Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/acpi.h>
3#include <linux/ctype.h>
4#include <linux/delay.h>
5#include <linux/gpio/consumer.h>
6#include <linux/hwmon.h>
7#include <linux/i2c.h>
8#include <linux/interrupt.h>
9#include <linux/jiffies.h>
10#include <linux/module.h>
11#include <linux/mutex.h>
12#include <linux/of.h>
13#include <linux/phy.h>
14#include <linux/platform_device.h>
15#include <linux/rtnetlink.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18
19#include "mdio-i2c.h"
20#include "sfp.h"
21#include "swphy.h"
22
23enum {
24 GPIO_MODDEF0,
25 GPIO_LOS,
26 GPIO_TX_FAULT,
27 GPIO_TX_DISABLE,
28 GPIO_RATE_SELECT,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36
37 SFP_E_INSERT = 0,
38 SFP_E_REMOVE,
39 SFP_E_DEV_DOWN,
40 SFP_E_DEV_UP,
41 SFP_E_TX_FAULT,
42 SFP_E_TX_CLEAR,
43 SFP_E_LOS_HIGH,
44 SFP_E_LOS_LOW,
45 SFP_E_TIMEOUT,
46
47 SFP_MOD_EMPTY = 0,
48 SFP_MOD_PROBE,
49 SFP_MOD_HPOWER,
50 SFP_MOD_PRESENT,
51 SFP_MOD_ERROR,
52
53 SFP_DEV_DOWN = 0,
54 SFP_DEV_UP,
55
56 SFP_S_DOWN = 0,
57 SFP_S_INIT,
58 SFP_S_WAIT_LOS,
59 SFP_S_LINK_UP,
60 SFP_S_TX_FAULT,
61 SFP_S_REINIT,
62 SFP_S_TX_DISABLE,
63};
64
65static const char * const mod_state_strings[] = {
66 [SFP_MOD_EMPTY] = "empty",
67 [SFP_MOD_PROBE] = "probe",
68 [SFP_MOD_HPOWER] = "hpower",
69 [SFP_MOD_PRESENT] = "present",
70 [SFP_MOD_ERROR] = "error",
71};
72
73static const char *mod_state_to_str(unsigned short mod_state)
74{
75 if (mod_state >= ARRAY_SIZE(mod_state_strings))
76 return "Unknown module state";
77 return mod_state_strings[mod_state];
78}
79
80static const char * const dev_state_strings[] = {
81 [SFP_DEV_DOWN] = "down",
82 [SFP_DEV_UP] = "up",
83};
84
85static const char *dev_state_to_str(unsigned short dev_state)
86{
87 if (dev_state >= ARRAY_SIZE(dev_state_strings))
88 return "Unknown device state";
89 return dev_state_strings[dev_state];
90}
91
92static const char * const event_strings[] = {
93 [SFP_E_INSERT] = "insert",
94 [SFP_E_REMOVE] = "remove",
95 [SFP_E_DEV_DOWN] = "dev_down",
96 [SFP_E_DEV_UP] = "dev_up",
97 [SFP_E_TX_FAULT] = "tx_fault",
98 [SFP_E_TX_CLEAR] = "tx_clear",
99 [SFP_E_LOS_HIGH] = "los_high",
100 [SFP_E_LOS_LOW] = "los_low",
101 [SFP_E_TIMEOUT] = "timeout",
102};
103
104static const char *event_to_str(unsigned short event)
105{
106 if (event >= ARRAY_SIZE(event_strings))
107 return "Unknown event";
108 return event_strings[event];
109}
110
111static const char * const sm_state_strings[] = {
112 [SFP_S_DOWN] = "down",
113 [SFP_S_INIT] = "init",
114 [SFP_S_WAIT_LOS] = "wait_los",
115 [SFP_S_LINK_UP] = "link_up",
116 [SFP_S_TX_FAULT] = "tx_fault",
117 [SFP_S_REINIT] = "reinit",
118 [SFP_S_TX_DISABLE] = "rx_disable",
119};
120
121static const char *sm_state_to_str(unsigned short sm_state)
122{
123 if (sm_state >= ARRAY_SIZE(sm_state_strings))
124 return "Unknown state";
125 return sm_state_strings[sm_state];
126}
127
128static const char *gpio_of_names[] = {
129 "mod-def0",
130 "los",
131 "tx-fault",
132 "tx-disable",
133 "rate-select0",
134};
135
136static const enum gpiod_flags gpio_flags[] = {
137 GPIOD_IN,
138 GPIOD_IN,
139 GPIOD_IN,
140 GPIOD_ASIS,
141 GPIOD_ASIS,
142};
143
144#define T_INIT_JIFFIES msecs_to_jiffies(300)
145#define T_RESET_US 10
146#define T_FAULT_RECOVER msecs_to_jiffies(1000)
147
148/* SFP module presence detection is poor: the three MOD DEF signals are
149 * the same length on the PCB, which means it's possible for MOD DEF 0 to
150 * connect before the I2C bus on MOD DEF 1/2.
151 *
152 * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
153 * be deasserted) but makes no mention of the earliest time before we can
154 * access the I2C EEPROM. However, Avago modules require 300ms.
155 */
156#define T_PROBE_INIT msecs_to_jiffies(300)
157#define T_HPOWER_LEVEL msecs_to_jiffies(300)
158#define T_PROBE_RETRY msecs_to_jiffies(100)
159
160/* SFP modules appear to always have their PHY configured for bus address
161 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
162 */
163#define SFP_PHY_ADDR 22
164
165/* Give this long for the PHY to reset. */
166#define T_PHY_RESET_MS 50
167
168struct sff_data {
169 unsigned int gpios;
170 bool (*module_supported)(const struct sfp_eeprom_id *id);
171};
172
173struct sfp {
174 struct device *dev;
175 struct i2c_adapter *i2c;
176 struct mii_bus *i2c_mii;
177 struct sfp_bus *sfp_bus;
178 struct phy_device *mod_phy;
179 const struct sff_data *type;
180 u32 max_power_mW;
181
182 unsigned int (*get_state)(struct sfp *);
183 void (*set_state)(struct sfp *, unsigned int);
184 int (*read)(struct sfp *, bool, u8, void *, size_t);
185 int (*write)(struct sfp *, bool, u8, void *, size_t);
186
187 struct gpio_desc *gpio[GPIO_MAX];
188 int gpio_irq[GPIO_MAX];
189
190 bool attached;
191 struct mutex st_mutex; /* Protects state */
192 unsigned int state;
193 struct delayed_work poll;
194 struct delayed_work timeout;
195 struct mutex sm_mutex; /* Protects state machine */
196 unsigned char sm_mod_state;
197 unsigned char sm_dev_state;
198 unsigned short sm_state;
199 unsigned int sm_retries;
200
201 struct sfp_eeprom_id id;
202#if IS_ENABLED(CONFIG_HWMON)
203 struct sfp_diag diag;
204 struct device *hwmon_dev;
205 char *hwmon_name;
206#endif
207
208};
209
210static bool sff_module_supported(const struct sfp_eeprom_id *id)
211{
212 return id->base.phys_id == SFP_PHYS_ID_SFF &&
213 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
214}
215
216static const struct sff_data sff_data = {
217 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
218 .module_supported = sff_module_supported,
219};
220
221static bool sfp_module_supported(const struct sfp_eeprom_id *id)
222{
223 return id->base.phys_id == SFP_PHYS_ID_SFP &&
224 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
225}
226
227static const struct sff_data sfp_data = {
228 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
229 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
230 .module_supported = sfp_module_supported,
231};
232
233static const struct of_device_id sfp_of_match[] = {
234 { .compatible = "sff,sff", .data = &sff_data, },
235 { .compatible = "sff,sfp", .data = &sfp_data, },
236 { },
237};
238MODULE_DEVICE_TABLE(of, sfp_of_match);
239
240static unsigned long poll_jiffies;
241
242static unsigned int sfp_gpio_get_state(struct sfp *sfp)
243{
244 unsigned int i, state, v;
245
246 for (i = state = 0; i < GPIO_MAX; i++) {
247 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
248 continue;
249
250 v = gpiod_get_value_cansleep(sfp->gpio[i]);
251 if (v)
252 state |= BIT(i);
253 }
254
255 return state;
256}
257
258static unsigned int sff_gpio_get_state(struct sfp *sfp)
259{
260 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
261}
262
263static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
264{
265 if (state & SFP_F_PRESENT) {
266 /* If the module is present, drive the signals */
267 if (sfp->gpio[GPIO_TX_DISABLE])
268 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
269 state & SFP_F_TX_DISABLE);
270 if (state & SFP_F_RATE_SELECT)
271 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
272 state & SFP_F_RATE_SELECT);
273 } else {
274 /* Otherwise, let them float to the pull-ups */
275 if (sfp->gpio[GPIO_TX_DISABLE])
276 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
277 if (state & SFP_F_RATE_SELECT)
278 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
279 }
280}
281
282static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
283 size_t len)
284{
285 struct i2c_msg msgs[2];
286 u8 bus_addr = a2 ? 0x51 : 0x50;
287 size_t this_len;
288 int ret;
289
290 msgs[0].addr = bus_addr;
291 msgs[0].flags = 0;
292 msgs[0].len = 1;
293 msgs[0].buf = &dev_addr;
294 msgs[1].addr = bus_addr;
295 msgs[1].flags = I2C_M_RD;
296 msgs[1].len = len;
297 msgs[1].buf = buf;
298
299 while (len) {
300 this_len = len;
301 if (this_len > 16)
302 this_len = 16;
303
304 msgs[1].len = this_len;
305
306 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
307 if (ret < 0)
308 return ret;
309
310 if (ret != ARRAY_SIZE(msgs))
311 break;
312
313 msgs[1].buf += this_len;
314 dev_addr += this_len;
315 len -= this_len;
316 }
317
318 return msgs[1].buf - (u8 *)buf;
319}
320
321static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
322 size_t len)
323{
324 struct i2c_msg msgs[1];
325 u8 bus_addr = a2 ? 0x51 : 0x50;
326 int ret;
327
328 msgs[0].addr = bus_addr;
329 msgs[0].flags = 0;
330 msgs[0].len = 1 + len;
331 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
332 if (!msgs[0].buf)
333 return -ENOMEM;
334
335 msgs[0].buf[0] = dev_addr;
336 memcpy(&msgs[0].buf[1], buf, len);
337
338 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
339
340 kfree(msgs[0].buf);
341
342 if (ret < 0)
343 return ret;
344
345 return ret == ARRAY_SIZE(msgs) ? len : 0;
346}
347
348static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
349{
350 struct mii_bus *i2c_mii;
351 int ret;
352
353 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
354 return -EINVAL;
355
356 sfp->i2c = i2c;
357 sfp->read = sfp_i2c_read;
358 sfp->write = sfp_i2c_write;
359
360 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
361 if (IS_ERR(i2c_mii))
362 return PTR_ERR(i2c_mii);
363
364 i2c_mii->name = "SFP I2C Bus";
365 i2c_mii->phy_mask = ~0;
366
367 ret = mdiobus_register(i2c_mii);
368 if (ret < 0) {
369 mdiobus_free(i2c_mii);
370 return ret;
371 }
372
373 sfp->i2c_mii = i2c_mii;
374
375 return 0;
376}
377
378/* Interface */
379static unsigned int sfp_get_state(struct sfp *sfp)
380{
381 return sfp->get_state(sfp);
382}
383
384static void sfp_set_state(struct sfp *sfp, unsigned int state)
385{
386 sfp->set_state(sfp, state);
387}
388
389static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
390{
391 return sfp->read(sfp, a2, addr, buf, len);
392}
393
394static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
395{
396 return sfp->write(sfp, a2, addr, buf, len);
397}
398
399static unsigned int sfp_check(void *buf, size_t len)
400{
401 u8 *p, check;
402
403 for (p = buf, check = 0; len; p++, len--)
404 check += *p;
405
406 return check;
407}
408
409/* hwmon */
410#if IS_ENABLED(CONFIG_HWMON)
411static umode_t sfp_hwmon_is_visible(const void *data,
412 enum hwmon_sensor_types type,
413 u32 attr, int channel)
414{
415 const struct sfp *sfp = data;
416
417 switch (type) {
418 case hwmon_temp:
419 switch (attr) {
420 case hwmon_temp_min_alarm:
421 case hwmon_temp_max_alarm:
422 case hwmon_temp_lcrit_alarm:
423 case hwmon_temp_crit_alarm:
424 case hwmon_temp_min:
425 case hwmon_temp_max:
426 case hwmon_temp_lcrit:
427 case hwmon_temp_crit:
428 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
429 return 0;
430 /* fall through */
431 case hwmon_temp_input:
432 case hwmon_temp_label:
433 return 0444;
434 default:
435 return 0;
436 }
437 case hwmon_in:
438 switch (attr) {
439 case hwmon_in_min_alarm:
440 case hwmon_in_max_alarm:
441 case hwmon_in_lcrit_alarm:
442 case hwmon_in_crit_alarm:
443 case hwmon_in_min:
444 case hwmon_in_max:
445 case hwmon_in_lcrit:
446 case hwmon_in_crit:
447 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
448 return 0;
449 /* fall through */
450 case hwmon_in_input:
451 case hwmon_in_label:
452 return 0444;
453 default:
454 return 0;
455 }
456 case hwmon_curr:
457 switch (attr) {
458 case hwmon_curr_min_alarm:
459 case hwmon_curr_max_alarm:
460 case hwmon_curr_lcrit_alarm:
461 case hwmon_curr_crit_alarm:
462 case hwmon_curr_min:
463 case hwmon_curr_max:
464 case hwmon_curr_lcrit:
465 case hwmon_curr_crit:
466 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
467 return 0;
468 /* fall through */
469 case hwmon_curr_input:
470 case hwmon_curr_label:
471 return 0444;
472 default:
473 return 0;
474 }
475 case hwmon_power:
476 /* External calibration of receive power requires
477 * floating point arithmetic. Doing that in the kernel
478 * is not easy, so just skip it. If the module does
479 * not require external calibration, we can however
480 * show receiver power, since FP is then not needed.
481 */
482 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
483 channel == 1)
484 return 0;
485 switch (attr) {
486 case hwmon_power_min_alarm:
487 case hwmon_power_max_alarm:
488 case hwmon_power_lcrit_alarm:
489 case hwmon_power_crit_alarm:
490 case hwmon_power_min:
491 case hwmon_power_max:
492 case hwmon_power_lcrit:
493 case hwmon_power_crit:
494 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
495 return 0;
496 /* fall through */
497 case hwmon_power_input:
498 case hwmon_power_label:
499 return 0444;
500 default:
501 return 0;
502 }
503 default:
504 return 0;
505 }
506}
507
508static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
509{
510 __be16 val;
511 int err;
512
513 err = sfp_read(sfp, true, reg, &val, sizeof(val));
514 if (err < 0)
515 return err;
516
517 *value = be16_to_cpu(val);
518
519 return 0;
520}
521
522static void sfp_hwmon_to_rx_power(long *value)
523{
524 *value = DIV_ROUND_CLOSEST(*value, 10);
525}
526
527static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
528 long *value)
529{
530 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
531 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
532}
533
534static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
535{
536 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
537 be16_to_cpu(sfp->diag.cal_t_offset), value);
538
539 if (*value >= 0x8000)
540 *value -= 0x10000;
541
542 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
543}
544
545static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
546{
547 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
548 be16_to_cpu(sfp->diag.cal_v_offset), value);
549
550 *value = DIV_ROUND_CLOSEST(*value, 10);
551}
552
553static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
554{
555 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
556 be16_to_cpu(sfp->diag.cal_txi_offset), value);
557
558 *value = DIV_ROUND_CLOSEST(*value, 500);
559}
560
561static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
562{
563 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
564 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
565
566 *value = DIV_ROUND_CLOSEST(*value, 10);
567}
568
569static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
570{
571 int err;
572
573 err = sfp_hwmon_read_sensor(sfp, reg, value);
574 if (err < 0)
575 return err;
576
577 sfp_hwmon_calibrate_temp(sfp, value);
578
579 return 0;
580}
581
582static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
583{
584 int err;
585
586 err = sfp_hwmon_read_sensor(sfp, reg, value);
587 if (err < 0)
588 return err;
589
590 sfp_hwmon_calibrate_vcc(sfp, value);
591
592 return 0;
593}
594
595static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
596{
597 int err;
598
599 err = sfp_hwmon_read_sensor(sfp, reg, value);
600 if (err < 0)
601 return err;
602
603 sfp_hwmon_calibrate_bias(sfp, value);
604
605 return 0;
606}
607
608static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
609{
610 int err;
611
612 err = sfp_hwmon_read_sensor(sfp, reg, value);
613 if (err < 0)
614 return err;
615
616 sfp_hwmon_calibrate_tx_power(sfp, value);
617
618 return 0;
619}
620
621static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
622{
623 int err;
624
625 err = sfp_hwmon_read_sensor(sfp, reg, value);
626 if (err < 0)
627 return err;
628
629 sfp_hwmon_to_rx_power(value);
630
631 return 0;
632}
633
634static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
635{
636 u8 status;
637 int err;
638
639 switch (attr) {
640 case hwmon_temp_input:
641 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
642
643 case hwmon_temp_lcrit:
644 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
645 sfp_hwmon_calibrate_temp(sfp, value);
646 return 0;
647
648 case hwmon_temp_min:
649 *value = be16_to_cpu(sfp->diag.temp_low_warn);
650 sfp_hwmon_calibrate_temp(sfp, value);
651 return 0;
652 case hwmon_temp_max:
653 *value = be16_to_cpu(sfp->diag.temp_high_warn);
654 sfp_hwmon_calibrate_temp(sfp, value);
655 return 0;
656
657 case hwmon_temp_crit:
658 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
659 sfp_hwmon_calibrate_temp(sfp, value);
660 return 0;
661
662 case hwmon_temp_lcrit_alarm:
663 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
664 if (err < 0)
665 return err;
666
667 *value = !!(status & SFP_ALARM0_TEMP_LOW);
668 return 0;
669
670 case hwmon_temp_min_alarm:
671 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
672 if (err < 0)
673 return err;
674
675 *value = !!(status & SFP_WARN0_TEMP_LOW);
676 return 0;
677
678 case hwmon_temp_max_alarm:
679 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
680 if (err < 0)
681 return err;
682
683 *value = !!(status & SFP_WARN0_TEMP_HIGH);
684 return 0;
685
686 case hwmon_temp_crit_alarm:
687 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
688 if (err < 0)
689 return err;
690
691 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
692 return 0;
693 default:
694 return -EOPNOTSUPP;
695 }
696
697 return -EOPNOTSUPP;
698}
699
700static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
701{
702 u8 status;
703 int err;
704
705 switch (attr) {
706 case hwmon_in_input:
707 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
708
709 case hwmon_in_lcrit:
710 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
711 sfp_hwmon_calibrate_vcc(sfp, value);
712 return 0;
713
714 case hwmon_in_min:
715 *value = be16_to_cpu(sfp->diag.volt_low_warn);
716 sfp_hwmon_calibrate_vcc(sfp, value);
717 return 0;
718
719 case hwmon_in_max:
720 *value = be16_to_cpu(sfp->diag.volt_high_warn);
721 sfp_hwmon_calibrate_vcc(sfp, value);
722 return 0;
723
724 case hwmon_in_crit:
725 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
726 sfp_hwmon_calibrate_vcc(sfp, value);
727 return 0;
728
729 case hwmon_in_lcrit_alarm:
730 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
731 if (err < 0)
732 return err;
733
734 *value = !!(status & SFP_ALARM0_VCC_LOW);
735 return 0;
736
737 case hwmon_in_min_alarm:
738 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
739 if (err < 0)
740 return err;
741
742 *value = !!(status & SFP_WARN0_VCC_LOW);
743 return 0;
744
745 case hwmon_in_max_alarm:
746 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
747 if (err < 0)
748 return err;
749
750 *value = !!(status & SFP_WARN0_VCC_HIGH);
751 return 0;
752
753 case hwmon_in_crit_alarm:
754 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
755 if (err < 0)
756 return err;
757
758 *value = !!(status & SFP_ALARM0_VCC_HIGH);
759 return 0;
760 default:
761 return -EOPNOTSUPP;
762 }
763
764 return -EOPNOTSUPP;
765}
766
767static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
768{
769 u8 status;
770 int err;
771
772 switch (attr) {
773 case hwmon_curr_input:
774 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
775
776 case hwmon_curr_lcrit:
777 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
778 sfp_hwmon_calibrate_bias(sfp, value);
779 return 0;
780
781 case hwmon_curr_min:
782 *value = be16_to_cpu(sfp->diag.bias_low_warn);
783 sfp_hwmon_calibrate_bias(sfp, value);
784 return 0;
785
786 case hwmon_curr_max:
787 *value = be16_to_cpu(sfp->diag.bias_high_warn);
788 sfp_hwmon_calibrate_bias(sfp, value);
789 return 0;
790
791 case hwmon_curr_crit:
792 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
793 sfp_hwmon_calibrate_bias(sfp, value);
794 return 0;
795
796 case hwmon_curr_lcrit_alarm:
797 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
798 if (err < 0)
799 return err;
800
801 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
802 return 0;
803
804 case hwmon_curr_min_alarm:
805 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
806 if (err < 0)
807 return err;
808
809 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
810 return 0;
811
812 case hwmon_curr_max_alarm:
813 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
814 if (err < 0)
815 return err;
816
817 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
818 return 0;
819
820 case hwmon_curr_crit_alarm:
821 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
822 if (err < 0)
823 return err;
824
825 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
826 return 0;
827 default:
828 return -EOPNOTSUPP;
829 }
830
831 return -EOPNOTSUPP;
832}
833
834static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
835{
836 u8 status;
837 int err;
838
839 switch (attr) {
840 case hwmon_power_input:
841 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
842
843 case hwmon_power_lcrit:
844 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
845 sfp_hwmon_calibrate_tx_power(sfp, value);
846 return 0;
847
848 case hwmon_power_min:
849 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
850 sfp_hwmon_calibrate_tx_power(sfp, value);
851 return 0;
852
853 case hwmon_power_max:
854 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
855 sfp_hwmon_calibrate_tx_power(sfp, value);
856 return 0;
857
858 case hwmon_power_crit:
859 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
860 sfp_hwmon_calibrate_tx_power(sfp, value);
861 return 0;
862
863 case hwmon_power_lcrit_alarm:
864 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
865 if (err < 0)
866 return err;
867
868 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
869 return 0;
870
871 case hwmon_power_min_alarm:
872 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
873 if (err < 0)
874 return err;
875
876 *value = !!(status & SFP_WARN0_TXPWR_LOW);
877 return 0;
878
879 case hwmon_power_max_alarm:
880 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
881 if (err < 0)
882 return err;
883
884 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
885 return 0;
886
887 case hwmon_power_crit_alarm:
888 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
889 if (err < 0)
890 return err;
891
892 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
893 return 0;
894 default:
895 return -EOPNOTSUPP;
896 }
897
898 return -EOPNOTSUPP;
899}
900
901static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
902{
903 u8 status;
904 int err;
905
906 switch (attr) {
907 case hwmon_power_input:
908 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
909
910 case hwmon_power_lcrit:
911 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
912 sfp_hwmon_to_rx_power(value);
913 return 0;
914
915 case hwmon_power_min:
916 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
917 sfp_hwmon_to_rx_power(value);
918 return 0;
919
920 case hwmon_power_max:
921 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
922 sfp_hwmon_to_rx_power(value);
923 return 0;
924
925 case hwmon_power_crit:
926 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
927 sfp_hwmon_to_rx_power(value);
928 return 0;
929
930 case hwmon_power_lcrit_alarm:
931 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
932 if (err < 0)
933 return err;
934
935 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
936 return 0;
937
938 case hwmon_power_min_alarm:
939 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
940 if (err < 0)
941 return err;
942
943 *value = !!(status & SFP_WARN1_RXPWR_LOW);
944 return 0;
945
946 case hwmon_power_max_alarm:
947 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
948 if (err < 0)
949 return err;
950
951 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
952 return 0;
953
954 case hwmon_power_crit_alarm:
955 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
956 if (err < 0)
957 return err;
958
959 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
960 return 0;
961 default:
962 return -EOPNOTSUPP;
963 }
964
965 return -EOPNOTSUPP;
966}
967
968static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
969 u32 attr, int channel, long *value)
970{
971 struct sfp *sfp = dev_get_drvdata(dev);
972
973 switch (type) {
974 case hwmon_temp:
975 return sfp_hwmon_temp(sfp, attr, value);
976 case hwmon_in:
977 return sfp_hwmon_vcc(sfp, attr, value);
978 case hwmon_curr:
979 return sfp_hwmon_bias(sfp, attr, value);
980 case hwmon_power:
981 switch (channel) {
982 case 0:
983 return sfp_hwmon_tx_power(sfp, attr, value);
984 case 1:
985 return sfp_hwmon_rx_power(sfp, attr, value);
986 default:
987 return -EOPNOTSUPP;
988 }
989 default:
990 return -EOPNOTSUPP;
991 }
992}
993
994static const char *const sfp_hwmon_power_labels[] = {
995 "TX_power",
996 "RX_power",
997};
998
999static int sfp_hwmon_read_string(struct device *dev,
1000 enum hwmon_sensor_types type,
1001 u32 attr, int channel, const char **str)
1002{
1003 switch (type) {
1004 case hwmon_curr:
1005 switch (attr) {
1006 case hwmon_curr_label:
1007 *str = "bias";
1008 return 0;
1009 default:
1010 return -EOPNOTSUPP;
1011 }
1012 break;
1013 case hwmon_temp:
1014 switch (attr) {
1015 case hwmon_temp_label:
1016 *str = "temperature";
1017 return 0;
1018 default:
1019 return -EOPNOTSUPP;
1020 }
1021 break;
1022 case hwmon_in:
1023 switch (attr) {
1024 case hwmon_in_label:
1025 *str = "VCC";
1026 return 0;
1027 default:
1028 return -EOPNOTSUPP;
1029 }
1030 break;
1031 case hwmon_power:
1032 switch (attr) {
1033 case hwmon_power_label:
1034 *str = sfp_hwmon_power_labels[channel];
1035 return 0;
1036 default:
1037 return -EOPNOTSUPP;
1038 }
1039 break;
1040 default:
1041 return -EOPNOTSUPP;
1042 }
1043
1044 return -EOPNOTSUPP;
1045}
1046
1047static const struct hwmon_ops sfp_hwmon_ops = {
1048 .is_visible = sfp_hwmon_is_visible,
1049 .read = sfp_hwmon_read,
1050 .read_string = sfp_hwmon_read_string,
1051};
1052
1053static u32 sfp_hwmon_chip_config[] = {
1054 HWMON_C_REGISTER_TZ,
1055 0,
1056};
1057
1058static const struct hwmon_channel_info sfp_hwmon_chip = {
1059 .type = hwmon_chip,
1060 .config = sfp_hwmon_chip_config,
1061};
1062
1063static u32 sfp_hwmon_temp_config[] = {
1064 HWMON_T_INPUT |
1065 HWMON_T_MAX | HWMON_T_MIN |
1066 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1067 HWMON_T_CRIT | HWMON_T_LCRIT |
1068 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1069 HWMON_T_LABEL,
1070 0,
1071};
1072
1073static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1074 .type = hwmon_temp,
1075 .config = sfp_hwmon_temp_config,
1076};
1077
1078static u32 sfp_hwmon_vcc_config[] = {
1079 HWMON_I_INPUT |
1080 HWMON_I_MAX | HWMON_I_MIN |
1081 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1082 HWMON_I_CRIT | HWMON_I_LCRIT |
1083 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1084 HWMON_I_LABEL,
1085 0,
1086};
1087
1088static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1089 .type = hwmon_in,
1090 .config = sfp_hwmon_vcc_config,
1091};
1092
1093static u32 sfp_hwmon_bias_config[] = {
1094 HWMON_C_INPUT |
1095 HWMON_C_MAX | HWMON_C_MIN |
1096 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1097 HWMON_C_CRIT | HWMON_C_LCRIT |
1098 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1099 HWMON_C_LABEL,
1100 0,
1101};
1102
1103static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1104 .type = hwmon_curr,
1105 .config = sfp_hwmon_bias_config,
1106};
1107
1108static u32 sfp_hwmon_power_config[] = {
1109 /* Transmit power */
1110 HWMON_P_INPUT |
1111 HWMON_P_MAX | HWMON_P_MIN |
1112 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1113 HWMON_P_CRIT | HWMON_P_LCRIT |
1114 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1115 HWMON_P_LABEL,
1116 /* Receive power */
1117 HWMON_P_INPUT |
1118 HWMON_P_MAX | HWMON_P_MIN |
1119 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1120 HWMON_P_CRIT | HWMON_P_LCRIT |
1121 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1122 HWMON_P_LABEL,
1123 0,
1124};
1125
1126static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1127 .type = hwmon_power,
1128 .config = sfp_hwmon_power_config,
1129};
1130
1131static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1132 &sfp_hwmon_chip,
1133 &sfp_hwmon_vcc_channel_info,
1134 &sfp_hwmon_temp_channel_info,
1135 &sfp_hwmon_bias_channel_info,
1136 &sfp_hwmon_power_channel_info,
1137 NULL,
1138};
1139
1140static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1141 .ops = &sfp_hwmon_ops,
1142 .info = sfp_hwmon_info,
1143};
1144
1145static int sfp_hwmon_insert(struct sfp *sfp)
1146{
1147 int err, i;
1148
1149 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1150 return 0;
1151
1152 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1153 return 0;
1154
1155 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1156 /* This driver in general does not support address
1157 * change.
1158 */
1159 return 0;
1160
1161 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1162 if (err < 0)
1163 return err;
1164
1165 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1166 if (!sfp->hwmon_name)
1167 return -ENODEV;
1168
1169 for (i = 0; sfp->hwmon_name[i]; i++)
1170 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1171 sfp->hwmon_name[i] = '_';
1172
1173 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1174 sfp->hwmon_name, sfp,
1175 &sfp_hwmon_chip_info,
1176 NULL);
1177
1178 return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1179}
1180
1181static void sfp_hwmon_remove(struct sfp *sfp)
1182{
1183 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1184 hwmon_device_unregister(sfp->hwmon_dev);
1185 sfp->hwmon_dev = NULL;
1186 kfree(sfp->hwmon_name);
1187 }
1188}
1189#else
1190static int sfp_hwmon_insert(struct sfp *sfp)
1191{
1192 return 0;
1193}
1194
1195static void sfp_hwmon_remove(struct sfp *sfp)
1196{
1197}
1198#endif
1199
1200/* Helpers */
1201static void sfp_module_tx_disable(struct sfp *sfp)
1202{
1203 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1204 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1205 sfp->state |= SFP_F_TX_DISABLE;
1206 sfp_set_state(sfp, sfp->state);
1207}
1208
1209static void sfp_module_tx_enable(struct sfp *sfp)
1210{
1211 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1212 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1213 sfp->state &= ~SFP_F_TX_DISABLE;
1214 sfp_set_state(sfp, sfp->state);
1215}
1216
1217static void sfp_module_tx_fault_reset(struct sfp *sfp)
1218{
1219 unsigned int state = sfp->state;
1220
1221 if (state & SFP_F_TX_DISABLE)
1222 return;
1223
1224 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1225
1226 udelay(T_RESET_US);
1227
1228 sfp_set_state(sfp, state);
1229}
1230
1231/* SFP state machine */
1232static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1233{
1234 if (timeout)
1235 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1236 timeout);
1237 else
1238 cancel_delayed_work(&sfp->timeout);
1239}
1240
1241static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1242 unsigned int timeout)
1243{
1244 sfp->sm_state = state;
1245 sfp_sm_set_timer(sfp, timeout);
1246}
1247
1248static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1249 unsigned int timeout)
1250{
1251 sfp->sm_mod_state = state;
1252 sfp_sm_set_timer(sfp, timeout);
1253}
1254
1255static void sfp_sm_phy_detach(struct sfp *sfp)
1256{
1257 phy_stop(sfp->mod_phy);
1258 sfp_remove_phy(sfp->sfp_bus);
1259 phy_device_remove(sfp->mod_phy);
1260 phy_device_free(sfp->mod_phy);
1261 sfp->mod_phy = NULL;
1262}
1263
1264static void sfp_sm_probe_phy(struct sfp *sfp)
1265{
1266 struct phy_device *phy;
1267 int err;
1268
1269 msleep(T_PHY_RESET_MS);
1270
1271 phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1272 if (phy == ERR_PTR(-ENODEV)) {
1273 dev_info(sfp->dev, "no PHY detected\n");
1274 return;
1275 }
1276 if (IS_ERR(phy)) {
1277 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1278 return;
1279 }
1280
1281 err = sfp_add_phy(sfp->sfp_bus, phy);
1282 if (err) {
1283 phy_device_remove(phy);
1284 phy_device_free(phy);
1285 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1286 return;
1287 }
1288
1289 sfp->mod_phy = phy;
1290 phy_start(phy);
1291}
1292
1293static void sfp_sm_link_up(struct sfp *sfp)
1294{
1295 sfp_link_up(sfp->sfp_bus);
1296 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1297}
1298
1299static void sfp_sm_link_down(struct sfp *sfp)
1300{
1301 sfp_link_down(sfp->sfp_bus);
1302}
1303
1304static void sfp_sm_link_check_los(struct sfp *sfp)
1305{
1306 unsigned int los = sfp->state & SFP_F_LOS;
1307
1308 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1309 * are set, we assume that no LOS signal is available.
1310 */
1311 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1312 los ^= SFP_F_LOS;
1313 else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1314 los = 0;
1315
1316 if (los)
1317 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1318 else
1319 sfp_sm_link_up(sfp);
1320}
1321
1322static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1323{
1324 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1325 event == SFP_E_LOS_LOW) ||
1326 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1327 event == SFP_E_LOS_HIGH);
1328}
1329
1330static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1331{
1332 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1333 event == SFP_E_LOS_HIGH) ||
1334 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1335 event == SFP_E_LOS_LOW);
1336}
1337
1338static void sfp_sm_fault(struct sfp *sfp, bool warn)
1339{
1340 if (sfp->sm_retries && !--sfp->sm_retries) {
1341 dev_err(sfp->dev,
1342 "module persistently indicates fault, disabling\n");
1343 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1344 } else {
1345 if (warn)
1346 dev_err(sfp->dev, "module transmit fault indicated\n");
1347
1348 sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1349 }
1350}
1351
1352static void sfp_sm_mod_init(struct sfp *sfp)
1353{
1354 sfp_module_tx_enable(sfp);
1355
1356 /* Wait t_init before indicating that the link is up, provided the
1357 * current state indicates no TX_FAULT. If TX_FAULT clears before
1358 * this time, that's fine too.
1359 */
1360 sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1361 sfp->sm_retries = 5;
1362
1363 /* Setting the serdes link mode is guesswork: there's no
1364 * field in the EEPROM which indicates what mode should
1365 * be used.
1366 *
1367 * If it's a gigabit-only fiber module, it probably does
1368 * not have a PHY, so switch to 802.3z negotiation mode.
1369 * Otherwise, switch to SGMII mode (which is required to
1370 * support non-gigabit speeds) and probe for a PHY.
1371 */
1372 if (sfp->id.base.e1000_base_t ||
1373 sfp->id.base.e100_base_lx ||
1374 sfp->id.base.e100_base_fx)
1375 sfp_sm_probe_phy(sfp);
1376}
1377
1378static int sfp_sm_mod_hpower(struct sfp *sfp)
1379{
1380 u32 power;
1381 u8 val;
1382 int err;
1383
1384 power = 1000;
1385 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1386 power = 1500;
1387 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1388 power = 2000;
1389
1390 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1391 (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1392 SFP_DIAGMON_DDM) {
1393 /* The module appears not to implement bus address 0xa2,
1394 * or requires an address change sequence, so assume that
1395 * the module powers up in the indicated power mode.
1396 */
1397 if (power > sfp->max_power_mW) {
1398 dev_err(sfp->dev,
1399 "Host does not support %u.%uW modules\n",
1400 power / 1000, (power / 100) % 10);
1401 return -EINVAL;
1402 }
1403 return 0;
1404 }
1405
1406 if (power > sfp->max_power_mW) {
1407 dev_warn(sfp->dev,
1408 "Host does not support %u.%uW modules, module left in power mode 1\n",
1409 power / 1000, (power / 100) % 10);
1410 return 0;
1411 }
1412
1413 if (power <= 1000)
1414 return 0;
1415
1416 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1417 if (err != sizeof(val)) {
1418 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1419 err = -EAGAIN;
1420 goto err;
1421 }
1422
1423 val |= BIT(0);
1424
1425 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1426 if (err != sizeof(val)) {
1427 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1428 err = -EAGAIN;
1429 goto err;
1430 }
1431
1432 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1433 power / 1000, (power / 100) % 10);
1434 return T_HPOWER_LEVEL;
1435
1436err:
1437 return err;
1438}
1439
1440static int sfp_sm_mod_probe(struct sfp *sfp)
1441{
1442 /* SFP module inserted - read I2C data */
1443 struct sfp_eeprom_id id;
1444 bool cotsworks;
1445 u8 check;
1446 int ret;
1447
1448 ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1449 if (ret < 0) {
1450 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1451 return -EAGAIN;
1452 }
1453
1454 if (ret != sizeof(id)) {
1455 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1456 return -EAGAIN;
1457 }
1458
1459 /* Cotsworks do not seem to update the checksums when they
1460 * do the final programming with the final module part number,
1461 * serial number and date code.
1462 */
1463 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1464
1465 /* Validate the checksum over the base structure */
1466 check = sfp_check(&id.base, sizeof(id.base) - 1);
1467 if (check != id.base.cc_base) {
1468 if (cotsworks) {
1469 dev_warn(sfp->dev,
1470 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1471 check, id.base.cc_base);
1472 } else {
1473 dev_err(sfp->dev,
1474 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1475 check, id.base.cc_base);
1476 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1477 16, 1, &id, sizeof(id), true);
1478 return -EINVAL;
1479 }
1480 }
1481
1482 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1483 if (check != id.ext.cc_ext) {
1484 if (cotsworks) {
1485 dev_warn(sfp->dev,
1486 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1487 check, id.ext.cc_ext);
1488 } else {
1489 dev_err(sfp->dev,
1490 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1491 check, id.ext.cc_ext);
1492 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1493 16, 1, &id, sizeof(id), true);
1494 memset(&id.ext, 0, sizeof(id.ext));
1495 }
1496 }
1497
1498 sfp->id = id;
1499
1500 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1501 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1502 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1503 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1504 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1505 (int)sizeof(id.ext.datecode), id.ext.datecode);
1506
1507 /* Check whether we support this module */
1508 if (!sfp->type->module_supported(&sfp->id)) {
1509 dev_err(sfp->dev,
1510 "module is not supported - phys id 0x%02x 0x%02x\n",
1511 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1512 return -EINVAL;
1513 }
1514
1515 /* If the module requires address swap mode, warn about it */
1516 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1517 dev_warn(sfp->dev,
1518 "module address swap to access page 0xA2 is not supported.\n");
1519
1520 ret = sfp_hwmon_insert(sfp);
1521 if (ret < 0)
1522 return ret;
1523
1524 ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1525 if (ret < 0)
1526 return ret;
1527
1528 return sfp_sm_mod_hpower(sfp);
1529}
1530
1531static void sfp_sm_mod_remove(struct sfp *sfp)
1532{
1533 sfp_module_remove(sfp->sfp_bus);
1534
1535 sfp_hwmon_remove(sfp);
1536
1537 if (sfp->mod_phy)
1538 sfp_sm_phy_detach(sfp);
1539
1540 sfp_module_tx_disable(sfp);
1541
1542 memset(&sfp->id, 0, sizeof(sfp->id));
1543
1544 dev_info(sfp->dev, "module removed\n");
1545}
1546
1547static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1548{
1549 mutex_lock(&sfp->sm_mutex);
1550
1551 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1552 mod_state_to_str(sfp->sm_mod_state),
1553 dev_state_to_str(sfp->sm_dev_state),
1554 sm_state_to_str(sfp->sm_state),
1555 event_to_str(event));
1556
1557 /* This state machine tracks the insert/remove state of
1558 * the module, and handles probing the on-board EEPROM.
1559 */
1560 switch (sfp->sm_mod_state) {
1561 default:
1562 if (event == SFP_E_INSERT && sfp->attached) {
1563 sfp_module_tx_disable(sfp);
1564 sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
1565 }
1566 break;
1567
1568 case SFP_MOD_PROBE:
1569 if (event == SFP_E_REMOVE) {
1570 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1571 } else if (event == SFP_E_TIMEOUT) {
1572 int val = sfp_sm_mod_probe(sfp);
1573
1574 if (val == 0)
1575 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1576 else if (val > 0)
1577 sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1578 else if (val != -EAGAIN)
1579 sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1580 else
1581 sfp_sm_set_timer(sfp, T_PROBE_RETRY);
1582 }
1583 break;
1584
1585 case SFP_MOD_HPOWER:
1586 if (event == SFP_E_TIMEOUT) {
1587 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1588 break;
1589 }
1590 /* fallthrough */
1591 case SFP_MOD_PRESENT:
1592 case SFP_MOD_ERROR:
1593 if (event == SFP_E_REMOVE) {
1594 sfp_sm_mod_remove(sfp);
1595 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1596 }
1597 break;
1598 }
1599
1600 /* This state machine tracks the netdev up/down state */
1601 switch (sfp->sm_dev_state) {
1602 default:
1603 if (event == SFP_E_DEV_UP)
1604 sfp->sm_dev_state = SFP_DEV_UP;
1605 break;
1606
1607 case SFP_DEV_UP:
1608 if (event == SFP_E_DEV_DOWN) {
1609 /* If the module has a PHY, avoid raising TX disable
1610 * as this resets the PHY. Otherwise, raise it to
1611 * turn the laser off.
1612 */
1613 if (!sfp->mod_phy)
1614 sfp_module_tx_disable(sfp);
1615 sfp->sm_dev_state = SFP_DEV_DOWN;
1616 }
1617 break;
1618 }
1619
1620 /* Some events are global */
1621 if (sfp->sm_state != SFP_S_DOWN &&
1622 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1623 sfp->sm_dev_state != SFP_DEV_UP)) {
1624 if (sfp->sm_state == SFP_S_LINK_UP &&
1625 sfp->sm_dev_state == SFP_DEV_UP)
1626 sfp_sm_link_down(sfp);
1627 if (sfp->mod_phy)
1628 sfp_sm_phy_detach(sfp);
1629 sfp_sm_next(sfp, SFP_S_DOWN, 0);
1630 mutex_unlock(&sfp->sm_mutex);
1631 return;
1632 }
1633
1634 /* The main state machine */
1635 switch (sfp->sm_state) {
1636 case SFP_S_DOWN:
1637 if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1638 sfp->sm_dev_state == SFP_DEV_UP)
1639 sfp_sm_mod_init(sfp);
1640 break;
1641
1642 case SFP_S_INIT:
1643 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1644 sfp_sm_fault(sfp, true);
1645 else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1646 sfp_sm_link_check_los(sfp);
1647 break;
1648
1649 case SFP_S_WAIT_LOS:
1650 if (event == SFP_E_TX_FAULT)
1651 sfp_sm_fault(sfp, true);
1652 else if (sfp_los_event_inactive(sfp, event))
1653 sfp_sm_link_up(sfp);
1654 break;
1655
1656 case SFP_S_LINK_UP:
1657 if (event == SFP_E_TX_FAULT) {
1658 sfp_sm_link_down(sfp);
1659 sfp_sm_fault(sfp, true);
1660 } else if (sfp_los_event_active(sfp, event)) {
1661 sfp_sm_link_down(sfp);
1662 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1663 }
1664 break;
1665
1666 case SFP_S_TX_FAULT:
1667 if (event == SFP_E_TIMEOUT) {
1668 sfp_module_tx_fault_reset(sfp);
1669 sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1670 }
1671 break;
1672
1673 case SFP_S_REINIT:
1674 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1675 sfp_sm_fault(sfp, false);
1676 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1677 dev_info(sfp->dev, "module transmit fault recovered\n");
1678 sfp_sm_link_check_los(sfp);
1679 }
1680 break;
1681
1682 case SFP_S_TX_DISABLE:
1683 break;
1684 }
1685
1686 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1687 mod_state_to_str(sfp->sm_mod_state),
1688 dev_state_to_str(sfp->sm_dev_state),
1689 sm_state_to_str(sfp->sm_state));
1690
1691 mutex_unlock(&sfp->sm_mutex);
1692}
1693
1694static void sfp_attach(struct sfp *sfp)
1695{
1696 sfp->attached = true;
1697 if (sfp->state & SFP_F_PRESENT)
1698 sfp_sm_event(sfp, SFP_E_INSERT);
1699}
1700
1701static void sfp_detach(struct sfp *sfp)
1702{
1703 sfp->attached = false;
1704 sfp_sm_event(sfp, SFP_E_REMOVE);
1705}
1706
1707static void sfp_start(struct sfp *sfp)
1708{
1709 sfp_sm_event(sfp, SFP_E_DEV_UP);
1710}
1711
1712static void sfp_stop(struct sfp *sfp)
1713{
1714 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1715}
1716
1717static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1718{
1719 /* locking... and check module is present */
1720
1721 if (sfp->id.ext.sff8472_compliance &&
1722 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1723 modinfo->type = ETH_MODULE_SFF_8472;
1724 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1725 } else {
1726 modinfo->type = ETH_MODULE_SFF_8079;
1727 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1728 }
1729 return 0;
1730}
1731
1732static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1733 u8 *data)
1734{
1735 unsigned int first, last, len;
1736 int ret;
1737
1738 if (ee->len == 0)
1739 return -EINVAL;
1740
1741 first = ee->offset;
1742 last = ee->offset + ee->len;
1743 if (first < ETH_MODULE_SFF_8079_LEN) {
1744 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1745 len -= first;
1746
1747 ret = sfp_read(sfp, false, first, data, len);
1748 if (ret < 0)
1749 return ret;
1750
1751 first += len;
1752 data += len;
1753 }
1754 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1755 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1756 len -= first;
1757 first -= ETH_MODULE_SFF_8079_LEN;
1758
1759 ret = sfp_read(sfp, true, first, data, len);
1760 if (ret < 0)
1761 return ret;
1762 }
1763 return 0;
1764}
1765
1766static const struct sfp_socket_ops sfp_module_ops = {
1767 .attach = sfp_attach,
1768 .detach = sfp_detach,
1769 .start = sfp_start,
1770 .stop = sfp_stop,
1771 .module_info = sfp_module_info,
1772 .module_eeprom = sfp_module_eeprom,
1773};
1774
1775static void sfp_timeout(struct work_struct *work)
1776{
1777 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1778
1779 rtnl_lock();
1780 sfp_sm_event(sfp, SFP_E_TIMEOUT);
1781 rtnl_unlock();
1782}
1783
1784static void sfp_check_state(struct sfp *sfp)
1785{
1786 unsigned int state, i, changed;
1787
1788 mutex_lock(&sfp->st_mutex);
1789 state = sfp_get_state(sfp);
1790 changed = state ^ sfp->state;
1791 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1792
1793 for (i = 0; i < GPIO_MAX; i++)
1794 if (changed & BIT(i))
1795 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1796 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
1797
1798 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1799 sfp->state = state;
1800
1801 rtnl_lock();
1802 if (changed & SFP_F_PRESENT)
1803 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1804 SFP_E_INSERT : SFP_E_REMOVE);
1805
1806 if (changed & SFP_F_TX_FAULT)
1807 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1808 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1809
1810 if (changed & SFP_F_LOS)
1811 sfp_sm_event(sfp, state & SFP_F_LOS ?
1812 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1813 rtnl_unlock();
1814 mutex_unlock(&sfp->st_mutex);
1815}
1816
1817static irqreturn_t sfp_irq(int irq, void *data)
1818{
1819 struct sfp *sfp = data;
1820
1821 sfp_check_state(sfp);
1822
1823 return IRQ_HANDLED;
1824}
1825
1826static void sfp_poll(struct work_struct *work)
1827{
1828 struct sfp *sfp = container_of(work, struct sfp, poll.work);
1829
1830 sfp_check_state(sfp);
1831 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1832}
1833
1834static struct sfp *sfp_alloc(struct device *dev)
1835{
1836 struct sfp *sfp;
1837
1838 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1839 if (!sfp)
1840 return ERR_PTR(-ENOMEM);
1841
1842 sfp->dev = dev;
1843
1844 mutex_init(&sfp->sm_mutex);
1845 mutex_init(&sfp->st_mutex);
1846 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1847 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1848
1849 return sfp;
1850}
1851
1852static void sfp_cleanup(void *data)
1853{
1854 struct sfp *sfp = data;
1855
1856 cancel_delayed_work_sync(&sfp->poll);
1857 cancel_delayed_work_sync(&sfp->timeout);
1858 if (sfp->i2c_mii) {
1859 mdiobus_unregister(sfp->i2c_mii);
1860 mdiobus_free(sfp->i2c_mii);
1861 }
1862 if (sfp->i2c)
1863 i2c_put_adapter(sfp->i2c);
1864 kfree(sfp);
1865}
1866
1867static int sfp_probe(struct platform_device *pdev)
1868{
1869 const struct sff_data *sff;
1870 struct i2c_adapter *i2c;
1871 struct sfp *sfp;
1872 bool poll = false;
1873 int err, i;
1874
1875 sfp = sfp_alloc(&pdev->dev);
1876 if (IS_ERR(sfp))
1877 return PTR_ERR(sfp);
1878
1879 platform_set_drvdata(pdev, sfp);
1880
1881 err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
1882 if (err < 0)
1883 return err;
1884
1885 sff = sfp->type = &sfp_data;
1886
1887 if (pdev->dev.of_node) {
1888 struct device_node *node = pdev->dev.of_node;
1889 const struct of_device_id *id;
1890 struct device_node *np;
1891
1892 id = of_match_node(sfp_of_match, node);
1893 if (WARN_ON(!id))
1894 return -EINVAL;
1895
1896 sff = sfp->type = id->data;
1897
1898 np = of_parse_phandle(node, "i2c-bus", 0);
1899 if (!np) {
1900 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1901 return -ENODEV;
1902 }
1903
1904 i2c = of_find_i2c_adapter_by_node(np);
1905 of_node_put(np);
1906 } else if (has_acpi_companion(&pdev->dev)) {
1907 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
1908 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
1909 struct fwnode_reference_args args;
1910 struct acpi_handle *acpi_handle;
1911 int ret;
1912
1913 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
1914 if (ret || !is_acpi_device_node(args.fwnode)) {
1915 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
1916 return -ENODEV;
1917 }
1918
1919 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
1920 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
1921 } else {
1922 return -EINVAL;
1923 }
1924
1925 if (!i2c)
1926 return -EPROBE_DEFER;
1927
1928 err = sfp_i2c_configure(sfp, i2c);
1929 if (err < 0) {
1930 i2c_put_adapter(i2c);
1931 return err;
1932 }
1933
1934 for (i = 0; i < GPIO_MAX; i++)
1935 if (sff->gpios & BIT(i)) {
1936 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1937 gpio_of_names[i], gpio_flags[i]);
1938 if (IS_ERR(sfp->gpio[i]))
1939 return PTR_ERR(sfp->gpio[i]);
1940 }
1941
1942 sfp->get_state = sfp_gpio_get_state;
1943 sfp->set_state = sfp_gpio_set_state;
1944
1945 /* Modules that have no detect signal are always present */
1946 if (!(sfp->gpio[GPIO_MODDEF0]))
1947 sfp->get_state = sff_gpio_get_state;
1948
1949 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1950 &sfp->max_power_mW);
1951 if (!sfp->max_power_mW)
1952 sfp->max_power_mW = 1000;
1953
1954 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1955 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1956
1957 /* Get the initial state, and always signal TX disable,
1958 * since the network interface will not be up.
1959 */
1960 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1961
1962 if (sfp->gpio[GPIO_RATE_SELECT] &&
1963 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1964 sfp->state |= SFP_F_RATE_SELECT;
1965 sfp_set_state(sfp, sfp->state);
1966 sfp_module_tx_disable(sfp);
1967
1968 for (i = 0; i < GPIO_MAX; i++) {
1969 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1970 continue;
1971
1972 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
1973 if (!sfp->gpio_irq[i]) {
1974 poll = true;
1975 continue;
1976 }
1977
1978 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
1979 NULL, sfp_irq,
1980 IRQF_ONESHOT |
1981 IRQF_TRIGGER_RISING |
1982 IRQF_TRIGGER_FALLING,
1983 dev_name(sfp->dev), sfp);
1984 if (err) {
1985 sfp->gpio_irq[i] = 0;
1986 poll = true;
1987 }
1988 }
1989
1990 if (poll)
1991 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1992
1993 /* We could have an issue in cases no Tx disable pin is available or
1994 * wired as modules using a laser as their light source will continue to
1995 * be active when the fiber is removed. This could be a safety issue and
1996 * we should at least warn the user about that.
1997 */
1998 if (!sfp->gpio[GPIO_TX_DISABLE])
1999 dev_warn(sfp->dev,
2000 "No tx_disable pin: SFP modules will always be emitting.\n");
2001
2002 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2003 if (!sfp->sfp_bus)
2004 return -ENOMEM;
2005
2006 return 0;
2007}
2008
2009static int sfp_remove(struct platform_device *pdev)
2010{
2011 struct sfp *sfp = platform_get_drvdata(pdev);
2012
2013 sfp_unregister_socket(sfp->sfp_bus);
2014
2015 return 0;
2016}
2017
2018static void sfp_shutdown(struct platform_device *pdev)
2019{
2020 struct sfp *sfp = platform_get_drvdata(pdev);
2021 int i;
2022
2023 for (i = 0; i < GPIO_MAX; i++) {
2024 if (!sfp->gpio_irq[i])
2025 continue;
2026
2027 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2028 }
2029
2030 cancel_delayed_work_sync(&sfp->poll);
2031 cancel_delayed_work_sync(&sfp->timeout);
2032}
2033
2034static struct platform_driver sfp_driver = {
2035 .probe = sfp_probe,
2036 .remove = sfp_remove,
2037 .shutdown = sfp_shutdown,
2038 .driver = {
2039 .name = "sfp",
2040 .of_match_table = sfp_of_match,
2041 },
2042};
2043
2044static int sfp_init(void)
2045{
2046 poll_jiffies = msecs_to_jiffies(100);
2047
2048 return platform_driver_register(&sfp_driver);
2049}
2050module_init(sfp_init);
2051
2052static void sfp_exit(void)
2053{
2054 platform_driver_unregister(&sfp_driver);
2055}
2056module_exit(sfp_exit);
2057
2058MODULE_ALIAS("platform:sfp");
2059MODULE_AUTHOR("Russell King");
2060MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/acpi.h>
3#include <linux/ctype.h>
4#include <linux/debugfs.h>
5#include <linux/delay.h>
6#include <linux/gpio/consumer.h>
7#include <linux/hwmon.h>
8#include <linux/i2c.h>
9#include <linux/interrupt.h>
10#include <linux/jiffies.h>
11#include <linux/mdio/mdio-i2c.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/of.h>
15#include <linux/phy.h>
16#include <linux/platform_device.h>
17#include <linux/rtnetlink.h>
18#include <linux/slab.h>
19#include <linux/workqueue.h>
20
21#include "sfp.h"
22#include "swphy.h"
23
24enum {
25 GPIO_MODDEF0,
26 GPIO_LOS,
27 GPIO_TX_FAULT,
28 GPIO_TX_DISABLE,
29 GPIO_RATE_SELECT,
30 GPIO_MAX,
31
32 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33 SFP_F_LOS = BIT(GPIO_LOS),
34 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
37
38 SFP_E_INSERT = 0,
39 SFP_E_REMOVE,
40 SFP_E_DEV_ATTACH,
41 SFP_E_DEV_DETACH,
42 SFP_E_DEV_DOWN,
43 SFP_E_DEV_UP,
44 SFP_E_TX_FAULT,
45 SFP_E_TX_CLEAR,
46 SFP_E_LOS_HIGH,
47 SFP_E_LOS_LOW,
48 SFP_E_TIMEOUT,
49
50 SFP_MOD_EMPTY = 0,
51 SFP_MOD_ERROR,
52 SFP_MOD_PROBE,
53 SFP_MOD_WAITDEV,
54 SFP_MOD_HPOWER,
55 SFP_MOD_WAITPWR,
56 SFP_MOD_PRESENT,
57
58 SFP_DEV_DETACHED = 0,
59 SFP_DEV_DOWN,
60 SFP_DEV_UP,
61
62 SFP_S_DOWN = 0,
63 SFP_S_FAIL,
64 SFP_S_WAIT,
65 SFP_S_INIT,
66 SFP_S_INIT_PHY,
67 SFP_S_INIT_TX_FAULT,
68 SFP_S_WAIT_LOS,
69 SFP_S_LINK_UP,
70 SFP_S_TX_FAULT,
71 SFP_S_REINIT,
72 SFP_S_TX_DISABLE,
73};
74
75static const char * const mod_state_strings[] = {
76 [SFP_MOD_EMPTY] = "empty",
77 [SFP_MOD_ERROR] = "error",
78 [SFP_MOD_PROBE] = "probe",
79 [SFP_MOD_WAITDEV] = "waitdev",
80 [SFP_MOD_HPOWER] = "hpower",
81 [SFP_MOD_WAITPWR] = "waitpwr",
82 [SFP_MOD_PRESENT] = "present",
83};
84
85static const char *mod_state_to_str(unsigned short mod_state)
86{
87 if (mod_state >= ARRAY_SIZE(mod_state_strings))
88 return "Unknown module state";
89 return mod_state_strings[mod_state];
90}
91
92static const char * const dev_state_strings[] = {
93 [SFP_DEV_DETACHED] = "detached",
94 [SFP_DEV_DOWN] = "down",
95 [SFP_DEV_UP] = "up",
96};
97
98static const char *dev_state_to_str(unsigned short dev_state)
99{
100 if (dev_state >= ARRAY_SIZE(dev_state_strings))
101 return "Unknown device state";
102 return dev_state_strings[dev_state];
103}
104
105static const char * const event_strings[] = {
106 [SFP_E_INSERT] = "insert",
107 [SFP_E_REMOVE] = "remove",
108 [SFP_E_DEV_ATTACH] = "dev_attach",
109 [SFP_E_DEV_DETACH] = "dev_detach",
110 [SFP_E_DEV_DOWN] = "dev_down",
111 [SFP_E_DEV_UP] = "dev_up",
112 [SFP_E_TX_FAULT] = "tx_fault",
113 [SFP_E_TX_CLEAR] = "tx_clear",
114 [SFP_E_LOS_HIGH] = "los_high",
115 [SFP_E_LOS_LOW] = "los_low",
116 [SFP_E_TIMEOUT] = "timeout",
117};
118
119static const char *event_to_str(unsigned short event)
120{
121 if (event >= ARRAY_SIZE(event_strings))
122 return "Unknown event";
123 return event_strings[event];
124}
125
126static const char * const sm_state_strings[] = {
127 [SFP_S_DOWN] = "down",
128 [SFP_S_FAIL] = "fail",
129 [SFP_S_WAIT] = "wait",
130 [SFP_S_INIT] = "init",
131 [SFP_S_INIT_PHY] = "init_phy",
132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133 [SFP_S_WAIT_LOS] = "wait_los",
134 [SFP_S_LINK_UP] = "link_up",
135 [SFP_S_TX_FAULT] = "tx_fault",
136 [SFP_S_REINIT] = "reinit",
137 [SFP_S_TX_DISABLE] = "tx_disable",
138};
139
140static const char *sm_state_to_str(unsigned short sm_state)
141{
142 if (sm_state >= ARRAY_SIZE(sm_state_strings))
143 return "Unknown state";
144 return sm_state_strings[sm_state];
145}
146
147static const char *gpio_of_names[] = {
148 "mod-def0",
149 "los",
150 "tx-fault",
151 "tx-disable",
152 "rate-select0",
153};
154
155static const enum gpiod_flags gpio_flags[] = {
156 GPIOD_IN,
157 GPIOD_IN,
158 GPIOD_IN,
159 GPIOD_ASIS,
160 GPIOD_ASIS,
161};
162
163/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164 * non-cooled module to initialise its laser safety circuitry. We wait
165 * an initial T_WAIT period before we check the tx fault to give any PHY
166 * on board (for a copper SFP) time to initialise.
167 */
168#define T_WAIT msecs_to_jiffies(50)
169#define T_START_UP msecs_to_jiffies(300)
170#define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
171
172/* t_reset is the time required to assert the TX_DISABLE signal to reset
173 * an indicated TX_FAULT.
174 */
175#define T_RESET_US 10
176#define T_FAULT_RECOVER msecs_to_jiffies(1000)
177
178/* N_FAULT_INIT is the number of recovery attempts at module initialisation
179 * time. If the TX_FAULT signal is not deasserted after this number of
180 * attempts at clearing it, we decide that the module is faulty.
181 * N_FAULT is the same but after the module has initialised.
182 */
183#define N_FAULT_INIT 5
184#define N_FAULT 5
185
186/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
187 * R_PHY_RETRY is the number of attempts.
188 */
189#define T_PHY_RETRY msecs_to_jiffies(50)
190#define R_PHY_RETRY 12
191
192/* SFP module presence detection is poor: the three MOD DEF signals are
193 * the same length on the PCB, which means it's possible for MOD DEF 0 to
194 * connect before the I2C bus on MOD DEF 1/2.
195 *
196 * The SFF-8472 specifies t_serial ("Time from power on until module is
197 * ready for data transmission over the two wire serial bus.") as 300ms.
198 */
199#define T_SERIAL msecs_to_jiffies(300)
200#define T_HPOWER_LEVEL msecs_to_jiffies(300)
201#define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
202#define R_PROBE_RETRY_INIT 10
203#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
204#define R_PROBE_RETRY_SLOW 12
205
206/* SFP modules appear to always have their PHY configured for bus address
207 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
208 */
209#define SFP_PHY_ADDR 22
210
211struct sff_data {
212 unsigned int gpios;
213 bool (*module_supported)(const struct sfp_eeprom_id *id);
214};
215
216struct sfp {
217 struct device *dev;
218 struct i2c_adapter *i2c;
219 struct mii_bus *i2c_mii;
220 struct sfp_bus *sfp_bus;
221 struct phy_device *mod_phy;
222 const struct sff_data *type;
223 size_t i2c_block_size;
224 u32 max_power_mW;
225
226 unsigned int (*get_state)(struct sfp *);
227 void (*set_state)(struct sfp *, unsigned int);
228 int (*read)(struct sfp *, bool, u8, void *, size_t);
229 int (*write)(struct sfp *, bool, u8, void *, size_t);
230
231 struct gpio_desc *gpio[GPIO_MAX];
232 int gpio_irq[GPIO_MAX];
233
234 bool need_poll;
235
236 struct mutex st_mutex; /* Protects state */
237 unsigned int state_soft_mask;
238 unsigned int state;
239 struct delayed_work poll;
240 struct delayed_work timeout;
241 struct mutex sm_mutex; /* Protects state machine */
242 unsigned char sm_mod_state;
243 unsigned char sm_mod_tries_init;
244 unsigned char sm_mod_tries;
245 unsigned char sm_dev_state;
246 unsigned short sm_state;
247 unsigned char sm_fault_retries;
248 unsigned char sm_phy_retries;
249
250 struct sfp_eeprom_id id;
251 unsigned int module_power_mW;
252 unsigned int module_t_start_up;
253
254#if IS_ENABLED(CONFIG_HWMON)
255 struct sfp_diag diag;
256 struct delayed_work hwmon_probe;
257 unsigned int hwmon_tries;
258 struct device *hwmon_dev;
259 char *hwmon_name;
260#endif
261
262#if IS_ENABLED(CONFIG_DEBUG_FS)
263 struct dentry *debugfs_dir;
264#endif
265};
266
267static bool sff_module_supported(const struct sfp_eeprom_id *id)
268{
269 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
270 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
271}
272
273static const struct sff_data sff_data = {
274 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
275 .module_supported = sff_module_supported,
276};
277
278static bool sfp_module_supported(const struct sfp_eeprom_id *id)
279{
280 if (id->base.phys_id == SFF8024_ID_SFP &&
281 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
282 return true;
283
284 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
285 * phys id SFF instead of SFP. Therefore mark this module explicitly
286 * as supported based on vendor name and pn match.
287 */
288 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
289 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
290 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
291 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
292 return true;
293
294 return false;
295}
296
297static const struct sff_data sfp_data = {
298 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
299 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
300 .module_supported = sfp_module_supported,
301};
302
303static const struct of_device_id sfp_of_match[] = {
304 { .compatible = "sff,sff", .data = &sff_data, },
305 { .compatible = "sff,sfp", .data = &sfp_data, },
306 { },
307};
308MODULE_DEVICE_TABLE(of, sfp_of_match);
309
310static unsigned long poll_jiffies;
311
312static unsigned int sfp_gpio_get_state(struct sfp *sfp)
313{
314 unsigned int i, state, v;
315
316 for (i = state = 0; i < GPIO_MAX; i++) {
317 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
318 continue;
319
320 v = gpiod_get_value_cansleep(sfp->gpio[i]);
321 if (v)
322 state |= BIT(i);
323 }
324
325 return state;
326}
327
328static unsigned int sff_gpio_get_state(struct sfp *sfp)
329{
330 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
331}
332
333static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
334{
335 if (state & SFP_F_PRESENT) {
336 /* If the module is present, drive the signals */
337 if (sfp->gpio[GPIO_TX_DISABLE])
338 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
339 state & SFP_F_TX_DISABLE);
340 if (state & SFP_F_RATE_SELECT)
341 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
342 state & SFP_F_RATE_SELECT);
343 } else {
344 /* Otherwise, let them float to the pull-ups */
345 if (sfp->gpio[GPIO_TX_DISABLE])
346 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
347 if (state & SFP_F_RATE_SELECT)
348 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
349 }
350}
351
352static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
353 size_t len)
354{
355 struct i2c_msg msgs[2];
356 u8 bus_addr = a2 ? 0x51 : 0x50;
357 size_t block_size = sfp->i2c_block_size;
358 size_t this_len;
359 int ret;
360
361 msgs[0].addr = bus_addr;
362 msgs[0].flags = 0;
363 msgs[0].len = 1;
364 msgs[0].buf = &dev_addr;
365 msgs[1].addr = bus_addr;
366 msgs[1].flags = I2C_M_RD;
367 msgs[1].len = len;
368 msgs[1].buf = buf;
369
370 while (len) {
371 this_len = len;
372 if (this_len > block_size)
373 this_len = block_size;
374
375 msgs[1].len = this_len;
376
377 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
378 if (ret < 0)
379 return ret;
380
381 if (ret != ARRAY_SIZE(msgs))
382 break;
383
384 msgs[1].buf += this_len;
385 dev_addr += this_len;
386 len -= this_len;
387 }
388
389 return msgs[1].buf - (u8 *)buf;
390}
391
392static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
393 size_t len)
394{
395 struct i2c_msg msgs[1];
396 u8 bus_addr = a2 ? 0x51 : 0x50;
397 int ret;
398
399 msgs[0].addr = bus_addr;
400 msgs[0].flags = 0;
401 msgs[0].len = 1 + len;
402 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
403 if (!msgs[0].buf)
404 return -ENOMEM;
405
406 msgs[0].buf[0] = dev_addr;
407 memcpy(&msgs[0].buf[1], buf, len);
408
409 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
410
411 kfree(msgs[0].buf);
412
413 if (ret < 0)
414 return ret;
415
416 return ret == ARRAY_SIZE(msgs) ? len : 0;
417}
418
419static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
420{
421 struct mii_bus *i2c_mii;
422 int ret;
423
424 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
425 return -EINVAL;
426
427 sfp->i2c = i2c;
428 sfp->read = sfp_i2c_read;
429 sfp->write = sfp_i2c_write;
430
431 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
432 if (IS_ERR(i2c_mii))
433 return PTR_ERR(i2c_mii);
434
435 i2c_mii->name = "SFP I2C Bus";
436 i2c_mii->phy_mask = ~0;
437
438 ret = mdiobus_register(i2c_mii);
439 if (ret < 0) {
440 mdiobus_free(i2c_mii);
441 return ret;
442 }
443
444 sfp->i2c_mii = i2c_mii;
445
446 return 0;
447}
448
449/* Interface */
450static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
451{
452 return sfp->read(sfp, a2, addr, buf, len);
453}
454
455static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
456{
457 return sfp->write(sfp, a2, addr, buf, len);
458}
459
460static unsigned int sfp_soft_get_state(struct sfp *sfp)
461{
462 unsigned int state = 0;
463 u8 status;
464 int ret;
465
466 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
467 if (ret == sizeof(status)) {
468 if (status & SFP_STATUS_RX_LOS)
469 state |= SFP_F_LOS;
470 if (status & SFP_STATUS_TX_FAULT)
471 state |= SFP_F_TX_FAULT;
472 } else {
473 dev_err_ratelimited(sfp->dev,
474 "failed to read SFP soft status: %d\n",
475 ret);
476 /* Preserve the current state */
477 state = sfp->state;
478 }
479
480 return state & sfp->state_soft_mask;
481}
482
483static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
484{
485 u8 status;
486
487 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
488 sizeof(status)) {
489 if (state & SFP_F_TX_DISABLE)
490 status |= SFP_STATUS_TX_DISABLE_FORCE;
491 else
492 status &= ~SFP_STATUS_TX_DISABLE_FORCE;
493
494 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
495 }
496}
497
498static void sfp_soft_start_poll(struct sfp *sfp)
499{
500 const struct sfp_eeprom_id *id = &sfp->id;
501
502 sfp->state_soft_mask = 0;
503 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
504 !sfp->gpio[GPIO_TX_DISABLE])
505 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
506 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
507 !sfp->gpio[GPIO_TX_FAULT])
508 sfp->state_soft_mask |= SFP_F_TX_FAULT;
509 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
510 !sfp->gpio[GPIO_LOS])
511 sfp->state_soft_mask |= SFP_F_LOS;
512
513 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
514 !sfp->need_poll)
515 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
516}
517
518static void sfp_soft_stop_poll(struct sfp *sfp)
519{
520 sfp->state_soft_mask = 0;
521}
522
523static unsigned int sfp_get_state(struct sfp *sfp)
524{
525 unsigned int state = sfp->get_state(sfp);
526
527 if (state & SFP_F_PRESENT &&
528 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
529 state |= sfp_soft_get_state(sfp);
530
531 return state;
532}
533
534static void sfp_set_state(struct sfp *sfp, unsigned int state)
535{
536 sfp->set_state(sfp, state);
537
538 if (state & SFP_F_PRESENT &&
539 sfp->state_soft_mask & SFP_F_TX_DISABLE)
540 sfp_soft_set_state(sfp, state);
541}
542
543static unsigned int sfp_check(void *buf, size_t len)
544{
545 u8 *p, check;
546
547 for (p = buf, check = 0; len; p++, len--)
548 check += *p;
549
550 return check;
551}
552
553/* hwmon */
554#if IS_ENABLED(CONFIG_HWMON)
555static umode_t sfp_hwmon_is_visible(const void *data,
556 enum hwmon_sensor_types type,
557 u32 attr, int channel)
558{
559 const struct sfp *sfp = data;
560
561 switch (type) {
562 case hwmon_temp:
563 switch (attr) {
564 case hwmon_temp_min_alarm:
565 case hwmon_temp_max_alarm:
566 case hwmon_temp_lcrit_alarm:
567 case hwmon_temp_crit_alarm:
568 case hwmon_temp_min:
569 case hwmon_temp_max:
570 case hwmon_temp_lcrit:
571 case hwmon_temp_crit:
572 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
573 return 0;
574 fallthrough;
575 case hwmon_temp_input:
576 case hwmon_temp_label:
577 return 0444;
578 default:
579 return 0;
580 }
581 case hwmon_in:
582 switch (attr) {
583 case hwmon_in_min_alarm:
584 case hwmon_in_max_alarm:
585 case hwmon_in_lcrit_alarm:
586 case hwmon_in_crit_alarm:
587 case hwmon_in_min:
588 case hwmon_in_max:
589 case hwmon_in_lcrit:
590 case hwmon_in_crit:
591 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
592 return 0;
593 fallthrough;
594 case hwmon_in_input:
595 case hwmon_in_label:
596 return 0444;
597 default:
598 return 0;
599 }
600 case hwmon_curr:
601 switch (attr) {
602 case hwmon_curr_min_alarm:
603 case hwmon_curr_max_alarm:
604 case hwmon_curr_lcrit_alarm:
605 case hwmon_curr_crit_alarm:
606 case hwmon_curr_min:
607 case hwmon_curr_max:
608 case hwmon_curr_lcrit:
609 case hwmon_curr_crit:
610 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
611 return 0;
612 fallthrough;
613 case hwmon_curr_input:
614 case hwmon_curr_label:
615 return 0444;
616 default:
617 return 0;
618 }
619 case hwmon_power:
620 /* External calibration of receive power requires
621 * floating point arithmetic. Doing that in the kernel
622 * is not easy, so just skip it. If the module does
623 * not require external calibration, we can however
624 * show receiver power, since FP is then not needed.
625 */
626 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
627 channel == 1)
628 return 0;
629 switch (attr) {
630 case hwmon_power_min_alarm:
631 case hwmon_power_max_alarm:
632 case hwmon_power_lcrit_alarm:
633 case hwmon_power_crit_alarm:
634 case hwmon_power_min:
635 case hwmon_power_max:
636 case hwmon_power_lcrit:
637 case hwmon_power_crit:
638 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
639 return 0;
640 fallthrough;
641 case hwmon_power_input:
642 case hwmon_power_label:
643 return 0444;
644 default:
645 return 0;
646 }
647 default:
648 return 0;
649 }
650}
651
652static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
653{
654 __be16 val;
655 int err;
656
657 err = sfp_read(sfp, true, reg, &val, sizeof(val));
658 if (err < 0)
659 return err;
660
661 *value = be16_to_cpu(val);
662
663 return 0;
664}
665
666static void sfp_hwmon_to_rx_power(long *value)
667{
668 *value = DIV_ROUND_CLOSEST(*value, 10);
669}
670
671static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
672 long *value)
673{
674 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
675 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
676}
677
678static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
679{
680 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
681 be16_to_cpu(sfp->diag.cal_t_offset), value);
682
683 if (*value >= 0x8000)
684 *value -= 0x10000;
685
686 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
687}
688
689static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
690{
691 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
692 be16_to_cpu(sfp->diag.cal_v_offset), value);
693
694 *value = DIV_ROUND_CLOSEST(*value, 10);
695}
696
697static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
698{
699 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
700 be16_to_cpu(sfp->diag.cal_txi_offset), value);
701
702 *value = DIV_ROUND_CLOSEST(*value, 500);
703}
704
705static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
706{
707 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
708 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
709
710 *value = DIV_ROUND_CLOSEST(*value, 10);
711}
712
713static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
714{
715 int err;
716
717 err = sfp_hwmon_read_sensor(sfp, reg, value);
718 if (err < 0)
719 return err;
720
721 sfp_hwmon_calibrate_temp(sfp, value);
722
723 return 0;
724}
725
726static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
727{
728 int err;
729
730 err = sfp_hwmon_read_sensor(sfp, reg, value);
731 if (err < 0)
732 return err;
733
734 sfp_hwmon_calibrate_vcc(sfp, value);
735
736 return 0;
737}
738
739static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
740{
741 int err;
742
743 err = sfp_hwmon_read_sensor(sfp, reg, value);
744 if (err < 0)
745 return err;
746
747 sfp_hwmon_calibrate_bias(sfp, value);
748
749 return 0;
750}
751
752static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
753{
754 int err;
755
756 err = sfp_hwmon_read_sensor(sfp, reg, value);
757 if (err < 0)
758 return err;
759
760 sfp_hwmon_calibrate_tx_power(sfp, value);
761
762 return 0;
763}
764
765static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
766{
767 int err;
768
769 err = sfp_hwmon_read_sensor(sfp, reg, value);
770 if (err < 0)
771 return err;
772
773 sfp_hwmon_to_rx_power(value);
774
775 return 0;
776}
777
778static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
779{
780 u8 status;
781 int err;
782
783 switch (attr) {
784 case hwmon_temp_input:
785 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
786
787 case hwmon_temp_lcrit:
788 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
789 sfp_hwmon_calibrate_temp(sfp, value);
790 return 0;
791
792 case hwmon_temp_min:
793 *value = be16_to_cpu(sfp->diag.temp_low_warn);
794 sfp_hwmon_calibrate_temp(sfp, value);
795 return 0;
796 case hwmon_temp_max:
797 *value = be16_to_cpu(sfp->diag.temp_high_warn);
798 sfp_hwmon_calibrate_temp(sfp, value);
799 return 0;
800
801 case hwmon_temp_crit:
802 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
803 sfp_hwmon_calibrate_temp(sfp, value);
804 return 0;
805
806 case hwmon_temp_lcrit_alarm:
807 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
808 if (err < 0)
809 return err;
810
811 *value = !!(status & SFP_ALARM0_TEMP_LOW);
812 return 0;
813
814 case hwmon_temp_min_alarm:
815 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
816 if (err < 0)
817 return err;
818
819 *value = !!(status & SFP_WARN0_TEMP_LOW);
820 return 0;
821
822 case hwmon_temp_max_alarm:
823 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
824 if (err < 0)
825 return err;
826
827 *value = !!(status & SFP_WARN0_TEMP_HIGH);
828 return 0;
829
830 case hwmon_temp_crit_alarm:
831 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
832 if (err < 0)
833 return err;
834
835 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
836 return 0;
837 default:
838 return -EOPNOTSUPP;
839 }
840
841 return -EOPNOTSUPP;
842}
843
844static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
845{
846 u8 status;
847 int err;
848
849 switch (attr) {
850 case hwmon_in_input:
851 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
852
853 case hwmon_in_lcrit:
854 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
855 sfp_hwmon_calibrate_vcc(sfp, value);
856 return 0;
857
858 case hwmon_in_min:
859 *value = be16_to_cpu(sfp->diag.volt_low_warn);
860 sfp_hwmon_calibrate_vcc(sfp, value);
861 return 0;
862
863 case hwmon_in_max:
864 *value = be16_to_cpu(sfp->diag.volt_high_warn);
865 sfp_hwmon_calibrate_vcc(sfp, value);
866 return 0;
867
868 case hwmon_in_crit:
869 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
870 sfp_hwmon_calibrate_vcc(sfp, value);
871 return 0;
872
873 case hwmon_in_lcrit_alarm:
874 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
875 if (err < 0)
876 return err;
877
878 *value = !!(status & SFP_ALARM0_VCC_LOW);
879 return 0;
880
881 case hwmon_in_min_alarm:
882 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
883 if (err < 0)
884 return err;
885
886 *value = !!(status & SFP_WARN0_VCC_LOW);
887 return 0;
888
889 case hwmon_in_max_alarm:
890 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
891 if (err < 0)
892 return err;
893
894 *value = !!(status & SFP_WARN0_VCC_HIGH);
895 return 0;
896
897 case hwmon_in_crit_alarm:
898 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
899 if (err < 0)
900 return err;
901
902 *value = !!(status & SFP_ALARM0_VCC_HIGH);
903 return 0;
904 default:
905 return -EOPNOTSUPP;
906 }
907
908 return -EOPNOTSUPP;
909}
910
911static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
912{
913 u8 status;
914 int err;
915
916 switch (attr) {
917 case hwmon_curr_input:
918 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
919
920 case hwmon_curr_lcrit:
921 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
922 sfp_hwmon_calibrate_bias(sfp, value);
923 return 0;
924
925 case hwmon_curr_min:
926 *value = be16_to_cpu(sfp->diag.bias_low_warn);
927 sfp_hwmon_calibrate_bias(sfp, value);
928 return 0;
929
930 case hwmon_curr_max:
931 *value = be16_to_cpu(sfp->diag.bias_high_warn);
932 sfp_hwmon_calibrate_bias(sfp, value);
933 return 0;
934
935 case hwmon_curr_crit:
936 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
937 sfp_hwmon_calibrate_bias(sfp, value);
938 return 0;
939
940 case hwmon_curr_lcrit_alarm:
941 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
942 if (err < 0)
943 return err;
944
945 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
946 return 0;
947
948 case hwmon_curr_min_alarm:
949 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
950 if (err < 0)
951 return err;
952
953 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
954 return 0;
955
956 case hwmon_curr_max_alarm:
957 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
958 if (err < 0)
959 return err;
960
961 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
962 return 0;
963
964 case hwmon_curr_crit_alarm:
965 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
966 if (err < 0)
967 return err;
968
969 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
970 return 0;
971 default:
972 return -EOPNOTSUPP;
973 }
974
975 return -EOPNOTSUPP;
976}
977
978static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
979{
980 u8 status;
981 int err;
982
983 switch (attr) {
984 case hwmon_power_input:
985 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
986
987 case hwmon_power_lcrit:
988 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
989 sfp_hwmon_calibrate_tx_power(sfp, value);
990 return 0;
991
992 case hwmon_power_min:
993 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
994 sfp_hwmon_calibrate_tx_power(sfp, value);
995 return 0;
996
997 case hwmon_power_max:
998 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
999 sfp_hwmon_calibrate_tx_power(sfp, value);
1000 return 0;
1001
1002 case hwmon_power_crit:
1003 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1004 sfp_hwmon_calibrate_tx_power(sfp, value);
1005 return 0;
1006
1007 case hwmon_power_lcrit_alarm:
1008 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1009 if (err < 0)
1010 return err;
1011
1012 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1013 return 0;
1014
1015 case hwmon_power_min_alarm:
1016 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1017 if (err < 0)
1018 return err;
1019
1020 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1021 return 0;
1022
1023 case hwmon_power_max_alarm:
1024 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1025 if (err < 0)
1026 return err;
1027
1028 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1029 return 0;
1030
1031 case hwmon_power_crit_alarm:
1032 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1033 if (err < 0)
1034 return err;
1035
1036 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1037 return 0;
1038 default:
1039 return -EOPNOTSUPP;
1040 }
1041
1042 return -EOPNOTSUPP;
1043}
1044
1045static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1046{
1047 u8 status;
1048 int err;
1049
1050 switch (attr) {
1051 case hwmon_power_input:
1052 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1053
1054 case hwmon_power_lcrit:
1055 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1056 sfp_hwmon_to_rx_power(value);
1057 return 0;
1058
1059 case hwmon_power_min:
1060 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1061 sfp_hwmon_to_rx_power(value);
1062 return 0;
1063
1064 case hwmon_power_max:
1065 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1066 sfp_hwmon_to_rx_power(value);
1067 return 0;
1068
1069 case hwmon_power_crit:
1070 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1071 sfp_hwmon_to_rx_power(value);
1072 return 0;
1073
1074 case hwmon_power_lcrit_alarm:
1075 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1076 if (err < 0)
1077 return err;
1078
1079 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1080 return 0;
1081
1082 case hwmon_power_min_alarm:
1083 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1084 if (err < 0)
1085 return err;
1086
1087 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1088 return 0;
1089
1090 case hwmon_power_max_alarm:
1091 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1092 if (err < 0)
1093 return err;
1094
1095 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1096 return 0;
1097
1098 case hwmon_power_crit_alarm:
1099 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1100 if (err < 0)
1101 return err;
1102
1103 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1104 return 0;
1105 default:
1106 return -EOPNOTSUPP;
1107 }
1108
1109 return -EOPNOTSUPP;
1110}
1111
1112static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1113 u32 attr, int channel, long *value)
1114{
1115 struct sfp *sfp = dev_get_drvdata(dev);
1116
1117 switch (type) {
1118 case hwmon_temp:
1119 return sfp_hwmon_temp(sfp, attr, value);
1120 case hwmon_in:
1121 return sfp_hwmon_vcc(sfp, attr, value);
1122 case hwmon_curr:
1123 return sfp_hwmon_bias(sfp, attr, value);
1124 case hwmon_power:
1125 switch (channel) {
1126 case 0:
1127 return sfp_hwmon_tx_power(sfp, attr, value);
1128 case 1:
1129 return sfp_hwmon_rx_power(sfp, attr, value);
1130 default:
1131 return -EOPNOTSUPP;
1132 }
1133 default:
1134 return -EOPNOTSUPP;
1135 }
1136}
1137
1138static const char *const sfp_hwmon_power_labels[] = {
1139 "TX_power",
1140 "RX_power",
1141};
1142
1143static int sfp_hwmon_read_string(struct device *dev,
1144 enum hwmon_sensor_types type,
1145 u32 attr, int channel, const char **str)
1146{
1147 switch (type) {
1148 case hwmon_curr:
1149 switch (attr) {
1150 case hwmon_curr_label:
1151 *str = "bias";
1152 return 0;
1153 default:
1154 return -EOPNOTSUPP;
1155 }
1156 break;
1157 case hwmon_temp:
1158 switch (attr) {
1159 case hwmon_temp_label:
1160 *str = "temperature";
1161 return 0;
1162 default:
1163 return -EOPNOTSUPP;
1164 }
1165 break;
1166 case hwmon_in:
1167 switch (attr) {
1168 case hwmon_in_label:
1169 *str = "VCC";
1170 return 0;
1171 default:
1172 return -EOPNOTSUPP;
1173 }
1174 break;
1175 case hwmon_power:
1176 switch (attr) {
1177 case hwmon_power_label:
1178 *str = sfp_hwmon_power_labels[channel];
1179 return 0;
1180 default:
1181 return -EOPNOTSUPP;
1182 }
1183 break;
1184 default:
1185 return -EOPNOTSUPP;
1186 }
1187
1188 return -EOPNOTSUPP;
1189}
1190
1191static const struct hwmon_ops sfp_hwmon_ops = {
1192 .is_visible = sfp_hwmon_is_visible,
1193 .read = sfp_hwmon_read,
1194 .read_string = sfp_hwmon_read_string,
1195};
1196
1197static u32 sfp_hwmon_chip_config[] = {
1198 HWMON_C_REGISTER_TZ,
1199 0,
1200};
1201
1202static const struct hwmon_channel_info sfp_hwmon_chip = {
1203 .type = hwmon_chip,
1204 .config = sfp_hwmon_chip_config,
1205};
1206
1207static u32 sfp_hwmon_temp_config[] = {
1208 HWMON_T_INPUT |
1209 HWMON_T_MAX | HWMON_T_MIN |
1210 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1211 HWMON_T_CRIT | HWMON_T_LCRIT |
1212 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1213 HWMON_T_LABEL,
1214 0,
1215};
1216
1217static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1218 .type = hwmon_temp,
1219 .config = sfp_hwmon_temp_config,
1220};
1221
1222static u32 sfp_hwmon_vcc_config[] = {
1223 HWMON_I_INPUT |
1224 HWMON_I_MAX | HWMON_I_MIN |
1225 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1226 HWMON_I_CRIT | HWMON_I_LCRIT |
1227 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1228 HWMON_I_LABEL,
1229 0,
1230};
1231
1232static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1233 .type = hwmon_in,
1234 .config = sfp_hwmon_vcc_config,
1235};
1236
1237static u32 sfp_hwmon_bias_config[] = {
1238 HWMON_C_INPUT |
1239 HWMON_C_MAX | HWMON_C_MIN |
1240 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1241 HWMON_C_CRIT | HWMON_C_LCRIT |
1242 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1243 HWMON_C_LABEL,
1244 0,
1245};
1246
1247static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1248 .type = hwmon_curr,
1249 .config = sfp_hwmon_bias_config,
1250};
1251
1252static u32 sfp_hwmon_power_config[] = {
1253 /* Transmit power */
1254 HWMON_P_INPUT |
1255 HWMON_P_MAX | HWMON_P_MIN |
1256 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1257 HWMON_P_CRIT | HWMON_P_LCRIT |
1258 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1259 HWMON_P_LABEL,
1260 /* Receive power */
1261 HWMON_P_INPUT |
1262 HWMON_P_MAX | HWMON_P_MIN |
1263 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1264 HWMON_P_CRIT | HWMON_P_LCRIT |
1265 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1266 HWMON_P_LABEL,
1267 0,
1268};
1269
1270static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1271 .type = hwmon_power,
1272 .config = sfp_hwmon_power_config,
1273};
1274
1275static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1276 &sfp_hwmon_chip,
1277 &sfp_hwmon_vcc_channel_info,
1278 &sfp_hwmon_temp_channel_info,
1279 &sfp_hwmon_bias_channel_info,
1280 &sfp_hwmon_power_channel_info,
1281 NULL,
1282};
1283
1284static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1285 .ops = &sfp_hwmon_ops,
1286 .info = sfp_hwmon_info,
1287};
1288
1289static void sfp_hwmon_probe(struct work_struct *work)
1290{
1291 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1292 int err, i;
1293
1294 /* hwmon interface needs to access 16bit registers in atomic way to
1295 * guarantee coherency of the diagnostic monitoring data. If it is not
1296 * possible to guarantee coherency because EEPROM is broken in such way
1297 * that does not support atomic 16bit read operation then we have to
1298 * skip registration of hwmon device.
1299 */
1300 if (sfp->i2c_block_size < 2) {
1301 dev_info(sfp->dev,
1302 "skipping hwmon device registration due to broken EEPROM\n");
1303 dev_info(sfp->dev,
1304 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1305 return;
1306 }
1307
1308 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1309 if (err < 0) {
1310 if (sfp->hwmon_tries--) {
1311 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1312 T_PROBE_RETRY_SLOW);
1313 } else {
1314 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1315 }
1316 return;
1317 }
1318
1319 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1320 if (!sfp->hwmon_name) {
1321 dev_err(sfp->dev, "out of memory for hwmon name\n");
1322 return;
1323 }
1324
1325 for (i = 0; sfp->hwmon_name[i]; i++)
1326 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1327 sfp->hwmon_name[i] = '_';
1328
1329 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1330 sfp->hwmon_name, sfp,
1331 &sfp_hwmon_chip_info,
1332 NULL);
1333 if (IS_ERR(sfp->hwmon_dev))
1334 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1335 PTR_ERR(sfp->hwmon_dev));
1336}
1337
1338static int sfp_hwmon_insert(struct sfp *sfp)
1339{
1340 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1341 return 0;
1342
1343 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1344 return 0;
1345
1346 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1347 /* This driver in general does not support address
1348 * change.
1349 */
1350 return 0;
1351
1352 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1353 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1354
1355 return 0;
1356}
1357
1358static void sfp_hwmon_remove(struct sfp *sfp)
1359{
1360 cancel_delayed_work_sync(&sfp->hwmon_probe);
1361 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1362 hwmon_device_unregister(sfp->hwmon_dev);
1363 sfp->hwmon_dev = NULL;
1364 kfree(sfp->hwmon_name);
1365 }
1366}
1367
1368static int sfp_hwmon_init(struct sfp *sfp)
1369{
1370 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1371
1372 return 0;
1373}
1374
1375static void sfp_hwmon_exit(struct sfp *sfp)
1376{
1377 cancel_delayed_work_sync(&sfp->hwmon_probe);
1378}
1379#else
1380static int sfp_hwmon_insert(struct sfp *sfp)
1381{
1382 return 0;
1383}
1384
1385static void sfp_hwmon_remove(struct sfp *sfp)
1386{
1387}
1388
1389static int sfp_hwmon_init(struct sfp *sfp)
1390{
1391 return 0;
1392}
1393
1394static void sfp_hwmon_exit(struct sfp *sfp)
1395{
1396}
1397#endif
1398
1399/* Helpers */
1400static void sfp_module_tx_disable(struct sfp *sfp)
1401{
1402 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1403 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1404 sfp->state |= SFP_F_TX_DISABLE;
1405 sfp_set_state(sfp, sfp->state);
1406}
1407
1408static void sfp_module_tx_enable(struct sfp *sfp)
1409{
1410 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1411 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1412 sfp->state &= ~SFP_F_TX_DISABLE;
1413 sfp_set_state(sfp, sfp->state);
1414}
1415
1416#if IS_ENABLED(CONFIG_DEBUG_FS)
1417static int sfp_debug_state_show(struct seq_file *s, void *data)
1418{
1419 struct sfp *sfp = s->private;
1420
1421 seq_printf(s, "Module state: %s\n",
1422 mod_state_to_str(sfp->sm_mod_state));
1423 seq_printf(s, "Module probe attempts: %d %d\n",
1424 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1425 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1426 seq_printf(s, "Device state: %s\n",
1427 dev_state_to_str(sfp->sm_dev_state));
1428 seq_printf(s, "Main state: %s\n",
1429 sm_state_to_str(sfp->sm_state));
1430 seq_printf(s, "Fault recovery remaining retries: %d\n",
1431 sfp->sm_fault_retries);
1432 seq_printf(s, "PHY probe remaining retries: %d\n",
1433 sfp->sm_phy_retries);
1434 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1435 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1436 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1437 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1438 return 0;
1439}
1440DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1441
1442static void sfp_debugfs_init(struct sfp *sfp)
1443{
1444 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1445
1446 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1447 &sfp_debug_state_fops);
1448}
1449
1450static void sfp_debugfs_exit(struct sfp *sfp)
1451{
1452 debugfs_remove_recursive(sfp->debugfs_dir);
1453}
1454#else
1455static void sfp_debugfs_init(struct sfp *sfp)
1456{
1457}
1458
1459static void sfp_debugfs_exit(struct sfp *sfp)
1460{
1461}
1462#endif
1463
1464static void sfp_module_tx_fault_reset(struct sfp *sfp)
1465{
1466 unsigned int state = sfp->state;
1467
1468 if (state & SFP_F_TX_DISABLE)
1469 return;
1470
1471 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1472
1473 udelay(T_RESET_US);
1474
1475 sfp_set_state(sfp, state);
1476}
1477
1478/* SFP state machine */
1479static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1480{
1481 if (timeout)
1482 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1483 timeout);
1484 else
1485 cancel_delayed_work(&sfp->timeout);
1486}
1487
1488static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1489 unsigned int timeout)
1490{
1491 sfp->sm_state = state;
1492 sfp_sm_set_timer(sfp, timeout);
1493}
1494
1495static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1496 unsigned int timeout)
1497{
1498 sfp->sm_mod_state = state;
1499 sfp_sm_set_timer(sfp, timeout);
1500}
1501
1502static void sfp_sm_phy_detach(struct sfp *sfp)
1503{
1504 sfp_remove_phy(sfp->sfp_bus);
1505 phy_device_remove(sfp->mod_phy);
1506 phy_device_free(sfp->mod_phy);
1507 sfp->mod_phy = NULL;
1508}
1509
1510static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1511{
1512 struct phy_device *phy;
1513 int err;
1514
1515 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1516 if (phy == ERR_PTR(-ENODEV))
1517 return PTR_ERR(phy);
1518 if (IS_ERR(phy)) {
1519 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1520 return PTR_ERR(phy);
1521 }
1522
1523 err = phy_device_register(phy);
1524 if (err) {
1525 phy_device_free(phy);
1526 dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1527 return err;
1528 }
1529
1530 err = sfp_add_phy(sfp->sfp_bus, phy);
1531 if (err) {
1532 phy_device_remove(phy);
1533 phy_device_free(phy);
1534 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1535 return err;
1536 }
1537
1538 sfp->mod_phy = phy;
1539
1540 return 0;
1541}
1542
1543static void sfp_sm_link_up(struct sfp *sfp)
1544{
1545 sfp_link_up(sfp->sfp_bus);
1546 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1547}
1548
1549static void sfp_sm_link_down(struct sfp *sfp)
1550{
1551 sfp_link_down(sfp->sfp_bus);
1552}
1553
1554static void sfp_sm_link_check_los(struct sfp *sfp)
1555{
1556 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1557 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1558 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1559 bool los = false;
1560
1561 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1562 * are set, we assume that no LOS signal is available. If both are
1563 * set, we assume LOS is not implemented (and is meaningless.)
1564 */
1565 if (los_options == los_inverted)
1566 los = !(sfp->state & SFP_F_LOS);
1567 else if (los_options == los_normal)
1568 los = !!(sfp->state & SFP_F_LOS);
1569
1570 if (los)
1571 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1572 else
1573 sfp_sm_link_up(sfp);
1574}
1575
1576static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1577{
1578 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1579 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1580 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1581
1582 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1583 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1584}
1585
1586static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1587{
1588 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1589 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1590 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1591
1592 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1593 (los_options == los_normal && event == SFP_E_LOS_LOW);
1594}
1595
1596static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1597{
1598 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1599 dev_err(sfp->dev,
1600 "module persistently indicates fault, disabling\n");
1601 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1602 } else {
1603 if (warn)
1604 dev_err(sfp->dev, "module transmit fault indicated\n");
1605
1606 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1607 }
1608}
1609
1610/* Probe a SFP for a PHY device if the module supports copper - the PHY
1611 * normally sits at I2C bus address 0x56, and may either be a clause 22
1612 * or clause 45 PHY.
1613 *
1614 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1615 * negotiation enabled, but some may be in 1000base-X - which is for the
1616 * PHY driver to determine.
1617 *
1618 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1619 * mode according to the negotiated line speed.
1620 */
1621static int sfp_sm_probe_for_phy(struct sfp *sfp)
1622{
1623 int err = 0;
1624
1625 switch (sfp->id.base.extended_cc) {
1626 case SFF8024_ECC_10GBASE_T_SFI:
1627 case SFF8024_ECC_10GBASE_T_SR:
1628 case SFF8024_ECC_5GBASE_T:
1629 case SFF8024_ECC_2_5GBASE_T:
1630 err = sfp_sm_probe_phy(sfp, true);
1631 break;
1632
1633 default:
1634 if (sfp->id.base.e1000_base_t)
1635 err = sfp_sm_probe_phy(sfp, false);
1636 break;
1637 }
1638 return err;
1639}
1640
1641static int sfp_module_parse_power(struct sfp *sfp)
1642{
1643 u32 power_mW = 1000;
1644
1645 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1646 power_mW = 1500;
1647 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1648 power_mW = 2000;
1649
1650 if (power_mW > sfp->max_power_mW) {
1651 /* Module power specification exceeds the allowed maximum. */
1652 if (sfp->id.ext.sff8472_compliance ==
1653 SFP_SFF8472_COMPLIANCE_NONE &&
1654 !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1655 /* The module appears not to implement bus address
1656 * 0xa2, so assume that the module powers up in the
1657 * indicated mode.
1658 */
1659 dev_err(sfp->dev,
1660 "Host does not support %u.%uW modules\n",
1661 power_mW / 1000, (power_mW / 100) % 10);
1662 return -EINVAL;
1663 } else {
1664 dev_warn(sfp->dev,
1665 "Host does not support %u.%uW modules, module left in power mode 1\n",
1666 power_mW / 1000, (power_mW / 100) % 10);
1667 return 0;
1668 }
1669 }
1670
1671 /* If the module requires a higher power mode, but also requires
1672 * an address change sequence, warn the user that the module may
1673 * not be functional.
1674 */
1675 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1676 dev_warn(sfp->dev,
1677 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1678 power_mW / 1000, (power_mW / 100) % 10);
1679 return 0;
1680 }
1681
1682 sfp->module_power_mW = power_mW;
1683
1684 return 0;
1685}
1686
1687static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1688{
1689 u8 val;
1690 int err;
1691
1692 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1693 if (err != sizeof(val)) {
1694 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1695 return -EAGAIN;
1696 }
1697
1698 /* DM7052 reports as a high power module, responds to reads (with
1699 * all bytes 0xff) at 0x51 but does not accept writes. In any case,
1700 * if the bit is already set, we're already in high power mode.
1701 */
1702 if (!!(val & BIT(0)) == enable)
1703 return 0;
1704
1705 if (enable)
1706 val |= BIT(0);
1707 else
1708 val &= ~BIT(0);
1709
1710 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1711 if (err != sizeof(val)) {
1712 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1713 return -EAGAIN;
1714 }
1715
1716 if (enable)
1717 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1718 sfp->module_power_mW / 1000,
1719 (sfp->module_power_mW / 100) % 10);
1720
1721 return 0;
1722}
1723
1724/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1725 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1726 * not support multibyte reads from the EEPROM. Each multi-byte read
1727 * operation returns just one byte of EEPROM followed by zeros. There is
1728 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1729 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1730 * name and vendor id into EEPROM, so there is even no way to detect if
1731 * module is V-SOL V2801F. Therefore check for those zeros in the read
1732 * data and then based on check switch to reading EEPROM to one byte
1733 * at a time.
1734 */
1735static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1736{
1737 size_t i, block_size = sfp->i2c_block_size;
1738
1739 /* Already using byte IO */
1740 if (block_size == 1)
1741 return false;
1742
1743 for (i = 1; i < len; i += block_size) {
1744 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1745 return false;
1746 }
1747 return true;
1748}
1749
1750static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1751{
1752 u8 check;
1753 int err;
1754
1755 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1756 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1757 id->base.connector != SFF8024_CONNECTOR_LC) {
1758 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1759 id->base.phys_id = SFF8024_ID_SFF_8472;
1760 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1761 id->base.connector = SFF8024_CONNECTOR_LC;
1762 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1763 if (err != 3) {
1764 dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1765 return err;
1766 }
1767
1768 /* Cotsworks modules have been found to require a delay between write operations. */
1769 mdelay(50);
1770
1771 /* Update base structure checksum */
1772 check = sfp_check(&id->base, sizeof(id->base) - 1);
1773 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1774 if (err != 1) {
1775 dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1776 return err;
1777 }
1778 }
1779 return 0;
1780}
1781
1782static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1783{
1784 /* SFP module inserted - read I2C data */
1785 struct sfp_eeprom_id id;
1786 bool cotsworks_sfbg;
1787 bool cotsworks;
1788 u8 check;
1789 int ret;
1790
1791 /* Some SFP modules and also some Linux I2C drivers do not like reads
1792 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1793 * a time.
1794 */
1795 sfp->i2c_block_size = 16;
1796
1797 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1798 if (ret < 0) {
1799 if (report)
1800 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1801 return -EAGAIN;
1802 }
1803
1804 if (ret != sizeof(id.base)) {
1805 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1806 return -EAGAIN;
1807 }
1808
1809 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1810 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1811 * that EEPROM supports atomic 16bit read operation for diagnostic
1812 * fields, so do not switch to one byte reading at a time unless it
1813 * is really required and we have no other option.
1814 */
1815 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1816 dev_info(sfp->dev,
1817 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1818 dev_info(sfp->dev,
1819 "Switching to reading EEPROM to one byte at a time\n");
1820 sfp->i2c_block_size = 1;
1821
1822 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1823 if (ret < 0) {
1824 if (report)
1825 dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1826 ret);
1827 return -EAGAIN;
1828 }
1829
1830 if (ret != sizeof(id.base)) {
1831 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1832 return -EAGAIN;
1833 }
1834 }
1835
1836 /* Cotsworks do not seem to update the checksums when they
1837 * do the final programming with the final module part number,
1838 * serial number and date code.
1839 */
1840 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1841 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1842
1843 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1844 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
1845 * Cotsworks PN matches and bytes are not correct.
1846 */
1847 if (cotsworks && cotsworks_sfbg) {
1848 ret = sfp_cotsworks_fixup_check(sfp, &id);
1849 if (ret < 0)
1850 return ret;
1851 }
1852
1853 /* Validate the checksum over the base structure */
1854 check = sfp_check(&id.base, sizeof(id.base) - 1);
1855 if (check != id.base.cc_base) {
1856 if (cotsworks) {
1857 dev_warn(sfp->dev,
1858 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1859 check, id.base.cc_base);
1860 } else {
1861 dev_err(sfp->dev,
1862 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1863 check, id.base.cc_base);
1864 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1865 16, 1, &id, sizeof(id), true);
1866 return -EINVAL;
1867 }
1868 }
1869
1870 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1871 if (ret < 0) {
1872 if (report)
1873 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1874 return -EAGAIN;
1875 }
1876
1877 if (ret != sizeof(id.ext)) {
1878 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1879 return -EAGAIN;
1880 }
1881
1882 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1883 if (check != id.ext.cc_ext) {
1884 if (cotsworks) {
1885 dev_warn(sfp->dev,
1886 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1887 check, id.ext.cc_ext);
1888 } else {
1889 dev_err(sfp->dev,
1890 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1891 check, id.ext.cc_ext);
1892 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1893 16, 1, &id, sizeof(id), true);
1894 memset(&id.ext, 0, sizeof(id.ext));
1895 }
1896 }
1897
1898 sfp->id = id;
1899
1900 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1901 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1902 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1903 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1904 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1905 (int)sizeof(id.ext.datecode), id.ext.datecode);
1906
1907 /* Check whether we support this module */
1908 if (!sfp->type->module_supported(&id)) {
1909 dev_err(sfp->dev,
1910 "module is not supported - phys id 0x%02x 0x%02x\n",
1911 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1912 return -EINVAL;
1913 }
1914
1915 /* If the module requires address swap mode, warn about it */
1916 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1917 dev_warn(sfp->dev,
1918 "module address swap to access page 0xA2 is not supported.\n");
1919
1920 /* Parse the module power requirement */
1921 ret = sfp_module_parse_power(sfp);
1922 if (ret < 0)
1923 return ret;
1924
1925 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) &&
1926 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16))
1927 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1928 else
1929 sfp->module_t_start_up = T_START_UP;
1930
1931 return 0;
1932}
1933
1934static void sfp_sm_mod_remove(struct sfp *sfp)
1935{
1936 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1937 sfp_module_remove(sfp->sfp_bus);
1938
1939 sfp_hwmon_remove(sfp);
1940
1941 memset(&sfp->id, 0, sizeof(sfp->id));
1942 sfp->module_power_mW = 0;
1943
1944 dev_info(sfp->dev, "module removed\n");
1945}
1946
1947/* This state machine tracks the upstream's state */
1948static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1949{
1950 switch (sfp->sm_dev_state) {
1951 default:
1952 if (event == SFP_E_DEV_ATTACH)
1953 sfp->sm_dev_state = SFP_DEV_DOWN;
1954 break;
1955
1956 case SFP_DEV_DOWN:
1957 if (event == SFP_E_DEV_DETACH)
1958 sfp->sm_dev_state = SFP_DEV_DETACHED;
1959 else if (event == SFP_E_DEV_UP)
1960 sfp->sm_dev_state = SFP_DEV_UP;
1961 break;
1962
1963 case SFP_DEV_UP:
1964 if (event == SFP_E_DEV_DETACH)
1965 sfp->sm_dev_state = SFP_DEV_DETACHED;
1966 else if (event == SFP_E_DEV_DOWN)
1967 sfp->sm_dev_state = SFP_DEV_DOWN;
1968 break;
1969 }
1970}
1971
1972/* This state machine tracks the insert/remove state of the module, probes
1973 * the on-board EEPROM, and sets up the power level.
1974 */
1975static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1976{
1977 int err;
1978
1979 /* Handle remove event globally, it resets this state machine */
1980 if (event == SFP_E_REMOVE) {
1981 if (sfp->sm_mod_state > SFP_MOD_PROBE)
1982 sfp_sm_mod_remove(sfp);
1983 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1984 return;
1985 }
1986
1987 /* Handle device detach globally */
1988 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1989 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1990 if (sfp->module_power_mW > 1000 &&
1991 sfp->sm_mod_state > SFP_MOD_HPOWER)
1992 sfp_sm_mod_hpower(sfp, false);
1993 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1994 return;
1995 }
1996
1997 switch (sfp->sm_mod_state) {
1998 default:
1999 if (event == SFP_E_INSERT) {
2000 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2001 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2002 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2003 }
2004 break;
2005
2006 case SFP_MOD_PROBE:
2007 /* Wait for T_PROBE_INIT to time out */
2008 if (event != SFP_E_TIMEOUT)
2009 break;
2010
2011 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2012 if (err == -EAGAIN) {
2013 if (sfp->sm_mod_tries_init &&
2014 --sfp->sm_mod_tries_init) {
2015 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2016 break;
2017 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2018 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2019 dev_warn(sfp->dev,
2020 "please wait, module slow to respond\n");
2021 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2022 break;
2023 }
2024 }
2025 if (err < 0) {
2026 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2027 break;
2028 }
2029
2030 err = sfp_hwmon_insert(sfp);
2031 if (err)
2032 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
2033
2034 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2035 fallthrough;
2036 case SFP_MOD_WAITDEV:
2037 /* Ensure that the device is attached before proceeding */
2038 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2039 break;
2040
2041 /* Report the module insertion to the upstream device */
2042 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2043 if (err < 0) {
2044 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2045 break;
2046 }
2047
2048 /* If this is a power level 1 module, we are done */
2049 if (sfp->module_power_mW <= 1000)
2050 goto insert;
2051
2052 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2053 fallthrough;
2054 case SFP_MOD_HPOWER:
2055 /* Enable high power mode */
2056 err = sfp_sm_mod_hpower(sfp, true);
2057 if (err < 0) {
2058 if (err != -EAGAIN) {
2059 sfp_module_remove(sfp->sfp_bus);
2060 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2061 } else {
2062 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2063 }
2064 break;
2065 }
2066
2067 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2068 break;
2069
2070 case SFP_MOD_WAITPWR:
2071 /* Wait for T_HPOWER_LEVEL to time out */
2072 if (event != SFP_E_TIMEOUT)
2073 break;
2074
2075 insert:
2076 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2077 break;
2078
2079 case SFP_MOD_PRESENT:
2080 case SFP_MOD_ERROR:
2081 break;
2082 }
2083}
2084
2085static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2086{
2087 unsigned long timeout;
2088 int ret;
2089
2090 /* Some events are global */
2091 if (sfp->sm_state != SFP_S_DOWN &&
2092 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2093 sfp->sm_dev_state != SFP_DEV_UP)) {
2094 if (sfp->sm_state == SFP_S_LINK_UP &&
2095 sfp->sm_dev_state == SFP_DEV_UP)
2096 sfp_sm_link_down(sfp);
2097 if (sfp->sm_state > SFP_S_INIT)
2098 sfp_module_stop(sfp->sfp_bus);
2099 if (sfp->mod_phy)
2100 sfp_sm_phy_detach(sfp);
2101 sfp_module_tx_disable(sfp);
2102 sfp_soft_stop_poll(sfp);
2103 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2104 return;
2105 }
2106
2107 /* The main state machine */
2108 switch (sfp->sm_state) {
2109 case SFP_S_DOWN:
2110 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2111 sfp->sm_dev_state != SFP_DEV_UP)
2112 break;
2113
2114 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2115 sfp_soft_start_poll(sfp);
2116
2117 sfp_module_tx_enable(sfp);
2118
2119 /* Initialise the fault clearance retries */
2120 sfp->sm_fault_retries = N_FAULT_INIT;
2121
2122 /* We need to check the TX_FAULT state, which is not defined
2123 * while TX_DISABLE is asserted. The earliest we want to do
2124 * anything (such as probe for a PHY) is 50ms.
2125 */
2126 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2127 break;
2128
2129 case SFP_S_WAIT:
2130 if (event != SFP_E_TIMEOUT)
2131 break;
2132
2133 if (sfp->state & SFP_F_TX_FAULT) {
2134 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2135 * from the TX_DISABLE deassertion for the module to
2136 * initialise, which is indicated by TX_FAULT
2137 * deasserting.
2138 */
2139 timeout = sfp->module_t_start_up;
2140 if (timeout > T_WAIT)
2141 timeout -= T_WAIT;
2142 else
2143 timeout = 1;
2144
2145 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2146 } else {
2147 /* TX_FAULT is not asserted, assume the module has
2148 * finished initialising.
2149 */
2150 goto init_done;
2151 }
2152 break;
2153
2154 case SFP_S_INIT:
2155 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2156 /* TX_FAULT is still asserted after t_init
2157 * or t_start_up, so assume there is a fault.
2158 */
2159 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2160 sfp->sm_fault_retries == N_FAULT_INIT);
2161 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2162 init_done:
2163 sfp->sm_phy_retries = R_PHY_RETRY;
2164 goto phy_probe;
2165 }
2166 break;
2167
2168 case SFP_S_INIT_PHY:
2169 if (event != SFP_E_TIMEOUT)
2170 break;
2171 phy_probe:
2172 /* TX_FAULT deasserted or we timed out with TX_FAULT
2173 * clear. Probe for the PHY and check the LOS state.
2174 */
2175 ret = sfp_sm_probe_for_phy(sfp);
2176 if (ret == -ENODEV) {
2177 if (--sfp->sm_phy_retries) {
2178 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2179 break;
2180 } else {
2181 dev_info(sfp->dev, "no PHY detected\n");
2182 }
2183 } else if (ret) {
2184 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2185 break;
2186 }
2187 if (sfp_module_start(sfp->sfp_bus)) {
2188 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2189 break;
2190 }
2191 sfp_sm_link_check_los(sfp);
2192
2193 /* Reset the fault retry count */
2194 sfp->sm_fault_retries = N_FAULT;
2195 break;
2196
2197 case SFP_S_INIT_TX_FAULT:
2198 if (event == SFP_E_TIMEOUT) {
2199 sfp_module_tx_fault_reset(sfp);
2200 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2201 }
2202 break;
2203
2204 case SFP_S_WAIT_LOS:
2205 if (event == SFP_E_TX_FAULT)
2206 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2207 else if (sfp_los_event_inactive(sfp, event))
2208 sfp_sm_link_up(sfp);
2209 break;
2210
2211 case SFP_S_LINK_UP:
2212 if (event == SFP_E_TX_FAULT) {
2213 sfp_sm_link_down(sfp);
2214 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2215 } else if (sfp_los_event_active(sfp, event)) {
2216 sfp_sm_link_down(sfp);
2217 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2218 }
2219 break;
2220
2221 case SFP_S_TX_FAULT:
2222 if (event == SFP_E_TIMEOUT) {
2223 sfp_module_tx_fault_reset(sfp);
2224 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2225 }
2226 break;
2227
2228 case SFP_S_REINIT:
2229 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2230 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2231 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2232 dev_info(sfp->dev, "module transmit fault recovered\n");
2233 sfp_sm_link_check_los(sfp);
2234 }
2235 break;
2236
2237 case SFP_S_TX_DISABLE:
2238 break;
2239 }
2240}
2241
2242static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2243{
2244 mutex_lock(&sfp->sm_mutex);
2245
2246 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2247 mod_state_to_str(sfp->sm_mod_state),
2248 dev_state_to_str(sfp->sm_dev_state),
2249 sm_state_to_str(sfp->sm_state),
2250 event_to_str(event));
2251
2252 sfp_sm_device(sfp, event);
2253 sfp_sm_module(sfp, event);
2254 sfp_sm_main(sfp, event);
2255
2256 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2257 mod_state_to_str(sfp->sm_mod_state),
2258 dev_state_to_str(sfp->sm_dev_state),
2259 sm_state_to_str(sfp->sm_state));
2260
2261 mutex_unlock(&sfp->sm_mutex);
2262}
2263
2264static void sfp_attach(struct sfp *sfp)
2265{
2266 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2267}
2268
2269static void sfp_detach(struct sfp *sfp)
2270{
2271 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2272}
2273
2274static void sfp_start(struct sfp *sfp)
2275{
2276 sfp_sm_event(sfp, SFP_E_DEV_UP);
2277}
2278
2279static void sfp_stop(struct sfp *sfp)
2280{
2281 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2282}
2283
2284static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2285{
2286 /* locking... and check module is present */
2287
2288 if (sfp->id.ext.sff8472_compliance &&
2289 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2290 modinfo->type = ETH_MODULE_SFF_8472;
2291 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2292 } else {
2293 modinfo->type = ETH_MODULE_SFF_8079;
2294 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2295 }
2296 return 0;
2297}
2298
2299static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2300 u8 *data)
2301{
2302 unsigned int first, last, len;
2303 int ret;
2304
2305 if (ee->len == 0)
2306 return -EINVAL;
2307
2308 first = ee->offset;
2309 last = ee->offset + ee->len;
2310 if (first < ETH_MODULE_SFF_8079_LEN) {
2311 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2312 len -= first;
2313
2314 ret = sfp_read(sfp, false, first, data, len);
2315 if (ret < 0)
2316 return ret;
2317
2318 first += len;
2319 data += len;
2320 }
2321 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2322 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2323 len -= first;
2324 first -= ETH_MODULE_SFF_8079_LEN;
2325
2326 ret = sfp_read(sfp, true, first, data, len);
2327 if (ret < 0)
2328 return ret;
2329 }
2330 return 0;
2331}
2332
2333static int sfp_module_eeprom_by_page(struct sfp *sfp,
2334 const struct ethtool_module_eeprom *page,
2335 struct netlink_ext_ack *extack)
2336{
2337 if (page->bank) {
2338 NL_SET_ERR_MSG(extack, "Banks not supported");
2339 return -EOPNOTSUPP;
2340 }
2341
2342 if (page->page) {
2343 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2344 return -EOPNOTSUPP;
2345 }
2346
2347 if (page->i2c_address != 0x50 &&
2348 page->i2c_address != 0x51) {
2349 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2350 return -EOPNOTSUPP;
2351 }
2352
2353 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2354 page->data, page->length);
2355};
2356
2357static const struct sfp_socket_ops sfp_module_ops = {
2358 .attach = sfp_attach,
2359 .detach = sfp_detach,
2360 .start = sfp_start,
2361 .stop = sfp_stop,
2362 .module_info = sfp_module_info,
2363 .module_eeprom = sfp_module_eeprom,
2364 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2365};
2366
2367static void sfp_timeout(struct work_struct *work)
2368{
2369 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2370
2371 rtnl_lock();
2372 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2373 rtnl_unlock();
2374}
2375
2376static void sfp_check_state(struct sfp *sfp)
2377{
2378 unsigned int state, i, changed;
2379
2380 mutex_lock(&sfp->st_mutex);
2381 state = sfp_get_state(sfp);
2382 changed = state ^ sfp->state;
2383 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2384
2385 for (i = 0; i < GPIO_MAX; i++)
2386 if (changed & BIT(i))
2387 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2388 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2389
2390 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2391 sfp->state = state;
2392
2393 rtnl_lock();
2394 if (changed & SFP_F_PRESENT)
2395 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2396 SFP_E_INSERT : SFP_E_REMOVE);
2397
2398 if (changed & SFP_F_TX_FAULT)
2399 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2400 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2401
2402 if (changed & SFP_F_LOS)
2403 sfp_sm_event(sfp, state & SFP_F_LOS ?
2404 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2405 rtnl_unlock();
2406 mutex_unlock(&sfp->st_mutex);
2407}
2408
2409static irqreturn_t sfp_irq(int irq, void *data)
2410{
2411 struct sfp *sfp = data;
2412
2413 sfp_check_state(sfp);
2414
2415 return IRQ_HANDLED;
2416}
2417
2418static void sfp_poll(struct work_struct *work)
2419{
2420 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2421
2422 sfp_check_state(sfp);
2423
2424 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2425 sfp->need_poll)
2426 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2427}
2428
2429static struct sfp *sfp_alloc(struct device *dev)
2430{
2431 struct sfp *sfp;
2432
2433 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2434 if (!sfp)
2435 return ERR_PTR(-ENOMEM);
2436
2437 sfp->dev = dev;
2438
2439 mutex_init(&sfp->sm_mutex);
2440 mutex_init(&sfp->st_mutex);
2441 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2442 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2443
2444 sfp_hwmon_init(sfp);
2445
2446 return sfp;
2447}
2448
2449static void sfp_cleanup(void *data)
2450{
2451 struct sfp *sfp = data;
2452
2453 sfp_hwmon_exit(sfp);
2454
2455 cancel_delayed_work_sync(&sfp->poll);
2456 cancel_delayed_work_sync(&sfp->timeout);
2457 if (sfp->i2c_mii) {
2458 mdiobus_unregister(sfp->i2c_mii);
2459 mdiobus_free(sfp->i2c_mii);
2460 }
2461 if (sfp->i2c)
2462 i2c_put_adapter(sfp->i2c);
2463 kfree(sfp);
2464}
2465
2466static int sfp_probe(struct platform_device *pdev)
2467{
2468 const struct sff_data *sff;
2469 struct i2c_adapter *i2c;
2470 char *sfp_irq_name;
2471 struct sfp *sfp;
2472 int err, i;
2473
2474 sfp = sfp_alloc(&pdev->dev);
2475 if (IS_ERR(sfp))
2476 return PTR_ERR(sfp);
2477
2478 platform_set_drvdata(pdev, sfp);
2479
2480 err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2481 if (err < 0)
2482 return err;
2483
2484 sff = sfp->type = &sfp_data;
2485
2486 if (pdev->dev.of_node) {
2487 struct device_node *node = pdev->dev.of_node;
2488 const struct of_device_id *id;
2489 struct device_node *np;
2490
2491 id = of_match_node(sfp_of_match, node);
2492 if (WARN_ON(!id))
2493 return -EINVAL;
2494
2495 sff = sfp->type = id->data;
2496
2497 np = of_parse_phandle(node, "i2c-bus", 0);
2498 if (!np) {
2499 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2500 return -ENODEV;
2501 }
2502
2503 i2c = of_find_i2c_adapter_by_node(np);
2504 of_node_put(np);
2505 } else if (has_acpi_companion(&pdev->dev)) {
2506 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2507 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2508 struct fwnode_reference_args args;
2509 struct acpi_handle *acpi_handle;
2510 int ret;
2511
2512 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2513 if (ret || !is_acpi_device_node(args.fwnode)) {
2514 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2515 return -ENODEV;
2516 }
2517
2518 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2519 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2520 } else {
2521 return -EINVAL;
2522 }
2523
2524 if (!i2c)
2525 return -EPROBE_DEFER;
2526
2527 err = sfp_i2c_configure(sfp, i2c);
2528 if (err < 0) {
2529 i2c_put_adapter(i2c);
2530 return err;
2531 }
2532
2533 for (i = 0; i < GPIO_MAX; i++)
2534 if (sff->gpios & BIT(i)) {
2535 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2536 gpio_of_names[i], gpio_flags[i]);
2537 if (IS_ERR(sfp->gpio[i]))
2538 return PTR_ERR(sfp->gpio[i]);
2539 }
2540
2541 sfp->get_state = sfp_gpio_get_state;
2542 sfp->set_state = sfp_gpio_set_state;
2543
2544 /* Modules that have no detect signal are always present */
2545 if (!(sfp->gpio[GPIO_MODDEF0]))
2546 sfp->get_state = sff_gpio_get_state;
2547
2548 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2549 &sfp->max_power_mW);
2550 if (!sfp->max_power_mW)
2551 sfp->max_power_mW = 1000;
2552
2553 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2554 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2555
2556 /* Get the initial state, and always signal TX disable,
2557 * since the network interface will not be up.
2558 */
2559 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2560
2561 if (sfp->gpio[GPIO_RATE_SELECT] &&
2562 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2563 sfp->state |= SFP_F_RATE_SELECT;
2564 sfp_set_state(sfp, sfp->state);
2565 sfp_module_tx_disable(sfp);
2566 if (sfp->state & SFP_F_PRESENT) {
2567 rtnl_lock();
2568 sfp_sm_event(sfp, SFP_E_INSERT);
2569 rtnl_unlock();
2570 }
2571
2572 for (i = 0; i < GPIO_MAX; i++) {
2573 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2574 continue;
2575
2576 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2577 if (sfp->gpio_irq[i] < 0) {
2578 sfp->gpio_irq[i] = 0;
2579 sfp->need_poll = true;
2580 continue;
2581 }
2582
2583 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2584 "%s-%s", dev_name(sfp->dev),
2585 gpio_of_names[i]);
2586
2587 if (!sfp_irq_name)
2588 return -ENOMEM;
2589
2590 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2591 NULL, sfp_irq,
2592 IRQF_ONESHOT |
2593 IRQF_TRIGGER_RISING |
2594 IRQF_TRIGGER_FALLING,
2595 sfp_irq_name, sfp);
2596 if (err) {
2597 sfp->gpio_irq[i] = 0;
2598 sfp->need_poll = true;
2599 }
2600 }
2601
2602 if (sfp->need_poll)
2603 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2604
2605 /* We could have an issue in cases no Tx disable pin is available or
2606 * wired as modules using a laser as their light source will continue to
2607 * be active when the fiber is removed. This could be a safety issue and
2608 * we should at least warn the user about that.
2609 */
2610 if (!sfp->gpio[GPIO_TX_DISABLE])
2611 dev_warn(sfp->dev,
2612 "No tx_disable pin: SFP modules will always be emitting.\n");
2613
2614 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2615 if (!sfp->sfp_bus)
2616 return -ENOMEM;
2617
2618 sfp_debugfs_init(sfp);
2619
2620 return 0;
2621}
2622
2623static int sfp_remove(struct platform_device *pdev)
2624{
2625 struct sfp *sfp = platform_get_drvdata(pdev);
2626
2627 sfp_debugfs_exit(sfp);
2628 sfp_unregister_socket(sfp->sfp_bus);
2629
2630 rtnl_lock();
2631 sfp_sm_event(sfp, SFP_E_REMOVE);
2632 rtnl_unlock();
2633
2634 return 0;
2635}
2636
2637static void sfp_shutdown(struct platform_device *pdev)
2638{
2639 struct sfp *sfp = platform_get_drvdata(pdev);
2640 int i;
2641
2642 for (i = 0; i < GPIO_MAX; i++) {
2643 if (!sfp->gpio_irq[i])
2644 continue;
2645
2646 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2647 }
2648
2649 cancel_delayed_work_sync(&sfp->poll);
2650 cancel_delayed_work_sync(&sfp->timeout);
2651}
2652
2653static struct platform_driver sfp_driver = {
2654 .probe = sfp_probe,
2655 .remove = sfp_remove,
2656 .shutdown = sfp_shutdown,
2657 .driver = {
2658 .name = "sfp",
2659 .of_match_table = sfp_of_match,
2660 },
2661};
2662
2663static int sfp_init(void)
2664{
2665 poll_jiffies = msecs_to_jiffies(100);
2666
2667 return platform_driver_register(&sfp_driver);
2668}
2669module_init(sfp_init);
2670
2671static void sfp_exit(void)
2672{
2673 platform_driver_unregister(&sfp_driver);
2674}
2675module_exit(sfp_exit);
2676
2677MODULE_ALIAS("platform:sfp");
2678MODULE_AUTHOR("Russell King");
2679MODULE_LICENSE("GPL v2");