Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2017 Nicira, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include "flow.h"
   9#include "datapath.h"
  10#include <linux/uaccess.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/if_ether.h>
  14#include <linux/if_vlan.h>
  15#include <net/llc_pdu.h>
  16#include <linux/kernel.h>
  17#include <linux/jhash.h>
  18#include <linux/jiffies.h>
  19#include <linux/llc.h>
  20#include <linux/module.h>
  21#include <linux/in.h>
  22#include <linux/rcupdate.h>
  23#include <linux/if_arp.h>
  24#include <linux/ip.h>
  25#include <linux/ipv6.h>
  26#include <linux/sctp.h>
  27#include <linux/tcp.h>
  28#include <linux/udp.h>
  29#include <linux/icmp.h>
  30#include <linux/icmpv6.h>
  31#include <linux/rculist.h>
  32#include <net/geneve.h>
  33#include <net/ip.h>
  34#include <net/ipv6.h>
  35#include <net/ndisc.h>
  36#include <net/mpls.h>
  37#include <net/vxlan.h>
  38#include <net/tun_proto.h>
  39#include <net/erspan.h>
  40
  41#include "flow_netlink.h"
  42
  43struct ovs_len_tbl {
  44	int len;
  45	const struct ovs_len_tbl *next;
  46};
  47
  48#define OVS_ATTR_NESTED -1
  49#define OVS_ATTR_VARIABLE -2
  50
  51static bool actions_may_change_flow(const struct nlattr *actions)
  52{
  53	struct nlattr *nla;
  54	int rem;
  55
  56	nla_for_each_nested(nla, actions, rem) {
  57		u16 action = nla_type(nla);
  58
  59		switch (action) {
  60		case OVS_ACTION_ATTR_OUTPUT:
  61		case OVS_ACTION_ATTR_RECIRC:
  62		case OVS_ACTION_ATTR_TRUNC:
  63		case OVS_ACTION_ATTR_USERSPACE:
  64			break;
  65
  66		case OVS_ACTION_ATTR_CT:
  67		case OVS_ACTION_ATTR_CT_CLEAR:
  68		case OVS_ACTION_ATTR_HASH:
  69		case OVS_ACTION_ATTR_POP_ETH:
  70		case OVS_ACTION_ATTR_POP_MPLS:
  71		case OVS_ACTION_ATTR_POP_NSH:
  72		case OVS_ACTION_ATTR_POP_VLAN:
  73		case OVS_ACTION_ATTR_PUSH_ETH:
  74		case OVS_ACTION_ATTR_PUSH_MPLS:
  75		case OVS_ACTION_ATTR_PUSH_NSH:
  76		case OVS_ACTION_ATTR_PUSH_VLAN:
  77		case OVS_ACTION_ATTR_SAMPLE:
  78		case OVS_ACTION_ATTR_SET:
  79		case OVS_ACTION_ATTR_SET_MASKED:
  80		case OVS_ACTION_ATTR_METER:
  81		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
  82		default:
  83			return true;
  84		}
  85	}
  86	return false;
  87}
  88
  89static void update_range(struct sw_flow_match *match,
  90			 size_t offset, size_t size, bool is_mask)
  91{
  92	struct sw_flow_key_range *range;
  93	size_t start = rounddown(offset, sizeof(long));
  94	size_t end = roundup(offset + size, sizeof(long));
  95
  96	if (!is_mask)
  97		range = &match->range;
  98	else
  99		range = &match->mask->range;
 100
 101	if (range->start == range->end) {
 102		range->start = start;
 103		range->end = end;
 104		return;
 105	}
 106
 107	if (range->start > start)
 108		range->start = start;
 109
 110	if (range->end < end)
 111		range->end = end;
 112}
 113
 114#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
 115	do { \
 116		update_range(match, offsetof(struct sw_flow_key, field),    \
 117			     sizeof((match)->key->field), is_mask);	    \
 118		if (is_mask)						    \
 119			(match)->mask->key.field = value;		    \
 120		else							    \
 121			(match)->key->field = value;		            \
 122	} while (0)
 123
 124#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
 125	do {								    \
 126		update_range(match, offset, len, is_mask);		    \
 127		if (is_mask)						    \
 128			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 129			       len);					   \
 130		else							    \
 131			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 132	} while (0)
 133
 134#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 135	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 136				  value_p, len, is_mask)
 137
 138#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 139	do {								    \
 140		update_range(match, offsetof(struct sw_flow_key, field),    \
 141			     sizeof((match)->key->field), is_mask);	    \
 142		if (is_mask)						    \
 143			memset((u8 *)&(match)->mask->key.field, value,      \
 144			       sizeof((match)->mask->key.field));	    \
 145		else							    \
 146			memset((u8 *)&(match)->key->field, value,           \
 147			       sizeof((match)->key->field));                \
 148	} while (0)
 149
 150static bool match_validate(const struct sw_flow_match *match,
 151			   u64 key_attrs, u64 mask_attrs, bool log)
 152{
 153	u64 key_expected = 0;
 154	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 155
 156	/* The following mask attributes allowed only if they
 157	 * pass the validation tests. */
 158	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 159			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
 160			| (1 << OVS_KEY_ATTR_IPV6)
 161			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
 162			| (1 << OVS_KEY_ATTR_TCP)
 163			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 164			| (1 << OVS_KEY_ATTR_UDP)
 165			| (1 << OVS_KEY_ATTR_SCTP)
 166			| (1 << OVS_KEY_ATTR_ICMP)
 167			| (1 << OVS_KEY_ATTR_ICMPV6)
 168			| (1 << OVS_KEY_ATTR_ARP)
 169			| (1 << OVS_KEY_ATTR_ND)
 170			| (1 << OVS_KEY_ATTR_MPLS)
 171			| (1 << OVS_KEY_ATTR_NSH));
 172
 173	/* Always allowed mask fields. */
 174	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 175		       | (1 << OVS_KEY_ATTR_IN_PORT)
 176		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 177
 178	/* Check key attributes. */
 179	if (match->key->eth.type == htons(ETH_P_ARP)
 180			|| match->key->eth.type == htons(ETH_P_RARP)) {
 181		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 182		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 183			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 184	}
 185
 186	if (eth_p_mpls(match->key->eth.type)) {
 187		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 188		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 189			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 190	}
 191
 192	if (match->key->eth.type == htons(ETH_P_IP)) {
 193		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 194		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 195			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 196			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
 197		}
 198
 199		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 200			if (match->key->ip.proto == IPPROTO_UDP) {
 201				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 202				if (match->mask && (match->mask->key.ip.proto == 0xff))
 203					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 204			}
 205
 206			if (match->key->ip.proto == IPPROTO_SCTP) {
 207				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 208				if (match->mask && (match->mask->key.ip.proto == 0xff))
 209					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 210			}
 211
 212			if (match->key->ip.proto == IPPROTO_TCP) {
 213				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 214				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 215				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 216					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 217					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 218				}
 219			}
 220
 221			if (match->key->ip.proto == IPPROTO_ICMP) {
 222				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 223				if (match->mask && (match->mask->key.ip.proto == 0xff))
 224					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 225			}
 226		}
 227	}
 228
 229	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 230		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 231		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 232			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 233			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
 234		}
 235
 236		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 237			if (match->key->ip.proto == IPPROTO_UDP) {
 238				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 239				if (match->mask && (match->mask->key.ip.proto == 0xff))
 240					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 241			}
 242
 243			if (match->key->ip.proto == IPPROTO_SCTP) {
 244				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 245				if (match->mask && (match->mask->key.ip.proto == 0xff))
 246					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 247			}
 248
 249			if (match->key->ip.proto == IPPROTO_TCP) {
 250				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 251				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 252				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 253					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 254					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 255				}
 256			}
 257
 258			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 259				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 260				if (match->mask && (match->mask->key.ip.proto == 0xff))
 261					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 262
 263				if (match->key->tp.src ==
 264						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 265				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 266					key_expected |= 1 << OVS_KEY_ATTR_ND;
 267					/* Original direction conntrack tuple
 268					 * uses the same space as the ND fields
 269					 * in the key, so both are not allowed
 270					 * at the same time.
 271					 */
 272					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
 273					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 274						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 275				}
 276			}
 277		}
 278	}
 279
 280	if (match->key->eth.type == htons(ETH_P_NSH)) {
 281		key_expected |= 1 << OVS_KEY_ATTR_NSH;
 282		if (match->mask &&
 283		    match->mask->key.eth.type == htons(0xffff)) {
 284			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
 285		}
 286	}
 287
 288	if ((key_attrs & key_expected) != key_expected) {
 289		/* Key attributes check failed. */
 290		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 291			  (unsigned long long)key_attrs,
 292			  (unsigned long long)key_expected);
 293		return false;
 294	}
 295
 296	if ((mask_attrs & mask_allowed) != mask_attrs) {
 297		/* Mask attributes check failed. */
 298		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 299			  (unsigned long long)mask_attrs,
 300			  (unsigned long long)mask_allowed);
 301		return false;
 302	}
 303
 304	return true;
 305}
 306
 307size_t ovs_tun_key_attr_size(void)
 308{
 309	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 310	 * updating this function.
 311	 */
 312	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
 313		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 314		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 315		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 316		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 317		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 318		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 319		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 320		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 321		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
 322		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
 323		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 324		 */
 325		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 326		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 327}
 328
 329static size_t ovs_nsh_key_attr_size(void)
 330{
 331	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
 332	 * updating this function.
 333	 */
 334	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
 335		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
 336		 * mutually exclusive, so the bigger one can cover
 337		 * the small one.
 338		 */
 339		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
 340}
 341
 342size_t ovs_key_attr_size(void)
 343{
 344	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 345	 * updating this function.
 346	 */
 347	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29);
 348
 349	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 350		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 351		  + ovs_tun_key_attr_size()
 352		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 353		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 354		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 355		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 356		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 357		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 358		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 359		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 360		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
 361		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
 362		  + ovs_nsh_key_attr_size()
 363		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 364		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 365		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 366		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 367		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 368		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 369		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 370		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
 371}
 372
 373static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 374	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 375};
 376
 377static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 378	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 379	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 380	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 381	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 382	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 383	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 384	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 385	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 386	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 387	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 388	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 389	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 390						.next = ovs_vxlan_ext_key_lens },
 391	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 392	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 393	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 394	[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
 395};
 396
 397static const struct ovs_len_tbl
 398ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
 399	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
 400	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
 401	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
 402};
 403
 404/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 405static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 406	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 407	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 408	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 409	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 410	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 411	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 412	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 413	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 414	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 415	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 416	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 417	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 418	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 419	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 420	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 421	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 422	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 423	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 424	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 425	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 426				     .next = ovs_tunnel_key_lens, },
 427	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
 428	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 429	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 430	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 431	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 432	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
 433		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
 434	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
 435		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
 436	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
 437				     .next = ovs_nsh_key_attr_lens, },
 438};
 439
 440static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 441{
 442	return expected_len == attr_len ||
 443	       expected_len == OVS_ATTR_NESTED ||
 444	       expected_len == OVS_ATTR_VARIABLE;
 445}
 446
 447static bool is_all_zero(const u8 *fp, size_t size)
 448{
 449	int i;
 450
 451	if (!fp)
 452		return false;
 453
 454	for (i = 0; i < size; i++)
 455		if (fp[i])
 456			return false;
 457
 458	return true;
 459}
 460
 461static int __parse_flow_nlattrs(const struct nlattr *attr,
 462				const struct nlattr *a[],
 463				u64 *attrsp, bool log, bool nz)
 464{
 465	const struct nlattr *nla;
 466	u64 attrs;
 467	int rem;
 468
 469	attrs = *attrsp;
 470	nla_for_each_nested(nla, attr, rem) {
 471		u16 type = nla_type(nla);
 472		int expected_len;
 473
 474		if (type > OVS_KEY_ATTR_MAX) {
 475			OVS_NLERR(log, "Key type %d is out of range max %d",
 476				  type, OVS_KEY_ATTR_MAX);
 477			return -EINVAL;
 478		}
 479
 480		if (attrs & (1 << type)) {
 481			OVS_NLERR(log, "Duplicate key (type %d).", type);
 482			return -EINVAL;
 483		}
 484
 485		expected_len = ovs_key_lens[type].len;
 486		if (!check_attr_len(nla_len(nla), expected_len)) {
 487			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 488				  type, nla_len(nla), expected_len);
 489			return -EINVAL;
 490		}
 491
 492		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
 493			attrs |= 1 << type;
 494			a[type] = nla;
 495		}
 496	}
 497	if (rem) {
 498		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 499		return -EINVAL;
 500	}
 501
 502	*attrsp = attrs;
 503	return 0;
 504}
 505
 506static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 507				   const struct nlattr *a[], u64 *attrsp,
 508				   bool log)
 509{
 510	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 511}
 512
 513int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
 514		       u64 *attrsp, bool log)
 
 515{
 516	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 517}
 518
 519static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 520				     struct sw_flow_match *match, bool is_mask,
 521				     bool log)
 522{
 523	unsigned long opt_key_offset;
 524
 525	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 526		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 527			  nla_len(a), sizeof(match->key->tun_opts));
 528		return -EINVAL;
 529	}
 530
 531	if (nla_len(a) % 4 != 0) {
 532		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 533			  nla_len(a));
 534		return -EINVAL;
 535	}
 536
 537	/* We need to record the length of the options passed
 538	 * down, otherwise packets with the same format but
 539	 * additional options will be silently matched.
 540	 */
 541	if (!is_mask) {
 542		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 543				false);
 544	} else {
 545		/* This is somewhat unusual because it looks at
 546		 * both the key and mask while parsing the
 547		 * attributes (and by extension assumes the key
 548		 * is parsed first). Normally, we would verify
 549		 * that each is the correct length and that the
 550		 * attributes line up in the validate function.
 551		 * However, that is difficult because this is
 552		 * variable length and we won't have the
 553		 * information later.
 554		 */
 555		if (match->key->tun_opts_len != nla_len(a)) {
 556			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 557				  match->key->tun_opts_len, nla_len(a));
 558			return -EINVAL;
 559		}
 560
 561		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 562	}
 563
 564	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 565	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 566				  nla_len(a), is_mask);
 567	return 0;
 568}
 569
 570static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 571				     struct sw_flow_match *match, bool is_mask,
 572				     bool log)
 573{
 574	struct nlattr *a;
 575	int rem;
 576	unsigned long opt_key_offset;
 577	struct vxlan_metadata opts;
 578
 579	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 580
 581	memset(&opts, 0, sizeof(opts));
 582	nla_for_each_nested(a, attr, rem) {
 583		int type = nla_type(a);
 584
 585		if (type > OVS_VXLAN_EXT_MAX) {
 586			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 587				  type, OVS_VXLAN_EXT_MAX);
 588			return -EINVAL;
 589		}
 590
 591		if (!check_attr_len(nla_len(a),
 592				    ovs_vxlan_ext_key_lens[type].len)) {
 593			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 594				  type, nla_len(a),
 595				  ovs_vxlan_ext_key_lens[type].len);
 596			return -EINVAL;
 597		}
 598
 599		switch (type) {
 600		case OVS_VXLAN_EXT_GBP:
 601			opts.gbp = nla_get_u32(a);
 602			break;
 603		default:
 604			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 605				  type);
 606			return -EINVAL;
 607		}
 608	}
 609	if (rem) {
 610		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 611			  rem);
 612		return -EINVAL;
 613	}
 614
 615	if (!is_mask)
 616		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 617	else
 618		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 619
 620	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 621	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 622				  is_mask);
 623	return 0;
 624}
 625
 626static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
 627				      struct sw_flow_match *match, bool is_mask,
 628				      bool log)
 629{
 630	unsigned long opt_key_offset;
 631
 632	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
 633		     sizeof(match->key->tun_opts));
 634
 635	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 636		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
 637			  nla_len(a), sizeof(match->key->tun_opts));
 638		return -EINVAL;
 639	}
 640
 641	if (!is_mask)
 642		SW_FLOW_KEY_PUT(match, tun_opts_len,
 643				sizeof(struct erspan_metadata), false);
 644	else
 645		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 646
 647	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 648	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 649				  nla_len(a), is_mask);
 650	return 0;
 651}
 652
 653static int ip_tun_from_nlattr(const struct nlattr *attr,
 654			      struct sw_flow_match *match, bool is_mask,
 655			      bool log)
 656{
 657	bool ttl = false, ipv4 = false, ipv6 = false;
 658	bool info_bridge_mode = false;
 659	__be16 tun_flags = 0;
 660	int opts_type = 0;
 661	struct nlattr *a;
 662	int rem;
 663
 664	nla_for_each_nested(a, attr, rem) {
 665		int type = nla_type(a);
 666		int err;
 667
 668		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 669			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 670				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 671			return -EINVAL;
 672		}
 673
 674		if (!check_attr_len(nla_len(a),
 675				    ovs_tunnel_key_lens[type].len)) {
 676			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 677				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 678			return -EINVAL;
 679		}
 680
 681		switch (type) {
 682		case OVS_TUNNEL_KEY_ATTR_ID:
 683			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 684					nla_get_be64(a), is_mask);
 685			tun_flags |= TUNNEL_KEY;
 686			break;
 687		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 688			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 689					nla_get_in_addr(a), is_mask);
 690			ipv4 = true;
 691			break;
 692		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 693			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 694					nla_get_in_addr(a), is_mask);
 695			ipv4 = true;
 696			break;
 697		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 698			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
 699					nla_get_in6_addr(a), is_mask);
 700			ipv6 = true;
 701			break;
 702		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 703			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 704					nla_get_in6_addr(a), is_mask);
 705			ipv6 = true;
 706			break;
 707		case OVS_TUNNEL_KEY_ATTR_TOS:
 708			SW_FLOW_KEY_PUT(match, tun_key.tos,
 709					nla_get_u8(a), is_mask);
 710			break;
 711		case OVS_TUNNEL_KEY_ATTR_TTL:
 712			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 713					nla_get_u8(a), is_mask);
 714			ttl = true;
 715			break;
 716		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 717			tun_flags |= TUNNEL_DONT_FRAGMENT;
 718			break;
 719		case OVS_TUNNEL_KEY_ATTR_CSUM:
 720			tun_flags |= TUNNEL_CSUM;
 721			break;
 722		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 723			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 724					nla_get_be16(a), is_mask);
 725			break;
 726		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 727			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 728					nla_get_be16(a), is_mask);
 729			break;
 730		case OVS_TUNNEL_KEY_ATTR_OAM:
 731			tun_flags |= TUNNEL_OAM;
 732			break;
 733		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 734			if (opts_type) {
 735				OVS_NLERR(log, "Multiple metadata blocks provided");
 736				return -EINVAL;
 737			}
 738
 739			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 740			if (err)
 741				return err;
 742
 743			tun_flags |= TUNNEL_GENEVE_OPT;
 744			opts_type = type;
 745			break;
 746		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 747			if (opts_type) {
 748				OVS_NLERR(log, "Multiple metadata blocks provided");
 749				return -EINVAL;
 750			}
 751
 752			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 753			if (err)
 754				return err;
 755
 756			tun_flags |= TUNNEL_VXLAN_OPT;
 757			opts_type = type;
 758			break;
 759		case OVS_TUNNEL_KEY_ATTR_PAD:
 760			break;
 761		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
 762			if (opts_type) {
 763				OVS_NLERR(log, "Multiple metadata blocks provided");
 764				return -EINVAL;
 765			}
 766
 767			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
 768							 log);
 769			if (err)
 770				return err;
 771
 772			tun_flags |= TUNNEL_ERSPAN_OPT;
 773			opts_type = type;
 774			break;
 775		case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
 776			info_bridge_mode = true;
 777			ipv4 = true;
 778			break;
 779		default:
 780			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 781				  type);
 782			return -EINVAL;
 783		}
 784	}
 785
 786	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 787	if (is_mask)
 788		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 789	else
 790		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 791				false);
 792
 793	if (rem > 0) {
 794		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 795			  rem);
 796		return -EINVAL;
 797	}
 798
 799	if (ipv4 && ipv6) {
 800		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 801		return -EINVAL;
 802	}
 803
 804	if (!is_mask) {
 805		if (!ipv4 && !ipv6) {
 806			OVS_NLERR(log, "IP tunnel dst address not specified");
 807			return -EINVAL;
 808		}
 809		if (ipv4) {
 810			if (info_bridge_mode) {
 811				if (match->key->tun_key.u.ipv4.src ||
 812				    match->key->tun_key.u.ipv4.dst ||
 813				    match->key->tun_key.tp_src ||
 814				    match->key->tun_key.tp_dst ||
 815				    match->key->tun_key.ttl ||
 816				    match->key->tun_key.tos ||
 817				    tun_flags & ~TUNNEL_KEY) {
 818					OVS_NLERR(log, "IPv4 tun info is not correct");
 819					return -EINVAL;
 820				}
 821			} else if (!match->key->tun_key.u.ipv4.dst) {
 822				OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 823				return -EINVAL;
 824			}
 825		}
 826		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 827			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 828			return -EINVAL;
 829		}
 830
 831		if (!ttl && !info_bridge_mode) {
 832			OVS_NLERR(log, "IP tunnel TTL not specified.");
 833			return -EINVAL;
 834		}
 835	}
 836
 837	return opts_type;
 838}
 839
 840static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 841			       const void *tun_opts, int swkey_tun_opts_len)
 842{
 843	const struct vxlan_metadata *opts = tun_opts;
 844	struct nlattr *nla;
 845
 846	nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 847	if (!nla)
 848		return -EMSGSIZE;
 849
 850	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 851		return -EMSGSIZE;
 852
 853	nla_nest_end(skb, nla);
 854	return 0;
 855}
 856
 857static int __ip_tun_to_nlattr(struct sk_buff *skb,
 858			      const struct ip_tunnel_key *output,
 859			      const void *tun_opts, int swkey_tun_opts_len,
 860			      unsigned short tun_proto, u8 mode)
 861{
 862	if (output->tun_flags & TUNNEL_KEY &&
 863	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
 864			 OVS_TUNNEL_KEY_ATTR_PAD))
 865		return -EMSGSIZE;
 866
 867	if (mode & IP_TUNNEL_INFO_BRIDGE)
 868		return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
 869		       ? -EMSGSIZE : 0;
 870
 871	switch (tun_proto) {
 872	case AF_INET:
 873		if (output->u.ipv4.src &&
 874		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 875				    output->u.ipv4.src))
 876			return -EMSGSIZE;
 877		if (output->u.ipv4.dst &&
 878		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 879				    output->u.ipv4.dst))
 880			return -EMSGSIZE;
 881		break;
 882	case AF_INET6:
 883		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 884		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 885				     &output->u.ipv6.src))
 886			return -EMSGSIZE;
 887		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 888		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 889				     &output->u.ipv6.dst))
 890			return -EMSGSIZE;
 891		break;
 892	}
 893	if (output->tos &&
 894	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 895		return -EMSGSIZE;
 896	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 897		return -EMSGSIZE;
 898	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 899	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 900		return -EMSGSIZE;
 901	if ((output->tun_flags & TUNNEL_CSUM) &&
 902	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 903		return -EMSGSIZE;
 904	if (output->tp_src &&
 905	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 906		return -EMSGSIZE;
 907	if (output->tp_dst &&
 908	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 909		return -EMSGSIZE;
 910	if ((output->tun_flags & TUNNEL_OAM) &&
 911	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 912		return -EMSGSIZE;
 913	if (swkey_tun_opts_len) {
 914		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
 915		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 916			    swkey_tun_opts_len, tun_opts))
 917			return -EMSGSIZE;
 918		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
 919			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 920			return -EMSGSIZE;
 921		else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
 922			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
 923				 swkey_tun_opts_len, tun_opts))
 924			return -EMSGSIZE;
 925	}
 926
 927	return 0;
 928}
 929
 930static int ip_tun_to_nlattr(struct sk_buff *skb,
 931			    const struct ip_tunnel_key *output,
 932			    const void *tun_opts, int swkey_tun_opts_len,
 933			    unsigned short tun_proto, u8 mode)
 934{
 935	struct nlattr *nla;
 936	int err;
 937
 938	nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
 939	if (!nla)
 940		return -EMSGSIZE;
 941
 942	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 943				 tun_proto, mode);
 944	if (err)
 945		return err;
 946
 947	nla_nest_end(skb, nla);
 948	return 0;
 949}
 950
 951int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 952			    struct ip_tunnel_info *tun_info)
 953{
 954	return __ip_tun_to_nlattr(skb, &tun_info->key,
 955				  ip_tunnel_info_opts(tun_info),
 956				  tun_info->options_len,
 957				  ip_tunnel_info_af(tun_info), tun_info->mode);
 958}
 959
 960static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
 961				    const struct nlattr *a[],
 962				    bool is_mask, bool inner)
 963{
 964	__be16 tci = 0;
 965	__be16 tpid = 0;
 966
 967	if (a[OVS_KEY_ATTR_VLAN])
 968		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 969
 970	if (a[OVS_KEY_ATTR_ETHERTYPE])
 971		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 972
 973	if (likely(!inner)) {
 974		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
 975		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
 976	} else {
 977		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
 978		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
 979	}
 980	return 0;
 981}
 982
 983static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
 984				      u64 key_attrs, bool inner,
 985				      const struct nlattr **a, bool log)
 986{
 987	__be16 tci = 0;
 988
 989	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
 990	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
 991	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
 992		/* Not a VLAN. */
 993		return 0;
 994	}
 995
 996	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
 997	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
 998		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
 999		return -EINVAL;
1000	}
1001
1002	if (a[OVS_KEY_ATTR_VLAN])
1003		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1004
1005	if (!(tci & htons(VLAN_CFI_MASK))) {
1006		if (tci) {
1007			OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1008				  (inner) ? "C-VLAN" : "VLAN");
1009			return -EINVAL;
1010		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1011			/* Corner case for truncated VLAN header. */
1012			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1013				  (inner) ? "C-VLAN" : "VLAN");
1014			return -EINVAL;
1015		}
1016	}
1017
1018	return 1;
1019}
1020
1021static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1022					   u64 key_attrs, bool inner,
1023					   const struct nlattr **a, bool log)
1024{
1025	__be16 tci = 0;
1026	__be16 tpid = 0;
1027	bool encap_valid = !!(match->key->eth.vlan.tci &
1028			      htons(VLAN_CFI_MASK));
1029	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1030				htons(VLAN_CFI_MASK));
1031
1032	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1033		/* Not a VLAN. */
1034		return 0;
1035	}
1036
1037	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1038		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1039			  (inner) ? "C-VLAN" : "VLAN");
1040		return -EINVAL;
1041	}
1042
1043	if (a[OVS_KEY_ATTR_VLAN])
1044		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1045
1046	if (a[OVS_KEY_ATTR_ETHERTYPE])
1047		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1048
1049	if (tpid != htons(0xffff)) {
1050		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1051			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1052		return -EINVAL;
1053	}
1054	if (!(tci & htons(VLAN_CFI_MASK))) {
1055		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1056			  (inner) ? "C-VLAN" : "VLAN");
1057		return -EINVAL;
1058	}
1059
1060	return 1;
1061}
1062
1063static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1064				     u64 *key_attrs, bool inner,
1065				     const struct nlattr **a, bool is_mask,
1066				     bool log)
1067{
1068	int err;
1069	const struct nlattr *encap;
1070
1071	if (!is_mask)
1072		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1073						 a, log);
1074	else
1075		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1076						      a, log);
1077	if (err <= 0)
1078		return err;
1079
1080	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1081	if (err)
1082		return err;
1083
1084	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1085	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1086	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1087
1088	encap = a[OVS_KEY_ATTR_ENCAP];
1089
1090	if (!is_mask)
1091		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1092	else
1093		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1094
1095	return err;
1096}
1097
1098static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1099				   u64 *key_attrs, const struct nlattr **a,
1100				   bool is_mask, bool log)
1101{
1102	int err;
1103	bool encap_valid = false;
1104
1105	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1106					is_mask, log);
1107	if (err)
1108		return err;
1109
1110	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1111	if (encap_valid) {
1112		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1113						is_mask, log);
1114		if (err)
1115			return err;
1116	}
1117
1118	return 0;
1119}
1120
1121static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1122				       u64 *attrs, const struct nlattr **a,
1123				       bool is_mask, bool log)
1124{
1125	__be16 eth_type;
1126
1127	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1128	if (is_mask) {
1129		/* Always exact match EtherType. */
1130		eth_type = htons(0xffff);
1131	} else if (!eth_proto_is_802_3(eth_type)) {
1132		OVS_NLERR(log, "EtherType %x is less than min %x",
1133				ntohs(eth_type), ETH_P_802_3_MIN);
1134		return -EINVAL;
1135	}
1136
1137	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1138	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1139	return 0;
1140}
1141
1142static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1143				 u64 *attrs, const struct nlattr **a,
1144				 bool is_mask, bool log)
1145{
1146	u8 mac_proto = MAC_PROTO_ETHERNET;
1147
1148	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1149		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1150
1151		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1152		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1153	}
1154
1155	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1156		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1157
1158		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1159		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1160	}
1161
1162	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1163		SW_FLOW_KEY_PUT(match, phy.priority,
1164			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1165		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1166	}
1167
1168	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1169		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1170
1171		if (is_mask) {
1172			in_port = 0xffffffff; /* Always exact match in_port. */
1173		} else if (in_port >= DP_MAX_PORTS) {
1174			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1175				  in_port, DP_MAX_PORTS);
1176			return -EINVAL;
1177		}
1178
1179		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1180		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1181	} else if (!is_mask) {
1182		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1183	}
1184
1185	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1186		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1187
1188		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1189		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1190	}
1191	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1192		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1193				       is_mask, log) < 0)
1194			return -EINVAL;
1195		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1196	}
1197
1198	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1199	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1200		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1201
1202		if (ct_state & ~CT_SUPPORTED_MASK) {
1203			OVS_NLERR(log, "ct_state flags %08x unsupported",
1204				  ct_state);
1205			return -EINVAL;
1206		}
1207
1208		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1209		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1210	}
1211	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1212	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1213		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1214
1215		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1216		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1217	}
1218	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1219	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1220		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1221
1222		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1223		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1224	}
1225	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1226	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1227		const struct ovs_key_ct_labels *cl;
1228
1229		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1230		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1231				   sizeof(*cl), is_mask);
1232		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1233	}
1234	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1235		const struct ovs_key_ct_tuple_ipv4 *ct;
1236
1237		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1238
1239		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1240		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1241		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1242		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1243		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1244		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1245	}
1246	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1247		const struct ovs_key_ct_tuple_ipv6 *ct;
1248
1249		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1250
1251		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1252				   sizeof(match->key->ipv6.ct_orig.src),
1253				   is_mask);
1254		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1255				   sizeof(match->key->ipv6.ct_orig.dst),
1256				   is_mask);
1257		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1258		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1259		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1260		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1261	}
1262
1263	/* For layer 3 packets the Ethernet type is provided
1264	 * and treated as metadata but no MAC addresses are provided.
1265	 */
1266	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1267	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1268		mac_proto = MAC_PROTO_NONE;
1269
1270	/* Always exact match mac_proto */
1271	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1272
1273	if (mac_proto == MAC_PROTO_NONE)
1274		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1275						   log);
1276
1277	return 0;
1278}
1279
1280int nsh_hdr_from_nlattr(const struct nlattr *attr,
1281			struct nshhdr *nh, size_t size)
1282{
1283	struct nlattr *a;
1284	int rem;
1285	u8 flags = 0;
1286	u8 ttl = 0;
1287	int mdlen = 0;
1288
1289	/* validate_nsh has check this, so we needn't do duplicate check here
1290	 */
1291	if (size < NSH_BASE_HDR_LEN)
1292		return -ENOBUFS;
1293
1294	nla_for_each_nested(a, attr, rem) {
1295		int type = nla_type(a);
1296
1297		switch (type) {
1298		case OVS_NSH_KEY_ATTR_BASE: {
1299			const struct ovs_nsh_key_base *base = nla_data(a);
1300
1301			flags = base->flags;
1302			ttl = base->ttl;
1303			nh->np = base->np;
1304			nh->mdtype = base->mdtype;
1305			nh->path_hdr = base->path_hdr;
1306			break;
1307		}
1308		case OVS_NSH_KEY_ATTR_MD1:
1309			mdlen = nla_len(a);
1310			if (mdlen > size - NSH_BASE_HDR_LEN)
1311				return -ENOBUFS;
1312			memcpy(&nh->md1, nla_data(a), mdlen);
1313			break;
1314
1315		case OVS_NSH_KEY_ATTR_MD2:
1316			mdlen = nla_len(a);
1317			if (mdlen > size - NSH_BASE_HDR_LEN)
1318				return -ENOBUFS;
1319			memcpy(&nh->md2, nla_data(a), mdlen);
1320			break;
1321
1322		default:
1323			return -EINVAL;
1324		}
1325	}
1326
1327	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1328	nh->ver_flags_ttl_len = 0;
1329	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1330
1331	return 0;
1332}
1333
1334int nsh_key_from_nlattr(const struct nlattr *attr,
1335			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1336{
1337	struct nlattr *a;
1338	int rem;
1339
1340	/* validate_nsh has check this, so we needn't do duplicate check here
1341	 */
1342	nla_for_each_nested(a, attr, rem) {
1343		int type = nla_type(a);
1344
1345		switch (type) {
1346		case OVS_NSH_KEY_ATTR_BASE: {
1347			const struct ovs_nsh_key_base *base = nla_data(a);
1348			const struct ovs_nsh_key_base *base_mask = base + 1;
1349
1350			nsh->base = *base;
1351			nsh_mask->base = *base_mask;
1352			break;
1353		}
1354		case OVS_NSH_KEY_ATTR_MD1: {
1355			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1356			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1357
1358			memcpy(nsh->context, md1->context, sizeof(*md1));
1359			memcpy(nsh_mask->context, md1_mask->context,
1360			       sizeof(*md1_mask));
1361			break;
1362		}
1363		case OVS_NSH_KEY_ATTR_MD2:
1364			/* Not supported yet */
1365			return -ENOTSUPP;
1366		default:
1367			return -EINVAL;
1368		}
1369	}
1370
1371	return 0;
1372}
1373
1374static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1375				   struct sw_flow_match *match, bool is_mask,
1376				   bool is_push_nsh, bool log)
1377{
1378	struct nlattr *a;
1379	int rem;
1380	bool has_base = false;
1381	bool has_md1 = false;
1382	bool has_md2 = false;
1383	u8 mdtype = 0;
1384	int mdlen = 0;
1385
1386	if (WARN_ON(is_push_nsh && is_mask))
1387		return -EINVAL;
1388
1389	nla_for_each_nested(a, attr, rem) {
1390		int type = nla_type(a);
1391		int i;
1392
1393		if (type > OVS_NSH_KEY_ATTR_MAX) {
1394			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1395				  type, OVS_NSH_KEY_ATTR_MAX);
1396			return -EINVAL;
1397		}
1398
1399		if (!check_attr_len(nla_len(a),
1400				    ovs_nsh_key_attr_lens[type].len)) {
1401			OVS_NLERR(
1402			    log,
1403			    "nsh attr %d has unexpected len %d expected %d",
1404			    type,
1405			    nla_len(a),
1406			    ovs_nsh_key_attr_lens[type].len
1407			);
1408			return -EINVAL;
1409		}
1410
1411		switch (type) {
1412		case OVS_NSH_KEY_ATTR_BASE: {
1413			const struct ovs_nsh_key_base *base = nla_data(a);
1414
1415			has_base = true;
1416			mdtype = base->mdtype;
1417			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1418					base->flags, is_mask);
1419			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1420					base->ttl, is_mask);
1421			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1422					base->mdtype, is_mask);
1423			SW_FLOW_KEY_PUT(match, nsh.base.np,
1424					base->np, is_mask);
1425			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1426					base->path_hdr, is_mask);
1427			break;
1428		}
1429		case OVS_NSH_KEY_ATTR_MD1: {
1430			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1431
1432			has_md1 = true;
1433			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1434				SW_FLOW_KEY_PUT(match, nsh.context[i],
1435						md1->context[i], is_mask);
1436			break;
1437		}
1438		case OVS_NSH_KEY_ATTR_MD2:
1439			if (!is_push_nsh) /* Not supported MD type 2 yet */
1440				return -ENOTSUPP;
1441
1442			has_md2 = true;
1443			mdlen = nla_len(a);
1444			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1445				OVS_NLERR(
1446				    log,
1447				    "Invalid MD length %d for MD type %d",
1448				    mdlen,
1449				    mdtype
1450				);
1451				return -EINVAL;
1452			}
1453			break;
1454		default:
1455			OVS_NLERR(log, "Unknown nsh attribute %d",
1456				  type);
1457			return -EINVAL;
1458		}
1459	}
1460
1461	if (rem > 0) {
1462		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1463		return -EINVAL;
1464	}
1465
1466	if (has_md1 && has_md2) {
1467		OVS_NLERR(
1468		    1,
1469		    "invalid nsh attribute: md1 and md2 are exclusive."
1470		);
1471		return -EINVAL;
1472	}
1473
1474	if (!is_mask) {
1475		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1476		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1477			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1478				  mdtype);
1479			return -EINVAL;
1480		}
1481
1482		if (is_push_nsh &&
1483		    (!has_base || (!has_md1 && !has_md2))) {
1484			OVS_NLERR(
1485			    1,
1486			    "push_nsh: missing base or metadata attributes"
1487			);
1488			return -EINVAL;
1489		}
1490	}
1491
1492	return 0;
1493}
1494
1495static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1496				u64 attrs, const struct nlattr **a,
1497				bool is_mask, bool log)
1498{
1499	int err;
1500
1501	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1502	if (err)
1503		return err;
1504
1505	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1506		const struct ovs_key_ethernet *eth_key;
1507
1508		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1509		SW_FLOW_KEY_MEMCPY(match, eth.src,
1510				eth_key->eth_src, ETH_ALEN, is_mask);
1511		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1512				eth_key->eth_dst, ETH_ALEN, is_mask);
1513		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
 
 
 
 
 
 
 
 
 
 
 
1514
1515		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1516			/* VLAN attribute is always parsed before getting here since it
1517			 * may occur multiple times.
1518			 */
1519			OVS_NLERR(log, "VLAN attribute unexpected.");
1520			return -EINVAL;
1521		}
1522
1523		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1524			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1525							  log);
1526			if (err)
1527				return err;
1528		} else if (!is_mask) {
1529			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
 
 
 
 
 
 
 
 
1530		}
1531	} else if (!match->key->eth.type) {
1532		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1533		return -EINVAL;
 
 
1534	}
1535
1536	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1537		const struct ovs_key_ipv4 *ipv4_key;
1538
1539		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1540		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1541			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1542				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1543			return -EINVAL;
1544		}
1545		SW_FLOW_KEY_PUT(match, ip.proto,
1546				ipv4_key->ipv4_proto, is_mask);
1547		SW_FLOW_KEY_PUT(match, ip.tos,
1548				ipv4_key->ipv4_tos, is_mask);
1549		SW_FLOW_KEY_PUT(match, ip.ttl,
1550				ipv4_key->ipv4_ttl, is_mask);
1551		SW_FLOW_KEY_PUT(match, ip.frag,
1552				ipv4_key->ipv4_frag, is_mask);
1553		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1554				ipv4_key->ipv4_src, is_mask);
1555		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1556				ipv4_key->ipv4_dst, is_mask);
1557		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1558	}
1559
1560	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1561		const struct ovs_key_ipv6 *ipv6_key;
1562
1563		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1564		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1565			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1566				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1567			return -EINVAL;
1568		}
1569
1570		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1571			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1572				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1573			return -EINVAL;
1574		}
1575
1576		SW_FLOW_KEY_PUT(match, ipv6.label,
1577				ipv6_key->ipv6_label, is_mask);
1578		SW_FLOW_KEY_PUT(match, ip.proto,
1579				ipv6_key->ipv6_proto, is_mask);
1580		SW_FLOW_KEY_PUT(match, ip.tos,
1581				ipv6_key->ipv6_tclass, is_mask);
1582		SW_FLOW_KEY_PUT(match, ip.ttl,
1583				ipv6_key->ipv6_hlimit, is_mask);
1584		SW_FLOW_KEY_PUT(match, ip.frag,
1585				ipv6_key->ipv6_frag, is_mask);
1586		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1587				ipv6_key->ipv6_src,
1588				sizeof(match->key->ipv6.addr.src),
1589				is_mask);
1590		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1591				ipv6_key->ipv6_dst,
1592				sizeof(match->key->ipv6.addr.dst),
1593				is_mask);
1594
1595		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1596	}
1597
1598	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1599		const struct ovs_key_arp *arp_key;
1600
1601		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1602		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1603			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1604				  arp_key->arp_op);
1605			return -EINVAL;
1606		}
1607
1608		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1609				arp_key->arp_sip, is_mask);
1610		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1611			arp_key->arp_tip, is_mask);
1612		SW_FLOW_KEY_PUT(match, ip.proto,
1613				ntohs(arp_key->arp_op), is_mask);
1614		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1615				arp_key->arp_sha, ETH_ALEN, is_mask);
1616		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1617				arp_key->arp_tha, ETH_ALEN, is_mask);
1618
1619		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1620	}
1621
1622	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1623		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1624					    is_mask, false, log) < 0)
1625			return -EINVAL;
1626		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1627	}
1628
1629	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1630		const struct ovs_key_mpls *mpls_key;
1631
1632		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1633		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1634				mpls_key->mpls_lse, is_mask);
1635
1636		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1637	 }
1638
1639	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1640		const struct ovs_key_tcp *tcp_key;
1641
1642		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1643		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1644		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1645		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1646	}
1647
1648	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1649		SW_FLOW_KEY_PUT(match, tp.flags,
1650				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1651				is_mask);
1652		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1653	}
1654
1655	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1656		const struct ovs_key_udp *udp_key;
1657
1658		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1659		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1660		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1661		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1662	}
1663
1664	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1665		const struct ovs_key_sctp *sctp_key;
1666
1667		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1668		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1669		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1670		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1671	}
1672
1673	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1674		const struct ovs_key_icmp *icmp_key;
1675
1676		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1677		SW_FLOW_KEY_PUT(match, tp.src,
1678				htons(icmp_key->icmp_type), is_mask);
1679		SW_FLOW_KEY_PUT(match, tp.dst,
1680				htons(icmp_key->icmp_code), is_mask);
1681		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1682	}
1683
1684	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1685		const struct ovs_key_icmpv6 *icmpv6_key;
1686
1687		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1688		SW_FLOW_KEY_PUT(match, tp.src,
1689				htons(icmpv6_key->icmpv6_type), is_mask);
1690		SW_FLOW_KEY_PUT(match, tp.dst,
1691				htons(icmpv6_key->icmpv6_code), is_mask);
1692		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1693	}
1694
1695	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1696		const struct ovs_key_nd *nd_key;
1697
1698		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1699		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1700			nd_key->nd_target,
1701			sizeof(match->key->ipv6.nd.target),
1702			is_mask);
1703		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1704			nd_key->nd_sll, ETH_ALEN, is_mask);
1705		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1706				nd_key->nd_tll, ETH_ALEN, is_mask);
1707		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1708	}
1709
1710	if (attrs != 0) {
1711		OVS_NLERR(log, "Unknown key attributes %llx",
1712			  (unsigned long long)attrs);
1713		return -EINVAL;
1714	}
1715
1716	return 0;
1717}
1718
1719static void nlattr_set(struct nlattr *attr, u8 val,
1720		       const struct ovs_len_tbl *tbl)
1721{
1722	struct nlattr *nla;
1723	int rem;
1724
1725	/* The nlattr stream should already have been validated */
1726	nla_for_each_nested(nla, attr, rem) {
1727		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1728			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1729		else
 
 
1730			memset(nla_data(nla), val, nla_len(nla));
 
1731
1732		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1733			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1734	}
1735}
1736
1737static void mask_set_nlattr(struct nlattr *attr, u8 val)
1738{
1739	nlattr_set(attr, val, ovs_key_lens);
1740}
1741
1742/**
1743 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1744 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1745 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1746 * does not include any don't care bit.
1747 * @net: Used to determine per-namespace field support.
1748 * @match: receives the extracted flow match information.
1749 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1750 * sequence. The fields should of the packet that triggered the creation
1751 * of this flow.
1752 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1753 * attribute specifies the mask field of the wildcarded flow.
1754 * @log: Boolean to allow kernel error logging.  Normally true, but when
1755 * probing for feature compatibility this should be passed in as false to
1756 * suppress unnecessary error logging.
1757 */
1758int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1759		      const struct nlattr *nla_key,
1760		      const struct nlattr *nla_mask,
1761		      bool log)
1762{
1763	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
 
1764	struct nlattr *newmask = NULL;
1765	u64 key_attrs = 0;
1766	u64 mask_attrs = 0;
 
1767	int err;
1768
1769	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1770	if (err)
1771		return err;
1772
1773	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1774	if (err)
1775		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776
1777	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1778	if (err)
1779		return err;
1780
1781	if (match->mask) {
1782		if (!nla_mask) {
1783			/* Create an exact match mask. We need to set to 0xff
1784			 * all the 'match->mask' fields that have been touched
1785			 * in 'match->key'. We cannot simply memset
1786			 * 'match->mask', because padding bytes and fields not
1787			 * specified in 'match->key' should be left to 0.
1788			 * Instead, we use a stream of netlink attributes,
1789			 * copied from 'key' and set to 0xff.
1790			 * ovs_key_from_nlattrs() will take care of filling
1791			 * 'match->mask' appropriately.
1792			 */
1793			newmask = kmemdup(nla_key,
1794					  nla_total_size(nla_len(nla_key)),
1795					  GFP_KERNEL);
1796			if (!newmask)
1797				return -ENOMEM;
1798
1799			mask_set_nlattr(newmask, 0xff);
1800
1801			/* The userspace does not send tunnel attributes that
1802			 * are 0, but we should not wildcard them nonetheless.
1803			 */
1804			if (match->key->tun_proto)
1805				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1806							 0xff, true);
1807
1808			nla_mask = newmask;
1809		}
1810
1811		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1812		if (err)
1813			goto free_newmask;
1814
1815		/* Always match on tci. */
1816		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1817		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1818
1819		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1820		if (err)
1821			goto free_newmask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1822
1823		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1824					   log);
1825		if (err)
1826			goto free_newmask;
1827	}
1828
1829	if (!match_validate(match, key_attrs, mask_attrs, log))
1830		err = -EINVAL;
1831
1832free_newmask:
1833	kfree(newmask);
1834	return err;
1835}
1836
1837static size_t get_ufid_len(const struct nlattr *attr, bool log)
1838{
1839	size_t len;
1840
1841	if (!attr)
1842		return 0;
1843
1844	len = nla_len(attr);
1845	if (len < 1 || len > MAX_UFID_LENGTH) {
1846		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1847			  nla_len(attr), MAX_UFID_LENGTH);
1848		return 0;
1849	}
1850
1851	return len;
1852}
1853
1854/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1855 * or false otherwise.
1856 */
1857bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1858		      bool log)
1859{
1860	sfid->ufid_len = get_ufid_len(attr, log);
1861	if (sfid->ufid_len)
1862		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1863
1864	return sfid->ufid_len;
1865}
1866
1867int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1868			   const struct sw_flow_key *key, bool log)
1869{
1870	struct sw_flow_key *new_key;
1871
1872	if (ovs_nla_get_ufid(sfid, ufid, log))
1873		return 0;
1874
1875	/* If UFID was not provided, use unmasked key. */
1876	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1877	if (!new_key)
1878		return -ENOMEM;
1879	memcpy(new_key, key, sizeof(*key));
1880	sfid->unmasked_key = new_key;
1881
1882	return 0;
1883}
1884
1885u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1886{
1887	return attr ? nla_get_u32(attr) : 0;
1888}
1889
1890/**
1891 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1892 * @net: Network namespace.
1893 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1894 * metadata.
1895 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1896 * attributes.
1897 * @attrs: Bit mask for the netlink attributes included in @a.
1898 * @log: Boolean to allow kernel error logging.  Normally true, but when
1899 * probing for feature compatibility this should be passed in as false to
1900 * suppress unnecessary error logging.
1901 *
1902 * This parses a series of Netlink attributes that form a flow key, which must
1903 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1904 * get the metadata, that is, the parts of the flow key that cannot be
1905 * extracted from the packet itself.
1906 *
1907 * This must be called before the packet key fields are filled in 'key'.
1908 */
1909
1910int ovs_nla_get_flow_metadata(struct net *net,
1911			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1912			      u64 attrs, struct sw_flow_key *key, bool log)
1913{
 
1914	struct sw_flow_match match;
 
 
 
 
 
 
1915
1916	memset(&match, 0, sizeof(match));
1917	match.key = key;
1918
1919	key->ct_state = 0;
1920	key->ct_zone = 0;
1921	key->ct_orig_proto = 0;
1922	memset(&key->ct, 0, sizeof(key->ct));
1923	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1924	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1925
1926	key->phy.in_port = DP_MAX_PORTS;
1927
1928	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1929}
1930
1931static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1932			    bool is_mask)
1933{
1934	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1935
1936	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1937	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1938		return -EMSGSIZE;
1939	return 0;
1940}
1941
1942static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1943			     struct sk_buff *skb)
1944{
1945	struct nlattr *start;
1946
1947	start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
1948	if (!start)
1949		return -EMSGSIZE;
1950
1951	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1952		goto nla_put_failure;
1953
1954	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1955		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1956			    sizeof(nsh->context), nsh->context))
1957			goto nla_put_failure;
1958	}
1959
1960	/* Don't support MD type 2 yet */
1961
1962	nla_nest_end(skb, start);
1963
1964	return 0;
1965
1966nla_put_failure:
1967	return -EMSGSIZE;
1968}
1969
1970static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1971			     const struct sw_flow_key *output, bool is_mask,
1972			     struct sk_buff *skb)
1973{
1974	struct ovs_key_ethernet *eth_key;
1975	struct nlattr *nla;
1976	struct nlattr *encap = NULL;
1977	struct nlattr *in_encap = NULL;
1978
1979	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1980		goto nla_put_failure;
1981
1982	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1983		goto nla_put_failure;
1984
1985	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1986		goto nla_put_failure;
1987
1988	if ((swkey->tun_proto || is_mask)) {
1989		const void *opts = NULL;
1990
1991		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1992			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1993
1994		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1995				     swkey->tun_opts_len, swkey->tun_proto, 0))
1996			goto nla_put_failure;
1997	}
1998
1999	if (swkey->phy.in_port == DP_MAX_PORTS) {
2000		if (is_mask && (output->phy.in_port == 0xffff))
2001			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2002				goto nla_put_failure;
2003	} else {
2004		u16 upper_u16;
2005		upper_u16 = !is_mask ? 0 : 0xffff;
2006
2007		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2008				(upper_u16 << 16) | output->phy.in_port))
2009			goto nla_put_failure;
2010	}
2011
2012	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2013		goto nla_put_failure;
2014
2015	if (ovs_ct_put_key(swkey, output, skb))
2016		goto nla_put_failure;
2017
2018	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2019		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2020		if (!nla)
2021			goto nla_put_failure;
2022
2023		eth_key = nla_data(nla);
2024		ether_addr_copy(eth_key->eth_src, output->eth.src);
2025		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
 
 
 
 
 
 
 
 
 
 
 
 
2026
2027		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2028			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
 
 
 
 
 
 
 
 
2029				goto nla_put_failure;
2030			encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2031			if (!swkey->eth.vlan.tci)
2032				goto unencap;
2033
2034			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2035				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2036					goto nla_put_failure;
2037				in_encap = nla_nest_start_noflag(skb,
2038								 OVS_KEY_ATTR_ENCAP);
2039				if (!swkey->eth.cvlan.tci)
2040					goto unencap;
2041			}
2042		}
2043
2044		if (swkey->eth.type == htons(ETH_P_802_2)) {
2045			/*
2046			* Ethertype 802.2 is represented in the netlink with omitted
2047			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2048			* 0xffff in the mask attribute.  Ethertype can also
2049			* be wildcarded.
2050			*/
2051			if (is_mask && output->eth.type)
2052				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2053							output->eth.type))
2054					goto nla_put_failure;
2055			goto unencap;
2056		}
2057	}
2058
2059	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2060		goto nla_put_failure;
2061
2062	if (eth_type_vlan(swkey->eth.type)) {
2063		/* There are 3 VLAN tags, we don't know anything about the rest
2064		 * of the packet, so truncate here.
2065		 */
2066		WARN_ON_ONCE(!(encap && in_encap));
2067		goto unencap;
2068	}
2069
2070	if (swkey->eth.type == htons(ETH_P_IP)) {
2071		struct ovs_key_ipv4 *ipv4_key;
2072
2073		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2074		if (!nla)
2075			goto nla_put_failure;
2076		ipv4_key = nla_data(nla);
2077		ipv4_key->ipv4_src = output->ipv4.addr.src;
2078		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2079		ipv4_key->ipv4_proto = output->ip.proto;
2080		ipv4_key->ipv4_tos = output->ip.tos;
2081		ipv4_key->ipv4_ttl = output->ip.ttl;
2082		ipv4_key->ipv4_frag = output->ip.frag;
2083	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2084		struct ovs_key_ipv6 *ipv6_key;
2085
2086		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2087		if (!nla)
2088			goto nla_put_failure;
2089		ipv6_key = nla_data(nla);
2090		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2091				sizeof(ipv6_key->ipv6_src));
2092		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2093				sizeof(ipv6_key->ipv6_dst));
2094		ipv6_key->ipv6_label = output->ipv6.label;
2095		ipv6_key->ipv6_proto = output->ip.proto;
2096		ipv6_key->ipv6_tclass = output->ip.tos;
2097		ipv6_key->ipv6_hlimit = output->ip.ttl;
2098		ipv6_key->ipv6_frag = output->ip.frag;
2099	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2100		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2101			goto nla_put_failure;
2102	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2103		   swkey->eth.type == htons(ETH_P_RARP)) {
2104		struct ovs_key_arp *arp_key;
2105
2106		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2107		if (!nla)
2108			goto nla_put_failure;
2109		arp_key = nla_data(nla);
2110		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2111		arp_key->arp_sip = output->ipv4.addr.src;
2112		arp_key->arp_tip = output->ipv4.addr.dst;
2113		arp_key->arp_op = htons(output->ip.proto);
2114		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2115		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2116	} else if (eth_p_mpls(swkey->eth.type)) {
2117		struct ovs_key_mpls *mpls_key;
2118
2119		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
2120		if (!nla)
2121			goto nla_put_failure;
2122		mpls_key = nla_data(nla);
2123		mpls_key->mpls_lse = output->mpls.top_lse;
2124	}
2125
2126	if ((swkey->eth.type == htons(ETH_P_IP) ||
2127	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2128	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2129
2130		if (swkey->ip.proto == IPPROTO_TCP) {
2131			struct ovs_key_tcp *tcp_key;
2132
2133			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2134			if (!nla)
2135				goto nla_put_failure;
2136			tcp_key = nla_data(nla);
2137			tcp_key->tcp_src = output->tp.src;
2138			tcp_key->tcp_dst = output->tp.dst;
2139			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2140					 output->tp.flags))
2141				goto nla_put_failure;
2142		} else if (swkey->ip.proto == IPPROTO_UDP) {
2143			struct ovs_key_udp *udp_key;
2144
2145			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2146			if (!nla)
2147				goto nla_put_failure;
2148			udp_key = nla_data(nla);
2149			udp_key->udp_src = output->tp.src;
2150			udp_key->udp_dst = output->tp.dst;
2151		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2152			struct ovs_key_sctp *sctp_key;
2153
2154			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2155			if (!nla)
2156				goto nla_put_failure;
2157			sctp_key = nla_data(nla);
2158			sctp_key->sctp_src = output->tp.src;
2159			sctp_key->sctp_dst = output->tp.dst;
2160		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2161			   swkey->ip.proto == IPPROTO_ICMP) {
2162			struct ovs_key_icmp *icmp_key;
2163
2164			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2165			if (!nla)
2166				goto nla_put_failure;
2167			icmp_key = nla_data(nla);
2168			icmp_key->icmp_type = ntohs(output->tp.src);
2169			icmp_key->icmp_code = ntohs(output->tp.dst);
2170		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2171			   swkey->ip.proto == IPPROTO_ICMPV6) {
2172			struct ovs_key_icmpv6 *icmpv6_key;
2173
2174			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2175						sizeof(*icmpv6_key));
2176			if (!nla)
2177				goto nla_put_failure;
2178			icmpv6_key = nla_data(nla);
2179			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2180			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2181
2182			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
2183			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
2184				struct ovs_key_nd *nd_key;
2185
2186				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2187				if (!nla)
2188					goto nla_put_failure;
2189				nd_key = nla_data(nla);
2190				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2191							sizeof(nd_key->nd_target));
2192				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2193				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2194			}
2195		}
2196	}
2197
2198unencap:
2199	if (in_encap)
2200		nla_nest_end(skb, in_encap);
2201	if (encap)
2202		nla_nest_end(skb, encap);
2203
2204	return 0;
2205
2206nla_put_failure:
2207	return -EMSGSIZE;
2208}
2209
2210int ovs_nla_put_key(const struct sw_flow_key *swkey,
2211		    const struct sw_flow_key *output, int attr, bool is_mask,
2212		    struct sk_buff *skb)
2213{
2214	int err;
2215	struct nlattr *nla;
2216
2217	nla = nla_nest_start_noflag(skb, attr);
2218	if (!nla)
2219		return -EMSGSIZE;
2220	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2221	if (err)
2222		return err;
2223	nla_nest_end(skb, nla);
2224
2225	return 0;
2226}
2227
2228/* Called with ovs_mutex or RCU read lock. */
2229int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2230{
2231	if (ovs_identifier_is_ufid(&flow->id))
2232		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2233			       flow->id.ufid);
2234
2235	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2236			       OVS_FLOW_ATTR_KEY, false, skb);
2237}
2238
2239/* Called with ovs_mutex or RCU read lock. */
2240int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2241{
2242	return ovs_nla_put_key(&flow->key, &flow->key,
2243				OVS_FLOW_ATTR_KEY, false, skb);
2244}
2245
2246/* Called with ovs_mutex or RCU read lock. */
2247int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2248{
2249	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2250				OVS_FLOW_ATTR_MASK, true, skb);
2251}
2252
2253#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2254
2255static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2256{
2257	struct sw_flow_actions *sfa;
2258
2259	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
 
 
 
2260
2261	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
2262	if (!sfa)
2263		return ERR_PTR(-ENOMEM);
2264
2265	sfa->actions_len = 0;
2266	return sfa;
2267}
2268
2269static void ovs_nla_free_set_action(const struct nlattr *a)
2270{
2271	const struct nlattr *ovs_key = nla_data(a);
2272	struct ovs_tunnel_info *ovs_tun;
2273
2274	switch (nla_type(ovs_key)) {
2275	case OVS_KEY_ATTR_TUNNEL_INFO:
2276		ovs_tun = nla_data(ovs_key);
2277		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2278		break;
2279	}
2280}
2281
2282void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2283{
2284	const struct nlattr *a;
2285	int rem;
2286
2287	if (!sf_acts)
2288		return;
2289
2290	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
2291		switch (nla_type(a)) {
2292		case OVS_ACTION_ATTR_SET:
2293			ovs_nla_free_set_action(a);
2294			break;
2295		case OVS_ACTION_ATTR_CT:
2296			ovs_ct_free_action(a);
2297			break;
2298		}
2299	}
2300
2301	kfree(sf_acts);
2302}
2303
2304static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2305{
2306	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2307}
2308
2309/* Schedules 'sf_acts' to be freed after the next RCU grace period.
2310 * The caller must hold rcu_read_lock for this to be sensible. */
2311void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2312{
2313	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2314}
2315
2316static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2317				       int attr_len, bool log)
2318{
2319
2320	struct sw_flow_actions *acts;
2321	int new_acts_size;
2322	size_t req_size = NLA_ALIGN(attr_len);
2323	int next_offset = offsetof(struct sw_flow_actions, actions) +
2324					(*sfa)->actions_len;
2325
2326	if (req_size <= (ksize(*sfa) - next_offset))
2327		goto out;
2328
2329	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2330
2331	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2332		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
2333			OVS_NLERR(log, "Flow action size exceeds max %u",
2334				  MAX_ACTIONS_BUFSIZE);
2335			return ERR_PTR(-EMSGSIZE);
2336		}
2337		new_acts_size = MAX_ACTIONS_BUFSIZE;
2338	}
2339
2340	acts = nla_alloc_flow_actions(new_acts_size);
2341	if (IS_ERR(acts))
2342		return (void *)acts;
2343
2344	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2345	acts->actions_len = (*sfa)->actions_len;
2346	acts->orig_len = (*sfa)->orig_len;
2347	kfree(*sfa);
2348	*sfa = acts;
2349
2350out:
2351	(*sfa)->actions_len += req_size;
2352	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2353}
2354
2355static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2356				   int attrtype, void *data, int len, bool log)
2357{
2358	struct nlattr *a;
2359
2360	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2361	if (IS_ERR(a))
2362		return a;
2363
2364	a->nla_type = attrtype;
2365	a->nla_len = nla_attr_size(len);
2366
2367	if (data)
2368		memcpy(nla_data(a), data, len);
2369	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2370
2371	return a;
2372}
2373
2374int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2375		       int len, bool log)
2376{
2377	struct nlattr *a;
2378
2379	a = __add_action(sfa, attrtype, data, len, log);
2380
2381	return PTR_ERR_OR_ZERO(a);
2382}
2383
2384static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2385					  int attrtype, bool log)
2386{
2387	int used = (*sfa)->actions_len;
2388	int err;
2389
2390	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2391	if (err)
2392		return err;
2393
2394	return used;
2395}
2396
2397static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2398					 int st_offset)
2399{
2400	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2401							       st_offset);
2402
2403	a->nla_len = sfa->actions_len - st_offset;
2404}
2405
2406static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2407				  const struct sw_flow_key *key,
2408				  struct sw_flow_actions **sfa,
2409				  __be16 eth_type, __be16 vlan_tci, bool log);
2410
2411static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2412				    const struct sw_flow_key *key,
2413				    struct sw_flow_actions **sfa,
2414				    __be16 eth_type, __be16 vlan_tci,
2415				    bool log, bool last)
2416{
2417	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2418	const struct nlattr *probability, *actions;
2419	const struct nlattr *a;
2420	int rem, start, err;
2421	struct sample_arg arg;
2422
2423	memset(attrs, 0, sizeof(attrs));
2424	nla_for_each_nested(a, attr, rem) {
2425		int type = nla_type(a);
2426		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2427			return -EINVAL;
2428		attrs[type] = a;
2429	}
2430	if (rem)
2431		return -EINVAL;
2432
2433	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2434	if (!probability || nla_len(probability) != sizeof(u32))
2435		return -EINVAL;
2436
2437	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2438	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2439		return -EINVAL;
2440
2441	/* validation done, copy sample action. */
2442	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2443	if (start < 0)
2444		return start;
2445
2446	/* When both skb and flow may be changed, put the sample
2447	 * into a deferred fifo. On the other hand, if only skb
2448	 * may be modified, the actions can be executed in place.
2449	 *
2450	 * Do this analysis at the flow installation time.
2451	 * Set 'clone_action->exec' to true if the actions can be
2452	 * executed without being deferred.
2453	 *
2454	 * If the sample is the last action, it can always be excuted
2455	 * rather than deferred.
2456	 */
2457	arg.exec = last || !actions_may_change_flow(actions);
2458	arg.probability = nla_get_u32(probability);
2459
2460	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2461				 log);
2462	if (err)
2463		return err;
 
 
 
2464
2465	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2466				     eth_type, vlan_tci, log);
2467
2468	if (err)
2469		return err;
2470
2471	add_nested_action_end(*sfa, start);
2472
2473	return 0;
2474}
2475
2476static int validate_and_copy_clone(struct net *net,
2477				   const struct nlattr *attr,
2478				   const struct sw_flow_key *key,
2479				   struct sw_flow_actions **sfa,
2480				   __be16 eth_type, __be16 vlan_tci,
2481				   bool log, bool last)
2482{
2483	int start, err;
2484	u32 exec;
2485
2486	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2487		return -EINVAL;
2488
2489	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2490	if (start < 0)
2491		return start;
2492
2493	exec = last || !actions_may_change_flow(attr);
2494
2495	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2496				 sizeof(exec), log);
2497	if (err)
2498		return err;
2499
2500	err = __ovs_nla_copy_actions(net, attr, key, sfa,
2501				     eth_type, vlan_tci, log);
2502	if (err)
2503		return err;
2504
 
2505	add_nested_action_end(*sfa, start);
2506
2507	return 0;
2508}
2509
2510void ovs_match_init(struct sw_flow_match *match,
2511		    struct sw_flow_key *key,
2512		    bool reset_key,
2513		    struct sw_flow_mask *mask)
2514{
2515	memset(match, 0, sizeof(*match));
2516	match->key = key;
2517	match->mask = mask;
2518
2519	if (reset_key)
2520		memset(key, 0, sizeof(*key));
2521
2522	if (mask) {
2523		memset(&mask->key, 0, sizeof(mask->key));
2524		mask->range.start = mask->range.end = 0;
2525	}
2526}
2527
2528static int validate_geneve_opts(struct sw_flow_key *key)
2529{
2530	struct geneve_opt *option;
2531	int opts_len = key->tun_opts_len;
2532	bool crit_opt = false;
2533
2534	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2535	while (opts_len > 0) {
2536		int len;
2537
2538		if (opts_len < sizeof(*option))
2539			return -EINVAL;
2540
2541		len = sizeof(*option) + option->length * 4;
2542		if (len > opts_len)
2543			return -EINVAL;
2544
2545		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2546
2547		option = (struct geneve_opt *)((u8 *)option + len);
2548		opts_len -= len;
2549	}
2550
2551	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2552
2553	return 0;
2554}
2555
2556static int validate_and_copy_set_tun(const struct nlattr *attr,
2557				     struct sw_flow_actions **sfa, bool log)
2558{
2559	struct sw_flow_match match;
2560	struct sw_flow_key key;
2561	struct metadata_dst *tun_dst;
2562	struct ip_tunnel_info *tun_info;
2563	struct ovs_tunnel_info *ovs_tun;
2564	struct nlattr *a;
2565	int err = 0, start, opts_type;
2566	__be16 dst_opt_type;
2567
2568	dst_opt_type = 0;
2569	ovs_match_init(&match, &key, true, NULL);
2570	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2571	if (opts_type < 0)
2572		return opts_type;
2573
2574	if (key.tun_opts_len) {
2575		switch (opts_type) {
2576		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2577			err = validate_geneve_opts(&key);
2578			if (err < 0)
2579				return err;
2580			dst_opt_type = TUNNEL_GENEVE_OPT;
2581			break;
2582		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2583			dst_opt_type = TUNNEL_VXLAN_OPT;
2584			break;
2585		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2586			dst_opt_type = TUNNEL_ERSPAN_OPT;
2587			break;
2588		}
2589	}
2590
2591	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2592	if (start < 0)
2593		return start;
2594
2595	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2596				     GFP_KERNEL);
2597
2598	if (!tun_dst)
2599		return -ENOMEM;
2600
2601	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2602	if (err) {
2603		dst_release((struct dst_entry *)tun_dst);
2604		return err;
2605	}
2606
2607	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2608			 sizeof(*ovs_tun), log);
2609	if (IS_ERR(a)) {
2610		dst_release((struct dst_entry *)tun_dst);
2611		return PTR_ERR(a);
2612	}
2613
2614	ovs_tun = nla_data(a);
2615	ovs_tun->tun_dst = tun_dst;
2616
2617	tun_info = &tun_dst->u.tun_info;
2618	tun_info->mode = IP_TUNNEL_INFO_TX;
2619	if (key.tun_proto == AF_INET6)
2620		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2621	else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2622		tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2623	tun_info->key = key.tun_key;
2624
2625	/* We need to store the options in the action itself since
2626	 * everything else will go away after flow setup. We can append
2627	 * it to tun_info and then point there.
2628	 */
2629	ip_tunnel_info_opts_set(tun_info,
2630				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2631				key.tun_opts_len, dst_opt_type);
2632	add_nested_action_end(*sfa, start);
2633
2634	return err;
2635}
2636
2637static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2638			 bool is_push_nsh, bool log)
2639{
2640	struct sw_flow_match match;
2641	struct sw_flow_key key;
2642	int ret = 0;
2643
2644	ovs_match_init(&match, &key, true, NULL);
2645	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2646				      is_push_nsh, log);
2647	return !ret;
2648}
2649
2650/* Return false if there are any non-masked bits set.
2651 * Mask follows data immediately, before any netlink padding.
2652 */
2653static bool validate_masked(u8 *data, int len)
2654{
2655	u8 *mask = data + len;
2656
2657	while (len--)
2658		if (*data++ & ~*mask++)
2659			return false;
2660
2661	return true;
2662}
2663
2664static int validate_set(const struct nlattr *a,
2665			const struct sw_flow_key *flow_key,
2666			struct sw_flow_actions **sfa, bool *skip_copy,
2667			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2668{
2669	const struct nlattr *ovs_key = nla_data(a);
2670	int key_type = nla_type(ovs_key);
2671	size_t key_len;
2672
2673	/* There can be only one key in a action */
2674	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2675		return -EINVAL;
2676
2677	key_len = nla_len(ovs_key);
2678	if (masked)
2679		key_len /= 2;
2680
2681	if (key_type > OVS_KEY_ATTR_MAX ||
2682	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2683		return -EINVAL;
2684
2685	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2686		return -EINVAL;
2687
2688	switch (key_type) {
2689	const struct ovs_key_ipv4 *ipv4_key;
2690	const struct ovs_key_ipv6 *ipv6_key;
2691	int err;
2692
2693	case OVS_KEY_ATTR_PRIORITY:
2694	case OVS_KEY_ATTR_SKB_MARK:
2695	case OVS_KEY_ATTR_CT_MARK:
2696	case OVS_KEY_ATTR_CT_LABELS:
2697		break;
2698
2699	case OVS_KEY_ATTR_ETHERNET:
2700		if (mac_proto != MAC_PROTO_ETHERNET)
2701			return -EINVAL;
2702		break;
2703
2704	case OVS_KEY_ATTR_TUNNEL:
2705		if (masked)
2706			return -EINVAL; /* Masked tunnel set not supported. */
2707
2708		*skip_copy = true;
2709		err = validate_and_copy_set_tun(a, sfa, log);
2710		if (err)
2711			return err;
2712		break;
2713
2714	case OVS_KEY_ATTR_IPV4:
2715		if (eth_type != htons(ETH_P_IP))
2716			return -EINVAL;
2717
2718		ipv4_key = nla_data(ovs_key);
2719
2720		if (masked) {
2721			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2722
2723			/* Non-writeable fields. */
2724			if (mask->ipv4_proto || mask->ipv4_frag)
2725				return -EINVAL;
2726		} else {
2727			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2728				return -EINVAL;
2729
2730			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2731				return -EINVAL;
2732		}
2733		break;
2734
2735	case OVS_KEY_ATTR_IPV6:
2736		if (eth_type != htons(ETH_P_IPV6))
2737			return -EINVAL;
2738
2739		ipv6_key = nla_data(ovs_key);
2740
2741		if (masked) {
2742			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2743
2744			/* Non-writeable fields. */
2745			if (mask->ipv6_proto || mask->ipv6_frag)
2746				return -EINVAL;
2747
2748			/* Invalid bits in the flow label mask? */
2749			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2750				return -EINVAL;
2751		} else {
2752			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2753				return -EINVAL;
2754
2755			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2756				return -EINVAL;
2757		}
2758		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2759			return -EINVAL;
2760
2761		break;
2762
2763	case OVS_KEY_ATTR_TCP:
2764		if ((eth_type != htons(ETH_P_IP) &&
2765		     eth_type != htons(ETH_P_IPV6)) ||
2766		    flow_key->ip.proto != IPPROTO_TCP)
2767			return -EINVAL;
2768
2769		break;
2770
2771	case OVS_KEY_ATTR_UDP:
2772		if ((eth_type != htons(ETH_P_IP) &&
2773		     eth_type != htons(ETH_P_IPV6)) ||
2774		    flow_key->ip.proto != IPPROTO_UDP)
2775			return -EINVAL;
2776
2777		break;
2778
2779	case OVS_KEY_ATTR_MPLS:
2780		if (!eth_p_mpls(eth_type))
2781			return -EINVAL;
2782		break;
2783
2784	case OVS_KEY_ATTR_SCTP:
2785		if ((eth_type != htons(ETH_P_IP) &&
2786		     eth_type != htons(ETH_P_IPV6)) ||
2787		    flow_key->ip.proto != IPPROTO_SCTP)
2788			return -EINVAL;
2789
2790		break;
2791
2792	case OVS_KEY_ATTR_NSH:
2793		if (eth_type != htons(ETH_P_NSH))
2794			return -EINVAL;
2795		if (!validate_nsh(nla_data(a), masked, false, log))
2796			return -EINVAL;
2797		break;
2798
2799	default:
2800		return -EINVAL;
2801	}
2802
2803	/* Convert non-masked non-tunnel set actions to masked set actions. */
2804	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2805		int start, len = key_len * 2;
2806		struct nlattr *at;
2807
2808		*skip_copy = true;
2809
2810		start = add_nested_action_start(sfa,
2811						OVS_ACTION_ATTR_SET_TO_MASKED,
2812						log);
2813		if (start < 0)
2814			return start;
2815
2816		at = __add_action(sfa, key_type, NULL, len, log);
2817		if (IS_ERR(at))
2818			return PTR_ERR(at);
2819
2820		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2821		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2822		/* Clear non-writeable bits from otherwise writeable fields. */
2823		if (key_type == OVS_KEY_ATTR_IPV6) {
2824			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2825
2826			mask->ipv6_label &= htonl(0x000FFFFF);
2827		}
2828		add_nested_action_end(*sfa, start);
2829	}
2830
2831	return 0;
2832}
2833
2834static int validate_userspace(const struct nlattr *attr)
2835{
2836	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2837		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2838		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2839		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2840	};
2841	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2842	int error;
2843
2844	error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
2845					    userspace_policy, NULL);
2846	if (error)
2847		return error;
2848
2849	if (!a[OVS_USERSPACE_ATTR_PID] ||
2850	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2851		return -EINVAL;
2852
2853	return 0;
2854}
2855
2856static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
2857	[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
2858	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
2859	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
2860};
2861
2862static int validate_and_copy_check_pkt_len(struct net *net,
2863					   const struct nlattr *attr,
2864					   const struct sw_flow_key *key,
2865					   struct sw_flow_actions **sfa,
2866					   __be16 eth_type, __be16 vlan_tci,
2867					   bool log, bool last)
2868{
2869	const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
2870	struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
2871	struct check_pkt_len_arg arg;
2872	int nested_acts_start;
2873	int start, err;
2874
2875	err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
2876					  nla_data(attr), nla_len(attr),
2877					  cpl_policy, NULL);
2878	if (err)
2879		return err;
2880
2881	if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
2882	    !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
2883		return -EINVAL;
2884
2885	acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
2886	acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
2887
2888	/* Both the nested action should be present. */
2889	if (!acts_if_greater || !acts_if_lesser_eq)
2890		return -EINVAL;
2891
2892	/* validation done, copy the nested actions. */
2893	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
2894					log);
2895	if (start < 0)
2896		return start;
2897
2898	arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
2899	arg.exec_for_lesser_equal =
2900		last || !actions_may_change_flow(acts_if_lesser_eq);
2901	arg.exec_for_greater =
2902		last || !actions_may_change_flow(acts_if_greater);
2903
2904	err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
2905				 sizeof(arg), log);
2906	if (err)
2907		return err;
2908
2909	nested_acts_start = add_nested_action_start(sfa,
2910		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
2911	if (nested_acts_start < 0)
2912		return nested_acts_start;
2913
2914	err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
2915				     eth_type, vlan_tci, log);
2916
2917	if (err)
2918		return err;
2919
2920	add_nested_action_end(*sfa, nested_acts_start);
2921
2922	nested_acts_start = add_nested_action_start(sfa,
2923		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
2924	if (nested_acts_start < 0)
2925		return nested_acts_start;
2926
2927	err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
2928				     eth_type, vlan_tci, log);
2929
2930	if (err)
2931		return err;
2932
2933	add_nested_action_end(*sfa, nested_acts_start);
2934	add_nested_action_end(*sfa, start);
2935	return 0;
2936}
2937
2938static int copy_action(const struct nlattr *from,
2939		       struct sw_flow_actions **sfa, bool log)
2940{
2941	int totlen = NLA_ALIGN(from->nla_len);
2942	struct nlattr *to;
2943
2944	to = reserve_sfa_size(sfa, from->nla_len, log);
2945	if (IS_ERR(to))
2946		return PTR_ERR(to);
2947
2948	memcpy(to, from, totlen);
2949	return 0;
2950}
2951
2952static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2953				  const struct sw_flow_key *key,
2954				  struct sw_flow_actions **sfa,
2955				  __be16 eth_type, __be16 vlan_tci, bool log)
2956{
2957	u8 mac_proto = ovs_key_mac_proto(key);
2958	const struct nlattr *a;
2959	int rem, err;
2960
 
 
 
2961	nla_for_each_nested(a, attr, rem) {
2962		/* Expected argument lengths, (u32)-1 for variable length. */
2963		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2964			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2965			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2966			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2967			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2968			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2969			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2970			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2971			[OVS_ACTION_ATTR_SET] = (u32)-1,
2972			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2973			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2974			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2975			[OVS_ACTION_ATTR_CT] = (u32)-1,
2976			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
2977			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2978			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2979			[OVS_ACTION_ATTR_POP_ETH] = 0,
2980			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
2981			[OVS_ACTION_ATTR_POP_NSH] = 0,
2982			[OVS_ACTION_ATTR_METER] = sizeof(u32),
2983			[OVS_ACTION_ATTR_CLONE] = (u32)-1,
2984			[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
2985		};
2986		const struct ovs_action_push_vlan *vlan;
2987		int type = nla_type(a);
2988		bool skip_copy;
2989
2990		if (type > OVS_ACTION_ATTR_MAX ||
2991		    (action_lens[type] != nla_len(a) &&
2992		     action_lens[type] != (u32)-1))
2993			return -EINVAL;
2994
2995		skip_copy = false;
2996		switch (type) {
2997		case OVS_ACTION_ATTR_UNSPEC:
2998			return -EINVAL;
2999
3000		case OVS_ACTION_ATTR_USERSPACE:
3001			err = validate_userspace(a);
3002			if (err)
3003				return err;
3004			break;
3005
3006		case OVS_ACTION_ATTR_OUTPUT:
3007			if (nla_get_u32(a) >= DP_MAX_PORTS)
3008				return -EINVAL;
3009			break;
3010
3011		case OVS_ACTION_ATTR_TRUNC: {
3012			const struct ovs_action_trunc *trunc = nla_data(a);
3013
3014			if (trunc->max_len < ETH_HLEN)
3015				return -EINVAL;
3016			break;
3017		}
3018
3019		case OVS_ACTION_ATTR_HASH: {
3020			const struct ovs_action_hash *act_hash = nla_data(a);
3021
3022			switch (act_hash->hash_alg) {
3023			case OVS_HASH_ALG_L4:
3024				break;
3025			default:
3026				return  -EINVAL;
3027			}
3028
3029			break;
3030		}
3031
3032		case OVS_ACTION_ATTR_POP_VLAN:
3033			if (mac_proto != MAC_PROTO_ETHERNET)
3034				return -EINVAL;
3035			vlan_tci = htons(0);
3036			break;
3037
3038		case OVS_ACTION_ATTR_PUSH_VLAN:
3039			if (mac_proto != MAC_PROTO_ETHERNET)
3040				return -EINVAL;
3041			vlan = nla_data(a);
3042			if (!eth_type_vlan(vlan->vlan_tpid))
3043				return -EINVAL;
3044			if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3045				return -EINVAL;
3046			vlan_tci = vlan->vlan_tci;
3047			break;
3048
3049		case OVS_ACTION_ATTR_RECIRC:
3050			break;
3051
3052		case OVS_ACTION_ATTR_PUSH_MPLS: {
3053			const struct ovs_action_push_mpls *mpls = nla_data(a);
3054
3055			if (!eth_p_mpls(mpls->mpls_ethertype))
3056				return -EINVAL;
3057			/* Prohibit push MPLS other than to a white list
3058			 * for packets that have a known tag order.
3059			 */
3060			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3061			    (eth_type != htons(ETH_P_IP) &&
3062			     eth_type != htons(ETH_P_IPV6) &&
3063			     eth_type != htons(ETH_P_ARP) &&
3064			     eth_type != htons(ETH_P_RARP) &&
3065			     !eth_p_mpls(eth_type)))
3066				return -EINVAL;
3067			eth_type = mpls->mpls_ethertype;
3068			break;
3069		}
3070
3071		case OVS_ACTION_ATTR_POP_MPLS:
3072			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3073			    !eth_p_mpls(eth_type))
3074				return -EINVAL;
3075
3076			/* Disallow subsequent L2.5+ set and mpls_pop actions
3077			 * as there is no check here to ensure that the new
3078			 * eth_type is valid and thus set actions could
3079			 * write off the end of the packet or otherwise
3080			 * corrupt it.
3081			 *
3082			 * Support for these actions is planned using packet
3083			 * recirculation.
3084			 */
3085			eth_type = htons(0);
3086			break;
3087
3088		case OVS_ACTION_ATTR_SET:
3089			err = validate_set(a, key, sfa,
3090					   &skip_copy, mac_proto, eth_type,
3091					   false, log);
3092			if (err)
3093				return err;
3094			break;
3095
3096		case OVS_ACTION_ATTR_SET_MASKED:
3097			err = validate_set(a, key, sfa,
3098					   &skip_copy, mac_proto, eth_type,
3099					   true, log);
3100			if (err)
3101				return err;
3102			break;
3103
3104		case OVS_ACTION_ATTR_SAMPLE: {
3105			bool last = nla_is_last(a, rem);
3106
3107			err = validate_and_copy_sample(net, a, key, sfa,
3108						       eth_type, vlan_tci,
3109						       log, last);
3110			if (err)
3111				return err;
3112			skip_copy = true;
3113			break;
3114		}
3115
3116		case OVS_ACTION_ATTR_CT:
3117			err = ovs_ct_copy_action(net, a, key, sfa, log);
3118			if (err)
3119				return err;
3120			skip_copy = true;
3121			break;
3122
3123		case OVS_ACTION_ATTR_CT_CLEAR:
3124			break;
3125
3126		case OVS_ACTION_ATTR_PUSH_ETH:
3127			/* Disallow pushing an Ethernet header if one
3128			 * is already present */
3129			if (mac_proto != MAC_PROTO_NONE)
3130				return -EINVAL;
3131			mac_proto = MAC_PROTO_ETHERNET;
3132			break;
3133
3134		case OVS_ACTION_ATTR_POP_ETH:
3135			if (mac_proto != MAC_PROTO_ETHERNET)
3136				return -EINVAL;
3137			if (vlan_tci & htons(VLAN_CFI_MASK))
3138				return -EINVAL;
3139			mac_proto = MAC_PROTO_NONE;
3140			break;
3141
3142		case OVS_ACTION_ATTR_PUSH_NSH:
3143			if (mac_proto != MAC_PROTO_ETHERNET) {
3144				u8 next_proto;
3145
3146				next_proto = tun_p_from_eth_p(eth_type);
3147				if (!next_proto)
3148					return -EINVAL;
3149			}
3150			mac_proto = MAC_PROTO_NONE;
3151			if (!validate_nsh(nla_data(a), false, true, true))
3152				return -EINVAL;
3153			break;
3154
3155		case OVS_ACTION_ATTR_POP_NSH: {
3156			__be16 inner_proto;
3157
3158			if (eth_type != htons(ETH_P_NSH))
3159				return -EINVAL;
3160			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3161			if (!inner_proto)
3162				return -EINVAL;
3163			if (key->nsh.base.np == TUN_P_ETHERNET)
3164				mac_proto = MAC_PROTO_ETHERNET;
3165			else
3166				mac_proto = MAC_PROTO_NONE;
3167			break;
3168		}
3169
3170		case OVS_ACTION_ATTR_METER:
3171			/* Non-existent meters are simply ignored.  */
3172			break;
3173
3174		case OVS_ACTION_ATTR_CLONE: {
3175			bool last = nla_is_last(a, rem);
3176
3177			err = validate_and_copy_clone(net, a, key, sfa,
3178						      eth_type, vlan_tci,
3179						      log, last);
3180			if (err)
3181				return err;
3182			skip_copy = true;
3183			break;
3184		}
3185
3186		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3187			bool last = nla_is_last(a, rem);
3188
3189			err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3190							      eth_type,
3191							      vlan_tci, log,
3192							      last);
3193			if (err)
3194				return err;
3195			skip_copy = true;
3196			break;
3197		}
3198
3199		default:
3200			OVS_NLERR(log, "Unknown Action type %d", type);
3201			return -EINVAL;
3202		}
3203		if (!skip_copy) {
3204			err = copy_action(a, sfa, log);
3205			if (err)
3206				return err;
3207		}
3208	}
3209
3210	if (rem > 0)
3211		return -EINVAL;
3212
3213	return 0;
3214}
3215
3216/* 'key' must be the masked key. */
3217int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3218			 const struct sw_flow_key *key,
3219			 struct sw_flow_actions **sfa, bool log)
3220{
3221	int err;
3222
3223	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3224	if (IS_ERR(*sfa))
3225		return PTR_ERR(*sfa);
3226
3227	(*sfa)->orig_len = nla_len(attr);
3228	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3229				     key->eth.vlan.tci, log);
3230	if (err)
3231		ovs_nla_free_flow_actions(*sfa);
3232
3233	return err;
3234}
3235
3236static int sample_action_to_attr(const struct nlattr *attr,
3237				 struct sk_buff *skb)
3238{
3239	struct nlattr *start, *ac_start = NULL, *sample_arg;
3240	int err = 0, rem = nla_len(attr);
3241	const struct sample_arg *arg;
3242	struct nlattr *actions;
3243
3244	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3245	if (!start)
3246		return -EMSGSIZE;
3247
3248	sample_arg = nla_data(attr);
3249	arg = nla_data(sample_arg);
3250	actions = nla_next(sample_arg, &rem);
3251
3252	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3253		err = -EMSGSIZE;
3254		goto out;
3255	}
3256
3257	ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3258	if (!ac_start) {
3259		err = -EMSGSIZE;
3260		goto out;
3261	}
3262
3263	err = ovs_nla_put_actions(actions, rem, skb);
3264
3265out:
3266	if (err) {
3267		nla_nest_cancel(skb, ac_start);
3268		nla_nest_cancel(skb, start);
3269	} else {
3270		nla_nest_end(skb, ac_start);
3271		nla_nest_end(skb, start);
3272	}
3273
3274	return err;
3275}
3276
3277static int clone_action_to_attr(const struct nlattr *attr,
3278				struct sk_buff *skb)
3279{
 
3280	struct nlattr *start;
3281	int err = 0, rem = nla_len(attr);
3282
3283	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3284	if (!start)
3285		return -EMSGSIZE;
3286
3287	err = ovs_nla_put_actions(nla_data(attr), rem, skb);
3288
3289	if (err)
3290		nla_nest_cancel(skb, start);
3291	else
3292		nla_nest_end(skb, start);
3293
3294	return err;
3295}
3296
3297static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3298					struct sk_buff *skb)
3299{
3300	struct nlattr *start, *ac_start = NULL;
3301	const struct check_pkt_len_arg *arg;
3302	const struct nlattr *a, *cpl_arg;
3303	int err = 0, rem = nla_len(attr);
3304
3305	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3306	if (!start)
3307		return -EMSGSIZE;
3308
3309	/* The first nested attribute in 'attr' is always
3310	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3311	 */
3312	cpl_arg = nla_data(attr);
3313	arg = nla_data(cpl_arg);
3314
3315	if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3316		err = -EMSGSIZE;
3317		goto out;
3318	}
3319
3320	/* Second nested attribute in 'attr' is always
3321	 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3322	 */
3323	a = nla_next(cpl_arg, &rem);
3324	ac_start =  nla_nest_start_noflag(skb,
3325					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3326	if (!ac_start) {
3327		err = -EMSGSIZE;
3328		goto out;
3329	}
3330
3331	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3332	if (err) {
3333		nla_nest_cancel(skb, ac_start);
3334		goto out;
3335	} else {
3336		nla_nest_end(skb, ac_start);
3337	}
3338
3339	/* Third nested attribute in 'attr' is always
3340	 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3341	 */
3342	a = nla_next(a, &rem);
3343	ac_start =  nla_nest_start_noflag(skb,
3344					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3345	if (!ac_start) {
3346		err = -EMSGSIZE;
3347		goto out;
3348	}
3349
3350	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3351	if (err) {
3352		nla_nest_cancel(skb, ac_start);
3353		goto out;
3354	} else {
3355		nla_nest_end(skb, ac_start);
 
 
 
 
 
 
 
 
 
 
3356	}
3357
3358	nla_nest_end(skb, start);
3359	return 0;
3360
3361out:
3362	nla_nest_cancel(skb, start);
3363	return err;
3364}
3365
3366static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3367{
3368	const struct nlattr *ovs_key = nla_data(a);
3369	int key_type = nla_type(ovs_key);
3370	struct nlattr *start;
3371	int err;
3372
3373	switch (key_type) {
3374	case OVS_KEY_ATTR_TUNNEL_INFO: {
3375		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3376		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3377
3378		start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3379		if (!start)
3380			return -EMSGSIZE;
3381
3382		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3383					ip_tunnel_info_opts(tun_info),
3384					tun_info->options_len,
3385					ip_tunnel_info_af(tun_info), tun_info->mode);
3386		if (err)
3387			return err;
3388		nla_nest_end(skb, start);
3389		break;
3390	}
3391	default:
3392		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3393			return -EMSGSIZE;
3394		break;
3395	}
3396
3397	return 0;
3398}
3399
3400static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3401						struct sk_buff *skb)
3402{
3403	const struct nlattr *ovs_key = nla_data(a);
3404	struct nlattr *nla;
3405	size_t key_len = nla_len(ovs_key) / 2;
3406
3407	/* Revert the conversion we did from a non-masked set action to
3408	 * masked set action.
3409	 */
3410	nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3411	if (!nla)
3412		return -EMSGSIZE;
3413
3414	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3415		return -EMSGSIZE;
3416
3417	nla_nest_end(skb, nla);
3418	return 0;
3419}
3420
3421int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3422{
3423	const struct nlattr *a;
3424	int rem, err;
3425
3426	nla_for_each_attr(a, attr, len, rem) {
3427		int type = nla_type(a);
3428
3429		switch (type) {
3430		case OVS_ACTION_ATTR_SET:
3431			err = set_action_to_attr(a, skb);
3432			if (err)
3433				return err;
3434			break;
3435
3436		case OVS_ACTION_ATTR_SET_TO_MASKED:
3437			err = masked_set_action_to_set_action_attr(a, skb);
3438			if (err)
3439				return err;
3440			break;
3441
3442		case OVS_ACTION_ATTR_SAMPLE:
3443			err = sample_action_to_attr(a, skb);
3444			if (err)
3445				return err;
3446			break;
3447
3448		case OVS_ACTION_ATTR_CT:
3449			err = ovs_ct_action_to_attr(nla_data(a), skb);
3450			if (err)
3451				return err;
3452			break;
3453
3454		case OVS_ACTION_ATTR_CLONE:
3455			err = clone_action_to_attr(a, skb);
3456			if (err)
3457				return err;
3458			break;
3459
3460		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3461			err = check_pkt_len_action_to_attr(a, skb);
3462			if (err)
3463				return err;
3464			break;
3465
3466		default:
3467			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3468				return -EMSGSIZE;
3469			break;
3470		}
3471	}
3472
3473	return 0;
3474}
v4.6
 
   1/*
   2 * Copyright (c) 2007-2014 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include "flow.h"
  22#include "datapath.h"
  23#include <linux/uaccess.h>
  24#include <linux/netdevice.h>
  25#include <linux/etherdevice.h>
  26#include <linux/if_ether.h>
  27#include <linux/if_vlan.h>
  28#include <net/llc_pdu.h>
  29#include <linux/kernel.h>
  30#include <linux/jhash.h>
  31#include <linux/jiffies.h>
  32#include <linux/llc.h>
  33#include <linux/module.h>
  34#include <linux/in.h>
  35#include <linux/rcupdate.h>
  36#include <linux/if_arp.h>
  37#include <linux/ip.h>
  38#include <linux/ipv6.h>
  39#include <linux/sctp.h>
  40#include <linux/tcp.h>
  41#include <linux/udp.h>
  42#include <linux/icmp.h>
  43#include <linux/icmpv6.h>
  44#include <linux/rculist.h>
  45#include <net/geneve.h>
  46#include <net/ip.h>
  47#include <net/ipv6.h>
  48#include <net/ndisc.h>
  49#include <net/mpls.h>
  50#include <net/vxlan.h>
 
 
  51
  52#include "flow_netlink.h"
  53
  54struct ovs_len_tbl {
  55	int len;
  56	const struct ovs_len_tbl *next;
  57};
  58
  59#define OVS_ATTR_NESTED -1
  60#define OVS_ATTR_VARIABLE -2
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62static void update_range(struct sw_flow_match *match,
  63			 size_t offset, size_t size, bool is_mask)
  64{
  65	struct sw_flow_key_range *range;
  66	size_t start = rounddown(offset, sizeof(long));
  67	size_t end = roundup(offset + size, sizeof(long));
  68
  69	if (!is_mask)
  70		range = &match->range;
  71	else
  72		range = &match->mask->range;
  73
  74	if (range->start == range->end) {
  75		range->start = start;
  76		range->end = end;
  77		return;
  78	}
  79
  80	if (range->start > start)
  81		range->start = start;
  82
  83	if (range->end < end)
  84		range->end = end;
  85}
  86
  87#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
  88	do { \
  89		update_range(match, offsetof(struct sw_flow_key, field),    \
  90			     sizeof((match)->key->field), is_mask);	    \
  91		if (is_mask)						    \
  92			(match)->mask->key.field = value;		    \
  93		else							    \
  94			(match)->key->field = value;		            \
  95	} while (0)
  96
  97#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
  98	do {								    \
  99		update_range(match, offset, len, is_mask);		    \
 100		if (is_mask)						    \
 101			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 102			       len);					   \
 103		else							    \
 104			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 105	} while (0)
 106
 107#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 108	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 109				  value_p, len, is_mask)
 110
 111#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 112	do {								    \
 113		update_range(match, offsetof(struct sw_flow_key, field),    \
 114			     sizeof((match)->key->field), is_mask);	    \
 115		if (is_mask)						    \
 116			memset((u8 *)&(match)->mask->key.field, value,      \
 117			       sizeof((match)->mask->key.field));	    \
 118		else							    \
 119			memset((u8 *)&(match)->key->field, value,           \
 120			       sizeof((match)->key->field));                \
 121	} while (0)
 122
 123static bool match_validate(const struct sw_flow_match *match,
 124			   u64 key_attrs, u64 mask_attrs, bool log)
 125{
 126	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
 127	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 128
 129	/* The following mask attributes allowed only if they
 130	 * pass the validation tests. */
 131	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 
 132			| (1 << OVS_KEY_ATTR_IPV6)
 
 133			| (1 << OVS_KEY_ATTR_TCP)
 134			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 135			| (1 << OVS_KEY_ATTR_UDP)
 136			| (1 << OVS_KEY_ATTR_SCTP)
 137			| (1 << OVS_KEY_ATTR_ICMP)
 138			| (1 << OVS_KEY_ATTR_ICMPV6)
 139			| (1 << OVS_KEY_ATTR_ARP)
 140			| (1 << OVS_KEY_ATTR_ND)
 141			| (1 << OVS_KEY_ATTR_MPLS));
 
 142
 143	/* Always allowed mask fields. */
 144	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 145		       | (1 << OVS_KEY_ATTR_IN_PORT)
 146		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 147
 148	/* Check key attributes. */
 149	if (match->key->eth.type == htons(ETH_P_ARP)
 150			|| match->key->eth.type == htons(ETH_P_RARP)) {
 151		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 152		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 153			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 154	}
 155
 156	if (eth_p_mpls(match->key->eth.type)) {
 157		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 158		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 159			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 160	}
 161
 162	if (match->key->eth.type == htons(ETH_P_IP)) {
 163		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 164		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 165			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 
 
 166
 167		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 168			if (match->key->ip.proto == IPPROTO_UDP) {
 169				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 170				if (match->mask && (match->mask->key.ip.proto == 0xff))
 171					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 172			}
 173
 174			if (match->key->ip.proto == IPPROTO_SCTP) {
 175				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 176				if (match->mask && (match->mask->key.ip.proto == 0xff))
 177					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 178			}
 179
 180			if (match->key->ip.proto == IPPROTO_TCP) {
 181				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 182				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 183				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 184					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 185					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 186				}
 187			}
 188
 189			if (match->key->ip.proto == IPPROTO_ICMP) {
 190				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 191				if (match->mask && (match->mask->key.ip.proto == 0xff))
 192					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 193			}
 194		}
 195	}
 196
 197	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 198		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 199		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 200			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 
 
 201
 202		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 203			if (match->key->ip.proto == IPPROTO_UDP) {
 204				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 205				if (match->mask && (match->mask->key.ip.proto == 0xff))
 206					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 207			}
 208
 209			if (match->key->ip.proto == IPPROTO_SCTP) {
 210				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 211				if (match->mask && (match->mask->key.ip.proto == 0xff))
 212					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 213			}
 214
 215			if (match->key->ip.proto == IPPROTO_TCP) {
 216				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 217				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 218				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 219					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 220					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 221				}
 222			}
 223
 224			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 225				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 226				if (match->mask && (match->mask->key.ip.proto == 0xff))
 227					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 228
 229				if (match->key->tp.src ==
 230						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 231				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 232					key_expected |= 1 << OVS_KEY_ATTR_ND;
 
 
 
 
 
 
 233					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 234						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 235				}
 236			}
 237		}
 238	}
 239
 
 
 
 
 
 
 
 
 240	if ((key_attrs & key_expected) != key_expected) {
 241		/* Key attributes check failed. */
 242		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 243			  (unsigned long long)key_attrs,
 244			  (unsigned long long)key_expected);
 245		return false;
 246	}
 247
 248	if ((mask_attrs & mask_allowed) != mask_attrs) {
 249		/* Mask attributes check failed. */
 250		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 251			  (unsigned long long)mask_attrs,
 252			  (unsigned long long)mask_allowed);
 253		return false;
 254	}
 255
 256	return true;
 257}
 258
 259size_t ovs_tun_key_attr_size(void)
 260{
 261	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 262	 * updating this function.
 263	 */
 264	return    nla_total_size(8)    /* OVS_TUNNEL_KEY_ATTR_ID */
 265		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 266		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 267		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 268		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 269		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 270		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 271		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 272		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 273		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
 
 274		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 275		 */
 276		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 277		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 278}
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 280size_t ovs_key_attr_size(void)
 281{
 282	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 283	 * updating this function.
 284	 */
 285	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
 286
 287	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 288		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 289		  + ovs_tun_key_attr_size()
 290		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 291		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 292		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 293		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 294		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 295		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 296		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 297		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 
 
 
 298		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 299		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 300		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 301		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 302		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 303		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 304		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 305		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
 306}
 307
 308static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 309	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 310};
 311
 312static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 313	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 314	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 315	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 316	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 317	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 318	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 319	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 320	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 321	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 322	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 323	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 324	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 325						.next = ovs_vxlan_ext_key_lens },
 326	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 327	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 
 
 
 
 
 
 
 
 
 328};
 329
 330/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 331static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 332	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 333	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 334	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 335	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 336	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 337	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 338	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 339	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 340	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 341	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 342	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 343	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 344	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 345	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 346	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 347	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 348	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 349	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 350	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 351	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 352				     .next = ovs_tunnel_key_lens, },
 353	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
 354	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 355	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 356	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 357	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 
 
 
 
 
 
 358};
 359
 360static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 361{
 362	return expected_len == attr_len ||
 363	       expected_len == OVS_ATTR_NESTED ||
 364	       expected_len == OVS_ATTR_VARIABLE;
 365}
 366
 367static bool is_all_zero(const u8 *fp, size_t size)
 368{
 369	int i;
 370
 371	if (!fp)
 372		return false;
 373
 374	for (i = 0; i < size; i++)
 375		if (fp[i])
 376			return false;
 377
 378	return true;
 379}
 380
 381static int __parse_flow_nlattrs(const struct nlattr *attr,
 382				const struct nlattr *a[],
 383				u64 *attrsp, bool log, bool nz)
 384{
 385	const struct nlattr *nla;
 386	u64 attrs;
 387	int rem;
 388
 389	attrs = *attrsp;
 390	nla_for_each_nested(nla, attr, rem) {
 391		u16 type = nla_type(nla);
 392		int expected_len;
 393
 394		if (type > OVS_KEY_ATTR_MAX) {
 395			OVS_NLERR(log, "Key type %d is out of range max %d",
 396				  type, OVS_KEY_ATTR_MAX);
 397			return -EINVAL;
 398		}
 399
 400		if (attrs & (1 << type)) {
 401			OVS_NLERR(log, "Duplicate key (type %d).", type);
 402			return -EINVAL;
 403		}
 404
 405		expected_len = ovs_key_lens[type].len;
 406		if (!check_attr_len(nla_len(nla), expected_len)) {
 407			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 408				  type, nla_len(nla), expected_len);
 409			return -EINVAL;
 410		}
 411
 412		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
 413			attrs |= 1 << type;
 414			a[type] = nla;
 415		}
 416	}
 417	if (rem) {
 418		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 419		return -EINVAL;
 420	}
 421
 422	*attrsp = attrs;
 423	return 0;
 424}
 425
 426static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 427				   const struct nlattr *a[], u64 *attrsp,
 428				   bool log)
 429{
 430	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 431}
 432
 433static int parse_flow_nlattrs(const struct nlattr *attr,
 434			      const struct nlattr *a[], u64 *attrsp,
 435			      bool log)
 436{
 437	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 438}
 439
 440static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 441				     struct sw_flow_match *match, bool is_mask,
 442				     bool log)
 443{
 444	unsigned long opt_key_offset;
 445
 446	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 447		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 448			  nla_len(a), sizeof(match->key->tun_opts));
 449		return -EINVAL;
 450	}
 451
 452	if (nla_len(a) % 4 != 0) {
 453		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 454			  nla_len(a));
 455		return -EINVAL;
 456	}
 457
 458	/* We need to record the length of the options passed
 459	 * down, otherwise packets with the same format but
 460	 * additional options will be silently matched.
 461	 */
 462	if (!is_mask) {
 463		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 464				false);
 465	} else {
 466		/* This is somewhat unusual because it looks at
 467		 * both the key and mask while parsing the
 468		 * attributes (and by extension assumes the key
 469		 * is parsed first). Normally, we would verify
 470		 * that each is the correct length and that the
 471		 * attributes line up in the validate function.
 472		 * However, that is difficult because this is
 473		 * variable length and we won't have the
 474		 * information later.
 475		 */
 476		if (match->key->tun_opts_len != nla_len(a)) {
 477			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 478				  match->key->tun_opts_len, nla_len(a));
 479			return -EINVAL;
 480		}
 481
 482		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 483	}
 484
 485	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 486	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 487				  nla_len(a), is_mask);
 488	return 0;
 489}
 490
 491static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 492				     struct sw_flow_match *match, bool is_mask,
 493				     bool log)
 494{
 495	struct nlattr *a;
 496	int rem;
 497	unsigned long opt_key_offset;
 498	struct vxlan_metadata opts;
 499
 500	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 501
 502	memset(&opts, 0, sizeof(opts));
 503	nla_for_each_nested(a, attr, rem) {
 504		int type = nla_type(a);
 505
 506		if (type > OVS_VXLAN_EXT_MAX) {
 507			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 508				  type, OVS_VXLAN_EXT_MAX);
 509			return -EINVAL;
 510		}
 511
 512		if (!check_attr_len(nla_len(a),
 513				    ovs_vxlan_ext_key_lens[type].len)) {
 514			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 515				  type, nla_len(a),
 516				  ovs_vxlan_ext_key_lens[type].len);
 517			return -EINVAL;
 518		}
 519
 520		switch (type) {
 521		case OVS_VXLAN_EXT_GBP:
 522			opts.gbp = nla_get_u32(a);
 523			break;
 524		default:
 525			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 526				  type);
 527			return -EINVAL;
 528		}
 529	}
 530	if (rem) {
 531		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 532			  rem);
 533		return -EINVAL;
 534	}
 535
 536	if (!is_mask)
 537		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 538	else
 539		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 540
 541	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 542	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 543				  is_mask);
 544	return 0;
 545}
 546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547static int ip_tun_from_nlattr(const struct nlattr *attr,
 548			      struct sw_flow_match *match, bool is_mask,
 549			      bool log)
 550{
 551	bool ttl = false, ipv4 = false, ipv6 = false;
 
 552	__be16 tun_flags = 0;
 553	int opts_type = 0;
 554	struct nlattr *a;
 555	int rem;
 556
 557	nla_for_each_nested(a, attr, rem) {
 558		int type = nla_type(a);
 559		int err;
 560
 561		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 562			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 563				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 564			return -EINVAL;
 565		}
 566
 567		if (!check_attr_len(nla_len(a),
 568				    ovs_tunnel_key_lens[type].len)) {
 569			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 570				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 571			return -EINVAL;
 572		}
 573
 574		switch (type) {
 575		case OVS_TUNNEL_KEY_ATTR_ID:
 576			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 577					nla_get_be64(a), is_mask);
 578			tun_flags |= TUNNEL_KEY;
 579			break;
 580		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 581			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 582					nla_get_in_addr(a), is_mask);
 583			ipv4 = true;
 584			break;
 585		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 586			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 587					nla_get_in_addr(a), is_mask);
 588			ipv4 = true;
 589			break;
 590		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 591			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 592					nla_get_in6_addr(a), is_mask);
 593			ipv6 = true;
 594			break;
 595		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 596			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 597					nla_get_in6_addr(a), is_mask);
 598			ipv6 = true;
 599			break;
 600		case OVS_TUNNEL_KEY_ATTR_TOS:
 601			SW_FLOW_KEY_PUT(match, tun_key.tos,
 602					nla_get_u8(a), is_mask);
 603			break;
 604		case OVS_TUNNEL_KEY_ATTR_TTL:
 605			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 606					nla_get_u8(a), is_mask);
 607			ttl = true;
 608			break;
 609		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 610			tun_flags |= TUNNEL_DONT_FRAGMENT;
 611			break;
 612		case OVS_TUNNEL_KEY_ATTR_CSUM:
 613			tun_flags |= TUNNEL_CSUM;
 614			break;
 615		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 616			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 617					nla_get_be16(a), is_mask);
 618			break;
 619		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 620			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 621					nla_get_be16(a), is_mask);
 622			break;
 623		case OVS_TUNNEL_KEY_ATTR_OAM:
 624			tun_flags |= TUNNEL_OAM;
 625			break;
 626		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 627			if (opts_type) {
 628				OVS_NLERR(log, "Multiple metadata blocks provided");
 629				return -EINVAL;
 630			}
 631
 632			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 633			if (err)
 634				return err;
 635
 636			tun_flags |= TUNNEL_GENEVE_OPT;
 637			opts_type = type;
 638			break;
 639		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 640			if (opts_type) {
 641				OVS_NLERR(log, "Multiple metadata blocks provided");
 642				return -EINVAL;
 643			}
 644
 645			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 646			if (err)
 647				return err;
 648
 649			tun_flags |= TUNNEL_VXLAN_OPT;
 650			opts_type = type;
 651			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652		default:
 653			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 654				  type);
 655			return -EINVAL;
 656		}
 657	}
 658
 659	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 660	if (is_mask)
 661		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 662	else
 663		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 664				false);
 665
 666	if (rem > 0) {
 667		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 668			  rem);
 669		return -EINVAL;
 670	}
 671
 672	if (ipv4 && ipv6) {
 673		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 674		return -EINVAL;
 675	}
 676
 677	if (!is_mask) {
 678		if (!ipv4 && !ipv6) {
 679			OVS_NLERR(log, "IP tunnel dst address not specified");
 680			return -EINVAL;
 681		}
 682		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
 683			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 684			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 685		}
 686		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 687			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 688			return -EINVAL;
 689		}
 690
 691		if (!ttl) {
 692			OVS_NLERR(log, "IP tunnel TTL not specified.");
 693			return -EINVAL;
 694		}
 695	}
 696
 697	return opts_type;
 698}
 699
 700static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 701			       const void *tun_opts, int swkey_tun_opts_len)
 702{
 703	const struct vxlan_metadata *opts = tun_opts;
 704	struct nlattr *nla;
 705
 706	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 707	if (!nla)
 708		return -EMSGSIZE;
 709
 710	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 711		return -EMSGSIZE;
 712
 713	nla_nest_end(skb, nla);
 714	return 0;
 715}
 716
 717static int __ip_tun_to_nlattr(struct sk_buff *skb,
 718			      const struct ip_tunnel_key *output,
 719			      const void *tun_opts, int swkey_tun_opts_len,
 720			      unsigned short tun_proto)
 721{
 722	if (output->tun_flags & TUNNEL_KEY &&
 723	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
 
 724		return -EMSGSIZE;
 
 
 
 
 
 725	switch (tun_proto) {
 726	case AF_INET:
 727		if (output->u.ipv4.src &&
 728		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 729				    output->u.ipv4.src))
 730			return -EMSGSIZE;
 731		if (output->u.ipv4.dst &&
 732		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 733				    output->u.ipv4.dst))
 734			return -EMSGSIZE;
 735		break;
 736	case AF_INET6:
 737		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 738		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 739				     &output->u.ipv6.src))
 740			return -EMSGSIZE;
 741		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 742		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 743				     &output->u.ipv6.dst))
 744			return -EMSGSIZE;
 745		break;
 746	}
 747	if (output->tos &&
 748	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 749		return -EMSGSIZE;
 750	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 751		return -EMSGSIZE;
 752	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 753	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 754		return -EMSGSIZE;
 755	if ((output->tun_flags & TUNNEL_CSUM) &&
 756	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 757		return -EMSGSIZE;
 758	if (output->tp_src &&
 759	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 760		return -EMSGSIZE;
 761	if (output->tp_dst &&
 762	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 763		return -EMSGSIZE;
 764	if ((output->tun_flags & TUNNEL_OAM) &&
 765	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 766		return -EMSGSIZE;
 767	if (swkey_tun_opts_len) {
 768		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
 769		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 770			    swkey_tun_opts_len, tun_opts))
 771			return -EMSGSIZE;
 772		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
 773			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 774			return -EMSGSIZE;
 
 
 
 
 775	}
 776
 777	return 0;
 778}
 779
 780static int ip_tun_to_nlattr(struct sk_buff *skb,
 781			    const struct ip_tunnel_key *output,
 782			    const void *tun_opts, int swkey_tun_opts_len,
 783			    unsigned short tun_proto)
 784{
 785	struct nlattr *nla;
 786	int err;
 787
 788	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
 789	if (!nla)
 790		return -EMSGSIZE;
 791
 792	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 793				 tun_proto);
 794	if (err)
 795		return err;
 796
 797	nla_nest_end(skb, nla);
 798	return 0;
 799}
 800
 801int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 802			    struct ip_tunnel_info *tun_info)
 803{
 804	return __ip_tun_to_nlattr(skb, &tun_info->key,
 805				  ip_tunnel_info_opts(tun_info),
 806				  tun_info->options_len,
 807				  ip_tunnel_info_af(tun_info));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808}
 809
 810static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
 811				 u64 *attrs, const struct nlattr **a,
 812				 bool is_mask, bool log)
 813{
 
 
 814	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
 815		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
 816
 817		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
 818		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
 819	}
 820
 821	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
 822		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
 823
 824		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
 825		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
 826	}
 827
 828	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
 829		SW_FLOW_KEY_PUT(match, phy.priority,
 830			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
 831		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
 832	}
 833
 834	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
 835		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
 836
 837		if (is_mask) {
 838			in_port = 0xffffffff; /* Always exact match in_port. */
 839		} else if (in_port >= DP_MAX_PORTS) {
 840			OVS_NLERR(log, "Port %d exceeds max allowable %d",
 841				  in_port, DP_MAX_PORTS);
 842			return -EINVAL;
 843		}
 844
 845		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
 846		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
 847	} else if (!is_mask) {
 848		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
 849	}
 850
 851	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
 852		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
 853
 854		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
 855		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
 856	}
 857	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
 858		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
 859				       is_mask, log) < 0)
 860			return -EINVAL;
 861		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
 862	}
 863
 864	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
 865	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
 866		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
 867
 868		if (ct_state & ~CT_SUPPORTED_MASK) {
 869			OVS_NLERR(log, "ct_state flags %08x unsupported",
 870				  ct_state);
 871			return -EINVAL;
 872		}
 873
 874		SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
 875		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
 876	}
 877	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
 878	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
 879		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
 880
 881		SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
 882		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
 883	}
 884	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
 885	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
 886		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
 887
 888		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
 889		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
 890	}
 891	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
 892	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
 893		const struct ovs_key_ct_labels *cl;
 894
 895		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
 896		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
 897				   sizeof(*cl), is_mask);
 898		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
 899	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900	return 0;
 901}
 902
 903static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
 904				u64 attrs, const struct nlattr **a,
 905				bool is_mask, bool log)
 906{
 907	int err;
 908
 909	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
 910	if (err)
 911		return err;
 912
 913	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
 914		const struct ovs_key_ethernet *eth_key;
 915
 916		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
 917		SW_FLOW_KEY_MEMCPY(match, eth.src,
 918				eth_key->eth_src, ETH_ALEN, is_mask);
 919		SW_FLOW_KEY_MEMCPY(match, eth.dst,
 920				eth_key->eth_dst, ETH_ALEN, is_mask);
 921		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
 922	}
 923
 924	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
 925		__be16 tci;
 926
 927		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 928		if (!(tci & htons(VLAN_TAG_PRESENT))) {
 929			if (is_mask)
 930				OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
 931			else
 932				OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
 933
 
 
 
 
 
 934			return -EINVAL;
 935		}
 936
 937		SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
 938		attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
 939	}
 940
 941	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
 942		__be16 eth_type;
 943
 944		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 945		if (is_mask) {
 946			/* Always exact match EtherType. */
 947			eth_type = htons(0xffff);
 948		} else if (!eth_proto_is_802_3(eth_type)) {
 949			OVS_NLERR(log, "EtherType %x is less than min %x",
 950				  ntohs(eth_type), ETH_P_802_3_MIN);
 951			return -EINVAL;
 952		}
 953
 954		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
 955		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 956	} else if (!is_mask) {
 957		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
 958	}
 959
 960	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
 961		const struct ovs_key_ipv4 *ipv4_key;
 962
 963		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
 964		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
 965			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
 966				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
 967			return -EINVAL;
 968		}
 969		SW_FLOW_KEY_PUT(match, ip.proto,
 970				ipv4_key->ipv4_proto, is_mask);
 971		SW_FLOW_KEY_PUT(match, ip.tos,
 972				ipv4_key->ipv4_tos, is_mask);
 973		SW_FLOW_KEY_PUT(match, ip.ttl,
 974				ipv4_key->ipv4_ttl, is_mask);
 975		SW_FLOW_KEY_PUT(match, ip.frag,
 976				ipv4_key->ipv4_frag, is_mask);
 977		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
 978				ipv4_key->ipv4_src, is_mask);
 979		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
 980				ipv4_key->ipv4_dst, is_mask);
 981		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
 982	}
 983
 984	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
 985		const struct ovs_key_ipv6 *ipv6_key;
 986
 987		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
 988		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
 989			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
 990				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
 991			return -EINVAL;
 992		}
 993
 994		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
 995			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
 996				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
 997			return -EINVAL;
 998		}
 999
1000		SW_FLOW_KEY_PUT(match, ipv6.label,
1001				ipv6_key->ipv6_label, is_mask);
1002		SW_FLOW_KEY_PUT(match, ip.proto,
1003				ipv6_key->ipv6_proto, is_mask);
1004		SW_FLOW_KEY_PUT(match, ip.tos,
1005				ipv6_key->ipv6_tclass, is_mask);
1006		SW_FLOW_KEY_PUT(match, ip.ttl,
1007				ipv6_key->ipv6_hlimit, is_mask);
1008		SW_FLOW_KEY_PUT(match, ip.frag,
1009				ipv6_key->ipv6_frag, is_mask);
1010		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1011				ipv6_key->ipv6_src,
1012				sizeof(match->key->ipv6.addr.src),
1013				is_mask);
1014		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1015				ipv6_key->ipv6_dst,
1016				sizeof(match->key->ipv6.addr.dst),
1017				is_mask);
1018
1019		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1020	}
1021
1022	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1023		const struct ovs_key_arp *arp_key;
1024
1025		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1026		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1027			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1028				  arp_key->arp_op);
1029			return -EINVAL;
1030		}
1031
1032		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1033				arp_key->arp_sip, is_mask);
1034		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1035			arp_key->arp_tip, is_mask);
1036		SW_FLOW_KEY_PUT(match, ip.proto,
1037				ntohs(arp_key->arp_op), is_mask);
1038		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1039				arp_key->arp_sha, ETH_ALEN, is_mask);
1040		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1041				arp_key->arp_tha, ETH_ALEN, is_mask);
1042
1043		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1044	}
1045
 
 
 
 
 
 
 
1046	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1047		const struct ovs_key_mpls *mpls_key;
1048
1049		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1050		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1051				mpls_key->mpls_lse, is_mask);
1052
1053		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1054	 }
1055
1056	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1057		const struct ovs_key_tcp *tcp_key;
1058
1059		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1060		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1061		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1062		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1063	}
1064
1065	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1066		SW_FLOW_KEY_PUT(match, tp.flags,
1067				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1068				is_mask);
1069		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1070	}
1071
1072	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1073		const struct ovs_key_udp *udp_key;
1074
1075		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1076		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1077		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1078		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1079	}
1080
1081	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1082		const struct ovs_key_sctp *sctp_key;
1083
1084		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1085		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1086		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1087		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1088	}
1089
1090	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1091		const struct ovs_key_icmp *icmp_key;
1092
1093		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1094		SW_FLOW_KEY_PUT(match, tp.src,
1095				htons(icmp_key->icmp_type), is_mask);
1096		SW_FLOW_KEY_PUT(match, tp.dst,
1097				htons(icmp_key->icmp_code), is_mask);
1098		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1099	}
1100
1101	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1102		const struct ovs_key_icmpv6 *icmpv6_key;
1103
1104		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1105		SW_FLOW_KEY_PUT(match, tp.src,
1106				htons(icmpv6_key->icmpv6_type), is_mask);
1107		SW_FLOW_KEY_PUT(match, tp.dst,
1108				htons(icmpv6_key->icmpv6_code), is_mask);
1109		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1110	}
1111
1112	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1113		const struct ovs_key_nd *nd_key;
1114
1115		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1116		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1117			nd_key->nd_target,
1118			sizeof(match->key->ipv6.nd.target),
1119			is_mask);
1120		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1121			nd_key->nd_sll, ETH_ALEN, is_mask);
1122		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1123				nd_key->nd_tll, ETH_ALEN, is_mask);
1124		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1125	}
1126
1127	if (attrs != 0) {
1128		OVS_NLERR(log, "Unknown key attributes %llx",
1129			  (unsigned long long)attrs);
1130		return -EINVAL;
1131	}
1132
1133	return 0;
1134}
1135
1136static void nlattr_set(struct nlattr *attr, u8 val,
1137		       const struct ovs_len_tbl *tbl)
1138{
1139	struct nlattr *nla;
1140	int rem;
1141
1142	/* The nlattr stream should already have been validated */
1143	nla_for_each_nested(nla, attr, rem) {
1144		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1145			if (tbl[nla_type(nla)].next)
1146				tbl = tbl[nla_type(nla)].next;
1147			nlattr_set(nla, val, tbl);
1148		} else {
1149			memset(nla_data(nla), val, nla_len(nla));
1150		}
1151
1152		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1153			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1154	}
1155}
1156
1157static void mask_set_nlattr(struct nlattr *attr, u8 val)
1158{
1159	nlattr_set(attr, val, ovs_key_lens);
1160}
1161
1162/**
1163 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1164 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1165 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1166 * does not include any don't care bit.
1167 * @net: Used to determine per-namespace field support.
1168 * @match: receives the extracted flow match information.
1169 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1170 * sequence. The fields should of the packet that triggered the creation
1171 * of this flow.
1172 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1173 * attribute specifies the mask field of the wildcarded flow.
1174 * @log: Boolean to allow kernel error logging.  Normally true, but when
1175 * probing for feature compatibility this should be passed in as false to
1176 * suppress unnecessary error logging.
1177 */
1178int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1179		      const struct nlattr *nla_key,
1180		      const struct nlattr *nla_mask,
1181		      bool log)
1182{
1183	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1184	const struct nlattr *encap;
1185	struct nlattr *newmask = NULL;
1186	u64 key_attrs = 0;
1187	u64 mask_attrs = 0;
1188	bool encap_valid = false;
1189	int err;
1190
1191	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1192	if (err)
1193		return err;
1194
1195	if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1196	    (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1197	    (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1198		__be16 tci;
1199
1200		if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1201		      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1202			OVS_NLERR(log, "Invalid Vlan frame.");
1203			return -EINVAL;
1204		}
1205
1206		key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1207		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1208		encap = a[OVS_KEY_ATTR_ENCAP];
1209		key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1210		encap_valid = true;
1211
1212		if (tci & htons(VLAN_TAG_PRESENT)) {
1213			err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1214			if (err)
1215				return err;
1216		} else if (!tci) {
1217			/* Corner case for truncated 802.1Q header. */
1218			if (nla_len(encap)) {
1219				OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1220				return -EINVAL;
1221			}
1222		} else {
1223			OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1224			return  -EINVAL;
1225		}
1226	}
1227
1228	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1229	if (err)
1230		return err;
1231
1232	if (match->mask) {
1233		if (!nla_mask) {
1234			/* Create an exact match mask. We need to set to 0xff
1235			 * all the 'match->mask' fields that have been touched
1236			 * in 'match->key'. We cannot simply memset
1237			 * 'match->mask', because padding bytes and fields not
1238			 * specified in 'match->key' should be left to 0.
1239			 * Instead, we use a stream of netlink attributes,
1240			 * copied from 'key' and set to 0xff.
1241			 * ovs_key_from_nlattrs() will take care of filling
1242			 * 'match->mask' appropriately.
1243			 */
1244			newmask = kmemdup(nla_key,
1245					  nla_total_size(nla_len(nla_key)),
1246					  GFP_KERNEL);
1247			if (!newmask)
1248				return -ENOMEM;
1249
1250			mask_set_nlattr(newmask, 0xff);
1251
1252			/* The userspace does not send tunnel attributes that
1253			 * are 0, but we should not wildcard them nonetheless.
1254			 */
1255			if (match->key->tun_proto)
1256				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1257							 0xff, true);
1258
1259			nla_mask = newmask;
1260		}
1261
1262		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1263		if (err)
1264			goto free_newmask;
1265
1266		/* Always match on tci. */
1267		SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
 
1268
1269		if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1270			__be16 eth_type = 0;
1271			__be16 tci = 0;
1272
1273			if (!encap_valid) {
1274				OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1275				err = -EINVAL;
1276				goto free_newmask;
1277			}
1278
1279			mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1280			if (a[OVS_KEY_ATTR_ETHERTYPE])
1281				eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1282
1283			if (eth_type == htons(0xffff)) {
1284				mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1285				encap = a[OVS_KEY_ATTR_ENCAP];
1286				err = parse_flow_mask_nlattrs(encap, a,
1287							      &mask_attrs, log);
1288				if (err)
1289					goto free_newmask;
1290			} else {
1291				OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1292					  ntohs(eth_type));
1293				err = -EINVAL;
1294				goto free_newmask;
1295			}
1296
1297			if (a[OVS_KEY_ATTR_VLAN])
1298				tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1299
1300			if (!(tci & htons(VLAN_TAG_PRESENT))) {
1301				OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1302					  ntohs(tci));
1303				err = -EINVAL;
1304				goto free_newmask;
1305			}
1306		}
1307
1308		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1309					   log);
1310		if (err)
1311			goto free_newmask;
1312	}
1313
1314	if (!match_validate(match, key_attrs, mask_attrs, log))
1315		err = -EINVAL;
1316
1317free_newmask:
1318	kfree(newmask);
1319	return err;
1320}
1321
1322static size_t get_ufid_len(const struct nlattr *attr, bool log)
1323{
1324	size_t len;
1325
1326	if (!attr)
1327		return 0;
1328
1329	len = nla_len(attr);
1330	if (len < 1 || len > MAX_UFID_LENGTH) {
1331		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1332			  nla_len(attr), MAX_UFID_LENGTH);
1333		return 0;
1334	}
1335
1336	return len;
1337}
1338
1339/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1340 * or false otherwise.
1341 */
1342bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1343		      bool log)
1344{
1345	sfid->ufid_len = get_ufid_len(attr, log);
1346	if (sfid->ufid_len)
1347		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1348
1349	return sfid->ufid_len;
1350}
1351
1352int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1353			   const struct sw_flow_key *key, bool log)
1354{
1355	struct sw_flow_key *new_key;
1356
1357	if (ovs_nla_get_ufid(sfid, ufid, log))
1358		return 0;
1359
1360	/* If UFID was not provided, use unmasked key. */
1361	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1362	if (!new_key)
1363		return -ENOMEM;
1364	memcpy(new_key, key, sizeof(*key));
1365	sfid->unmasked_key = new_key;
1366
1367	return 0;
1368}
1369
1370u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1371{
1372	return attr ? nla_get_u32(attr) : 0;
1373}
1374
1375/**
1376 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1377 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1378 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1379 * sequence.
 
 
 
1380 * @log: Boolean to allow kernel error logging.  Normally true, but when
1381 * probing for feature compatibility this should be passed in as false to
1382 * suppress unnecessary error logging.
1383 *
1384 * This parses a series of Netlink attributes that form a flow key, which must
1385 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1386 * get the metadata, that is, the parts of the flow key that cannot be
1387 * extracted from the packet itself.
 
 
1388 */
1389
1390int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1391			      struct sw_flow_key *key,
1392			      bool log)
1393{
1394	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1395	struct sw_flow_match match;
1396	u64 attrs = 0;
1397	int err;
1398
1399	err = parse_flow_nlattrs(attr, a, &attrs, log);
1400	if (err)
1401		return -EINVAL;
1402
1403	memset(&match, 0, sizeof(match));
1404	match.key = key;
1405
 
 
 
1406	memset(&key->ct, 0, sizeof(key->ct));
 
 
 
1407	key->phy.in_port = DP_MAX_PORTS;
1408
1409	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1410}
1411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1412static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1413			     const struct sw_flow_key *output, bool is_mask,
1414			     struct sk_buff *skb)
1415{
1416	struct ovs_key_ethernet *eth_key;
1417	struct nlattr *nla, *encap;
 
 
1418
1419	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1420		goto nla_put_failure;
1421
1422	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1423		goto nla_put_failure;
1424
1425	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1426		goto nla_put_failure;
1427
1428	if ((swkey->tun_proto || is_mask)) {
1429		const void *opts = NULL;
1430
1431		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1432			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1433
1434		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1435				     swkey->tun_opts_len, swkey->tun_proto))
1436			goto nla_put_failure;
1437	}
1438
1439	if (swkey->phy.in_port == DP_MAX_PORTS) {
1440		if (is_mask && (output->phy.in_port == 0xffff))
1441			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1442				goto nla_put_failure;
1443	} else {
1444		u16 upper_u16;
1445		upper_u16 = !is_mask ? 0 : 0xffff;
1446
1447		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1448				(upper_u16 << 16) | output->phy.in_port))
1449			goto nla_put_failure;
1450	}
1451
1452	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1453		goto nla_put_failure;
1454
1455	if (ovs_ct_put_key(output, skb))
1456		goto nla_put_failure;
1457
1458	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1459	if (!nla)
1460		goto nla_put_failure;
 
1461
1462	eth_key = nla_data(nla);
1463	ether_addr_copy(eth_key->eth_src, output->eth.src);
1464	ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1465
1466	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1467		__be16 eth_type;
1468		eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1469		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1470		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1471			goto nla_put_failure;
1472		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1473		if (!swkey->eth.tci)
1474			goto unencap;
1475	} else
1476		encap = NULL;
1477
1478	if (swkey->eth.type == htons(ETH_P_802_2)) {
1479		/*
1480		 * Ethertype 802.2 is represented in the netlink with omitted
1481		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1482		 * 0xffff in the mask attribute.  Ethertype can also
1483		 * be wildcarded.
1484		 */
1485		if (is_mask && output->eth.type)
1486			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1487						output->eth.type))
1488				goto nla_put_failure;
1489		goto unencap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1490	}
1491
1492	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1493		goto nla_put_failure;
1494
 
 
 
 
 
 
 
 
1495	if (swkey->eth.type == htons(ETH_P_IP)) {
1496		struct ovs_key_ipv4 *ipv4_key;
1497
1498		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1499		if (!nla)
1500			goto nla_put_failure;
1501		ipv4_key = nla_data(nla);
1502		ipv4_key->ipv4_src = output->ipv4.addr.src;
1503		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1504		ipv4_key->ipv4_proto = output->ip.proto;
1505		ipv4_key->ipv4_tos = output->ip.tos;
1506		ipv4_key->ipv4_ttl = output->ip.ttl;
1507		ipv4_key->ipv4_frag = output->ip.frag;
1508	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1509		struct ovs_key_ipv6 *ipv6_key;
1510
1511		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1512		if (!nla)
1513			goto nla_put_failure;
1514		ipv6_key = nla_data(nla);
1515		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1516				sizeof(ipv6_key->ipv6_src));
1517		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1518				sizeof(ipv6_key->ipv6_dst));
1519		ipv6_key->ipv6_label = output->ipv6.label;
1520		ipv6_key->ipv6_proto = output->ip.proto;
1521		ipv6_key->ipv6_tclass = output->ip.tos;
1522		ipv6_key->ipv6_hlimit = output->ip.ttl;
1523		ipv6_key->ipv6_frag = output->ip.frag;
 
 
 
1524	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1525		   swkey->eth.type == htons(ETH_P_RARP)) {
1526		struct ovs_key_arp *arp_key;
1527
1528		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1529		if (!nla)
1530			goto nla_put_failure;
1531		arp_key = nla_data(nla);
1532		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1533		arp_key->arp_sip = output->ipv4.addr.src;
1534		arp_key->arp_tip = output->ipv4.addr.dst;
1535		arp_key->arp_op = htons(output->ip.proto);
1536		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1537		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1538	} else if (eth_p_mpls(swkey->eth.type)) {
1539		struct ovs_key_mpls *mpls_key;
1540
1541		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1542		if (!nla)
1543			goto nla_put_failure;
1544		mpls_key = nla_data(nla);
1545		mpls_key->mpls_lse = output->mpls.top_lse;
1546	}
1547
1548	if ((swkey->eth.type == htons(ETH_P_IP) ||
1549	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1550	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1551
1552		if (swkey->ip.proto == IPPROTO_TCP) {
1553			struct ovs_key_tcp *tcp_key;
1554
1555			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1556			if (!nla)
1557				goto nla_put_failure;
1558			tcp_key = nla_data(nla);
1559			tcp_key->tcp_src = output->tp.src;
1560			tcp_key->tcp_dst = output->tp.dst;
1561			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1562					 output->tp.flags))
1563				goto nla_put_failure;
1564		} else if (swkey->ip.proto == IPPROTO_UDP) {
1565			struct ovs_key_udp *udp_key;
1566
1567			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1568			if (!nla)
1569				goto nla_put_failure;
1570			udp_key = nla_data(nla);
1571			udp_key->udp_src = output->tp.src;
1572			udp_key->udp_dst = output->tp.dst;
1573		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1574			struct ovs_key_sctp *sctp_key;
1575
1576			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1577			if (!nla)
1578				goto nla_put_failure;
1579			sctp_key = nla_data(nla);
1580			sctp_key->sctp_src = output->tp.src;
1581			sctp_key->sctp_dst = output->tp.dst;
1582		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1583			   swkey->ip.proto == IPPROTO_ICMP) {
1584			struct ovs_key_icmp *icmp_key;
1585
1586			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1587			if (!nla)
1588				goto nla_put_failure;
1589			icmp_key = nla_data(nla);
1590			icmp_key->icmp_type = ntohs(output->tp.src);
1591			icmp_key->icmp_code = ntohs(output->tp.dst);
1592		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1593			   swkey->ip.proto == IPPROTO_ICMPV6) {
1594			struct ovs_key_icmpv6 *icmpv6_key;
1595
1596			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1597						sizeof(*icmpv6_key));
1598			if (!nla)
1599				goto nla_put_failure;
1600			icmpv6_key = nla_data(nla);
1601			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1602			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1603
1604			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1605			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1606				struct ovs_key_nd *nd_key;
1607
1608				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1609				if (!nla)
1610					goto nla_put_failure;
1611				nd_key = nla_data(nla);
1612				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1613							sizeof(nd_key->nd_target));
1614				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1615				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1616			}
1617		}
1618	}
1619
1620unencap:
 
 
1621	if (encap)
1622		nla_nest_end(skb, encap);
1623
1624	return 0;
1625
1626nla_put_failure:
1627	return -EMSGSIZE;
1628}
1629
1630int ovs_nla_put_key(const struct sw_flow_key *swkey,
1631		    const struct sw_flow_key *output, int attr, bool is_mask,
1632		    struct sk_buff *skb)
1633{
1634	int err;
1635	struct nlattr *nla;
1636
1637	nla = nla_nest_start(skb, attr);
1638	if (!nla)
1639		return -EMSGSIZE;
1640	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1641	if (err)
1642		return err;
1643	nla_nest_end(skb, nla);
1644
1645	return 0;
1646}
1647
1648/* Called with ovs_mutex or RCU read lock. */
1649int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1650{
1651	if (ovs_identifier_is_ufid(&flow->id))
1652		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1653			       flow->id.ufid);
1654
1655	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1656			       OVS_FLOW_ATTR_KEY, false, skb);
1657}
1658
1659/* Called with ovs_mutex or RCU read lock. */
1660int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1661{
1662	return ovs_nla_put_key(&flow->key, &flow->key,
1663				OVS_FLOW_ATTR_KEY, false, skb);
1664}
1665
1666/* Called with ovs_mutex or RCU read lock. */
1667int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1668{
1669	return ovs_nla_put_key(&flow->key, &flow->mask->key,
1670				OVS_FLOW_ATTR_MASK, true, skb);
1671}
1672
1673#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1674
1675static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1676{
1677	struct sw_flow_actions *sfa;
1678
1679	if (size > MAX_ACTIONS_BUFSIZE) {
1680		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1681		return ERR_PTR(-EINVAL);
1682	}
1683
1684	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1685	if (!sfa)
1686		return ERR_PTR(-ENOMEM);
1687
1688	sfa->actions_len = 0;
1689	return sfa;
1690}
1691
1692static void ovs_nla_free_set_action(const struct nlattr *a)
1693{
1694	const struct nlattr *ovs_key = nla_data(a);
1695	struct ovs_tunnel_info *ovs_tun;
1696
1697	switch (nla_type(ovs_key)) {
1698	case OVS_KEY_ATTR_TUNNEL_INFO:
1699		ovs_tun = nla_data(ovs_key);
1700		dst_release((struct dst_entry *)ovs_tun->tun_dst);
1701		break;
1702	}
1703}
1704
1705void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1706{
1707	const struct nlattr *a;
1708	int rem;
1709
1710	if (!sf_acts)
1711		return;
1712
1713	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1714		switch (nla_type(a)) {
1715		case OVS_ACTION_ATTR_SET:
1716			ovs_nla_free_set_action(a);
1717			break;
1718		case OVS_ACTION_ATTR_CT:
1719			ovs_ct_free_action(a);
1720			break;
1721		}
1722	}
1723
1724	kfree(sf_acts);
1725}
1726
1727static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1728{
1729	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1730}
1731
1732/* Schedules 'sf_acts' to be freed after the next RCU grace period.
1733 * The caller must hold rcu_read_lock for this to be sensible. */
1734void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1735{
1736	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1737}
1738
1739static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1740				       int attr_len, bool log)
1741{
1742
1743	struct sw_flow_actions *acts;
1744	int new_acts_size;
1745	int req_size = NLA_ALIGN(attr_len);
1746	int next_offset = offsetof(struct sw_flow_actions, actions) +
1747					(*sfa)->actions_len;
1748
1749	if (req_size <= (ksize(*sfa) - next_offset))
1750		goto out;
1751
1752	new_acts_size = ksize(*sfa) * 2;
1753
1754	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1755		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
 
 
1756			return ERR_PTR(-EMSGSIZE);
 
1757		new_acts_size = MAX_ACTIONS_BUFSIZE;
1758	}
1759
1760	acts = nla_alloc_flow_actions(new_acts_size, log);
1761	if (IS_ERR(acts))
1762		return (void *)acts;
1763
1764	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1765	acts->actions_len = (*sfa)->actions_len;
1766	acts->orig_len = (*sfa)->orig_len;
1767	kfree(*sfa);
1768	*sfa = acts;
1769
1770out:
1771	(*sfa)->actions_len += req_size;
1772	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1773}
1774
1775static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1776				   int attrtype, void *data, int len, bool log)
1777{
1778	struct nlattr *a;
1779
1780	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1781	if (IS_ERR(a))
1782		return a;
1783
1784	a->nla_type = attrtype;
1785	a->nla_len = nla_attr_size(len);
1786
1787	if (data)
1788		memcpy(nla_data(a), data, len);
1789	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1790
1791	return a;
1792}
1793
1794int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1795		       int len, bool log)
1796{
1797	struct nlattr *a;
1798
1799	a = __add_action(sfa, attrtype, data, len, log);
1800
1801	return PTR_ERR_OR_ZERO(a);
1802}
1803
1804static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1805					  int attrtype, bool log)
1806{
1807	int used = (*sfa)->actions_len;
1808	int err;
1809
1810	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1811	if (err)
1812		return err;
1813
1814	return used;
1815}
1816
1817static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1818					 int st_offset)
1819{
1820	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1821							       st_offset);
1822
1823	a->nla_len = sfa->actions_len - st_offset;
1824}
1825
1826static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1827				  const struct sw_flow_key *key,
1828				  int depth, struct sw_flow_actions **sfa,
1829				  __be16 eth_type, __be16 vlan_tci, bool log);
1830
1831static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1832				    const struct sw_flow_key *key, int depth,
1833				    struct sw_flow_actions **sfa,
1834				    __be16 eth_type, __be16 vlan_tci, bool log)
 
1835{
1836	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1837	const struct nlattr *probability, *actions;
1838	const struct nlattr *a;
1839	int rem, start, err, st_acts;
 
1840
1841	memset(attrs, 0, sizeof(attrs));
1842	nla_for_each_nested(a, attr, rem) {
1843		int type = nla_type(a);
1844		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1845			return -EINVAL;
1846		attrs[type] = a;
1847	}
1848	if (rem)
1849		return -EINVAL;
1850
1851	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1852	if (!probability || nla_len(probability) != sizeof(u32))
1853		return -EINVAL;
1854
1855	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1856	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1857		return -EINVAL;
1858
1859	/* validation done, copy sample action. */
1860	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1861	if (start < 0)
1862		return start;
1863	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1864				 nla_data(probability), sizeof(u32), log);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865	if (err)
1866		return err;
1867	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1868	if (st_acts < 0)
1869		return st_acts;
1870
1871	err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1872				     eth_type, vlan_tci, log);
1873	if (err)
1874		return err;
1875
1876	add_nested_action_end(*sfa, st_acts);
1877	add_nested_action_end(*sfa, start);
1878
1879	return 0;
1880}
1881
1882void ovs_match_init(struct sw_flow_match *match,
1883		    struct sw_flow_key *key,
 
1884		    struct sw_flow_mask *mask)
1885{
1886	memset(match, 0, sizeof(*match));
1887	match->key = key;
1888	match->mask = mask;
1889
1890	memset(key, 0, sizeof(*key));
 
1891
1892	if (mask) {
1893		memset(&mask->key, 0, sizeof(mask->key));
1894		mask->range.start = mask->range.end = 0;
1895	}
1896}
1897
1898static int validate_geneve_opts(struct sw_flow_key *key)
1899{
1900	struct geneve_opt *option;
1901	int opts_len = key->tun_opts_len;
1902	bool crit_opt = false;
1903
1904	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1905	while (opts_len > 0) {
1906		int len;
1907
1908		if (opts_len < sizeof(*option))
1909			return -EINVAL;
1910
1911		len = sizeof(*option) + option->length * 4;
1912		if (len > opts_len)
1913			return -EINVAL;
1914
1915		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1916
1917		option = (struct geneve_opt *)((u8 *)option + len);
1918		opts_len -= len;
1919	};
1920
1921	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1922
1923	return 0;
1924}
1925
1926static int validate_and_copy_set_tun(const struct nlattr *attr,
1927				     struct sw_flow_actions **sfa, bool log)
1928{
1929	struct sw_flow_match match;
1930	struct sw_flow_key key;
1931	struct metadata_dst *tun_dst;
1932	struct ip_tunnel_info *tun_info;
1933	struct ovs_tunnel_info *ovs_tun;
1934	struct nlattr *a;
1935	int err = 0, start, opts_type;
 
1936
1937	ovs_match_init(&match, &key, NULL);
 
1938	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
1939	if (opts_type < 0)
1940		return opts_type;
1941
1942	if (key.tun_opts_len) {
1943		switch (opts_type) {
1944		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1945			err = validate_geneve_opts(&key);
1946			if (err < 0)
1947				return err;
 
1948			break;
1949		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 
 
 
 
1950			break;
1951		}
1952	};
1953
1954	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1955	if (start < 0)
1956		return start;
1957
1958	tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
 
 
1959	if (!tun_dst)
1960		return -ENOMEM;
1961
1962	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
1963	if (err) {
1964		dst_release((struct dst_entry *)tun_dst);
1965		return err;
1966	}
1967
1968	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1969			 sizeof(*ovs_tun), log);
1970	if (IS_ERR(a)) {
1971		dst_release((struct dst_entry *)tun_dst);
1972		return PTR_ERR(a);
1973	}
1974
1975	ovs_tun = nla_data(a);
1976	ovs_tun->tun_dst = tun_dst;
1977
1978	tun_info = &tun_dst->u.tun_info;
1979	tun_info->mode = IP_TUNNEL_INFO_TX;
1980	if (key.tun_proto == AF_INET6)
1981		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
 
 
1982	tun_info->key = key.tun_key;
1983
1984	/* We need to store the options in the action itself since
1985	 * everything else will go away after flow setup. We can append
1986	 * it to tun_info and then point there.
1987	 */
1988	ip_tunnel_info_opts_set(tun_info,
1989				TUN_METADATA_OPTS(&key, key.tun_opts_len),
1990				key.tun_opts_len);
1991	add_nested_action_end(*sfa, start);
1992
1993	return err;
1994}
1995
 
 
 
 
 
 
 
 
 
 
 
 
 
1996/* Return false if there are any non-masked bits set.
1997 * Mask follows data immediately, before any netlink padding.
1998 */
1999static bool validate_masked(u8 *data, int len)
2000{
2001	u8 *mask = data + len;
2002
2003	while (len--)
2004		if (*data++ & ~*mask++)
2005			return false;
2006
2007	return true;
2008}
2009
2010static int validate_set(const struct nlattr *a,
2011			const struct sw_flow_key *flow_key,
2012			struct sw_flow_actions **sfa,
2013			bool *skip_copy, __be16 eth_type, bool masked, bool log)
2014{
2015	const struct nlattr *ovs_key = nla_data(a);
2016	int key_type = nla_type(ovs_key);
2017	size_t key_len;
2018
2019	/* There can be only one key in a action */
2020	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2021		return -EINVAL;
2022
2023	key_len = nla_len(ovs_key);
2024	if (masked)
2025		key_len /= 2;
2026
2027	if (key_type > OVS_KEY_ATTR_MAX ||
2028	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2029		return -EINVAL;
2030
2031	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2032		return -EINVAL;
2033
2034	switch (key_type) {
2035	const struct ovs_key_ipv4 *ipv4_key;
2036	const struct ovs_key_ipv6 *ipv6_key;
2037	int err;
2038
2039	case OVS_KEY_ATTR_PRIORITY:
2040	case OVS_KEY_ATTR_SKB_MARK:
2041	case OVS_KEY_ATTR_CT_MARK:
2042	case OVS_KEY_ATTR_CT_LABELS:
 
 
2043	case OVS_KEY_ATTR_ETHERNET:
 
 
2044		break;
2045
2046	case OVS_KEY_ATTR_TUNNEL:
2047		if (masked)
2048			return -EINVAL; /* Masked tunnel set not supported. */
2049
2050		*skip_copy = true;
2051		err = validate_and_copy_set_tun(a, sfa, log);
2052		if (err)
2053			return err;
2054		break;
2055
2056	case OVS_KEY_ATTR_IPV4:
2057		if (eth_type != htons(ETH_P_IP))
2058			return -EINVAL;
2059
2060		ipv4_key = nla_data(ovs_key);
2061
2062		if (masked) {
2063			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2064
2065			/* Non-writeable fields. */
2066			if (mask->ipv4_proto || mask->ipv4_frag)
2067				return -EINVAL;
2068		} else {
2069			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2070				return -EINVAL;
2071
2072			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2073				return -EINVAL;
2074		}
2075		break;
2076
2077	case OVS_KEY_ATTR_IPV6:
2078		if (eth_type != htons(ETH_P_IPV6))
2079			return -EINVAL;
2080
2081		ipv6_key = nla_data(ovs_key);
2082
2083		if (masked) {
2084			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2085
2086			/* Non-writeable fields. */
2087			if (mask->ipv6_proto || mask->ipv6_frag)
2088				return -EINVAL;
2089
2090			/* Invalid bits in the flow label mask? */
2091			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2092				return -EINVAL;
2093		} else {
2094			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2095				return -EINVAL;
2096
2097			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2098				return -EINVAL;
2099		}
2100		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2101			return -EINVAL;
2102
2103		break;
2104
2105	case OVS_KEY_ATTR_TCP:
2106		if ((eth_type != htons(ETH_P_IP) &&
2107		     eth_type != htons(ETH_P_IPV6)) ||
2108		    flow_key->ip.proto != IPPROTO_TCP)
2109			return -EINVAL;
2110
2111		break;
2112
2113	case OVS_KEY_ATTR_UDP:
2114		if ((eth_type != htons(ETH_P_IP) &&
2115		     eth_type != htons(ETH_P_IPV6)) ||
2116		    flow_key->ip.proto != IPPROTO_UDP)
2117			return -EINVAL;
2118
2119		break;
2120
2121	case OVS_KEY_ATTR_MPLS:
2122		if (!eth_p_mpls(eth_type))
2123			return -EINVAL;
2124		break;
2125
2126	case OVS_KEY_ATTR_SCTP:
2127		if ((eth_type != htons(ETH_P_IP) &&
2128		     eth_type != htons(ETH_P_IPV6)) ||
2129		    flow_key->ip.proto != IPPROTO_SCTP)
2130			return -EINVAL;
2131
2132		break;
2133
 
 
 
 
 
 
 
2134	default:
2135		return -EINVAL;
2136	}
2137
2138	/* Convert non-masked non-tunnel set actions to masked set actions. */
2139	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2140		int start, len = key_len * 2;
2141		struct nlattr *at;
2142
2143		*skip_copy = true;
2144
2145		start = add_nested_action_start(sfa,
2146						OVS_ACTION_ATTR_SET_TO_MASKED,
2147						log);
2148		if (start < 0)
2149			return start;
2150
2151		at = __add_action(sfa, key_type, NULL, len, log);
2152		if (IS_ERR(at))
2153			return PTR_ERR(at);
2154
2155		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2156		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2157		/* Clear non-writeable bits from otherwise writeable fields. */
2158		if (key_type == OVS_KEY_ATTR_IPV6) {
2159			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2160
2161			mask->ipv6_label &= htonl(0x000FFFFF);
2162		}
2163		add_nested_action_end(*sfa, start);
2164	}
2165
2166	return 0;
2167}
2168
2169static int validate_userspace(const struct nlattr *attr)
2170{
2171	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2172		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2173		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2174		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2175	};
2176	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2177	int error;
2178
2179	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2180				 attr, userspace_policy);
2181	if (error)
2182		return error;
2183
2184	if (!a[OVS_USERSPACE_ATTR_PID] ||
2185	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2186		return -EINVAL;
2187
2188	return 0;
2189}
2190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2191static int copy_action(const struct nlattr *from,
2192		       struct sw_flow_actions **sfa, bool log)
2193{
2194	int totlen = NLA_ALIGN(from->nla_len);
2195	struct nlattr *to;
2196
2197	to = reserve_sfa_size(sfa, from->nla_len, log);
2198	if (IS_ERR(to))
2199		return PTR_ERR(to);
2200
2201	memcpy(to, from, totlen);
2202	return 0;
2203}
2204
2205static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2206				  const struct sw_flow_key *key,
2207				  int depth, struct sw_flow_actions **sfa,
2208				  __be16 eth_type, __be16 vlan_tci, bool log)
2209{
 
2210	const struct nlattr *a;
2211	int rem, err;
2212
2213	if (depth >= SAMPLE_ACTION_DEPTH)
2214		return -EOVERFLOW;
2215
2216	nla_for_each_nested(a, attr, rem) {
2217		/* Expected argument lengths, (u32)-1 for variable length. */
2218		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2219			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2220			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2221			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2222			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2223			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2224			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2225			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2226			[OVS_ACTION_ATTR_SET] = (u32)-1,
2227			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2228			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2229			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2230			[OVS_ACTION_ATTR_CT] = (u32)-1,
 
 
 
 
 
 
 
 
 
2231		};
2232		const struct ovs_action_push_vlan *vlan;
2233		int type = nla_type(a);
2234		bool skip_copy;
2235
2236		if (type > OVS_ACTION_ATTR_MAX ||
2237		    (action_lens[type] != nla_len(a) &&
2238		     action_lens[type] != (u32)-1))
2239			return -EINVAL;
2240
2241		skip_copy = false;
2242		switch (type) {
2243		case OVS_ACTION_ATTR_UNSPEC:
2244			return -EINVAL;
2245
2246		case OVS_ACTION_ATTR_USERSPACE:
2247			err = validate_userspace(a);
2248			if (err)
2249				return err;
2250			break;
2251
2252		case OVS_ACTION_ATTR_OUTPUT:
2253			if (nla_get_u32(a) >= DP_MAX_PORTS)
2254				return -EINVAL;
2255			break;
2256
 
 
 
 
 
 
 
 
2257		case OVS_ACTION_ATTR_HASH: {
2258			const struct ovs_action_hash *act_hash = nla_data(a);
2259
2260			switch (act_hash->hash_alg) {
2261			case OVS_HASH_ALG_L4:
2262				break;
2263			default:
2264				return  -EINVAL;
2265			}
2266
2267			break;
2268		}
2269
2270		case OVS_ACTION_ATTR_POP_VLAN:
 
 
2271			vlan_tci = htons(0);
2272			break;
2273
2274		case OVS_ACTION_ATTR_PUSH_VLAN:
 
 
2275			vlan = nla_data(a);
2276			if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2277				return -EINVAL;
2278			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2279				return -EINVAL;
2280			vlan_tci = vlan->vlan_tci;
2281			break;
2282
2283		case OVS_ACTION_ATTR_RECIRC:
2284			break;
2285
2286		case OVS_ACTION_ATTR_PUSH_MPLS: {
2287			const struct ovs_action_push_mpls *mpls = nla_data(a);
2288
2289			if (!eth_p_mpls(mpls->mpls_ethertype))
2290				return -EINVAL;
2291			/* Prohibit push MPLS other than to a white list
2292			 * for packets that have a known tag order.
2293			 */
2294			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2295			    (eth_type != htons(ETH_P_IP) &&
2296			     eth_type != htons(ETH_P_IPV6) &&
2297			     eth_type != htons(ETH_P_ARP) &&
2298			     eth_type != htons(ETH_P_RARP) &&
2299			     !eth_p_mpls(eth_type)))
2300				return -EINVAL;
2301			eth_type = mpls->mpls_ethertype;
2302			break;
2303		}
2304
2305		case OVS_ACTION_ATTR_POP_MPLS:
2306			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2307			    !eth_p_mpls(eth_type))
2308				return -EINVAL;
2309
2310			/* Disallow subsequent L2.5+ set and mpls_pop actions
2311			 * as there is no check here to ensure that the new
2312			 * eth_type is valid and thus set actions could
2313			 * write off the end of the packet or otherwise
2314			 * corrupt it.
2315			 *
2316			 * Support for these actions is planned using packet
2317			 * recirculation.
2318			 */
2319			eth_type = htons(0);
2320			break;
2321
2322		case OVS_ACTION_ATTR_SET:
2323			err = validate_set(a, key, sfa,
2324					   &skip_copy, eth_type, false, log);
 
2325			if (err)
2326				return err;
2327			break;
2328
2329		case OVS_ACTION_ATTR_SET_MASKED:
2330			err = validate_set(a, key, sfa,
2331					   &skip_copy, eth_type, true, log);
 
2332			if (err)
2333				return err;
2334			break;
2335
2336		case OVS_ACTION_ATTR_SAMPLE:
2337			err = validate_and_copy_sample(net, a, key, depth, sfa,
2338						       eth_type, vlan_tci, log);
 
 
 
2339			if (err)
2340				return err;
2341			skip_copy = true;
2342			break;
 
2343
2344		case OVS_ACTION_ATTR_CT:
2345			err = ovs_ct_copy_action(net, a, key, sfa, log);
2346			if (err)
2347				return err;
2348			skip_copy = true;
2349			break;
2350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2351		default:
2352			OVS_NLERR(log, "Unknown Action type %d", type);
2353			return -EINVAL;
2354		}
2355		if (!skip_copy) {
2356			err = copy_action(a, sfa, log);
2357			if (err)
2358				return err;
2359		}
2360	}
2361
2362	if (rem > 0)
2363		return -EINVAL;
2364
2365	return 0;
2366}
2367
2368/* 'key' must be the masked key. */
2369int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2370			 const struct sw_flow_key *key,
2371			 struct sw_flow_actions **sfa, bool log)
2372{
2373	int err;
2374
2375	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2376	if (IS_ERR(*sfa))
2377		return PTR_ERR(*sfa);
2378
2379	(*sfa)->orig_len = nla_len(attr);
2380	err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2381				     key->eth.tci, log);
2382	if (err)
2383		ovs_nla_free_flow_actions(*sfa);
2384
2385	return err;
2386}
2387
2388static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2389{
2390	const struct nlattr *a;
2391	struct nlattr *start;
2392	int err = 0, rem;
2393
2394	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2395	if (!start)
2396		return -EMSGSIZE;
2397
2398	nla_for_each_nested(a, attr, rem) {
2399		int type = nla_type(a);
2400		struct nlattr *st_sample;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2401
2402		switch (type) {
2403		case OVS_SAMPLE_ATTR_PROBABILITY:
2404			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2405				    sizeof(u32), nla_data(a)))
2406				return -EMSGSIZE;
2407			break;
2408		case OVS_SAMPLE_ATTR_ACTIONS:
2409			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2410			if (!st_sample)
2411				return -EMSGSIZE;
2412			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2413			if (err)
2414				return err;
2415			nla_nest_end(skb, st_sample);
2416			break;
2417		}
2418	}
2419
2420	nla_nest_end(skb, start);
 
 
 
 
2421	return err;
2422}
2423
2424static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2425{
2426	const struct nlattr *ovs_key = nla_data(a);
2427	int key_type = nla_type(ovs_key);
2428	struct nlattr *start;
2429	int err;
2430
2431	switch (key_type) {
2432	case OVS_KEY_ATTR_TUNNEL_INFO: {
2433		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2434		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2435
2436		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2437		if (!start)
2438			return -EMSGSIZE;
2439
2440		err =  ip_tun_to_nlattr(skb, &tun_info->key,
2441					ip_tunnel_info_opts(tun_info),
2442					tun_info->options_len,
2443					ip_tunnel_info_af(tun_info));
2444		if (err)
2445			return err;
2446		nla_nest_end(skb, start);
2447		break;
2448	}
2449	default:
2450		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2451			return -EMSGSIZE;
2452		break;
2453	}
2454
2455	return 0;
2456}
2457
2458static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2459						struct sk_buff *skb)
2460{
2461	const struct nlattr *ovs_key = nla_data(a);
2462	struct nlattr *nla;
2463	size_t key_len = nla_len(ovs_key) / 2;
2464
2465	/* Revert the conversion we did from a non-masked set action to
2466	 * masked set action.
2467	 */
2468	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2469	if (!nla)
2470		return -EMSGSIZE;
2471
2472	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2473		return -EMSGSIZE;
2474
2475	nla_nest_end(skb, nla);
2476	return 0;
2477}
2478
2479int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2480{
2481	const struct nlattr *a;
2482	int rem, err;
2483
2484	nla_for_each_attr(a, attr, len, rem) {
2485		int type = nla_type(a);
2486
2487		switch (type) {
2488		case OVS_ACTION_ATTR_SET:
2489			err = set_action_to_attr(a, skb);
2490			if (err)
2491				return err;
2492			break;
2493
2494		case OVS_ACTION_ATTR_SET_TO_MASKED:
2495			err = masked_set_action_to_set_action_attr(a, skb);
2496			if (err)
2497				return err;
2498			break;
2499
2500		case OVS_ACTION_ATTR_SAMPLE:
2501			err = sample_action_to_attr(a, skb);
2502			if (err)
2503				return err;
2504			break;
2505
2506		case OVS_ACTION_ATTR_CT:
2507			err = ovs_ct_action_to_attr(nla_data(a), skb);
 
 
 
 
 
 
 
 
 
 
 
 
2508			if (err)
2509				return err;
2510			break;
2511
2512		default:
2513			if (nla_put(skb, type, nla_len(a), nla_data(a)))
2514				return -EMSGSIZE;
2515			break;
2516		}
2517	}
2518
2519	return 0;
2520}