Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/pagemap.h>
  11#include <linux/highmem.h>
  12#include <linux/time.h>
  13#include <linux/init.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/writeback.h>
  17#include <linux/slab.h>
  18#include <linux/sched/mm.h>
  19#include <linux/log2.h>
  20#include <crypto/hash.h>
  21#include "misc.h"
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "ordered-data.h"
  28#include "compression.h"
  29#include "extent_io.h"
  30#include "extent_map.h"
 
  31
  32static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
  33
  34const char* btrfs_compress_type2str(enum btrfs_compression_type type)
  35{
  36	switch (type) {
  37	case BTRFS_COMPRESS_ZLIB:
  38	case BTRFS_COMPRESS_LZO:
  39	case BTRFS_COMPRESS_ZSTD:
  40	case BTRFS_COMPRESS_NONE:
  41		return btrfs_compress_types[type];
 
 
  42	}
  43
  44	return NULL;
  45}
  46
  47bool btrfs_compress_is_valid_type(const char *str, size_t len)
  48{
  49	int i;
  50
  51	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
  52		size_t comp_len = strlen(btrfs_compress_types[i]);
  53
  54		if (len < comp_len)
  55			continue;
  56
  57		if (!strncmp(btrfs_compress_types[i], str, comp_len))
  58			return true;
  59	}
  60	return false;
  61}
  62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63static int btrfs_decompress_bio(struct compressed_bio *cb);
  64
  65static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
  66				      unsigned long disk_size)
  67{
  68	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  69
  70	return sizeof(struct compressed_bio) +
  71		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
  72}
  73
  74static int check_compressed_csum(struct btrfs_inode *inode,
  75				 struct compressed_bio *cb,
  76				 u64 disk_start)
  77{
  78	struct btrfs_fs_info *fs_info = inode->root->fs_info;
  79	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
  80	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  81	int ret;
  82	struct page *page;
  83	unsigned long i;
  84	char *kaddr;
  85	u8 csum[BTRFS_CSUM_SIZE];
 
  86	u8 *cb_sum = cb->sums;
  87
  88	if (inode->flags & BTRFS_INODE_NODATASUM)
  89		return 0;
  90
  91	shash->tfm = fs_info->csum_shash;
  92
  93	for (i = 0; i < cb->nr_pages; i++) {
 
 
  94		page = cb->compressed_pages[i];
  95
  96		crypto_shash_init(shash);
  97		kaddr = kmap_atomic(page);
  98		crypto_shash_update(shash, kaddr, PAGE_SIZE);
  99		kunmap_atomic(kaddr);
 100		crypto_shash_final(shash, (u8 *)&csum);
 101
 102		if (memcmp(&csum, cb_sum, csum_size)) {
 103			btrfs_print_data_csum_error(inode, disk_start,
 104					csum, cb_sum, cb->mirror_num);
 105			ret = -EIO;
 106			goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 107		}
 108		cb_sum += csum_size;
 109
 110	}
 111	ret = 0;
 112fail:
 113	return ret;
 114}
 115
 116/* when we finish reading compressed pages from the disk, we
 117 * decompress them and then run the bio end_io routines on the
 118 * decompressed pages (in the inode address space).
 119 *
 120 * This allows the checksumming and other IO error handling routines
 121 * to work normally
 122 *
 123 * The compressed pages are freed here, and it must be run
 124 * in process context
 125 */
 126static void end_compressed_bio_read(struct bio *bio)
 127{
 128	struct compressed_bio *cb = bio->bi_private;
 129	struct inode *inode;
 130	struct page *page;
 131	unsigned long index;
 132	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
 133	int ret = 0;
 134
 135	if (bio->bi_status)
 136		cb->errors = 1;
 137
 138	/* if there are more bios still pending for this compressed
 139	 * extent, just exit
 140	 */
 141	if (!refcount_dec_and_test(&cb->pending_bios))
 142		goto out;
 143
 144	/*
 145	 * Record the correct mirror_num in cb->orig_bio so that
 146	 * read-repair can work properly.
 147	 */
 148	ASSERT(btrfs_io_bio(cb->orig_bio));
 149	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
 150	cb->mirror_num = mirror;
 151
 152	/*
 153	 * Some IO in this cb have failed, just skip checksum as there
 154	 * is no way it could be correct.
 155	 */
 156	if (cb->errors == 1)
 157		goto csum_failed;
 158
 159	inode = cb->inode;
 160	ret = check_compressed_csum(BTRFS_I(inode), cb,
 161				    (u64)bio->bi_iter.bi_sector << 9);
 162	if (ret)
 163		goto csum_failed;
 164
 165	/* ok, we're the last bio for this extent, lets start
 166	 * the decompression.
 167	 */
 168	ret = btrfs_decompress_bio(cb);
 169
 170csum_failed:
 171	if (ret)
 172		cb->errors = 1;
 173
 174	/* release the compressed pages */
 175	index = 0;
 176	for (index = 0; index < cb->nr_pages; index++) {
 177		page = cb->compressed_pages[index];
 178		page->mapping = NULL;
 179		put_page(page);
 180	}
 181
 182	/* do io completion on the original bio */
 183	if (cb->errors) {
 184		bio_io_error(cb->orig_bio);
 185	} else {
 186		struct bio_vec *bvec;
 187		struct bvec_iter_all iter_all;
 188
 189		/*
 190		 * we have verified the checksum already, set page
 191		 * checked so the end_io handlers know about it
 192		 */
 193		ASSERT(!bio_flagged(bio, BIO_CLONED));
 194		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
 195			SetPageChecked(bvec->bv_page);
 196
 197		bio_endio(cb->orig_bio);
 198	}
 199
 200	/* finally free the cb struct */
 201	kfree(cb->compressed_pages);
 202	kfree(cb);
 203out:
 204	bio_put(bio);
 205}
 206
 207/*
 208 * Clear the writeback bits on all of the file
 209 * pages for a compressed write
 210 */
 211static noinline void end_compressed_writeback(struct inode *inode,
 212					      const struct compressed_bio *cb)
 213{
 214	unsigned long index = cb->start >> PAGE_SHIFT;
 215	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 216	struct page *pages[16];
 217	unsigned long nr_pages = end_index - index + 1;
 218	int i;
 219	int ret;
 220
 221	if (cb->errors)
 222		mapping_set_error(inode->i_mapping, -EIO);
 223
 224	while (nr_pages > 0) {
 225		ret = find_get_pages_contig(inode->i_mapping, index,
 226				     min_t(unsigned long,
 227				     nr_pages, ARRAY_SIZE(pages)), pages);
 228		if (ret == 0) {
 229			nr_pages -= 1;
 230			index += 1;
 231			continue;
 232		}
 233		for (i = 0; i < ret; i++) {
 234			if (cb->errors)
 235				SetPageError(pages[i]);
 236			end_page_writeback(pages[i]);
 237			put_page(pages[i]);
 238		}
 239		nr_pages -= ret;
 240		index += ret;
 241	}
 242	/* the inode may be gone now */
 243}
 244
 245/*
 246 * do the cleanup once all the compressed pages hit the disk.
 247 * This will clear writeback on the file pages and free the compressed
 248 * pages.
 249 *
 250 * This also calls the writeback end hooks for the file pages so that
 251 * metadata and checksums can be updated in the file.
 252 */
 253static void end_compressed_bio_write(struct bio *bio)
 254{
 255	struct compressed_bio *cb = bio->bi_private;
 256	struct inode *inode;
 257	struct page *page;
 258	unsigned long index;
 259
 260	if (bio->bi_status)
 261		cb->errors = 1;
 262
 263	/* if there are more bios still pending for this compressed
 264	 * extent, just exit
 265	 */
 266	if (!refcount_dec_and_test(&cb->pending_bios))
 267		goto out;
 268
 269	/* ok, we're the last bio for this extent, step one is to
 270	 * call back into the FS and do all the end_io operations
 271	 */
 272	inode = cb->inode;
 273	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 274	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
 275			cb->start, cb->start + cb->len - 1,
 276			bio->bi_status == BLK_STS_OK);
 277	cb->compressed_pages[0]->mapping = NULL;
 278
 279	end_compressed_writeback(inode, cb);
 280	/* note, our inode could be gone now */
 281
 282	/*
 283	 * release the compressed pages, these came from alloc_page and
 284	 * are not attached to the inode at all
 285	 */
 286	index = 0;
 287	for (index = 0; index < cb->nr_pages; index++) {
 288		page = cb->compressed_pages[index];
 289		page->mapping = NULL;
 290		put_page(page);
 291	}
 292
 293	/* finally free the cb struct */
 294	kfree(cb->compressed_pages);
 295	kfree(cb);
 296out:
 297	bio_put(bio);
 298}
 299
 300/*
 301 * worker function to build and submit bios for previously compressed pages.
 302 * The corresponding pages in the inode should be marked for writeback
 303 * and the compressed pages should have a reference on them for dropping
 304 * when the IO is complete.
 305 *
 306 * This also checksums the file bytes and gets things ready for
 307 * the end io hooks.
 308 */
 309blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
 310				 unsigned long len, u64 disk_start,
 311				 unsigned long compressed_len,
 312				 struct page **compressed_pages,
 313				 unsigned long nr_pages,
 314				 unsigned int write_flags)
 
 315{
 316	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 317	struct bio *bio = NULL;
 318	struct compressed_bio *cb;
 319	unsigned long bytes_left;
 320	int pg_index = 0;
 321	struct page *page;
 322	u64 first_byte = disk_start;
 323	struct block_device *bdev;
 324	blk_status_t ret;
 325	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 
 
 326
 327	WARN_ON(!PAGE_ALIGNED(start));
 328	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 329	if (!cb)
 330		return BLK_STS_RESOURCE;
 331	refcount_set(&cb->pending_bios, 0);
 332	cb->errors = 0;
 333	cb->inode = inode;
 334	cb->start = start;
 335	cb->len = len;
 336	cb->mirror_num = 0;
 337	cb->compressed_pages = compressed_pages;
 338	cb->compressed_len = compressed_len;
 339	cb->orig_bio = NULL;
 340	cb->nr_pages = nr_pages;
 341
 342	bdev = fs_info->fs_devices->latest_bdev;
 343
 344	bio = btrfs_bio_alloc(first_byte);
 345	bio_set_dev(bio, bdev);
 346	bio->bi_opf = REQ_OP_WRITE | write_flags;
 347	bio->bi_private = cb;
 348	bio->bi_end_io = end_compressed_bio_write;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349	refcount_set(&cb->pending_bios, 1);
 350
 351	/* create and submit bios for the compressed pages */
 352	bytes_left = compressed_len;
 353	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 354		int submit = 0;
 
 355
 356		page = compressed_pages[pg_index];
 357		page->mapping = inode->i_mapping;
 358		if (bio->bi_iter.bi_size)
 359			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
 360							  0);
 361
 
 
 
 
 
 
 
 
 
 
 
 
 362		page->mapping = NULL;
 363		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
 364		    PAGE_SIZE) {
 365			/*
 366			 * inc the count before we submit the bio so
 367			 * we know the end IO handler won't happen before
 368			 * we inc the count.  Otherwise, the cb might get
 369			 * freed before we're done setting it up
 370			 */
 371			refcount_inc(&cb->pending_bios);
 372			ret = btrfs_bio_wq_end_io(fs_info, bio,
 373						  BTRFS_WQ_ENDIO_DATA);
 374			BUG_ON(ret); /* -ENOMEM */
 375
 376			if (!skip_sum) {
 377				ret = btrfs_csum_one_bio(inode, bio, start, 1);
 378				BUG_ON(ret); /* -ENOMEM */
 379			}
 380
 381			ret = btrfs_map_bio(fs_info, bio, 0, 1);
 382			if (ret) {
 383				bio->bi_status = ret;
 384				bio_endio(bio);
 385			}
 386
 387			bio = btrfs_bio_alloc(first_byte);
 388			bio_set_dev(bio, bdev);
 389			bio->bi_opf = REQ_OP_WRITE | write_flags;
 390			bio->bi_private = cb;
 391			bio->bi_end_io = end_compressed_bio_write;
 
 
 
 
 
 
 392			bio_add_page(bio, page, PAGE_SIZE, 0);
 393		}
 394		if (bytes_left < PAGE_SIZE) {
 395			btrfs_info(fs_info,
 396					"bytes left %lu compress len %lu nr %lu",
 397			       bytes_left, cb->compressed_len, cb->nr_pages);
 398		}
 399		bytes_left -= PAGE_SIZE;
 400		first_byte += PAGE_SIZE;
 401		cond_resched();
 402	}
 403
 404	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 405	BUG_ON(ret); /* -ENOMEM */
 406
 407	if (!skip_sum) {
 408		ret = btrfs_csum_one_bio(inode, bio, start, 1);
 409		BUG_ON(ret); /* -ENOMEM */
 410	}
 411
 412	ret = btrfs_map_bio(fs_info, bio, 0, 1);
 413	if (ret) {
 414		bio->bi_status = ret;
 415		bio_endio(bio);
 416	}
 417
 
 
 
 418	return 0;
 419}
 420
 421static u64 bio_end_offset(struct bio *bio)
 422{
 423	struct bio_vec *last = bio_last_bvec_all(bio);
 424
 425	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 426}
 427
 428static noinline int add_ra_bio_pages(struct inode *inode,
 429				     u64 compressed_end,
 430				     struct compressed_bio *cb)
 431{
 432	unsigned long end_index;
 433	unsigned long pg_index;
 434	u64 last_offset;
 435	u64 isize = i_size_read(inode);
 436	int ret;
 437	struct page *page;
 438	unsigned long nr_pages = 0;
 439	struct extent_map *em;
 440	struct address_space *mapping = inode->i_mapping;
 441	struct extent_map_tree *em_tree;
 442	struct extent_io_tree *tree;
 443	u64 end;
 444	int misses = 0;
 445
 446	last_offset = bio_end_offset(cb->orig_bio);
 447	em_tree = &BTRFS_I(inode)->extent_tree;
 448	tree = &BTRFS_I(inode)->io_tree;
 449
 450	if (isize == 0)
 451		return 0;
 452
 453	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 454
 455	while (last_offset < compressed_end) {
 456		pg_index = last_offset >> PAGE_SHIFT;
 457
 458		if (pg_index > end_index)
 459			break;
 460
 461		page = xa_load(&mapping->i_pages, pg_index);
 462		if (page && !xa_is_value(page)) {
 463			misses++;
 464			if (misses > 4)
 465				break;
 466			goto next;
 467		}
 468
 469		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 470								 ~__GFP_FS));
 471		if (!page)
 472			break;
 473
 474		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 475			put_page(page);
 476			goto next;
 477		}
 478
 479		end = last_offset + PAGE_SIZE - 1;
 480		/*
 481		 * at this point, we have a locked page in the page cache
 482		 * for these bytes in the file.  But, we have to make
 483		 * sure they map to this compressed extent on disk.
 484		 */
 485		set_page_extent_mapped(page);
 
 
 
 
 
 
 
 486		lock_extent(tree, last_offset, end);
 487		read_lock(&em_tree->lock);
 488		em = lookup_extent_mapping(em_tree, last_offset,
 489					   PAGE_SIZE);
 490		read_unlock(&em_tree->lock);
 491
 492		if (!em || last_offset < em->start ||
 493		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 494		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 495			free_extent_map(em);
 496			unlock_extent(tree, last_offset, end);
 497			unlock_page(page);
 498			put_page(page);
 499			break;
 500		}
 501		free_extent_map(em);
 502
 503		if (page->index == end_index) {
 504			char *userpage;
 505			size_t zero_offset = offset_in_page(isize);
 506
 507			if (zero_offset) {
 508				int zeros;
 509				zeros = PAGE_SIZE - zero_offset;
 510				userpage = kmap_atomic(page);
 511				memset(userpage + zero_offset, 0, zeros);
 512				flush_dcache_page(page);
 513				kunmap_atomic(userpage);
 514			}
 515		}
 516
 517		ret = bio_add_page(cb->orig_bio, page,
 518				   PAGE_SIZE, 0);
 519
 520		if (ret == PAGE_SIZE) {
 521			nr_pages++;
 522			put_page(page);
 523		} else {
 524			unlock_extent(tree, last_offset, end);
 525			unlock_page(page);
 526			put_page(page);
 527			break;
 528		}
 529next:
 530		last_offset += PAGE_SIZE;
 531	}
 532	return 0;
 533}
 534
 535/*
 536 * for a compressed read, the bio we get passed has all the inode pages
 537 * in it.  We don't actually do IO on those pages but allocate new ones
 538 * to hold the compressed pages on disk.
 539 *
 540 * bio->bi_iter.bi_sector points to the compressed extent on disk
 541 * bio->bi_io_vec points to all of the inode pages
 542 *
 543 * After the compressed pages are read, we copy the bytes into the
 544 * bio we were passed and then call the bio end_io calls
 545 */
 546blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 547				 int mirror_num, unsigned long bio_flags)
 548{
 549	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 550	struct extent_map_tree *em_tree;
 551	struct compressed_bio *cb;
 552	unsigned long compressed_len;
 553	unsigned long nr_pages;
 554	unsigned long pg_index;
 555	struct page *page;
 556	struct block_device *bdev;
 557	struct bio *comp_bio;
 558	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 559	u64 em_len;
 560	u64 em_start;
 561	struct extent_map *em;
 562	blk_status_t ret = BLK_STS_RESOURCE;
 563	int faili = 0;
 564	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 565	u8 *sums;
 566
 567	em_tree = &BTRFS_I(inode)->extent_tree;
 568
 569	/* we need the actual starting offset of this extent in the file */
 570	read_lock(&em_tree->lock);
 571	em = lookup_extent_mapping(em_tree,
 572				   page_offset(bio_first_page_all(bio)),
 573				   PAGE_SIZE);
 574	read_unlock(&em_tree->lock);
 575	if (!em)
 576		return BLK_STS_IOERR;
 577
 578	compressed_len = em->block_len;
 579	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 580	if (!cb)
 581		goto out;
 582
 583	refcount_set(&cb->pending_bios, 0);
 584	cb->errors = 0;
 585	cb->inode = inode;
 586	cb->mirror_num = mirror_num;
 587	sums = cb->sums;
 588
 589	cb->start = em->orig_start;
 590	em_len = em->len;
 591	em_start = em->start;
 592
 593	free_extent_map(em);
 594	em = NULL;
 595
 596	cb->len = bio->bi_iter.bi_size;
 597	cb->compressed_len = compressed_len;
 598	cb->compress_type = extent_compress_type(bio_flags);
 599	cb->orig_bio = bio;
 600
 601	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 602	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 603				       GFP_NOFS);
 604	if (!cb->compressed_pages)
 605		goto fail1;
 606
 607	bdev = fs_info->fs_devices->latest_bdev;
 608
 609	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 610		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 611							      __GFP_HIGHMEM);
 612		if (!cb->compressed_pages[pg_index]) {
 613			faili = pg_index - 1;
 614			ret = BLK_STS_RESOURCE;
 615			goto fail2;
 616		}
 617	}
 618	faili = nr_pages - 1;
 619	cb->nr_pages = nr_pages;
 620
 621	add_ra_bio_pages(inode, em_start + em_len, cb);
 622
 623	/* include any pages we added in add_ra-bio_pages */
 624	cb->len = bio->bi_iter.bi_size;
 625
 626	comp_bio = btrfs_bio_alloc(cur_disk_byte);
 627	bio_set_dev(comp_bio, bdev);
 628	comp_bio->bi_opf = REQ_OP_READ;
 629	comp_bio->bi_private = cb;
 630	comp_bio->bi_end_io = end_compressed_bio_read;
 631	refcount_set(&cb->pending_bios, 1);
 632
 633	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 
 634		int submit = 0;
 635
 
 
 
 
 
 
 
 
 
 
 
 636		page = cb->compressed_pages[pg_index];
 637		page->mapping = inode->i_mapping;
 638		page->index = em_start >> PAGE_SHIFT;
 639
 640		if (comp_bio->bi_iter.bi_size)
 641			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
 642							  comp_bio, 0);
 643
 644		page->mapping = NULL;
 645		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
 646		    PAGE_SIZE) {
 647			unsigned int nr_sectors;
 648
 649			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
 650						  BTRFS_WQ_ENDIO_DATA);
 651			BUG_ON(ret); /* -ENOMEM */
 652
 653			/*
 654			 * inc the count before we submit the bio so
 655			 * we know the end IO handler won't happen before
 656			 * we inc the count.  Otherwise, the cb might get
 657			 * freed before we're done setting it up
 658			 */
 659			refcount_inc(&cb->pending_bios);
 660
 661			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 662				ret = btrfs_lookup_bio_sums(inode, comp_bio,
 663							    sums);
 664				BUG_ON(ret); /* -ENOMEM */
 665			}
 666
 667			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 668						  fs_info->sectorsize);
 669			sums += csum_size * nr_sectors;
 670
 671			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 672			if (ret) {
 673				comp_bio->bi_status = ret;
 674				bio_endio(comp_bio);
 675			}
 676
 677			comp_bio = btrfs_bio_alloc(cur_disk_byte);
 678			bio_set_dev(comp_bio, bdev);
 679			comp_bio->bi_opf = REQ_OP_READ;
 680			comp_bio->bi_private = cb;
 681			comp_bio->bi_end_io = end_compressed_bio_read;
 682
 683			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
 684		}
 685		cur_disk_byte += PAGE_SIZE;
 686	}
 687
 688	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
 689	BUG_ON(ret); /* -ENOMEM */
 690
 691	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 692		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
 693		BUG_ON(ret); /* -ENOMEM */
 694	}
 695
 696	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 697	if (ret) {
 698		comp_bio->bi_status = ret;
 699		bio_endio(comp_bio);
 700	}
 701
 702	return 0;
 703
 704fail2:
 705	while (faili >= 0) {
 706		__free_page(cb->compressed_pages[faili]);
 707		faili--;
 708	}
 709
 710	kfree(cb->compressed_pages);
 711fail1:
 712	kfree(cb);
 713out:
 714	free_extent_map(em);
 715	return ret;
 716}
 717
 718/*
 719 * Heuristic uses systematic sampling to collect data from the input data
 720 * range, the logic can be tuned by the following constants:
 721 *
 722 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 723 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 724 */
 725#define SAMPLING_READ_SIZE	(16)
 726#define SAMPLING_INTERVAL	(256)
 727
 728/*
 729 * For statistical analysis of the input data we consider bytes that form a
 730 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 731 * many times the object appeared in the sample.
 732 */
 733#define BUCKET_SIZE		(256)
 734
 735/*
 736 * The size of the sample is based on a statistical sampling rule of thumb.
 737 * The common way is to perform sampling tests as long as the number of
 738 * elements in each cell is at least 5.
 739 *
 740 * Instead of 5, we choose 32 to obtain more accurate results.
 741 * If the data contain the maximum number of symbols, which is 256, we obtain a
 742 * sample size bound by 8192.
 743 *
 744 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 745 * from up to 512 locations.
 746 */
 747#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
 748				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 749
 750struct bucket_item {
 751	u32 count;
 752};
 753
 754struct heuristic_ws {
 755	/* Partial copy of input data */
 756	u8 *sample;
 757	u32 sample_size;
 758	/* Buckets store counters for each byte value */
 759	struct bucket_item *bucket;
 760	/* Sorting buffer */
 761	struct bucket_item *bucket_b;
 762	struct list_head list;
 763};
 764
 765static struct workspace_manager heuristic_wsm;
 766
 767static void heuristic_init_workspace_manager(void)
 768{
 769	btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
 770}
 771
 772static void heuristic_cleanup_workspace_manager(void)
 773{
 774	btrfs_cleanup_workspace_manager(&heuristic_wsm);
 775}
 776
 777static struct list_head *heuristic_get_workspace(unsigned int level)
 778{
 779	return btrfs_get_workspace(&heuristic_wsm, level);
 780}
 781
 782static void heuristic_put_workspace(struct list_head *ws)
 783{
 784	btrfs_put_workspace(&heuristic_wsm, ws);
 785}
 786
 787static void free_heuristic_ws(struct list_head *ws)
 788{
 789	struct heuristic_ws *workspace;
 790
 791	workspace = list_entry(ws, struct heuristic_ws, list);
 792
 793	kvfree(workspace->sample);
 794	kfree(workspace->bucket);
 795	kfree(workspace->bucket_b);
 796	kfree(workspace);
 797}
 798
 799static struct list_head *alloc_heuristic_ws(unsigned int level)
 800{
 801	struct heuristic_ws *ws;
 802
 803	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 804	if (!ws)
 805		return ERR_PTR(-ENOMEM);
 806
 807	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 808	if (!ws->sample)
 809		goto fail;
 810
 811	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 812	if (!ws->bucket)
 813		goto fail;
 814
 815	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 816	if (!ws->bucket_b)
 817		goto fail;
 818
 819	INIT_LIST_HEAD(&ws->list);
 820	return &ws->list;
 821fail:
 822	free_heuristic_ws(&ws->list);
 823	return ERR_PTR(-ENOMEM);
 824}
 825
 826const struct btrfs_compress_op btrfs_heuristic_compress = {
 827	.init_workspace_manager = heuristic_init_workspace_manager,
 828	.cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
 829	.get_workspace = heuristic_get_workspace,
 830	.put_workspace = heuristic_put_workspace,
 831	.alloc_workspace = alloc_heuristic_ws,
 832	.free_workspace = free_heuristic_ws,
 833};
 834
 835static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 836	/* The heuristic is represented as compression type 0 */
 837	&btrfs_heuristic_compress,
 838	&btrfs_zlib_compress,
 839	&btrfs_lzo_compress,
 840	&btrfs_zstd_compress,
 841};
 842
 843void btrfs_init_workspace_manager(struct workspace_manager *wsm,
 844				  const struct btrfs_compress_op *ops)
 845{
 846	struct list_head *workspace;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847
 848	wsm->ops = ops;
 
 
 
 849
 
 850	INIT_LIST_HEAD(&wsm->idle_ws);
 851	spin_lock_init(&wsm->ws_lock);
 852	atomic_set(&wsm->total_ws, 0);
 853	init_waitqueue_head(&wsm->ws_wait);
 854
 855	/*
 856	 * Preallocate one workspace for each compression type so we can
 857	 * guarantee forward progress in the worst case
 858	 */
 859	workspace = wsm->ops->alloc_workspace(0);
 860	if (IS_ERR(workspace)) {
 861		pr_warn(
 862	"BTRFS: cannot preallocate compression workspace, will try later\n");
 863	} else {
 864		atomic_set(&wsm->total_ws, 1);
 865		wsm->free_ws = 1;
 866		list_add(workspace, &wsm->idle_ws);
 867	}
 868}
 869
 870void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
 871{
 
 872	struct list_head *ws;
 873
 
 874	while (!list_empty(&wsman->idle_ws)) {
 875		ws = wsman->idle_ws.next;
 876		list_del(ws);
 877		wsman->ops->free_workspace(ws);
 878		atomic_dec(&wsman->total_ws);
 879	}
 880}
 881
 882/*
 883 * This finds an available workspace or allocates a new one.
 884 * If it's not possible to allocate a new one, waits until there's one.
 885 * Preallocation makes a forward progress guarantees and we do not return
 886 * errors.
 887 */
 888struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
 889				      unsigned int level)
 890{
 
 891	struct list_head *workspace;
 892	int cpus = num_online_cpus();
 893	unsigned nofs_flag;
 894	struct list_head *idle_ws;
 895	spinlock_t *ws_lock;
 896	atomic_t *total_ws;
 897	wait_queue_head_t *ws_wait;
 898	int *free_ws;
 899
 
 900	idle_ws	 = &wsm->idle_ws;
 901	ws_lock	 = &wsm->ws_lock;
 902	total_ws = &wsm->total_ws;
 903	ws_wait	 = &wsm->ws_wait;
 904	free_ws	 = &wsm->free_ws;
 905
 906again:
 907	spin_lock(ws_lock);
 908	if (!list_empty(idle_ws)) {
 909		workspace = idle_ws->next;
 910		list_del(workspace);
 911		(*free_ws)--;
 912		spin_unlock(ws_lock);
 913		return workspace;
 914
 915	}
 916	if (atomic_read(total_ws) > cpus) {
 917		DEFINE_WAIT(wait);
 918
 919		spin_unlock(ws_lock);
 920		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 921		if (atomic_read(total_ws) > cpus && !*free_ws)
 922			schedule();
 923		finish_wait(ws_wait, &wait);
 924		goto again;
 925	}
 926	atomic_inc(total_ws);
 927	spin_unlock(ws_lock);
 928
 929	/*
 930	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
 931	 * to turn it off here because we might get called from the restricted
 932	 * context of btrfs_compress_bio/btrfs_compress_pages
 933	 */
 934	nofs_flag = memalloc_nofs_save();
 935	workspace = wsm->ops->alloc_workspace(level);
 936	memalloc_nofs_restore(nofs_flag);
 937
 938	if (IS_ERR(workspace)) {
 939		atomic_dec(total_ws);
 940		wake_up(ws_wait);
 941
 942		/*
 943		 * Do not return the error but go back to waiting. There's a
 944		 * workspace preallocated for each type and the compression
 945		 * time is bounded so we get to a workspace eventually. This
 946		 * makes our caller's life easier.
 947		 *
 948		 * To prevent silent and low-probability deadlocks (when the
 949		 * initial preallocation fails), check if there are any
 950		 * workspaces at all.
 951		 */
 952		if (atomic_read(total_ws) == 0) {
 953			static DEFINE_RATELIMIT_STATE(_rs,
 954					/* once per minute */ 60 * HZ,
 955					/* no burst */ 1);
 956
 957			if (__ratelimit(&_rs)) {
 958				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
 959			}
 960		}
 961		goto again;
 962	}
 963	return workspace;
 964}
 965
 966static struct list_head *get_workspace(int type, int level)
 967{
 968	return btrfs_compress_op[type]->get_workspace(level);
 
 
 
 
 
 
 
 
 
 
 
 969}
 970
 971/*
 972 * put a workspace struct back on the list or free it if we have enough
 973 * idle ones sitting around
 974 */
 975void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
 976{
 
 977	struct list_head *idle_ws;
 978	spinlock_t *ws_lock;
 979	atomic_t *total_ws;
 980	wait_queue_head_t *ws_wait;
 981	int *free_ws;
 982
 
 983	idle_ws	 = &wsm->idle_ws;
 984	ws_lock	 = &wsm->ws_lock;
 985	total_ws = &wsm->total_ws;
 986	ws_wait	 = &wsm->ws_wait;
 987	free_ws	 = &wsm->free_ws;
 988
 989	spin_lock(ws_lock);
 990	if (*free_ws <= num_online_cpus()) {
 991		list_add(ws, idle_ws);
 992		(*free_ws)++;
 993		spin_unlock(ws_lock);
 994		goto wake;
 995	}
 996	spin_unlock(ws_lock);
 997
 998	wsm->ops->free_workspace(ws);
 999	atomic_dec(total_ws);
1000wake:
1001	cond_wake_up(ws_wait);
1002}
1003
1004static void put_workspace(int type, struct list_head *ws)
1005{
1006	return btrfs_compress_op[type]->put_workspace(ws);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007}
1008
1009/*
1010 * Given an address space and start and length, compress the bytes into @pages
1011 * that are allocated on demand.
1012 *
1013 * @type_level is encoded algorithm and level, where level 0 means whatever
1014 * default the algorithm chooses and is opaque here;
1015 * - compression algo are 0-3
1016 * - the level are bits 4-7
1017 *
1018 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1019 * and returns number of actually allocated pages
1020 *
1021 * @total_in is used to return the number of bytes actually read.  It
1022 * may be smaller than the input length if we had to exit early because we
1023 * ran out of room in the pages array or because we cross the
1024 * max_out threshold.
1025 *
1026 * @total_out is an in/out parameter, must be set to the input length and will
1027 * be also used to return the total number of compressed bytes
1028 *
1029 * @max_out tells us the max number of bytes that we're allowed to
1030 * stuff into pages
1031 */
1032int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1033			 u64 start, struct page **pages,
1034			 unsigned long *out_pages,
1035			 unsigned long *total_in,
1036			 unsigned long *total_out)
1037{
1038	int type = btrfs_compress_type(type_level);
1039	int level = btrfs_compress_level(type_level);
1040	struct list_head *workspace;
1041	int ret;
1042
1043	level = btrfs_compress_set_level(type, level);
1044	workspace = get_workspace(type, level);
1045	ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
1046						      start, pages,
1047						      out_pages,
1048						      total_in, total_out);
1049	put_workspace(type, workspace);
1050	return ret;
1051}
1052
1053/*
1054 * pages_in is an array of pages with compressed data.
1055 *
1056 * disk_start is the starting logical offset of this array in the file
1057 *
1058 * orig_bio contains the pages from the file that we want to decompress into
1059 *
1060 * srclen is the number of bytes in pages_in
1061 *
1062 * The basic idea is that we have a bio that was created by readpages.
1063 * The pages in the bio are for the uncompressed data, and they may not
1064 * be contiguous.  They all correspond to the range of bytes covered by
1065 * the compressed extent.
1066 */
1067static int btrfs_decompress_bio(struct compressed_bio *cb)
1068{
1069	struct list_head *workspace;
1070	int ret;
1071	int type = cb->compress_type;
1072
1073	workspace = get_workspace(type, 0);
1074	ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
1075	put_workspace(type, workspace);
1076
1077	return ret;
1078}
1079
1080/*
1081 * a less complex decompression routine.  Our compressed data fits in a
1082 * single page, and we want to read a single page out of it.
1083 * start_byte tells us the offset into the compressed data we're interested in
1084 */
1085int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1086		     unsigned long start_byte, size_t srclen, size_t destlen)
1087{
1088	struct list_head *workspace;
1089	int ret;
1090
1091	workspace = get_workspace(type, 0);
1092	ret = btrfs_compress_op[type]->decompress(workspace, data_in,
1093						  dest_page, start_byte,
1094						  srclen, destlen);
1095	put_workspace(type, workspace);
1096
1097	return ret;
1098}
1099
1100void __init btrfs_init_compress(void)
1101{
1102	int i;
1103
1104	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1105		btrfs_compress_op[i]->init_workspace_manager();
1106}
1107
1108void __cold btrfs_exit_compress(void)
1109{
1110	int i;
1111
1112	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1113		btrfs_compress_op[i]->cleanup_workspace_manager();
1114}
1115
1116/*
1117 * Copy uncompressed data from working buffer to pages.
1118 *
1119 * buf_start is the byte offset we're of the start of our workspace buffer.
1120 *
1121 * total_out is the last byte of the buffer
1122 */
1123int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1124			      unsigned long total_out, u64 disk_start,
1125			      struct bio *bio)
1126{
1127	unsigned long buf_offset;
1128	unsigned long current_buf_start;
1129	unsigned long start_byte;
1130	unsigned long prev_start_byte;
1131	unsigned long working_bytes = total_out - buf_start;
1132	unsigned long bytes;
1133	char *kaddr;
1134	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1135
1136	/*
1137	 * start byte is the first byte of the page we're currently
1138	 * copying into relative to the start of the compressed data.
1139	 */
1140	start_byte = page_offset(bvec.bv_page) - disk_start;
1141
1142	/* we haven't yet hit data corresponding to this page */
1143	if (total_out <= start_byte)
1144		return 1;
1145
1146	/*
1147	 * the start of the data we care about is offset into
1148	 * the middle of our working buffer
1149	 */
1150	if (total_out > start_byte && buf_start < start_byte) {
1151		buf_offset = start_byte - buf_start;
1152		working_bytes -= buf_offset;
1153	} else {
1154		buf_offset = 0;
1155	}
1156	current_buf_start = buf_start;
1157
1158	/* copy bytes from the working buffer into the pages */
1159	while (working_bytes > 0) {
1160		bytes = min_t(unsigned long, bvec.bv_len,
1161				PAGE_SIZE - buf_offset);
1162		bytes = min(bytes, working_bytes);
1163
1164		kaddr = kmap_atomic(bvec.bv_page);
1165		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1166		kunmap_atomic(kaddr);
1167		flush_dcache_page(bvec.bv_page);
1168
1169		buf_offset += bytes;
1170		working_bytes -= bytes;
1171		current_buf_start += bytes;
1172
1173		/* check if we need to pick another page */
1174		bio_advance(bio, bytes);
1175		if (!bio->bi_iter.bi_size)
1176			return 0;
1177		bvec = bio_iter_iovec(bio, bio->bi_iter);
1178		prev_start_byte = start_byte;
1179		start_byte = page_offset(bvec.bv_page) - disk_start;
1180
1181		/*
1182		 * We need to make sure we're only adjusting
1183		 * our offset into compression working buffer when
1184		 * we're switching pages.  Otherwise we can incorrectly
1185		 * keep copying when we were actually done.
1186		 */
1187		if (start_byte != prev_start_byte) {
1188			/*
1189			 * make sure our new page is covered by this
1190			 * working buffer
1191			 */
1192			if (total_out <= start_byte)
1193				return 1;
1194
1195			/*
1196			 * the next page in the biovec might not be adjacent
1197			 * to the last page, but it might still be found
1198			 * inside this working buffer. bump our offset pointer
1199			 */
1200			if (total_out > start_byte &&
1201			    current_buf_start < start_byte) {
1202				buf_offset = start_byte - buf_start;
1203				working_bytes = total_out - start_byte;
1204				current_buf_start = buf_start + buf_offset;
1205			}
1206		}
1207	}
1208
1209	return 1;
1210}
1211
1212/*
1213 * Shannon Entropy calculation
1214 *
1215 * Pure byte distribution analysis fails to determine compressibility of data.
1216 * Try calculating entropy to estimate the average minimum number of bits
1217 * needed to encode the sampled data.
1218 *
1219 * For convenience, return the percentage of needed bits, instead of amount of
1220 * bits directly.
1221 *
1222 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1223 *			    and can be compressible with high probability
1224 *
1225 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1226 *
1227 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1228 */
1229#define ENTROPY_LVL_ACEPTABLE		(65)
1230#define ENTROPY_LVL_HIGH		(80)
1231
1232/*
1233 * For increasead precision in shannon_entropy calculation,
1234 * let's do pow(n, M) to save more digits after comma:
1235 *
1236 * - maximum int bit length is 64
1237 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1238 * - 13 * 4 = 52 < 64		-> M = 4
1239 *
1240 * So use pow(n, 4).
1241 */
1242static inline u32 ilog2_w(u64 n)
1243{
1244	return ilog2(n * n * n * n);
1245}
1246
1247static u32 shannon_entropy(struct heuristic_ws *ws)
1248{
1249	const u32 entropy_max = 8 * ilog2_w(2);
1250	u32 entropy_sum = 0;
1251	u32 p, p_base, sz_base;
1252	u32 i;
1253
1254	sz_base = ilog2_w(ws->sample_size);
1255	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1256		p = ws->bucket[i].count;
1257		p_base = ilog2_w(p);
1258		entropy_sum += p * (sz_base - p_base);
1259	}
1260
1261	entropy_sum /= ws->sample_size;
1262	return entropy_sum * 100 / entropy_max;
1263}
1264
1265#define RADIX_BASE		4U
1266#define COUNTERS_SIZE		(1U << RADIX_BASE)
1267
1268static u8 get4bits(u64 num, int shift) {
1269	u8 low4bits;
1270
1271	num >>= shift;
1272	/* Reverse order */
1273	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1274	return low4bits;
1275}
1276
1277/*
1278 * Use 4 bits as radix base
1279 * Use 16 u32 counters for calculating new position in buf array
1280 *
1281 * @array     - array that will be sorted
1282 * @array_buf - buffer array to store sorting results
1283 *              must be equal in size to @array
1284 * @num       - array size
1285 */
1286static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1287		       int num)
1288{
1289	u64 max_num;
1290	u64 buf_num;
1291	u32 counters[COUNTERS_SIZE];
1292	u32 new_addr;
1293	u32 addr;
1294	int bitlen;
1295	int shift;
1296	int i;
1297
1298	/*
1299	 * Try avoid useless loop iterations for small numbers stored in big
1300	 * counters.  Example: 48 33 4 ... in 64bit array
1301	 */
1302	max_num = array[0].count;
1303	for (i = 1; i < num; i++) {
1304		buf_num = array[i].count;
1305		if (buf_num > max_num)
1306			max_num = buf_num;
1307	}
1308
1309	buf_num = ilog2(max_num);
1310	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1311
1312	shift = 0;
1313	while (shift < bitlen) {
1314		memset(counters, 0, sizeof(counters));
1315
1316		for (i = 0; i < num; i++) {
1317			buf_num = array[i].count;
1318			addr = get4bits(buf_num, shift);
1319			counters[addr]++;
1320		}
1321
1322		for (i = 1; i < COUNTERS_SIZE; i++)
1323			counters[i] += counters[i - 1];
1324
1325		for (i = num - 1; i >= 0; i--) {
1326			buf_num = array[i].count;
1327			addr = get4bits(buf_num, shift);
1328			counters[addr]--;
1329			new_addr = counters[addr];
1330			array_buf[new_addr] = array[i];
1331		}
1332
1333		shift += RADIX_BASE;
1334
1335		/*
1336		 * Normal radix expects to move data from a temporary array, to
1337		 * the main one.  But that requires some CPU time. Avoid that
1338		 * by doing another sort iteration to original array instead of
1339		 * memcpy()
1340		 */
1341		memset(counters, 0, sizeof(counters));
1342
1343		for (i = 0; i < num; i ++) {
1344			buf_num = array_buf[i].count;
1345			addr = get4bits(buf_num, shift);
1346			counters[addr]++;
1347		}
1348
1349		for (i = 1; i < COUNTERS_SIZE; i++)
1350			counters[i] += counters[i - 1];
1351
1352		for (i = num - 1; i >= 0; i--) {
1353			buf_num = array_buf[i].count;
1354			addr = get4bits(buf_num, shift);
1355			counters[addr]--;
1356			new_addr = counters[addr];
1357			array[new_addr] = array_buf[i];
1358		}
1359
1360		shift += RADIX_BASE;
1361	}
1362}
1363
1364/*
1365 * Size of the core byte set - how many bytes cover 90% of the sample
1366 *
1367 * There are several types of structured binary data that use nearly all byte
1368 * values. The distribution can be uniform and counts in all buckets will be
1369 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1370 *
1371 * Other possibility is normal (Gaussian) distribution, where the data could
1372 * be potentially compressible, but we have to take a few more steps to decide
1373 * how much.
1374 *
1375 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1376 *                       compression algo can easy fix that
1377 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1378 *                       probability is not compressible
1379 */
1380#define BYTE_CORE_SET_LOW		(64)
1381#define BYTE_CORE_SET_HIGH		(200)
1382
1383static int byte_core_set_size(struct heuristic_ws *ws)
1384{
1385	u32 i;
1386	u32 coreset_sum = 0;
1387	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1388	struct bucket_item *bucket = ws->bucket;
1389
1390	/* Sort in reverse order */
1391	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1392
1393	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1394		coreset_sum += bucket[i].count;
1395
1396	if (coreset_sum > core_set_threshold)
1397		return i;
1398
1399	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1400		coreset_sum += bucket[i].count;
1401		if (coreset_sum > core_set_threshold)
1402			break;
1403	}
1404
1405	return i;
1406}
1407
1408/*
1409 * Count byte values in buckets.
1410 * This heuristic can detect textual data (configs, xml, json, html, etc).
1411 * Because in most text-like data byte set is restricted to limited number of
1412 * possible characters, and that restriction in most cases makes data easy to
1413 * compress.
1414 *
1415 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1416 *	less - compressible
1417 *	more - need additional analysis
1418 */
1419#define BYTE_SET_THRESHOLD		(64)
1420
1421static u32 byte_set_size(const struct heuristic_ws *ws)
1422{
1423	u32 i;
1424	u32 byte_set_size = 0;
1425
1426	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1427		if (ws->bucket[i].count > 0)
1428			byte_set_size++;
1429	}
1430
1431	/*
1432	 * Continue collecting count of byte values in buckets.  If the byte
1433	 * set size is bigger then the threshold, it's pointless to continue,
1434	 * the detection technique would fail for this type of data.
1435	 */
1436	for (; i < BUCKET_SIZE; i++) {
1437		if (ws->bucket[i].count > 0) {
1438			byte_set_size++;
1439			if (byte_set_size > BYTE_SET_THRESHOLD)
1440				return byte_set_size;
1441		}
1442	}
1443
1444	return byte_set_size;
1445}
1446
1447static bool sample_repeated_patterns(struct heuristic_ws *ws)
1448{
1449	const u32 half_of_sample = ws->sample_size / 2;
1450	const u8 *data = ws->sample;
1451
1452	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1453}
1454
1455static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1456				     struct heuristic_ws *ws)
1457{
1458	struct page *page;
1459	u64 index, index_end;
1460	u32 i, curr_sample_pos;
1461	u8 *in_data;
1462
1463	/*
1464	 * Compression handles the input data by chunks of 128KiB
1465	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1466	 *
1467	 * We do the same for the heuristic and loop over the whole range.
1468	 *
1469	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1470	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1471	 */
1472	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1473		end = start + BTRFS_MAX_UNCOMPRESSED;
1474
1475	index = start >> PAGE_SHIFT;
1476	index_end = end >> PAGE_SHIFT;
1477
1478	/* Don't miss unaligned end */
1479	if (!IS_ALIGNED(end, PAGE_SIZE))
1480		index_end++;
1481
1482	curr_sample_pos = 0;
1483	while (index < index_end) {
1484		page = find_get_page(inode->i_mapping, index);
1485		in_data = kmap(page);
1486		/* Handle case where the start is not aligned to PAGE_SIZE */
1487		i = start % PAGE_SIZE;
1488		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1489			/* Don't sample any garbage from the last page */
1490			if (start > end - SAMPLING_READ_SIZE)
1491				break;
1492			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1493					SAMPLING_READ_SIZE);
1494			i += SAMPLING_INTERVAL;
1495			start += SAMPLING_INTERVAL;
1496			curr_sample_pos += SAMPLING_READ_SIZE;
1497		}
1498		kunmap(page);
1499		put_page(page);
1500
1501		index++;
1502	}
1503
1504	ws->sample_size = curr_sample_pos;
1505}
1506
1507/*
1508 * Compression heuristic.
1509 *
1510 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1511 * quickly (compared to direct compression) detect data characteristics
1512 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1513 * data.
1514 *
1515 * The following types of analysis can be performed:
1516 * - detect mostly zero data
1517 * - detect data with low "byte set" size (text, etc)
1518 * - detect data with low/high "core byte" set
1519 *
1520 * Return non-zero if the compression should be done, 0 otherwise.
1521 */
1522int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1523{
1524	struct list_head *ws_list = get_workspace(0, 0);
1525	struct heuristic_ws *ws;
1526	u32 i;
1527	u8 byte;
1528	int ret = 0;
1529
1530	ws = list_entry(ws_list, struct heuristic_ws, list);
1531
1532	heuristic_collect_sample(inode, start, end, ws);
1533
1534	if (sample_repeated_patterns(ws)) {
1535		ret = 1;
1536		goto out;
1537	}
1538
1539	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1540
1541	for (i = 0; i < ws->sample_size; i++) {
1542		byte = ws->sample[i];
1543		ws->bucket[byte].count++;
1544	}
1545
1546	i = byte_set_size(ws);
1547	if (i < BYTE_SET_THRESHOLD) {
1548		ret = 2;
1549		goto out;
1550	}
1551
1552	i = byte_core_set_size(ws);
1553	if (i <= BYTE_CORE_SET_LOW) {
1554		ret = 3;
1555		goto out;
1556	}
1557
1558	if (i >= BYTE_CORE_SET_HIGH) {
1559		ret = 0;
1560		goto out;
1561	}
1562
1563	i = shannon_entropy(ws);
1564	if (i <= ENTROPY_LVL_ACEPTABLE) {
1565		ret = 4;
1566		goto out;
1567	}
1568
1569	/*
1570	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1571	 * needed to give green light to compression.
1572	 *
1573	 * For now just assume that compression at that level is not worth the
1574	 * resources because:
1575	 *
1576	 * 1. it is possible to defrag the data later
1577	 *
1578	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1579	 * values, every bucket has counter at level ~54. The heuristic would
1580	 * be confused. This can happen when data have some internal repeated
1581	 * patterns like "abbacbbc...". This can be detected by analyzing
1582	 * pairs of bytes, which is too costly.
1583	 */
1584	if (i < ENTROPY_LVL_HIGH) {
1585		ret = 5;
1586		goto out;
1587	} else {
1588		ret = 0;
1589		goto out;
1590	}
1591
1592out:
1593	put_workspace(0, ws_list);
1594	return ret;
1595}
1596
1597/*
1598 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1599 * level, unrecognized string will set the default level
1600 */
1601unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1602{
1603	unsigned int level = 0;
1604	int ret;
1605
1606	if (!type)
1607		return 0;
1608
1609	if (str[0] == ':') {
1610		ret = kstrtouint(str + 1, 10, &level);
1611		if (ret)
1612			level = 0;
1613	}
1614
1615	level = btrfs_compress_set_level(type, level);
1616
1617	return level;
1618}
1619
1620/*
1621 * Adjust @level according to the limits of the compression algorithm or
1622 * fallback to default
1623 */
1624unsigned int btrfs_compress_set_level(int type, unsigned level)
1625{
1626	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1627
1628	if (level == 0)
1629		level = ops->default_level;
1630	else
1631		level = min(level, ops->max_level);
1632
1633	return level;
1634}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/pagemap.h>
  11#include <linux/highmem.h>
  12#include <linux/time.h>
  13#include <linux/init.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/writeback.h>
  17#include <linux/slab.h>
  18#include <linux/sched/mm.h>
  19#include <linux/log2.h>
  20#include <crypto/hash.h>
  21#include "misc.h"
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "ordered-data.h"
  28#include "compression.h"
  29#include "extent_io.h"
  30#include "extent_map.h"
  31#include "zoned.h"
  32
  33static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
  34
  35const char* btrfs_compress_type2str(enum btrfs_compression_type type)
  36{
  37	switch (type) {
  38	case BTRFS_COMPRESS_ZLIB:
  39	case BTRFS_COMPRESS_LZO:
  40	case BTRFS_COMPRESS_ZSTD:
  41	case BTRFS_COMPRESS_NONE:
  42		return btrfs_compress_types[type];
  43	default:
  44		break;
  45	}
  46
  47	return NULL;
  48}
  49
  50bool btrfs_compress_is_valid_type(const char *str, size_t len)
  51{
  52	int i;
  53
  54	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
  55		size_t comp_len = strlen(btrfs_compress_types[i]);
  56
  57		if (len < comp_len)
  58			continue;
  59
  60		if (!strncmp(btrfs_compress_types[i], str, comp_len))
  61			return true;
  62	}
  63	return false;
  64}
  65
  66static int compression_compress_pages(int type, struct list_head *ws,
  67               struct address_space *mapping, u64 start, struct page **pages,
  68               unsigned long *out_pages, unsigned long *total_in,
  69               unsigned long *total_out)
  70{
  71	switch (type) {
  72	case BTRFS_COMPRESS_ZLIB:
  73		return zlib_compress_pages(ws, mapping, start, pages,
  74				out_pages, total_in, total_out);
  75	case BTRFS_COMPRESS_LZO:
  76		return lzo_compress_pages(ws, mapping, start, pages,
  77				out_pages, total_in, total_out);
  78	case BTRFS_COMPRESS_ZSTD:
  79		return zstd_compress_pages(ws, mapping, start, pages,
  80				out_pages, total_in, total_out);
  81	case BTRFS_COMPRESS_NONE:
  82	default:
  83		/*
  84		 * This can happen when compression races with remount setting
  85		 * it to 'no compress', while caller doesn't call
  86		 * inode_need_compress() to check if we really need to
  87		 * compress.
  88		 *
  89		 * Not a big deal, just need to inform caller that we
  90		 * haven't allocated any pages yet.
  91		 */
  92		*out_pages = 0;
  93		return -E2BIG;
  94	}
  95}
  96
  97static int compression_decompress_bio(int type, struct list_head *ws,
  98		struct compressed_bio *cb)
  99{
 100	switch (type) {
 101	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
 102	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
 103	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
 104	case BTRFS_COMPRESS_NONE:
 105	default:
 106		/*
 107		 * This can't happen, the type is validated several times
 108		 * before we get here.
 109		 */
 110		BUG();
 111	}
 112}
 113
 114static int compression_decompress(int type, struct list_head *ws,
 115               unsigned char *data_in, struct page *dest_page,
 116               unsigned long start_byte, size_t srclen, size_t destlen)
 117{
 118	switch (type) {
 119	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
 120						start_byte, srclen, destlen);
 121	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
 122						start_byte, srclen, destlen);
 123	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
 124						start_byte, srclen, destlen);
 125	case BTRFS_COMPRESS_NONE:
 126	default:
 127		/*
 128		 * This can't happen, the type is validated several times
 129		 * before we get here.
 130		 */
 131		BUG();
 132	}
 133}
 134
 135static int btrfs_decompress_bio(struct compressed_bio *cb);
 136
 137static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
 138				      unsigned long disk_size)
 139{
 
 
 140	return sizeof(struct compressed_bio) +
 141		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
 142}
 143
 144static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
 
 145				 u64 disk_start)
 146{
 147	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 148	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 149	const u32 csum_size = fs_info->csum_size;
 150	const u32 sectorsize = fs_info->sectorsize;
 151	struct page *page;
 152	unsigned int i;
 153	char *kaddr;
 154	u8 csum[BTRFS_CSUM_SIZE];
 155	struct compressed_bio *cb = bio->bi_private;
 156	u8 *cb_sum = cb->sums;
 157
 158	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
 159		return 0;
 160
 161	shash->tfm = fs_info->csum_shash;
 162
 163	for (i = 0; i < cb->nr_pages; i++) {
 164		u32 pg_offset;
 165		u32 bytes_left = PAGE_SIZE;
 166		page = cb->compressed_pages[i];
 167
 168		/* Determine the remaining bytes inside the page first */
 169		if (i == cb->nr_pages - 1)
 170			bytes_left = cb->compressed_len - i * PAGE_SIZE;
 171
 172		/* Hash through the page sector by sector */
 173		for (pg_offset = 0; pg_offset < bytes_left;
 174		     pg_offset += sectorsize) {
 175			kaddr = kmap_atomic(page);
 176			crypto_shash_digest(shash, kaddr + pg_offset,
 177					    sectorsize, csum);
 178			kunmap_atomic(kaddr);
 179
 180			if (memcmp(&csum, cb_sum, csum_size) != 0) {
 181				btrfs_print_data_csum_error(inode, disk_start,
 182						csum, cb_sum, cb->mirror_num);
 183				if (btrfs_io_bio(bio)->device)
 184					btrfs_dev_stat_inc_and_print(
 185						btrfs_io_bio(bio)->device,
 186						BTRFS_DEV_STAT_CORRUPTION_ERRS);
 187				return -EIO;
 188			}
 189			cb_sum += csum_size;
 190			disk_start += sectorsize;
 191		}
 
 
 192	}
 193	return 0;
 
 
 194}
 195
 196/* when we finish reading compressed pages from the disk, we
 197 * decompress them and then run the bio end_io routines on the
 198 * decompressed pages (in the inode address space).
 199 *
 200 * This allows the checksumming and other IO error handling routines
 201 * to work normally
 202 *
 203 * The compressed pages are freed here, and it must be run
 204 * in process context
 205 */
 206static void end_compressed_bio_read(struct bio *bio)
 207{
 208	struct compressed_bio *cb = bio->bi_private;
 209	struct inode *inode;
 210	struct page *page;
 211	unsigned int index;
 212	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
 213	int ret = 0;
 214
 215	if (bio->bi_status)
 216		cb->errors = 1;
 217
 218	/* if there are more bios still pending for this compressed
 219	 * extent, just exit
 220	 */
 221	if (!refcount_dec_and_test(&cb->pending_bios))
 222		goto out;
 223
 224	/*
 225	 * Record the correct mirror_num in cb->orig_bio so that
 226	 * read-repair can work properly.
 227	 */
 
 228	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
 229	cb->mirror_num = mirror;
 230
 231	/*
 232	 * Some IO in this cb have failed, just skip checksum as there
 233	 * is no way it could be correct.
 234	 */
 235	if (cb->errors == 1)
 236		goto csum_failed;
 237
 238	inode = cb->inode;
 239	ret = check_compressed_csum(BTRFS_I(inode), bio,
 240				    bio->bi_iter.bi_sector << 9);
 241	if (ret)
 242		goto csum_failed;
 243
 244	/* ok, we're the last bio for this extent, lets start
 245	 * the decompression.
 246	 */
 247	ret = btrfs_decompress_bio(cb);
 248
 249csum_failed:
 250	if (ret)
 251		cb->errors = 1;
 252
 253	/* release the compressed pages */
 254	index = 0;
 255	for (index = 0; index < cb->nr_pages; index++) {
 256		page = cb->compressed_pages[index];
 257		page->mapping = NULL;
 258		put_page(page);
 259	}
 260
 261	/* do io completion on the original bio */
 262	if (cb->errors) {
 263		bio_io_error(cb->orig_bio);
 264	} else {
 265		struct bio_vec *bvec;
 266		struct bvec_iter_all iter_all;
 267
 268		/*
 269		 * we have verified the checksum already, set page
 270		 * checked so the end_io handlers know about it
 271		 */
 272		ASSERT(!bio_flagged(bio, BIO_CLONED));
 273		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
 274			SetPageChecked(bvec->bv_page);
 275
 276		bio_endio(cb->orig_bio);
 277	}
 278
 279	/* finally free the cb struct */
 280	kfree(cb->compressed_pages);
 281	kfree(cb);
 282out:
 283	bio_put(bio);
 284}
 285
 286/*
 287 * Clear the writeback bits on all of the file
 288 * pages for a compressed write
 289 */
 290static noinline void end_compressed_writeback(struct inode *inode,
 291					      const struct compressed_bio *cb)
 292{
 293	unsigned long index = cb->start >> PAGE_SHIFT;
 294	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 295	struct page *pages[16];
 296	unsigned long nr_pages = end_index - index + 1;
 297	int i;
 298	int ret;
 299
 300	if (cb->errors)
 301		mapping_set_error(inode->i_mapping, -EIO);
 302
 303	while (nr_pages > 0) {
 304		ret = find_get_pages_contig(inode->i_mapping, index,
 305				     min_t(unsigned long,
 306				     nr_pages, ARRAY_SIZE(pages)), pages);
 307		if (ret == 0) {
 308			nr_pages -= 1;
 309			index += 1;
 310			continue;
 311		}
 312		for (i = 0; i < ret; i++) {
 313			if (cb->errors)
 314				SetPageError(pages[i]);
 315			end_page_writeback(pages[i]);
 316			put_page(pages[i]);
 317		}
 318		nr_pages -= ret;
 319		index += ret;
 320	}
 321	/* the inode may be gone now */
 322}
 323
 324/*
 325 * do the cleanup once all the compressed pages hit the disk.
 326 * This will clear writeback on the file pages and free the compressed
 327 * pages.
 328 *
 329 * This also calls the writeback end hooks for the file pages so that
 330 * metadata and checksums can be updated in the file.
 331 */
 332static void end_compressed_bio_write(struct bio *bio)
 333{
 334	struct compressed_bio *cb = bio->bi_private;
 335	struct inode *inode;
 336	struct page *page;
 337	unsigned int index;
 338
 339	if (bio->bi_status)
 340		cb->errors = 1;
 341
 342	/* if there are more bios still pending for this compressed
 343	 * extent, just exit
 344	 */
 345	if (!refcount_dec_and_test(&cb->pending_bios))
 346		goto out;
 347
 348	/* ok, we're the last bio for this extent, step one is to
 349	 * call back into the FS and do all the end_io operations
 350	 */
 351	inode = cb->inode;
 352	btrfs_record_physical_zoned(inode, cb->start, bio);
 353	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
 354			cb->start, cb->start + cb->len - 1,
 355			!cb->errors);
 
 356
 357	end_compressed_writeback(inode, cb);
 358	/* note, our inode could be gone now */
 359
 360	/*
 361	 * release the compressed pages, these came from alloc_page and
 362	 * are not attached to the inode at all
 363	 */
 364	index = 0;
 365	for (index = 0; index < cb->nr_pages; index++) {
 366		page = cb->compressed_pages[index];
 367		page->mapping = NULL;
 368		put_page(page);
 369	}
 370
 371	/* finally free the cb struct */
 372	kfree(cb->compressed_pages);
 373	kfree(cb);
 374out:
 375	bio_put(bio);
 376}
 377
 378/*
 379 * worker function to build and submit bios for previously compressed pages.
 380 * The corresponding pages in the inode should be marked for writeback
 381 * and the compressed pages should have a reference on them for dropping
 382 * when the IO is complete.
 383 *
 384 * This also checksums the file bytes and gets things ready for
 385 * the end io hooks.
 386 */
 387blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
 388				 unsigned int len, u64 disk_start,
 389				 unsigned int compressed_len,
 390				 struct page **compressed_pages,
 391				 unsigned int nr_pages,
 392				 unsigned int write_flags,
 393				 struct cgroup_subsys_state *blkcg_css)
 394{
 395	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 396	struct bio *bio = NULL;
 397	struct compressed_bio *cb;
 398	unsigned long bytes_left;
 399	int pg_index = 0;
 400	struct page *page;
 401	u64 first_byte = disk_start;
 
 402	blk_status_t ret;
 403	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
 404	const bool use_append = btrfs_use_zone_append(inode, disk_start);
 405	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
 406
 407	WARN_ON(!PAGE_ALIGNED(start));
 408	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 409	if (!cb)
 410		return BLK_STS_RESOURCE;
 411	refcount_set(&cb->pending_bios, 0);
 412	cb->errors = 0;
 413	cb->inode = &inode->vfs_inode;
 414	cb->start = start;
 415	cb->len = len;
 416	cb->mirror_num = 0;
 417	cb->compressed_pages = compressed_pages;
 418	cb->compressed_len = compressed_len;
 419	cb->orig_bio = NULL;
 420	cb->nr_pages = nr_pages;
 421
 
 
 422	bio = btrfs_bio_alloc(first_byte);
 423	bio->bi_opf = bio_op | write_flags;
 
 424	bio->bi_private = cb;
 425	bio->bi_end_io = end_compressed_bio_write;
 426
 427	if (use_append) {
 428		struct btrfs_device *device;
 429
 430		device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
 431		if (IS_ERR(device)) {
 432			kfree(cb);
 433			bio_put(bio);
 434			return BLK_STS_NOTSUPP;
 435		}
 436
 437		bio_set_dev(bio, device->bdev);
 438	}
 439
 440	if (blkcg_css) {
 441		bio->bi_opf |= REQ_CGROUP_PUNT;
 442		kthread_associate_blkcg(blkcg_css);
 443	}
 444	refcount_set(&cb->pending_bios, 1);
 445
 446	/* create and submit bios for the compressed pages */
 447	bytes_left = compressed_len;
 448	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 449		int submit = 0;
 450		int len = 0;
 451
 452		page = compressed_pages[pg_index];
 453		page->mapping = inode->vfs_inode.i_mapping;
 454		if (bio->bi_iter.bi_size)
 455			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
 456							  0);
 457
 458		/*
 459		 * Page can only be added to bio if the current bio fits in
 460		 * stripe.
 461		 */
 462		if (!submit) {
 463			if (pg_index == 0 && use_append)
 464				len = bio_add_zone_append_page(bio, page,
 465							       PAGE_SIZE, 0);
 466			else
 467				len = bio_add_page(bio, page, PAGE_SIZE, 0);
 468		}
 469
 470		page->mapping = NULL;
 471		if (submit || len < PAGE_SIZE) {
 
 472			/*
 473			 * inc the count before we submit the bio so
 474			 * we know the end IO handler won't happen before
 475			 * we inc the count.  Otherwise, the cb might get
 476			 * freed before we're done setting it up
 477			 */
 478			refcount_inc(&cb->pending_bios);
 479			ret = btrfs_bio_wq_end_io(fs_info, bio,
 480						  BTRFS_WQ_ENDIO_DATA);
 481			BUG_ON(ret); /* -ENOMEM */
 482
 483			if (!skip_sum) {
 484				ret = btrfs_csum_one_bio(inode, bio, start, 1);
 485				BUG_ON(ret); /* -ENOMEM */
 486			}
 487
 488			ret = btrfs_map_bio(fs_info, bio, 0);
 489			if (ret) {
 490				bio->bi_status = ret;
 491				bio_endio(bio);
 492			}
 493
 494			bio = btrfs_bio_alloc(first_byte);
 495			bio->bi_opf = bio_op | write_flags;
 
 496			bio->bi_private = cb;
 497			bio->bi_end_io = end_compressed_bio_write;
 498			if (blkcg_css)
 499				bio->bi_opf |= REQ_CGROUP_PUNT;
 500			/*
 501			 * Use bio_add_page() to ensure the bio has at least one
 502			 * page.
 503			 */
 504			bio_add_page(bio, page, PAGE_SIZE, 0);
 505		}
 506		if (bytes_left < PAGE_SIZE) {
 507			btrfs_info(fs_info,
 508					"bytes left %lu compress len %u nr %u",
 509			       bytes_left, cb->compressed_len, cb->nr_pages);
 510		}
 511		bytes_left -= PAGE_SIZE;
 512		first_byte += PAGE_SIZE;
 513		cond_resched();
 514	}
 515
 516	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 517	BUG_ON(ret); /* -ENOMEM */
 518
 519	if (!skip_sum) {
 520		ret = btrfs_csum_one_bio(inode, bio, start, 1);
 521		BUG_ON(ret); /* -ENOMEM */
 522	}
 523
 524	ret = btrfs_map_bio(fs_info, bio, 0);
 525	if (ret) {
 526		bio->bi_status = ret;
 527		bio_endio(bio);
 528	}
 529
 530	if (blkcg_css)
 531		kthread_associate_blkcg(NULL);
 532
 533	return 0;
 534}
 535
 536static u64 bio_end_offset(struct bio *bio)
 537{
 538	struct bio_vec *last = bio_last_bvec_all(bio);
 539
 540	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 541}
 542
 543static noinline int add_ra_bio_pages(struct inode *inode,
 544				     u64 compressed_end,
 545				     struct compressed_bio *cb)
 546{
 547	unsigned long end_index;
 548	unsigned long pg_index;
 549	u64 last_offset;
 550	u64 isize = i_size_read(inode);
 551	int ret;
 552	struct page *page;
 553	unsigned long nr_pages = 0;
 554	struct extent_map *em;
 555	struct address_space *mapping = inode->i_mapping;
 556	struct extent_map_tree *em_tree;
 557	struct extent_io_tree *tree;
 558	u64 end;
 559	int misses = 0;
 560
 561	last_offset = bio_end_offset(cb->orig_bio);
 562	em_tree = &BTRFS_I(inode)->extent_tree;
 563	tree = &BTRFS_I(inode)->io_tree;
 564
 565	if (isize == 0)
 566		return 0;
 567
 568	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 569
 570	while (last_offset < compressed_end) {
 571		pg_index = last_offset >> PAGE_SHIFT;
 572
 573		if (pg_index > end_index)
 574			break;
 575
 576		page = xa_load(&mapping->i_pages, pg_index);
 577		if (page && !xa_is_value(page)) {
 578			misses++;
 579			if (misses > 4)
 580				break;
 581			goto next;
 582		}
 583
 584		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 585								 ~__GFP_FS));
 586		if (!page)
 587			break;
 588
 589		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 590			put_page(page);
 591			goto next;
 592		}
 593
 
 594		/*
 595		 * at this point, we have a locked page in the page cache
 596		 * for these bytes in the file.  But, we have to make
 597		 * sure they map to this compressed extent on disk.
 598		 */
 599		ret = set_page_extent_mapped(page);
 600		if (ret < 0) {
 601			unlock_page(page);
 602			put_page(page);
 603			break;
 604		}
 605
 606		end = last_offset + PAGE_SIZE - 1;
 607		lock_extent(tree, last_offset, end);
 608		read_lock(&em_tree->lock);
 609		em = lookup_extent_mapping(em_tree, last_offset,
 610					   PAGE_SIZE);
 611		read_unlock(&em_tree->lock);
 612
 613		if (!em || last_offset < em->start ||
 614		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 615		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 616			free_extent_map(em);
 617			unlock_extent(tree, last_offset, end);
 618			unlock_page(page);
 619			put_page(page);
 620			break;
 621		}
 622		free_extent_map(em);
 623
 624		if (page->index == end_index) {
 
 625			size_t zero_offset = offset_in_page(isize);
 626
 627			if (zero_offset) {
 628				int zeros;
 629				zeros = PAGE_SIZE - zero_offset;
 630				memzero_page(page, zero_offset, zeros);
 
 631				flush_dcache_page(page);
 
 632			}
 633		}
 634
 635		ret = bio_add_page(cb->orig_bio, page,
 636				   PAGE_SIZE, 0);
 637
 638		if (ret == PAGE_SIZE) {
 639			nr_pages++;
 640			put_page(page);
 641		} else {
 642			unlock_extent(tree, last_offset, end);
 643			unlock_page(page);
 644			put_page(page);
 645			break;
 646		}
 647next:
 648		last_offset += PAGE_SIZE;
 649	}
 650	return 0;
 651}
 652
 653/*
 654 * for a compressed read, the bio we get passed has all the inode pages
 655 * in it.  We don't actually do IO on those pages but allocate new ones
 656 * to hold the compressed pages on disk.
 657 *
 658 * bio->bi_iter.bi_sector points to the compressed extent on disk
 659 * bio->bi_io_vec points to all of the inode pages
 660 *
 661 * After the compressed pages are read, we copy the bytes into the
 662 * bio we were passed and then call the bio end_io calls
 663 */
 664blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 665				 int mirror_num, unsigned long bio_flags)
 666{
 667	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 668	struct extent_map_tree *em_tree;
 669	struct compressed_bio *cb;
 670	unsigned int compressed_len;
 671	unsigned int nr_pages;
 672	unsigned int pg_index;
 673	struct page *page;
 
 674	struct bio *comp_bio;
 675	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
 676	u64 em_len;
 677	u64 em_start;
 678	struct extent_map *em;
 679	blk_status_t ret = BLK_STS_RESOURCE;
 680	int faili = 0;
 
 681	u8 *sums;
 682
 683	em_tree = &BTRFS_I(inode)->extent_tree;
 684
 685	/* we need the actual starting offset of this extent in the file */
 686	read_lock(&em_tree->lock);
 687	em = lookup_extent_mapping(em_tree,
 688				   page_offset(bio_first_page_all(bio)),
 689				   fs_info->sectorsize);
 690	read_unlock(&em_tree->lock);
 691	if (!em)
 692		return BLK_STS_IOERR;
 693
 694	compressed_len = em->block_len;
 695	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 696	if (!cb)
 697		goto out;
 698
 699	refcount_set(&cb->pending_bios, 0);
 700	cb->errors = 0;
 701	cb->inode = inode;
 702	cb->mirror_num = mirror_num;
 703	sums = cb->sums;
 704
 705	cb->start = em->orig_start;
 706	em_len = em->len;
 707	em_start = em->start;
 708
 709	free_extent_map(em);
 710	em = NULL;
 711
 712	cb->len = bio->bi_iter.bi_size;
 713	cb->compressed_len = compressed_len;
 714	cb->compress_type = extent_compress_type(bio_flags);
 715	cb->orig_bio = bio;
 716
 717	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 718	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 719				       GFP_NOFS);
 720	if (!cb->compressed_pages)
 721		goto fail1;
 722
 
 
 723	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 724		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 725							      __GFP_HIGHMEM);
 726		if (!cb->compressed_pages[pg_index]) {
 727			faili = pg_index - 1;
 728			ret = BLK_STS_RESOURCE;
 729			goto fail2;
 730		}
 731	}
 732	faili = nr_pages - 1;
 733	cb->nr_pages = nr_pages;
 734
 735	add_ra_bio_pages(inode, em_start + em_len, cb);
 736
 737	/* include any pages we added in add_ra-bio_pages */
 738	cb->len = bio->bi_iter.bi_size;
 739
 740	comp_bio = btrfs_bio_alloc(cur_disk_byte);
 
 741	comp_bio->bi_opf = REQ_OP_READ;
 742	comp_bio->bi_private = cb;
 743	comp_bio->bi_end_io = end_compressed_bio_read;
 744	refcount_set(&cb->pending_bios, 1);
 745
 746	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 747		u32 pg_len = PAGE_SIZE;
 748		int submit = 0;
 749
 750		/*
 751		 * To handle subpage case, we need to make sure the bio only
 752		 * covers the range we need.
 753		 *
 754		 * If we're at the last page, truncate the length to only cover
 755		 * the remaining part.
 756		 */
 757		if (pg_index == nr_pages - 1)
 758			pg_len = min_t(u32, PAGE_SIZE,
 759					compressed_len - pg_index * PAGE_SIZE);
 760
 761		page = cb->compressed_pages[pg_index];
 762		page->mapping = inode->i_mapping;
 763		page->index = em_start >> PAGE_SHIFT;
 764
 765		if (comp_bio->bi_iter.bi_size)
 766			submit = btrfs_bio_fits_in_stripe(page, pg_len,
 767							  comp_bio, 0);
 768
 769		page->mapping = NULL;
 770		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
 
 771			unsigned int nr_sectors;
 772
 773			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
 774						  BTRFS_WQ_ENDIO_DATA);
 775			BUG_ON(ret); /* -ENOMEM */
 776
 777			/*
 778			 * inc the count before we submit the bio so
 779			 * we know the end IO handler won't happen before
 780			 * we inc the count.  Otherwise, the cb might get
 781			 * freed before we're done setting it up
 782			 */
 783			refcount_inc(&cb->pending_bios);
 784
 785			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
 786			BUG_ON(ret); /* -ENOMEM */
 
 
 
 787
 788			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 789						  fs_info->sectorsize);
 790			sums += fs_info->csum_size * nr_sectors;
 791
 792			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
 793			if (ret) {
 794				comp_bio->bi_status = ret;
 795				bio_endio(comp_bio);
 796			}
 797
 798			comp_bio = btrfs_bio_alloc(cur_disk_byte);
 
 799			comp_bio->bi_opf = REQ_OP_READ;
 800			comp_bio->bi_private = cb;
 801			comp_bio->bi_end_io = end_compressed_bio_read;
 802
 803			bio_add_page(comp_bio, page, pg_len, 0);
 804		}
 805		cur_disk_byte += pg_len;
 806	}
 807
 808	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
 809	BUG_ON(ret); /* -ENOMEM */
 810
 811	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
 812	BUG_ON(ret); /* -ENOMEM */
 
 
 813
 814	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
 815	if (ret) {
 816		comp_bio->bi_status = ret;
 817		bio_endio(comp_bio);
 818	}
 819
 820	return 0;
 821
 822fail2:
 823	while (faili >= 0) {
 824		__free_page(cb->compressed_pages[faili]);
 825		faili--;
 826	}
 827
 828	kfree(cb->compressed_pages);
 829fail1:
 830	kfree(cb);
 831out:
 832	free_extent_map(em);
 833	return ret;
 834}
 835
 836/*
 837 * Heuristic uses systematic sampling to collect data from the input data
 838 * range, the logic can be tuned by the following constants:
 839 *
 840 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 841 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 842 */
 843#define SAMPLING_READ_SIZE	(16)
 844#define SAMPLING_INTERVAL	(256)
 845
 846/*
 847 * For statistical analysis of the input data we consider bytes that form a
 848 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 849 * many times the object appeared in the sample.
 850 */
 851#define BUCKET_SIZE		(256)
 852
 853/*
 854 * The size of the sample is based on a statistical sampling rule of thumb.
 855 * The common way is to perform sampling tests as long as the number of
 856 * elements in each cell is at least 5.
 857 *
 858 * Instead of 5, we choose 32 to obtain more accurate results.
 859 * If the data contain the maximum number of symbols, which is 256, we obtain a
 860 * sample size bound by 8192.
 861 *
 862 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 863 * from up to 512 locations.
 864 */
 865#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
 866				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 867
 868struct bucket_item {
 869	u32 count;
 870};
 871
 872struct heuristic_ws {
 873	/* Partial copy of input data */
 874	u8 *sample;
 875	u32 sample_size;
 876	/* Buckets store counters for each byte value */
 877	struct bucket_item *bucket;
 878	/* Sorting buffer */
 879	struct bucket_item *bucket_b;
 880	struct list_head list;
 881};
 882
 883static struct workspace_manager heuristic_wsm;
 884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885static void free_heuristic_ws(struct list_head *ws)
 886{
 887	struct heuristic_ws *workspace;
 888
 889	workspace = list_entry(ws, struct heuristic_ws, list);
 890
 891	kvfree(workspace->sample);
 892	kfree(workspace->bucket);
 893	kfree(workspace->bucket_b);
 894	kfree(workspace);
 895}
 896
 897static struct list_head *alloc_heuristic_ws(unsigned int level)
 898{
 899	struct heuristic_ws *ws;
 900
 901	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 902	if (!ws)
 903		return ERR_PTR(-ENOMEM);
 904
 905	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 906	if (!ws->sample)
 907		goto fail;
 908
 909	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 910	if (!ws->bucket)
 911		goto fail;
 912
 913	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 914	if (!ws->bucket_b)
 915		goto fail;
 916
 917	INIT_LIST_HEAD(&ws->list);
 918	return &ws->list;
 919fail:
 920	free_heuristic_ws(&ws->list);
 921	return ERR_PTR(-ENOMEM);
 922}
 923
 924const struct btrfs_compress_op btrfs_heuristic_compress = {
 925	.workspace_manager = &heuristic_wsm,
 
 
 
 
 
 926};
 927
 928static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 929	/* The heuristic is represented as compression type 0 */
 930	&btrfs_heuristic_compress,
 931	&btrfs_zlib_compress,
 932	&btrfs_lzo_compress,
 933	&btrfs_zstd_compress,
 934};
 935
 936static struct list_head *alloc_workspace(int type, unsigned int level)
 
 937{
 938	switch (type) {
 939	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
 940	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
 941	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
 942	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
 943	default:
 944		/*
 945		 * This can't happen, the type is validated several times
 946		 * before we get here.
 947		 */
 948		BUG();
 949	}
 950}
 951
 952static void free_workspace(int type, struct list_head *ws)
 953{
 954	switch (type) {
 955	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
 956	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
 957	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
 958	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
 959	default:
 960		/*
 961		 * This can't happen, the type is validated several times
 962		 * before we get here.
 963		 */
 964		BUG();
 965	}
 966}
 967
 968static void btrfs_init_workspace_manager(int type)
 969{
 970	struct workspace_manager *wsm;
 971	struct list_head *workspace;
 972
 973	wsm = btrfs_compress_op[type]->workspace_manager;
 974	INIT_LIST_HEAD(&wsm->idle_ws);
 975	spin_lock_init(&wsm->ws_lock);
 976	atomic_set(&wsm->total_ws, 0);
 977	init_waitqueue_head(&wsm->ws_wait);
 978
 979	/*
 980	 * Preallocate one workspace for each compression type so we can
 981	 * guarantee forward progress in the worst case
 982	 */
 983	workspace = alloc_workspace(type, 0);
 984	if (IS_ERR(workspace)) {
 985		pr_warn(
 986	"BTRFS: cannot preallocate compression workspace, will try later\n");
 987	} else {
 988		atomic_set(&wsm->total_ws, 1);
 989		wsm->free_ws = 1;
 990		list_add(workspace, &wsm->idle_ws);
 991	}
 992}
 993
 994static void btrfs_cleanup_workspace_manager(int type)
 995{
 996	struct workspace_manager *wsman;
 997	struct list_head *ws;
 998
 999	wsman = btrfs_compress_op[type]->workspace_manager;
1000	while (!list_empty(&wsman->idle_ws)) {
1001		ws = wsman->idle_ws.next;
1002		list_del(ws);
1003		free_workspace(type, ws);
1004		atomic_dec(&wsman->total_ws);
1005	}
1006}
1007
1008/*
1009 * This finds an available workspace or allocates a new one.
1010 * If it's not possible to allocate a new one, waits until there's one.
1011 * Preallocation makes a forward progress guarantees and we do not return
1012 * errors.
1013 */
1014struct list_head *btrfs_get_workspace(int type, unsigned int level)
 
1015{
1016	struct workspace_manager *wsm;
1017	struct list_head *workspace;
1018	int cpus = num_online_cpus();
1019	unsigned nofs_flag;
1020	struct list_head *idle_ws;
1021	spinlock_t *ws_lock;
1022	atomic_t *total_ws;
1023	wait_queue_head_t *ws_wait;
1024	int *free_ws;
1025
1026	wsm = btrfs_compress_op[type]->workspace_manager;
1027	idle_ws	 = &wsm->idle_ws;
1028	ws_lock	 = &wsm->ws_lock;
1029	total_ws = &wsm->total_ws;
1030	ws_wait	 = &wsm->ws_wait;
1031	free_ws	 = &wsm->free_ws;
1032
1033again:
1034	spin_lock(ws_lock);
1035	if (!list_empty(idle_ws)) {
1036		workspace = idle_ws->next;
1037		list_del(workspace);
1038		(*free_ws)--;
1039		spin_unlock(ws_lock);
1040		return workspace;
1041
1042	}
1043	if (atomic_read(total_ws) > cpus) {
1044		DEFINE_WAIT(wait);
1045
1046		spin_unlock(ws_lock);
1047		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1048		if (atomic_read(total_ws) > cpus && !*free_ws)
1049			schedule();
1050		finish_wait(ws_wait, &wait);
1051		goto again;
1052	}
1053	atomic_inc(total_ws);
1054	spin_unlock(ws_lock);
1055
1056	/*
1057	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1058	 * to turn it off here because we might get called from the restricted
1059	 * context of btrfs_compress_bio/btrfs_compress_pages
1060	 */
1061	nofs_flag = memalloc_nofs_save();
1062	workspace = alloc_workspace(type, level);
1063	memalloc_nofs_restore(nofs_flag);
1064
1065	if (IS_ERR(workspace)) {
1066		atomic_dec(total_ws);
1067		wake_up(ws_wait);
1068
1069		/*
1070		 * Do not return the error but go back to waiting. There's a
1071		 * workspace preallocated for each type and the compression
1072		 * time is bounded so we get to a workspace eventually. This
1073		 * makes our caller's life easier.
1074		 *
1075		 * To prevent silent and low-probability deadlocks (when the
1076		 * initial preallocation fails), check if there are any
1077		 * workspaces at all.
1078		 */
1079		if (atomic_read(total_ws) == 0) {
1080			static DEFINE_RATELIMIT_STATE(_rs,
1081					/* once per minute */ 60 * HZ,
1082					/* no burst */ 1);
1083
1084			if (__ratelimit(&_rs)) {
1085				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1086			}
1087		}
1088		goto again;
1089	}
1090	return workspace;
1091}
1092
1093static struct list_head *get_workspace(int type, int level)
1094{
1095	switch (type) {
1096	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1097	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1098	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1099	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1100	default:
1101		/*
1102		 * This can't happen, the type is validated several times
1103		 * before we get here.
1104		 */
1105		BUG();
1106	}
1107}
1108
1109/*
1110 * put a workspace struct back on the list or free it if we have enough
1111 * idle ones sitting around
1112 */
1113void btrfs_put_workspace(int type, struct list_head *ws)
1114{
1115	struct workspace_manager *wsm;
1116	struct list_head *idle_ws;
1117	spinlock_t *ws_lock;
1118	atomic_t *total_ws;
1119	wait_queue_head_t *ws_wait;
1120	int *free_ws;
1121
1122	wsm = btrfs_compress_op[type]->workspace_manager;
1123	idle_ws	 = &wsm->idle_ws;
1124	ws_lock	 = &wsm->ws_lock;
1125	total_ws = &wsm->total_ws;
1126	ws_wait	 = &wsm->ws_wait;
1127	free_ws	 = &wsm->free_ws;
1128
1129	spin_lock(ws_lock);
1130	if (*free_ws <= num_online_cpus()) {
1131		list_add(ws, idle_ws);
1132		(*free_ws)++;
1133		spin_unlock(ws_lock);
1134		goto wake;
1135	}
1136	spin_unlock(ws_lock);
1137
1138	free_workspace(type, ws);
1139	atomic_dec(total_ws);
1140wake:
1141	cond_wake_up(ws_wait);
1142}
1143
1144static void put_workspace(int type, struct list_head *ws)
1145{
1146	switch (type) {
1147	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1148	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1149	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1150	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1151	default:
1152		/*
1153		 * This can't happen, the type is validated several times
1154		 * before we get here.
1155		 */
1156		BUG();
1157	}
1158}
1159
1160/*
1161 * Adjust @level according to the limits of the compression algorithm or
1162 * fallback to default
1163 */
1164static unsigned int btrfs_compress_set_level(int type, unsigned level)
1165{
1166	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1167
1168	if (level == 0)
1169		level = ops->default_level;
1170	else
1171		level = min(level, ops->max_level);
1172
1173	return level;
1174}
1175
1176/*
1177 * Given an address space and start and length, compress the bytes into @pages
1178 * that are allocated on demand.
1179 *
1180 * @type_level is encoded algorithm and level, where level 0 means whatever
1181 * default the algorithm chooses and is opaque here;
1182 * - compression algo are 0-3
1183 * - the level are bits 4-7
1184 *
1185 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1186 * and returns number of actually allocated pages
1187 *
1188 * @total_in is used to return the number of bytes actually read.  It
1189 * may be smaller than the input length if we had to exit early because we
1190 * ran out of room in the pages array or because we cross the
1191 * max_out threshold.
1192 *
1193 * @total_out is an in/out parameter, must be set to the input length and will
1194 * be also used to return the total number of compressed bytes
 
 
 
1195 */
1196int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1197			 u64 start, struct page **pages,
1198			 unsigned long *out_pages,
1199			 unsigned long *total_in,
1200			 unsigned long *total_out)
1201{
1202	int type = btrfs_compress_type(type_level);
1203	int level = btrfs_compress_level(type_level);
1204	struct list_head *workspace;
1205	int ret;
1206
1207	level = btrfs_compress_set_level(type, level);
1208	workspace = get_workspace(type, level);
1209	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1210					 out_pages, total_in, total_out);
 
 
1211	put_workspace(type, workspace);
1212	return ret;
1213}
1214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1215static int btrfs_decompress_bio(struct compressed_bio *cb)
1216{
1217	struct list_head *workspace;
1218	int ret;
1219	int type = cb->compress_type;
1220
1221	workspace = get_workspace(type, 0);
1222	ret = compression_decompress_bio(type, workspace, cb);
1223	put_workspace(type, workspace);
1224
1225	return ret;
1226}
1227
1228/*
1229 * a less complex decompression routine.  Our compressed data fits in a
1230 * single page, and we want to read a single page out of it.
1231 * start_byte tells us the offset into the compressed data we're interested in
1232 */
1233int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1234		     unsigned long start_byte, size_t srclen, size_t destlen)
1235{
1236	struct list_head *workspace;
1237	int ret;
1238
1239	workspace = get_workspace(type, 0);
1240	ret = compression_decompress(type, workspace, data_in, dest_page,
1241				     start_byte, srclen, destlen);
 
1242	put_workspace(type, workspace);
1243
1244	return ret;
1245}
1246
1247void __init btrfs_init_compress(void)
1248{
1249	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1250	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1251	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1252	zstd_init_workspace_manager();
1253}
1254
1255void __cold btrfs_exit_compress(void)
1256{
1257	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1258	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1259	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1260	zstd_cleanup_workspace_manager();
1261}
1262
1263/*
1264 * Copy uncompressed data from working buffer to pages.
1265 *
1266 * buf_start is the byte offset we're of the start of our workspace buffer.
1267 *
1268 * total_out is the last byte of the buffer
1269 */
1270int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1271			      unsigned long total_out, u64 disk_start,
1272			      struct bio *bio)
1273{
1274	unsigned long buf_offset;
1275	unsigned long current_buf_start;
1276	unsigned long start_byte;
1277	unsigned long prev_start_byte;
1278	unsigned long working_bytes = total_out - buf_start;
1279	unsigned long bytes;
 
1280	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1281
1282	/*
1283	 * start byte is the first byte of the page we're currently
1284	 * copying into relative to the start of the compressed data.
1285	 */
1286	start_byte = page_offset(bvec.bv_page) - disk_start;
1287
1288	/* we haven't yet hit data corresponding to this page */
1289	if (total_out <= start_byte)
1290		return 1;
1291
1292	/*
1293	 * the start of the data we care about is offset into
1294	 * the middle of our working buffer
1295	 */
1296	if (total_out > start_byte && buf_start < start_byte) {
1297		buf_offset = start_byte - buf_start;
1298		working_bytes -= buf_offset;
1299	} else {
1300		buf_offset = 0;
1301	}
1302	current_buf_start = buf_start;
1303
1304	/* copy bytes from the working buffer into the pages */
1305	while (working_bytes > 0) {
1306		bytes = min_t(unsigned long, bvec.bv_len,
1307				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1308		bytes = min(bytes, working_bytes);
1309
1310		memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset,
1311			       bytes);
 
1312		flush_dcache_page(bvec.bv_page);
1313
1314		buf_offset += bytes;
1315		working_bytes -= bytes;
1316		current_buf_start += bytes;
1317
1318		/* check if we need to pick another page */
1319		bio_advance(bio, bytes);
1320		if (!bio->bi_iter.bi_size)
1321			return 0;
1322		bvec = bio_iter_iovec(bio, bio->bi_iter);
1323		prev_start_byte = start_byte;
1324		start_byte = page_offset(bvec.bv_page) - disk_start;
1325
1326		/*
1327		 * We need to make sure we're only adjusting
1328		 * our offset into compression working buffer when
1329		 * we're switching pages.  Otherwise we can incorrectly
1330		 * keep copying when we were actually done.
1331		 */
1332		if (start_byte != prev_start_byte) {
1333			/*
1334			 * make sure our new page is covered by this
1335			 * working buffer
1336			 */
1337			if (total_out <= start_byte)
1338				return 1;
1339
1340			/*
1341			 * the next page in the biovec might not be adjacent
1342			 * to the last page, but it might still be found
1343			 * inside this working buffer. bump our offset pointer
1344			 */
1345			if (total_out > start_byte &&
1346			    current_buf_start < start_byte) {
1347				buf_offset = start_byte - buf_start;
1348				working_bytes = total_out - start_byte;
1349				current_buf_start = buf_start + buf_offset;
1350			}
1351		}
1352	}
1353
1354	return 1;
1355}
1356
1357/*
1358 * Shannon Entropy calculation
1359 *
1360 * Pure byte distribution analysis fails to determine compressibility of data.
1361 * Try calculating entropy to estimate the average minimum number of bits
1362 * needed to encode the sampled data.
1363 *
1364 * For convenience, return the percentage of needed bits, instead of amount of
1365 * bits directly.
1366 *
1367 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1368 *			    and can be compressible with high probability
1369 *
1370 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1371 *
1372 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1373 */
1374#define ENTROPY_LVL_ACEPTABLE		(65)
1375#define ENTROPY_LVL_HIGH		(80)
1376
1377/*
1378 * For increasead precision in shannon_entropy calculation,
1379 * let's do pow(n, M) to save more digits after comma:
1380 *
1381 * - maximum int bit length is 64
1382 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1383 * - 13 * 4 = 52 < 64		-> M = 4
1384 *
1385 * So use pow(n, 4).
1386 */
1387static inline u32 ilog2_w(u64 n)
1388{
1389	return ilog2(n * n * n * n);
1390}
1391
1392static u32 shannon_entropy(struct heuristic_ws *ws)
1393{
1394	const u32 entropy_max = 8 * ilog2_w(2);
1395	u32 entropy_sum = 0;
1396	u32 p, p_base, sz_base;
1397	u32 i;
1398
1399	sz_base = ilog2_w(ws->sample_size);
1400	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1401		p = ws->bucket[i].count;
1402		p_base = ilog2_w(p);
1403		entropy_sum += p * (sz_base - p_base);
1404	}
1405
1406	entropy_sum /= ws->sample_size;
1407	return entropy_sum * 100 / entropy_max;
1408}
1409
1410#define RADIX_BASE		4U
1411#define COUNTERS_SIZE		(1U << RADIX_BASE)
1412
1413static u8 get4bits(u64 num, int shift) {
1414	u8 low4bits;
1415
1416	num >>= shift;
1417	/* Reverse order */
1418	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1419	return low4bits;
1420}
1421
1422/*
1423 * Use 4 bits as radix base
1424 * Use 16 u32 counters for calculating new position in buf array
1425 *
1426 * @array     - array that will be sorted
1427 * @array_buf - buffer array to store sorting results
1428 *              must be equal in size to @array
1429 * @num       - array size
1430 */
1431static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1432		       int num)
1433{
1434	u64 max_num;
1435	u64 buf_num;
1436	u32 counters[COUNTERS_SIZE];
1437	u32 new_addr;
1438	u32 addr;
1439	int bitlen;
1440	int shift;
1441	int i;
1442
1443	/*
1444	 * Try avoid useless loop iterations for small numbers stored in big
1445	 * counters.  Example: 48 33 4 ... in 64bit array
1446	 */
1447	max_num = array[0].count;
1448	for (i = 1; i < num; i++) {
1449		buf_num = array[i].count;
1450		if (buf_num > max_num)
1451			max_num = buf_num;
1452	}
1453
1454	buf_num = ilog2(max_num);
1455	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1456
1457	shift = 0;
1458	while (shift < bitlen) {
1459		memset(counters, 0, sizeof(counters));
1460
1461		for (i = 0; i < num; i++) {
1462			buf_num = array[i].count;
1463			addr = get4bits(buf_num, shift);
1464			counters[addr]++;
1465		}
1466
1467		for (i = 1; i < COUNTERS_SIZE; i++)
1468			counters[i] += counters[i - 1];
1469
1470		for (i = num - 1; i >= 0; i--) {
1471			buf_num = array[i].count;
1472			addr = get4bits(buf_num, shift);
1473			counters[addr]--;
1474			new_addr = counters[addr];
1475			array_buf[new_addr] = array[i];
1476		}
1477
1478		shift += RADIX_BASE;
1479
1480		/*
1481		 * Normal radix expects to move data from a temporary array, to
1482		 * the main one.  But that requires some CPU time. Avoid that
1483		 * by doing another sort iteration to original array instead of
1484		 * memcpy()
1485		 */
1486		memset(counters, 0, sizeof(counters));
1487
1488		for (i = 0; i < num; i ++) {
1489			buf_num = array_buf[i].count;
1490			addr = get4bits(buf_num, shift);
1491			counters[addr]++;
1492		}
1493
1494		for (i = 1; i < COUNTERS_SIZE; i++)
1495			counters[i] += counters[i - 1];
1496
1497		for (i = num - 1; i >= 0; i--) {
1498			buf_num = array_buf[i].count;
1499			addr = get4bits(buf_num, shift);
1500			counters[addr]--;
1501			new_addr = counters[addr];
1502			array[new_addr] = array_buf[i];
1503		}
1504
1505		shift += RADIX_BASE;
1506	}
1507}
1508
1509/*
1510 * Size of the core byte set - how many bytes cover 90% of the sample
1511 *
1512 * There are several types of structured binary data that use nearly all byte
1513 * values. The distribution can be uniform and counts in all buckets will be
1514 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1515 *
1516 * Other possibility is normal (Gaussian) distribution, where the data could
1517 * be potentially compressible, but we have to take a few more steps to decide
1518 * how much.
1519 *
1520 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1521 *                       compression algo can easy fix that
1522 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1523 *                       probability is not compressible
1524 */
1525#define BYTE_CORE_SET_LOW		(64)
1526#define BYTE_CORE_SET_HIGH		(200)
1527
1528static int byte_core_set_size(struct heuristic_ws *ws)
1529{
1530	u32 i;
1531	u32 coreset_sum = 0;
1532	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1533	struct bucket_item *bucket = ws->bucket;
1534
1535	/* Sort in reverse order */
1536	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1537
1538	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1539		coreset_sum += bucket[i].count;
1540
1541	if (coreset_sum > core_set_threshold)
1542		return i;
1543
1544	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1545		coreset_sum += bucket[i].count;
1546		if (coreset_sum > core_set_threshold)
1547			break;
1548	}
1549
1550	return i;
1551}
1552
1553/*
1554 * Count byte values in buckets.
1555 * This heuristic can detect textual data (configs, xml, json, html, etc).
1556 * Because in most text-like data byte set is restricted to limited number of
1557 * possible characters, and that restriction in most cases makes data easy to
1558 * compress.
1559 *
1560 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1561 *	less - compressible
1562 *	more - need additional analysis
1563 */
1564#define BYTE_SET_THRESHOLD		(64)
1565
1566static u32 byte_set_size(const struct heuristic_ws *ws)
1567{
1568	u32 i;
1569	u32 byte_set_size = 0;
1570
1571	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1572		if (ws->bucket[i].count > 0)
1573			byte_set_size++;
1574	}
1575
1576	/*
1577	 * Continue collecting count of byte values in buckets.  If the byte
1578	 * set size is bigger then the threshold, it's pointless to continue,
1579	 * the detection technique would fail for this type of data.
1580	 */
1581	for (; i < BUCKET_SIZE; i++) {
1582		if (ws->bucket[i].count > 0) {
1583			byte_set_size++;
1584			if (byte_set_size > BYTE_SET_THRESHOLD)
1585				return byte_set_size;
1586		}
1587	}
1588
1589	return byte_set_size;
1590}
1591
1592static bool sample_repeated_patterns(struct heuristic_ws *ws)
1593{
1594	const u32 half_of_sample = ws->sample_size / 2;
1595	const u8 *data = ws->sample;
1596
1597	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1598}
1599
1600static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1601				     struct heuristic_ws *ws)
1602{
1603	struct page *page;
1604	u64 index, index_end;
1605	u32 i, curr_sample_pos;
1606	u8 *in_data;
1607
1608	/*
1609	 * Compression handles the input data by chunks of 128KiB
1610	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1611	 *
1612	 * We do the same for the heuristic and loop over the whole range.
1613	 *
1614	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1615	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1616	 */
1617	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1618		end = start + BTRFS_MAX_UNCOMPRESSED;
1619
1620	index = start >> PAGE_SHIFT;
1621	index_end = end >> PAGE_SHIFT;
1622
1623	/* Don't miss unaligned end */
1624	if (!IS_ALIGNED(end, PAGE_SIZE))
1625		index_end++;
1626
1627	curr_sample_pos = 0;
1628	while (index < index_end) {
1629		page = find_get_page(inode->i_mapping, index);
1630		in_data = kmap_local_page(page);
1631		/* Handle case where the start is not aligned to PAGE_SIZE */
1632		i = start % PAGE_SIZE;
1633		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1634			/* Don't sample any garbage from the last page */
1635			if (start > end - SAMPLING_READ_SIZE)
1636				break;
1637			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1638					SAMPLING_READ_SIZE);
1639			i += SAMPLING_INTERVAL;
1640			start += SAMPLING_INTERVAL;
1641			curr_sample_pos += SAMPLING_READ_SIZE;
1642		}
1643		kunmap_local(in_data);
1644		put_page(page);
1645
1646		index++;
1647	}
1648
1649	ws->sample_size = curr_sample_pos;
1650}
1651
1652/*
1653 * Compression heuristic.
1654 *
1655 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1656 * quickly (compared to direct compression) detect data characteristics
1657 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1658 * data.
1659 *
1660 * The following types of analysis can be performed:
1661 * - detect mostly zero data
1662 * - detect data with low "byte set" size (text, etc)
1663 * - detect data with low/high "core byte" set
1664 *
1665 * Return non-zero if the compression should be done, 0 otherwise.
1666 */
1667int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1668{
1669	struct list_head *ws_list = get_workspace(0, 0);
1670	struct heuristic_ws *ws;
1671	u32 i;
1672	u8 byte;
1673	int ret = 0;
1674
1675	ws = list_entry(ws_list, struct heuristic_ws, list);
1676
1677	heuristic_collect_sample(inode, start, end, ws);
1678
1679	if (sample_repeated_patterns(ws)) {
1680		ret = 1;
1681		goto out;
1682	}
1683
1684	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1685
1686	for (i = 0; i < ws->sample_size; i++) {
1687		byte = ws->sample[i];
1688		ws->bucket[byte].count++;
1689	}
1690
1691	i = byte_set_size(ws);
1692	if (i < BYTE_SET_THRESHOLD) {
1693		ret = 2;
1694		goto out;
1695	}
1696
1697	i = byte_core_set_size(ws);
1698	if (i <= BYTE_CORE_SET_LOW) {
1699		ret = 3;
1700		goto out;
1701	}
1702
1703	if (i >= BYTE_CORE_SET_HIGH) {
1704		ret = 0;
1705		goto out;
1706	}
1707
1708	i = shannon_entropy(ws);
1709	if (i <= ENTROPY_LVL_ACEPTABLE) {
1710		ret = 4;
1711		goto out;
1712	}
1713
1714	/*
1715	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1716	 * needed to give green light to compression.
1717	 *
1718	 * For now just assume that compression at that level is not worth the
1719	 * resources because:
1720	 *
1721	 * 1. it is possible to defrag the data later
1722	 *
1723	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1724	 * values, every bucket has counter at level ~54. The heuristic would
1725	 * be confused. This can happen when data have some internal repeated
1726	 * patterns like "abbacbbc...". This can be detected by analyzing
1727	 * pairs of bytes, which is too costly.
1728	 */
1729	if (i < ENTROPY_LVL_HIGH) {
1730		ret = 5;
1731		goto out;
1732	} else {
1733		ret = 0;
1734		goto out;
1735	}
1736
1737out:
1738	put_workspace(0, ws_list);
1739	return ret;
1740}
1741
1742/*
1743 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1744 * level, unrecognized string will set the default level
1745 */
1746unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1747{
1748	unsigned int level = 0;
1749	int ret;
1750
1751	if (!type)
1752		return 0;
1753
1754	if (str[0] == ':') {
1755		ret = kstrtouint(str + 1, 10, &level);
1756		if (ret)
1757			level = 0;
1758	}
1759
1760	level = btrfs_compress_set_level(type, level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1761
1762	return level;
1763}