Linux Audio

Check our new training course

Loading...
v5.4
  1================================
  2Documentation for /proc/sys/net/
  3================================
  4
  5Copyright
  6
  7Copyright (c) 1999
  8
  9	- Terrehon Bowden <terrehon@pacbell.net>
 10	- Bodo Bauer <bb@ricochet.net>
 11
 12Copyright (c) 2000
 13
 14	- Jorge Nerin <comandante@zaralinux.com>
 15
 16Copyright (c) 2009
 17
 18	- Shen Feng <shen@cn.fujitsu.com>
 19
 20For general info and legal blurb, please look in index.rst.
 21
 22------------------------------------------------------------------------------
 23
 24This file contains the documentation for the sysctl files in
 25/proc/sys/net
 26
 27The interface  to  the  networking  parts  of  the  kernel  is  located  in
 28/proc/sys/net. The following table shows all possible subdirectories.  You may
 29see only some of them, depending on your kernel's configuration.
 30
 31
 32Table : Subdirectories in /proc/sys/net
 33
 34 ========= =================== = ========== ==================
 35 Directory Content               Directory  Content
 36 ========= =================== = ========== ==================
 37 core      General parameter     appletalk  Appletalk protocol
 38 unix      Unix domain sockets   netrom     NET/ROM
 39 802       E802 protocol         ax25       AX25
 40 ethernet  Ethernet protocol     rose       X.25 PLP layer
 41 ipv4      IP version 4          x25        X.25 protocol
 42 bridge    Bridging              decnet     DEC net
 43 ipv6      IP version 6          tipc       TIPC
 44 ========= =================== = ========== ==================
 45
 461. /proc/sys/net/core - Network core options
 47============================================
 48
 49bpf_jit_enable
 50--------------
 51
 52This enables the BPF Just in Time (JIT) compiler. BPF is a flexible
 53and efficient infrastructure allowing to execute bytecode at various
 54hook points. It is used in a number of Linux kernel subsystems such
 55as networking (e.g. XDP, tc), tracing (e.g. kprobes, uprobes, tracepoints)
 56and security (e.g. seccomp). LLVM has a BPF back end that can compile
 57restricted C into a sequence of BPF instructions. After program load
 58through bpf(2) and passing a verifier in the kernel, a JIT will then
 59translate these BPF proglets into native CPU instructions. There are
 60two flavors of JITs, the newer eBPF JIT currently supported on:
 61
 62  - x86_64
 63  - x86_32
 64  - arm64
 65  - arm32
 66  - ppc64
 
 67  - sparc64
 68  - mips64
 69  - s390x
 70  - riscv
 
 71
 72And the older cBPF JIT supported on the following archs:
 73
 74  - mips
 75  - ppc
 76  - sparc
 77
 78eBPF JITs are a superset of cBPF JITs, meaning the kernel will
 79migrate cBPF instructions into eBPF instructions and then JIT
 80compile them transparently. Older cBPF JITs can only translate
 81tcpdump filters, seccomp rules, etc, but not mentioned eBPF
 82programs loaded through bpf(2).
 83
 84Values:
 85
 86	- 0 - disable the JIT (default value)
 87	- 1 - enable the JIT
 88	- 2 - enable the JIT and ask the compiler to emit traces on kernel log.
 89
 90bpf_jit_harden
 91--------------
 92
 93This enables hardening for the BPF JIT compiler. Supported are eBPF
 94JIT backends. Enabling hardening trades off performance, but can
 95mitigate JIT spraying.
 96
 97Values:
 98
 99	- 0 - disable JIT hardening (default value)
100	- 1 - enable JIT hardening for unprivileged users only
101	- 2 - enable JIT hardening for all users
102
103bpf_jit_kallsyms
104----------------
105
106When BPF JIT compiler is enabled, then compiled images are unknown
107addresses to the kernel, meaning they neither show up in traces nor
108in /proc/kallsyms. This enables export of these addresses, which can
109be used for debugging/tracing. If bpf_jit_harden is enabled, this
110feature is disabled.
111
112Values :
113
114	- 0 - disable JIT kallsyms export (default value)
115	- 1 - enable JIT kallsyms export for privileged users only
116
117bpf_jit_limit
118-------------
119
120This enforces a global limit for memory allocations to the BPF JIT
121compiler in order to reject unprivileged JIT requests once it has
122been surpassed. bpf_jit_limit contains the value of the global limit
123in bytes.
124
125dev_weight
126----------
127
128The maximum number of packets that kernel can handle on a NAPI interrupt,
129it's a Per-CPU variable. For drivers that support LRO or GRO_HW, a hardware
130aggregated packet is counted as one packet in this context.
131
132Default: 64
133
134dev_weight_rx_bias
135------------------
136
137RPS (e.g. RFS, aRFS) processing is competing with the registered NAPI poll function
138of the driver for the per softirq cycle netdev_budget. This parameter influences
139the proportion of the configured netdev_budget that is spent on RPS based packet
140processing during RX softirq cycles. It is further meant for making current
141dev_weight adaptable for asymmetric CPU needs on RX/TX side of the network stack.
142(see dev_weight_tx_bias) It is effective on a per CPU basis. Determination is based
143on dev_weight and is calculated multiplicative (dev_weight * dev_weight_rx_bias).
144
145Default: 1
146
147dev_weight_tx_bias
148------------------
149
150Scales the maximum number of packets that can be processed during a TX softirq cycle.
151Effective on a per CPU basis. Allows scaling of current dev_weight for asymmetric
152net stack processing needs. Be careful to avoid making TX softirq processing a CPU hog.
153
154Calculation is based on dev_weight (dev_weight * dev_weight_tx_bias).
155
156Default: 1
157
158default_qdisc
159-------------
160
161The default queuing discipline to use for network devices. This allows
162overriding the default of pfifo_fast with an alternative. Since the default
163queuing discipline is created without additional parameters so is best suited
164to queuing disciplines that work well without configuration like stochastic
165fair queue (sfq), CoDel (codel) or fair queue CoDel (fq_codel). Don't use
166queuing disciplines like Hierarchical Token Bucket or Deficit Round Robin
167which require setting up classes and bandwidths. Note that physical multiqueue
168interfaces still use mq as root qdisc, which in turn uses this default for its
169leaves. Virtual devices (like e.g. lo or veth) ignore this setting and instead
170default to noqueue.
171
172Default: pfifo_fast
173
174busy_read
175---------
176
177Low latency busy poll timeout for socket reads. (needs CONFIG_NET_RX_BUSY_POLL)
178Approximate time in us to busy loop waiting for packets on the device queue.
179This sets the default value of the SO_BUSY_POLL socket option.
180Can be set or overridden per socket by setting socket option SO_BUSY_POLL,
181which is the preferred method of enabling. If you need to enable the feature
182globally via sysctl, a value of 50 is recommended.
183
184Will increase power usage.
185
186Default: 0 (off)
187
188busy_poll
189----------------
190Low latency busy poll timeout for poll and select. (needs CONFIG_NET_RX_BUSY_POLL)
191Approximate time in us to busy loop waiting for events.
192Recommended value depends on the number of sockets you poll on.
193For several sockets 50, for several hundreds 100.
194For more than that you probably want to use epoll.
195Note that only sockets with SO_BUSY_POLL set will be busy polled,
196so you want to either selectively set SO_BUSY_POLL on those sockets or set
197sysctl.net.busy_read globally.
198
199Will increase power usage.
200
201Default: 0 (off)
202
203rmem_default
204------------
205
206The default setting of the socket receive buffer in bytes.
207
208rmem_max
209--------
210
211The maximum receive socket buffer size in bytes.
212
213tstamp_allow_data
214-----------------
215Allow processes to receive tx timestamps looped together with the original
216packet contents. If disabled, transmit timestamp requests from unprivileged
217processes are dropped unless socket option SOF_TIMESTAMPING_OPT_TSONLY is set.
218
219Default: 1 (on)
220
221
222wmem_default
223------------
224
225The default setting (in bytes) of the socket send buffer.
226
227wmem_max
228--------
229
230The maximum send socket buffer size in bytes.
231
232message_burst and message_cost
233------------------------------
234
235These parameters  are used to limit the warning messages written to the kernel
236log from  the  networking  code.  They  enforce  a  rate  limit  to  make  a
237denial-of-service attack  impossible. A higher message_cost factor, results in
238fewer messages that will be written. Message_burst controls when messages will
239be dropped.  The  default  settings  limit  warning messages to one every five
240seconds.
241
242warnings
243--------
244
245This sysctl is now unused.
246
247This was used to control console messages from the networking stack that
248occur because of problems on the network like duplicate address or bad
249checksums.
250
251These messages are now emitted at KERN_DEBUG and can generally be enabled
252and controlled by the dynamic_debug facility.
253
254netdev_budget
255-------------
256
257Maximum number of packets taken from all interfaces in one polling cycle (NAPI
258poll). In one polling cycle interfaces which are registered to polling are
259probed in a round-robin manner. Also, a polling cycle may not exceed
260netdev_budget_usecs microseconds, even if netdev_budget has not been
261exhausted.
262
263netdev_budget_usecs
264---------------------
265
266Maximum number of microseconds in one NAPI polling cycle. Polling
267will exit when either netdev_budget_usecs have elapsed during the
268poll cycle or the number of packets processed reaches netdev_budget.
269
270netdev_max_backlog
271------------------
272
273Maximum number  of  packets,  queued  on  the  INPUT  side, when the interface
274receives packets faster than kernel can process them.
275
276netdev_rss_key
277--------------
278
279RSS (Receive Side Scaling) enabled drivers use a 40 bytes host key that is
280randomly generated.
281Some user space might need to gather its content even if drivers do not
282provide ethtool -x support yet.
283
284::
285
286  myhost:~# cat /proc/sys/net/core/netdev_rss_key
287  84:50:f4:00:a8:15:d1:a7:e9:7f:1d:60:35:c7:47:25:42:97:74:ca:56:bb:b6:a1:d8: ... (52 bytes total)
288
289File contains nul bytes if no driver ever called netdev_rss_key_fill() function.
290
291Note:
292  /proc/sys/net/core/netdev_rss_key contains 52 bytes of key,
293  but most drivers only use 40 bytes of it.
294
295::
296
297  myhost:~# ethtool -x eth0
298  RX flow hash indirection table for eth0 with 8 RX ring(s):
299      0:    0     1     2     3     4     5     6     7
300  RSS hash key:
301  84:50:f4:00:a8:15:d1:a7:e9:7f:1d:60:35:c7:47:25:42:97:74:ca:56:bb:b6:a1:d8:43:e3:c9:0c:fd:17:55:c2:3a:4d:69:ed:f1:42:89
302
303netdev_tstamp_prequeue
304----------------------
305
306If set to 0, RX packet timestamps can be sampled after RPS processing, when
307the target CPU processes packets. It might give some delay on timestamps, but
308permit to distribute the load on several cpus.
309
310If set to 1 (default), timestamps are sampled as soon as possible, before
311queueing.
312
 
 
 
 
 
 
 
 
 
 
 
313optmem_max
314----------
315
316Maximum ancillary buffer size allowed per socket. Ancillary data is a sequence
317of struct cmsghdr structures with appended data.
318
319fb_tunnels_only_for_init_net
320----------------------------
321
322Controls if fallback tunnels (like tunl0, gre0, gretap0, erspan0,
323sit0, ip6tnl0, ip6gre0) are automatically created when a new
324network namespace is created, if corresponding tunnel is present
325in initial network namespace.
326If set to 1, these devices are not automatically created, and
327user space is responsible for creating them if needed.
 
 
 
 
 
 
 
 
 
328
329Default : 0  (for compatibility reasons)
330
331devconf_inherit_init_net
332------------------------
333
334Controls if a new network namespace should inherit all current
335settings under /proc/sys/net/{ipv4,ipv6}/conf/{all,default}/. By
336default, we keep the current behavior: for IPv4 we inherit all current
337settings from init_net and for IPv6 we reset all settings to default.
338
339If set to 1, both IPv4 and IPv6 settings are forced to inherit from
340current ones in init_net. If set to 2, both IPv4 and IPv6 settings are
341forced to reset to their default values.
 
 
342
343Default : 0  (for compatibility reasons)
344
3452. /proc/sys/net/unix - Parameters for Unix domain sockets
346----------------------------------------------------------
347
348There is only one file in this directory.
349unix_dgram_qlen limits the max number of datagrams queued in Unix domain
350socket's buffer. It will not take effect unless PF_UNIX flag is specified.
351
352
3533. /proc/sys/net/ipv4 - IPV4 settings
354-------------------------------------
355Please see: Documentation/networking/ip-sysctl.txt and ipvs-sysctl.txt for
356descriptions of these entries.
357
358
3594. Appletalk
360------------
361
362The /proc/sys/net/appletalk  directory  holds the Appletalk configuration data
363when Appletalk is loaded. The configurable parameters are:
364
365aarp-expiry-time
366----------------
367
368The amount  of  time  we keep an ARP entry before expiring it. Used to age out
369old hosts.
370
371aarp-resolve-time
372-----------------
373
374The amount of time we will spend trying to resolve an Appletalk address.
375
376aarp-retransmit-limit
377---------------------
378
379The number of times we will retransmit a query before giving up.
380
381aarp-tick-time
382--------------
383
384Controls the rate at which expires are checked.
385
386The directory  /proc/net/appletalk  holds the list of active Appletalk sockets
387on a machine.
388
389The fields  indicate  the DDP type, the local address (in network:node format)
390the remote  address,  the  size of the transmit pending queue, the size of the
391received queue  (bytes waiting for applications to read) the state and the uid
392owning the socket.
393
394/proc/net/atalk_iface lists  all  the  interfaces  configured for appletalk.It
395shows the  name  of the interface, its Appletalk address, the network range on
396that address  (or  network number for phase 1 networks), and the status of the
397interface.
398
399/proc/net/atalk_route lists  each  known  network  route.  It lists the target
400(network) that the route leads to, the router (may be directly connected), the
401route flags, and the device the route is using.
402
4035. TIPC
404-------
405
406tipc_rmem
407---------
408
409The TIPC protocol now has a tunable for the receive memory, similar to the
410tcp_rmem - i.e. a vector of 3 INTEGERs: (min, default, max)
411
412::
413
414    # cat /proc/sys/net/tipc/tipc_rmem
415    4252725 34021800        68043600
416    #
417
418The max value is set to CONN_OVERLOAD_LIMIT, and the default and min values
419are scaled (shifted) versions of that same value.  Note that the min value
420is not at this point in time used in any meaningful way, but the triplet is
421preserved in order to be consistent with things like tcp_rmem.
422
423named_timeout
424-------------
425
426TIPC name table updates are distributed asynchronously in a cluster, without
427any form of transaction handling. This means that different race scenarios are
428possible. One such is that a name withdrawal sent out by one node and received
429by another node may arrive after a second, overlapping name publication already
430has been accepted from a third node, although the conflicting updates
431originally may have been issued in the correct sequential order.
432If named_timeout is nonzero, failed topology updates will be placed on a defer
433queue until another event arrives that clears the error, or until the timeout
434expires. Value is in milliseconds.
v5.14.15
  1================================
  2Documentation for /proc/sys/net/
  3================================
  4
  5Copyright
  6
  7Copyright (c) 1999
  8
  9	- Terrehon Bowden <terrehon@pacbell.net>
 10	- Bodo Bauer <bb@ricochet.net>
 11
 12Copyright (c) 2000
 13
 14	- Jorge Nerin <comandante@zaralinux.com>
 15
 16Copyright (c) 2009
 17
 18	- Shen Feng <shen@cn.fujitsu.com>
 19
 20For general info and legal blurb, please look in index.rst.
 21
 22------------------------------------------------------------------------------
 23
 24This file contains the documentation for the sysctl files in
 25/proc/sys/net
 26
 27The interface  to  the  networking  parts  of  the  kernel  is  located  in
 28/proc/sys/net. The following table shows all possible subdirectories.  You may
 29see only some of them, depending on your kernel's configuration.
 30
 31
 32Table : Subdirectories in /proc/sys/net
 33
 34 ========= =================== = ========== ==================
 35 Directory Content               Directory  Content
 36 ========= =================== = ========== ==================
 37 core      General parameter     appletalk  Appletalk protocol
 38 unix      Unix domain sockets   netrom     NET/ROM
 39 802       E802 protocol         ax25       AX25
 40 ethernet  Ethernet protocol     rose       X.25 PLP layer
 41 ipv4      IP version 4          x25        X.25 protocol
 42 bridge    Bridging              decnet     DEC net
 43 ipv6      IP version 6          tipc       TIPC
 44 ========= =================== = ========== ==================
 45
 461. /proc/sys/net/core - Network core options
 47============================================
 48
 49bpf_jit_enable
 50--------------
 51
 52This enables the BPF Just in Time (JIT) compiler. BPF is a flexible
 53and efficient infrastructure allowing to execute bytecode at various
 54hook points. It is used in a number of Linux kernel subsystems such
 55as networking (e.g. XDP, tc), tracing (e.g. kprobes, uprobes, tracepoints)
 56and security (e.g. seccomp). LLVM has a BPF back end that can compile
 57restricted C into a sequence of BPF instructions. After program load
 58through bpf(2) and passing a verifier in the kernel, a JIT will then
 59translate these BPF proglets into native CPU instructions. There are
 60two flavors of JITs, the newer eBPF JIT currently supported on:
 61
 62  - x86_64
 63  - x86_32
 64  - arm64
 65  - arm32
 66  - ppc64
 67  - ppc32
 68  - sparc64
 69  - mips64
 70  - s390x
 71  - riscv64
 72  - riscv32
 73
 74And the older cBPF JIT supported on the following archs:
 75
 76  - mips
 
 77  - sparc
 78
 79eBPF JITs are a superset of cBPF JITs, meaning the kernel will
 80migrate cBPF instructions into eBPF instructions and then JIT
 81compile them transparently. Older cBPF JITs can only translate
 82tcpdump filters, seccomp rules, etc, but not mentioned eBPF
 83programs loaded through bpf(2).
 84
 85Values:
 86
 87	- 0 - disable the JIT (default value)
 88	- 1 - enable the JIT
 89	- 2 - enable the JIT and ask the compiler to emit traces on kernel log.
 90
 91bpf_jit_harden
 92--------------
 93
 94This enables hardening for the BPF JIT compiler. Supported are eBPF
 95JIT backends. Enabling hardening trades off performance, but can
 96mitigate JIT spraying.
 97
 98Values:
 99
100	- 0 - disable JIT hardening (default value)
101	- 1 - enable JIT hardening for unprivileged users only
102	- 2 - enable JIT hardening for all users
103
104bpf_jit_kallsyms
105----------------
106
107When BPF JIT compiler is enabled, then compiled images are unknown
108addresses to the kernel, meaning they neither show up in traces nor
109in /proc/kallsyms. This enables export of these addresses, which can
110be used for debugging/tracing. If bpf_jit_harden is enabled, this
111feature is disabled.
112
113Values :
114
115	- 0 - disable JIT kallsyms export (default value)
116	- 1 - enable JIT kallsyms export for privileged users only
117
118bpf_jit_limit
119-------------
120
121This enforces a global limit for memory allocations to the BPF JIT
122compiler in order to reject unprivileged JIT requests once it has
123been surpassed. bpf_jit_limit contains the value of the global limit
124in bytes.
125
126dev_weight
127----------
128
129The maximum number of packets that kernel can handle on a NAPI interrupt,
130it's a Per-CPU variable. For drivers that support LRO or GRO_HW, a hardware
131aggregated packet is counted as one packet in this context.
132
133Default: 64
134
135dev_weight_rx_bias
136------------------
137
138RPS (e.g. RFS, aRFS) processing is competing with the registered NAPI poll function
139of the driver for the per softirq cycle netdev_budget. This parameter influences
140the proportion of the configured netdev_budget that is spent on RPS based packet
141processing during RX softirq cycles. It is further meant for making current
142dev_weight adaptable for asymmetric CPU needs on RX/TX side of the network stack.
143(see dev_weight_tx_bias) It is effective on a per CPU basis. Determination is based
144on dev_weight and is calculated multiplicative (dev_weight * dev_weight_rx_bias).
145
146Default: 1
147
148dev_weight_tx_bias
149------------------
150
151Scales the maximum number of packets that can be processed during a TX softirq cycle.
152Effective on a per CPU basis. Allows scaling of current dev_weight for asymmetric
153net stack processing needs. Be careful to avoid making TX softirq processing a CPU hog.
154
155Calculation is based on dev_weight (dev_weight * dev_weight_tx_bias).
156
157Default: 1
158
159default_qdisc
160-------------
161
162The default queuing discipline to use for network devices. This allows
163overriding the default of pfifo_fast with an alternative. Since the default
164queuing discipline is created without additional parameters so is best suited
165to queuing disciplines that work well without configuration like stochastic
166fair queue (sfq), CoDel (codel) or fair queue CoDel (fq_codel). Don't use
167queuing disciplines like Hierarchical Token Bucket or Deficit Round Robin
168which require setting up classes and bandwidths. Note that physical multiqueue
169interfaces still use mq as root qdisc, which in turn uses this default for its
170leaves. Virtual devices (like e.g. lo or veth) ignore this setting and instead
171default to noqueue.
172
173Default: pfifo_fast
174
175busy_read
176---------
177
178Low latency busy poll timeout for socket reads. (needs CONFIG_NET_RX_BUSY_POLL)
179Approximate time in us to busy loop waiting for packets on the device queue.
180This sets the default value of the SO_BUSY_POLL socket option.
181Can be set or overridden per socket by setting socket option SO_BUSY_POLL,
182which is the preferred method of enabling. If you need to enable the feature
183globally via sysctl, a value of 50 is recommended.
184
185Will increase power usage.
186
187Default: 0 (off)
188
189busy_poll
190----------------
191Low latency busy poll timeout for poll and select. (needs CONFIG_NET_RX_BUSY_POLL)
192Approximate time in us to busy loop waiting for events.
193Recommended value depends on the number of sockets you poll on.
194For several sockets 50, for several hundreds 100.
195For more than that you probably want to use epoll.
196Note that only sockets with SO_BUSY_POLL set will be busy polled,
197so you want to either selectively set SO_BUSY_POLL on those sockets or set
198sysctl.net.busy_read globally.
199
200Will increase power usage.
201
202Default: 0 (off)
203
204rmem_default
205------------
206
207The default setting of the socket receive buffer in bytes.
208
209rmem_max
210--------
211
212The maximum receive socket buffer size in bytes.
213
214tstamp_allow_data
215-----------------
216Allow processes to receive tx timestamps looped together with the original
217packet contents. If disabled, transmit timestamp requests from unprivileged
218processes are dropped unless socket option SOF_TIMESTAMPING_OPT_TSONLY is set.
219
220Default: 1 (on)
221
222
223wmem_default
224------------
225
226The default setting (in bytes) of the socket send buffer.
227
228wmem_max
229--------
230
231The maximum send socket buffer size in bytes.
232
233message_burst and message_cost
234------------------------------
235
236These parameters  are used to limit the warning messages written to the kernel
237log from  the  networking  code.  They  enforce  a  rate  limit  to  make  a
238denial-of-service attack  impossible. A higher message_cost factor, results in
239fewer messages that will be written. Message_burst controls when messages will
240be dropped.  The  default  settings  limit  warning messages to one every five
241seconds.
242
243warnings
244--------
245
246This sysctl is now unused.
247
248This was used to control console messages from the networking stack that
249occur because of problems on the network like duplicate address or bad
250checksums.
251
252These messages are now emitted at KERN_DEBUG and can generally be enabled
253and controlled by the dynamic_debug facility.
254
255netdev_budget
256-------------
257
258Maximum number of packets taken from all interfaces in one polling cycle (NAPI
259poll). In one polling cycle interfaces which are registered to polling are
260probed in a round-robin manner. Also, a polling cycle may not exceed
261netdev_budget_usecs microseconds, even if netdev_budget has not been
262exhausted.
263
264netdev_budget_usecs
265---------------------
266
267Maximum number of microseconds in one NAPI polling cycle. Polling
268will exit when either netdev_budget_usecs have elapsed during the
269poll cycle or the number of packets processed reaches netdev_budget.
270
271netdev_max_backlog
272------------------
273
274Maximum number  of  packets,  queued  on  the  INPUT  side, when the interface
275receives packets faster than kernel can process them.
276
277netdev_rss_key
278--------------
279
280RSS (Receive Side Scaling) enabled drivers use a 40 bytes host key that is
281randomly generated.
282Some user space might need to gather its content even if drivers do not
283provide ethtool -x support yet.
284
285::
286
287  myhost:~# cat /proc/sys/net/core/netdev_rss_key
288  84:50:f4:00:a8:15:d1:a7:e9:7f:1d:60:35:c7:47:25:42:97:74:ca:56:bb:b6:a1:d8: ... (52 bytes total)
289
290File contains nul bytes if no driver ever called netdev_rss_key_fill() function.
291
292Note:
293  /proc/sys/net/core/netdev_rss_key contains 52 bytes of key,
294  but most drivers only use 40 bytes of it.
295
296::
297
298  myhost:~# ethtool -x eth0
299  RX flow hash indirection table for eth0 with 8 RX ring(s):
300      0:    0     1     2     3     4     5     6     7
301  RSS hash key:
302  84:50:f4:00:a8:15:d1:a7:e9:7f:1d:60:35:c7:47:25:42:97:74:ca:56:bb:b6:a1:d8:43:e3:c9:0c:fd:17:55:c2:3a:4d:69:ed:f1:42:89
303
304netdev_tstamp_prequeue
305----------------------
306
307If set to 0, RX packet timestamps can be sampled after RPS processing, when
308the target CPU processes packets. It might give some delay on timestamps, but
309permit to distribute the load on several cpus.
310
311If set to 1 (default), timestamps are sampled as soon as possible, before
312queueing.
313
314netdev_unregister_timeout_secs
315------------------------------
316
317Unregister network device timeout in seconds.
318This option controls the timeout (in seconds) used to issue a warning while
319waiting for a network device refcount to drop to 0 during device
320unregistration. A lower value may be useful during bisection to detect
321a leaked reference faster. A larger value may be useful to prevent false
322warnings on slow/loaded systems.
323Default value is 10, minimum 1, maximum 3600.
324
325optmem_max
326----------
327
328Maximum ancillary buffer size allowed per socket. Ancillary data is a sequence
329of struct cmsghdr structures with appended data.
330
331fb_tunnels_only_for_init_net
332----------------------------
333
334Controls if fallback tunnels (like tunl0, gre0, gretap0, erspan0,
335sit0, ip6tnl0, ip6gre0) are automatically created. There are 3 possibilities
336(a) value = 0; respective fallback tunnels are created when module is
337loaded in every net namespaces (backward compatible behavior).
338(b) value = 1; [kcmd value: initns] respective fallback tunnels are
339created only in init net namespace and every other net namespace will
340not have them.
341(c) value = 2; [kcmd value: none] fallback tunnels are not created
342when a module is loaded in any of the net namespace. Setting value to
343"2" is pointless after boot if these modules are built-in, so there is
344a kernel command-line option that can change this default. Please refer to
345Documentation/admin-guide/kernel-parameters.txt for additional details.
346
347Not creating fallback tunnels gives control to userspace to create
348whatever is needed only and avoid creating devices which are redundant.
349
350Default : 0  (for compatibility reasons)
351
352devconf_inherit_init_net
353------------------------
354
355Controls if a new network namespace should inherit all current
356settings under /proc/sys/net/{ipv4,ipv6}/conf/{all,default}/. By
357default, we keep the current behavior: for IPv4 we inherit all current
358settings from init_net and for IPv6 we reset all settings to default.
359
360If set to 1, both IPv4 and IPv6 settings are forced to inherit from
361current ones in init_net. If set to 2, both IPv4 and IPv6 settings are
362forced to reset to their default values. If set to 3, both IPv4 and IPv6
363settings are forced to inherit from current ones in the netns where this
364new netns has been created.
365
366Default : 0  (for compatibility reasons)
367
3682. /proc/sys/net/unix - Parameters for Unix domain sockets
369----------------------------------------------------------
370
371There is only one file in this directory.
372unix_dgram_qlen limits the max number of datagrams queued in Unix domain
373socket's buffer. It will not take effect unless PF_UNIX flag is specified.
374
375
3763. /proc/sys/net/ipv4 - IPV4 settings
377-------------------------------------
378Please see: Documentation/networking/ip-sysctl.rst and
379Documentation/admin-guide/sysctl/net.rst for descriptions of these entries.
380
381
3824. Appletalk
383------------
384
385The /proc/sys/net/appletalk  directory  holds the Appletalk configuration data
386when Appletalk is loaded. The configurable parameters are:
387
388aarp-expiry-time
389----------------
390
391The amount  of  time  we keep an ARP entry before expiring it. Used to age out
392old hosts.
393
394aarp-resolve-time
395-----------------
396
397The amount of time we will spend trying to resolve an Appletalk address.
398
399aarp-retransmit-limit
400---------------------
401
402The number of times we will retransmit a query before giving up.
403
404aarp-tick-time
405--------------
406
407Controls the rate at which expires are checked.
408
409The directory  /proc/net/appletalk  holds the list of active Appletalk sockets
410on a machine.
411
412The fields  indicate  the DDP type, the local address (in network:node format)
413the remote  address,  the  size of the transmit pending queue, the size of the
414received queue  (bytes waiting for applications to read) the state and the uid
415owning the socket.
416
417/proc/net/atalk_iface lists  all  the  interfaces  configured for appletalk.It
418shows the  name  of the interface, its Appletalk address, the network range on
419that address  (or  network number for phase 1 networks), and the status of the
420interface.
421
422/proc/net/atalk_route lists  each  known  network  route.  It lists the target
423(network) that the route leads to, the router (may be directly connected), the
424route flags, and the device the route is using.
425
4265. TIPC
427-------
428
429tipc_rmem
430---------
431
432The TIPC protocol now has a tunable for the receive memory, similar to the
433tcp_rmem - i.e. a vector of 3 INTEGERs: (min, default, max)
434
435::
436
437    # cat /proc/sys/net/tipc/tipc_rmem
438    4252725 34021800        68043600
439    #
440
441The max value is set to CONN_OVERLOAD_LIMIT, and the default and min values
442are scaled (shifted) versions of that same value.  Note that the min value
443is not at this point in time used in any meaningful way, but the triplet is
444preserved in order to be consistent with things like tcp_rmem.
445
446named_timeout
447-------------
448
449TIPC name table updates are distributed asynchronously in a cluster, without
450any form of transaction handling. This means that different race scenarios are
451possible. One such is that a name withdrawal sent out by one node and received
452by another node may arrive after a second, overlapping name publication already
453has been accepted from a third node, although the conflicting updates
454originally may have been issued in the correct sequential order.
455If named_timeout is nonzero, failed topology updates will be placed on a defer
456queue until another event arrives that clears the error, or until the timeout
457expires. Value is in milliseconds.