Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Architecture-specific setup.
4 *
5 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Stephane Eranian <eranian@hpl.hp.com>
8 * Copyright (C) 2000, 2004 Intel Corp
9 * Rohit Seth <rohit.seth@intel.com>
10 * Suresh Siddha <suresh.b.siddha@intel.com>
11 * Gordon Jin <gordon.jin@intel.com>
12 * Copyright (C) 1999 VA Linux Systems
13 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14 *
15 * 12/26/04 S.Siddha, G.Jin, R.Seth
16 * Add multi-threading and multi-core detection
17 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
18 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
19 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
20 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
21 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
22 * 01/07/99 S.Eranian added the support for command line argument
23 * 06/24/99 W.Drummond added boot_cpu_data.
24 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
25 */
26#include <linux/module.h>
27#include <linux/init.h>
28
29#include <linux/acpi.h>
30#include <linux/console.h>
31#include <linux/delay.h>
32#include <linux/cpu.h>
33#include <linux/kdev_t.h>
34#include <linux/kernel.h>
35#include <linux/memblock.h>
36#include <linux/reboot.h>
37#include <linux/sched/mm.h>
38#include <linux/sched/clock.h>
39#include <linux/sched/task_stack.h>
40#include <linux/seq_file.h>
41#include <linux/string.h>
42#include <linux/threads.h>
43#include <linux/screen_info.h>
44#include <linux/dmi.h>
45#include <linux/root_dev.h>
46#include <linux/serial.h>
47#include <linux/serial_core.h>
48#include <linux/efi.h>
49#include <linux/initrd.h>
50#include <linux/pm.h>
51#include <linux/cpufreq.h>
52#include <linux/kexec.h>
53#include <linux/crash_dump.h>
54
55#include <asm/mca.h>
56#include <asm/meminit.h>
57#include <asm/page.h>
58#include <asm/patch.h>
59#include <asm/pgtable.h>
60#include <asm/processor.h>
61#include <asm/sal.h>
62#include <asm/sections.h>
63#include <asm/setup.h>
64#include <asm/smp.h>
65#include <asm/tlbflush.h>
66#include <asm/unistd.h>
67#include <asm/uv/uv.h>
68
69#if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
70# error "struct cpuinfo_ia64 too big!"
71#endif
72
73char ia64_platform_name[64];
74
75#ifdef CONFIG_SMP
76unsigned long __per_cpu_offset[NR_CPUS];
77EXPORT_SYMBOL(__per_cpu_offset);
78#endif
79
80DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
81EXPORT_SYMBOL(ia64_cpu_info);
82DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
83#ifdef CONFIG_SMP
84EXPORT_SYMBOL(local_per_cpu_offset);
85#endif
86unsigned long ia64_cycles_per_usec;
87struct ia64_boot_param *ia64_boot_param;
88struct screen_info screen_info;
89unsigned long vga_console_iobase;
90unsigned long vga_console_membase;
91
92static struct resource data_resource = {
93 .name = "Kernel data",
94 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
95};
96
97static struct resource code_resource = {
98 .name = "Kernel code",
99 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
100};
101
102static struct resource bss_resource = {
103 .name = "Kernel bss",
104 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
105};
106
107unsigned long ia64_max_cacheline_size;
108
109unsigned long ia64_iobase; /* virtual address for I/O accesses */
110EXPORT_SYMBOL(ia64_iobase);
111struct io_space io_space[MAX_IO_SPACES];
112EXPORT_SYMBOL(io_space);
113unsigned int num_io_spaces;
114
115/*
116 * "flush_icache_range()" needs to know what processor dependent stride size to use
117 * when it makes i-cache(s) coherent with d-caches.
118 */
119#define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
120unsigned long ia64_i_cache_stride_shift = ~0;
121/*
122 * "clflush_cache_range()" needs to know what processor dependent stride size to
123 * use when it flushes cache lines including both d-cache and i-cache.
124 */
125/* Safest way to go: 32 bytes by 32 bytes */
126#define CACHE_STRIDE_SHIFT 5
127unsigned long ia64_cache_stride_shift = ~0;
128
129/*
130 * We use a special marker for the end of memory and it uses the extra (+1) slot
131 */
132struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
133int num_rsvd_regions __initdata;
134
135
136/*
137 * Filter incoming memory segments based on the primitive map created from the boot
138 * parameters. Segments contained in the map are removed from the memory ranges. A
139 * caller-specified function is called with the memory ranges that remain after filtering.
140 * This routine does not assume the incoming segments are sorted.
141 */
142int __init
143filter_rsvd_memory (u64 start, u64 end, void *arg)
144{
145 u64 range_start, range_end, prev_start;
146 void (*func)(unsigned long, unsigned long, int);
147 int i;
148
149#if IGNORE_PFN0
150 if (start == PAGE_OFFSET) {
151 printk(KERN_WARNING "warning: skipping physical page 0\n");
152 start += PAGE_SIZE;
153 if (start >= end) return 0;
154 }
155#endif
156 /*
157 * lowest possible address(walker uses virtual)
158 */
159 prev_start = PAGE_OFFSET;
160 func = arg;
161
162 for (i = 0; i < num_rsvd_regions; ++i) {
163 range_start = max(start, prev_start);
164 range_end = min(end, rsvd_region[i].start);
165
166 if (range_start < range_end)
167 call_pernode_memory(__pa(range_start), range_end - range_start, func);
168
169 /* nothing more available in this segment */
170 if (range_end == end) return 0;
171
172 prev_start = rsvd_region[i].end;
173 }
174 /* end of memory marker allows full processing inside loop body */
175 return 0;
176}
177
178/*
179 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
180 * are not filtered out.
181 */
182int __init
183filter_memory(u64 start, u64 end, void *arg)
184{
185 void (*func)(unsigned long, unsigned long, int);
186
187#if IGNORE_PFN0
188 if (start == PAGE_OFFSET) {
189 printk(KERN_WARNING "warning: skipping physical page 0\n");
190 start += PAGE_SIZE;
191 if (start >= end)
192 return 0;
193 }
194#endif
195 func = arg;
196 if (start < end)
197 call_pernode_memory(__pa(start), end - start, func);
198 return 0;
199}
200
201static void __init
202sort_regions (struct rsvd_region *rsvd_region, int max)
203{
204 int j;
205
206 /* simple bubble sorting */
207 while (max--) {
208 for (j = 0; j < max; ++j) {
209 if (rsvd_region[j].start > rsvd_region[j+1].start) {
210 struct rsvd_region tmp;
211 tmp = rsvd_region[j];
212 rsvd_region[j] = rsvd_region[j + 1];
213 rsvd_region[j + 1] = tmp;
214 }
215 }
216 }
217}
218
219/* merge overlaps */
220static int __init
221merge_regions (struct rsvd_region *rsvd_region, int max)
222{
223 int i;
224 for (i = 1; i < max; ++i) {
225 if (rsvd_region[i].start >= rsvd_region[i-1].end)
226 continue;
227 if (rsvd_region[i].end > rsvd_region[i-1].end)
228 rsvd_region[i-1].end = rsvd_region[i].end;
229 --max;
230 memmove(&rsvd_region[i], &rsvd_region[i+1],
231 (max - i) * sizeof(struct rsvd_region));
232 }
233 return max;
234}
235
236/*
237 * Request address space for all standard resources
238 */
239static int __init register_memory(void)
240{
241 code_resource.start = ia64_tpa(_text);
242 code_resource.end = ia64_tpa(_etext) - 1;
243 data_resource.start = ia64_tpa(_etext);
244 data_resource.end = ia64_tpa(_edata) - 1;
245 bss_resource.start = ia64_tpa(__bss_start);
246 bss_resource.end = ia64_tpa(_end) - 1;
247 efi_initialize_iomem_resources(&code_resource, &data_resource,
248 &bss_resource);
249
250 return 0;
251}
252
253__initcall(register_memory);
254
255
256#ifdef CONFIG_KEXEC
257
258/*
259 * This function checks if the reserved crashkernel is allowed on the specific
260 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
261 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
262 * kernel/dma/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
263 * in kdump case. See the comment in sba_init() in sba_iommu.c.
264 *
265 * So, the only machvec that really supports loading the kdump kernel
266 * over 4 GB is "uv".
267 */
268static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
269{
270 if (is_uv_system())
271 return 1;
272 else
273 return pbase < (1UL << 32);
274}
275
276static void __init setup_crashkernel(unsigned long total, int *n)
277{
278 unsigned long long base = 0, size = 0;
279 int ret;
280
281 ret = parse_crashkernel(boot_command_line, total,
282 &size, &base);
283 if (ret == 0 && size > 0) {
284 if (!base) {
285 sort_regions(rsvd_region, *n);
286 *n = merge_regions(rsvd_region, *n);
287 base = kdump_find_rsvd_region(size,
288 rsvd_region, *n);
289 }
290
291 if (!check_crashkernel_memory(base, size)) {
292 pr_warning("crashkernel: There would be kdump memory "
293 "at %ld GB but this is unusable because it "
294 "must\nbe below 4 GB. Change the memory "
295 "configuration of the machine.\n",
296 (unsigned long)(base >> 30));
297 return;
298 }
299
300 if (base != ~0UL) {
301 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
302 "for crashkernel (System RAM: %ldMB)\n",
303 (unsigned long)(size >> 20),
304 (unsigned long)(base >> 20),
305 (unsigned long)(total >> 20));
306 rsvd_region[*n].start =
307 (unsigned long)__va(base);
308 rsvd_region[*n].end =
309 (unsigned long)__va(base + size);
310 (*n)++;
311 crashk_res.start = base;
312 crashk_res.end = base + size - 1;
313 }
314 }
315 efi_memmap_res.start = ia64_boot_param->efi_memmap;
316 efi_memmap_res.end = efi_memmap_res.start +
317 ia64_boot_param->efi_memmap_size;
318 boot_param_res.start = __pa(ia64_boot_param);
319 boot_param_res.end = boot_param_res.start +
320 sizeof(*ia64_boot_param);
321}
322#else
323static inline void __init setup_crashkernel(unsigned long total, int *n)
324{}
325#endif
326
327/**
328 * reserve_memory - setup reserved memory areas
329 *
330 * Setup the reserved memory areas set aside for the boot parameters,
331 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
332 * see arch/ia64/include/asm/meminit.h if you need to define more.
333 */
334void __init
335reserve_memory (void)
336{
337 int n = 0;
338 unsigned long total_memory;
339
340 /*
341 * none of the entries in this table overlap
342 */
343 rsvd_region[n].start = (unsigned long) ia64_boot_param;
344 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
345 n++;
346
347 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
348 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
349 n++;
350
351 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
352 rsvd_region[n].end = (rsvd_region[n].start
353 + strlen(__va(ia64_boot_param->command_line)) + 1);
354 n++;
355
356 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
357 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
358 n++;
359
360#ifdef CONFIG_BLK_DEV_INITRD
361 if (ia64_boot_param->initrd_start) {
362 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
363 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
364 n++;
365 }
366#endif
367
368#ifdef CONFIG_CRASH_DUMP
369 if (reserve_elfcorehdr(&rsvd_region[n].start,
370 &rsvd_region[n].end) == 0)
371 n++;
372#endif
373
374 total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
375 n++;
376
377 setup_crashkernel(total_memory, &n);
378
379 /* end of memory marker */
380 rsvd_region[n].start = ~0UL;
381 rsvd_region[n].end = ~0UL;
382 n++;
383
384 num_rsvd_regions = n;
385 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
386
387 sort_regions(rsvd_region, num_rsvd_regions);
388 num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
389
390 /* reserve all regions except the end of memory marker with memblock */
391 for (n = 0; n < num_rsvd_regions - 1; n++) {
392 struct rsvd_region *region = &rsvd_region[n];
393 phys_addr_t addr = __pa(region->start);
394 phys_addr_t size = region->end - region->start;
395
396 memblock_reserve(addr, size);
397 }
398}
399
400/**
401 * find_initrd - get initrd parameters from the boot parameter structure
402 *
403 * Grab the initrd start and end from the boot parameter struct given us by
404 * the boot loader.
405 */
406void __init
407find_initrd (void)
408{
409#ifdef CONFIG_BLK_DEV_INITRD
410 if (ia64_boot_param->initrd_start) {
411 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
412 initrd_end = initrd_start+ia64_boot_param->initrd_size;
413
414 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
415 initrd_start, ia64_boot_param->initrd_size);
416 }
417#endif
418}
419
420static void __init
421io_port_init (void)
422{
423 unsigned long phys_iobase;
424
425 /*
426 * Set `iobase' based on the EFI memory map or, failing that, the
427 * value firmware left in ar.k0.
428 *
429 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
430 * the port's virtual address, so ia32_load_state() loads it with a
431 * user virtual address. But in ia64 mode, glibc uses the
432 * *physical* address in ar.k0 to mmap the appropriate area from
433 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
434 * cases, user-mode can only use the legacy 0-64K I/O port space.
435 *
436 * ar.k0 is not involved in kernel I/O port accesses, which can use
437 * any of the I/O port spaces and are done via MMIO using the
438 * virtual mmio_base from the appropriate io_space[].
439 */
440 phys_iobase = efi_get_iobase();
441 if (!phys_iobase) {
442 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
443 printk(KERN_INFO "No I/O port range found in EFI memory map, "
444 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
445 }
446 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
447 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
448
449 /* setup legacy IO port space */
450 io_space[0].mmio_base = ia64_iobase;
451 io_space[0].sparse = 1;
452 num_io_spaces = 1;
453}
454
455/**
456 * early_console_setup - setup debugging console
457 *
458 * Consoles started here require little enough setup that we can start using
459 * them very early in the boot process, either right after the machine
460 * vector initialization, or even before if the drivers can detect their hw.
461 *
462 * Returns non-zero if a console couldn't be setup.
463 */
464static inline int __init
465early_console_setup (char *cmdline)
466{
467#ifdef CONFIG_EFI_PCDP
468 if (!efi_setup_pcdp_console(cmdline))
469 return 0;
470#endif
471 return -1;
472}
473
474static void __init
475screen_info_setup(void)
476{
477 unsigned int orig_x, orig_y, num_cols, num_rows, font_height;
478
479 memset(&screen_info, 0, sizeof(screen_info));
480
481 if (!ia64_boot_param->console_info.num_rows ||
482 !ia64_boot_param->console_info.num_cols) {
483 printk(KERN_WARNING "invalid screen-info, guessing 80x25\n");
484 orig_x = 0;
485 orig_y = 0;
486 num_cols = 80;
487 num_rows = 25;
488 font_height = 16;
489 } else {
490 orig_x = ia64_boot_param->console_info.orig_x;
491 orig_y = ia64_boot_param->console_info.orig_y;
492 num_cols = ia64_boot_param->console_info.num_cols;
493 num_rows = ia64_boot_param->console_info.num_rows;
494 font_height = 400 / num_rows;
495 }
496
497 screen_info.orig_x = orig_x;
498 screen_info.orig_y = orig_y;
499 screen_info.orig_video_cols = num_cols;
500 screen_info.orig_video_lines = num_rows;
501 screen_info.orig_video_points = font_height;
502 screen_info.orig_video_mode = 3; /* XXX fake */
503 screen_info.orig_video_isVGA = 1; /* XXX fake */
504 screen_info.orig_video_ega_bx = 3; /* XXX fake */
505}
506
507static inline void
508mark_bsp_online (void)
509{
510#ifdef CONFIG_SMP
511 /* If we register an early console, allow CPU 0 to printk */
512 set_cpu_online(smp_processor_id(), true);
513#endif
514}
515
516static __initdata int nomca;
517static __init int setup_nomca(char *s)
518{
519 nomca = 1;
520 return 0;
521}
522early_param("nomca", setup_nomca);
523
524#ifdef CONFIG_CRASH_DUMP
525int __init reserve_elfcorehdr(u64 *start, u64 *end)
526{
527 u64 length;
528
529 /* We get the address using the kernel command line,
530 * but the size is extracted from the EFI tables.
531 * Both address and size are required for reservation
532 * to work properly.
533 */
534
535 if (!is_vmcore_usable())
536 return -EINVAL;
537
538 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
539 vmcore_unusable();
540 return -EINVAL;
541 }
542
543 *start = (unsigned long)__va(elfcorehdr_addr);
544 *end = *start + length;
545 return 0;
546}
547
548#endif /* CONFIG_PROC_VMCORE */
549
550void __init
551setup_arch (char **cmdline_p)
552{
553 unw_init();
554
555 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
556
557 *cmdline_p = __va(ia64_boot_param->command_line);
558 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
559
560 efi_init();
561 io_port_init();
562
563 uv_probe_system_type();
564 parse_early_param();
565
566 if (early_console_setup(*cmdline_p) == 0)
567 mark_bsp_online();
568
569 /* Initialize the ACPI boot-time table parser */
570 acpi_table_init();
571 early_acpi_boot_init();
572#ifdef CONFIG_ACPI_NUMA
573 acpi_numa_init();
574 acpi_numa_fixup();
575#ifdef CONFIG_ACPI_HOTPLUG_CPU
576 prefill_possible_map();
577#endif
578 per_cpu_scan_finalize((cpumask_weight(&early_cpu_possible_map) == 0 ?
579 32 : cpumask_weight(&early_cpu_possible_map)),
580 additional_cpus > 0 ? additional_cpus : 0);
581#endif /* CONFIG_ACPI_NUMA */
582
583#ifdef CONFIG_SMP
584 smp_build_cpu_map();
585#endif
586 find_memory();
587
588 /* process SAL system table: */
589 ia64_sal_init(__va(sal_systab_phys));
590
591#ifdef CONFIG_ITANIUM
592 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
593#else
594 {
595 unsigned long num_phys_stacked;
596
597 if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
598 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
599 }
600#endif
601
602#ifdef CONFIG_SMP
603 cpu_physical_id(0) = hard_smp_processor_id();
604#endif
605
606 cpu_init(); /* initialize the bootstrap CPU */
607 mmu_context_init(); /* initialize context_id bitmap */
608
609#ifdef CONFIG_VT
610 if (!conswitchp) {
611# if defined(CONFIG_DUMMY_CONSOLE)
612 conswitchp = &dummy_con;
613# endif
614# if defined(CONFIG_VGA_CONSOLE)
615 /*
616 * Non-legacy systems may route legacy VGA MMIO range to system
617 * memory. vga_con probes the MMIO hole, so memory looks like
618 * a VGA device to it. The EFI memory map can tell us if it's
619 * memory so we can avoid this problem.
620 */
621 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
622 conswitchp = &vga_con;
623# endif
624 }
625#endif
626
627 /* enable IA-64 Machine Check Abort Handling unless disabled */
628 if (!nomca)
629 ia64_mca_init();
630
631 /*
632 * Default to /dev/sda2. This assumes that the EFI partition
633 * is physical disk 1 partition 1 and the Linux root disk is
634 * physical disk 1 partition 2.
635 */
636 ROOT_DEV = Root_SDA2; /* default to second partition on first drive */
637
638 if (is_uv_system())
639 uv_setup(cmdline_p);
640#ifdef CONFIG_SMP
641 else
642 init_smp_config();
643#endif
644
645 screen_info_setup();
646 paging_init();
647
648 clear_sched_clock_stable();
649}
650
651/*
652 * Display cpu info for all CPUs.
653 */
654static int
655show_cpuinfo (struct seq_file *m, void *v)
656{
657#ifdef CONFIG_SMP
658# define lpj c->loops_per_jiffy
659# define cpunum c->cpu
660#else
661# define lpj loops_per_jiffy
662# define cpunum 0
663#endif
664 static struct {
665 unsigned long mask;
666 const char *feature_name;
667 } feature_bits[] = {
668 { 1UL << 0, "branchlong" },
669 { 1UL << 1, "spontaneous deferral"},
670 { 1UL << 2, "16-byte atomic ops" }
671 };
672 char features[128], *cp, *sep;
673 struct cpuinfo_ia64 *c = v;
674 unsigned long mask;
675 unsigned long proc_freq;
676 int i, size;
677
678 mask = c->features;
679
680 /* build the feature string: */
681 memcpy(features, "standard", 9);
682 cp = features;
683 size = sizeof(features);
684 sep = "";
685 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
686 if (mask & feature_bits[i].mask) {
687 cp += snprintf(cp, size, "%s%s", sep,
688 feature_bits[i].feature_name),
689 sep = ", ";
690 mask &= ~feature_bits[i].mask;
691 size = sizeof(features) - (cp - features);
692 }
693 }
694 if (mask && size > 1) {
695 /* print unknown features as a hex value */
696 snprintf(cp, size, "%s0x%lx", sep, mask);
697 }
698
699 proc_freq = cpufreq_quick_get(cpunum);
700 if (!proc_freq)
701 proc_freq = c->proc_freq / 1000;
702
703 seq_printf(m,
704 "processor : %d\n"
705 "vendor : %s\n"
706 "arch : IA-64\n"
707 "family : %u\n"
708 "model : %u\n"
709 "model name : %s\n"
710 "revision : %u\n"
711 "archrev : %u\n"
712 "features : %s\n"
713 "cpu number : %lu\n"
714 "cpu regs : %u\n"
715 "cpu MHz : %lu.%03lu\n"
716 "itc MHz : %lu.%06lu\n"
717 "BogoMIPS : %lu.%02lu\n",
718 cpunum, c->vendor, c->family, c->model,
719 c->model_name, c->revision, c->archrev,
720 features, c->ppn, c->number,
721 proc_freq / 1000, proc_freq % 1000,
722 c->itc_freq / 1000000, c->itc_freq % 1000000,
723 lpj*HZ/500000, (lpj*HZ/5000) % 100);
724#ifdef CONFIG_SMP
725 seq_printf(m, "siblings : %u\n",
726 cpumask_weight(&cpu_core_map[cpunum]));
727 if (c->socket_id != -1)
728 seq_printf(m, "physical id: %u\n", c->socket_id);
729 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
730 seq_printf(m,
731 "core id : %u\n"
732 "thread id : %u\n",
733 c->core_id, c->thread_id);
734#endif
735 seq_printf(m,"\n");
736
737 return 0;
738}
739
740static void *
741c_start (struct seq_file *m, loff_t *pos)
742{
743#ifdef CONFIG_SMP
744 while (*pos < nr_cpu_ids && !cpu_online(*pos))
745 ++*pos;
746#endif
747 return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
748}
749
750static void *
751c_next (struct seq_file *m, void *v, loff_t *pos)
752{
753 ++*pos;
754 return c_start(m, pos);
755}
756
757static void
758c_stop (struct seq_file *m, void *v)
759{
760}
761
762const struct seq_operations cpuinfo_op = {
763 .start = c_start,
764 .next = c_next,
765 .stop = c_stop,
766 .show = show_cpuinfo
767};
768
769#define MAX_BRANDS 8
770static char brandname[MAX_BRANDS][128];
771
772static char *
773get_model_name(__u8 family, __u8 model)
774{
775 static int overflow;
776 char brand[128];
777 int i;
778
779 memcpy(brand, "Unknown", 8);
780 if (ia64_pal_get_brand_info(brand)) {
781 if (family == 0x7)
782 memcpy(brand, "Merced", 7);
783 else if (family == 0x1f) switch (model) {
784 case 0: memcpy(brand, "McKinley", 9); break;
785 case 1: memcpy(brand, "Madison", 8); break;
786 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
787 }
788 }
789 for (i = 0; i < MAX_BRANDS; i++)
790 if (strcmp(brandname[i], brand) == 0)
791 return brandname[i];
792 for (i = 0; i < MAX_BRANDS; i++)
793 if (brandname[i][0] == '\0')
794 return strcpy(brandname[i], brand);
795 if (overflow++ == 0)
796 printk(KERN_ERR
797 "%s: Table overflow. Some processor model information will be missing\n",
798 __func__);
799 return "Unknown";
800}
801
802static void
803identify_cpu (struct cpuinfo_ia64 *c)
804{
805 union {
806 unsigned long bits[5];
807 struct {
808 /* id 0 & 1: */
809 char vendor[16];
810
811 /* id 2 */
812 u64 ppn; /* processor serial number */
813
814 /* id 3: */
815 unsigned number : 8;
816 unsigned revision : 8;
817 unsigned model : 8;
818 unsigned family : 8;
819 unsigned archrev : 8;
820 unsigned reserved : 24;
821
822 /* id 4: */
823 u64 features;
824 } field;
825 } cpuid;
826 pal_vm_info_1_u_t vm1;
827 pal_vm_info_2_u_t vm2;
828 pal_status_t status;
829 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
830 int i;
831 for (i = 0; i < 5; ++i)
832 cpuid.bits[i] = ia64_get_cpuid(i);
833
834 memcpy(c->vendor, cpuid.field.vendor, 16);
835#ifdef CONFIG_SMP
836 c->cpu = smp_processor_id();
837
838 /* below default values will be overwritten by identify_siblings()
839 * for Multi-Threading/Multi-Core capable CPUs
840 */
841 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
842 c->socket_id = -1;
843
844 identify_siblings(c);
845
846 if (c->threads_per_core > smp_num_siblings)
847 smp_num_siblings = c->threads_per_core;
848#endif
849 c->ppn = cpuid.field.ppn;
850 c->number = cpuid.field.number;
851 c->revision = cpuid.field.revision;
852 c->model = cpuid.field.model;
853 c->family = cpuid.field.family;
854 c->archrev = cpuid.field.archrev;
855 c->features = cpuid.field.features;
856 c->model_name = get_model_name(c->family, c->model);
857
858 status = ia64_pal_vm_summary(&vm1, &vm2);
859 if (status == PAL_STATUS_SUCCESS) {
860 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
861 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
862 }
863 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
864 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
865}
866
867/*
868 * Do the following calculations:
869 *
870 * 1. the max. cache line size.
871 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
872 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
873 */
874static void
875get_cache_info(void)
876{
877 unsigned long line_size, max = 1;
878 unsigned long l, levels, unique_caches;
879 pal_cache_config_info_t cci;
880 long status;
881
882 status = ia64_pal_cache_summary(&levels, &unique_caches);
883 if (status != 0) {
884 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
885 __func__, status);
886 max = SMP_CACHE_BYTES;
887 /* Safest setup for "flush_icache_range()" */
888 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
889 /* Safest setup for "clflush_cache_range()" */
890 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
891 goto out;
892 }
893
894 for (l = 0; l < levels; ++l) {
895 /* cache_type (data_or_unified)=2 */
896 status = ia64_pal_cache_config_info(l, 2, &cci);
897 if (status != 0) {
898 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
899 "(l=%lu, 2) failed (status=%ld)\n",
900 __func__, l, status);
901 max = SMP_CACHE_BYTES;
902 /* The safest setup for "flush_icache_range()" */
903 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
904 /* The safest setup for "clflush_cache_range()" */
905 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
906 cci.pcci_unified = 1;
907 } else {
908 if (cci.pcci_stride < ia64_cache_stride_shift)
909 ia64_cache_stride_shift = cci.pcci_stride;
910
911 line_size = 1 << cci.pcci_line_size;
912 if (line_size > max)
913 max = line_size;
914 }
915
916 if (!cci.pcci_unified) {
917 /* cache_type (instruction)=1*/
918 status = ia64_pal_cache_config_info(l, 1, &cci);
919 if (status != 0) {
920 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
921 "(l=%lu, 1) failed (status=%ld)\n",
922 __func__, l, status);
923 /* The safest setup for flush_icache_range() */
924 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
925 }
926 }
927 if (cci.pcci_stride < ia64_i_cache_stride_shift)
928 ia64_i_cache_stride_shift = cci.pcci_stride;
929 }
930 out:
931 if (max > ia64_max_cacheline_size)
932 ia64_max_cacheline_size = max;
933}
934
935/*
936 * cpu_init() initializes state that is per-CPU. This function acts
937 * as a 'CPU state barrier', nothing should get across.
938 */
939void
940cpu_init (void)
941{
942 extern void ia64_mmu_init(void *);
943 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
944 unsigned long num_phys_stacked;
945 pal_vm_info_2_u_t vmi;
946 unsigned int max_ctx;
947 struct cpuinfo_ia64 *cpu_info;
948 void *cpu_data;
949
950 cpu_data = per_cpu_init();
951#ifdef CONFIG_SMP
952 /*
953 * insert boot cpu into sibling and core mapes
954 * (must be done after per_cpu area is setup)
955 */
956 if (smp_processor_id() == 0) {
957 cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0));
958 cpumask_set_cpu(0, &cpu_core_map[0]);
959 } else {
960 /*
961 * Set ar.k3 so that assembly code in MCA handler can compute
962 * physical addresses of per cpu variables with a simple:
963 * phys = ar.k3 + &per_cpu_var
964 * and the alt-dtlb-miss handler can set per-cpu mapping into
965 * the TLB when needed. head.S already did this for cpu0.
966 */
967 ia64_set_kr(IA64_KR_PER_CPU_DATA,
968 ia64_tpa(cpu_data) - (long) __per_cpu_start);
969 }
970#endif
971
972 get_cache_info();
973
974 /*
975 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
976 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
977 * depends on the data returned by identify_cpu(). We break the dependency by
978 * accessing cpu_data() through the canonical per-CPU address.
979 */
980 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
981 identify_cpu(cpu_info);
982
983#ifdef CONFIG_MCKINLEY
984 {
985# define FEATURE_SET 16
986 struct ia64_pal_retval iprv;
987
988 if (cpu_info->family == 0x1f) {
989 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
990 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
991 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
992 (iprv.v1 | 0x80), FEATURE_SET, 0);
993 }
994 }
995#endif
996
997 /* Clear the stack memory reserved for pt_regs: */
998 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
999
1000 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
1001
1002 /*
1003 * Initialize the page-table base register to a global
1004 * directory with all zeroes. This ensure that we can handle
1005 * TLB-misses to user address-space even before we created the
1006 * first user address-space. This may happen, e.g., due to
1007 * aggressive use of lfetch.fault.
1008 */
1009 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
1010
1011 /*
1012 * Initialize default control register to defer speculative faults except
1013 * for those arising from TLB misses, which are not deferred. The
1014 * kernel MUST NOT depend on a particular setting of these bits (in other words,
1015 * the kernel must have recovery code for all speculative accesses). Turn on
1016 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
1017 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
1018 * be fine).
1019 */
1020 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
1021 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1022 mmgrab(&init_mm);
1023 current->active_mm = &init_mm;
1024 BUG_ON(current->mm);
1025
1026 ia64_mmu_init(ia64_imva(cpu_data));
1027 ia64_mca_cpu_init(ia64_imva(cpu_data));
1028
1029 /* Clear ITC to eliminate sched_clock() overflows in human time. */
1030 ia64_set_itc(0);
1031
1032 /* disable all local interrupt sources: */
1033 ia64_set_itv(1 << 16);
1034 ia64_set_lrr0(1 << 16);
1035 ia64_set_lrr1(1 << 16);
1036 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1037 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1038
1039 /* clear TPR & XTP to enable all interrupt classes: */
1040 ia64_setreg(_IA64_REG_CR_TPR, 0);
1041
1042 /* Clear any pending interrupts left by SAL/EFI */
1043 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1044 ia64_eoi();
1045
1046#ifdef CONFIG_SMP
1047 normal_xtp();
1048#endif
1049
1050 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1051 if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1052 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1053 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1054 } else {
1055 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1056 max_ctx = (1U << 15) - 1; /* use architected minimum */
1057 }
1058 while (max_ctx < ia64_ctx.max_ctx) {
1059 unsigned int old = ia64_ctx.max_ctx;
1060 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1061 break;
1062 }
1063
1064 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1065 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1066 "stacked regs\n");
1067 num_phys_stacked = 96;
1068 }
1069 /* size of physical stacked register partition plus 8 bytes: */
1070 if (num_phys_stacked > max_num_phys_stacked) {
1071 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1072 max_num_phys_stacked = num_phys_stacked;
1073 }
1074}
1075
1076void __init
1077check_bugs (void)
1078{
1079 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1080 (unsigned long) __end___mckinley_e9_bundles);
1081}
1082
1083static int __init run_dmi_scan(void)
1084{
1085 dmi_setup();
1086 return 0;
1087}
1088core_initcall(run_dmi_scan);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Architecture-specific setup.
4 *
5 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Stephane Eranian <eranian@hpl.hp.com>
8 * Copyright (C) 2000, 2004 Intel Corp
9 * Rohit Seth <rohit.seth@intel.com>
10 * Suresh Siddha <suresh.b.siddha@intel.com>
11 * Gordon Jin <gordon.jin@intel.com>
12 * Copyright (C) 1999 VA Linux Systems
13 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14 *
15 * 12/26/04 S.Siddha, G.Jin, R.Seth
16 * Add multi-threading and multi-core detection
17 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
18 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
19 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
20 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
21 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
22 * 01/07/99 S.Eranian added the support for command line argument
23 * 06/24/99 W.Drummond added boot_cpu_data.
24 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
25 */
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/pgtable.h>
29
30#include <linux/acpi.h>
31#include <linux/console.h>
32#include <linux/delay.h>
33#include <linux/cpu.h>
34#include <linux/kdev_t.h>
35#include <linux/kernel.h>
36#include <linux/memblock.h>
37#include <linux/reboot.h>
38#include <linux/sched/mm.h>
39#include <linux/sched/clock.h>
40#include <linux/sched/task_stack.h>
41#include <linux/seq_file.h>
42#include <linux/string.h>
43#include <linux/threads.h>
44#include <linux/screen_info.h>
45#include <linux/dmi.h>
46#include <linux/root_dev.h>
47#include <linux/serial.h>
48#include <linux/serial_core.h>
49#include <linux/efi.h>
50#include <linux/initrd.h>
51#include <linux/pm.h>
52#include <linux/cpufreq.h>
53#include <linux/kexec.h>
54#include <linux/crash_dump.h>
55
56#include <asm/mca.h>
57#include <asm/meminit.h>
58#include <asm/page.h>
59#include <asm/patch.h>
60#include <asm/processor.h>
61#include <asm/sal.h>
62#include <asm/sections.h>
63#include <asm/setup.h>
64#include <asm/smp.h>
65#include <asm/tlbflush.h>
66#include <asm/unistd.h>
67#include <asm/uv/uv.h>
68#include <asm/xtp.h>
69
70#if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
71# error "struct cpuinfo_ia64 too big!"
72#endif
73
74char ia64_platform_name[64];
75
76#ifdef CONFIG_SMP
77unsigned long __per_cpu_offset[NR_CPUS];
78EXPORT_SYMBOL(__per_cpu_offset);
79#endif
80
81DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
82EXPORT_SYMBOL(ia64_cpu_info);
83DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
84#ifdef CONFIG_SMP
85EXPORT_SYMBOL(local_per_cpu_offset);
86#endif
87unsigned long ia64_cycles_per_usec;
88struct ia64_boot_param *ia64_boot_param;
89struct screen_info screen_info;
90unsigned long vga_console_iobase;
91unsigned long vga_console_membase;
92
93static struct resource data_resource = {
94 .name = "Kernel data",
95 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
96};
97
98static struct resource code_resource = {
99 .name = "Kernel code",
100 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
101};
102
103static struct resource bss_resource = {
104 .name = "Kernel bss",
105 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
106};
107
108unsigned long ia64_max_cacheline_size;
109
110unsigned long ia64_iobase; /* virtual address for I/O accesses */
111EXPORT_SYMBOL(ia64_iobase);
112struct io_space io_space[MAX_IO_SPACES];
113EXPORT_SYMBOL(io_space);
114unsigned int num_io_spaces;
115
116/*
117 * "flush_icache_range()" needs to know what processor dependent stride size to use
118 * when it makes i-cache(s) coherent with d-caches.
119 */
120#define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
121unsigned long ia64_i_cache_stride_shift = ~0;
122/*
123 * "clflush_cache_range()" needs to know what processor dependent stride size to
124 * use when it flushes cache lines including both d-cache and i-cache.
125 */
126/* Safest way to go: 32 bytes by 32 bytes */
127#define CACHE_STRIDE_SHIFT 5
128unsigned long ia64_cache_stride_shift = ~0;
129
130/*
131 * We use a special marker for the end of memory and it uses the extra (+1) slot
132 */
133struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
134int num_rsvd_regions __initdata;
135
136
137/*
138 * Filter incoming memory segments based on the primitive map created from the boot
139 * parameters. Segments contained in the map are removed from the memory ranges. A
140 * caller-specified function is called with the memory ranges that remain after filtering.
141 * This routine does not assume the incoming segments are sorted.
142 */
143int __init
144filter_rsvd_memory (u64 start, u64 end, void *arg)
145{
146 u64 range_start, range_end, prev_start;
147 void (*func)(unsigned long, unsigned long, int);
148 int i;
149
150#if IGNORE_PFN0
151 if (start == PAGE_OFFSET) {
152 printk(KERN_WARNING "warning: skipping physical page 0\n");
153 start += PAGE_SIZE;
154 if (start >= end) return 0;
155 }
156#endif
157 /*
158 * lowest possible address(walker uses virtual)
159 */
160 prev_start = PAGE_OFFSET;
161 func = arg;
162
163 for (i = 0; i < num_rsvd_regions; ++i) {
164 range_start = max(start, prev_start);
165 range_end = min(end, rsvd_region[i].start);
166
167 if (range_start < range_end)
168 call_pernode_memory(__pa(range_start), range_end - range_start, func);
169
170 /* nothing more available in this segment */
171 if (range_end == end) return 0;
172
173 prev_start = rsvd_region[i].end;
174 }
175 /* end of memory marker allows full processing inside loop body */
176 return 0;
177}
178
179/*
180 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
181 * are not filtered out.
182 */
183int __init
184filter_memory(u64 start, u64 end, void *arg)
185{
186 void (*func)(unsigned long, unsigned long, int);
187
188#if IGNORE_PFN0
189 if (start == PAGE_OFFSET) {
190 printk(KERN_WARNING "warning: skipping physical page 0\n");
191 start += PAGE_SIZE;
192 if (start >= end)
193 return 0;
194 }
195#endif
196 func = arg;
197 if (start < end)
198 call_pernode_memory(__pa(start), end - start, func);
199 return 0;
200}
201
202static void __init
203sort_regions (struct rsvd_region *rsvd_region, int max)
204{
205 int j;
206
207 /* simple bubble sorting */
208 while (max--) {
209 for (j = 0; j < max; ++j) {
210 if (rsvd_region[j].start > rsvd_region[j+1].start) {
211 struct rsvd_region tmp;
212 tmp = rsvd_region[j];
213 rsvd_region[j] = rsvd_region[j + 1];
214 rsvd_region[j + 1] = tmp;
215 }
216 }
217 }
218}
219
220/* merge overlaps */
221static int __init
222merge_regions (struct rsvd_region *rsvd_region, int max)
223{
224 int i;
225 for (i = 1; i < max; ++i) {
226 if (rsvd_region[i].start >= rsvd_region[i-1].end)
227 continue;
228 if (rsvd_region[i].end > rsvd_region[i-1].end)
229 rsvd_region[i-1].end = rsvd_region[i].end;
230 --max;
231 memmove(&rsvd_region[i], &rsvd_region[i+1],
232 (max - i) * sizeof(struct rsvd_region));
233 }
234 return max;
235}
236
237/*
238 * Request address space for all standard resources
239 */
240static int __init register_memory(void)
241{
242 code_resource.start = ia64_tpa(_text);
243 code_resource.end = ia64_tpa(_etext) - 1;
244 data_resource.start = ia64_tpa(_etext);
245 data_resource.end = ia64_tpa(_edata) - 1;
246 bss_resource.start = ia64_tpa(__bss_start);
247 bss_resource.end = ia64_tpa(_end) - 1;
248 efi_initialize_iomem_resources(&code_resource, &data_resource,
249 &bss_resource);
250
251 return 0;
252}
253
254__initcall(register_memory);
255
256
257#ifdef CONFIG_KEXEC
258
259/*
260 * This function checks if the reserved crashkernel is allowed on the specific
261 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
262 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
263 * kernel/dma/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
264 * in kdump case. See the comment in sba_init() in sba_iommu.c.
265 *
266 * So, the only machvec that really supports loading the kdump kernel
267 * over 4 GB is "uv".
268 */
269static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
270{
271 if (is_uv_system())
272 return 1;
273 else
274 return pbase < (1UL << 32);
275}
276
277static void __init setup_crashkernel(unsigned long total, int *n)
278{
279 unsigned long long base = 0, size = 0;
280 int ret;
281
282 ret = parse_crashkernel(boot_command_line, total,
283 &size, &base);
284 if (ret == 0 && size > 0) {
285 if (!base) {
286 sort_regions(rsvd_region, *n);
287 *n = merge_regions(rsvd_region, *n);
288 base = kdump_find_rsvd_region(size,
289 rsvd_region, *n);
290 }
291
292 if (!check_crashkernel_memory(base, size)) {
293 pr_warn("crashkernel: There would be kdump memory "
294 "at %ld GB but this is unusable because it "
295 "must\nbe below 4 GB. Change the memory "
296 "configuration of the machine.\n",
297 (unsigned long)(base >> 30));
298 return;
299 }
300
301 if (base != ~0UL) {
302 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
303 "for crashkernel (System RAM: %ldMB)\n",
304 (unsigned long)(size >> 20),
305 (unsigned long)(base >> 20),
306 (unsigned long)(total >> 20));
307 rsvd_region[*n].start =
308 (unsigned long)__va(base);
309 rsvd_region[*n].end =
310 (unsigned long)__va(base + size);
311 (*n)++;
312 crashk_res.start = base;
313 crashk_res.end = base + size - 1;
314 }
315 }
316 efi_memmap_res.start = ia64_boot_param->efi_memmap;
317 efi_memmap_res.end = efi_memmap_res.start +
318 ia64_boot_param->efi_memmap_size;
319 boot_param_res.start = __pa(ia64_boot_param);
320 boot_param_res.end = boot_param_res.start +
321 sizeof(*ia64_boot_param);
322}
323#else
324static inline void __init setup_crashkernel(unsigned long total, int *n)
325{}
326#endif
327
328/**
329 * reserve_memory - setup reserved memory areas
330 *
331 * Setup the reserved memory areas set aside for the boot parameters,
332 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
333 * see arch/ia64/include/asm/meminit.h if you need to define more.
334 */
335void __init
336reserve_memory (void)
337{
338 int n = 0;
339 unsigned long total_memory;
340
341 /*
342 * none of the entries in this table overlap
343 */
344 rsvd_region[n].start = (unsigned long) ia64_boot_param;
345 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
346 n++;
347
348 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
349 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
350 n++;
351
352 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
353 rsvd_region[n].end = (rsvd_region[n].start
354 + strlen(__va(ia64_boot_param->command_line)) + 1);
355 n++;
356
357 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
358 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
359 n++;
360
361#ifdef CONFIG_BLK_DEV_INITRD
362 if (ia64_boot_param->initrd_start) {
363 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
364 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
365 n++;
366 }
367#endif
368
369#ifdef CONFIG_CRASH_DUMP
370 if (reserve_elfcorehdr(&rsvd_region[n].start,
371 &rsvd_region[n].end) == 0)
372 n++;
373#endif
374
375 total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
376 n++;
377
378 setup_crashkernel(total_memory, &n);
379
380 /* end of memory marker */
381 rsvd_region[n].start = ~0UL;
382 rsvd_region[n].end = ~0UL;
383 n++;
384
385 num_rsvd_regions = n;
386 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
387
388 sort_regions(rsvd_region, num_rsvd_regions);
389 num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
390
391 /* reserve all regions except the end of memory marker with memblock */
392 for (n = 0; n < num_rsvd_regions - 1; n++) {
393 struct rsvd_region *region = &rsvd_region[n];
394 phys_addr_t addr = __pa(region->start);
395 phys_addr_t size = region->end - region->start;
396
397 memblock_reserve(addr, size);
398 }
399}
400
401/**
402 * find_initrd - get initrd parameters from the boot parameter structure
403 *
404 * Grab the initrd start and end from the boot parameter struct given us by
405 * the boot loader.
406 */
407void __init
408find_initrd (void)
409{
410#ifdef CONFIG_BLK_DEV_INITRD
411 if (ia64_boot_param->initrd_start) {
412 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
413 initrd_end = initrd_start+ia64_boot_param->initrd_size;
414
415 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
416 initrd_start, ia64_boot_param->initrd_size);
417 }
418#endif
419}
420
421static void __init
422io_port_init (void)
423{
424 unsigned long phys_iobase;
425
426 /*
427 * Set `iobase' based on the EFI memory map or, failing that, the
428 * value firmware left in ar.k0.
429 *
430 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
431 * the port's virtual address, so ia32_load_state() loads it with a
432 * user virtual address. But in ia64 mode, glibc uses the
433 * *physical* address in ar.k0 to mmap the appropriate area from
434 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
435 * cases, user-mode can only use the legacy 0-64K I/O port space.
436 *
437 * ar.k0 is not involved in kernel I/O port accesses, which can use
438 * any of the I/O port spaces and are done via MMIO using the
439 * virtual mmio_base from the appropriate io_space[].
440 */
441 phys_iobase = efi_get_iobase();
442 if (!phys_iobase) {
443 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
444 printk(KERN_INFO "No I/O port range found in EFI memory map, "
445 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
446 }
447 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
448 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
449
450 /* setup legacy IO port space */
451 io_space[0].mmio_base = ia64_iobase;
452 io_space[0].sparse = 1;
453 num_io_spaces = 1;
454}
455
456/**
457 * early_console_setup - setup debugging console
458 *
459 * Consoles started here require little enough setup that we can start using
460 * them very early in the boot process, either right after the machine
461 * vector initialization, or even before if the drivers can detect their hw.
462 *
463 * Returns non-zero if a console couldn't be setup.
464 */
465static inline int __init
466early_console_setup (char *cmdline)
467{
468#ifdef CONFIG_EFI_PCDP
469 if (!efi_setup_pcdp_console(cmdline))
470 return 0;
471#endif
472 return -1;
473}
474
475static void __init
476screen_info_setup(void)
477{
478 unsigned int orig_x, orig_y, num_cols, num_rows, font_height;
479
480 memset(&screen_info, 0, sizeof(screen_info));
481
482 if (!ia64_boot_param->console_info.num_rows ||
483 !ia64_boot_param->console_info.num_cols) {
484 printk(KERN_WARNING "invalid screen-info, guessing 80x25\n");
485 orig_x = 0;
486 orig_y = 0;
487 num_cols = 80;
488 num_rows = 25;
489 font_height = 16;
490 } else {
491 orig_x = ia64_boot_param->console_info.orig_x;
492 orig_y = ia64_boot_param->console_info.orig_y;
493 num_cols = ia64_boot_param->console_info.num_cols;
494 num_rows = ia64_boot_param->console_info.num_rows;
495 font_height = 400 / num_rows;
496 }
497
498 screen_info.orig_x = orig_x;
499 screen_info.orig_y = orig_y;
500 screen_info.orig_video_cols = num_cols;
501 screen_info.orig_video_lines = num_rows;
502 screen_info.orig_video_points = font_height;
503 screen_info.orig_video_mode = 3; /* XXX fake */
504 screen_info.orig_video_isVGA = 1; /* XXX fake */
505 screen_info.orig_video_ega_bx = 3; /* XXX fake */
506}
507
508static inline void
509mark_bsp_online (void)
510{
511#ifdef CONFIG_SMP
512 /* If we register an early console, allow CPU 0 to printk */
513 set_cpu_online(smp_processor_id(), true);
514#endif
515}
516
517static __initdata int nomca;
518static __init int setup_nomca(char *s)
519{
520 nomca = 1;
521 return 0;
522}
523early_param("nomca", setup_nomca);
524
525#ifdef CONFIG_CRASH_DUMP
526int __init reserve_elfcorehdr(u64 *start, u64 *end)
527{
528 u64 length;
529
530 /* We get the address using the kernel command line,
531 * but the size is extracted from the EFI tables.
532 * Both address and size are required for reservation
533 * to work properly.
534 */
535
536 if (!is_vmcore_usable())
537 return -EINVAL;
538
539 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
540 vmcore_unusable();
541 return -EINVAL;
542 }
543
544 *start = (unsigned long)__va(elfcorehdr_addr);
545 *end = *start + length;
546 return 0;
547}
548
549#endif /* CONFIG_PROC_VMCORE */
550
551void __init
552setup_arch (char **cmdline_p)
553{
554 unw_init();
555
556 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
557
558 *cmdline_p = __va(ia64_boot_param->command_line);
559 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
560
561 efi_init();
562 io_port_init();
563
564 uv_probe_system_type();
565 parse_early_param();
566
567 if (early_console_setup(*cmdline_p) == 0)
568 mark_bsp_online();
569
570 /* Initialize the ACPI boot-time table parser */
571 acpi_table_init();
572 early_acpi_boot_init();
573#ifdef CONFIG_ACPI_NUMA
574 acpi_numa_init();
575 acpi_numa_fixup();
576#ifdef CONFIG_ACPI_HOTPLUG_CPU
577 prefill_possible_map();
578#endif
579 per_cpu_scan_finalize((cpumask_weight(&early_cpu_possible_map) == 0 ?
580 32 : cpumask_weight(&early_cpu_possible_map)),
581 additional_cpus > 0 ? additional_cpus : 0);
582#endif /* CONFIG_ACPI_NUMA */
583
584#ifdef CONFIG_SMP
585 smp_build_cpu_map();
586#endif
587 find_memory();
588
589 /* process SAL system table: */
590 ia64_sal_init(__va(sal_systab_phys));
591
592#ifdef CONFIG_ITANIUM
593 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
594#else
595 {
596 unsigned long num_phys_stacked;
597
598 if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
599 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
600 }
601#endif
602
603#ifdef CONFIG_SMP
604 cpu_physical_id(0) = hard_smp_processor_id();
605#endif
606
607 cpu_init(); /* initialize the bootstrap CPU */
608 mmu_context_init(); /* initialize context_id bitmap */
609
610#ifdef CONFIG_VT
611 if (!conswitchp) {
612# if defined(CONFIG_VGA_CONSOLE)
613 /*
614 * Non-legacy systems may route legacy VGA MMIO range to system
615 * memory. vga_con probes the MMIO hole, so memory looks like
616 * a VGA device to it. The EFI memory map can tell us if it's
617 * memory so we can avoid this problem.
618 */
619 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
620 conswitchp = &vga_con;
621# endif
622 }
623#endif
624
625 /* enable IA-64 Machine Check Abort Handling unless disabled */
626 if (!nomca)
627 ia64_mca_init();
628
629 /*
630 * Default to /dev/sda2. This assumes that the EFI partition
631 * is physical disk 1 partition 1 and the Linux root disk is
632 * physical disk 1 partition 2.
633 */
634 ROOT_DEV = Root_SDA2; /* default to second partition on first drive */
635
636 if (is_uv_system())
637 uv_setup(cmdline_p);
638#ifdef CONFIG_SMP
639 else
640 init_smp_config();
641#endif
642
643 screen_info_setup();
644 paging_init();
645
646 clear_sched_clock_stable();
647}
648
649/*
650 * Display cpu info for all CPUs.
651 */
652static int
653show_cpuinfo (struct seq_file *m, void *v)
654{
655#ifdef CONFIG_SMP
656# define lpj c->loops_per_jiffy
657# define cpunum c->cpu
658#else
659# define lpj loops_per_jiffy
660# define cpunum 0
661#endif
662 static struct {
663 unsigned long mask;
664 const char *feature_name;
665 } feature_bits[] = {
666 { 1UL << 0, "branchlong" },
667 { 1UL << 1, "spontaneous deferral"},
668 { 1UL << 2, "16-byte atomic ops" }
669 };
670 char features[128], *cp, *sep;
671 struct cpuinfo_ia64 *c = v;
672 unsigned long mask;
673 unsigned long proc_freq;
674 int i, size;
675
676 mask = c->features;
677
678 /* build the feature string: */
679 memcpy(features, "standard", 9);
680 cp = features;
681 size = sizeof(features);
682 sep = "";
683 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
684 if (mask & feature_bits[i].mask) {
685 cp += snprintf(cp, size, "%s%s", sep,
686 feature_bits[i].feature_name),
687 sep = ", ";
688 mask &= ~feature_bits[i].mask;
689 size = sizeof(features) - (cp - features);
690 }
691 }
692 if (mask && size > 1) {
693 /* print unknown features as a hex value */
694 snprintf(cp, size, "%s0x%lx", sep, mask);
695 }
696
697 proc_freq = cpufreq_quick_get(cpunum);
698 if (!proc_freq)
699 proc_freq = c->proc_freq / 1000;
700
701 seq_printf(m,
702 "processor : %d\n"
703 "vendor : %s\n"
704 "arch : IA-64\n"
705 "family : %u\n"
706 "model : %u\n"
707 "model name : %s\n"
708 "revision : %u\n"
709 "archrev : %u\n"
710 "features : %s\n"
711 "cpu number : %lu\n"
712 "cpu regs : %u\n"
713 "cpu MHz : %lu.%03lu\n"
714 "itc MHz : %lu.%06lu\n"
715 "BogoMIPS : %lu.%02lu\n",
716 cpunum, c->vendor, c->family, c->model,
717 c->model_name, c->revision, c->archrev,
718 features, c->ppn, c->number,
719 proc_freq / 1000, proc_freq % 1000,
720 c->itc_freq / 1000000, c->itc_freq % 1000000,
721 lpj*HZ/500000, (lpj*HZ/5000) % 100);
722#ifdef CONFIG_SMP
723 seq_printf(m, "siblings : %u\n",
724 cpumask_weight(&cpu_core_map[cpunum]));
725 if (c->socket_id != -1)
726 seq_printf(m, "physical id: %u\n", c->socket_id);
727 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
728 seq_printf(m,
729 "core id : %u\n"
730 "thread id : %u\n",
731 c->core_id, c->thread_id);
732#endif
733 seq_printf(m,"\n");
734
735 return 0;
736}
737
738static void *
739c_start (struct seq_file *m, loff_t *pos)
740{
741#ifdef CONFIG_SMP
742 while (*pos < nr_cpu_ids && !cpu_online(*pos))
743 ++*pos;
744#endif
745 return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
746}
747
748static void *
749c_next (struct seq_file *m, void *v, loff_t *pos)
750{
751 ++*pos;
752 return c_start(m, pos);
753}
754
755static void
756c_stop (struct seq_file *m, void *v)
757{
758}
759
760const struct seq_operations cpuinfo_op = {
761 .start = c_start,
762 .next = c_next,
763 .stop = c_stop,
764 .show = show_cpuinfo
765};
766
767#define MAX_BRANDS 8
768static char brandname[MAX_BRANDS][128];
769
770static char *
771get_model_name(__u8 family, __u8 model)
772{
773 static int overflow;
774 char brand[128];
775 int i;
776
777 memcpy(brand, "Unknown", 8);
778 if (ia64_pal_get_brand_info(brand)) {
779 if (family == 0x7)
780 memcpy(brand, "Merced", 7);
781 else if (family == 0x1f) switch (model) {
782 case 0: memcpy(brand, "McKinley", 9); break;
783 case 1: memcpy(brand, "Madison", 8); break;
784 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
785 }
786 }
787 for (i = 0; i < MAX_BRANDS; i++)
788 if (strcmp(brandname[i], brand) == 0)
789 return brandname[i];
790 for (i = 0; i < MAX_BRANDS; i++)
791 if (brandname[i][0] == '\0')
792 return strcpy(brandname[i], brand);
793 if (overflow++ == 0)
794 printk(KERN_ERR
795 "%s: Table overflow. Some processor model information will be missing\n",
796 __func__);
797 return "Unknown";
798}
799
800static void
801identify_cpu (struct cpuinfo_ia64 *c)
802{
803 union {
804 unsigned long bits[5];
805 struct {
806 /* id 0 & 1: */
807 char vendor[16];
808
809 /* id 2 */
810 u64 ppn; /* processor serial number */
811
812 /* id 3: */
813 unsigned number : 8;
814 unsigned revision : 8;
815 unsigned model : 8;
816 unsigned family : 8;
817 unsigned archrev : 8;
818 unsigned reserved : 24;
819
820 /* id 4: */
821 u64 features;
822 } field;
823 } cpuid;
824 pal_vm_info_1_u_t vm1;
825 pal_vm_info_2_u_t vm2;
826 pal_status_t status;
827 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
828 int i;
829 for (i = 0; i < 5; ++i)
830 cpuid.bits[i] = ia64_get_cpuid(i);
831
832 memcpy(c->vendor, cpuid.field.vendor, 16);
833#ifdef CONFIG_SMP
834 c->cpu = smp_processor_id();
835
836 /* below default values will be overwritten by identify_siblings()
837 * for Multi-Threading/Multi-Core capable CPUs
838 */
839 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
840 c->socket_id = -1;
841
842 identify_siblings(c);
843
844 if (c->threads_per_core > smp_num_siblings)
845 smp_num_siblings = c->threads_per_core;
846#endif
847 c->ppn = cpuid.field.ppn;
848 c->number = cpuid.field.number;
849 c->revision = cpuid.field.revision;
850 c->model = cpuid.field.model;
851 c->family = cpuid.field.family;
852 c->archrev = cpuid.field.archrev;
853 c->features = cpuid.field.features;
854 c->model_name = get_model_name(c->family, c->model);
855
856 status = ia64_pal_vm_summary(&vm1, &vm2);
857 if (status == PAL_STATUS_SUCCESS) {
858 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
859 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
860 }
861 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
862 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
863}
864
865/*
866 * Do the following calculations:
867 *
868 * 1. the max. cache line size.
869 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
870 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
871 */
872static void
873get_cache_info(void)
874{
875 unsigned long line_size, max = 1;
876 unsigned long l, levels, unique_caches;
877 pal_cache_config_info_t cci;
878 long status;
879
880 status = ia64_pal_cache_summary(&levels, &unique_caches);
881 if (status != 0) {
882 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
883 __func__, status);
884 max = SMP_CACHE_BYTES;
885 /* Safest setup for "flush_icache_range()" */
886 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
887 /* Safest setup for "clflush_cache_range()" */
888 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
889 goto out;
890 }
891
892 for (l = 0; l < levels; ++l) {
893 /* cache_type (data_or_unified)=2 */
894 status = ia64_pal_cache_config_info(l, 2, &cci);
895 if (status != 0) {
896 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
897 "(l=%lu, 2) failed (status=%ld)\n",
898 __func__, l, status);
899 max = SMP_CACHE_BYTES;
900 /* The safest setup for "flush_icache_range()" */
901 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
902 /* The safest setup for "clflush_cache_range()" */
903 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
904 cci.pcci_unified = 1;
905 } else {
906 if (cci.pcci_stride < ia64_cache_stride_shift)
907 ia64_cache_stride_shift = cci.pcci_stride;
908
909 line_size = 1 << cci.pcci_line_size;
910 if (line_size > max)
911 max = line_size;
912 }
913
914 if (!cci.pcci_unified) {
915 /* cache_type (instruction)=1*/
916 status = ia64_pal_cache_config_info(l, 1, &cci);
917 if (status != 0) {
918 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
919 "(l=%lu, 1) failed (status=%ld)\n",
920 __func__, l, status);
921 /* The safest setup for flush_icache_range() */
922 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
923 }
924 }
925 if (cci.pcci_stride < ia64_i_cache_stride_shift)
926 ia64_i_cache_stride_shift = cci.pcci_stride;
927 }
928 out:
929 if (max > ia64_max_cacheline_size)
930 ia64_max_cacheline_size = max;
931}
932
933/*
934 * cpu_init() initializes state that is per-CPU. This function acts
935 * as a 'CPU state barrier', nothing should get across.
936 */
937void
938cpu_init (void)
939{
940 extern void ia64_mmu_init(void *);
941 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
942 unsigned long num_phys_stacked;
943 pal_vm_info_2_u_t vmi;
944 unsigned int max_ctx;
945 struct cpuinfo_ia64 *cpu_info;
946 void *cpu_data;
947
948 cpu_data = per_cpu_init();
949#ifdef CONFIG_SMP
950 /*
951 * insert boot cpu into sibling and core mapes
952 * (must be done after per_cpu area is setup)
953 */
954 if (smp_processor_id() == 0) {
955 cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0));
956 cpumask_set_cpu(0, &cpu_core_map[0]);
957 } else {
958 /*
959 * Set ar.k3 so that assembly code in MCA handler can compute
960 * physical addresses of per cpu variables with a simple:
961 * phys = ar.k3 + &per_cpu_var
962 * and the alt-dtlb-miss handler can set per-cpu mapping into
963 * the TLB when needed. head.S already did this for cpu0.
964 */
965 ia64_set_kr(IA64_KR_PER_CPU_DATA,
966 ia64_tpa(cpu_data) - (long) __per_cpu_start);
967 }
968#endif
969
970 get_cache_info();
971
972 /*
973 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
974 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
975 * depends on the data returned by identify_cpu(). We break the dependency by
976 * accessing cpu_data() through the canonical per-CPU address.
977 */
978 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
979 identify_cpu(cpu_info);
980
981#ifdef CONFIG_MCKINLEY
982 {
983# define FEATURE_SET 16
984 struct ia64_pal_retval iprv;
985
986 if (cpu_info->family == 0x1f) {
987 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
988 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
989 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
990 (iprv.v1 | 0x80), FEATURE_SET, 0);
991 }
992 }
993#endif
994
995 /* Clear the stack memory reserved for pt_regs: */
996 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
997
998 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
999
1000 /*
1001 * Initialize the page-table base register to a global
1002 * directory with all zeroes. This ensure that we can handle
1003 * TLB-misses to user address-space even before we created the
1004 * first user address-space. This may happen, e.g., due to
1005 * aggressive use of lfetch.fault.
1006 */
1007 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
1008
1009 /*
1010 * Initialize default control register to defer speculative faults except
1011 * for those arising from TLB misses, which are not deferred. The
1012 * kernel MUST NOT depend on a particular setting of these bits (in other words,
1013 * the kernel must have recovery code for all speculative accesses). Turn on
1014 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
1015 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
1016 * be fine).
1017 */
1018 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
1019 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1020 mmgrab(&init_mm);
1021 current->active_mm = &init_mm;
1022 BUG_ON(current->mm);
1023
1024 ia64_mmu_init(ia64_imva(cpu_data));
1025 ia64_mca_cpu_init(ia64_imva(cpu_data));
1026
1027 /* Clear ITC to eliminate sched_clock() overflows in human time. */
1028 ia64_set_itc(0);
1029
1030 /* disable all local interrupt sources: */
1031 ia64_set_itv(1 << 16);
1032 ia64_set_lrr0(1 << 16);
1033 ia64_set_lrr1(1 << 16);
1034 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1035 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1036
1037 /* clear TPR & XTP to enable all interrupt classes: */
1038 ia64_setreg(_IA64_REG_CR_TPR, 0);
1039
1040 /* Clear any pending interrupts left by SAL/EFI */
1041 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1042 ia64_eoi();
1043
1044#ifdef CONFIG_SMP
1045 normal_xtp();
1046#endif
1047
1048 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1049 if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1050 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1051 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1052 } else {
1053 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1054 max_ctx = (1U << 15) - 1; /* use architected minimum */
1055 }
1056 while (max_ctx < ia64_ctx.max_ctx) {
1057 unsigned int old = ia64_ctx.max_ctx;
1058 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1059 break;
1060 }
1061
1062 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1063 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1064 "stacked regs\n");
1065 num_phys_stacked = 96;
1066 }
1067 /* size of physical stacked register partition plus 8 bytes: */
1068 if (num_phys_stacked > max_num_phys_stacked) {
1069 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1070 max_num_phys_stacked = num_phys_stacked;
1071 }
1072}
1073
1074void __init
1075check_bugs (void)
1076{
1077 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1078 (unsigned long) __end___mckinley_e9_bundles);
1079}
1080
1081static int __init run_dmi_scan(void)
1082{
1083 dmi_setup();
1084 return 0;
1085}
1086core_initcall(run_dmi_scan);