Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
  2/**************************************************************************
  3 *
  4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
  5 * All Rights Reserved.
  6 *
  7 * Permission is hereby granted, free of charge, to any person obtaining a
  8 * copy of this software and associated documentation files (the
  9 * "Software"), to deal in the Software without restriction, including
 10 * without limitation the rights to use, copy, modify, merge, publish,
 11 * distribute, sub license, and/or sell copies of the Software, and to
 12 * permit persons to whom the Software is furnished to do so, subject to
 13 * the following conditions:
 14 *
 15 * The above copyright notice and this permission notice (including the
 16 * next paragraph) shall be included in all copies or substantial portions
 17 * of the Software.
 18 *
 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 26 *
 27 **************************************************************************/
 28/*
 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
 30 */
 31
 32#include <drm/ttm/ttm_bo_driver.h>
 33#include <drm/ttm/ttm_placement.h>
 
 34#include <drm/drm_vma_manager.h>
 
 35#include <linux/io.h>
 36#include <linux/highmem.h>
 37#include <linux/wait.h>
 38#include <linux/slab.h>
 39#include <linux/vmalloc.h>
 40#include <linux/module.h>
 41#include <linux/dma-resv.h>
 42
 43struct ttm_transfer_obj {
 44	struct ttm_buffer_object base;
 45	struct ttm_buffer_object *bo;
 46};
 47
 48void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
 
 49{
 50	ttm_bo_mem_put(bo, &bo->mem);
 51}
 52
 53int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
 54		   struct ttm_operation_ctx *ctx,
 55		    struct ttm_mem_reg *new_mem)
 56{
 57	struct ttm_tt *ttm = bo->ttm;
 58	struct ttm_mem_reg *old_mem = &bo->mem;
 59	int ret;
 60
 61	if (old_mem->mem_type != TTM_PL_SYSTEM) {
 62		ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
 63
 64		if (unlikely(ret != 0)) {
 65			if (ret != -ERESTARTSYS)
 66				pr_err("Failed to expire sync object before unbinding TTM\n");
 67			return ret;
 68		}
 69
 70		ttm_tt_unbind(ttm);
 71		ttm_bo_free_old_node(bo);
 72		ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
 73				TTM_PL_MASK_MEM);
 74		old_mem->mem_type = TTM_PL_SYSTEM;
 75	}
 76
 77	ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
 78	if (unlikely(ret != 0))
 79		return ret;
 80
 81	if (new_mem->mem_type != TTM_PL_SYSTEM) {
 82		ret = ttm_tt_bind(ttm, new_mem, ctx);
 83		if (unlikely(ret != 0))
 84			return ret;
 85	}
 86
 87	*old_mem = *new_mem;
 88	new_mem->mm_node = NULL;
 89
 90	return 0;
 91}
 92EXPORT_SYMBOL(ttm_bo_move_ttm);
 93
 94int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
 95{
 96	if (likely(man->io_reserve_fastpath))
 97		return 0;
 98
 99	if (interruptible)
100		return mutex_lock_interruptible(&man->io_reserve_mutex);
101
102	mutex_lock(&man->io_reserve_mutex);
103	return 0;
104}
105EXPORT_SYMBOL(ttm_mem_io_lock);
106
107void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
108{
109	if (likely(man->io_reserve_fastpath))
110		return;
111
112	mutex_unlock(&man->io_reserve_mutex);
113}
114EXPORT_SYMBOL(ttm_mem_io_unlock);
115
116static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
117{
118	struct ttm_buffer_object *bo;
119
120	if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
121		return -EAGAIN;
122
123	bo = list_first_entry(&man->io_reserve_lru,
124			      struct ttm_buffer_object,
125			      io_reserve_lru);
126	list_del_init(&bo->io_reserve_lru);
127	ttm_bo_unmap_virtual_locked(bo);
128
129	return 0;
130}
131
132
133int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
134		       struct ttm_mem_reg *mem)
135{
136	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
137	int ret = 0;
138
139	if (!bdev->driver->io_mem_reserve)
140		return 0;
141	if (likely(man->io_reserve_fastpath))
142		return bdev->driver->io_mem_reserve(bdev, mem);
143
144	if (bdev->driver->io_mem_reserve &&
145	    mem->bus.io_reserved_count++ == 0) {
146retry:
147		ret = bdev->driver->io_mem_reserve(bdev, mem);
148		if (ret == -EAGAIN) {
149			ret = ttm_mem_io_evict(man);
150			if (ret == 0)
151				goto retry;
152		}
153	}
154	return ret;
155}
156EXPORT_SYMBOL(ttm_mem_io_reserve);
157
158void ttm_mem_io_free(struct ttm_bo_device *bdev,
159		     struct ttm_mem_reg *mem)
160{
161	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
162
163	if (likely(man->io_reserve_fastpath))
164		return;
165
166	if (bdev->driver->io_mem_reserve &&
167	    --mem->bus.io_reserved_count == 0 &&
168	    bdev->driver->io_mem_free)
169		bdev->driver->io_mem_free(bdev, mem);
170
171}
172EXPORT_SYMBOL(ttm_mem_io_free);
173
174int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
175{
176	struct ttm_mem_reg *mem = &bo->mem;
177	int ret;
178
179	if (!mem->bus.io_reserved_vm) {
180		struct ttm_mem_type_manager *man =
181			&bo->bdev->man[mem->mem_type];
182
183		ret = ttm_mem_io_reserve(bo->bdev, mem);
184		if (unlikely(ret != 0))
185			return ret;
186		mem->bus.io_reserved_vm = true;
187		if (man->use_io_reserve_lru)
188			list_add_tail(&bo->io_reserve_lru,
189				      &man->io_reserve_lru);
190	}
191	return 0;
192}
193
194void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
195{
196	struct ttm_mem_reg *mem = &bo->mem;
197
198	if (mem->bus.io_reserved_vm) {
199		mem->bus.io_reserved_vm = false;
200		list_del_init(&bo->io_reserve_lru);
201		ttm_mem_io_free(bo->bdev, mem);
202	}
203}
204
205static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
206			void **virtual)
207{
208	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
209	int ret;
210	void *addr;
211
212	*virtual = NULL;
213	(void) ttm_mem_io_lock(man, false);
214	ret = ttm_mem_io_reserve(bdev, mem);
215	ttm_mem_io_unlock(man);
216	if (ret || !mem->bus.is_iomem)
217		return ret;
218
219	if (mem->bus.addr) {
220		addr = mem->bus.addr;
221	} else {
222		if (mem->placement & TTM_PL_FLAG_WC)
223			addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
224		else
225			addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
226		if (!addr) {
227			(void) ttm_mem_io_lock(man, false);
228			ttm_mem_io_free(bdev, mem);
229			ttm_mem_io_unlock(man);
230			return -ENOMEM;
231		}
232	}
233	*virtual = addr;
234	return 0;
235}
236
237static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
238			 void *virtual)
239{
240	struct ttm_mem_type_manager *man;
241
242	man = &bdev->man[mem->mem_type];
243
244	if (virtual && mem->bus.addr == NULL)
245		iounmap(virtual);
246	(void) ttm_mem_io_lock(man, false);
247	ttm_mem_io_free(bdev, mem);
248	ttm_mem_io_unlock(man);
249}
250
251static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
252{
253	uint32_t *dstP =
254	    (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
255	uint32_t *srcP =
256	    (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
257
258	int i;
259	for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
260		iowrite32(ioread32(srcP++), dstP++);
261	return 0;
262}
263
264#ifdef CONFIG_X86
265#define __ttm_kmap_atomic_prot(__page, __prot) kmap_atomic_prot(__page, __prot)
266#define __ttm_kunmap_atomic(__addr) kunmap_atomic(__addr)
267#else
268#define __ttm_kmap_atomic_prot(__page, __prot) vmap(&__page, 1, 0,  __prot)
269#define __ttm_kunmap_atomic(__addr) vunmap(__addr)
270#endif
271
 
 
272
273/**
274 * ttm_kmap_atomic_prot - Efficient kernel map of a single page with
275 * specified page protection.
276 *
277 * @page: The page to map.
278 * @prot: The page protection.
279 *
280 * This function maps a TTM page using the kmap_atomic api if available,
281 * otherwise falls back to vmap. The user must make sure that the
282 * specified page does not have an aliased mapping with a different caching
283 * policy unless the architecture explicitly allows it. Also mapping and
284 * unmapping using this api must be correctly nested. Unmapping should
285 * occur in the reverse order of mapping.
286 */
287void *ttm_kmap_atomic_prot(struct page *page, pgprot_t prot)
288{
289	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
290		return kmap_atomic(page);
291	else
292		return __ttm_kmap_atomic_prot(page, prot);
293}
294EXPORT_SYMBOL(ttm_kmap_atomic_prot);
295
296/**
297 * ttm_kunmap_atomic_prot - Unmap a page that was mapped using
298 * ttm_kmap_atomic_prot.
 
 
 
299 *
300 * @addr: The virtual address from the map.
301 * @prot: The page protection.
302 */
303void ttm_kunmap_atomic_prot(void *addr, pgprot_t prot)
304{
305	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
306		kunmap_atomic(addr);
307	else
308		__ttm_kunmap_atomic(addr);
309}
310EXPORT_SYMBOL(ttm_kunmap_atomic_prot);
311
312static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
313				unsigned long page,
314				pgprot_t prot)
315{
316	struct page *d = ttm->pages[page];
317	void *dst;
318
319	if (!d)
320		return -ENOMEM;
321
322	src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
323	dst = ttm_kmap_atomic_prot(d, prot);
324	if (!dst)
325		return -ENOMEM;
326
327	memcpy_fromio(dst, src, PAGE_SIZE);
328
329	ttm_kunmap_atomic_prot(dst, prot);
330
331	return 0;
332}
333
334static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
335				unsigned long page,
336				pgprot_t prot)
337{
338	struct page *s = ttm->pages[page];
339	void *src;
340
341	if (!s)
342		return -ENOMEM;
 
343
344	dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
345	src = ttm_kmap_atomic_prot(s, prot);
346	if (!src)
347		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
348
349	memcpy_toio(dst, src, PAGE_SIZE);
 
 
350
351	ttm_kunmap_atomic_prot(src, prot);
352
353	return 0;
 
 
 
 
354}
 
355
356int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
357		       struct ttm_operation_ctx *ctx,
358		       struct ttm_mem_reg *new_mem)
359{
360	struct ttm_bo_device *bdev = bo->bdev;
361	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
 
362	struct ttm_tt *ttm = bo->ttm;
363	struct ttm_mem_reg *old_mem = &bo->mem;
364	struct ttm_mem_reg old_copy = *old_mem;
365	void *old_iomap;
366	void *new_iomap;
367	int ret;
368	unsigned long i;
369	unsigned long page;
370	unsigned long add = 0;
371	int dir;
372
373	ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
374	if (ret)
375		return ret;
376
377	ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
378	if (ret)
379		return ret;
380	ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
381	if (ret)
382		goto out;
383
384	/*
385	 * Single TTM move. NOP.
386	 */
387	if (old_iomap == NULL && new_iomap == NULL)
388		goto out2;
389
390	/*
391	 * Don't move nonexistent data. Clear destination instead.
392	 */
393	if (old_iomap == NULL &&
394	    (ttm == NULL || (ttm->state == tt_unpopulated &&
395			     !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
396		memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
397		goto out2;
398	}
399
400	/*
401	 * TTM might be null for moves within the same region.
402	 */
403	if (ttm) {
404		ret = ttm_tt_populate(ttm, ctx);
405		if (ret)
406			goto out1;
407	}
408
409	add = 0;
410	dir = 1;
411
412	if ((old_mem->mem_type == new_mem->mem_type) &&
413	    (new_mem->start < old_mem->start + old_mem->size)) {
414		dir = -1;
415		add = new_mem->num_pages - 1;
416	}
417
418	for (i = 0; i < new_mem->num_pages; ++i) {
419		page = i * dir + add;
420		if (old_iomap == NULL) {
421			pgprot_t prot = ttm_io_prot(old_mem->placement,
422						    PAGE_KERNEL);
423			ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
424						   prot);
425		} else if (new_iomap == NULL) {
426			pgprot_t prot = ttm_io_prot(new_mem->placement,
427						    PAGE_KERNEL);
428			ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
429						   prot);
430		} else {
431			ret = ttm_copy_io_page(new_iomap, old_iomap, page);
432		}
433		if (ret)
434			goto out1;
435	}
436	mb();
437out2:
438	old_copy = *old_mem;
439	*old_mem = *new_mem;
440	new_mem->mm_node = NULL;
441
442	if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
443		ttm_tt_destroy(ttm);
444		bo->ttm = NULL;
445	}
446
447out1:
448	ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
449out:
450	ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
451
452	/*
453	 * On error, keep the mm node!
454	 */
455	if (!ret)
456		ttm_bo_mem_put(bo, &old_copy);
457	return ret;
458}
459EXPORT_SYMBOL(ttm_bo_move_memcpy);
460
461static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
462{
463	struct ttm_transfer_obj *fbo;
464
465	fbo = container_of(bo, struct ttm_transfer_obj, base);
466	ttm_bo_put(fbo->bo);
467	kfree(fbo);
468}
469
470/**
471 * ttm_buffer_object_transfer
472 *
473 * @bo: A pointer to a struct ttm_buffer_object.
474 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
475 * holding the data of @bo with the old placement.
476 *
477 * This is a utility function that may be called after an accelerated move
478 * has been scheduled. A new buffer object is created as a placeholder for
479 * the old data while it's being copied. When that buffer object is idle,
480 * it can be destroyed, releasing the space of the old placement.
481 * Returns:
482 * !0: Failure.
483 */
484
485static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
486				      struct ttm_buffer_object **new_obj)
487{
488	struct ttm_transfer_obj *fbo;
489	int ret;
490
491	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
492	if (!fbo)
493		return -ENOMEM;
494
495	fbo->base = *bo;
496	fbo->base.mem.placement |= TTM_PL_FLAG_NO_EVICT;
497
498	ttm_bo_get(bo);
499	fbo->bo = bo;
500
501	/**
502	 * Fix up members that we shouldn't copy directly:
503	 * TODO: Explicit member copy would probably be better here.
504	 */
505
506	atomic_inc(&bo->bdev->glob->bo_count);
507	INIT_LIST_HEAD(&fbo->base.ddestroy);
508	INIT_LIST_HEAD(&fbo->base.lru);
509	INIT_LIST_HEAD(&fbo->base.swap);
510	INIT_LIST_HEAD(&fbo->base.io_reserve_lru);
511	mutex_init(&fbo->base.wu_mutex);
512	fbo->base.moving = NULL;
513	drm_vma_node_reset(&fbo->base.base.vma_node);
514	atomic_set(&fbo->base.cpu_writers, 0);
515
516	kref_init(&fbo->base.list_kref);
517	kref_init(&fbo->base.kref);
518	fbo->base.destroy = &ttm_transfered_destroy;
519	fbo->base.acc_size = 0;
520	fbo->base.base.resv = &fbo->base.base._resv;
521	dma_resv_init(fbo->base.base.resv);
522	ret = dma_resv_trylock(fbo->base.base.resv);
 
 
 
523	WARN_ON(!ret);
524
 
 
525	*new_obj = &fbo->base;
526	return 0;
527}
528
529pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
 
530{
531	/* Cached mappings need no adjustment */
532	if (caching_flags & TTM_PL_FLAG_CACHED)
533		return tmp;
534
535#if defined(__i386__) || defined(__x86_64__)
536	if (caching_flags & TTM_PL_FLAG_WC)
537		tmp = pgprot_writecombine(tmp);
538	else if (boot_cpu_data.x86 > 3)
539		tmp = pgprot_noncached(tmp);
540#endif
541#if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
542    defined(__powerpc__) || defined(__mips__)
543	if (caching_flags & TTM_PL_FLAG_WC)
544		tmp = pgprot_writecombine(tmp);
545	else
546		tmp = pgprot_noncached(tmp);
547#endif
548#if defined(__sparc__)
549	tmp = pgprot_noncached(tmp);
550#endif
551	return tmp;
552}
553EXPORT_SYMBOL(ttm_io_prot);
554
555static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
556			  unsigned long offset,
557			  unsigned long size,
558			  struct ttm_bo_kmap_obj *map)
559{
560	struct ttm_mem_reg *mem = &bo->mem;
561
562	if (bo->mem.bus.addr) {
563		map->bo_kmap_type = ttm_bo_map_premapped;
564		map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
565	} else {
 
 
566		map->bo_kmap_type = ttm_bo_map_iomap;
567		if (mem->placement & TTM_PL_FLAG_WC)
568			map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
569						  size);
 
 
 
570		else
571			map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
572						       size);
573	}
574	return (!map->virtual) ? -ENOMEM : 0;
575}
576
577static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
578			   unsigned long start_page,
579			   unsigned long num_pages,
580			   struct ttm_bo_kmap_obj *map)
581{
582	struct ttm_mem_reg *mem = &bo->mem;
583	struct ttm_operation_ctx ctx = {
584		.interruptible = false,
585		.no_wait_gpu = false
586	};
587	struct ttm_tt *ttm = bo->ttm;
588	pgprot_t prot;
589	int ret;
590
591	BUG_ON(!ttm);
592
593	ret = ttm_tt_populate(ttm, &ctx);
594	if (ret)
595		return ret;
596
597	if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
598		/*
599		 * We're mapping a single page, and the desired
600		 * page protection is consistent with the bo.
601		 */
602
603		map->bo_kmap_type = ttm_bo_map_kmap;
604		map->page = ttm->pages[start_page];
605		map->virtual = kmap(map->page);
606	} else {
607		/*
608		 * We need to use vmap to get the desired page protection
609		 * or to make the buffer object look contiguous.
610		 */
611		prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
612		map->bo_kmap_type = ttm_bo_map_vmap;
613		map->virtual = vmap(ttm->pages + start_page, num_pages,
614				    0, prot);
615	}
616	return (!map->virtual) ? -ENOMEM : 0;
617}
618
619int ttm_bo_kmap(struct ttm_buffer_object *bo,
620		unsigned long start_page, unsigned long num_pages,
621		struct ttm_bo_kmap_obj *map)
622{
623	struct ttm_mem_type_manager *man =
624		&bo->bdev->man[bo->mem.mem_type];
625	unsigned long offset, size;
626	int ret;
627
628	map->virtual = NULL;
629	map->bo = bo;
630	if (num_pages > bo->num_pages)
631		return -EINVAL;
632	if (start_page > bo->num_pages)
633		return -EINVAL;
634
635	(void) ttm_mem_io_lock(man, false);
636	ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
637	ttm_mem_io_unlock(man);
638	if (ret)
639		return ret;
640	if (!bo->mem.bus.is_iomem) {
641		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
642	} else {
643		offset = start_page << PAGE_SHIFT;
644		size = num_pages << PAGE_SHIFT;
645		return ttm_bo_ioremap(bo, offset, size, map);
646	}
647}
648EXPORT_SYMBOL(ttm_bo_kmap);
649
650void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
651{
652	struct ttm_buffer_object *bo = map->bo;
653	struct ttm_mem_type_manager *man =
654		&bo->bdev->man[bo->mem.mem_type];
655
656	if (!map->virtual)
657		return;
658	switch (map->bo_kmap_type) {
659	case ttm_bo_map_iomap:
660		iounmap(map->virtual);
661		break;
662	case ttm_bo_map_vmap:
663		vunmap(map->virtual);
664		break;
665	case ttm_bo_map_kmap:
666		kunmap(map->page);
667		break;
668	case ttm_bo_map_premapped:
669		break;
670	default:
671		BUG();
672	}
673	(void) ttm_mem_io_lock(man, false);
674	ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
675	ttm_mem_io_unlock(man);
676	map->virtual = NULL;
677	map->page = NULL;
678}
679EXPORT_SYMBOL(ttm_bo_kunmap);
680
681int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
682			      struct dma_fence *fence,
683			      bool evict,
684			      struct ttm_mem_reg *new_mem)
685{
686	struct ttm_bo_device *bdev = bo->bdev;
687	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
688	struct ttm_mem_reg *old_mem = &bo->mem;
689	int ret;
690	struct ttm_buffer_object *ghost_obj;
691
692	dma_resv_add_excl_fence(bo->base.resv, fence);
693	if (evict) {
694		ret = ttm_bo_wait(bo, false, false);
695		if (ret)
696			return ret;
697
698		if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
699			ttm_tt_destroy(bo->ttm);
700			bo->ttm = NULL;
701		}
702		ttm_bo_free_old_node(bo);
703	} else {
704		/**
705		 * This should help pipeline ordinary buffer moves.
706		 *
707		 * Hang old buffer memory on a new buffer object,
708		 * and leave it to be released when the GPU
709		 * operation has completed.
710		 */
711
712		dma_fence_put(bo->moving);
713		bo->moving = dma_fence_get(fence);
 
 
 
 
 
 
 
 
 
 
714
715		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
716		if (ret)
717			return ret;
718
719		dma_resv_add_excl_fence(ghost_obj->base.resv, fence);
720
721		/**
722		 * If we're not moving to fixed memory, the TTM object
723		 * needs to stay alive. Otherwhise hang it on the ghost
724		 * bo to be unbound and destroyed.
725		 */
 
 
 
 
726
727		if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
728			ghost_obj->ttm = NULL;
729		else
730			bo->ttm = NULL;
731
732		ttm_bo_unreserve(ghost_obj);
733		ttm_bo_put(ghost_obj);
734	}
735
736	*old_mem = *new_mem;
737	new_mem->mm_node = NULL;
738
739	return 0;
740}
741EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
742
743int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
744			 struct dma_fence *fence, bool evict,
745			 struct ttm_mem_reg *new_mem)
746{
747	struct ttm_bo_device *bdev = bo->bdev;
748	struct ttm_mem_reg *old_mem = &bo->mem;
 
 
749
750	struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type];
751	struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type];
 
 
 
752
 
 
 
 
 
 
 
753	int ret;
 
 
 
754
755	dma_resv_add_excl_fence(bo->base.resv, fence);
 
 
 
 
756
757	if (!evict) {
758		struct ttm_buffer_object *ghost_obj;
 
 
 
 
759
760		/**
761		 * This should help pipeline ordinary buffer moves.
762		 *
763		 * Hang old buffer memory on a new buffer object,
764		 * and leave it to be released when the GPU
765		 * operation has completed.
766		 */
767
768		dma_fence_put(bo->moving);
769		bo->moving = dma_fence_get(fence);
770
771		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
772		if (ret)
773			return ret;
774
775		dma_resv_add_excl_fence(ghost_obj->base.resv, fence);
776
777		/**
778		 * If we're not moving to fixed memory, the TTM object
779		 * needs to stay alive. Otherwhise hang it on the ghost
780		 * bo to be unbound and destroyed.
781		 */
782
783		if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED))
784			ghost_obj->ttm = NULL;
785		else
786			bo->ttm = NULL;
 
787
788		ttm_bo_unreserve(ghost_obj);
789		ttm_bo_put(ghost_obj);
 
 
790
791	} else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) {
 
 
 
 
792
793		/**
794		 * BO doesn't have a TTM we need to bind/unbind. Just remember
795		 * this eviction and free up the allocation
796		 */
797
798		spin_lock(&from->move_lock);
799		if (!from->move || dma_fence_is_later(fence, from->move)) {
800			dma_fence_put(from->move);
801			from->move = dma_fence_get(fence);
802		}
803		spin_unlock(&from->move_lock);
 
 
 
 
804
805		ttm_bo_free_old_node(bo);
806
807		dma_fence_put(bo->moving);
808		bo->moving = dma_fence_get(fence);
 
809
810	} else {
811		/**
812		 * Last resort, wait for the move to be completed.
813		 *
814		 * Should never happen in pratice.
815		 */
 
 
 
 
816
817		ret = ttm_bo_wait(bo, false, false);
818		if (ret)
819			return ret;
 
 
 
 
820
821		if (to->flags & TTM_MEMTYPE_FLAG_FIXED) {
822			ttm_tt_destroy(bo->ttm);
823			bo->ttm = NULL;
824		}
825		ttm_bo_free_old_node(bo);
826	}
827
828	*old_mem = *new_mem;
829	new_mem->mm_node = NULL;
830
831	return 0;
832}
833EXPORT_SYMBOL(ttm_bo_pipeline_move);
834
 
 
 
 
 
 
 
 
 
 
 
835int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
836{
 
837	struct ttm_buffer_object *ghost;
 
 
838	int ret;
839
840	ret = ttm_buffer_object_transfer(bo, &ghost);
841	if (ret)
842		return ret;
843
844	ret = dma_resv_copy_fences(ghost->base.resv, bo->base.resv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845	/* Last resort, wait for the BO to be idle when we are OOM */
846	if (ret)
847		ttm_bo_wait(bo, false, false);
848
849	memset(&bo->mem, 0, sizeof(bo->mem));
850	bo->mem.mem_type = TTM_PL_SYSTEM;
851	bo->ttm = NULL;
852
853	ttm_bo_unreserve(ghost);
854	ttm_bo_put(ghost);
855
 
 
856	return 0;
 
 
 
 
 
 
 
857}
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
  2/**************************************************************************
  3 *
  4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
  5 * All Rights Reserved.
  6 *
  7 * Permission is hereby granted, free of charge, to any person obtaining a
  8 * copy of this software and associated documentation files (the
  9 * "Software"), to deal in the Software without restriction, including
 10 * without limitation the rights to use, copy, modify, merge, publish,
 11 * distribute, sub license, and/or sell copies of the Software, and to
 12 * permit persons to whom the Software is furnished to do so, subject to
 13 * the following conditions:
 14 *
 15 * The above copyright notice and this permission notice (including the
 16 * next paragraph) shall be included in all copies or substantial portions
 17 * of the Software.
 18 *
 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 26 *
 27 **************************************************************************/
 28/*
 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
 30 */
 31
 32#include <drm/ttm/ttm_bo_driver.h>
 33#include <drm/ttm/ttm_placement.h>
 34#include <drm/drm_cache.h>
 35#include <drm/drm_vma_manager.h>
 36#include <linux/dma-buf-map.h>
 37#include <linux/io.h>
 38#include <linux/highmem.h>
 39#include <linux/wait.h>
 40#include <linux/slab.h>
 41#include <linux/vmalloc.h>
 42#include <linux/module.h>
 43#include <linux/dma-resv.h>
 44
 45struct ttm_transfer_obj {
 46	struct ttm_buffer_object base;
 47	struct ttm_buffer_object *bo;
 48};
 49
 50int ttm_mem_io_reserve(struct ttm_device *bdev,
 51		       struct ttm_resource *mem)
 52{
 53	if (mem->bus.offset || mem->bus.addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 54		return 0;
 55
 56	mem->bus.is_iomem = false;
 57	if (!bdev->funcs->io_mem_reserve)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58		return 0;
 
 
 59
 60	return bdev->funcs->io_mem_reserve(bdev, mem);
 
 
 
 
 
 
 
 
 
 
 61}
 
 62
 63void ttm_mem_io_free(struct ttm_device *bdev,
 64		     struct ttm_resource *mem)
 65{
 66	if (!mem)
 
 
 67		return;
 68
 69	if (!mem->bus.offset && !mem->bus.addr)
 70		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 71
 72	if (bdev->funcs->io_mem_free)
 73		bdev->funcs->io_mem_free(bdev, mem);
 74
 75	mem->bus.offset = 0;
 76	mem->bus.addr = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 77}
 
 78
 79/**
 80 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
 81 * @bo: The struct ttm_buffer_object.
 82 * @new_mem: The struct ttm_resource we're moving to (copy destination).
 83 * @new_iter: A struct ttm_kmap_iter representing the destination resource.
 84 * @src_iter: A struct ttm_kmap_iter representing the source resource.
 85 *
 86 * This function is intended to be able to move out async under a
 87 * dma-fence if desired.
 88 */
 89void ttm_move_memcpy(struct ttm_buffer_object *bo,
 90		     u32 num_pages,
 91		     struct ttm_kmap_iter *dst_iter,
 92		     struct ttm_kmap_iter *src_iter)
 
 
 
 
 
 
 
 
 93{
 94	const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
 95	const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
 96	struct ttm_tt *ttm = bo->ttm;
 97	struct dma_buf_map src_map, dst_map;
 98	pgoff_t i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 99
100	/* Single TTM move. NOP */
101	if (dst_ops->maps_tt && src_ops->maps_tt)
102		return;
103
104	/* Don't move nonexistent data. Clear destination instead. */
105	if (src_ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm))) {
106		if (ttm && !(ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC))
107			return;
108
109		for (i = 0; i < num_pages; ++i) {
110			dst_ops->map_local(dst_iter, &dst_map, i);
111			if (dst_map.is_iomem)
112				memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
113			else
114				memset(dst_map.vaddr, 0, PAGE_SIZE);
115			if (dst_ops->unmap_local)
116				dst_ops->unmap_local(dst_iter, &dst_map);
117		}
118		return;
119	}
120
121	for (i = 0; i < num_pages; ++i) {
122		dst_ops->map_local(dst_iter, &dst_map, i);
123		src_ops->map_local(src_iter, &src_map, i);
124
125		drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
126
127		if (src_ops->unmap_local)
128			src_ops->unmap_local(src_iter, &src_map);
129		if (dst_ops->unmap_local)
130			dst_ops->unmap_local(dst_iter, &dst_map);
131	}
132}
133EXPORT_SYMBOL(ttm_move_memcpy);
134
135int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
136		       struct ttm_operation_ctx *ctx,
137		       struct ttm_resource *dst_mem)
138{
139	struct ttm_device *bdev = bo->bdev;
140	struct ttm_resource_manager *dst_man =
141		ttm_manager_type(bo->bdev, dst_mem->mem_type);
142	struct ttm_tt *ttm = bo->ttm;
143	struct ttm_resource *src_mem = bo->resource;
144	struct ttm_resource_manager *src_man =
145		ttm_manager_type(bdev, src_mem->mem_type);
146	union {
147		struct ttm_kmap_iter_tt tt;
148		struct ttm_kmap_iter_linear_io io;
149	} _dst_iter, _src_iter;
150	struct ttm_kmap_iter *dst_iter, *src_iter;
151	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
153	if (ttm && ((ttm->page_flags & TTM_PAGE_FLAG_SWAPPED) ||
154		    dst_man->use_tt)) {
155		ret = ttm_tt_populate(bdev, ttm, ctx);
 
 
156		if (ret)
157			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158	}
159
160	dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
161	if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
162		dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
163	if (IS_ERR(dst_iter))
164		return PTR_ERR(dst_iter);
165
166	src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
167	if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
168		src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
169	if (IS_ERR(src_iter)) {
170		ret = PTR_ERR(src_iter);
171		goto out_src_iter;
172	}
173
174	ttm_move_memcpy(bo, dst_mem->num_pages, dst_iter, src_iter);
175
176	if (!src_iter->ops->maps_tt)
177		ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
178	ttm_bo_move_sync_cleanup(bo, dst_mem);
179
180out_src_iter:
181	if (!dst_iter->ops->maps_tt)
182		ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
183
 
 
 
 
 
184	return ret;
185}
186EXPORT_SYMBOL(ttm_bo_move_memcpy);
187
188static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
189{
190	struct ttm_transfer_obj *fbo;
191
192	fbo = container_of(bo, struct ttm_transfer_obj, base);
193	ttm_bo_put(fbo->bo);
194	kfree(fbo);
195}
196
197/**
198 * ttm_buffer_object_transfer
199 *
200 * @bo: A pointer to a struct ttm_buffer_object.
201 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
202 * holding the data of @bo with the old placement.
203 *
204 * This is a utility function that may be called after an accelerated move
205 * has been scheduled. A new buffer object is created as a placeholder for
206 * the old data while it's being copied. When that buffer object is idle,
207 * it can be destroyed, releasing the space of the old placement.
208 * Returns:
209 * !0: Failure.
210 */
211
212static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
213				      struct ttm_buffer_object **new_obj)
214{
215	struct ttm_transfer_obj *fbo;
216	int ret;
217
218	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
219	if (!fbo)
220		return -ENOMEM;
221
222	fbo->base = *bo;
 
223
224	ttm_bo_get(bo);
225	fbo->bo = bo;
226
227	/**
228	 * Fix up members that we shouldn't copy directly:
229	 * TODO: Explicit member copy would probably be better here.
230	 */
231
232	atomic_inc(&ttm_glob.bo_count);
233	INIT_LIST_HEAD(&fbo->base.ddestroy);
234	INIT_LIST_HEAD(&fbo->base.lru);
 
 
 
235	fbo->base.moving = NULL;
236	drm_vma_node_reset(&fbo->base.base.vma_node);
 
237
 
238	kref_init(&fbo->base.kref);
239	fbo->base.destroy = &ttm_transfered_destroy;
240	fbo->base.pin_count = 0;
241	if (bo->type != ttm_bo_type_sg)
242		fbo->base.base.resv = &fbo->base.base._resv;
243
244	dma_resv_init(&fbo->base.base._resv);
245	fbo->base.base.dev = NULL;
246	ret = dma_resv_trylock(&fbo->base.base._resv);
247	WARN_ON(!ret);
248
249	ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
250
251	*new_obj = &fbo->base;
252	return 0;
253}
254
255pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
256		     pgprot_t tmp)
257{
258	struct ttm_resource_manager *man;
259	enum ttm_caching caching;
260
261	man = ttm_manager_type(bo->bdev, res->mem_type);
262	caching = man->use_tt ? bo->ttm->caching : res->bus.caching;
263
264	return ttm_prot_from_caching(caching, tmp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265}
266EXPORT_SYMBOL(ttm_io_prot);
267
268static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
269			  unsigned long offset,
270			  unsigned long size,
271			  struct ttm_bo_kmap_obj *map)
272{
273	struct ttm_resource *mem = bo->resource;
274
275	if (bo->resource->bus.addr) {
276		map->bo_kmap_type = ttm_bo_map_premapped;
277		map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
278	} else {
279		resource_size_t res = bo->resource->bus.offset + offset;
280
281		map->bo_kmap_type = ttm_bo_map_iomap;
282		if (mem->bus.caching == ttm_write_combined)
283			map->virtual = ioremap_wc(res, size);
284#ifdef CONFIG_X86
285		else if (mem->bus.caching == ttm_cached)
286			map->virtual = ioremap_cache(res, size);
287#endif
288		else
289			map->virtual = ioremap(res, size);
 
290	}
291	return (!map->virtual) ? -ENOMEM : 0;
292}
293
294static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
295			   unsigned long start_page,
296			   unsigned long num_pages,
297			   struct ttm_bo_kmap_obj *map)
298{
299	struct ttm_resource *mem = bo->resource;
300	struct ttm_operation_ctx ctx = {
301		.interruptible = false,
302		.no_wait_gpu = false
303	};
304	struct ttm_tt *ttm = bo->ttm;
305	pgprot_t prot;
306	int ret;
307
308	BUG_ON(!ttm);
309
310	ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
311	if (ret)
312		return ret;
313
314	if (num_pages == 1 && ttm->caching == ttm_cached) {
315		/*
316		 * We're mapping a single page, and the desired
317		 * page protection is consistent with the bo.
318		 */
319
320		map->bo_kmap_type = ttm_bo_map_kmap;
321		map->page = ttm->pages[start_page];
322		map->virtual = kmap(map->page);
323	} else {
324		/*
325		 * We need to use vmap to get the desired page protection
326		 * or to make the buffer object look contiguous.
327		 */
328		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
329		map->bo_kmap_type = ttm_bo_map_vmap;
330		map->virtual = vmap(ttm->pages + start_page, num_pages,
331				    0, prot);
332	}
333	return (!map->virtual) ? -ENOMEM : 0;
334}
335
336int ttm_bo_kmap(struct ttm_buffer_object *bo,
337		unsigned long start_page, unsigned long num_pages,
338		struct ttm_bo_kmap_obj *map)
339{
 
 
340	unsigned long offset, size;
341	int ret;
342
343	map->virtual = NULL;
344	map->bo = bo;
345	if (num_pages > bo->resource->num_pages)
346		return -EINVAL;
347	if ((start_page + num_pages) > bo->resource->num_pages)
348		return -EINVAL;
349
350	ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
 
 
351	if (ret)
352		return ret;
353	if (!bo->resource->bus.is_iomem) {
354		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
355	} else {
356		offset = start_page << PAGE_SHIFT;
357		size = num_pages << PAGE_SHIFT;
358		return ttm_bo_ioremap(bo, offset, size, map);
359	}
360}
361EXPORT_SYMBOL(ttm_bo_kmap);
362
363void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
364{
 
 
 
 
365	if (!map->virtual)
366		return;
367	switch (map->bo_kmap_type) {
368	case ttm_bo_map_iomap:
369		iounmap(map->virtual);
370		break;
371	case ttm_bo_map_vmap:
372		vunmap(map->virtual);
373		break;
374	case ttm_bo_map_kmap:
375		kunmap(map->page);
376		break;
377	case ttm_bo_map_premapped:
378		break;
379	default:
380		BUG();
381	}
382	ttm_mem_io_free(map->bo->bdev, map->bo->resource);
 
 
383	map->virtual = NULL;
384	map->page = NULL;
385}
386EXPORT_SYMBOL(ttm_bo_kunmap);
387
388int ttm_bo_vmap(struct ttm_buffer_object *bo, struct dma_buf_map *map)
 
 
 
389{
390	struct ttm_resource *mem = bo->resource;
 
 
391	int ret;
 
392
393	ret = ttm_mem_io_reserve(bo->bdev, mem);
394	if (ret)
395		return ret;
 
 
396
397	if (mem->bus.is_iomem) {
398		void __iomem *vaddr_iomem;
 
 
 
 
 
 
 
 
 
 
 
399
400		if (mem->bus.addr)
401			vaddr_iomem = (void __iomem *)mem->bus.addr;
402		else if (mem->bus.caching == ttm_write_combined)
403			vaddr_iomem = ioremap_wc(mem->bus.offset,
404						 bo->base.size);
405#ifdef CONFIG_X86
406		else if (mem->bus.caching == ttm_cached)
407			vaddr_iomem = ioremap_cache(mem->bus.offset,
408						  bo->base.size);
409#endif
410		else
411			vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
412
413		if (!vaddr_iomem)
414			return -ENOMEM;
415
416		dma_buf_map_set_vaddr_iomem(map, vaddr_iomem);
417
418	} else {
419		struct ttm_operation_ctx ctx = {
420			.interruptible = false,
421			.no_wait_gpu = false
422		};
423		struct ttm_tt *ttm = bo->ttm;
424		pgprot_t prot;
425		void *vaddr;
426
427		ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
428		if (ret)
429			return ret;
430
431		/*
432		 * We need to use vmap to get the desired page protection
433		 * or to make the buffer object look contiguous.
 
 
 
434		 */
435		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
436		vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
437		if (!vaddr)
438			return -ENOMEM;
439
440		dma_buf_map_set_vaddr(map, vaddr);
 
 
 
 
 
 
441	}
442
 
 
 
443	return 0;
444}
445EXPORT_SYMBOL(ttm_bo_vmap);
446
447void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct dma_buf_map *map)
 
 
448{
449	struct ttm_resource *mem = bo->resource;
450
451	if (dma_buf_map_is_null(map))
452		return;
453
454	if (!map->is_iomem)
455		vunmap(map->vaddr);
456	else if (!mem->bus.addr)
457		iounmap(map->vaddr_iomem);
458	dma_buf_map_clear(map);
459
460	ttm_mem_io_free(bo->bdev, bo->resource);
461}
462EXPORT_SYMBOL(ttm_bo_vunmap);
463
464static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
465				 bool dst_use_tt)
466{
467	int ret;
468	ret = ttm_bo_wait(bo, false, false);
469	if (ret)
470		return ret;
471
472	if (!dst_use_tt)
473		ttm_bo_tt_destroy(bo);
474	ttm_resource_free(bo, &bo->resource);
475	return 0;
476}
477
478static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
479				struct dma_fence *fence,
480				bool dst_use_tt)
481{
482	struct ttm_buffer_object *ghost_obj;
483	int ret;
484
485	/**
486	 * This should help pipeline ordinary buffer moves.
487	 *
488	 * Hang old buffer memory on a new buffer object,
489	 * and leave it to be released when the GPU
490	 * operation has completed.
491	 */
492
493	dma_fence_put(bo->moving);
494	bo->moving = dma_fence_get(fence);
495
496	ret = ttm_buffer_object_transfer(bo, &ghost_obj);
497	if (ret)
498		return ret;
499
500	dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
501
502	/**
503	 * If we're not moving to fixed memory, the TTM object
504	 * needs to stay alive. Otherwhise hang it on the ghost
505	 * bo to be unbound and destroyed.
506	 */
507
508	if (dst_use_tt)
509		ghost_obj->ttm = NULL;
510	else
511		bo->ttm = NULL;
512	bo->resource = NULL;
513
514	dma_resv_unlock(&ghost_obj->base._resv);
515	ttm_bo_put(ghost_obj);
516	return 0;
517}
518
519static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
520				       struct dma_fence *fence)
521{
522	struct ttm_device *bdev = bo->bdev;
523	struct ttm_resource_manager *from;
524
525	from = ttm_manager_type(bdev, bo->resource->mem_type);
 
 
 
526
527	/**
528	 * BO doesn't have a TTM we need to bind/unbind. Just remember
529	 * this eviction and free up the allocation
530	 */
531	spin_lock(&from->move_lock);
532	if (!from->move || dma_fence_is_later(fence, from->move)) {
533		dma_fence_put(from->move);
534		from->move = dma_fence_get(fence);
535	}
536	spin_unlock(&from->move_lock);
537
538	ttm_resource_free(bo, &bo->resource);
539
540	dma_fence_put(bo->moving);
541	bo->moving = dma_fence_get(fence);
542}
543
544int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
545			      struct dma_fence *fence,
546			      bool evict,
547			      bool pipeline,
548			      struct ttm_resource *new_mem)
549{
550	struct ttm_device *bdev = bo->bdev;
551	struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
552	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
553	int ret = 0;
554
555	dma_resv_add_excl_fence(bo->base.resv, fence);
556	if (!evict)
557		ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
558	else if (!from->use_tt && pipeline)
559		ttm_bo_move_pipeline_evict(bo, fence);
560	else
561		ret = ttm_bo_wait_free_node(bo, man->use_tt);
562
563	if (ret)
564		return ret;
 
 
 
 
565
566	ttm_bo_assign_mem(bo, new_mem);
 
567
568	return 0;
569}
570EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
571
572/**
573 * ttm_bo_pipeline_gutting - purge the contents of a bo
574 * @bo: The buffer object
575 *
576 * Purge the contents of a bo, async if the bo is not idle.
577 * After a successful call, the bo is left unpopulated in
578 * system placement. The function may wait uninterruptible
579 * for idle on OOM.
580 *
581 * Return: 0 if successful, negative error code on failure.
582 */
583int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
584{
585	static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM };
586	struct ttm_buffer_object *ghost;
587	struct ttm_resource *sys_res;
588	struct ttm_tt *ttm;
589	int ret;
590
591	ret = ttm_resource_alloc(bo, &sys_mem, &sys_res);
592	if (ret)
593		return ret;
594
595	/* If already idle, no need for ghost object dance. */
596	ret = ttm_bo_wait(bo, false, true);
597	if (ret != -EBUSY) {
598		if (!bo->ttm) {
599			/* See comment below about clearing. */
600			ret = ttm_tt_create(bo, true);
601			if (ret)
602				goto error_free_sys_mem;
603		} else {
604			ttm_tt_unpopulate(bo->bdev, bo->ttm);
605			if (bo->type == ttm_bo_type_device)
606				ttm_tt_mark_for_clear(bo->ttm);
607		}
608		ttm_resource_free(bo, &bo->resource);
609		ttm_bo_assign_mem(bo, sys_res);
610		return 0;
611	}
612
613	/*
614	 * We need an unpopulated ttm_tt after giving our current one,
615	 * if any, to the ghost object. And we can't afford to fail
616	 * creating one *after* the operation. If the bo subsequently gets
617	 * resurrected, make sure it's cleared (if ttm_bo_type_device)
618	 * to avoid leaking sensitive information to user-space.
619	 */
620
621	ttm = bo->ttm;
622	bo->ttm = NULL;
623	ret = ttm_tt_create(bo, true);
624	swap(bo->ttm, ttm);
625	if (ret)
626		goto error_free_sys_mem;
627
628	ret = ttm_buffer_object_transfer(bo, &ghost);
629	if (ret)
630		goto error_destroy_tt;
631
632	ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
633	/* Last resort, wait for the BO to be idle when we are OOM */
634	if (ret)
635		ttm_bo_wait(bo, false, false);
636
637	dma_resv_unlock(&ghost->base._resv);
 
 
 
 
638	ttm_bo_put(ghost);
639	bo->ttm = ttm;
640	bo->resource = NULL;
641	ttm_bo_assign_mem(bo, sys_res);
642	return 0;
643
644error_destroy_tt:
645	ttm_tt_destroy(bo->bdev, ttm);
646
647error_free_sys_mem:
648	ttm_resource_free(bo, &sys_res);
649	return ret;
650}