Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/acpi.h>
   3#include <linux/ctype.h>
 
   4#include <linux/delay.h>
   5#include <linux/gpio/consumer.h>
   6#include <linux/hwmon.h>
   7#include <linux/i2c.h>
   8#include <linux/interrupt.h>
   9#include <linux/jiffies.h>
 
  10#include <linux/module.h>
  11#include <linux/mutex.h>
  12#include <linux/of.h>
  13#include <linux/phy.h>
  14#include <linux/platform_device.h>
  15#include <linux/rtnetlink.h>
  16#include <linux/slab.h>
  17#include <linux/workqueue.h>
  18
  19#include "mdio-i2c.h"
  20#include "sfp.h"
  21#include "swphy.h"
  22
  23enum {
  24	GPIO_MODDEF0,
  25	GPIO_LOS,
  26	GPIO_TX_FAULT,
  27	GPIO_TX_DISABLE,
  28	GPIO_RATE_SELECT,
  29	GPIO_MAX,
  30
  31	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  32	SFP_F_LOS = BIT(GPIO_LOS),
  33	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  34	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  35	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
  36
  37	SFP_E_INSERT = 0,
  38	SFP_E_REMOVE,
 
 
  39	SFP_E_DEV_DOWN,
  40	SFP_E_DEV_UP,
  41	SFP_E_TX_FAULT,
  42	SFP_E_TX_CLEAR,
  43	SFP_E_LOS_HIGH,
  44	SFP_E_LOS_LOW,
  45	SFP_E_TIMEOUT,
  46
  47	SFP_MOD_EMPTY = 0,
 
  48	SFP_MOD_PROBE,
 
  49	SFP_MOD_HPOWER,
 
  50	SFP_MOD_PRESENT,
  51	SFP_MOD_ERROR,
  52
  53	SFP_DEV_DOWN = 0,
 
  54	SFP_DEV_UP,
  55
  56	SFP_S_DOWN = 0,
 
 
  57	SFP_S_INIT,
 
 
  58	SFP_S_WAIT_LOS,
  59	SFP_S_LINK_UP,
  60	SFP_S_TX_FAULT,
  61	SFP_S_REINIT,
  62	SFP_S_TX_DISABLE,
  63};
  64
  65static const char  * const mod_state_strings[] = {
  66	[SFP_MOD_EMPTY] = "empty",
 
  67	[SFP_MOD_PROBE] = "probe",
 
  68	[SFP_MOD_HPOWER] = "hpower",
 
  69	[SFP_MOD_PRESENT] = "present",
  70	[SFP_MOD_ERROR] = "error",
  71};
  72
  73static const char *mod_state_to_str(unsigned short mod_state)
  74{
  75	if (mod_state >= ARRAY_SIZE(mod_state_strings))
  76		return "Unknown module state";
  77	return mod_state_strings[mod_state];
  78}
  79
  80static const char * const dev_state_strings[] = {
 
  81	[SFP_DEV_DOWN] = "down",
  82	[SFP_DEV_UP] = "up",
  83};
  84
  85static const char *dev_state_to_str(unsigned short dev_state)
  86{
  87	if (dev_state >= ARRAY_SIZE(dev_state_strings))
  88		return "Unknown device state";
  89	return dev_state_strings[dev_state];
  90}
  91
  92static const char * const event_strings[] = {
  93	[SFP_E_INSERT] = "insert",
  94	[SFP_E_REMOVE] = "remove",
 
 
  95	[SFP_E_DEV_DOWN] = "dev_down",
  96	[SFP_E_DEV_UP] = "dev_up",
  97	[SFP_E_TX_FAULT] = "tx_fault",
  98	[SFP_E_TX_CLEAR] = "tx_clear",
  99	[SFP_E_LOS_HIGH] = "los_high",
 100	[SFP_E_LOS_LOW] = "los_low",
 101	[SFP_E_TIMEOUT] = "timeout",
 102};
 103
 104static const char *event_to_str(unsigned short event)
 105{
 106	if (event >= ARRAY_SIZE(event_strings))
 107		return "Unknown event";
 108	return event_strings[event];
 109}
 110
 111static const char * const sm_state_strings[] = {
 112	[SFP_S_DOWN] = "down",
 
 
 113	[SFP_S_INIT] = "init",
 
 
 114	[SFP_S_WAIT_LOS] = "wait_los",
 115	[SFP_S_LINK_UP] = "link_up",
 116	[SFP_S_TX_FAULT] = "tx_fault",
 117	[SFP_S_REINIT] = "reinit",
 118	[SFP_S_TX_DISABLE] = "rx_disable",
 119};
 120
 121static const char *sm_state_to_str(unsigned short sm_state)
 122{
 123	if (sm_state >= ARRAY_SIZE(sm_state_strings))
 124		return "Unknown state";
 125	return sm_state_strings[sm_state];
 126}
 127
 128static const char *gpio_of_names[] = {
 129	"mod-def0",
 130	"los",
 131	"tx-fault",
 132	"tx-disable",
 133	"rate-select0",
 134};
 135
 136static const enum gpiod_flags gpio_flags[] = {
 137	GPIOD_IN,
 138	GPIOD_IN,
 139	GPIOD_IN,
 140	GPIOD_ASIS,
 141	GPIOD_ASIS,
 142};
 143
 144#define T_INIT_JIFFIES	msecs_to_jiffies(300)
 145#define T_RESET_US	10
 146#define T_FAULT_RECOVER	msecs_to_jiffies(1000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147
 148/* SFP module presence detection is poor: the three MOD DEF signals are
 149 * the same length on the PCB, which means it's possible for MOD DEF 0 to
 150 * connect before the I2C bus on MOD DEF 1/2.
 151 *
 152 * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
 153 * be deasserted) but makes no mention of the earliest time before we can
 154 * access the I2C EEPROM.  However, Avago modules require 300ms.
 155 */
 156#define T_PROBE_INIT	msecs_to_jiffies(300)
 157#define T_HPOWER_LEVEL	msecs_to_jiffies(300)
 158#define T_PROBE_RETRY	msecs_to_jiffies(100)
 
 
 
 159
 160/* SFP modules appear to always have their PHY configured for bus address
 161 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
 162 */
 163#define SFP_PHY_ADDR	22
 164
 165/* Give this long for the PHY to reset. */
 166#define T_PHY_RESET_MS	50
 167
 168struct sff_data {
 169	unsigned int gpios;
 170	bool (*module_supported)(const struct sfp_eeprom_id *id);
 171};
 172
 173struct sfp {
 174	struct device *dev;
 175	struct i2c_adapter *i2c;
 176	struct mii_bus *i2c_mii;
 177	struct sfp_bus *sfp_bus;
 178	struct phy_device *mod_phy;
 179	const struct sff_data *type;
 
 180	u32 max_power_mW;
 181
 182	unsigned int (*get_state)(struct sfp *);
 183	void (*set_state)(struct sfp *, unsigned int);
 184	int (*read)(struct sfp *, bool, u8, void *, size_t);
 185	int (*write)(struct sfp *, bool, u8, void *, size_t);
 186
 187	struct gpio_desc *gpio[GPIO_MAX];
 188	int gpio_irq[GPIO_MAX];
 189
 190	bool attached;
 
 191	struct mutex st_mutex;			/* Protects state */
 
 192	unsigned int state;
 193	struct delayed_work poll;
 194	struct delayed_work timeout;
 195	struct mutex sm_mutex;			/* Protects state machine */
 196	unsigned char sm_mod_state;
 
 
 197	unsigned char sm_dev_state;
 198	unsigned short sm_state;
 199	unsigned int sm_retries;
 
 200
 201	struct sfp_eeprom_id id;
 
 
 
 202#if IS_ENABLED(CONFIG_HWMON)
 203	struct sfp_diag diag;
 
 
 204	struct device *hwmon_dev;
 205	char *hwmon_name;
 206#endif
 207
 
 
 
 208};
 209
 210static bool sff_module_supported(const struct sfp_eeprom_id *id)
 211{
 212	return id->base.phys_id == SFP_PHYS_ID_SFF &&
 213	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 214}
 215
 216static const struct sff_data sff_data = {
 217	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
 218	.module_supported = sff_module_supported,
 219};
 220
 221static bool sfp_module_supported(const struct sfp_eeprom_id *id)
 222{
 223	return id->base.phys_id == SFP_PHYS_ID_SFP &&
 224	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 225}
 226
 227static const struct sff_data sfp_data = {
 228	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
 229		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
 230	.module_supported = sfp_module_supported,
 231};
 232
 233static const struct of_device_id sfp_of_match[] = {
 234	{ .compatible = "sff,sff", .data = &sff_data, },
 235	{ .compatible = "sff,sfp", .data = &sfp_data, },
 236	{ },
 237};
 238MODULE_DEVICE_TABLE(of, sfp_of_match);
 239
 240static unsigned long poll_jiffies;
 241
 242static unsigned int sfp_gpio_get_state(struct sfp *sfp)
 243{
 244	unsigned int i, state, v;
 245
 246	for (i = state = 0; i < GPIO_MAX; i++) {
 247		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
 248			continue;
 249
 250		v = gpiod_get_value_cansleep(sfp->gpio[i]);
 251		if (v)
 252			state |= BIT(i);
 253	}
 254
 255	return state;
 256}
 257
 258static unsigned int sff_gpio_get_state(struct sfp *sfp)
 259{
 260	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
 261}
 262
 263static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
 264{
 265	if (state & SFP_F_PRESENT) {
 266		/* If the module is present, drive the signals */
 267		if (sfp->gpio[GPIO_TX_DISABLE])
 268			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
 269					       state & SFP_F_TX_DISABLE);
 270		if (state & SFP_F_RATE_SELECT)
 271			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
 272					       state & SFP_F_RATE_SELECT);
 273	} else {
 274		/* Otherwise, let them float to the pull-ups */
 275		if (sfp->gpio[GPIO_TX_DISABLE])
 276			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
 277		if (state & SFP_F_RATE_SELECT)
 278			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
 279	}
 280}
 281
 282static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 283			size_t len)
 284{
 285	struct i2c_msg msgs[2];
 286	u8 bus_addr = a2 ? 0x51 : 0x50;
 
 287	size_t this_len;
 288	int ret;
 289
 290	msgs[0].addr = bus_addr;
 291	msgs[0].flags = 0;
 292	msgs[0].len = 1;
 293	msgs[0].buf = &dev_addr;
 294	msgs[1].addr = bus_addr;
 295	msgs[1].flags = I2C_M_RD;
 296	msgs[1].len = len;
 297	msgs[1].buf = buf;
 298
 299	while (len) {
 300		this_len = len;
 301		if (this_len > 16)
 302			this_len = 16;
 303
 304		msgs[1].len = this_len;
 305
 306		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 307		if (ret < 0)
 308			return ret;
 309
 310		if (ret != ARRAY_SIZE(msgs))
 311			break;
 312
 313		msgs[1].buf += this_len;
 314		dev_addr += this_len;
 315		len -= this_len;
 316	}
 317
 318	return msgs[1].buf - (u8 *)buf;
 319}
 320
 321static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 322	size_t len)
 323{
 324	struct i2c_msg msgs[1];
 325	u8 bus_addr = a2 ? 0x51 : 0x50;
 326	int ret;
 327
 328	msgs[0].addr = bus_addr;
 329	msgs[0].flags = 0;
 330	msgs[0].len = 1 + len;
 331	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
 332	if (!msgs[0].buf)
 333		return -ENOMEM;
 334
 335	msgs[0].buf[0] = dev_addr;
 336	memcpy(&msgs[0].buf[1], buf, len);
 337
 338	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 339
 340	kfree(msgs[0].buf);
 341
 342	if (ret < 0)
 343		return ret;
 344
 345	return ret == ARRAY_SIZE(msgs) ? len : 0;
 346}
 347
 348static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
 349{
 350	struct mii_bus *i2c_mii;
 351	int ret;
 352
 353	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
 354		return -EINVAL;
 355
 356	sfp->i2c = i2c;
 357	sfp->read = sfp_i2c_read;
 358	sfp->write = sfp_i2c_write;
 359
 360	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
 361	if (IS_ERR(i2c_mii))
 362		return PTR_ERR(i2c_mii);
 363
 364	i2c_mii->name = "SFP I2C Bus";
 365	i2c_mii->phy_mask = ~0;
 366
 367	ret = mdiobus_register(i2c_mii);
 368	if (ret < 0) {
 369		mdiobus_free(i2c_mii);
 370		return ret;
 371	}
 372
 373	sfp->i2c_mii = i2c_mii;
 374
 375	return 0;
 376}
 377
 378/* Interface */
 379static unsigned int sfp_get_state(struct sfp *sfp)
 380{
 381	return sfp->get_state(sfp);
 382}
 383
 384static void sfp_set_state(struct sfp *sfp, unsigned int state)
 385{
 386	sfp->set_state(sfp, state);
 387}
 388
 389static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 390{
 391	return sfp->read(sfp, a2, addr, buf, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392}
 393
 394static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 395{
 396	return sfp->write(sfp, a2, addr, buf, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397}
 398
 399static unsigned int sfp_check(void *buf, size_t len)
 400{
 401	u8 *p, check;
 402
 403	for (p = buf, check = 0; len; p++, len--)
 404		check += *p;
 405
 406	return check;
 407}
 408
 409/* hwmon */
 410#if IS_ENABLED(CONFIG_HWMON)
 411static umode_t sfp_hwmon_is_visible(const void *data,
 412				    enum hwmon_sensor_types type,
 413				    u32 attr, int channel)
 414{
 415	const struct sfp *sfp = data;
 416
 417	switch (type) {
 418	case hwmon_temp:
 419		switch (attr) {
 420		case hwmon_temp_min_alarm:
 421		case hwmon_temp_max_alarm:
 422		case hwmon_temp_lcrit_alarm:
 423		case hwmon_temp_crit_alarm:
 424		case hwmon_temp_min:
 425		case hwmon_temp_max:
 426		case hwmon_temp_lcrit:
 427		case hwmon_temp_crit:
 428			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 429				return 0;
 430			/* fall through */
 431		case hwmon_temp_input:
 432		case hwmon_temp_label:
 433			return 0444;
 434		default:
 435			return 0;
 436		}
 437	case hwmon_in:
 438		switch (attr) {
 439		case hwmon_in_min_alarm:
 440		case hwmon_in_max_alarm:
 441		case hwmon_in_lcrit_alarm:
 442		case hwmon_in_crit_alarm:
 443		case hwmon_in_min:
 444		case hwmon_in_max:
 445		case hwmon_in_lcrit:
 446		case hwmon_in_crit:
 447			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 448				return 0;
 449			/* fall through */
 450		case hwmon_in_input:
 451		case hwmon_in_label:
 452			return 0444;
 453		default:
 454			return 0;
 455		}
 456	case hwmon_curr:
 457		switch (attr) {
 458		case hwmon_curr_min_alarm:
 459		case hwmon_curr_max_alarm:
 460		case hwmon_curr_lcrit_alarm:
 461		case hwmon_curr_crit_alarm:
 462		case hwmon_curr_min:
 463		case hwmon_curr_max:
 464		case hwmon_curr_lcrit:
 465		case hwmon_curr_crit:
 466			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 467				return 0;
 468			/* fall through */
 469		case hwmon_curr_input:
 470		case hwmon_curr_label:
 471			return 0444;
 472		default:
 473			return 0;
 474		}
 475	case hwmon_power:
 476		/* External calibration of receive power requires
 477		 * floating point arithmetic. Doing that in the kernel
 478		 * is not easy, so just skip it. If the module does
 479		 * not require external calibration, we can however
 480		 * show receiver power, since FP is then not needed.
 481		 */
 482		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
 483		    channel == 1)
 484			return 0;
 485		switch (attr) {
 486		case hwmon_power_min_alarm:
 487		case hwmon_power_max_alarm:
 488		case hwmon_power_lcrit_alarm:
 489		case hwmon_power_crit_alarm:
 490		case hwmon_power_min:
 491		case hwmon_power_max:
 492		case hwmon_power_lcrit:
 493		case hwmon_power_crit:
 494			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 495				return 0;
 496			/* fall through */
 497		case hwmon_power_input:
 498		case hwmon_power_label:
 499			return 0444;
 500		default:
 501			return 0;
 502		}
 503	default:
 504		return 0;
 505	}
 506}
 507
 508static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
 509{
 510	__be16 val;
 511	int err;
 512
 513	err = sfp_read(sfp, true, reg, &val, sizeof(val));
 514	if (err < 0)
 515		return err;
 516
 517	*value = be16_to_cpu(val);
 518
 519	return 0;
 520}
 521
 522static void sfp_hwmon_to_rx_power(long *value)
 523{
 524	*value = DIV_ROUND_CLOSEST(*value, 10);
 525}
 526
 527static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
 528				long *value)
 529{
 530	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
 531		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
 532}
 533
 534static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
 535{
 536	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
 537			    be16_to_cpu(sfp->diag.cal_t_offset), value);
 538
 539	if (*value >= 0x8000)
 540		*value -= 0x10000;
 541
 542	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
 543}
 544
 545static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
 546{
 547	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
 548			    be16_to_cpu(sfp->diag.cal_v_offset), value);
 549
 550	*value = DIV_ROUND_CLOSEST(*value, 10);
 551}
 552
 553static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
 554{
 555	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
 556			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
 557
 558	*value = DIV_ROUND_CLOSEST(*value, 500);
 559}
 560
 561static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
 562{
 563	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
 564			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
 565
 566	*value = DIV_ROUND_CLOSEST(*value, 10);
 567}
 568
 569static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
 570{
 571	int err;
 572
 573	err = sfp_hwmon_read_sensor(sfp, reg, value);
 574	if (err < 0)
 575		return err;
 576
 577	sfp_hwmon_calibrate_temp(sfp, value);
 578
 579	return 0;
 580}
 581
 582static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
 583{
 584	int err;
 585
 586	err = sfp_hwmon_read_sensor(sfp, reg, value);
 587	if (err < 0)
 588		return err;
 589
 590	sfp_hwmon_calibrate_vcc(sfp, value);
 591
 592	return 0;
 593}
 594
 595static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
 596{
 597	int err;
 598
 599	err = sfp_hwmon_read_sensor(sfp, reg, value);
 600	if (err < 0)
 601		return err;
 602
 603	sfp_hwmon_calibrate_bias(sfp, value);
 604
 605	return 0;
 606}
 607
 608static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
 609{
 610	int err;
 611
 612	err = sfp_hwmon_read_sensor(sfp, reg, value);
 613	if (err < 0)
 614		return err;
 615
 616	sfp_hwmon_calibrate_tx_power(sfp, value);
 617
 618	return 0;
 619}
 620
 621static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
 622{
 623	int err;
 624
 625	err = sfp_hwmon_read_sensor(sfp, reg, value);
 626	if (err < 0)
 627		return err;
 628
 629	sfp_hwmon_to_rx_power(value);
 630
 631	return 0;
 632}
 633
 634static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
 635{
 636	u8 status;
 637	int err;
 638
 639	switch (attr) {
 640	case hwmon_temp_input:
 641		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
 642
 643	case hwmon_temp_lcrit:
 644		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
 645		sfp_hwmon_calibrate_temp(sfp, value);
 646		return 0;
 647
 648	case hwmon_temp_min:
 649		*value = be16_to_cpu(sfp->diag.temp_low_warn);
 650		sfp_hwmon_calibrate_temp(sfp, value);
 651		return 0;
 652	case hwmon_temp_max:
 653		*value = be16_to_cpu(sfp->diag.temp_high_warn);
 654		sfp_hwmon_calibrate_temp(sfp, value);
 655		return 0;
 656
 657	case hwmon_temp_crit:
 658		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
 659		sfp_hwmon_calibrate_temp(sfp, value);
 660		return 0;
 661
 662	case hwmon_temp_lcrit_alarm:
 663		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 664		if (err < 0)
 665			return err;
 666
 667		*value = !!(status & SFP_ALARM0_TEMP_LOW);
 668		return 0;
 669
 670	case hwmon_temp_min_alarm:
 671		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 672		if (err < 0)
 673			return err;
 674
 675		*value = !!(status & SFP_WARN0_TEMP_LOW);
 676		return 0;
 677
 678	case hwmon_temp_max_alarm:
 679		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 680		if (err < 0)
 681			return err;
 682
 683		*value = !!(status & SFP_WARN0_TEMP_HIGH);
 684		return 0;
 685
 686	case hwmon_temp_crit_alarm:
 687		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 688		if (err < 0)
 689			return err;
 690
 691		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
 692		return 0;
 693	default:
 694		return -EOPNOTSUPP;
 695	}
 696
 697	return -EOPNOTSUPP;
 698}
 699
 700static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
 701{
 702	u8 status;
 703	int err;
 704
 705	switch (attr) {
 706	case hwmon_in_input:
 707		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
 708
 709	case hwmon_in_lcrit:
 710		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
 711		sfp_hwmon_calibrate_vcc(sfp, value);
 712		return 0;
 713
 714	case hwmon_in_min:
 715		*value = be16_to_cpu(sfp->diag.volt_low_warn);
 716		sfp_hwmon_calibrate_vcc(sfp, value);
 717		return 0;
 718
 719	case hwmon_in_max:
 720		*value = be16_to_cpu(sfp->diag.volt_high_warn);
 721		sfp_hwmon_calibrate_vcc(sfp, value);
 722		return 0;
 723
 724	case hwmon_in_crit:
 725		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
 726		sfp_hwmon_calibrate_vcc(sfp, value);
 727		return 0;
 728
 729	case hwmon_in_lcrit_alarm:
 730		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 731		if (err < 0)
 732			return err;
 733
 734		*value = !!(status & SFP_ALARM0_VCC_LOW);
 735		return 0;
 736
 737	case hwmon_in_min_alarm:
 738		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 739		if (err < 0)
 740			return err;
 741
 742		*value = !!(status & SFP_WARN0_VCC_LOW);
 743		return 0;
 744
 745	case hwmon_in_max_alarm:
 746		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 747		if (err < 0)
 748			return err;
 749
 750		*value = !!(status & SFP_WARN0_VCC_HIGH);
 751		return 0;
 752
 753	case hwmon_in_crit_alarm:
 754		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 755		if (err < 0)
 756			return err;
 757
 758		*value = !!(status & SFP_ALARM0_VCC_HIGH);
 759		return 0;
 760	default:
 761		return -EOPNOTSUPP;
 762	}
 763
 764	return -EOPNOTSUPP;
 765}
 766
 767static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
 768{
 769	u8 status;
 770	int err;
 771
 772	switch (attr) {
 773	case hwmon_curr_input:
 774		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
 775
 776	case hwmon_curr_lcrit:
 777		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
 778		sfp_hwmon_calibrate_bias(sfp, value);
 779		return 0;
 780
 781	case hwmon_curr_min:
 782		*value = be16_to_cpu(sfp->diag.bias_low_warn);
 783		sfp_hwmon_calibrate_bias(sfp, value);
 784		return 0;
 785
 786	case hwmon_curr_max:
 787		*value = be16_to_cpu(sfp->diag.bias_high_warn);
 788		sfp_hwmon_calibrate_bias(sfp, value);
 789		return 0;
 790
 791	case hwmon_curr_crit:
 792		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
 793		sfp_hwmon_calibrate_bias(sfp, value);
 794		return 0;
 795
 796	case hwmon_curr_lcrit_alarm:
 797		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 798		if (err < 0)
 799			return err;
 800
 801		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
 802		return 0;
 803
 804	case hwmon_curr_min_alarm:
 805		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 806		if (err < 0)
 807			return err;
 808
 809		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
 810		return 0;
 811
 812	case hwmon_curr_max_alarm:
 813		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 814		if (err < 0)
 815			return err;
 816
 817		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
 818		return 0;
 819
 820	case hwmon_curr_crit_alarm:
 821		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 822		if (err < 0)
 823			return err;
 824
 825		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
 826		return 0;
 827	default:
 828		return -EOPNOTSUPP;
 829	}
 830
 831	return -EOPNOTSUPP;
 832}
 833
 834static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
 835{
 836	u8 status;
 837	int err;
 838
 839	switch (attr) {
 840	case hwmon_power_input:
 841		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
 842
 843	case hwmon_power_lcrit:
 844		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
 845		sfp_hwmon_calibrate_tx_power(sfp, value);
 846		return 0;
 847
 848	case hwmon_power_min:
 849		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
 850		sfp_hwmon_calibrate_tx_power(sfp, value);
 851		return 0;
 852
 853	case hwmon_power_max:
 854		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
 855		sfp_hwmon_calibrate_tx_power(sfp, value);
 856		return 0;
 857
 858	case hwmon_power_crit:
 859		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
 860		sfp_hwmon_calibrate_tx_power(sfp, value);
 861		return 0;
 862
 863	case hwmon_power_lcrit_alarm:
 864		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 865		if (err < 0)
 866			return err;
 867
 868		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
 869		return 0;
 870
 871	case hwmon_power_min_alarm:
 872		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 873		if (err < 0)
 874			return err;
 875
 876		*value = !!(status & SFP_WARN0_TXPWR_LOW);
 877		return 0;
 878
 879	case hwmon_power_max_alarm:
 880		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 881		if (err < 0)
 882			return err;
 883
 884		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
 885		return 0;
 886
 887	case hwmon_power_crit_alarm:
 888		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 889		if (err < 0)
 890			return err;
 891
 892		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
 893		return 0;
 894	default:
 895		return -EOPNOTSUPP;
 896	}
 897
 898	return -EOPNOTSUPP;
 899}
 900
 901static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
 902{
 903	u8 status;
 904	int err;
 905
 906	switch (attr) {
 907	case hwmon_power_input:
 908		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
 909
 910	case hwmon_power_lcrit:
 911		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
 912		sfp_hwmon_to_rx_power(value);
 913		return 0;
 914
 915	case hwmon_power_min:
 916		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
 917		sfp_hwmon_to_rx_power(value);
 918		return 0;
 919
 920	case hwmon_power_max:
 921		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
 922		sfp_hwmon_to_rx_power(value);
 923		return 0;
 924
 925	case hwmon_power_crit:
 926		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
 927		sfp_hwmon_to_rx_power(value);
 928		return 0;
 929
 930	case hwmon_power_lcrit_alarm:
 931		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
 932		if (err < 0)
 933			return err;
 934
 935		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
 936		return 0;
 937
 938	case hwmon_power_min_alarm:
 939		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
 940		if (err < 0)
 941			return err;
 942
 943		*value = !!(status & SFP_WARN1_RXPWR_LOW);
 944		return 0;
 945
 946	case hwmon_power_max_alarm:
 947		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
 948		if (err < 0)
 949			return err;
 950
 951		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
 952		return 0;
 953
 954	case hwmon_power_crit_alarm:
 955		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
 956		if (err < 0)
 957			return err;
 958
 959		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
 960		return 0;
 961	default:
 962		return -EOPNOTSUPP;
 963	}
 964
 965	return -EOPNOTSUPP;
 966}
 967
 968static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
 969			  u32 attr, int channel, long *value)
 970{
 971	struct sfp *sfp = dev_get_drvdata(dev);
 972
 973	switch (type) {
 974	case hwmon_temp:
 975		return sfp_hwmon_temp(sfp, attr, value);
 976	case hwmon_in:
 977		return sfp_hwmon_vcc(sfp, attr, value);
 978	case hwmon_curr:
 979		return sfp_hwmon_bias(sfp, attr, value);
 980	case hwmon_power:
 981		switch (channel) {
 982		case 0:
 983			return sfp_hwmon_tx_power(sfp, attr, value);
 984		case 1:
 985			return sfp_hwmon_rx_power(sfp, attr, value);
 986		default:
 987			return -EOPNOTSUPP;
 988		}
 989	default:
 990		return -EOPNOTSUPP;
 991	}
 992}
 993
 994static const char *const sfp_hwmon_power_labels[] = {
 995	"TX_power",
 996	"RX_power",
 997};
 998
 999static int sfp_hwmon_read_string(struct device *dev,
1000				 enum hwmon_sensor_types type,
1001				 u32 attr, int channel, const char **str)
1002{
1003	switch (type) {
1004	case hwmon_curr:
1005		switch (attr) {
1006		case hwmon_curr_label:
1007			*str = "bias";
1008			return 0;
1009		default:
1010			return -EOPNOTSUPP;
1011		}
1012		break;
1013	case hwmon_temp:
1014		switch (attr) {
1015		case hwmon_temp_label:
1016			*str = "temperature";
1017			return 0;
1018		default:
1019			return -EOPNOTSUPP;
1020		}
1021		break;
1022	case hwmon_in:
1023		switch (attr) {
1024		case hwmon_in_label:
1025			*str = "VCC";
1026			return 0;
1027		default:
1028			return -EOPNOTSUPP;
1029		}
1030		break;
1031	case hwmon_power:
1032		switch (attr) {
1033		case hwmon_power_label:
1034			*str = sfp_hwmon_power_labels[channel];
1035			return 0;
1036		default:
1037			return -EOPNOTSUPP;
1038		}
1039		break;
1040	default:
1041		return -EOPNOTSUPP;
1042	}
1043
1044	return -EOPNOTSUPP;
1045}
1046
1047static const struct hwmon_ops sfp_hwmon_ops = {
1048	.is_visible = sfp_hwmon_is_visible,
1049	.read = sfp_hwmon_read,
1050	.read_string = sfp_hwmon_read_string,
1051};
1052
1053static u32 sfp_hwmon_chip_config[] = {
1054	HWMON_C_REGISTER_TZ,
1055	0,
1056};
1057
1058static const struct hwmon_channel_info sfp_hwmon_chip = {
1059	.type = hwmon_chip,
1060	.config = sfp_hwmon_chip_config,
1061};
1062
1063static u32 sfp_hwmon_temp_config[] = {
1064	HWMON_T_INPUT |
1065	HWMON_T_MAX | HWMON_T_MIN |
1066	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1067	HWMON_T_CRIT | HWMON_T_LCRIT |
1068	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1069	HWMON_T_LABEL,
1070	0,
1071};
1072
1073static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1074	.type = hwmon_temp,
1075	.config = sfp_hwmon_temp_config,
1076};
1077
1078static u32 sfp_hwmon_vcc_config[] = {
1079	HWMON_I_INPUT |
1080	HWMON_I_MAX | HWMON_I_MIN |
1081	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1082	HWMON_I_CRIT | HWMON_I_LCRIT |
1083	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1084	HWMON_I_LABEL,
1085	0,
1086};
1087
1088static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1089	.type = hwmon_in,
1090	.config = sfp_hwmon_vcc_config,
1091};
1092
1093static u32 sfp_hwmon_bias_config[] = {
1094	HWMON_C_INPUT |
1095	HWMON_C_MAX | HWMON_C_MIN |
1096	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1097	HWMON_C_CRIT | HWMON_C_LCRIT |
1098	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1099	HWMON_C_LABEL,
1100	0,
1101};
1102
1103static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1104	.type = hwmon_curr,
1105	.config = sfp_hwmon_bias_config,
1106};
1107
1108static u32 sfp_hwmon_power_config[] = {
1109	/* Transmit power */
1110	HWMON_P_INPUT |
1111	HWMON_P_MAX | HWMON_P_MIN |
1112	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1113	HWMON_P_CRIT | HWMON_P_LCRIT |
1114	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1115	HWMON_P_LABEL,
1116	/* Receive power */
1117	HWMON_P_INPUT |
1118	HWMON_P_MAX | HWMON_P_MIN |
1119	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1120	HWMON_P_CRIT | HWMON_P_LCRIT |
1121	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1122	HWMON_P_LABEL,
1123	0,
1124};
1125
1126static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1127	.type = hwmon_power,
1128	.config = sfp_hwmon_power_config,
1129};
1130
1131static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1132	&sfp_hwmon_chip,
1133	&sfp_hwmon_vcc_channel_info,
1134	&sfp_hwmon_temp_channel_info,
1135	&sfp_hwmon_bias_channel_info,
1136	&sfp_hwmon_power_channel_info,
1137	NULL,
1138};
1139
1140static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1141	.ops = &sfp_hwmon_ops,
1142	.info = sfp_hwmon_info,
1143};
1144
1145static int sfp_hwmon_insert(struct sfp *sfp)
1146{
 
1147	int err, i;
1148
1149	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1150		return 0;
1151
1152	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1153		return 0;
1154
1155	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1156		/* This driver in general does not support address
1157		 * change.
1158		 */
1159		return 0;
 
 
1160
1161	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1162	if (err < 0)
1163		return err;
 
 
 
 
 
 
 
1164
1165	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1166	if (!sfp->hwmon_name)
1167		return -ENODEV;
 
 
1168
1169	for (i = 0; sfp->hwmon_name[i]; i++)
1170		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1171			sfp->hwmon_name[i] = '_';
1172
1173	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1174							 sfp->hwmon_name, sfp,
1175							 &sfp_hwmon_chip_info,
1176							 NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1177
1178	return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1179}
1180
1181static void sfp_hwmon_remove(struct sfp *sfp)
1182{
 
1183	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1184		hwmon_device_unregister(sfp->hwmon_dev);
1185		sfp->hwmon_dev = NULL;
1186		kfree(sfp->hwmon_name);
1187	}
1188}
 
 
 
 
 
 
 
 
 
 
 
 
1189#else
1190static int sfp_hwmon_insert(struct sfp *sfp)
1191{
1192	return 0;
1193}
1194
1195static void sfp_hwmon_remove(struct sfp *sfp)
1196{
1197}
 
 
 
 
 
 
 
 
 
1198#endif
1199
1200/* Helpers */
1201static void sfp_module_tx_disable(struct sfp *sfp)
1202{
1203	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1204		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1205	sfp->state |= SFP_F_TX_DISABLE;
1206	sfp_set_state(sfp, sfp->state);
1207}
1208
1209static void sfp_module_tx_enable(struct sfp *sfp)
1210{
1211	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1212		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1213	sfp->state &= ~SFP_F_TX_DISABLE;
1214	sfp_set_state(sfp, sfp->state);
1215}
1216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217static void sfp_module_tx_fault_reset(struct sfp *sfp)
1218{
1219	unsigned int state = sfp->state;
1220
1221	if (state & SFP_F_TX_DISABLE)
1222		return;
1223
1224	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1225
1226	udelay(T_RESET_US);
1227
1228	sfp_set_state(sfp, state);
1229}
1230
1231/* SFP state machine */
1232static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1233{
1234	if (timeout)
1235		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1236				 timeout);
1237	else
1238		cancel_delayed_work(&sfp->timeout);
1239}
1240
1241static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1242			unsigned int timeout)
1243{
1244	sfp->sm_state = state;
1245	sfp_sm_set_timer(sfp, timeout);
1246}
1247
1248static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1249			    unsigned int timeout)
1250{
1251	sfp->sm_mod_state = state;
1252	sfp_sm_set_timer(sfp, timeout);
1253}
1254
1255static void sfp_sm_phy_detach(struct sfp *sfp)
1256{
1257	phy_stop(sfp->mod_phy);
1258	sfp_remove_phy(sfp->sfp_bus);
1259	phy_device_remove(sfp->mod_phy);
1260	phy_device_free(sfp->mod_phy);
1261	sfp->mod_phy = NULL;
1262}
1263
1264static void sfp_sm_probe_phy(struct sfp *sfp)
1265{
1266	struct phy_device *phy;
1267	int err;
1268
1269	msleep(T_PHY_RESET_MS);
1270
1271	phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1272	if (phy == ERR_PTR(-ENODEV)) {
1273		dev_info(sfp->dev, "no PHY detected\n");
1274		return;
1275	}
1276	if (IS_ERR(phy)) {
1277		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1278		return;
 
 
 
 
 
 
 
1279	}
1280
1281	err = sfp_add_phy(sfp->sfp_bus, phy);
1282	if (err) {
1283		phy_device_remove(phy);
1284		phy_device_free(phy);
1285		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1286		return;
1287	}
1288
1289	sfp->mod_phy = phy;
1290	phy_start(phy);
 
1291}
1292
1293static void sfp_sm_link_up(struct sfp *sfp)
1294{
1295	sfp_link_up(sfp->sfp_bus);
1296	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1297}
1298
1299static void sfp_sm_link_down(struct sfp *sfp)
1300{
1301	sfp_link_down(sfp->sfp_bus);
1302}
1303
1304static void sfp_sm_link_check_los(struct sfp *sfp)
1305{
1306	unsigned int los = sfp->state & SFP_F_LOS;
 
 
 
1307
1308	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1309	 * are set, we assume that no LOS signal is available.
 
1310	 */
1311	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1312		los ^= SFP_F_LOS;
1313	else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1314		los = 0;
1315
1316	if (los)
1317		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1318	else
1319		sfp_sm_link_up(sfp);
1320}
1321
1322static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1323{
1324	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1325		event == SFP_E_LOS_LOW) ||
1326	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1327		event == SFP_E_LOS_HIGH);
 
 
1328}
1329
1330static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1331{
1332	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1333		event == SFP_E_LOS_HIGH) ||
1334	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1335		event == SFP_E_LOS_LOW);
 
 
1336}
1337
1338static void sfp_sm_fault(struct sfp *sfp, bool warn)
1339{
1340	if (sfp->sm_retries && !--sfp->sm_retries) {
1341		dev_err(sfp->dev,
1342			"module persistently indicates fault, disabling\n");
1343		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1344	} else {
1345		if (warn)
1346			dev_err(sfp->dev, "module transmit fault indicated\n");
1347
1348		sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1349	}
1350}
1351
1352static void sfp_sm_mod_init(struct sfp *sfp)
 
 
 
 
 
 
 
 
 
 
 
1353{
1354	sfp_module_tx_enable(sfp);
1355
1356	/* Wait t_init before indicating that the link is up, provided the
1357	 * current state indicates no TX_FAULT.  If TX_FAULT clears before
1358	 * this time, that's fine too.
1359	 */
1360	sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1361	sfp->sm_retries = 5;
 
1362
1363	/* Setting the serdes link mode is guesswork: there's no
1364	 * field in the EEPROM which indicates what mode should
1365	 * be used.
1366	 *
1367	 * If it's a gigabit-only fiber module, it probably does
1368	 * not have a PHY, so switch to 802.3z negotiation mode.
1369	 * Otherwise, switch to SGMII mode (which is required to
1370	 * support non-gigabit speeds) and probe for a PHY.
1371	 */
1372	if (sfp->id.base.e1000_base_t ||
1373	    sfp->id.base.e100_base_lx ||
1374	    sfp->id.base.e100_base_fx)
1375		sfp_sm_probe_phy(sfp);
1376}
1377
1378static int sfp_sm_mod_hpower(struct sfp *sfp)
1379{
1380	u32 power;
1381	u8 val;
1382	int err;
1383
1384	power = 1000;
1385	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1386		power = 1500;
1387	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1388		power = 2000;
1389
1390	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1391	    (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1392	    SFP_DIAGMON_DDM) {
1393		/* The module appears not to implement bus address 0xa2,
1394		 * or requires an address change sequence, so assume that
1395		 * the module powers up in the indicated power mode.
1396		 */
1397		if (power > sfp->max_power_mW) {
 
1398			dev_err(sfp->dev,
1399				"Host does not support %u.%uW modules\n",
1400				power / 1000, (power / 100) % 10);
1401			return -EINVAL;
 
 
 
 
 
1402		}
1403		return 0;
1404	}
1405
1406	if (power > sfp->max_power_mW) {
 
 
 
 
1407		dev_warn(sfp->dev,
1408			 "Host does not support %u.%uW modules, module left in power mode 1\n",
1409			 power / 1000, (power / 100) % 10);
1410		return 0;
1411	}
1412
1413	if (power <= 1000)
1414		return 0;
 
 
 
 
 
 
 
1415
1416	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1417	if (err != sizeof(val)) {
1418		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1419		err = -EAGAIN;
1420		goto err;
1421	}
1422
1423	val |= BIT(0);
 
 
 
 
 
 
 
 
 
 
1424
1425	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1426	if (err != sizeof(val)) {
1427		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1428		err = -EAGAIN;
1429		goto err;
1430	}
1431
1432	dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1433		 power / 1000, (power / 100) % 10);
1434	return T_HPOWER_LEVEL;
 
1435
1436err:
1437	return err;
1438}
1439
1440static int sfp_sm_mod_probe(struct sfp *sfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441{
1442	/* SFP module inserted - read I2C data */
1443	struct sfp_eeprom_id id;
 
1444	bool cotsworks;
1445	u8 check;
1446	int ret;
1447
1448	ret = sfp_read(sfp, false, 0, &id, sizeof(id));
 
 
 
 
 
 
1449	if (ret < 0) {
1450		dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
 
1451		return -EAGAIN;
1452	}
1453
1454	if (ret != sizeof(id)) {
1455		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1456		return -EAGAIN;
1457	}
1458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1459	/* Cotsworks do not seem to update the checksums when they
1460	 * do the final programming with the final module part number,
1461	 * serial number and date code.
1462	 */
1463	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
 
 
 
 
 
 
 
 
 
 
 
1464
1465	/* Validate the checksum over the base structure */
1466	check = sfp_check(&id.base, sizeof(id.base) - 1);
1467	if (check != id.base.cc_base) {
1468		if (cotsworks) {
1469			dev_warn(sfp->dev,
1470				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1471				 check, id.base.cc_base);
1472		} else {
1473			dev_err(sfp->dev,
1474				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1475				check, id.base.cc_base);
1476			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1477				       16, 1, &id, sizeof(id), true);
1478			return -EINVAL;
1479		}
1480	}
1481
 
 
 
 
 
 
 
 
 
 
 
 
1482	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1483	if (check != id.ext.cc_ext) {
1484		if (cotsworks) {
1485			dev_warn(sfp->dev,
1486				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1487				 check, id.ext.cc_ext);
1488		} else {
1489			dev_err(sfp->dev,
1490				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1491				check, id.ext.cc_ext);
1492			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1493				       16, 1, &id, sizeof(id), true);
1494			memset(&id.ext, 0, sizeof(id.ext));
1495		}
1496	}
1497
1498	sfp->id = id;
1499
1500	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1501		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1502		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1503		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1504		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1505		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1506
1507	/* Check whether we support this module */
1508	if (!sfp->type->module_supported(&sfp->id)) {
1509		dev_err(sfp->dev,
1510			"module is not supported - phys id 0x%02x 0x%02x\n",
1511			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1512		return -EINVAL;
1513	}
1514
1515	/* If the module requires address swap mode, warn about it */
1516	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1517		dev_warn(sfp->dev,
1518			 "module address swap to access page 0xA2 is not supported.\n");
1519
1520	ret = sfp_hwmon_insert(sfp);
 
1521	if (ret < 0)
1522		return ret;
1523
1524	ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1525	if (ret < 0)
1526		return ret;
 
 
1527
1528	return sfp_sm_mod_hpower(sfp);
1529}
1530
1531static void sfp_sm_mod_remove(struct sfp *sfp)
1532{
1533	sfp_module_remove(sfp->sfp_bus);
 
1534
1535	sfp_hwmon_remove(sfp);
1536
1537	if (sfp->mod_phy)
1538		sfp_sm_phy_detach(sfp);
1539
1540	sfp_module_tx_disable(sfp);
1541
1542	memset(&sfp->id, 0, sizeof(sfp->id));
 
1543
1544	dev_info(sfp->dev, "module removed\n");
1545}
1546
1547static void sfp_sm_event(struct sfp *sfp, unsigned int event)
 
1548{
1549	mutex_lock(&sfp->sm_mutex);
 
 
 
 
1550
1551	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1552		mod_state_to_str(sfp->sm_mod_state),
1553		dev_state_to_str(sfp->sm_dev_state),
1554		sm_state_to_str(sfp->sm_state),
1555		event_to_str(event));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1556
1557	/* This state machine tracks the insert/remove state of
1558	 * the module, and handles probing the on-board EEPROM.
1559	 */
1560	switch (sfp->sm_mod_state) {
1561	default:
1562		if (event == SFP_E_INSERT && sfp->attached) {
1563			sfp_module_tx_disable(sfp);
1564			sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
 
1565		}
1566		break;
1567
1568	case SFP_MOD_PROBE:
1569		if (event == SFP_E_REMOVE) {
1570			sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1571		} else if (event == SFP_E_TIMEOUT) {
1572			int val = sfp_sm_mod_probe(sfp);
1573
1574			if (val == 0)
1575				sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1576			else if (val > 0)
1577				sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1578			else if (val != -EAGAIN)
1579				sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1580			else
1581				sfp_sm_set_timer(sfp, T_PROBE_RETRY);
 
 
 
 
 
 
 
 
1582		}
1583		break;
1584
1585	case SFP_MOD_HPOWER:
1586		if (event == SFP_E_TIMEOUT) {
1587			sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
 
 
 
 
 
 
 
 
 
 
 
 
1588			break;
1589		}
1590		/* fallthrough */
1591	case SFP_MOD_PRESENT:
1592	case SFP_MOD_ERROR:
1593		if (event == SFP_E_REMOVE) {
1594			sfp_sm_mod_remove(sfp);
1595			sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
 
 
 
 
 
 
 
 
 
 
 
 
1596		}
 
 
1597		break;
1598	}
1599
1600	/* This state machine tracks the netdev up/down state */
1601	switch (sfp->sm_dev_state) {
1602	default:
1603		if (event == SFP_E_DEV_UP)
1604			sfp->sm_dev_state = SFP_DEV_UP;
 
 
1605		break;
1606
1607	case SFP_DEV_UP:
1608		if (event == SFP_E_DEV_DOWN) {
1609			/* If the module has a PHY, avoid raising TX disable
1610			 * as this resets the PHY. Otherwise, raise it to
1611			 * turn the laser off.
1612			 */
1613			if (!sfp->mod_phy)
1614				sfp_module_tx_disable(sfp);
1615			sfp->sm_dev_state = SFP_DEV_DOWN;
1616		}
1617		break;
1618	}
 
 
 
 
 
 
1619
1620	/* Some events are global */
1621	if (sfp->sm_state != SFP_S_DOWN &&
1622	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1623	     sfp->sm_dev_state != SFP_DEV_UP)) {
1624		if (sfp->sm_state == SFP_S_LINK_UP &&
1625		    sfp->sm_dev_state == SFP_DEV_UP)
1626			sfp_sm_link_down(sfp);
 
 
1627		if (sfp->mod_phy)
1628			sfp_sm_phy_detach(sfp);
 
 
1629		sfp_sm_next(sfp, SFP_S_DOWN, 0);
1630		mutex_unlock(&sfp->sm_mutex);
1631		return;
1632	}
1633
1634	/* The main state machine */
1635	switch (sfp->sm_state) {
1636	case SFP_S_DOWN:
1637		if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1638		    sfp->sm_dev_state == SFP_DEV_UP)
1639			sfp_sm_mod_init(sfp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640		break;
1641
1642	case SFP_S_INIT:
1643		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1644			sfp_sm_fault(sfp, true);
1645		else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1646			sfp_sm_link_check_los(sfp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1647		break;
1648
1649	case SFP_S_WAIT_LOS:
1650		if (event == SFP_E_TX_FAULT)
1651			sfp_sm_fault(sfp, true);
1652		else if (sfp_los_event_inactive(sfp, event))
1653			sfp_sm_link_up(sfp);
1654		break;
1655
1656	case SFP_S_LINK_UP:
1657		if (event == SFP_E_TX_FAULT) {
1658			sfp_sm_link_down(sfp);
1659			sfp_sm_fault(sfp, true);
1660		} else if (sfp_los_event_active(sfp, event)) {
1661			sfp_sm_link_down(sfp);
1662			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1663		}
1664		break;
1665
1666	case SFP_S_TX_FAULT:
1667		if (event == SFP_E_TIMEOUT) {
1668			sfp_module_tx_fault_reset(sfp);
1669			sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1670		}
1671		break;
1672
1673	case SFP_S_REINIT:
1674		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1675			sfp_sm_fault(sfp, false);
1676		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1677			dev_info(sfp->dev, "module transmit fault recovered\n");
1678			sfp_sm_link_check_los(sfp);
1679		}
1680		break;
1681
1682	case SFP_S_TX_DISABLE:
1683		break;
1684	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1685
1686	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1687		mod_state_to_str(sfp->sm_mod_state),
1688		dev_state_to_str(sfp->sm_dev_state),
1689		sm_state_to_str(sfp->sm_state));
1690
1691	mutex_unlock(&sfp->sm_mutex);
1692}
1693
1694static void sfp_attach(struct sfp *sfp)
1695{
1696	sfp->attached = true;
1697	if (sfp->state & SFP_F_PRESENT)
1698		sfp_sm_event(sfp, SFP_E_INSERT);
1699}
1700
1701static void sfp_detach(struct sfp *sfp)
1702{
1703	sfp->attached = false;
1704	sfp_sm_event(sfp, SFP_E_REMOVE);
1705}
1706
1707static void sfp_start(struct sfp *sfp)
1708{
1709	sfp_sm_event(sfp, SFP_E_DEV_UP);
1710}
1711
1712static void sfp_stop(struct sfp *sfp)
1713{
1714	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1715}
1716
1717static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1718{
1719	/* locking... and check module is present */
1720
1721	if (sfp->id.ext.sff8472_compliance &&
1722	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1723		modinfo->type = ETH_MODULE_SFF_8472;
1724		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1725	} else {
1726		modinfo->type = ETH_MODULE_SFF_8079;
1727		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1728	}
1729	return 0;
1730}
1731
1732static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1733			     u8 *data)
1734{
1735	unsigned int first, last, len;
1736	int ret;
1737
1738	if (ee->len == 0)
1739		return -EINVAL;
1740
1741	first = ee->offset;
1742	last = ee->offset + ee->len;
1743	if (first < ETH_MODULE_SFF_8079_LEN) {
1744		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1745		len -= first;
1746
1747		ret = sfp_read(sfp, false, first, data, len);
1748		if (ret < 0)
1749			return ret;
1750
1751		first += len;
1752		data += len;
1753	}
1754	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1755		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1756		len -= first;
1757		first -= ETH_MODULE_SFF_8079_LEN;
1758
1759		ret = sfp_read(sfp, true, first, data, len);
1760		if (ret < 0)
1761			return ret;
1762	}
1763	return 0;
1764}
1765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1766static const struct sfp_socket_ops sfp_module_ops = {
1767	.attach = sfp_attach,
1768	.detach = sfp_detach,
1769	.start = sfp_start,
1770	.stop = sfp_stop,
1771	.module_info = sfp_module_info,
1772	.module_eeprom = sfp_module_eeprom,
 
1773};
1774
1775static void sfp_timeout(struct work_struct *work)
1776{
1777	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1778
1779	rtnl_lock();
1780	sfp_sm_event(sfp, SFP_E_TIMEOUT);
1781	rtnl_unlock();
1782}
1783
1784static void sfp_check_state(struct sfp *sfp)
1785{
1786	unsigned int state, i, changed;
1787
1788	mutex_lock(&sfp->st_mutex);
1789	state = sfp_get_state(sfp);
1790	changed = state ^ sfp->state;
1791	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1792
1793	for (i = 0; i < GPIO_MAX; i++)
1794		if (changed & BIT(i))
1795			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1796				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
1797
1798	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1799	sfp->state = state;
1800
1801	rtnl_lock();
1802	if (changed & SFP_F_PRESENT)
1803		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1804				SFP_E_INSERT : SFP_E_REMOVE);
1805
1806	if (changed & SFP_F_TX_FAULT)
1807		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1808				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1809
1810	if (changed & SFP_F_LOS)
1811		sfp_sm_event(sfp, state & SFP_F_LOS ?
1812				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1813	rtnl_unlock();
1814	mutex_unlock(&sfp->st_mutex);
1815}
1816
1817static irqreturn_t sfp_irq(int irq, void *data)
1818{
1819	struct sfp *sfp = data;
1820
1821	sfp_check_state(sfp);
1822
1823	return IRQ_HANDLED;
1824}
1825
1826static void sfp_poll(struct work_struct *work)
1827{
1828	struct sfp *sfp = container_of(work, struct sfp, poll.work);
1829
1830	sfp_check_state(sfp);
1831	mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
 
 
 
1832}
1833
1834static struct sfp *sfp_alloc(struct device *dev)
1835{
1836	struct sfp *sfp;
1837
1838	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1839	if (!sfp)
1840		return ERR_PTR(-ENOMEM);
1841
1842	sfp->dev = dev;
1843
1844	mutex_init(&sfp->sm_mutex);
1845	mutex_init(&sfp->st_mutex);
1846	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1847	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1848
 
 
1849	return sfp;
1850}
1851
1852static void sfp_cleanup(void *data)
1853{
1854	struct sfp *sfp = data;
1855
 
 
1856	cancel_delayed_work_sync(&sfp->poll);
1857	cancel_delayed_work_sync(&sfp->timeout);
1858	if (sfp->i2c_mii) {
1859		mdiobus_unregister(sfp->i2c_mii);
1860		mdiobus_free(sfp->i2c_mii);
1861	}
1862	if (sfp->i2c)
1863		i2c_put_adapter(sfp->i2c);
1864	kfree(sfp);
1865}
1866
1867static int sfp_probe(struct platform_device *pdev)
1868{
1869	const struct sff_data *sff;
1870	struct i2c_adapter *i2c;
 
1871	struct sfp *sfp;
1872	bool poll = false;
1873	int err, i;
1874
1875	sfp = sfp_alloc(&pdev->dev);
1876	if (IS_ERR(sfp))
1877		return PTR_ERR(sfp);
1878
1879	platform_set_drvdata(pdev, sfp);
1880
1881	err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
1882	if (err < 0)
1883		return err;
1884
1885	sff = sfp->type = &sfp_data;
1886
1887	if (pdev->dev.of_node) {
1888		struct device_node *node = pdev->dev.of_node;
1889		const struct of_device_id *id;
1890		struct device_node *np;
1891
1892		id = of_match_node(sfp_of_match, node);
1893		if (WARN_ON(!id))
1894			return -EINVAL;
1895
1896		sff = sfp->type = id->data;
1897
1898		np = of_parse_phandle(node, "i2c-bus", 0);
1899		if (!np) {
1900			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1901			return -ENODEV;
1902		}
1903
1904		i2c = of_find_i2c_adapter_by_node(np);
1905		of_node_put(np);
1906	} else if (has_acpi_companion(&pdev->dev)) {
1907		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
1908		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
1909		struct fwnode_reference_args args;
1910		struct acpi_handle *acpi_handle;
1911		int ret;
1912
1913		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
1914		if (ret || !is_acpi_device_node(args.fwnode)) {
1915			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
1916			return -ENODEV;
1917		}
1918
1919		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
1920		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
1921	} else {
1922		return -EINVAL;
1923	}
1924
1925	if (!i2c)
1926		return -EPROBE_DEFER;
1927
1928	err = sfp_i2c_configure(sfp, i2c);
1929	if (err < 0) {
1930		i2c_put_adapter(i2c);
1931		return err;
1932	}
1933
1934	for (i = 0; i < GPIO_MAX; i++)
1935		if (sff->gpios & BIT(i)) {
1936			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1937					   gpio_of_names[i], gpio_flags[i]);
1938			if (IS_ERR(sfp->gpio[i]))
1939				return PTR_ERR(sfp->gpio[i]);
1940		}
1941
1942	sfp->get_state = sfp_gpio_get_state;
1943	sfp->set_state = sfp_gpio_set_state;
1944
1945	/* Modules that have no detect signal are always present */
1946	if (!(sfp->gpio[GPIO_MODDEF0]))
1947		sfp->get_state = sff_gpio_get_state;
1948
1949	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1950				 &sfp->max_power_mW);
1951	if (!sfp->max_power_mW)
1952		sfp->max_power_mW = 1000;
1953
1954	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1955		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1956
1957	/* Get the initial state, and always signal TX disable,
1958	 * since the network interface will not be up.
1959	 */
1960	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1961
1962	if (sfp->gpio[GPIO_RATE_SELECT] &&
1963	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1964		sfp->state |= SFP_F_RATE_SELECT;
1965	sfp_set_state(sfp, sfp->state);
1966	sfp_module_tx_disable(sfp);
 
 
 
 
 
1967
1968	for (i = 0; i < GPIO_MAX; i++) {
1969		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1970			continue;
1971
1972		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
1973		if (!sfp->gpio_irq[i]) {
1974			poll = true;
 
1975			continue;
1976		}
1977
 
 
 
 
 
 
 
1978		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
1979						NULL, sfp_irq,
1980						IRQF_ONESHOT |
1981						IRQF_TRIGGER_RISING |
1982						IRQF_TRIGGER_FALLING,
1983						dev_name(sfp->dev), sfp);
1984		if (err) {
1985			sfp->gpio_irq[i] = 0;
1986			poll = true;
1987		}
1988	}
1989
1990	if (poll)
1991		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1992
1993	/* We could have an issue in cases no Tx disable pin is available or
1994	 * wired as modules using a laser as their light source will continue to
1995	 * be active when the fiber is removed. This could be a safety issue and
1996	 * we should at least warn the user about that.
1997	 */
1998	if (!sfp->gpio[GPIO_TX_DISABLE])
1999		dev_warn(sfp->dev,
2000			 "No tx_disable pin: SFP modules will always be emitting.\n");
2001
2002	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2003	if (!sfp->sfp_bus)
2004		return -ENOMEM;
2005
 
 
2006	return 0;
2007}
2008
2009static int sfp_remove(struct platform_device *pdev)
2010{
2011	struct sfp *sfp = platform_get_drvdata(pdev);
2012
 
2013	sfp_unregister_socket(sfp->sfp_bus);
 
 
 
 
2014
2015	return 0;
2016}
2017
2018static void sfp_shutdown(struct platform_device *pdev)
2019{
2020	struct sfp *sfp = platform_get_drvdata(pdev);
2021	int i;
2022
2023	for (i = 0; i < GPIO_MAX; i++) {
2024		if (!sfp->gpio_irq[i])
2025			continue;
2026
2027		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2028	}
2029
2030	cancel_delayed_work_sync(&sfp->poll);
2031	cancel_delayed_work_sync(&sfp->timeout);
2032}
2033
2034static struct platform_driver sfp_driver = {
2035	.probe = sfp_probe,
2036	.remove = sfp_remove,
2037	.shutdown = sfp_shutdown,
2038	.driver = {
2039		.name = "sfp",
2040		.of_match_table = sfp_of_match,
2041	},
2042};
2043
2044static int sfp_init(void)
2045{
2046	poll_jiffies = msecs_to_jiffies(100);
2047
2048	return platform_driver_register(&sfp_driver);
2049}
2050module_init(sfp_init);
2051
2052static void sfp_exit(void)
2053{
2054	platform_driver_unregister(&sfp_driver);
2055}
2056module_exit(sfp_exit);
2057
2058MODULE_ALIAS("platform:sfp");
2059MODULE_AUTHOR("Russell King");
2060MODULE_LICENSE("GPL v2");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/acpi.h>
   3#include <linux/ctype.h>
   4#include <linux/debugfs.h>
   5#include <linux/delay.h>
   6#include <linux/gpio/consumer.h>
   7#include <linux/hwmon.h>
   8#include <linux/i2c.h>
   9#include <linux/interrupt.h>
  10#include <linux/jiffies.h>
  11#include <linux/mdio/mdio-i2c.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/of.h>
  15#include <linux/phy.h>
  16#include <linux/platform_device.h>
  17#include <linux/rtnetlink.h>
  18#include <linux/slab.h>
  19#include <linux/workqueue.h>
  20
 
  21#include "sfp.h"
  22#include "swphy.h"
  23
  24enum {
  25	GPIO_MODDEF0,
  26	GPIO_LOS,
  27	GPIO_TX_FAULT,
  28	GPIO_TX_DISABLE,
  29	GPIO_RATE_SELECT,
  30	GPIO_MAX,
  31
  32	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  33	SFP_F_LOS = BIT(GPIO_LOS),
  34	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  35	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  36	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
  37
  38	SFP_E_INSERT = 0,
  39	SFP_E_REMOVE,
  40	SFP_E_DEV_ATTACH,
  41	SFP_E_DEV_DETACH,
  42	SFP_E_DEV_DOWN,
  43	SFP_E_DEV_UP,
  44	SFP_E_TX_FAULT,
  45	SFP_E_TX_CLEAR,
  46	SFP_E_LOS_HIGH,
  47	SFP_E_LOS_LOW,
  48	SFP_E_TIMEOUT,
  49
  50	SFP_MOD_EMPTY = 0,
  51	SFP_MOD_ERROR,
  52	SFP_MOD_PROBE,
  53	SFP_MOD_WAITDEV,
  54	SFP_MOD_HPOWER,
  55	SFP_MOD_WAITPWR,
  56	SFP_MOD_PRESENT,
 
  57
  58	SFP_DEV_DETACHED = 0,
  59	SFP_DEV_DOWN,
  60	SFP_DEV_UP,
  61
  62	SFP_S_DOWN = 0,
  63	SFP_S_FAIL,
  64	SFP_S_WAIT,
  65	SFP_S_INIT,
  66	SFP_S_INIT_PHY,
  67	SFP_S_INIT_TX_FAULT,
  68	SFP_S_WAIT_LOS,
  69	SFP_S_LINK_UP,
  70	SFP_S_TX_FAULT,
  71	SFP_S_REINIT,
  72	SFP_S_TX_DISABLE,
  73};
  74
  75static const char  * const mod_state_strings[] = {
  76	[SFP_MOD_EMPTY] = "empty",
  77	[SFP_MOD_ERROR] = "error",
  78	[SFP_MOD_PROBE] = "probe",
  79	[SFP_MOD_WAITDEV] = "waitdev",
  80	[SFP_MOD_HPOWER] = "hpower",
  81	[SFP_MOD_WAITPWR] = "waitpwr",
  82	[SFP_MOD_PRESENT] = "present",
 
  83};
  84
  85static const char *mod_state_to_str(unsigned short mod_state)
  86{
  87	if (mod_state >= ARRAY_SIZE(mod_state_strings))
  88		return "Unknown module state";
  89	return mod_state_strings[mod_state];
  90}
  91
  92static const char * const dev_state_strings[] = {
  93	[SFP_DEV_DETACHED] = "detached",
  94	[SFP_DEV_DOWN] = "down",
  95	[SFP_DEV_UP] = "up",
  96};
  97
  98static const char *dev_state_to_str(unsigned short dev_state)
  99{
 100	if (dev_state >= ARRAY_SIZE(dev_state_strings))
 101		return "Unknown device state";
 102	return dev_state_strings[dev_state];
 103}
 104
 105static const char * const event_strings[] = {
 106	[SFP_E_INSERT] = "insert",
 107	[SFP_E_REMOVE] = "remove",
 108	[SFP_E_DEV_ATTACH] = "dev_attach",
 109	[SFP_E_DEV_DETACH] = "dev_detach",
 110	[SFP_E_DEV_DOWN] = "dev_down",
 111	[SFP_E_DEV_UP] = "dev_up",
 112	[SFP_E_TX_FAULT] = "tx_fault",
 113	[SFP_E_TX_CLEAR] = "tx_clear",
 114	[SFP_E_LOS_HIGH] = "los_high",
 115	[SFP_E_LOS_LOW] = "los_low",
 116	[SFP_E_TIMEOUT] = "timeout",
 117};
 118
 119static const char *event_to_str(unsigned short event)
 120{
 121	if (event >= ARRAY_SIZE(event_strings))
 122		return "Unknown event";
 123	return event_strings[event];
 124}
 125
 126static const char * const sm_state_strings[] = {
 127	[SFP_S_DOWN] = "down",
 128	[SFP_S_FAIL] = "fail",
 129	[SFP_S_WAIT] = "wait",
 130	[SFP_S_INIT] = "init",
 131	[SFP_S_INIT_PHY] = "init_phy",
 132	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
 133	[SFP_S_WAIT_LOS] = "wait_los",
 134	[SFP_S_LINK_UP] = "link_up",
 135	[SFP_S_TX_FAULT] = "tx_fault",
 136	[SFP_S_REINIT] = "reinit",
 137	[SFP_S_TX_DISABLE] = "tx_disable",
 138};
 139
 140static const char *sm_state_to_str(unsigned short sm_state)
 141{
 142	if (sm_state >= ARRAY_SIZE(sm_state_strings))
 143		return "Unknown state";
 144	return sm_state_strings[sm_state];
 145}
 146
 147static const char *gpio_of_names[] = {
 148	"mod-def0",
 149	"los",
 150	"tx-fault",
 151	"tx-disable",
 152	"rate-select0",
 153};
 154
 155static const enum gpiod_flags gpio_flags[] = {
 156	GPIOD_IN,
 157	GPIOD_IN,
 158	GPIOD_IN,
 159	GPIOD_ASIS,
 160	GPIOD_ASIS,
 161};
 162
 163/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
 164 * non-cooled module to initialise its laser safety circuitry. We wait
 165 * an initial T_WAIT period before we check the tx fault to give any PHY
 166 * on board (for a copper SFP) time to initialise.
 167 */
 168#define T_WAIT			msecs_to_jiffies(50)
 169#define T_START_UP		msecs_to_jiffies(300)
 170#define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
 171
 172/* t_reset is the time required to assert the TX_DISABLE signal to reset
 173 * an indicated TX_FAULT.
 174 */
 175#define T_RESET_US		10
 176#define T_FAULT_RECOVER		msecs_to_jiffies(1000)
 177
 178/* N_FAULT_INIT is the number of recovery attempts at module initialisation
 179 * time. If the TX_FAULT signal is not deasserted after this number of
 180 * attempts at clearing it, we decide that the module is faulty.
 181 * N_FAULT is the same but after the module has initialised.
 182 */
 183#define N_FAULT_INIT		5
 184#define N_FAULT			5
 185
 186/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
 187 * R_PHY_RETRY is the number of attempts.
 188 */
 189#define T_PHY_RETRY		msecs_to_jiffies(50)
 190#define R_PHY_RETRY		12
 191
 192/* SFP module presence detection is poor: the three MOD DEF signals are
 193 * the same length on the PCB, which means it's possible for MOD DEF 0 to
 194 * connect before the I2C bus on MOD DEF 1/2.
 195 *
 196 * The SFF-8472 specifies t_serial ("Time from power on until module is
 197 * ready for data transmission over the two wire serial bus.") as 300ms.
 
 198 */
 199#define T_SERIAL		msecs_to_jiffies(300)
 200#define T_HPOWER_LEVEL		msecs_to_jiffies(300)
 201#define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
 202#define R_PROBE_RETRY_INIT	10
 203#define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
 204#define R_PROBE_RETRY_SLOW	12
 205
 206/* SFP modules appear to always have their PHY configured for bus address
 207 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
 208 */
 209#define SFP_PHY_ADDR	22
 210
 
 
 
 211struct sff_data {
 212	unsigned int gpios;
 213	bool (*module_supported)(const struct sfp_eeprom_id *id);
 214};
 215
 216struct sfp {
 217	struct device *dev;
 218	struct i2c_adapter *i2c;
 219	struct mii_bus *i2c_mii;
 220	struct sfp_bus *sfp_bus;
 221	struct phy_device *mod_phy;
 222	const struct sff_data *type;
 223	size_t i2c_block_size;
 224	u32 max_power_mW;
 225
 226	unsigned int (*get_state)(struct sfp *);
 227	void (*set_state)(struct sfp *, unsigned int);
 228	int (*read)(struct sfp *, bool, u8, void *, size_t);
 229	int (*write)(struct sfp *, bool, u8, void *, size_t);
 230
 231	struct gpio_desc *gpio[GPIO_MAX];
 232	int gpio_irq[GPIO_MAX];
 233
 234	bool need_poll;
 235
 236	struct mutex st_mutex;			/* Protects state */
 237	unsigned int state_soft_mask;
 238	unsigned int state;
 239	struct delayed_work poll;
 240	struct delayed_work timeout;
 241	struct mutex sm_mutex;			/* Protects state machine */
 242	unsigned char sm_mod_state;
 243	unsigned char sm_mod_tries_init;
 244	unsigned char sm_mod_tries;
 245	unsigned char sm_dev_state;
 246	unsigned short sm_state;
 247	unsigned char sm_fault_retries;
 248	unsigned char sm_phy_retries;
 249
 250	struct sfp_eeprom_id id;
 251	unsigned int module_power_mW;
 252	unsigned int module_t_start_up;
 253
 254#if IS_ENABLED(CONFIG_HWMON)
 255	struct sfp_diag diag;
 256	struct delayed_work hwmon_probe;
 257	unsigned int hwmon_tries;
 258	struct device *hwmon_dev;
 259	char *hwmon_name;
 260#endif
 261
 262#if IS_ENABLED(CONFIG_DEBUG_FS)
 263	struct dentry *debugfs_dir;
 264#endif
 265};
 266
 267static bool sff_module_supported(const struct sfp_eeprom_id *id)
 268{
 269	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
 270	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 271}
 272
 273static const struct sff_data sff_data = {
 274	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
 275	.module_supported = sff_module_supported,
 276};
 277
 278static bool sfp_module_supported(const struct sfp_eeprom_id *id)
 279{
 280	if (id->base.phys_id == SFF8024_ID_SFP &&
 281	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
 282		return true;
 283
 284	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
 285	 * phys id SFF instead of SFP. Therefore mark this module explicitly
 286	 * as supported based on vendor name and pn match.
 287	 */
 288	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
 289	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
 290	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
 291	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
 292		return true;
 293
 294	return false;
 295}
 296
 297static const struct sff_data sfp_data = {
 298	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
 299		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
 300	.module_supported = sfp_module_supported,
 301};
 302
 303static const struct of_device_id sfp_of_match[] = {
 304	{ .compatible = "sff,sff", .data = &sff_data, },
 305	{ .compatible = "sff,sfp", .data = &sfp_data, },
 306	{ },
 307};
 308MODULE_DEVICE_TABLE(of, sfp_of_match);
 309
 310static unsigned long poll_jiffies;
 311
 312static unsigned int sfp_gpio_get_state(struct sfp *sfp)
 313{
 314	unsigned int i, state, v;
 315
 316	for (i = state = 0; i < GPIO_MAX; i++) {
 317		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
 318			continue;
 319
 320		v = gpiod_get_value_cansleep(sfp->gpio[i]);
 321		if (v)
 322			state |= BIT(i);
 323	}
 324
 325	return state;
 326}
 327
 328static unsigned int sff_gpio_get_state(struct sfp *sfp)
 329{
 330	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
 331}
 332
 333static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
 334{
 335	if (state & SFP_F_PRESENT) {
 336		/* If the module is present, drive the signals */
 337		if (sfp->gpio[GPIO_TX_DISABLE])
 338			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
 339					       state & SFP_F_TX_DISABLE);
 340		if (state & SFP_F_RATE_SELECT)
 341			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
 342					       state & SFP_F_RATE_SELECT);
 343	} else {
 344		/* Otherwise, let them float to the pull-ups */
 345		if (sfp->gpio[GPIO_TX_DISABLE])
 346			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
 347		if (state & SFP_F_RATE_SELECT)
 348			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
 349	}
 350}
 351
 352static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 353			size_t len)
 354{
 355	struct i2c_msg msgs[2];
 356	u8 bus_addr = a2 ? 0x51 : 0x50;
 357	size_t block_size = sfp->i2c_block_size;
 358	size_t this_len;
 359	int ret;
 360
 361	msgs[0].addr = bus_addr;
 362	msgs[0].flags = 0;
 363	msgs[0].len = 1;
 364	msgs[0].buf = &dev_addr;
 365	msgs[1].addr = bus_addr;
 366	msgs[1].flags = I2C_M_RD;
 367	msgs[1].len = len;
 368	msgs[1].buf = buf;
 369
 370	while (len) {
 371		this_len = len;
 372		if (this_len > block_size)
 373			this_len = block_size;
 374
 375		msgs[1].len = this_len;
 376
 377		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 378		if (ret < 0)
 379			return ret;
 380
 381		if (ret != ARRAY_SIZE(msgs))
 382			break;
 383
 384		msgs[1].buf += this_len;
 385		dev_addr += this_len;
 386		len -= this_len;
 387	}
 388
 389	return msgs[1].buf - (u8 *)buf;
 390}
 391
 392static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 393	size_t len)
 394{
 395	struct i2c_msg msgs[1];
 396	u8 bus_addr = a2 ? 0x51 : 0x50;
 397	int ret;
 398
 399	msgs[0].addr = bus_addr;
 400	msgs[0].flags = 0;
 401	msgs[0].len = 1 + len;
 402	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
 403	if (!msgs[0].buf)
 404		return -ENOMEM;
 405
 406	msgs[0].buf[0] = dev_addr;
 407	memcpy(&msgs[0].buf[1], buf, len);
 408
 409	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 410
 411	kfree(msgs[0].buf);
 412
 413	if (ret < 0)
 414		return ret;
 415
 416	return ret == ARRAY_SIZE(msgs) ? len : 0;
 417}
 418
 419static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
 420{
 421	struct mii_bus *i2c_mii;
 422	int ret;
 423
 424	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
 425		return -EINVAL;
 426
 427	sfp->i2c = i2c;
 428	sfp->read = sfp_i2c_read;
 429	sfp->write = sfp_i2c_write;
 430
 431	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
 432	if (IS_ERR(i2c_mii))
 433		return PTR_ERR(i2c_mii);
 434
 435	i2c_mii->name = "SFP I2C Bus";
 436	i2c_mii->phy_mask = ~0;
 437
 438	ret = mdiobus_register(i2c_mii);
 439	if (ret < 0) {
 440		mdiobus_free(i2c_mii);
 441		return ret;
 442	}
 443
 444	sfp->i2c_mii = i2c_mii;
 445
 446	return 0;
 447}
 448
 449/* Interface */
 450static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 451{
 452	return sfp->read(sfp, a2, addr, buf, len);
 453}
 454
 455static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 456{
 457	return sfp->write(sfp, a2, addr, buf, len);
 458}
 459
 460static unsigned int sfp_soft_get_state(struct sfp *sfp)
 461{
 462	unsigned int state = 0;
 463	u8 status;
 464	int ret;
 465
 466	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
 467	if (ret == sizeof(status)) {
 468		if (status & SFP_STATUS_RX_LOS)
 469			state |= SFP_F_LOS;
 470		if (status & SFP_STATUS_TX_FAULT)
 471			state |= SFP_F_TX_FAULT;
 472	} else {
 473		dev_err_ratelimited(sfp->dev,
 474				    "failed to read SFP soft status: %d\n",
 475				    ret);
 476		/* Preserve the current state */
 477		state = sfp->state;
 478	}
 479
 480	return state & sfp->state_soft_mask;
 481}
 482
 483static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
 484{
 485	u8 status;
 486
 487	if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
 488		     sizeof(status)) {
 489		if (state & SFP_F_TX_DISABLE)
 490			status |= SFP_STATUS_TX_DISABLE_FORCE;
 491		else
 492			status &= ~SFP_STATUS_TX_DISABLE_FORCE;
 493
 494		sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
 495	}
 496}
 497
 498static void sfp_soft_start_poll(struct sfp *sfp)
 499{
 500	const struct sfp_eeprom_id *id = &sfp->id;
 501
 502	sfp->state_soft_mask = 0;
 503	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
 504	    !sfp->gpio[GPIO_TX_DISABLE])
 505		sfp->state_soft_mask |= SFP_F_TX_DISABLE;
 506	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
 507	    !sfp->gpio[GPIO_TX_FAULT])
 508		sfp->state_soft_mask |= SFP_F_TX_FAULT;
 509	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
 510	    !sfp->gpio[GPIO_LOS])
 511		sfp->state_soft_mask |= SFP_F_LOS;
 512
 513	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
 514	    !sfp->need_poll)
 515		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
 516}
 517
 518static void sfp_soft_stop_poll(struct sfp *sfp)
 519{
 520	sfp->state_soft_mask = 0;
 521}
 522
 523static unsigned int sfp_get_state(struct sfp *sfp)
 524{
 525	unsigned int state = sfp->get_state(sfp);
 526
 527	if (state & SFP_F_PRESENT &&
 528	    sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
 529		state |= sfp_soft_get_state(sfp);
 530
 531	return state;
 532}
 533
 534static void sfp_set_state(struct sfp *sfp, unsigned int state)
 535{
 536	sfp->set_state(sfp, state);
 537
 538	if (state & SFP_F_PRESENT &&
 539	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
 540		sfp_soft_set_state(sfp, state);
 541}
 542
 543static unsigned int sfp_check(void *buf, size_t len)
 544{
 545	u8 *p, check;
 546
 547	for (p = buf, check = 0; len; p++, len--)
 548		check += *p;
 549
 550	return check;
 551}
 552
 553/* hwmon */
 554#if IS_ENABLED(CONFIG_HWMON)
 555static umode_t sfp_hwmon_is_visible(const void *data,
 556				    enum hwmon_sensor_types type,
 557				    u32 attr, int channel)
 558{
 559	const struct sfp *sfp = data;
 560
 561	switch (type) {
 562	case hwmon_temp:
 563		switch (attr) {
 564		case hwmon_temp_min_alarm:
 565		case hwmon_temp_max_alarm:
 566		case hwmon_temp_lcrit_alarm:
 567		case hwmon_temp_crit_alarm:
 568		case hwmon_temp_min:
 569		case hwmon_temp_max:
 570		case hwmon_temp_lcrit:
 571		case hwmon_temp_crit:
 572			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 573				return 0;
 574			fallthrough;
 575		case hwmon_temp_input:
 576		case hwmon_temp_label:
 577			return 0444;
 578		default:
 579			return 0;
 580		}
 581	case hwmon_in:
 582		switch (attr) {
 583		case hwmon_in_min_alarm:
 584		case hwmon_in_max_alarm:
 585		case hwmon_in_lcrit_alarm:
 586		case hwmon_in_crit_alarm:
 587		case hwmon_in_min:
 588		case hwmon_in_max:
 589		case hwmon_in_lcrit:
 590		case hwmon_in_crit:
 591			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 592				return 0;
 593			fallthrough;
 594		case hwmon_in_input:
 595		case hwmon_in_label:
 596			return 0444;
 597		default:
 598			return 0;
 599		}
 600	case hwmon_curr:
 601		switch (attr) {
 602		case hwmon_curr_min_alarm:
 603		case hwmon_curr_max_alarm:
 604		case hwmon_curr_lcrit_alarm:
 605		case hwmon_curr_crit_alarm:
 606		case hwmon_curr_min:
 607		case hwmon_curr_max:
 608		case hwmon_curr_lcrit:
 609		case hwmon_curr_crit:
 610			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 611				return 0;
 612			fallthrough;
 613		case hwmon_curr_input:
 614		case hwmon_curr_label:
 615			return 0444;
 616		default:
 617			return 0;
 618		}
 619	case hwmon_power:
 620		/* External calibration of receive power requires
 621		 * floating point arithmetic. Doing that in the kernel
 622		 * is not easy, so just skip it. If the module does
 623		 * not require external calibration, we can however
 624		 * show receiver power, since FP is then not needed.
 625		 */
 626		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
 627		    channel == 1)
 628			return 0;
 629		switch (attr) {
 630		case hwmon_power_min_alarm:
 631		case hwmon_power_max_alarm:
 632		case hwmon_power_lcrit_alarm:
 633		case hwmon_power_crit_alarm:
 634		case hwmon_power_min:
 635		case hwmon_power_max:
 636		case hwmon_power_lcrit:
 637		case hwmon_power_crit:
 638			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 639				return 0;
 640			fallthrough;
 641		case hwmon_power_input:
 642		case hwmon_power_label:
 643			return 0444;
 644		default:
 645			return 0;
 646		}
 647	default:
 648		return 0;
 649	}
 650}
 651
 652static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
 653{
 654	__be16 val;
 655	int err;
 656
 657	err = sfp_read(sfp, true, reg, &val, sizeof(val));
 658	if (err < 0)
 659		return err;
 660
 661	*value = be16_to_cpu(val);
 662
 663	return 0;
 664}
 665
 666static void sfp_hwmon_to_rx_power(long *value)
 667{
 668	*value = DIV_ROUND_CLOSEST(*value, 10);
 669}
 670
 671static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
 672				long *value)
 673{
 674	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
 675		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
 676}
 677
 678static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
 679{
 680	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
 681			    be16_to_cpu(sfp->diag.cal_t_offset), value);
 682
 683	if (*value >= 0x8000)
 684		*value -= 0x10000;
 685
 686	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
 687}
 688
 689static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
 690{
 691	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
 692			    be16_to_cpu(sfp->diag.cal_v_offset), value);
 693
 694	*value = DIV_ROUND_CLOSEST(*value, 10);
 695}
 696
 697static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
 698{
 699	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
 700			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
 701
 702	*value = DIV_ROUND_CLOSEST(*value, 500);
 703}
 704
 705static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
 706{
 707	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
 708			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
 709
 710	*value = DIV_ROUND_CLOSEST(*value, 10);
 711}
 712
 713static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
 714{
 715	int err;
 716
 717	err = sfp_hwmon_read_sensor(sfp, reg, value);
 718	if (err < 0)
 719		return err;
 720
 721	sfp_hwmon_calibrate_temp(sfp, value);
 722
 723	return 0;
 724}
 725
 726static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
 727{
 728	int err;
 729
 730	err = sfp_hwmon_read_sensor(sfp, reg, value);
 731	if (err < 0)
 732		return err;
 733
 734	sfp_hwmon_calibrate_vcc(sfp, value);
 735
 736	return 0;
 737}
 738
 739static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
 740{
 741	int err;
 742
 743	err = sfp_hwmon_read_sensor(sfp, reg, value);
 744	if (err < 0)
 745		return err;
 746
 747	sfp_hwmon_calibrate_bias(sfp, value);
 748
 749	return 0;
 750}
 751
 752static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
 753{
 754	int err;
 755
 756	err = sfp_hwmon_read_sensor(sfp, reg, value);
 757	if (err < 0)
 758		return err;
 759
 760	sfp_hwmon_calibrate_tx_power(sfp, value);
 761
 762	return 0;
 763}
 764
 765static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
 766{
 767	int err;
 768
 769	err = sfp_hwmon_read_sensor(sfp, reg, value);
 770	if (err < 0)
 771		return err;
 772
 773	sfp_hwmon_to_rx_power(value);
 774
 775	return 0;
 776}
 777
 778static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
 779{
 780	u8 status;
 781	int err;
 782
 783	switch (attr) {
 784	case hwmon_temp_input:
 785		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
 786
 787	case hwmon_temp_lcrit:
 788		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
 789		sfp_hwmon_calibrate_temp(sfp, value);
 790		return 0;
 791
 792	case hwmon_temp_min:
 793		*value = be16_to_cpu(sfp->diag.temp_low_warn);
 794		sfp_hwmon_calibrate_temp(sfp, value);
 795		return 0;
 796	case hwmon_temp_max:
 797		*value = be16_to_cpu(sfp->diag.temp_high_warn);
 798		sfp_hwmon_calibrate_temp(sfp, value);
 799		return 0;
 800
 801	case hwmon_temp_crit:
 802		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
 803		sfp_hwmon_calibrate_temp(sfp, value);
 804		return 0;
 805
 806	case hwmon_temp_lcrit_alarm:
 807		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 808		if (err < 0)
 809			return err;
 810
 811		*value = !!(status & SFP_ALARM0_TEMP_LOW);
 812		return 0;
 813
 814	case hwmon_temp_min_alarm:
 815		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 816		if (err < 0)
 817			return err;
 818
 819		*value = !!(status & SFP_WARN0_TEMP_LOW);
 820		return 0;
 821
 822	case hwmon_temp_max_alarm:
 823		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 824		if (err < 0)
 825			return err;
 826
 827		*value = !!(status & SFP_WARN0_TEMP_HIGH);
 828		return 0;
 829
 830	case hwmon_temp_crit_alarm:
 831		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 832		if (err < 0)
 833			return err;
 834
 835		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
 836		return 0;
 837	default:
 838		return -EOPNOTSUPP;
 839	}
 840
 841	return -EOPNOTSUPP;
 842}
 843
 844static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
 845{
 846	u8 status;
 847	int err;
 848
 849	switch (attr) {
 850	case hwmon_in_input:
 851		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
 852
 853	case hwmon_in_lcrit:
 854		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
 855		sfp_hwmon_calibrate_vcc(sfp, value);
 856		return 0;
 857
 858	case hwmon_in_min:
 859		*value = be16_to_cpu(sfp->diag.volt_low_warn);
 860		sfp_hwmon_calibrate_vcc(sfp, value);
 861		return 0;
 862
 863	case hwmon_in_max:
 864		*value = be16_to_cpu(sfp->diag.volt_high_warn);
 865		sfp_hwmon_calibrate_vcc(sfp, value);
 866		return 0;
 867
 868	case hwmon_in_crit:
 869		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
 870		sfp_hwmon_calibrate_vcc(sfp, value);
 871		return 0;
 872
 873	case hwmon_in_lcrit_alarm:
 874		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 875		if (err < 0)
 876			return err;
 877
 878		*value = !!(status & SFP_ALARM0_VCC_LOW);
 879		return 0;
 880
 881	case hwmon_in_min_alarm:
 882		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 883		if (err < 0)
 884			return err;
 885
 886		*value = !!(status & SFP_WARN0_VCC_LOW);
 887		return 0;
 888
 889	case hwmon_in_max_alarm:
 890		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 891		if (err < 0)
 892			return err;
 893
 894		*value = !!(status & SFP_WARN0_VCC_HIGH);
 895		return 0;
 896
 897	case hwmon_in_crit_alarm:
 898		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 899		if (err < 0)
 900			return err;
 901
 902		*value = !!(status & SFP_ALARM0_VCC_HIGH);
 903		return 0;
 904	default:
 905		return -EOPNOTSUPP;
 906	}
 907
 908	return -EOPNOTSUPP;
 909}
 910
 911static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
 912{
 913	u8 status;
 914	int err;
 915
 916	switch (attr) {
 917	case hwmon_curr_input:
 918		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
 919
 920	case hwmon_curr_lcrit:
 921		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
 922		sfp_hwmon_calibrate_bias(sfp, value);
 923		return 0;
 924
 925	case hwmon_curr_min:
 926		*value = be16_to_cpu(sfp->diag.bias_low_warn);
 927		sfp_hwmon_calibrate_bias(sfp, value);
 928		return 0;
 929
 930	case hwmon_curr_max:
 931		*value = be16_to_cpu(sfp->diag.bias_high_warn);
 932		sfp_hwmon_calibrate_bias(sfp, value);
 933		return 0;
 934
 935	case hwmon_curr_crit:
 936		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
 937		sfp_hwmon_calibrate_bias(sfp, value);
 938		return 0;
 939
 940	case hwmon_curr_lcrit_alarm:
 941		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 942		if (err < 0)
 943			return err;
 944
 945		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
 946		return 0;
 947
 948	case hwmon_curr_min_alarm:
 949		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 950		if (err < 0)
 951			return err;
 952
 953		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
 954		return 0;
 955
 956	case hwmon_curr_max_alarm:
 957		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 958		if (err < 0)
 959			return err;
 960
 961		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
 962		return 0;
 963
 964	case hwmon_curr_crit_alarm:
 965		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 966		if (err < 0)
 967			return err;
 968
 969		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
 970		return 0;
 971	default:
 972		return -EOPNOTSUPP;
 973	}
 974
 975	return -EOPNOTSUPP;
 976}
 977
 978static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
 979{
 980	u8 status;
 981	int err;
 982
 983	switch (attr) {
 984	case hwmon_power_input:
 985		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
 986
 987	case hwmon_power_lcrit:
 988		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
 989		sfp_hwmon_calibrate_tx_power(sfp, value);
 990		return 0;
 991
 992	case hwmon_power_min:
 993		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
 994		sfp_hwmon_calibrate_tx_power(sfp, value);
 995		return 0;
 996
 997	case hwmon_power_max:
 998		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
 999		sfp_hwmon_calibrate_tx_power(sfp, value);
1000		return 0;
1001
1002	case hwmon_power_crit:
1003		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1004		sfp_hwmon_calibrate_tx_power(sfp, value);
1005		return 0;
1006
1007	case hwmon_power_lcrit_alarm:
1008		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1009		if (err < 0)
1010			return err;
1011
1012		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1013		return 0;
1014
1015	case hwmon_power_min_alarm:
1016		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1017		if (err < 0)
1018			return err;
1019
1020		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1021		return 0;
1022
1023	case hwmon_power_max_alarm:
1024		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1025		if (err < 0)
1026			return err;
1027
1028		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1029		return 0;
1030
1031	case hwmon_power_crit_alarm:
1032		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1033		if (err < 0)
1034			return err;
1035
1036		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1037		return 0;
1038	default:
1039		return -EOPNOTSUPP;
1040	}
1041
1042	return -EOPNOTSUPP;
1043}
1044
1045static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1046{
1047	u8 status;
1048	int err;
1049
1050	switch (attr) {
1051	case hwmon_power_input:
1052		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1053
1054	case hwmon_power_lcrit:
1055		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1056		sfp_hwmon_to_rx_power(value);
1057		return 0;
1058
1059	case hwmon_power_min:
1060		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1061		sfp_hwmon_to_rx_power(value);
1062		return 0;
1063
1064	case hwmon_power_max:
1065		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1066		sfp_hwmon_to_rx_power(value);
1067		return 0;
1068
1069	case hwmon_power_crit:
1070		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1071		sfp_hwmon_to_rx_power(value);
1072		return 0;
1073
1074	case hwmon_power_lcrit_alarm:
1075		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1076		if (err < 0)
1077			return err;
1078
1079		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1080		return 0;
1081
1082	case hwmon_power_min_alarm:
1083		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1084		if (err < 0)
1085			return err;
1086
1087		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1088		return 0;
1089
1090	case hwmon_power_max_alarm:
1091		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1092		if (err < 0)
1093			return err;
1094
1095		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1096		return 0;
1097
1098	case hwmon_power_crit_alarm:
1099		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1100		if (err < 0)
1101			return err;
1102
1103		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1104		return 0;
1105	default:
1106		return -EOPNOTSUPP;
1107	}
1108
1109	return -EOPNOTSUPP;
1110}
1111
1112static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1113			  u32 attr, int channel, long *value)
1114{
1115	struct sfp *sfp = dev_get_drvdata(dev);
1116
1117	switch (type) {
1118	case hwmon_temp:
1119		return sfp_hwmon_temp(sfp, attr, value);
1120	case hwmon_in:
1121		return sfp_hwmon_vcc(sfp, attr, value);
1122	case hwmon_curr:
1123		return sfp_hwmon_bias(sfp, attr, value);
1124	case hwmon_power:
1125		switch (channel) {
1126		case 0:
1127			return sfp_hwmon_tx_power(sfp, attr, value);
1128		case 1:
1129			return sfp_hwmon_rx_power(sfp, attr, value);
1130		default:
1131			return -EOPNOTSUPP;
1132		}
1133	default:
1134		return -EOPNOTSUPP;
1135	}
1136}
1137
1138static const char *const sfp_hwmon_power_labels[] = {
1139	"TX_power",
1140	"RX_power",
1141};
1142
1143static int sfp_hwmon_read_string(struct device *dev,
1144				 enum hwmon_sensor_types type,
1145				 u32 attr, int channel, const char **str)
1146{
1147	switch (type) {
1148	case hwmon_curr:
1149		switch (attr) {
1150		case hwmon_curr_label:
1151			*str = "bias";
1152			return 0;
1153		default:
1154			return -EOPNOTSUPP;
1155		}
1156		break;
1157	case hwmon_temp:
1158		switch (attr) {
1159		case hwmon_temp_label:
1160			*str = "temperature";
1161			return 0;
1162		default:
1163			return -EOPNOTSUPP;
1164		}
1165		break;
1166	case hwmon_in:
1167		switch (attr) {
1168		case hwmon_in_label:
1169			*str = "VCC";
1170			return 0;
1171		default:
1172			return -EOPNOTSUPP;
1173		}
1174		break;
1175	case hwmon_power:
1176		switch (attr) {
1177		case hwmon_power_label:
1178			*str = sfp_hwmon_power_labels[channel];
1179			return 0;
1180		default:
1181			return -EOPNOTSUPP;
1182		}
1183		break;
1184	default:
1185		return -EOPNOTSUPP;
1186	}
1187
1188	return -EOPNOTSUPP;
1189}
1190
1191static const struct hwmon_ops sfp_hwmon_ops = {
1192	.is_visible = sfp_hwmon_is_visible,
1193	.read = sfp_hwmon_read,
1194	.read_string = sfp_hwmon_read_string,
1195};
1196
1197static u32 sfp_hwmon_chip_config[] = {
1198	HWMON_C_REGISTER_TZ,
1199	0,
1200};
1201
1202static const struct hwmon_channel_info sfp_hwmon_chip = {
1203	.type = hwmon_chip,
1204	.config = sfp_hwmon_chip_config,
1205};
1206
1207static u32 sfp_hwmon_temp_config[] = {
1208	HWMON_T_INPUT |
1209	HWMON_T_MAX | HWMON_T_MIN |
1210	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1211	HWMON_T_CRIT | HWMON_T_LCRIT |
1212	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1213	HWMON_T_LABEL,
1214	0,
1215};
1216
1217static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1218	.type = hwmon_temp,
1219	.config = sfp_hwmon_temp_config,
1220};
1221
1222static u32 sfp_hwmon_vcc_config[] = {
1223	HWMON_I_INPUT |
1224	HWMON_I_MAX | HWMON_I_MIN |
1225	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1226	HWMON_I_CRIT | HWMON_I_LCRIT |
1227	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1228	HWMON_I_LABEL,
1229	0,
1230};
1231
1232static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1233	.type = hwmon_in,
1234	.config = sfp_hwmon_vcc_config,
1235};
1236
1237static u32 sfp_hwmon_bias_config[] = {
1238	HWMON_C_INPUT |
1239	HWMON_C_MAX | HWMON_C_MIN |
1240	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1241	HWMON_C_CRIT | HWMON_C_LCRIT |
1242	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1243	HWMON_C_LABEL,
1244	0,
1245};
1246
1247static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1248	.type = hwmon_curr,
1249	.config = sfp_hwmon_bias_config,
1250};
1251
1252static u32 sfp_hwmon_power_config[] = {
1253	/* Transmit power */
1254	HWMON_P_INPUT |
1255	HWMON_P_MAX | HWMON_P_MIN |
1256	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1257	HWMON_P_CRIT | HWMON_P_LCRIT |
1258	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1259	HWMON_P_LABEL,
1260	/* Receive power */
1261	HWMON_P_INPUT |
1262	HWMON_P_MAX | HWMON_P_MIN |
1263	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1264	HWMON_P_CRIT | HWMON_P_LCRIT |
1265	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1266	HWMON_P_LABEL,
1267	0,
1268};
1269
1270static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1271	.type = hwmon_power,
1272	.config = sfp_hwmon_power_config,
1273};
1274
1275static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1276	&sfp_hwmon_chip,
1277	&sfp_hwmon_vcc_channel_info,
1278	&sfp_hwmon_temp_channel_info,
1279	&sfp_hwmon_bias_channel_info,
1280	&sfp_hwmon_power_channel_info,
1281	NULL,
1282};
1283
1284static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1285	.ops = &sfp_hwmon_ops,
1286	.info = sfp_hwmon_info,
1287};
1288
1289static void sfp_hwmon_probe(struct work_struct *work)
1290{
1291	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1292	int err, i;
1293
1294	/* hwmon interface needs to access 16bit registers in atomic way to
1295	 * guarantee coherency of the diagnostic monitoring data. If it is not
1296	 * possible to guarantee coherency because EEPROM is broken in such way
1297	 * that does not support atomic 16bit read operation then we have to
1298	 * skip registration of hwmon device.
1299	 */
1300	if (sfp->i2c_block_size < 2) {
1301		dev_info(sfp->dev,
1302			 "skipping hwmon device registration due to broken EEPROM\n");
1303		dev_info(sfp->dev,
1304			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1305		return;
1306	}
1307
1308	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1309	if (err < 0) {
1310		if (sfp->hwmon_tries--) {
1311			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1312					 T_PROBE_RETRY_SLOW);
1313		} else {
1314			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1315		}
1316		return;
1317	}
1318
1319	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1320	if (!sfp->hwmon_name) {
1321		dev_err(sfp->dev, "out of memory for hwmon name\n");
1322		return;
1323	}
1324
1325	for (i = 0; sfp->hwmon_name[i]; i++)
1326		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1327			sfp->hwmon_name[i] = '_';
1328
1329	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1330							 sfp->hwmon_name, sfp,
1331							 &sfp_hwmon_chip_info,
1332							 NULL);
1333	if (IS_ERR(sfp->hwmon_dev))
1334		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1335			PTR_ERR(sfp->hwmon_dev));
1336}
1337
1338static int sfp_hwmon_insert(struct sfp *sfp)
1339{
1340	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1341		return 0;
1342
1343	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1344		return 0;
1345
1346	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1347		/* This driver in general does not support address
1348		 * change.
1349		 */
1350		return 0;
1351
1352	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1353	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1354
1355	return 0;
1356}
1357
1358static void sfp_hwmon_remove(struct sfp *sfp)
1359{
1360	cancel_delayed_work_sync(&sfp->hwmon_probe);
1361	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1362		hwmon_device_unregister(sfp->hwmon_dev);
1363		sfp->hwmon_dev = NULL;
1364		kfree(sfp->hwmon_name);
1365	}
1366}
1367
1368static int sfp_hwmon_init(struct sfp *sfp)
1369{
1370	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1371
1372	return 0;
1373}
1374
1375static void sfp_hwmon_exit(struct sfp *sfp)
1376{
1377	cancel_delayed_work_sync(&sfp->hwmon_probe);
1378}
1379#else
1380static int sfp_hwmon_insert(struct sfp *sfp)
1381{
1382	return 0;
1383}
1384
1385static void sfp_hwmon_remove(struct sfp *sfp)
1386{
1387}
1388
1389static int sfp_hwmon_init(struct sfp *sfp)
1390{
1391	return 0;
1392}
1393
1394static void sfp_hwmon_exit(struct sfp *sfp)
1395{
1396}
1397#endif
1398
1399/* Helpers */
1400static void sfp_module_tx_disable(struct sfp *sfp)
1401{
1402	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1403		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1404	sfp->state |= SFP_F_TX_DISABLE;
1405	sfp_set_state(sfp, sfp->state);
1406}
1407
1408static void sfp_module_tx_enable(struct sfp *sfp)
1409{
1410	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1411		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1412	sfp->state &= ~SFP_F_TX_DISABLE;
1413	sfp_set_state(sfp, sfp->state);
1414}
1415
1416#if IS_ENABLED(CONFIG_DEBUG_FS)
1417static int sfp_debug_state_show(struct seq_file *s, void *data)
1418{
1419	struct sfp *sfp = s->private;
1420
1421	seq_printf(s, "Module state: %s\n",
1422		   mod_state_to_str(sfp->sm_mod_state));
1423	seq_printf(s, "Module probe attempts: %d %d\n",
1424		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1425		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1426	seq_printf(s, "Device state: %s\n",
1427		   dev_state_to_str(sfp->sm_dev_state));
1428	seq_printf(s, "Main state: %s\n",
1429		   sm_state_to_str(sfp->sm_state));
1430	seq_printf(s, "Fault recovery remaining retries: %d\n",
1431		   sfp->sm_fault_retries);
1432	seq_printf(s, "PHY probe remaining retries: %d\n",
1433		   sfp->sm_phy_retries);
1434	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1435	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1436	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1437	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1438	return 0;
1439}
1440DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1441
1442static void sfp_debugfs_init(struct sfp *sfp)
1443{
1444	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1445
1446	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1447			    &sfp_debug_state_fops);
1448}
1449
1450static void sfp_debugfs_exit(struct sfp *sfp)
1451{
1452	debugfs_remove_recursive(sfp->debugfs_dir);
1453}
1454#else
1455static void sfp_debugfs_init(struct sfp *sfp)
1456{
1457}
1458
1459static void sfp_debugfs_exit(struct sfp *sfp)
1460{
1461}
1462#endif
1463
1464static void sfp_module_tx_fault_reset(struct sfp *sfp)
1465{
1466	unsigned int state = sfp->state;
1467
1468	if (state & SFP_F_TX_DISABLE)
1469		return;
1470
1471	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1472
1473	udelay(T_RESET_US);
1474
1475	sfp_set_state(sfp, state);
1476}
1477
1478/* SFP state machine */
1479static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1480{
1481	if (timeout)
1482		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1483				 timeout);
1484	else
1485		cancel_delayed_work(&sfp->timeout);
1486}
1487
1488static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1489			unsigned int timeout)
1490{
1491	sfp->sm_state = state;
1492	sfp_sm_set_timer(sfp, timeout);
1493}
1494
1495static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1496			    unsigned int timeout)
1497{
1498	sfp->sm_mod_state = state;
1499	sfp_sm_set_timer(sfp, timeout);
1500}
1501
1502static void sfp_sm_phy_detach(struct sfp *sfp)
1503{
 
1504	sfp_remove_phy(sfp->sfp_bus);
1505	phy_device_remove(sfp->mod_phy);
1506	phy_device_free(sfp->mod_phy);
1507	sfp->mod_phy = NULL;
1508}
1509
1510static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1511{
1512	struct phy_device *phy;
1513	int err;
1514
1515	phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1516	if (phy == ERR_PTR(-ENODEV))
1517		return PTR_ERR(phy);
 
 
 
 
1518	if (IS_ERR(phy)) {
1519		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1520		return PTR_ERR(phy);
1521	}
1522
1523	err = phy_device_register(phy);
1524	if (err) {
1525		phy_device_free(phy);
1526		dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1527		return err;
1528	}
1529
1530	err = sfp_add_phy(sfp->sfp_bus, phy);
1531	if (err) {
1532		phy_device_remove(phy);
1533		phy_device_free(phy);
1534		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1535		return err;
1536	}
1537
1538	sfp->mod_phy = phy;
1539
1540	return 0;
1541}
1542
1543static void sfp_sm_link_up(struct sfp *sfp)
1544{
1545	sfp_link_up(sfp->sfp_bus);
1546	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1547}
1548
1549static void sfp_sm_link_down(struct sfp *sfp)
1550{
1551	sfp_link_down(sfp->sfp_bus);
1552}
1553
1554static void sfp_sm_link_check_los(struct sfp *sfp)
1555{
1556	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1557	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1558	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1559	bool los = false;
1560
1561	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1562	 * are set, we assume that no LOS signal is available. If both are
1563	 * set, we assume LOS is not implemented (and is meaningless.)
1564	 */
1565	if (los_options == los_inverted)
1566		los = !(sfp->state & SFP_F_LOS);
1567	else if (los_options == los_normal)
1568		los = !!(sfp->state & SFP_F_LOS);
1569
1570	if (los)
1571		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1572	else
1573		sfp_sm_link_up(sfp);
1574}
1575
1576static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1577{
1578	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1579	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1580	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1581
1582	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1583	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1584}
1585
1586static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1587{
1588	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1589	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1590	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1591
1592	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1593	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1594}
1595
1596static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1597{
1598	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1599		dev_err(sfp->dev,
1600			"module persistently indicates fault, disabling\n");
1601		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1602	} else {
1603		if (warn)
1604			dev_err(sfp->dev, "module transmit fault indicated\n");
1605
1606		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1607	}
1608}
1609
1610/* Probe a SFP for a PHY device if the module supports copper - the PHY
1611 * normally sits at I2C bus address 0x56, and may either be a clause 22
1612 * or clause 45 PHY.
1613 *
1614 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1615 * negotiation enabled, but some may be in 1000base-X - which is for the
1616 * PHY driver to determine.
1617 *
1618 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1619 * mode according to the negotiated line speed.
1620 */
1621static int sfp_sm_probe_for_phy(struct sfp *sfp)
1622{
1623	int err = 0;
1624
1625	switch (sfp->id.base.extended_cc) {
1626	case SFF8024_ECC_10GBASE_T_SFI:
1627	case SFF8024_ECC_10GBASE_T_SR:
1628	case SFF8024_ECC_5GBASE_T:
1629	case SFF8024_ECC_2_5GBASE_T:
1630		err = sfp_sm_probe_phy(sfp, true);
1631		break;
1632
1633	default:
1634		if (sfp->id.base.e1000_base_t)
1635			err = sfp_sm_probe_phy(sfp, false);
1636		break;
1637	}
1638	return err;
 
 
 
 
 
 
 
1639}
1640
1641static int sfp_module_parse_power(struct sfp *sfp)
1642{
1643	u32 power_mW = 1000;
 
 
1644
 
1645	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1646		power_mW = 1500;
1647	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1648		power_mW = 2000;
1649
1650	if (power_mW > sfp->max_power_mW) {
1651		/* Module power specification exceeds the allowed maximum. */
1652		if (sfp->id.ext.sff8472_compliance ==
1653			SFP_SFF8472_COMPLIANCE_NONE &&
1654		    !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1655			/* The module appears not to implement bus address
1656			 * 0xa2, so assume that the module powers up in the
1657			 * indicated mode.
1658			 */
1659			dev_err(sfp->dev,
1660				"Host does not support %u.%uW modules\n",
1661				power_mW / 1000, (power_mW / 100) % 10);
1662			return -EINVAL;
1663		} else {
1664			dev_warn(sfp->dev,
1665				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1666				 power_mW / 1000, (power_mW / 100) % 10);
1667			return 0;
1668		}
 
1669	}
1670
1671	/* If the module requires a higher power mode, but also requires
1672	 * an address change sequence, warn the user that the module may
1673	 * not be functional.
1674	 */
1675	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1676		dev_warn(sfp->dev,
1677			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1678			 power_mW / 1000, (power_mW / 100) % 10);
1679		return 0;
1680	}
1681
1682	sfp->module_power_mW = power_mW;
1683
1684	return 0;
1685}
1686
1687static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1688{
1689	u8 val;
1690	int err;
1691
1692	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1693	if (err != sizeof(val)) {
1694		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1695		return -EAGAIN;
 
1696	}
1697
1698	/* DM7052 reports as a high power module, responds to reads (with
1699	 * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1700	 * if the bit is already set, we're already in high power mode.
1701	 */
1702	if (!!(val & BIT(0)) == enable)
1703		return 0;
1704
1705	if (enable)
1706		val |= BIT(0);
1707	else
1708		val &= ~BIT(0);
1709
1710	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1711	if (err != sizeof(val)) {
1712		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1713		return -EAGAIN;
 
1714	}
1715
1716	if (enable)
1717		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1718			 sfp->module_power_mW / 1000,
1719			 (sfp->module_power_mW / 100) % 10);
1720
1721	return 0;
 
1722}
1723
1724/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1725 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1726 * not support multibyte reads from the EEPROM. Each multi-byte read
1727 * operation returns just one byte of EEPROM followed by zeros. There is
1728 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1729 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1730 * name and vendor id into EEPROM, so there is even no way to detect if
1731 * module is V-SOL V2801F. Therefore check for those zeros in the read
1732 * data and then based on check switch to reading EEPROM to one byte
1733 * at a time.
1734 */
1735static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1736{
1737	size_t i, block_size = sfp->i2c_block_size;
1738
1739	/* Already using byte IO */
1740	if (block_size == 1)
1741		return false;
1742
1743	for (i = 1; i < len; i += block_size) {
1744		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1745			return false;
1746	}
1747	return true;
1748}
1749
1750static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1751{
1752	u8 check;
1753	int err;
1754
1755	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1756	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1757	    id->base.connector != SFF8024_CONNECTOR_LC) {
1758		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1759		id->base.phys_id = SFF8024_ID_SFF_8472;
1760		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1761		id->base.connector = SFF8024_CONNECTOR_LC;
1762		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1763		if (err != 3) {
1764			dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1765			return err;
1766		}
1767
1768		/* Cotsworks modules have been found to require a delay between write operations. */
1769		mdelay(50);
1770
1771		/* Update base structure checksum */
1772		check = sfp_check(&id->base, sizeof(id->base) - 1);
1773		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1774		if (err != 1) {
1775			dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1776			return err;
1777		}
1778	}
1779	return 0;
1780}
1781
1782static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1783{
1784	/* SFP module inserted - read I2C data */
1785	struct sfp_eeprom_id id;
1786	bool cotsworks_sfbg;
1787	bool cotsworks;
1788	u8 check;
1789	int ret;
1790
1791	/* Some SFP modules and also some Linux I2C drivers do not like reads
1792	 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1793	 * a time.
1794	 */
1795	sfp->i2c_block_size = 16;
1796
1797	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1798	if (ret < 0) {
1799		if (report)
1800			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1801		return -EAGAIN;
1802	}
1803
1804	if (ret != sizeof(id.base)) {
1805		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1806		return -EAGAIN;
1807	}
1808
1809	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1810	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1811	 * that EEPROM supports atomic 16bit read operation for diagnostic
1812	 * fields, so do not switch to one byte reading at a time unless it
1813	 * is really required and we have no other option.
1814	 */
1815	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1816		dev_info(sfp->dev,
1817			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1818		dev_info(sfp->dev,
1819			 "Switching to reading EEPROM to one byte at a time\n");
1820		sfp->i2c_block_size = 1;
1821
1822		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1823		if (ret < 0) {
1824			if (report)
1825				dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1826					ret);
1827			return -EAGAIN;
1828		}
1829
1830		if (ret != sizeof(id.base)) {
1831			dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1832			return -EAGAIN;
1833		}
1834	}
1835
1836	/* Cotsworks do not seem to update the checksums when they
1837	 * do the final programming with the final module part number,
1838	 * serial number and date code.
1839	 */
1840	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1841	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1842
1843	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
1844	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1845	 * Cotsworks PN matches and bytes are not correct.
1846	 */
1847	if (cotsworks && cotsworks_sfbg) {
1848		ret = sfp_cotsworks_fixup_check(sfp, &id);
1849		if (ret < 0)
1850			return ret;
1851	}
1852
1853	/* Validate the checksum over the base structure */
1854	check = sfp_check(&id.base, sizeof(id.base) - 1);
1855	if (check != id.base.cc_base) {
1856		if (cotsworks) {
1857			dev_warn(sfp->dev,
1858				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1859				 check, id.base.cc_base);
1860		} else {
1861			dev_err(sfp->dev,
1862				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1863				check, id.base.cc_base);
1864			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1865				       16, 1, &id, sizeof(id), true);
1866			return -EINVAL;
1867		}
1868	}
1869
1870	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1871	if (ret < 0) {
1872		if (report)
1873			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1874		return -EAGAIN;
1875	}
1876
1877	if (ret != sizeof(id.ext)) {
1878		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1879		return -EAGAIN;
1880	}
1881
1882	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1883	if (check != id.ext.cc_ext) {
1884		if (cotsworks) {
1885			dev_warn(sfp->dev,
1886				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1887				 check, id.ext.cc_ext);
1888		} else {
1889			dev_err(sfp->dev,
1890				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1891				check, id.ext.cc_ext);
1892			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1893				       16, 1, &id, sizeof(id), true);
1894			memset(&id.ext, 0, sizeof(id.ext));
1895		}
1896	}
1897
1898	sfp->id = id;
1899
1900	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1901		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1902		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1903		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1904		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1905		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1906
1907	/* Check whether we support this module */
1908	if (!sfp->type->module_supported(&id)) {
1909		dev_err(sfp->dev,
1910			"module is not supported - phys id 0x%02x 0x%02x\n",
1911			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1912		return -EINVAL;
1913	}
1914
1915	/* If the module requires address swap mode, warn about it */
1916	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1917		dev_warn(sfp->dev,
1918			 "module address swap to access page 0xA2 is not supported.\n");
1919
1920	/* Parse the module power requirement */
1921	ret = sfp_module_parse_power(sfp);
1922	if (ret < 0)
1923		return ret;
1924
1925	if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1926	    !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1927		sfp->module_t_start_up = T_START_UP_BAD_GPON;
1928	else
1929		sfp->module_t_start_up = T_START_UP;
1930
1931	return 0;
1932}
1933
1934static void sfp_sm_mod_remove(struct sfp *sfp)
1935{
1936	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1937		sfp_module_remove(sfp->sfp_bus);
1938
1939	sfp_hwmon_remove(sfp);
1940
 
 
 
 
 
1941	memset(&sfp->id, 0, sizeof(sfp->id));
1942	sfp->module_power_mW = 0;
1943
1944	dev_info(sfp->dev, "module removed\n");
1945}
1946
1947/* This state machine tracks the upstream's state */
1948static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1949{
1950	switch (sfp->sm_dev_state) {
1951	default:
1952		if (event == SFP_E_DEV_ATTACH)
1953			sfp->sm_dev_state = SFP_DEV_DOWN;
1954		break;
1955
1956	case SFP_DEV_DOWN:
1957		if (event == SFP_E_DEV_DETACH)
1958			sfp->sm_dev_state = SFP_DEV_DETACHED;
1959		else if (event == SFP_E_DEV_UP)
1960			sfp->sm_dev_state = SFP_DEV_UP;
1961		break;
1962
1963	case SFP_DEV_UP:
1964		if (event == SFP_E_DEV_DETACH)
1965			sfp->sm_dev_state = SFP_DEV_DETACHED;
1966		else if (event == SFP_E_DEV_DOWN)
1967			sfp->sm_dev_state = SFP_DEV_DOWN;
1968		break;
1969	}
1970}
1971
1972/* This state machine tracks the insert/remove state of the module, probes
1973 * the on-board EEPROM, and sets up the power level.
1974 */
1975static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1976{
1977	int err;
1978
1979	/* Handle remove event globally, it resets this state machine */
1980	if (event == SFP_E_REMOVE) {
1981		if (sfp->sm_mod_state > SFP_MOD_PROBE)
1982			sfp_sm_mod_remove(sfp);
1983		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1984		return;
1985	}
1986
1987	/* Handle device detach globally */
1988	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1989	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1990		if (sfp->module_power_mW > 1000 &&
1991		    sfp->sm_mod_state > SFP_MOD_HPOWER)
1992			sfp_sm_mod_hpower(sfp, false);
1993		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1994		return;
1995	}
1996
 
 
 
1997	switch (sfp->sm_mod_state) {
1998	default:
1999		if (event == SFP_E_INSERT) {
2000			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2001			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2002			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2003		}
2004		break;
2005
2006	case SFP_MOD_PROBE:
2007		/* Wait for T_PROBE_INIT to time out */
2008		if (event != SFP_E_TIMEOUT)
2009			break;
2010
2011		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2012		if (err == -EAGAIN) {
2013			if (sfp->sm_mod_tries_init &&
2014			   --sfp->sm_mod_tries_init) {
2015				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2016				break;
2017			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2018				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2019					dev_warn(sfp->dev,
2020						 "please wait, module slow to respond\n");
2021				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2022				break;
2023			}
2024		}
2025		if (err < 0) {
2026			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2027			break;
2028		}
 
2029
2030		err = sfp_hwmon_insert(sfp);
2031		if (err)
2032			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
2033
2034		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2035		fallthrough;
2036	case SFP_MOD_WAITDEV:
2037		/* Ensure that the device is attached before proceeding */
2038		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2039			break;
2040
2041		/* Report the module insertion to the upstream device */
2042		err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2043		if (err < 0) {
2044			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2045			break;
2046		}
2047
2048		/* If this is a power level 1 module, we are done */
2049		if (sfp->module_power_mW <= 1000)
2050			goto insert;
2051
2052		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2053		fallthrough;
2054	case SFP_MOD_HPOWER:
2055		/* Enable high power mode */
2056		err = sfp_sm_mod_hpower(sfp, true);
2057		if (err < 0) {
2058			if (err != -EAGAIN) {
2059				sfp_module_remove(sfp->sfp_bus);
2060				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2061			} else {
2062				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2063			}
2064			break;
2065		}
2066
2067		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2068		break;
 
2069
2070	case SFP_MOD_WAITPWR:
2071		/* Wait for T_HPOWER_LEVEL to time out */
2072		if (event != SFP_E_TIMEOUT)
2073			break;
2074
2075	insert:
2076		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2077		break;
2078
2079	case SFP_MOD_PRESENT:
2080	case SFP_MOD_ERROR:
 
 
 
 
 
 
 
 
2081		break;
2082	}
2083}
2084
2085static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2086{
2087	unsigned long timeout;
2088	int ret;
2089
2090	/* Some events are global */
2091	if (sfp->sm_state != SFP_S_DOWN &&
2092	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2093	     sfp->sm_dev_state != SFP_DEV_UP)) {
2094		if (sfp->sm_state == SFP_S_LINK_UP &&
2095		    sfp->sm_dev_state == SFP_DEV_UP)
2096			sfp_sm_link_down(sfp);
2097		if (sfp->sm_state > SFP_S_INIT)
2098			sfp_module_stop(sfp->sfp_bus);
2099		if (sfp->mod_phy)
2100			sfp_sm_phy_detach(sfp);
2101		sfp_module_tx_disable(sfp);
2102		sfp_soft_stop_poll(sfp);
2103		sfp_sm_next(sfp, SFP_S_DOWN, 0);
 
2104		return;
2105	}
2106
2107	/* The main state machine */
2108	switch (sfp->sm_state) {
2109	case SFP_S_DOWN:
2110		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2111		    sfp->sm_dev_state != SFP_DEV_UP)
2112			break;
2113
2114		if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2115			sfp_soft_start_poll(sfp);
2116
2117		sfp_module_tx_enable(sfp);
2118
2119		/* Initialise the fault clearance retries */
2120		sfp->sm_fault_retries = N_FAULT_INIT;
2121
2122		/* We need to check the TX_FAULT state, which is not defined
2123		 * while TX_DISABLE is asserted. The earliest we want to do
2124		 * anything (such as probe for a PHY) is 50ms.
2125		 */
2126		sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2127		break;
2128
2129	case SFP_S_WAIT:
2130		if (event != SFP_E_TIMEOUT)
2131			break;
2132
2133		if (sfp->state & SFP_F_TX_FAULT) {
2134			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2135			 * from the TX_DISABLE deassertion for the module to
2136			 * initialise, which is indicated by TX_FAULT
2137			 * deasserting.
2138			 */
2139			timeout = sfp->module_t_start_up;
2140			if (timeout > T_WAIT)
2141				timeout -= T_WAIT;
2142			else
2143				timeout = 1;
2144
2145			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2146		} else {
2147			/* TX_FAULT is not asserted, assume the module has
2148			 * finished initialising.
2149			 */
2150			goto init_done;
2151		}
2152		break;
2153
2154	case SFP_S_INIT:
2155		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2156			/* TX_FAULT is still asserted after t_init
2157			 * or t_start_up, so assume there is a fault.
2158			 */
2159			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2160				     sfp->sm_fault_retries == N_FAULT_INIT);
2161		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2162	init_done:
2163			sfp->sm_phy_retries = R_PHY_RETRY;
2164			goto phy_probe;
2165		}
2166		break;
2167
2168	case SFP_S_INIT_PHY:
2169		if (event != SFP_E_TIMEOUT)
2170			break;
2171	phy_probe:
2172		/* TX_FAULT deasserted or we timed out with TX_FAULT
2173		 * clear.  Probe for the PHY and check the LOS state.
2174		 */
2175		ret = sfp_sm_probe_for_phy(sfp);
2176		if (ret == -ENODEV) {
2177			if (--sfp->sm_phy_retries) {
2178				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2179				break;
2180			} else {
2181				dev_info(sfp->dev, "no PHY detected\n");
2182			}
2183		} else if (ret) {
2184			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2185			break;
2186		}
2187		if (sfp_module_start(sfp->sfp_bus)) {
2188			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2189			break;
2190		}
2191		sfp_sm_link_check_los(sfp);
2192
2193		/* Reset the fault retry count */
2194		sfp->sm_fault_retries = N_FAULT;
2195		break;
2196
2197	case SFP_S_INIT_TX_FAULT:
2198		if (event == SFP_E_TIMEOUT) {
2199			sfp_module_tx_fault_reset(sfp);
2200			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2201		}
2202		break;
2203
2204	case SFP_S_WAIT_LOS:
2205		if (event == SFP_E_TX_FAULT)
2206			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2207		else if (sfp_los_event_inactive(sfp, event))
2208			sfp_sm_link_up(sfp);
2209		break;
2210
2211	case SFP_S_LINK_UP:
2212		if (event == SFP_E_TX_FAULT) {
2213			sfp_sm_link_down(sfp);
2214			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2215		} else if (sfp_los_event_active(sfp, event)) {
2216			sfp_sm_link_down(sfp);
2217			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2218		}
2219		break;
2220
2221	case SFP_S_TX_FAULT:
2222		if (event == SFP_E_TIMEOUT) {
2223			sfp_module_tx_fault_reset(sfp);
2224			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2225		}
2226		break;
2227
2228	case SFP_S_REINIT:
2229		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2230			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2231		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2232			dev_info(sfp->dev, "module transmit fault recovered\n");
2233			sfp_sm_link_check_los(sfp);
2234		}
2235		break;
2236
2237	case SFP_S_TX_DISABLE:
2238		break;
2239	}
2240}
2241
2242static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2243{
2244	mutex_lock(&sfp->sm_mutex);
2245
2246	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2247		mod_state_to_str(sfp->sm_mod_state),
2248		dev_state_to_str(sfp->sm_dev_state),
2249		sm_state_to_str(sfp->sm_state),
2250		event_to_str(event));
2251
2252	sfp_sm_device(sfp, event);
2253	sfp_sm_module(sfp, event);
2254	sfp_sm_main(sfp, event);
2255
2256	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2257		mod_state_to_str(sfp->sm_mod_state),
2258		dev_state_to_str(sfp->sm_dev_state),
2259		sm_state_to_str(sfp->sm_state));
2260
2261	mutex_unlock(&sfp->sm_mutex);
2262}
2263
2264static void sfp_attach(struct sfp *sfp)
2265{
2266	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
 
 
2267}
2268
2269static void sfp_detach(struct sfp *sfp)
2270{
2271	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
 
2272}
2273
2274static void sfp_start(struct sfp *sfp)
2275{
2276	sfp_sm_event(sfp, SFP_E_DEV_UP);
2277}
2278
2279static void sfp_stop(struct sfp *sfp)
2280{
2281	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2282}
2283
2284static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2285{
2286	/* locking... and check module is present */
2287
2288	if (sfp->id.ext.sff8472_compliance &&
2289	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2290		modinfo->type = ETH_MODULE_SFF_8472;
2291		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2292	} else {
2293		modinfo->type = ETH_MODULE_SFF_8079;
2294		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2295	}
2296	return 0;
2297}
2298
2299static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2300			     u8 *data)
2301{
2302	unsigned int first, last, len;
2303	int ret;
2304
2305	if (ee->len == 0)
2306		return -EINVAL;
2307
2308	first = ee->offset;
2309	last = ee->offset + ee->len;
2310	if (first < ETH_MODULE_SFF_8079_LEN) {
2311		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2312		len -= first;
2313
2314		ret = sfp_read(sfp, false, first, data, len);
2315		if (ret < 0)
2316			return ret;
2317
2318		first += len;
2319		data += len;
2320	}
2321	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2322		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2323		len -= first;
2324		first -= ETH_MODULE_SFF_8079_LEN;
2325
2326		ret = sfp_read(sfp, true, first, data, len);
2327		if (ret < 0)
2328			return ret;
2329	}
2330	return 0;
2331}
2332
2333static int sfp_module_eeprom_by_page(struct sfp *sfp,
2334				     const struct ethtool_module_eeprom *page,
2335				     struct netlink_ext_ack *extack)
2336{
2337	if (page->bank) {
2338		NL_SET_ERR_MSG(extack, "Banks not supported");
2339		return -EOPNOTSUPP;
2340	}
2341
2342	if (page->page) {
2343		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2344		return -EOPNOTSUPP;
2345	}
2346
2347	if (page->i2c_address != 0x50 &&
2348	    page->i2c_address != 0x51) {
2349		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2350		return -EOPNOTSUPP;
2351	}
2352
2353	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2354			page->data, page->length);
2355};
2356
2357static const struct sfp_socket_ops sfp_module_ops = {
2358	.attach = sfp_attach,
2359	.detach = sfp_detach,
2360	.start = sfp_start,
2361	.stop = sfp_stop,
2362	.module_info = sfp_module_info,
2363	.module_eeprom = sfp_module_eeprom,
2364	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2365};
2366
2367static void sfp_timeout(struct work_struct *work)
2368{
2369	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2370
2371	rtnl_lock();
2372	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2373	rtnl_unlock();
2374}
2375
2376static void sfp_check_state(struct sfp *sfp)
2377{
2378	unsigned int state, i, changed;
2379
2380	mutex_lock(&sfp->st_mutex);
2381	state = sfp_get_state(sfp);
2382	changed = state ^ sfp->state;
2383	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2384
2385	for (i = 0; i < GPIO_MAX; i++)
2386		if (changed & BIT(i))
2387			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2388				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2389
2390	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2391	sfp->state = state;
2392
2393	rtnl_lock();
2394	if (changed & SFP_F_PRESENT)
2395		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2396				SFP_E_INSERT : SFP_E_REMOVE);
2397
2398	if (changed & SFP_F_TX_FAULT)
2399		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2400				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2401
2402	if (changed & SFP_F_LOS)
2403		sfp_sm_event(sfp, state & SFP_F_LOS ?
2404				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2405	rtnl_unlock();
2406	mutex_unlock(&sfp->st_mutex);
2407}
2408
2409static irqreturn_t sfp_irq(int irq, void *data)
2410{
2411	struct sfp *sfp = data;
2412
2413	sfp_check_state(sfp);
2414
2415	return IRQ_HANDLED;
2416}
2417
2418static void sfp_poll(struct work_struct *work)
2419{
2420	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2421
2422	sfp_check_state(sfp);
2423
2424	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2425	    sfp->need_poll)
2426		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2427}
2428
2429static struct sfp *sfp_alloc(struct device *dev)
2430{
2431	struct sfp *sfp;
2432
2433	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2434	if (!sfp)
2435		return ERR_PTR(-ENOMEM);
2436
2437	sfp->dev = dev;
2438
2439	mutex_init(&sfp->sm_mutex);
2440	mutex_init(&sfp->st_mutex);
2441	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2442	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2443
2444	sfp_hwmon_init(sfp);
2445
2446	return sfp;
2447}
2448
2449static void sfp_cleanup(void *data)
2450{
2451	struct sfp *sfp = data;
2452
2453	sfp_hwmon_exit(sfp);
2454
2455	cancel_delayed_work_sync(&sfp->poll);
2456	cancel_delayed_work_sync(&sfp->timeout);
2457	if (sfp->i2c_mii) {
2458		mdiobus_unregister(sfp->i2c_mii);
2459		mdiobus_free(sfp->i2c_mii);
2460	}
2461	if (sfp->i2c)
2462		i2c_put_adapter(sfp->i2c);
2463	kfree(sfp);
2464}
2465
2466static int sfp_probe(struct platform_device *pdev)
2467{
2468	const struct sff_data *sff;
2469	struct i2c_adapter *i2c;
2470	char *sfp_irq_name;
2471	struct sfp *sfp;
 
2472	int err, i;
2473
2474	sfp = sfp_alloc(&pdev->dev);
2475	if (IS_ERR(sfp))
2476		return PTR_ERR(sfp);
2477
2478	platform_set_drvdata(pdev, sfp);
2479
2480	err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2481	if (err < 0)
2482		return err;
2483
2484	sff = sfp->type = &sfp_data;
2485
2486	if (pdev->dev.of_node) {
2487		struct device_node *node = pdev->dev.of_node;
2488		const struct of_device_id *id;
2489		struct device_node *np;
2490
2491		id = of_match_node(sfp_of_match, node);
2492		if (WARN_ON(!id))
2493			return -EINVAL;
2494
2495		sff = sfp->type = id->data;
2496
2497		np = of_parse_phandle(node, "i2c-bus", 0);
2498		if (!np) {
2499			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2500			return -ENODEV;
2501		}
2502
2503		i2c = of_find_i2c_adapter_by_node(np);
2504		of_node_put(np);
2505	} else if (has_acpi_companion(&pdev->dev)) {
2506		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2507		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2508		struct fwnode_reference_args args;
2509		struct acpi_handle *acpi_handle;
2510		int ret;
2511
2512		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2513		if (ret || !is_acpi_device_node(args.fwnode)) {
2514			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2515			return -ENODEV;
2516		}
2517
2518		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2519		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2520	} else {
2521		return -EINVAL;
2522	}
2523
2524	if (!i2c)
2525		return -EPROBE_DEFER;
2526
2527	err = sfp_i2c_configure(sfp, i2c);
2528	if (err < 0) {
2529		i2c_put_adapter(i2c);
2530		return err;
2531	}
2532
2533	for (i = 0; i < GPIO_MAX; i++)
2534		if (sff->gpios & BIT(i)) {
2535			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2536					   gpio_of_names[i], gpio_flags[i]);
2537			if (IS_ERR(sfp->gpio[i]))
2538				return PTR_ERR(sfp->gpio[i]);
2539		}
2540
2541	sfp->get_state = sfp_gpio_get_state;
2542	sfp->set_state = sfp_gpio_set_state;
2543
2544	/* Modules that have no detect signal are always present */
2545	if (!(sfp->gpio[GPIO_MODDEF0]))
2546		sfp->get_state = sff_gpio_get_state;
2547
2548	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2549				 &sfp->max_power_mW);
2550	if (!sfp->max_power_mW)
2551		sfp->max_power_mW = 1000;
2552
2553	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2554		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2555
2556	/* Get the initial state, and always signal TX disable,
2557	 * since the network interface will not be up.
2558	 */
2559	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2560
2561	if (sfp->gpio[GPIO_RATE_SELECT] &&
2562	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2563		sfp->state |= SFP_F_RATE_SELECT;
2564	sfp_set_state(sfp, sfp->state);
2565	sfp_module_tx_disable(sfp);
2566	if (sfp->state & SFP_F_PRESENT) {
2567		rtnl_lock();
2568		sfp_sm_event(sfp, SFP_E_INSERT);
2569		rtnl_unlock();
2570	}
2571
2572	for (i = 0; i < GPIO_MAX; i++) {
2573		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2574			continue;
2575
2576		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2577		if (sfp->gpio_irq[i] < 0) {
2578			sfp->gpio_irq[i] = 0;
2579			sfp->need_poll = true;
2580			continue;
2581		}
2582
2583		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2584					      "%s-%s", dev_name(sfp->dev),
2585					      gpio_of_names[i]);
2586
2587		if (!sfp_irq_name)
2588			return -ENOMEM;
2589
2590		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2591						NULL, sfp_irq,
2592						IRQF_ONESHOT |
2593						IRQF_TRIGGER_RISING |
2594						IRQF_TRIGGER_FALLING,
2595						sfp_irq_name, sfp);
2596		if (err) {
2597			sfp->gpio_irq[i] = 0;
2598			sfp->need_poll = true;
2599		}
2600	}
2601
2602	if (sfp->need_poll)
2603		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2604
2605	/* We could have an issue in cases no Tx disable pin is available or
2606	 * wired as modules using a laser as their light source will continue to
2607	 * be active when the fiber is removed. This could be a safety issue and
2608	 * we should at least warn the user about that.
2609	 */
2610	if (!sfp->gpio[GPIO_TX_DISABLE])
2611		dev_warn(sfp->dev,
2612			 "No tx_disable pin: SFP modules will always be emitting.\n");
2613
2614	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2615	if (!sfp->sfp_bus)
2616		return -ENOMEM;
2617
2618	sfp_debugfs_init(sfp);
2619
2620	return 0;
2621}
2622
2623static int sfp_remove(struct platform_device *pdev)
2624{
2625	struct sfp *sfp = platform_get_drvdata(pdev);
2626
2627	sfp_debugfs_exit(sfp);
2628	sfp_unregister_socket(sfp->sfp_bus);
2629
2630	rtnl_lock();
2631	sfp_sm_event(sfp, SFP_E_REMOVE);
2632	rtnl_unlock();
2633
2634	return 0;
2635}
2636
2637static void sfp_shutdown(struct platform_device *pdev)
2638{
2639	struct sfp *sfp = platform_get_drvdata(pdev);
2640	int i;
2641
2642	for (i = 0; i < GPIO_MAX; i++) {
2643		if (!sfp->gpio_irq[i])
2644			continue;
2645
2646		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2647	}
2648
2649	cancel_delayed_work_sync(&sfp->poll);
2650	cancel_delayed_work_sync(&sfp->timeout);
2651}
2652
2653static struct platform_driver sfp_driver = {
2654	.probe = sfp_probe,
2655	.remove = sfp_remove,
2656	.shutdown = sfp_shutdown,
2657	.driver = {
2658		.name = "sfp",
2659		.of_match_table = sfp_of_match,
2660	},
2661};
2662
2663static int sfp_init(void)
2664{
2665	poll_jiffies = msecs_to_jiffies(100);
2666
2667	return platform_driver_register(&sfp_driver);
2668}
2669module_init(sfp_init);
2670
2671static void sfp_exit(void)
2672{
2673	platform_driver_unregister(&sfp_driver);
2674}
2675module_exit(sfp_exit);
2676
2677MODULE_ALIAS("platform:sfp");
2678MODULE_AUTHOR("Russell King");
2679MODULE_LICENSE("GPL v2");