize here as neither
3103 * ext4_writepage() nor certain ext4_writepages() paths not
3104 * allocating blocks update i_disksize.
3105 *
3106 * Note that we defer inode dirtying to generic_write_end() /
3107 * ext4_da_write_inline_data_end().
3108 */
3109 new_i_size = pos + copied;
3110 if (copied && new_i_size > inode->i_size) {
3111 if (ext4_has_inline_data(inode) ||
3112 ext4_da_should_update_i_disksize(page, end))
3113 ext4_update_i_disksize(inode, new_i_size);
3114 }
3115
3116 if (write_mode != CONVERT_INLINE_DATA &&
3117 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3118 ext4_has_inline_data(inode))
3119 ret = ext4_da_write_inline_data_end(inode, pos, len, copied,
3120 page);
3121 else
3122 ret = generic_write_end(file, mapping, pos, len, copied,
3123 page, fsdata);
3124
3125 copied = ret;
3126 ret2 = ext4_journal_stop(handle);
3127 if (unlikely(ret2 && !ret))
3128 ret = ret2;
3129
3130 return ret ? ret : copied;
3131}
3132
3133/*
3134 * Force all delayed allocation blocks to be allocated for a given inode.
3135 */
3136int ext4_alloc_da_blocks(struct inode *inode)
3137{
3138 trace_ext4_alloc_da_blocks(inode);
3139
3140 if (!EXT4_I(inode)->i_reserved_data_blocks)
3141 return 0;
3142
3143 /*
3144 * We do something simple for now. The filemap_flush() will
3145 * also start triggering a write of the data blocks, which is
3146 * not strictly speaking necessary (and for users of
3147 * laptop_mode, not even desirable). However, to do otherwise
3148 * would require replicating code paths in:
3149 *
3150 * ext4_writepages() ->
3151 * write_cache_pages() ---> (via passed in callback function)
3152 * __mpage_da_writepage() -->
3153 * mpage_add_bh_to_extent()
3154 * mpage_da_map_blocks()
3155 *
3156 * The problem is that write_cache_pages(), located in
3157 * mm/page-writeback.c, marks pages clean in preparation for
3158 * doing I/O, which is not desirable if we're not planning on
3159 * doing I/O at all.
3160 *
3161 * We could call write_cache_pages(), and then redirty all of
3162 * the pages by calling redirty_page_for_writepage() but that
3163 * would be ugly in the extreme. So instead we would need to
3164 * replicate parts of the code in the above functions,
3165 * simplifying them because we wouldn't actually intend to
3166 * write out the pages, but rather only collect contiguous
3167 * logical block extents, call the multi-block allocator, and
3168 * then update the buffer heads with the block allocations.
3169 *
3170 * For now, though, we'll cheat by calling filemap_flush(),
3171 * which will map the blocks, and start the I/O, but not
3172 * actually wait for the I/O to complete.
3173 */
3174 return filemap_flush(inode->i_mapping);
3175}
3176
3177/*
3178 * bmap() is special. It gets used by applications such as lilo and by
3179 * the swapper to find the on-disk block of a specific piece of data.
3180 *
3181 * Naturally, this is dangerous if the block concerned is still in the
3182 * journal. If somebody makes a swapfile on an ext4 data-journaling
3183 * filesystem and enables swap, then they may get a nasty shock when the
3184 * data getting swapped to that swapfile suddenly gets overwritten by
3185 * the original zero's written out previously to the journal and
3186 * awaiting writeback in the kernel's buffer cache.
3187 *
3188 * So, if we see any bmap calls here on a modified, data-journaled file,
3189 * take extra steps to flush any blocks which might be in the cache.
3190 */
3191static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3192{
3193 struct inode *inode = mapping->host;
3194 journal_t *journal;
3195 int err;
3196
3197 /*
3198 * We can get here for an inline file via the FIBMAP ioctl
3199 */
3200 if (ext4_has_inline_data(inode))
3201 return 0;
3202
3203 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3204 test_opt(inode->i_sb, DELALLOC)) {
3205 /*
3206 * With delalloc we want to sync the file
3207 * so that we can make sure we allocate
3208 * blocks for file
3209 */
3210 filemap_write_and_wait(mapping);
3211 }
3212
3213 if (EXT4_JOURNAL(inode) &&
3214 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3215 /*
3216 * This is a REALLY heavyweight approach, but the use of
3217 * bmap on dirty files is expected to be extremely rare:
3218 * only if we run lilo or swapon on a freshly made file
3219 * do we expect this to happen.
3220 *
3221 * (bmap requires CAP_SYS_RAWIO so this does not
3222 * represent an unprivileged user DOS attack --- we'd be
3223 * in trouble if mortal users could trigger this path at
3224 * will.)
3225 *
3226 * NB. EXT4_STATE_JDATA is not set on files other than
3227 * regular files. If somebody wants to bmap a directory
3228 * or symlink and gets confused because the buffer
3229 * hasn't yet been flushed to disk, they deserve
3230 * everything they get.
3231 */
3232
3233 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3234 journal = EXT4_JOURNAL(inode);
3235 jbd2_journal_lock_updates(journal);
3236 err = jbd2_journal_flush(journal, 0);
3237 jbd2_journal_unlock_updates(journal);
3238
3239 if (err)
3240 return 0;
3241 }
3242
3243 return iomap_bmap(mapping, block, &ext4_iomap_ops);
3244}
3245
3246static int ext4_readpage(struct file *file, struct page *page)
3247{
3248 int ret = -EAGAIN;
3249 struct inode *inode = page->mapping->host;
3250
3251 trace_ext4_readpage(page);
3252
3253 if (ext4_has_inline_data(inode))
3254 ret = ext4_readpage_inline(inode, page);
3255
3256 if (ret == -EAGAIN)
3257 return ext4_mpage_readpages(inode, NULL, page);
3258
3259 return ret;
3260}
3261
3262static void ext4_readahead(struct readahead_control *rac)
3263{
3264 struct inode *inode = rac->mapping->host;
3265
3266 /* If the file has inline data, no need to do readahead. */
3267 if (ext4_has_inline_data(inode))
3268 return;
3269
3270 ext4_mpage_readpages(inode, rac, NULL);
3271}
3272
3273static void ext4_invalidatepage(struct page *page, unsigned int offset,
3274 unsigned int length)
3275{
3276 trace_ext4_invalidatepage(page, offset, length);
3277
3278 /* No journalling happens on data buffers when this function is used */
3279 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3280
3281 block_invalidatepage(page, offset, length);
3282}
3283
3284static int __ext4_journalled_invalidatepage(struct page *page,
3285 unsigned int offset,
3286 unsigned int length)
3287{
3288 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3289
3290 trace_ext4_journalled_invalidatepage(page, offset, length);
3291
3292 /*
3293 * If it's a full truncate we just forget about the pending dirtying
3294 */
3295 if (offset == 0 && length == PAGE_SIZE)
3296 ClearPageChecked(page);
3297
3298 return jbd2_journal_invalidatepage(journal, page, offset, length);
3299}
3300
3301/* Wrapper for aops... */
3302static void ext4_journalled_invalidatepage(struct page *page,
3303 unsigned int offset,
3304 unsigned int length)
3305{
3306 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3307}
3308
3309static int ext4_releasepage(struct page *page, gfp_t wait)
3310{
3311 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3312
3313 trace_ext4_releasepage(page);
3314
3315 /* Page has dirty journalled data -> cannot release */
3316 if (PageChecked(page))
3317 return 0;
3318 if (journal)
3319 return jbd2_journal_try_to_free_buffers(journal, page);
3320 else
3321 return try_to_free_buffers(page);
3322}
3323
3324static bool ext4_inode_datasync_dirty(struct inode *inode)
3325{
3326 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3327
3328 if (journal) {
3329 if (jbd2_transaction_committed(journal,
3330 EXT4_I(inode)->i_datasync_tid))
3331 return false;
3332 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3333 return !list_empty(&EXT4_I(inode)->i_fc_list);
3334 return true;
3335 }
3336
3337 /* Any metadata buffers to write? */
3338 if (!list_empty(&inode->i_mapping->private_list))
3339 return true;
3340 return inode->i_state & I_DIRTY_DATASYNC;
3341}
3342
3343static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3344 struct ext4_map_blocks *map, loff_t offset,
3345 loff_t length)
3346{
3347 u8 blkbits = inode->i_blkbits;
3348
3349 /*
3350 * Writes that span EOF might trigger an I/O size update on completion,
3351 * so consider them to be dirty for the purpose of O_DSYNC, even if
3352 * there is no other metadata changes being made or are pending.
3353 */
3354 iomap->flags = 0;
3355 if (ext4_inode_datasync_dirty(inode) ||
3356 offset + length > i_size_read(inode))
3357 iomap->flags |= IOMAP_F_DIRTY;
3358
3359 if (map->m_flags & EXT4_MAP_NEW)
3360 iomap->flags |= IOMAP_F_NEW;
3361
3362 iomap->bdev = inode->i_sb->s_bdev;
3363 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3364 iomap->offset = (u64) map->m_lblk << blkbits;
3365 iomap->length = (u64) map->m_len << blkbits;
3366
3367 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3368 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3369 iomap->flags |= IOMAP_F_MERGED;
3370
3371 /*
3372 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3373 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3374 * set. In order for any allocated unwritten extents to be converted
3375 * into written extents correctly within the ->end_io() handler, we
3376 * need to ensure that the iomap->type is set appropriately. Hence, the
3377 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3378 * been set first.
3379 */
3380 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3381 iomap->type = IOMAP_UNWRITTEN;
3382 iomap->addr = (u64) map->m_pblk << blkbits;
3383 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3384 iomap->type = IOMAP_MAPPED;
3385 iomap->addr = (u64) map->m_pblk << blkbits;
3386 } else {
3387 iomap->type = IOMAP_HOLE;
3388 iomap->addr = IOMAP_NULL_ADDR;
3389 }
3390}
3391
3392static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3393 unsigned int flags)
3394{
3395 handle_t *handle;
3396 u8 blkbits = inode->i_blkbits;
3397 int ret, dio_credits, m_flags = 0, retries = 0;
3398
3399 /*
3400 * Trim the mapping request to the maximum value that we can map at
3401 * once for direct I/O.
3402 */
3403 if (map->m_len > DIO_MAX_BLOCKS)
3404 map->m_len = DIO_MAX_BLOCKS;
3405 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3406
3407retry:
3408 /*
3409 * Either we allocate blocks and then don't get an unwritten extent, so
3410 * in that case we have reserved enough credits. Or, the blocks are
3411 * already allocated and unwritten. In that case, the extent conversion
3412 * fits into the credits as well.
3413 */
3414 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3415 if (IS_ERR(handle))
3416 return PTR_ERR(handle);
3417
3418 /*
3419 * DAX and direct I/O are the only two operations that are currently
3420 * supported with IOMAP_WRITE.
3421 */
3422 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3423 if (IS_DAX(inode))
3424 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3425 /*
3426 * We use i_size instead of i_disksize here because delalloc writeback
3427 * can complete at any point during the I/O and subsequently push the
3428 * i_disksize out to i_size. This could be beyond where direct I/O is
3429 * happening and thus expose allocated blocks to direct I/O reads.
3430 */
3431 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3432 m_flags = EXT4_GET_BLOCKS_CREATE;
3433 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3434 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3435
3436 ret = ext4_map_blocks(handle, inode, map, m_flags);
3437
3438 /*
3439 * We cannot fill holes in indirect tree based inodes as that could
3440 * expose stale data in the case of a crash. Use the magic error code
3441 * to fallback to buffered I/O.
3442 */
3443 if (!m_flags && !ret)
3444 ret = -ENOTBLK;
3445
3446 ext4_journal_stop(handle);
3447 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3448 goto retry;
3449
3450 return ret;
3451}
3452
3453
3454static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3455 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3456{
3457 int ret;
3458 struct ext4_map_blocks map;
3459 u8 blkbits = inode->i_blkbits;
3460
3461 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3462 return -EINVAL;
3463
3464 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3465 return -ERANGE;
3466
3467 /*
3468 * Calculate the first and last logical blocks respectively.
3469 */
3470 map.m_lblk = offset >> blkbits;
3471 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3472 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3473
3474 if (flags & IOMAP_WRITE) {
3475 /*
3476 * We check here if the blocks are already allocated, then we
3477 * don't need to start a journal txn and we can directly return
3478 * the mapping information. This could boost performance
3479 * especially in multi-threaded overwrite requests.
3480 */
3481 if (offset + length <= i_size_read(inode)) {
3482 ret = ext4_map_blocks(NULL, inode, &map, 0);
3483 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3484 goto out;
3485 }
3486 ret = ext4_iomap_alloc(inode, &map, flags);
3487 } else {
3488 ret = ext4_map_blocks(NULL, inode, &map, 0);
3489 }
3490
3491 if (ret < 0)
3492 return ret;
3493out:
3494 ext4_set_iomap(inode, iomap, &map, offset, length);
3495
3496 return 0;
3497}
3498
3499static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3500 loff_t length, unsigned flags, struct iomap *iomap,
3501 struct iomap *srcmap)
3502{
3503 int ret;
3504
3505 /*
3506 * Even for writes we don't need to allocate blocks, so just pretend
3507 * we are reading to save overhead of starting a transaction.
3508 */
3509 flags &= ~IOMAP_WRITE;
3510 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3511 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3512 return ret;
3513}
3514
3515static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3516 ssize_t written, unsigned flags, struct iomap *iomap)
3517{
3518 /*
3519 * Check to see whether an error occurred while writing out the data to
3520 * the allocated blocks. If so, return the magic error code so that we
3521 * fallback to buffered I/O and attempt to complete the remainder of
3522 * the I/O. Any blocks that may have been allocated in preparation for
3523 * the direct I/O will be reused during buffered I/O.
3524 */
3525 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3526 return -ENOTBLK;
3527
3528 return 0;
3529}
3530
3531const struct iomap_ops ext4_iomap_ops = {
3532 .iomap_begin = ext4_iomap_begin,
3533 .iomap_end = ext4_iomap_end,
3534};
3535
3536const struct iomap_ops ext4_iomap_overwrite_ops = {
3537 .iomap_begin = ext4_iomap_overwrite_begin,
3538 .iomap_end = ext4_iomap_end,
3539};
3540
3541static bool ext4_iomap_is_delalloc(struct inode *inode,
3542 struct ext4_map_blocks *map)
3543{
3544 struct extent_status es;
3545 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3546
3547 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3548 map->m_lblk, end, &es);
3549
3550 if (!es.es_len || es.es_lblk > end)
3551 return false;
3552
3553 if (es.es_lblk > map->m_lblk) {
3554 map->m_len = es.es_lblk - map->m_lblk;
3555 return false;
3556 }
3557
3558 offset = map->m_lblk - es.es_lblk;
3559 map->m_len = es.es_len - offset;
3560
3561 return true;
3562}
3563
3564static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3565 loff_t length, unsigned int flags,
3566 struct iomap *iomap, struct iomap *srcmap)
3567{
3568 int ret;
3569 bool delalloc = false;
3570 struct ext4_map_blocks map;
3571 u8 blkbits = inode->i_blkbits;
3572
3573 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3574 return -EINVAL;
3575
3576 if (ext4_has_inline_data(inode)) {
3577 ret = ext4_inline_data_iomap(inode, iomap);
3578 if (ret != -EAGAIN) {
3579 if (ret == 0 && offset >= iomap->length)
3580 ret = -ENOENT;
3581 return ret;
3582 }
3583 }
3584
3585 /*
3586 * Calculate the first and last logical block respectively.
3587 */
3588 map.m_lblk = offset >> blkbits;
3589 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3590 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3591
3592 /*
3593 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3594 * So handle it here itself instead of querying ext4_map_blocks().
3595 * Since ext4_map_blocks() will warn about it and will return
3596 * -EIO error.
3597 */
3598 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3599 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3600
3601 if (offset >= sbi->s_bitmap_maxbytes) {
3602 map.m_flags = 0;
3603 goto set_iomap;
3604 }
3605 }
3606
3607 ret = ext4_map_blocks(NULL, inode, &map, 0);
3608 if (ret < 0)
3609 return ret;
3610 if (ret == 0)
3611 delalloc = ext4_iomap_is_delalloc(inode, &map);
3612
3613set_iomap:
3614 ext4_set_iomap(inode, iomap, &map, offset, length);
3615 if (delalloc && iomap->type == IOMAP_HOLE)
3616 iomap->type = IOMAP_DELALLOC;
3617
3618 return 0;
3619}
3620
3621const struct iomap_ops ext4_iomap_report_ops = {
3622 .iomap_begin = ext4_iomap_begin_report,
3623};
3624
3625/*
3626 * Pages can be marked dirty completely asynchronously from ext4's journalling
3627 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3628 * much here because ->set_page_dirty is called under VFS locks. The page is
3629 * not necessarily locked.
3630 *
3631 * We cannot just dirty the page and leave attached buffers clean, because the
3632 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3633 * or jbddirty because all the journalling code will explode.
3634 *
3635 * So what we do is to mark the page "pending dirty" and next time writepage
3636 * is called, propagate that into the buffers appropriately.
3637 */
3638static int ext4_journalled_set_page_dirty(struct page *page)
3639{
3640 SetPageChecked(page);
3641 return __set_page_dirty_nobuffers(page);
3642}
3643
3644static int ext4_set_page_dirty(struct page *page)
3645{
3646 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3647 WARN_ON_ONCE(!page_has_buffers(page));
3648 return __set_page_dirty_buffers(page);
3649}
3650
3651static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3652 struct file *file, sector_t *span)
3653{
3654 return iomap_swapfile_activate(sis, file, span,
3655 &ext4_iomap_report_ops);
3656}
3657
3658static const struct address_space_operations ext4_aops = {
3659 .readpage = ext4_readpage,
3660 .readahead = ext4_readahead,
3661 .writepage = ext4_writepage,
3662 .writepages = ext4_writepages,
3663 .write_begin = ext4_write_begin,
3664 .write_end = ext4_write_end,
3665 .set_page_dirty = ext4_set_page_dirty,
3666 .bmap = ext4_bmap,
3667 .invalidatepage = ext4_invalidatepage,
3668 .releasepage = ext4_releasepage,
3669 .direct_IO = noop_direct_IO,
3670 .migratepage = buffer_migrate_page,
3671 .is_partially_uptodate = block_is_partially_uptodate,
3672 .error_remove_page = generic_error_remove_page,
3673 .swap_activate = ext4_iomap_swap_activate,
3674};
3675
3676static const struct address_space_operations ext4_journalled_aops = {
3677 .readpage = ext4_readpage,
3678 .readahead = ext4_readahead,
3679 .writepage = ext4_writepage,
3680 .writepages = ext4_writepages,
3681 .write_begin = ext4_write_begin,
3682 .write_end = ext4_journalled_write_end,
3683 .set_page_dirty = ext4_journalled_set_page_dirty,
3684 .bmap = ext4_bmap,
3685 .invalidatepage = ext4_journalled_invalidatepage,
3686 .releasepage = ext4_releasepage,
3687 .direct_IO = noop_direct_IO,
3688 .is_partially_uptodate = block_is_partially_uptodate,
3689 .error_remove_page = generic_error_remove_page,
3690 .swap_activate = ext4_iomap_swap_activate,
3691};
3692
3693static const struct address_space_operations ext4_da_aops = {
3694 .readpage = ext4_readpage,
3695 .readahead = ext4_readahead,
3696 .writepage = ext4_writepage,
3697 .writepages = ext4_writepages,
3698 .write_begin = ext4_da_write_begin,
3699 .write_end = ext4_da_write_end,
3700 .set_page_dirty = ext4_set_page_dirty,
3701 .bmap = ext4_bmap,
3702 .invalidatepage = ext4_invalidatepage,
3703 .releasepage = ext4_releasepage,
3704 .direct_IO = noop_direct_IO,
3705 .migratepage = buffer_migrate_page,
3706 .is_partially_uptodate = block_is_partially_uptodate,
3707 .error_remove_page = generic_error_remove_page,
3708 .swap_activate = ext4_iomap_swap_activate,
3709};
3710
3711static const struct address_space_operations ext4_dax_aops = {
3712 .writepages = ext4_dax_writepages,
3713 .direct_IO = noop_direct_IO,
3714 .set_page_dirty = __set_page_dirty_no_writeback,
3715 .bmap = ext4_bmap,
3716 .invalidatepage = noop_invalidatepage,
3717 .swap_activate = ext4_iomap_swap_activate,
3718};
3719
3720void ext4_set_aops(struct inode *inode)
3721{
3722 switch (ext4_inode_journal_mode(inode)) {
3723 case EXT4_INODE_ORDERED_DATA_MODE:
3724 case EXT4_INODE_WRITEBACK_DATA_MODE:
3725 break;
3726 case EXT4_INODE_JOURNAL_DATA_MODE:
3727 inode->i_mapping->a_ops = &ext4_journalled_aops;
3728 return;
3729 default:
3730 BUG();
3731 }
3732 if (IS_DAX(inode))
3733 inode->i_mapping->a_ops = &ext4_dax_aops;
3734 else if (test_opt(inode->i_sb, DELALLOC))
3735 inode->i_mapping->a_ops = &ext4_da_aops;
3736 else
3737 inode->i_mapping->a_ops = &ext4_aops;
3738}
3739
3740static int __ext4_block_zero_page_range(handle_t *handle,
3741 struct address_space *mapping, loff_t from, loff_t length)
3742{
3743 ext4_fsblk_t index = from >> PAGE_SHIFT;
3744 unsigned offset = from & (PAGE_SIZE-1);
3745 unsigned blocksize, pos;
3746 ext4_lblk_t iblock;
3747 struct inode *inode = mapping->host;
3748 struct buffer_head *bh;
3749 struct page *page;
3750 int err = 0;
3751
3752 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3753 mapping_gfp_constraint(mapping, ~__GFP_FS));
3754 if (!page)
3755 return -ENOMEM;
3756
3757 blocksize = inode->i_sb->s_blocksize;
3758
3759 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3760
3761 if (!page_has_buffers(page))
3762 create_empty_buffers(page, blocksize, 0);
3763
3764 /* Find the buffer that contains "offset" */
3765 bh = page_buffers(page);
3766 pos = blocksize;
3767 while (offset >= pos) {
3768 bh = bh->b_this_page;
3769 iblock++;
3770 pos += blocksize;
3771 }
3772 if (buffer_freed(bh)) {
3773 BUFFER_TRACE(bh, "freed: skip");
3774 goto unlock;
3775 }
3776 if (!buffer_mapped(bh)) {
3777 BUFFER_TRACE(bh, "unmapped");
3778 ext4_get_block(inode, iblock, bh, 0);
3779 /* unmapped? It's a hole - nothing to do */
3780 if (!buffer_mapped(bh)) {
3781 BUFFER_TRACE(bh, "still unmapped");
3782 goto unlock;
3783 }
3784 }
3785
3786 /* Ok, it's mapped. Make sure it's up-to-date */
3787 if (PageUptodate(page))
3788 set_buffer_uptodate(bh);
3789
3790 if (!buffer_uptodate(bh)) {
3791 err = ext4_read_bh_lock(bh, 0, true);
3792 if (err)
3793 goto unlock;
3794 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3795 /* We expect the key to be set. */
3796 BUG_ON(!fscrypt_has_encryption_key(inode));
3797 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3798 bh_offset(bh));
3799 if (err) {
3800 clear_buffer_uptodate(bh);
3801 goto unlock;
3802 }
3803 }
3804 }
3805 if (ext4_should_journal_data(inode)) {
3806 BUFFER_TRACE(bh, "get write access");
3807 err = ext4_journal_get_write_access(handle, bh);
3808 if (err)
3809 goto unlock;
3810 }
3811 zero_user(page, offset, length);
3812 BUFFER_TRACE(bh, "zeroed end of block");
3813
3814 if (ext4_should_journal_data(inode)) {
3815 err = ext4_handle_dirty_metadata(handle, inode, bh);
3816 } else {
3817 err = 0;
3818 mark_buffer_dirty(bh);
3819 if (ext4_should_order_data(inode))
3820 err = ext4_jbd2_inode_add_write(handle, inode, from,
3821 length);
3822 }
3823
3824unlock:
3825 unlock_page(page);
3826 put_page(page);
3827 return err;
3828}
3829
3830/*
3831 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3832 * starting from file offset 'from'. The range to be zero'd must
3833 * be contained with in one block. If the specified range exceeds
3834 * the end of the block it will be shortened to end of the block
3835 * that corresponds to 'from'
3836 */
3837static int ext4_block_zero_page_range(handle_t *handle,
3838 struct address_space *mapping, loff_t from, loff_t length)
3839{
3840 struct inode *inode = mapping->host;
3841 unsigned offset = from & (PAGE_SIZE-1);
3842 unsigned blocksize = inode->i_sb->s_blocksize;
3843 unsigned max = blocksize - (offset & (blocksize - 1));
3844
3845 /*
3846 * correct length if it does not fall between
3847 * 'from' and the end of the block
3848 */
3849 if (length > max || length < 0)
3850 length = max;
3851
3852 if (IS_DAX(inode)) {
3853 return iomap_zero_range(inode, from, length, NULL,
3854 &ext4_iomap_ops);
3855 }
3856 return __ext4_block_zero_page_range(handle, mapping, from, length);
3857}
3858
3859/*
3860 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3861 * up to the end of the block which corresponds to `from'.
3862 * This required during truncate. We need to physically zero the tail end
3863 * of that block so it doesn't yield old data if the file is later grown.
3864 */
3865static int ext4_block_truncate_page(handle_t *handle,
3866 struct address_space *mapping, loff_t from)
3867{
3868 unsigned offset = from & (PAGE_SIZE-1);
3869 unsigned length;
3870 unsigned blocksize;
3871 struct inode *inode = mapping->host;
3872
3873 /* If we are processing an encrypted inode during orphan list handling */
3874 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3875 return 0;
3876
3877 blocksize = inode->i_sb->s_blocksize;
3878 length = blocksize - (offset & (blocksize - 1));
3879
3880 return ext4_block_zero_page_range(handle, mapping, from, length);
3881}
3882
3883int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3884 loff_t lstart, loff_t length)
3885{
3886 struct super_block *sb = inode->i_sb;
3887 struct address_space *mapping = inode->i_mapping;
3888 unsigned partial_start, partial_end;
3889 ext4_fsblk_t start, end;
3890 loff_t byte_end = (lstart + length - 1);
3891 int err = 0;
3892
3893 partial_start = lstart & (sb->s_blocksize - 1);
3894 partial_end = byte_end & (sb->s_blocksize - 1);
3895
3896 start = lstart >> sb->s_blocksize_bits;
3897 end = byte_end >> sb->s_blocksize_bits;
3898
3899 /* Handle partial zero within the single block */
3900 if (start == end &&
3901 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3902 err = ext4_block_zero_page_range(handle, mapping,
3903 lstart, length);
3904 return err;
3905 }
3906 /* Handle partial zero out on the start of the range */
3907 if (partial_start) {
3908 err = ext4_block_zero_page_range(handle, mapping,
3909 lstart, sb->s_blocksize);
3910 if (err)
3911 return err;
3912 }
3913 /* Handle partial zero out on the end of the range */
3914 if (partial_end != sb->s_blocksize - 1)
3915 err = ext4_block_zero_page_range(handle, mapping,
3916 byte_end - partial_end,
3917 partial_end + 1);
3918 return err;
3919}
3920
3921int ext4_can_truncate(struct inode *inode)
3922{
3923 if (S_ISREG(inode->i_mode))
3924 return 1;
3925 if (S_ISDIR(inode->i_mode))
3926 return 1;
3927 if (S_ISLNK(inode->i_mode))
3928 return !ext4_inode_is_fast_symlink(inode);
3929 return 0;
3930}
3931
3932/*
3933 * We have to make sure i_disksize gets properly updated before we truncate
3934 * page cache due to hole punching or zero range. Otherwise i_disksize update
3935 * can get lost as it may have been postponed to submission of writeback but
3936 * that will never happen after we truncate page cache.
3937 */
3938int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3939 loff_t len)
3940{
3941 handle_t *handle;
3942 int ret;
3943
3944 loff_t size = i_size_read(inode);
3945
3946 WARN_ON(!inode_is_locked(inode));
3947 if (offset > size || offset + len < size)
3948 return 0;
3949
3950 if (EXT4_I(inode)->i_disksize >= size)
3951 return 0;
3952
3953 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3954 if (IS_ERR(handle))
3955 return PTR_ERR(handle);
3956 ext4_update_i_disksize(inode, size);
3957 ret = ext4_mark_inode_dirty(handle, inode);
3958 ext4_journal_stop(handle);
3959
3960 return ret;
3961}
3962
3963static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3964{
3965 up_write(&ei->i_mmap_sem);
3966 schedule();
3967 down_write(&ei->i_mmap_sem);
3968}
3969
3970int ext4_break_layouts(struct inode *inode)
3971{
3972 struct ext4_inode_info *ei = EXT4_I(inode);
3973 struct page *page;
3974 int error;
3975
3976 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3977 return -EINVAL;
3978
3979 do {
3980 page = dax_layout_busy_page(inode->i_mapping);
3981 if (!page)
3982 return 0;
3983
3984 error = ___wait_var_event(&page->_refcount,
3985 atomic_read(&page->_refcount) == 1,
3986 TASK_INTERRUPTIBLE, 0, 0,
3987 ext4_wait_dax_page(ei));
3988 } while (error == 0);
3989
3990 return error;
3991}
3992
3993/*
3994 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3995 * associated with the given offset and length
3996 *
3997 * @inode: File inode
3998 * @offset: The offset where the hole will begin
3999 * @len: The length of the hole
4000 *
4001 * Returns: 0 on success or negative on failure
4002 */
4003
4004int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4005{
4006 struct super_block *sb = inode->i_sb;
4007 ext4_lblk_t first_block, stop_block;
4008 struct address_space *mapping = inode->i_mapping;
4009 loff_t first_block_offset, last_block_offset;
4010 handle_t *handle;
4011 unsigned int credits;
4012 int ret = 0, ret2 = 0;
4013
4014 trace_ext4_punch_hole(inode, offset, length, 0);
4015
4016 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4017 if (ext4_has_inline_data(inode)) {
4018 down_write(&EXT4_I(inode)->i_mmap_sem);
4019 ret = ext4_convert_inline_data(inode);
4020 up_write(&EXT4_I(inode)->i_mmap_sem);
4021 if (ret)
4022 return ret;
4023 }
4024
4025 /*
4026 * Write out all dirty pages to avoid race conditions
4027 * Then release them.
4028 */
4029 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4030 ret = filemap_write_and_wait_range(mapping, offset,
4031 offset + length - 1);
4032 if (ret)
4033 return ret;
4034 }
4035
4036 inode_lock(inode);
4037
4038 /* No need to punch hole beyond i_size */
4039 if (offset >= inode->i_size)
4040 goto out_mutex;
4041
4042 /*
4043 * If the hole extends beyond i_size, set the hole
4044 * to end after the page that contains i_size
4045 */
4046 if (offset + length > inode->i_size) {
4047 length = inode->i_size +
4048 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4049 offset;
4050 }
4051
4052 if (offset & (sb->s_blocksize - 1) ||
4053 (offset + length) & (sb->s_blocksize - 1)) {
4054 /*
4055 * Attach jinode to inode for jbd2 if we do any zeroing of
4056 * partial block
4057 */
4058 ret = ext4_inode_attach_jinode(inode);
4059 if (ret < 0)
4060 goto out_mutex;
4061
4062 }
4063
4064 /* Wait all existing dio workers, newcomers will block on i_mutex */
4065 inode_dio_wait(inode);
4066
4067 /*
4068 * Prevent page faults from reinstantiating pages we have released from
4069 * page cache.
4070 */
4071 down_write(&EXT4_I(inode)->i_mmap_sem);
4072
4073 ret = ext4_break_layouts(inode);
4074 if (ret)
4075 goto out_dio;
4076
4077 first_block_offset = round_up(offset, sb->s_blocksize);
4078 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4079
4080 /* Now release the pages and zero block aligned part of pages*/
4081 if (last_block_offset > first_block_offset) {
4082 ret = ext4_update_disksize_before_punch(inode, offset, length);
4083 if (ret)
4084 goto out_dio;
4085 truncate_pagecache_range(inode, first_block_offset,
4086 last_block_offset);
4087 }
4088
4089 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4090 credits = ext4_writepage_trans_blocks(inode);
4091 else
4092 credits = ext4_blocks_for_truncate(inode);
4093 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4094 if (IS_ERR(handle)) {
4095 ret = PTR_ERR(handle);
4096 ext4_std_error(sb, ret);
4097 goto out_dio;
4098 }
4099
4100 ret = ext4_zero_partial_blocks(handle, inode, offset,
4101 length);
4102 if (ret)
4103 goto out_stop;
4104
4105 first_block = (offset + sb->s_blocksize - 1) >>
4106 EXT4_BLOCK_SIZE_BITS(sb);
4107 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4108
4109 /* If there are blocks to remove, do it */
4110 if (stop_block > first_block) {
4111
4112 down_write(&EXT4_I(inode)->i_data_sem);
4113 ext4_discard_preallocations(inode, 0);
4114
4115 ret = ext4_es_remove_extent(inode, first_block,
4116 stop_block - first_block);
4117 if (ret) {
4118 up_write(&EXT4_I(inode)->i_data_sem);
4119 goto out_stop;
4120 }
4121
4122 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4123 ret = ext4_ext_remove_space(inode, first_block,
4124 stop_block - 1);
4125 else
4126 ret = ext4_ind_remove_space(handle, inode, first_block,
4127 stop_block);
4128
4129 up_write(&EXT4_I(inode)->i_data_sem);
4130 }
4131 ext4_fc_track_range(handle, inode, first_block, stop_block);
4132 if (IS_SYNC(inode))
4133 ext4_handle_sync(handle);
4134
4135 inode->i_mtime = inode->i_ctime = current_time(inode);
4136 ret2 = ext4_mark_inode_dirty(handle, inode);
4137 if (unlikely(ret2))
4138 ret = ret2;
4139 if (ret >= 0)
4140 ext4_update_inode_fsync_trans(handle, inode, 1);
4141out_stop:
4142 ext4_journal_stop(handle);
4143out_dio:
4144 up_write(&EXT4_I(inode)->i_mmap_sem);
4145out_mutex:
4146 inode_unlock(inode);
4147 return ret;
4148}
4149
4150int ext4_inode_attach_jinode(struct inode *inode)
4151{
4152 struct ext4_inode_info *ei = EXT4_I(inode);
4153 struct jbd2_inode *jinode;
4154
4155 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4156 return 0;
4157
4158 jinode = jbd2_alloc_inode(GFP_KERNEL);
4159 spin_lock(&inode->i_lock);
4160 if (!ei->jinode) {
4161 if (!jinode) {
4162 spin_unlock(&inode->i_lock);
4163 return -ENOMEM;
4164 }
4165 ei->jinode = jinode;
4166 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4167 jinode = NULL;
4168 }
4169 spin_unlock(&inode->i_lock);
4170 if (unlikely(jinode != NULL))
4171 jbd2_free_inode(jinode);
4172 return 0;
4173}
4174
4175/*
4176 * ext4_truncate()
4177 *
4178 * We block out ext4_get_block() block instantiations across the entire
4179 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4180 * simultaneously on behalf of the same inode.
4181 *
4182 * As we work through the truncate and commit bits of it to the journal there
4183 * is one core, guiding principle: the file's tree must always be consistent on
4184 * disk. We must be able to restart the truncate after a crash.
4185 *
4186 * The file's tree may be transiently inconsistent in memory (although it
4187 * probably isn't), but whenever we close off and commit a journal transaction,
4188 * the contents of (the filesystem + the journal) must be consistent and
4189 * restartable. It's pretty simple, really: bottom up, right to left (although
4190 * left-to-right works OK too).
4191 *
4192 * Note that at recovery time, journal replay occurs *before* the restart of
4193 * truncate against the orphan inode list.
4194 *
4195 * The committed inode has the new, desired i_size (which is the same as
4196 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4197 * that this inode's truncate did not complete and it will again call
4198 * ext4_truncate() to have another go. So there will be instantiated blocks
4199 * to the right of the truncation point in a crashed ext4 filesystem. But
4200 * that's fine - as long as they are linked from the inode, the post-crash
4201 * ext4_truncate() run will find them and release them.
4202 */
4203int ext4_truncate(struct inode *inode)
4204{
4205 struct ext4_inode_info *ei = EXT4_I(inode);
4206 unsigned int credits;
4207 int err = 0, err2;
4208 handle_t *handle;
4209 struct address_space *mapping = inode->i_mapping;
4210
4211 /*
4212 * There is a possibility that we're either freeing the inode
4213 * or it's a completely new inode. In those cases we might not
4214 * have i_mutex locked because it's not necessary.
4215 */
4216 if (!(inode->i_state & (I_NEW|I_FREEING)))
4217 WARN_ON(!inode_is_locked(inode));
4218 trace_ext4_truncate_enter(inode);
4219
4220 if (!ext4_can_truncate(inode))
4221 goto out_trace;
4222
4223 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4224 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4225
4226 if (ext4_has_inline_data(inode)) {
4227 int has_inline = 1;
4228
4229 err = ext4_inline_data_truncate(inode, &has_inline);
4230 if (err || has_inline)
4231 goto out_trace;
4232 }
4233
4234 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4235 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4236 if (ext4_inode_attach_jinode(inode) < 0)
4237 goto out_trace;
4238 }
4239
4240 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4241 credits = ext4_writepage_trans_blocks(inode);
4242 else
4243 credits = ext4_blocks_for_truncate(inode);
4244
4245 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4246 if (IS_ERR(handle)) {
4247 err = PTR_ERR(handle);
4248 goto out_trace;
4249 }
4250
4251 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4252 ext4_block_truncate_page(handle, mapping, inode->i_size);
4253
4254 /*
4255 * We add the inode to the orphan list, so that if this
4256 * truncate spans multiple transactions, and we crash, we will
4257 * resume the truncate when the filesystem recovers. It also
4258 * marks the inode dirty, to catch the new size.
4259 *
4260 * Implication: the file must always be in a sane, consistent
4261 * truncatable state while each transaction commits.
4262 */
4263 err = ext4_orphan_add(handle, inode);
4264 if (err)
4265 goto out_stop;
4266
4267 down_write(&EXT4_I(inode)->i_data_sem);
4268
4269 ext4_discard_preallocations(inode, 0);
4270
4271 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4272 err = ext4_ext_truncate(handle, inode);
4273 else
4274 ext4_ind_truncate(handle, inode);
4275
4276 up_write(&ei->i_data_sem);
4277 if (err)
4278 goto out_stop;
4279
4280 if (IS_SYNC(inode))
4281 ext4_handle_sync(handle);
4282
4283out_stop:
4284 /*
4285 * If this was a simple ftruncate() and the file will remain alive,
4286 * then we need to clear up the orphan record which we created above.
4287 * However, if this was a real unlink then we were called by
4288 * ext4_evict_inode(), and we allow that function to clean up the
4289 * orphan info for us.
4290 */
4291 if (inode->i_nlink)
4292 ext4_orphan_del(handle, inode);
4293
4294 inode->i_mtime = inode->i_ctime = current_time(inode);
4295 err2 = ext4_mark_inode_dirty(handle, inode);
4296 if (unlikely(err2 && !err))
4297 err = err2;
4298 ext4_journal_stop(handle);
4299
4300out_trace:
4301 trace_ext4_truncate_exit(inode);
4302 return err;
4303}
4304
4305/*
4306 * ext4_get_inode_loc returns with an extra refcount against the inode's
4307 * underlying buffer_head on success. If 'in_mem' is true, we have all
4308 * data in memory that is needed to recreate the on-disk version of this
4309 * inode.
4310 */
4311static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4312 struct ext4_iloc *iloc, int in_mem,
4313 ext4_fsblk_t *ret_block)
4314{
4315 struct ext4_group_desc *gdp;
4316 struct buffer_head *bh;
4317 ext4_fsblk_t block;
4318 struct blk_plug plug;
4319 int inodes_per_block, inode_offset;
4320
4321 iloc->bh = NULL;
4322 if (ino < EXT4_ROOT_INO ||
4323 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4324 return -EFSCORRUPTED;
4325
4326 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4327 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4328 if (!gdp)
4329 return -EIO;
4330
4331 /*
4332 * Figure out the offset within the block group inode table
4333 */
4334 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4335 inode_offset = ((ino - 1) %
4336 EXT4_INODES_PER_GROUP(sb));
4337 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4338 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4339
4340 bh = sb_getblk(sb, block);
4341 if (unlikely(!bh))
4342 return -ENOMEM;
4343 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4344 goto simulate_eio;
4345 if (!buffer_uptodate(bh)) {
4346 lock_buffer(bh);
4347
4348 if (ext4_buffer_uptodate(bh)) {
4349 /* someone brought it uptodate while we waited */
4350 unlock_buffer(bh);
4351 goto has_buffer;
4352 }
4353
4354 /*
4355 * If we have all information of the inode in memory and this
4356 * is the only valid inode in the block, we need not read the
4357 * block.
4358 */
4359 if (in_mem) {
4360 struct buffer_head *bitmap_bh;
4361 int i, start;
4362
4363 start = inode_offset & ~(inodes_per_block - 1);
4364
4365 /* Is the inode bitmap in cache? */
4366 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4367 if (unlikely(!bitmap_bh))
4368 goto make_io;
4369
4370 /*
4371 * If the inode bitmap isn't in cache then the
4372 * optimisation may end up performing two reads instead
4373 * of one, so skip it.
4374 */
4375 if (!buffer_uptodate(bitmap_bh)) {
4376 brelse(bitmap_bh);
4377 goto make_io;
4378 }
4379 for (i = start; i < start + inodes_per_block; i++) {
4380 if (i == inode_offset)
4381 continue;
4382 if (ext4_test_bit(i, bitmap_bh->b_data))
4383 break;
4384 }
4385 brelse(bitmap_bh);
4386 if (i == start + inodes_per_block) {
4387 /* all other inodes are free, so skip I/O */
4388 memset(bh->b_data, 0, bh->b_size);
4389 set_buffer_uptodate(bh);
4390 unlock_buffer(bh);
4391 goto has_buffer;
4392 }
4393 }
4394
4395make_io:
4396 /*
4397 * If we need to do any I/O, try to pre-readahead extra
4398 * blocks from the inode table.
4399 */
4400 blk_start_plug(&plug);
4401 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4402 ext4_fsblk_t b, end, table;
4403 unsigned num;
4404 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4405
4406 table = ext4_inode_table(sb, gdp);
4407 /* s_inode_readahead_blks is always a power of 2 */
4408 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4409 if (table > b)
4410 b = table;
4411 end = b + ra_blks;
4412 num = EXT4_INODES_PER_GROUP(sb);
4413 if (ext4_has_group_desc_csum(sb))
4414 num -= ext4_itable_unused_count(sb, gdp);
4415 table += num / inodes_per_block;
4416 if (end > table)
4417 end = table;
4418 while (b <= end)
4419 ext4_sb_breadahead_unmovable(sb, b++);
4420 }
4421
4422 /*
4423 * There are other valid inodes in the buffer, this inode
4424 * has in-inode xattrs, or we don't have this inode in memory.
4425 * Read the block from disk.
4426 */
4427 trace_ext4_load_inode(sb, ino);
4428 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4429 blk_finish_plug(&plug);
4430 wait_on_buffer(bh);
4431 if (!buffer_uptodate(bh)) {
4432 simulate_eio:
4433 if (ret_block)
4434 *ret_block = block;
4435 brelse(bh);
4436 return -EIO;
4437 }
4438 }
4439has_buffer:
4440 iloc->bh = bh;
4441 return 0;
4442}
4443
4444static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4445 struct ext4_iloc *iloc)
4446{
4447 ext4_fsblk_t err_blk;
4448 int ret;
4449
4450 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4451 &err_blk);
4452
4453 if (ret == -EIO)
4454 ext4_error_inode_block(inode, err_blk, EIO,
4455 "unable to read itable block");
4456
4457 return ret;
4458}
4459
4460int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4461{
4462 ext4_fsblk_t err_blk;
4463 int ret;
4464
4465 /* We have all inode data except xattrs in memory here. */
4466 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4467 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4468
4469 if (ret == -EIO)
4470 ext4_error_inode_block(inode, err_blk, EIO,
4471 "unable to read itable block");
4472
4473 return ret;
4474}
4475
4476
4477int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4478 struct ext4_iloc *iloc)
4479{
4480 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4481}
4482
4483static bool ext4_should_enable_dax(struct inode *inode)
4484{
4485 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4486
4487 if (test_opt2(inode->i_sb, DAX_NEVER))
4488 return false;
4489 if (!S_ISREG(inode->i_mode))
4490 return false;
4491 if (ext4_should_journal_data(inode))
4492 return false;
4493 if (ext4_has_inline_data(inode))
4494 return false;
4495 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4496 return false;
4497 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4498 return false;
4499 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4500 return false;
4501 if (test_opt(inode->i_sb, DAX_ALWAYS))
4502 return true;
4503
4504 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4505}
4506
4507void ext4_set_inode_flags(struct inode *inode, bool init)
4508{
4509 unsigned int flags = EXT4_I(inode)->i_flags;
4510 unsigned int new_fl = 0;
4511
4512 WARN_ON_ONCE(IS_DAX(inode) && init);
4513
4514 if (flags & EXT4_SYNC_FL)
4515 new_fl |= S_SYNC;
4516 if (flags & EXT4_APPEND_FL)
4517 new_fl |= S_APPEND;
4518 if (flags & EXT4_IMMUTABLE_FL)
4519 new_fl |= S_IMMUTABLE;
4520 if (flags & EXT4_NOATIME_FL)
4521 new_fl |= S_NOATIME;
4522 if (flags & EXT4_DIRSYNC_FL)
4523 new_fl |= S_DIRSYNC;
4524
4525 /* Because of the way inode_set_flags() works we must preserve S_DAX
4526 * here if already set. */
4527 new_fl |= (inode->i_flags & S_DAX);
4528 if (init && ext4_should_enable_dax(inode))
4529 new_fl |= S_DAX;
4530
4531 if (flags & EXT4_ENCRYPT_FL)
4532 new_fl |= S_ENCRYPTED;
4533 if (flags & EXT4_CASEFOLD_FL)
4534 new_fl |= S_CASEFOLD;
4535 if (flags & EXT4_VERITY_FL)
4536 new_fl |= S_VERITY;
4537 inode_set_flags(inode, new_fl,
4538 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4539 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4540}
4541
4542static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4543 struct ext4_inode_info *ei)
4544{
4545 blkcnt_t i_blocks ;
4546 struct inode *inode = &(ei->vfs_inode);
4547 struct super_block *sb = inode->i_sb;
4548
4549 if (ext4_has_feature_huge_file(sb)) {
4550 /* we are using combined 48 bit field */
4551 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4552 le32_to_cpu(raw_inode->i_blocks_lo);
4553 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4554 /* i_blocks represent file system block size */
4555 return i_blocks << (inode->i_blkbits - 9);
4556 } else {
4557 return i_blocks;
4558 }
4559 } else {
4560 return le32_to_cpu(raw_inode->i_blocks_lo);
4561 }
4562}
4563
4564static inline int ext4_iget_extra_inode(struct inode *inode,
4565 struct ext4_inode *raw_inode,
4566 struct ext4_inode_info *ei)
4567{
4568 __le32 *magic = (void *)raw_inode +
4569 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4570
4571 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4572 EXT4_INODE_SIZE(inode->i_sb) &&
4573 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4574 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4575 return ext4_find_inline_data_nolock(inode);
4576 } else
4577 EXT4_I(inode)->i_inline_off = 0;
4578 return 0;
4579}
4580
4581int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4582{
4583 if (!ext4_has_feature_project(inode->i_sb))
4584 return -EOPNOTSUPP;
4585 *projid = EXT4_I(inode)->i_projid;
4586 return 0;
4587}
4588
4589/*
4590 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4591 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4592 * set.
4593 */
4594static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4595{
4596 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4597 inode_set_iversion_raw(inode, val);
4598 else
4599 inode_set_iversion_queried(inode, val);
4600}
4601static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4602{
4603 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4604 return inode_peek_iversion_raw(inode);
4605 else
4606 return inode_peek_iversion(inode);
4607}
4608
4609struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4610 ext4_iget_flags flags, const char *function,
4611 unsigned int line)
4612{
4613 struct ext4_iloc iloc;
4614 struct ext4_inode *raw_inode;
4615 struct ext4_inode_info *ei;
4616 struct inode *inode;
4617 journal_t *journal = EXT4_SB(sb)->s_journal;
4618 long ret;
4619 loff_t size;
4620 int block;
4621 uid_t i_uid;
4622 gid_t i_gid;
4623 projid_t i_projid;
4624
4625 if ((!(flags & EXT4_IGET_SPECIAL) &&
4626 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4627 (ino < EXT4_ROOT_INO) ||
4628 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4629 if (flags & EXT4_IGET_HANDLE)
4630 return ERR_PTR(-ESTALE);
4631 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4632 "inode #%lu: comm %s: iget: illegal inode #",
4633 ino, current->comm);
4634 return ERR_PTR(-EFSCORRUPTED);
4635 }
4636
4637 inode = iget_locked(sb, ino);
4638 if (!inode)
4639 return ERR_PTR(-ENOMEM);
4640 if (!(inode->i_state & I_NEW))
4641 return inode;
4642
4643 ei = EXT4_I(inode);
4644 iloc.bh = NULL;
4645
4646 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4647 if (ret < 0)
4648 goto bad_inode;
4649 raw_inode = ext4_raw_inode(&iloc);
4650
4651 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4652 ext4_error_inode(inode, function, line, 0,
4653 "iget: root inode unallocated");
4654 ret = -EFSCORRUPTED;
4655 goto bad_inode;
4656 }
4657
4658 if ((flags & EXT4_IGET_HANDLE) &&
4659 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4660 ret = -ESTALE;
4661 goto bad_inode;
4662 }
4663
4664 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4665 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4666 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4667 EXT4_INODE_SIZE(inode->i_sb) ||
4668 (ei->i_extra_isize & 3)) {
4669 ext4_error_inode(inode, function, line, 0,
4670 "iget: bad extra_isize %u "
4671 "(inode size %u)",
4672 ei->i_extra_isize,
4673 EXT4_INODE_SIZE(inode->i_sb));
4674 ret = -EFSCORRUPTED;
4675 goto bad_inode;
4676 }
4677 } else
4678 ei->i_extra_isize = 0;
4679
4680 /* Precompute checksum seed for inode metadata */
4681 if (ext4_has_metadata_csum(sb)) {
4682 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4683 __u32 csum;
4684 __le32 inum = cpu_to_le32(inode->i_ino);
4685 __le32 gen = raw_inode->i_generation;
4686 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4687 sizeof(inum));
4688 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4689 sizeof(gen));
4690 }
4691
4692 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4693 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4694 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4695 ext4_error_inode_err(inode, function, line, 0,
4696 EFSBADCRC, "iget: checksum invalid");
4697 ret = -EFSBADCRC;
4698 goto bad_inode;
4699 }
4700
4701 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4702 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4703 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4704 if (ext4_has_feature_project(sb) &&
4705 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4706 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4707 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4708 else
4709 i_projid = EXT4_DEF_PROJID;
4710
4711 if (!(test_opt(inode->i_sb, NO_UID32))) {
4712 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4713 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4714 }
4715 i_uid_write(inode, i_uid);
4716 i_gid_write(inode, i_gid);
4717 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4718 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4719
4720 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4721 ei->i_inline_off = 0;
4722 ei->i_dir_start_lookup = 0;
4723 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4724 /* We now have enough fields to check if the inode was active or not.
4725 * This is needed because nfsd might try to access dead inodes
4726 * the test is that same one that e2fsck uses
4727 * NeilBrown 1999oct15
4728 */
4729 if (inode->i_nlink == 0) {
4730 if ((inode->i_mode == 0 ||
4731 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4732 ino != EXT4_BOOT_LOADER_INO) {
4733 /* this inode is deleted */
4734 ret = -ESTALE;
4735 goto bad_inode;
4736 }
4737 /* The only unlinked inodes we let through here have
4738 * valid i_mode and are being read by the orphan
4739 * recovery code: that's fine, we're about to complete
4740 * the process of deleting those.
4741 * OR it is the EXT4_BOOT_LOADER_INO which is
4742 * not initialized on a new filesystem. */
4743 }
4744 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4745 ext4_set_inode_flags(inode, true);
4746 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4747 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4748 if (ext4_has_feature_64bit(sb))
4749 ei->i_file_acl |=
4750 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4751 inode->i_size = ext4_isize(sb, raw_inode);
4752 if ((size = i_size_read(inode)) < 0) {
4753 ext4_error_inode(inode, function, line, 0,
4754 "iget: bad i_size value: %lld", size);
4755 ret = -EFSCORRUPTED;
4756 goto bad_inode;
4757 }
4758 /*
4759 * If dir_index is not enabled but there's dir with INDEX flag set,
4760 * we'd normally treat htree data as empty space. But with metadata
4761 * checksumming that corrupts checksums so forbid that.
4762 */
4763 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4764 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4765 ext4_error_inode(inode, function, line, 0,
4766 "iget: Dir with htree data on filesystem without dir_index feature.");
4767 ret = -EFSCORRUPTED;
4768 goto bad_inode;
4769 }
4770 ei->i_disksize = inode->i_size;
4771#ifdef CONFIG_QUOTA
4772 ei->i_reserved_quota = 0;
4773#endif
4774 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4775 ei->i_block_group = iloc.block_group;
4776 ei->i_last_alloc_group = ~0;
4777 /*
4778 * NOTE! The in-memory inode i_data array is in little-endian order
4779 * even on big-endian machines: we do NOT byteswap the block numbers!
4780 */
4781 for (block = 0; block < EXT4_N_BLOCKS; block++)
4782 ei->i_data[block] = raw_inode->i_block[block];
4783 INIT_LIST_HEAD(&ei->i_orphan);
4784 ext4_fc_init_inode(&ei->vfs_inode);
4785
4786 /*
4787 * Set transaction id's of transactions that have to be committed
4788 * to finish f[data]sync. We set them to currently running transaction
4789 * as we cannot be sure that the inode or some of its metadata isn't
4790 * part of the transaction - the inode could have been reclaimed and
4791 * now it is reread from disk.
4792 */
4793 if (journal) {
4794 transaction_t *transaction;
4795 tid_t tid;
4796
4797 read_lock(&journal->j_state_lock);
4798 if (journal->j_running_transaction)
4799 transaction = journal->j_running_transaction;
4800 else
4801 transaction = journal->j_committing_transaction;
4802 if (transaction)
4803 tid = transaction->t_tid;
4804 else
4805 tid = journal->j_commit_sequence;
4806 read_unlock(&journal->j_state_lock);
4807 ei->i_sync_tid = tid;
4808 ei->i_datasync_tid = tid;
4809 }
4810
4811 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4812 if (ei->i_extra_isize == 0) {
4813 /* The extra space is currently unused. Use it. */
4814 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4815 ei->i_extra_isize = sizeof(struct ext4_inode) -
4816 EXT4_GOOD_OLD_INODE_SIZE;
4817 } else {
4818 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4819 if (ret)
4820 goto bad_inode;
4821 }
4822 }
4823
4824 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4825 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4826 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4827 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4828
4829 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4830 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4831
4832 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4833 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4834 ivers |=
4835 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4836 }
4837 ext4_inode_set_iversion_queried(inode, ivers);
4838 }
4839
4840 ret = 0;
4841 if (ei->i_file_acl &&
4842 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4843 ext4_error_inode(inode, function, line, 0,
4844 "iget: bad extended attribute block %llu",
4845 ei->i_file_acl);
4846 ret = -EFSCORRUPTED;
4847 goto bad_inode;
4848 } else if (!ext4_has_inline_data(inode)) {
4849 /* validate the block references in the inode */
4850 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4851 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4852 (S_ISLNK(inode->i_mode) &&
4853 !ext4_inode_is_fast_symlink(inode)))) {
4854 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4855 ret = ext4_ext_check_inode(inode);
4856 else
4857 ret = ext4_ind_check_inode(inode);
4858 }
4859 }
4860 if (ret)
4861 goto bad_inode;
4862
4863 if (S_ISREG(inode->i_mode)) {
4864 inode->i_op = &ext4_file_inode_operations;
4865 inode->i_fop = &ext4_file_operations;
4866 ext4_set_aops(inode);
4867 } else if (S_ISDIR(inode->i_mode)) {
4868 inode->i_op = &ext4_dir_inode_operations;
4869 inode->i_fop = &ext4_dir_operations;
4870 } else if (S_ISLNK(inode->i_mode)) {
4871 /* VFS does not allow setting these so must be corruption */
4872 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4873 ext4_error_inode(inode, function, line, 0,
4874 "iget: immutable or append flags "
4875 "not allowed on symlinks");
4876 ret = -EFSCORRUPTED;
4877 goto bad_inode;
4878 }
4879 if (IS_ENCRYPTED(inode)) {
4880 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4881 ext4_set_aops(inode);
4882 } else if (ext4_inode_is_fast_symlink(inode)) {
4883 inode->i_link = (char *)ei->i_data;
4884 inode->i_op = &ext4_fast_symlink_inode_operations;
4885 nd_terminate_link(ei->i_data, inode->i_size,
4886 sizeof(ei->i_data) - 1);
4887 } else {
4888 inode->i_op = &ext4_symlink_inode_operations;
4889 ext4_set_aops(inode);
4890 }
4891 inode_nohighmem(inode);
4892 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4893 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4894 inode->i_op = &ext4_special_inode_operations;
4895 if (raw_inode->i_block[0])
4896 init_special_inode(inode, inode->i_mode,
4897 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4898 else
4899 init_special_inode(inode, inode->i_mode,
4900 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4901 } else if (ino == EXT4_BOOT_LOADER_INO) {
4902 make_bad_inode(inode);
4903 } else {
4904 ret = -EFSCORRUPTED;
4905 ext4_error_inode(inode, function, line, 0,
4906 "iget: bogus i_mode (%o)", inode->i_mode);
4907 goto bad_inode;
4908 }
4909 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4910 ext4_error_inode(inode, function, line, 0,
4911 "casefold flag without casefold feature");
4912 brelse(iloc.bh);
4913
4914 unlock_new_inode(inode);
4915 return inode;
4916
4917bad_inode:
4918 brelse(iloc.bh);
4919 iget_failed(inode);
4920 return ERR_PTR(ret);
4921}
4922
4923static int ext4_inode_blocks_set(handle_t *handle,
4924 struct ext4_inode *raw_inode,
4925 struct ext4_inode_info *ei)
4926{
4927 struct inode *inode = &(ei->vfs_inode);
4928 u64 i_blocks = READ_ONCE(inode->i_blocks);
4929 struct super_block *sb = inode->i_sb;
4930
4931 if (i_blocks <= ~0U) {
4932 /*
4933 * i_blocks can be represented in a 32 bit variable
4934 * as multiple of 512 bytes
4935 */
4936 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4937 raw_inode->i_blocks_high = 0;
4938 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4939 return 0;
4940 }
4941 if (!ext4_has_feature_huge_file(sb))
4942 return -EFBIG;
4943
4944 if (i_blocks <= 0xffffffffffffULL) {
4945 /*
4946 * i_blocks can be represented in a 48 bit variable
4947 * as multiple of 512 bytes
4948 */
4949 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4950 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4951 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4952 } else {
4953 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4954 /* i_block is stored in file system block size */
4955 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4956 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4957 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4958 }
4959 return 0;
4960}
4961
4962static void __ext4_update_other_inode_time(struct super_block *sb,
4963 unsigned long orig_ino,
4964 unsigned long ino,
4965 struct ext4_inode *raw_inode)
4966{
4967 struct inode *inode;
4968
4969 inode = find_inode_by_ino_rcu(sb, ino);
4970 if (!inode)
4971 return;
4972
4973 if (!inode_is_dirtytime_only(inode))
4974 return;
4975
4976 spin_lock(&inode->i_lock);
4977 if (inode_is_dirtytime_only(inode)) {
4978 struct ext4_inode_info *ei = EXT4_I(inode);
4979
4980 inode->i_state &= ~I_DIRTY_TIME;
4981 spin_unlock(&inode->i_lock);
4982
4983 spin_lock(&ei->i_raw_lock);
4984 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4985 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4986 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4987 ext4_inode_csum_set(inode, raw_inode, ei);
4988 spin_unlock(&ei->i_raw_lock);
4989 trace_ext4_other_inode_update_time(inode, orig_ino);
4990 return;
4991 }
4992 spin_unlock(&inode->i_lock);
4993}
4994
4995/*
4996 * Opportunistically update the other time fields for other inodes in
4997 * the same inode table block.
4998 */
4999static void ext4_update_other_inodes_time(struct super_block *sb,
5000 unsigned long orig_ino, char *buf)
5001{
5002 unsigned long ino;
5003 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5004 int inode_size = EXT4_INODE_SIZE(sb);
5005
5006 /*
5007 * Calculate the first inode in the inode table block. Inode
5008 * numbers are one-based. That is, the first inode in a block
5009 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5010 */
5011 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5012 rcu_read_lock();
5013 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5014 if (ino == orig_ino)
5015 continue;
5016 __ext4_update_other_inode_time(sb, orig_ino, ino,
5017 (struct ext4_inode *)buf);
5018 }
5019 rcu_read_unlock();
5020}
5021
5022/*
5023 * Post the struct inode info into an on-disk inode location in the
5024 * buffer-cache. This gobbles the caller's reference to the
5025 * buffer_head in the inode location struct.
5026 *
5027 * The caller must have write access to iloc->bh.
5028 */
5029static int ext4_do_update_inode(handle_t *handle,
5030 struct inode *inode,
5031 struct ext4_iloc *iloc)
5032{
5033 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5034 struct ext4_inode_info *ei = EXT4_I(inode);
5035 struct buffer_head *bh = iloc->bh;
5036 struct super_block *sb = inode->i_sb;
5037 int err = 0, block;
5038 int need_datasync = 0, set_large_file = 0;
5039 uid_t i_uid;
5040 gid_t i_gid;
5041 projid_t i_projid;
5042
5043 spin_lock(&ei->i_raw_lock);
5044
5045 /* For fields not tracked in the in-memory inode,
5046 * initialise them to zero for new inodes. */
5047 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5048 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5049
5050 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5051 if (err) {
5052 spin_unlock(&ei->i_raw_lock);
5053 goto out_brelse;
5054 }
5055
5056 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5057 i_uid = i_uid_read(inode);
5058 i_gid = i_gid_read(inode);
5059 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5060 if (!(test_opt(inode->i_sb, NO_UID32))) {
5061 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5062 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5063/*
5064 * Fix up interoperability with old kernels. Otherwise, old inodes get
5065 * re-used with the upper 16 bits of the uid/gid intact
5066 */
5067 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5068 raw_inode->i_uid_high = 0;
5069 raw_inode->i_gid_high = 0;
5070 } else {
5071 raw_inode->i_uid_high =
5072 cpu_to_le16(high_16_bits(i_uid));
5073 raw_inode->i_gid_high =
5074 cpu_to_le16(high_16_bits(i_gid));
5075 }
5076 } else {
5077 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5078 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5079 raw_inode->i_uid_high = 0;
5080 raw_inode->i_gid_high = 0;
5081 }
5082 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5083
5084 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5085 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5086 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5087 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5088
5089 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5090 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5091 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5092 raw_inode->i_file_acl_high =
5093 cpu_to_le16(ei->i_file_acl >> 32);
5094 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5095 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5096 ext4_isize_set(raw_inode, ei->i_disksize);
5097 need_datasync = 1;
5098 }
5099 if (ei->i_disksize > 0x7fffffffULL) {
5100 if (!ext4_has_feature_large_file(sb) ||
5101 EXT4_SB(sb)->s_es->s_rev_level ==
5102 cpu_to_le32(EXT4_GOOD_OLD_REV))
5103 set_large_file = 1;
5104 }
5105 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5106 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5107 if (old_valid_dev(inode->i_rdev)) {
5108 raw_inode->i_block[0] =
5109 cpu_to_le32(old_encode_dev(inode->i_rdev));
5110 raw_inode->i_block[1] = 0;
5111 } else {
5112 raw_inode->i_block[0] = 0;
5113 raw_inode->i_block[1] =
5114 cpu_to_le32(new_encode_dev(inode->i_rdev));
5115 raw_inode->i_block[2] = 0;
5116 }
5117 } else if (!ext4_has_inline_data(inode)) {
5118 for (block = 0; block < EXT4_N_BLOCKS; block++)
5119 raw_inode->i_block[block] = ei->i_data[block];
5120 }
5121
5122 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5123 u64 ivers = ext4_inode_peek_iversion(inode);
5124
5125 raw_inode->i_disk_version = cpu_to_le32(ivers);
5126 if (ei->i_extra_isize) {
5127 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5128 raw_inode->i_version_hi =
5129 cpu_to_le32(ivers >> 32);
5130 raw_inode->i_extra_isize =
5131 cpu_to_le16(ei->i_extra_isize);
5132 }
5133 }
5134
5135 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5136 i_projid != EXT4_DEF_PROJID);
5137
5138 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5139 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5140 raw_inode->i_projid = cpu_to_le32(i_projid);
5141
5142 ext4_inode_csum_set(inode, raw_inode, ei);
5143 spin_unlock(&ei->i_raw_lock);
5144 if (inode->i_sb->s_flags & SB_LAZYTIME)
5145 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5146 bh->b_data);
5147
5148 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5149 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5150 if (err)
5151 goto out_brelse;
5152 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5153 if (set_large_file) {
5154 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5155 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5156 if (err)
5157 goto out_brelse;
5158 lock_buffer(EXT4_SB(sb)->s_sbh);
5159 ext4_set_feature_large_file(sb);
5160 ext4_superblock_csum_set(sb);
5161 unlock_buffer(EXT4_SB(sb)->s_sbh);
5162 ext4_handle_sync(handle);
5163 err = ext4_handle_dirty_metadata(handle, NULL,
5164 EXT4_SB(sb)->s_sbh);
5165 }
5166 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5167out_brelse:
5168 brelse(bh);
5169 ext4_std_error(inode->i_sb, err);
5170 return err;
5171}
5172
5173/*
5174 * ext4_write_inode()
5175 *
5176 * We are called from a few places:
5177 *
5178 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5179 * Here, there will be no transaction running. We wait for any running
5180 * transaction to commit.
5181 *
5182 * - Within flush work (sys_sync(), kupdate and such).
5183 * We wait on commit, if told to.
5184 *
5185 * - Within iput_final() -> write_inode_now()
5186 * We wait on commit, if told to.
5187 *
5188 * In all cases it is actually safe for us to return without doing anything,
5189 * because the inode has been copied into a raw inode buffer in
5190 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5191 * writeback.
5192 *
5193 * Note that we are absolutely dependent upon all inode dirtiers doing the
5194 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5195 * which we are interested.
5196 *
5197 * It would be a bug for them to not do this. The code:
5198 *
5199 * mark_inode_dirty(inode)
5200 * stuff();
5201 * inode->i_size = expr;
5202 *
5203 * is in error because write_inode() could occur while `stuff()' is running,
5204 * and the new i_size will be lost. Plus the inode will no longer be on the
5205 * superblock's dirty inode list.
5206 */
5207int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5208{
5209 int err;
5210
5211 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5212 sb_rdonly(inode->i_sb))
5213 return 0;
5214
5215 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5216 return -EIO;
5217
5218 if (EXT4_SB(inode->i_sb)->s_journal) {
5219 if (ext4_journal_current_handle()) {
5220 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5221 dump_stack();
5222 return -EIO;
5223 }
5224
5225 /*
5226 * No need to force transaction in WB_SYNC_NONE mode. Also
5227 * ext4_sync_fs() will force the commit after everything is
5228 * written.
5229 */
5230 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5231 return 0;
5232
5233 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5234 EXT4_I(inode)->i_sync_tid);
5235 } else {
5236 struct ext4_iloc iloc;
5237
5238 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5239 if (err)
5240 return err;
5241 /*
5242 * sync(2) will flush the whole buffer cache. No need to do
5243 * it here separately for each inode.
5244 */
5245 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5246 sync_dirty_buffer(iloc.bh);
5247 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5248 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5249 "IO error syncing inode");
5250 err = -EIO;
5251 }
5252 brelse(iloc.bh);
5253 }
5254 return err;
5255}
5256
5257/*
5258 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5259 * buffers that are attached to a page stradding i_size and are undergoing
5260 * commit. In that case we have to wait for commit to finish and try again.
5261 */
5262static void ext4_wait_for_tail_page_commit(struct inode *inode)
5263{
5264 struct page *page;
5265 unsigned offset;
5266 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5267 tid_t commit_tid = 0;
5268 int ret;
5269
5270 offset = inode->i_size & (PAGE_SIZE - 1);
5271 /*
5272 * If the page is fully truncated, we don't need to wait for any commit
5273 * (and we even should not as __ext4_journalled_invalidatepage() may
5274 * strip all buffers from the page but keep the page dirty which can then
5275 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5276 * buffers). Also we don't need to wait for any commit if all buffers in
5277 * the page remain valid. This is most beneficial for the common case of
5278 * blocksize == PAGESIZE.
5279 */
5280 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5281 return;
5282 while (1) {
5283 page = find_lock_page(inode->i_mapping,
5284 inode->i_size >> PAGE_SHIFT);
5285 if (!page)
5286 return;
5287 ret = __ext4_journalled_invalidatepage(page, offset,
5288 PAGE_SIZE - offset);
5289 unlock_page(page);
5290 put_page(page);
5291 if (ret != -EBUSY)
5292 return;
5293 commit_tid = 0;
5294 read_lock(&journal->j_state_lock);
5295 if (journal->j_committing_transaction)
5296 commit_tid = journal->j_committing_transaction->t_tid;
5297 read_unlock(&journal->j_state_lock);
5298 if (commit_tid)
5299 jbd2_log_wait_commit(journal, commit_tid);
5300 }
5301}
5302
5303/*
5304 * ext4_setattr()
5305 *
5306 * Called from notify_change.
5307 *
5308 * We want to trap VFS attempts to truncate the file as soon as
5309 * possible. In particular, we want to make sure that when the VFS
5310 * shrinks i_size, we put the inode on the orphan list and modify
5311 * i_disksize immediately, so that during the subsequent flushing of
5312 * dirty pages and freeing of disk blocks, we can guarantee that any
5313 * commit will leave the blocks being flushed in an unused state on
5314 * disk. (On recovery, the inode will get truncated and the blocks will
5315 * be freed, so we have a strong guarantee that no future commit will
5316 * leave these blocks visible to the user.)
5317 *
5318 * Another thing we have to assure is that if we are in ordered mode
5319 * and inode is still attached to the committing transaction, we must
5320 * we start writeout of all the dirty pages which are being truncated.
5321 * This way we are sure that all the data written in the previous
5322 * transaction are already on disk (truncate waits for pages under
5323 * writeback).
5324 *
5325 * Called with inode->i_mutex down.
5326 */
5327int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5328 struct iattr *attr)
5329{
5330 struct inode *inode = d_inode(dentry);
5331 int error, rc = 0;
5332 int orphan = 0;
5333 const unsigned int ia_valid = attr->ia_valid;
5334
5335 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5336 return -EIO;
5337
5338 if (unlikely(IS_IMMUTABLE(inode)))
5339 return -EPERM;
5340
5341 if (unlikely(IS_APPEND(inode) &&
5342 (ia_valid & (ATTR_MODE | ATTR_UID |
5343 ATTR_GID | ATTR_TIMES_SET))))
5344 return -EPERM;
5345
5346 error = setattr_prepare(mnt_userns, dentry, attr);
5347 if (error)
5348 return error;
5349
5350 error = fscrypt_prepare_setattr(dentry, attr);
5351 if (error)
5352 return error;
5353
5354 error = fsverity_prepare_setattr(dentry, attr);
5355 if (error)
5356 return error;
5357
5358 if (is_quota_modification(inode, attr)) {
5359 error = dquot_initialize(inode);
5360 if (error)
5361 return error;
5362 }
5363 ext4_fc_start_update(inode);
5364 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5365 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5366 handle_t *handle;
5367
5368 /* (user+group)*(old+new) structure, inode write (sb,
5369 * inode block, ? - but truncate inode update has it) */
5370 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5371 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5372 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5373 if (IS_ERR(handle)) {
5374 error = PTR_ERR(handle);
5375 goto err_out;
5376 }
5377
5378 /* dquot_transfer() calls back ext4_get_inode_usage() which
5379 * counts xattr inode references.
5380 */
5381 down_read(&EXT4_I(inode)->xattr_sem);
5382 error = dquot_transfer(inode, attr);
5383 up_read(&EXT4_I(inode)->xattr_sem);
5384
5385 if (error) {
5386 ext4_journal_stop(handle);
5387 ext4_fc_stop_update(inode);
5388 return error;
5389 }
5390 /* Update corresponding info in inode so that everything is in
5391 * one transaction */
5392 if (attr->ia_valid & ATTR_UID)
5393 inode->i_uid = attr->ia_uid;
5394 if (attr->ia_valid & ATTR_GID)
5395 inode->i_gid = attr->ia_gid;
5396 error = ext4_mark_inode_dirty(handle, inode);
5397 ext4_journal_stop(handle);
5398 if (unlikely(error)) {
5399 ext4_fc_stop_update(inode);
5400 return error;
5401 }
5402 }
5403
5404 if (attr->ia_valid & ATTR_SIZE) {
5405 handle_t *handle;
5406 loff_t oldsize = inode->i_size;
5407 int shrink = (attr->ia_size < inode->i_size);
5408
5409 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5410 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5411
5412 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5413 ext4_fc_stop_update(inode);
5414 return -EFBIG;
5415 }
5416 }
5417 if (!S_ISREG(inode->i_mode)) {
5418 ext4_fc_stop_update(inode);
5419 return -EINVAL;
5420 }
5421
5422 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5423 inode_inc_iversion(inode);
5424
5425 if (shrink) {
5426 if (ext4_should_order_data(inode)) {
5427 error = ext4_begin_ordered_truncate(inode,
5428 attr->ia_size);
5429 if (error)
5430 goto err_out;
5431 }
5432 /*
5433 * Blocks are going to be removed from the inode. Wait
5434 * for dio in flight.
5435 */
5436 inode_dio_wait(inode);
5437 }
5438
5439 down_write(&EXT4_I(inode)->i_mmap_sem);
5440
5441 rc = ext4_break_layouts(inode);
5442 if (rc) {
5443 up_write(&EXT4_I(inode)->i_mmap_sem);
5444 goto err_out;
5445 }
5446
5447 if (attr->ia_size != inode->i_size) {
5448 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5449 if (IS_ERR(handle)) {
5450 error = PTR_ERR(handle);
5451 goto out_mmap_sem;
5452 }
5453 if (ext4_handle_valid(handle) && shrink) {
5454 error = ext4_orphan_add(handle, inode);
5455 orphan = 1;
5456 }
5457 /*
5458 * Update c/mtime on truncate up, ext4_truncate() will
5459 * update c/mtime in shrink case below
5460 */
5461 if (!shrink) {
5462 inode->i_mtime = current_time(inode);
5463 inode->i_ctime = inode->i_mtime;
5464 }
5465
5466 if (shrink)
5467 ext4_fc_track_range(handle, inode,
5468 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5469 inode->i_sb->s_blocksize_bits,
5470 (oldsize > 0 ? oldsize - 1 : 0) >>
5471 inode->i_sb->s_blocksize_bits);
5472 else
5473 ext4_fc_track_range(
5474 handle, inode,
5475 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5476 inode->i_sb->s_blocksize_bits,
5477 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5478 inode->i_sb->s_blocksize_bits);
5479
5480 down_write(&EXT4_I(inode)->i_data_sem);
5481 EXT4_I(inode)->i_disksize = attr->ia_size;
5482 rc = ext4_mark_inode_dirty(handle, inode);
5483 if (!error)
5484 error = rc;
5485 /*
5486 * We have to update i_size under i_data_sem together
5487 * with i_disksize to avoid races with writeback code
5488 * running ext4_wb_update_i_disksize().
5489 */
5490 if (!error)
5491 i_size_write(inode, attr->ia_size);
5492 up_write(&EXT4_I(inode)->i_data_sem);
5493 ext4_journal_stop(handle);
5494 if (error)
5495 goto out_mmap_sem;
5496 if (!shrink) {
5497 pagecache_isize_extended(inode, oldsize,
5498 inode->i_size);
5499 } else if (ext4_should_journal_data(inode)) {
5500 ext4_wait_for_tail_page_commit(inode);
5501 }
5502 }
5503
5504 /*
5505 * Truncate pagecache after we've waited for commit
5506 * in data=journal mode to make pages freeable.
5507 */
5508 truncate_pagecache(inode, inode->i_size);
5509 /*
5510 * Call ext4_truncate() even if i_size didn't change to
5511 * truncate possible preallocated blocks.
5512 */
5513 if (attr->ia_size <= oldsize) {
5514 rc = ext4_truncate(inode);
5515 if (rc)
5516 error = rc;
5517 }
5518out_mmap_sem:
5519 up_write(&EXT4_I(inode)->i_mmap_sem);
5520 }
5521
5522 if (!error) {
5523 setattr_copy(mnt_userns, inode, attr);
5524 mark_inode_dirty(inode);
5525 }
5526
5527 /*
5528 * If the call to ext4_truncate failed to get a transaction handle at
5529 * all, we need to clean up the in-core orphan list manually.
5530 */
5531 if (orphan && inode->i_nlink)
5532 ext4_orphan_del(NULL, inode);
5533
5534 if (!error && (ia_valid & ATTR_MODE))
5535 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5536
5537err_out:
5538 if (error)
5539 ext4_std_error(inode->i_sb, error);
5540 if (!error)
5541 error = rc;
5542 ext4_fc_stop_update(inode);
5543 return error;
5544}
5545
5546int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5547 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5548{
5549 struct inode *inode = d_inode(path->dentry);
5550 struct ext4_inode *raw_inode;
5551 struct ext4_inode_info *ei = EXT4_I(inode);
5552 unsigned int flags;
5553
5554 if ((request_mask & STATX_BTIME) &&
5555 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5556 stat->result_mask |= STATX_BTIME;
5557 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5558 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5559 }
5560
5561 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5562 if (flags & EXT4_APPEND_FL)
5563 stat->attributes |= STATX_ATTR_APPEND;
5564 if (flags & EXT4_COMPR_FL)
5565 stat->attributes |= STATX_ATTR_COMPRESSED;
5566 if (flags & EXT4_ENCRYPT_FL)
5567 stat->attributes |= STATX_ATTR_ENCRYPTED;
5568 if (flags & EXT4_IMMUTABLE_FL)
5569 stat->attributes |= STATX_ATTR_IMMUTABLE;
5570 if (flags & EXT4_NODUMP_FL)
5571 stat->attributes |= STATX_ATTR_NODUMP;
5572 if (flags & EXT4_VERITY_FL)
5573 stat->attributes |= STATX_ATTR_VERITY;
5574
5575 stat->attributes_mask |= (STATX_ATTR_APPEND |
5576 STATX_ATTR_COMPRESSED |
5577 STATX_ATTR_ENCRYPTED |
5578 STATX_ATTR_IMMUTABLE |
5579 STATX_ATTR_NODUMP |
5580 STATX_ATTR_VERITY);
5581
5582 generic_fillattr(mnt_userns, inode, stat);
5583 return 0;
5584}
5585
5586int ext4_file_getattr(struct user_namespace *mnt_userns,
5587 const struct path *path, struct kstat *stat,
5588 u32 request_mask, unsigned int query_flags)
5589{
5590 struct inode *inode = d_inode(path->dentry);
5591 u64 delalloc_blocks;
5592
5593 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5594
5595 /*
5596 * If there is inline data in the inode, the inode will normally not
5597 * have data blocks allocated (it may have an external xattr block).
5598 * Report at least one sector for such files, so tools like tar, rsync,
5599 * others don't incorrectly think the file is completely sparse.
5600 */
5601 if (unlikely(ext4_has_inline_data(inode)))
5602 stat->blocks += (stat->size + 511) >> 9;
5603
5604 /*
5605 * We can't update i_blocks if the block allocation is delayed
5606 * otherwise in the case of system crash before the real block
5607 * allocation is done, we will have i_blocks inconsistent with
5608 * on-disk file blocks.
5609 * We always keep i_blocks updated together with real
5610 * allocation. But to not confuse with user, stat
5611 * will return the blocks that include the delayed allocation
5612 * blocks for this file.
5613 */
5614 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5615 EXT4_I(inode)->i_reserved_data_blocks);
5616 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5617 return 0;
5618}
5619
5620static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5621 int pextents)
5622{
5623 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5624 return ext4_ind_trans_blocks(inode, lblocks);
5625 return ext4_ext_index_trans_blocks(inode, pextents);
5626}
5627
5628/*
5629 * Account for index blocks, block groups bitmaps and block group
5630 * descriptor blocks if modify datablocks and index blocks
5631 * worse case, the indexs blocks spread over different block groups
5632 *
5633 * If datablocks are discontiguous, they are possible to spread over
5634 * different block groups too. If they are contiguous, with flexbg,
5635 * they could still across block group boundary.
5636 *
5637 * Also account for superblock, inode, quota and xattr blocks
5638 */
5639static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5640 int pextents)
5641{
5642 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5643 int gdpblocks;
5644 int idxblocks;
5645 int ret = 0;
5646
5647 /*
5648 * How many index blocks need to touch to map @lblocks logical blocks
5649 * to @pextents physical extents?
5650 */
5651 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5652
5653 ret = idxblocks;
5654
5655 /*
5656 * Now let's see how many group bitmaps and group descriptors need
5657 * to account
5658 */
5659 groups = idxblocks + pextents;
5660 gdpblocks = groups;
5661 if (groups > ngroups)
5662 groups = ngroups;
5663 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5664 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5665
5666 /* bitmaps and block group descriptor blocks */
5667 ret += groups + gdpblocks;
5668
5669 /* Blocks for super block, inode, quota and xattr blocks */
5670 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5671
5672 return ret;
5673}
5674
5675/*
5676 * Calculate the total number of credits to reserve to fit
5677 * the modification of a single pages into a single transaction,
5678 * which may include multiple chunks of block allocations.
5679 *
5680 * This could be called via ext4_write_begin()
5681 *
5682 * We need to consider the worse case, when
5683 * one new block per extent.
5684 */
5685int ext4_writepage_trans_blocks(struct inode *inode)
5686{
5687 int bpp = ext4_journal_blocks_per_page(inode);
5688 int ret;
5689
5690 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5691
5692 /* Account for data blocks for journalled mode */
5693 if (ext4_should_journal_data(inode))
5694 ret += bpp;
5695 return ret;
5696}
5697
5698/*
5699 * Calculate the journal credits for a chunk of data modification.
5700 *
5701 * This is called from DIO, fallocate or whoever calling
5702 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5703 *
5704 * journal buffers for data blocks are not included here, as DIO
5705 * and fallocate do no need to journal data buffers.
5706 */
5707int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5708{
5709 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5710}
5711
5712/*
5713 * The caller must have previously called ext4_reserve_inode_write().
5714 * Give this, we know that the caller already has write access to iloc->bh.
5715 */
5716int ext4_mark_iloc_dirty(handle_t *handle,
5717 struct inode *inode, struct ext4_iloc *iloc)
5718{
5719 int err = 0;
5720
5721 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5722 put_bh(iloc->bh);
5723 return -EIO;
5724 }
5725 ext4_fc_track_inode(handle, inode);
5726
5727 if (IS_I_VERSION(inode))
5728 inode_inc_iversion(inode);
5729
5730 /* the do_update_inode consumes one bh->b_count */
5731 get_bh(iloc->bh);
5732
5733 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5734 err = ext4_do_update_inode(handle, inode, iloc);
5735 put_bh(iloc->bh);
5736 return err;
5737}
5738
5739/*
5740 * On success, We end up with an outstanding reference count against
5741 * iloc->bh. This _must_ be cleaned up later.
5742 */
5743
5744int
5745ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5746 struct ext4_iloc *iloc)
5747{
5748 int err;
5749
5750 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5751 return -EIO;
5752
5753 err = ext4_get_inode_loc(inode, iloc);
5754 if (!err) {
5755 BUFFER_TRACE(iloc->bh, "get_write_access");
5756 err = ext4_journal_get_write_access(handle, iloc->bh);
5757 if (err) {
5758 brelse(iloc->bh);
5759 iloc->bh = NULL;
5760 }
5761 }
5762 ext4_std_error(inode->i_sb, err);
5763 return err;
5764}
5765
5766static int __ext4_expand_extra_isize(struct inode *inode,
5767 unsigned int new_extra_isize,
5768 struct ext4_iloc *iloc,
5769 handle_t *handle, int *no_expand)
5770{
5771 struct ext4_inode *raw_inode;
5772 struct ext4_xattr_ibody_header *header;
5773 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5774 struct ext4_inode_info *ei = EXT4_I(inode);
5775 int error;
5776
5777 /* this was checked at iget time, but double check for good measure */
5778 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5779 (ei->i_extra_isize & 3)) {
5780 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5781 ei->i_extra_isize,
5782 EXT4_INODE_SIZE(inode->i_sb));
5783 return -EFSCORRUPTED;
5784 }
5785 if ((new_extra_isize < ei->i_extra_isize) ||
5786 (new_extra_isize < 4) ||
5787 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5788 return -EINVAL; /* Should never happen */
5789
5790 raw_inode = ext4_raw_inode(iloc);
5791
5792 header = IHDR(inode, raw_inode);
5793
5794 /* No extended attributes present */
5795 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5796 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5797 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5798 EXT4_I(inode)->i_extra_isize, 0,
5799 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5800 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5801 return 0;
5802 }
5803
5804 /* try to expand with EAs present */
5805 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5806 raw_inode, handle);
5807 if (error) {
5808 /*
5809 * Inode size expansion failed; don't try again
5810 */
5811 *no_expand = 1;
5812 }
5813
5814 return error;
5815}
5816
5817/*
5818 * Expand an inode by new_extra_isize bytes.
5819 * Returns 0 on success or negative error number on failure.
5820 */
5821static int ext4_try_to_expand_extra_isize(struct inode *inode,
5822 unsigned int new_extra_isize,
5823 struct ext4_iloc iloc,
5824 handle_t *handle)
5825{
5826 int no_expand;
5827 int error;
5828
5829 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5830 return -EOVERFLOW;
5831
5832 /*
5833 * In nojournal mode, we can immediately attempt to expand
5834 * the inode. When journaled, we first need to obtain extra
5835 * buffer credits since we may write into the EA block
5836 * with this same handle. If journal_extend fails, then it will
5837 * only result in a minor loss of functionality for that inode.
5838 * If this is felt to be critical, then e2fsck should be run to
5839 * force a large enough s_min_extra_isize.
5840 */
5841 if (ext4_journal_extend(handle,
5842 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5843 return -ENOSPC;
5844
5845 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5846 return -EBUSY;
5847
5848 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5849 handle, &no_expand);
5850 ext4_write_unlock_xattr(inode, &no_expand);
5851
5852 return error;
5853}
5854
5855int ext4_expand_extra_isize(struct inode *inode,
5856 unsigned int new_extra_isize,
5857 struct ext4_iloc *iloc)
5858{
5859 handle_t *handle;
5860 int no_expand;
5861 int error, rc;
5862
5863 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5864 brelse(iloc->bh);
5865 return -EOVERFLOW;
5866 }
5867
5868 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5869 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5870 if (IS_ERR(handle)) {
5871 error = PTR_ERR(handle);
5872 brelse(iloc->bh);
5873 return error;
5874 }
5875
5876 ext4_write_lock_xattr(inode, &no_expand);
5877
5878 BUFFER_TRACE(iloc->bh, "get_write_access");
5879 error = ext4_journal_get_write_access(handle, iloc->bh);
5880 if (error) {
5881 brelse(iloc->bh);
5882 goto out_unlock;
5883 }
5884
5885 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5886 handle, &no_expand);
5887
5888 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5889 if (!error)
5890 error = rc;
5891
5892out_unlock:
5893 ext4_write_unlock_xattr(inode, &no_expand);
5894 ext4_journal_stop(handle);
5895 return error;
5896}
5897
5898/*
5899 * What we do here is to mark the in-core inode as clean with respect to inode
5900 * dirtiness (it may still be data-dirty).
5901 * This means that the in-core inode may be reaped by prune_icache
5902 * without having to perform any I/O. This is a very good thing,
5903 * because *any* task may call prune_icache - even ones which
5904 * have a transaction open against a different journal.
5905 *
5906 * Is this cheating? Not really. Sure, we haven't written the
5907 * inode out, but prune_icache isn't a user-visible syncing function.
5908 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5909 * we start and wait on commits.
5910 */
5911int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5912 const char *func, unsigned int line)
5913{
5914 struct ext4_iloc iloc;
5915 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5916 int err;
5917
5918 might_sleep();
5919 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5920 err = ext4_reserve_inode_write(handle, inode, &iloc);
5921 if (err)
5922 goto out;
5923
5924 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5925 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5926 iloc, handle);
5927
5928 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5929out:
5930 if (unlikely(err))
5931 ext4_error_inode_err(inode, func, line, 0, err,
5932 "mark_inode_dirty error");
5933 return err;
5934}
5935
5936/*
5937 * ext4_dirty_inode() is called from __mark_inode_dirty()
5938 *
5939 * We're really interested in the case where a file is being extended.
5940 * i_size has been changed by generic_commit_write() and we thus need
5941 * to include the updated inode in the current transaction.
5942 *
5943 * Also, dquot_alloc_block() will always dirty the inode when blocks
5944 * are allocated to the file.
5945 *
5946 * If the inode is marked synchronous, we don't honour that here - doing
5947 * so would cause a commit on atime updates, which we don't bother doing.
5948 * We handle synchronous inodes at the highest possible level.
5949 */
5950void ext4_dirty_inode(struct inode *inode, int flags)
5951{
5952 handle_t *handle;
5953
5954 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5955 if (IS_ERR(handle))
5956 return;
5957 ext4_mark_inode_dirty(handle, inode);
5958 ext4_journal_stop(handle);
5959}
5960
5961int ext4_change_inode_journal_flag(struct inode *inode, int val)
5962{
5963 journal_t *journal;
5964 handle_t *handle;
5965 int err;
5966 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5967
5968 /*
5969 * We have to be very careful here: changing a data block's
5970 * journaling status dynamically is dangerous. If we write a
5971 * data block to the journal, change the status and then delete
5972 * that block, we risk forgetting to revoke the old log record
5973 * from the journal and so a subsequent replay can corrupt data.
5974 * So, first we make sure that the journal is empty and that
5975 * nobody is changing anything.
5976 */
5977
5978 journal = EXT4_JOURNAL(inode);
5979 if (!journal)
5980 return 0;
5981 if (is_journal_aborted(journal))
5982 return -EROFS;
5983
5984 /* Wait for all existing dio workers */
5985 inode_dio_wait(inode);
5986
5987 /*
5988 * Before flushing the journal and switching inode's aops, we have
5989 * to flush all dirty data the inode has. There can be outstanding
5990 * delayed allocations, there can be unwritten extents created by
5991 * fallocate or buffered writes in dioread_nolock mode covered by
5992 * dirty data which can be converted only after flushing the dirty
5993 * data (and journalled aops don't know how to handle these cases).
5994 */
5995 if (val) {
5996 down_write(&EXT4_I(inode)->i_mmap_sem);
5997 err = filemap_write_and_wait(inode->i_mapping);
5998 if (err < 0) {
5999 up_write(&EXT4_I(inode)->i_mmap_sem);
6000 return err;
6001 }
6002 }
6003
6004 percpu_down_write(&sbi->s_writepages_rwsem);
6005 jbd2_journal_lock_updates(journal);
6006
6007 /*
6008 * OK, there are no updates running now, and all cached data is
6009 * synced to disk. We are now in a completely consistent state
6010 * which doesn't have anything in the journal, and we know that
6011 * no filesystem updates are running, so it is safe to modify
6012 * the inode's in-core data-journaling state flag now.
6013 */
6014
6015 if (val)
6016 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6017 else {
6018 err = jbd2_journal_flush(journal, 0);
6019 if (err < 0) {
6020 jbd2_journal_unlock_updates(journal);
6021 percpu_up_write(&sbi->s_writepages_rwsem);
6022 return err;
6023 }
6024 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6025 }
6026 ext4_set_aops(inode);
6027
6028 jbd2_journal_unlock_updates(journal);
6029 percpu_up_write(&sbi->s_writepages_rwsem);
6030
6031 if (val)
6032 up_write(&EXT4_I(inode)->i_mmap_sem);
6033
6034 /* Finally we can mark the inode as dirty. */
6035
6036 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6037 if (IS_ERR(handle))
6038 return PTR_ERR(handle);
6039
6040 ext4_fc_mark_ineligible(inode->i_sb,
6041 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6042 err = ext4_mark_inode_dirty(handle, inode);
6043 ext4_handle_sync(handle);
6044 ext4_journal_stop(handle);
6045 ext4_std_error(inode->i_sb, err);
6046
6047 return err;
6048}
6049
6050static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6051{
6052 return !buffer_mapped(bh);
6053}
6054
6055vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6056{
6057 struct vm_area_struct *vma = vmf->vma;
6058 struct page *page = vmf->page;
6059 loff_t size;
6060 unsigned long len;
6061 int err;
6062 vm_fault_t ret;
6063 struct file *file = vma->vm_file;
6064 struct inode *inode = file_inode(file);
6065 struct address_space *mapping = inode->i_mapping;
6066 handle_t *handle;
6067 get_block_t *get_block;
6068 int retries = 0;
6069
6070 if (unlikely(IS_IMMUTABLE(inode)))
6071 return VM_FAULT_SIGBUS;
6072
6073 sb_start_pagefault(inode->i_sb);
6074 file_update_time(vma->vm_file);
6075
6076 down_read(&EXT4_I(inode)->i_mmap_sem);
6077
6078 err = ext4_convert_inline_data(inode);
6079 if (err)
6080 goto out_ret;
6081
6082 /*
6083 * On data journalling we skip straight to the transaction handle:
6084 * there's no delalloc; page truncated will be checked later; the
6085 * early return w/ all buffers mapped (calculates size/len) can't
6086 * be used; and there's no dioread_nolock, so only ext4_get_block.
6087 */
6088 if (ext4_should_journal_data(inode))
6089 goto retry_alloc;
6090
6091 /* Delalloc case is easy... */
6092 if (test_opt(inode->i_sb, DELALLOC) &&
6093 !ext4_nonda_switch(inode->i_sb)) {
6094 do {
6095 err = block_page_mkwrite(vma, vmf,
6096 ext4_da_get_block_prep);
6097 } while (err == -ENOSPC &&
6098 ext4_should_retry_alloc(inode->i_sb, &retries));
6099 goto out_ret;
6100 }
6101
6102 lock_page(page);
6103 size = i_size_read(inode);
6104 /* Page got truncated from under us? */
6105 if (page->mapping != mapping || page_offset(page) > size) {
6106 unlock_page(page);
6107 ret = VM_FAULT_NOPAGE;
6108 goto out;
6109 }
6110
6111 if (page->index == size >> PAGE_SHIFT)
6112 len = size & ~PAGE_MASK;
6113 else
6114 len = PAGE_SIZE;
6115 /*
6116 * Return if we have all the buffers mapped. This avoids the need to do
6117 * journal_start/journal_stop which can block and take a long time
6118 *
6119 * This cannot be done for data journalling, as we have to add the
6120 * inode to the transaction's list to writeprotect pages on commit.
6121 */
6122 if (page_has_buffers(page)) {
6123 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6124 0, len, NULL,
6125 ext4_bh_unmapped)) {
6126 /* Wait so that we don't change page under IO */
6127 wait_for_stable_page(page);
6128 ret = VM_FAULT_LOCKED;
6129 goto out;
6130 }
6131 }
6132 unlock_page(page);
6133 /* OK, we need to fill the hole... */
6134 if (ext4_should_dioread_nolock(inode))
6135 get_block = ext4_get_block_unwritten;
6136 else
6137 get_block = ext4_get_block;
6138retry_alloc:
6139 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6140 ext4_writepage_trans_blocks(inode));
6141 if (IS_ERR(handle)) {
6142 ret = VM_FAULT_SIGBUS;
6143 goto out;
6144 }
6145 /*
6146 * Data journalling can't use block_page_mkwrite() because it
6147 * will set_buffer_dirty() before do_journal_get_write_access()
6148 * thus might hit warning messages for dirty metadata buffers.
6149 */
6150 if (!ext4_should_journal_data(inode)) {
6151 err = block_page_mkwrite(vma, vmf, get_block);
6152 } else {
6153 lock_page(page);
6154 size = i_size_read(inode);
6155 /* Page got truncated from under us? */
6156 if (page->mapping != mapping || page_offset(page) > size) {
6157 ret = VM_FAULT_NOPAGE;
6158 goto out_error;
6159 }
6160
6161 if (page->index == size >> PAGE_SHIFT)
6162 len = size & ~PAGE_MASK;
6163 else
6164 len = PAGE_SIZE;
6165
6166 err = __block_write_begin(page, 0, len, ext4_get_block);
6167 if (!err) {
6168 ret = VM_FAULT_SIGBUS;
6169 if (ext4_walk_page_buffers(handle, page_buffers(page),
6170 0, len, NULL, do_journal_get_write_access))
6171 goto out_error;
6172 if (ext4_walk_page_buffers(handle, page_buffers(page),
6173 0, len, NULL, write_end_fn))
6174 goto out_error;
6175 if (ext4_jbd2_inode_add_write(handle, inode,
6176 page_offset(page), len))
6177 goto out_error;
6178 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6179 } else {
6180 unlock_page(page);
6181 }
6182 }
6183 ext4_journal_stop(handle);
6184 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6185 goto retry_alloc;
6186out_ret:
6187 ret = block_page_mkwrite_return(err);
6188out:
6189 up_read(&EXT4_I(inode)->i_mmap_sem);
6190 sb_end_pagefault(inode->i_sb);
6191 return ret;
6192out_error:
6193 unlock_page(page);
6194 ext4_journal_stop(handle);
6195 goto out;
6196}
6197
6198vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6199{
6200 struct inode *inode = file_inode(vmf->vma->vm_file);
6201 vm_fault_t ret;
6202
6203 down_read(&EXT4_I(inode)->i_mmap_sem);
6204 ret = filemap_fault(vmf);
6205 up_read(&EXT4_I(inode)->i_mmap_sem);
6206
6207 return ret;
6208}