Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13#include <linux/fs.h>
14#include <linux/mm.h>
15#include <linux/err.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/cpu.h>
19#include <linux/cpumask.h>
20#include <linux/vmstat.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/debugfs.h>
24#include <linux/sched.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include <linux/compaction.h>
28#include <linux/mm_inline.h>
29#include <linux/page_ext.h>
30#include <linux/page_owner.h>
31
32#include "internal.h"
33
34#define NUMA_STATS_THRESHOLD (U16_MAX - 2)
35
36#ifdef CONFIG_NUMA
37int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38
39/* zero numa counters within a zone */
40static void zero_zone_numa_counters(struct zone *zone)
41{
42 int item, cpu;
43
44 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
45 atomic_long_set(&zone->vm_numa_stat[item], 0);
46 for_each_online_cpu(cpu)
47 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
48 = 0;
49 }
50}
51
52/* zero numa counters of all the populated zones */
53static void zero_zones_numa_counters(void)
54{
55 struct zone *zone;
56
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
59}
60
61/* zero global numa counters */
62static void zero_global_numa_counters(void)
63{
64 int item;
65
66 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
67 atomic_long_set(&vm_numa_stat[item], 0);
68}
69
70static void invalid_numa_statistics(void)
71{
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
74}
75
76static DEFINE_MUTEX(vm_numa_stat_lock);
77
78int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 void __user *buffer, size_t *length, loff_t *ppos)
80{
81 int ret, oldval;
82
83 mutex_lock(&vm_numa_stat_lock);
84 if (write)
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 if (ret || !write)
88 goto out;
89
90 if (oldval == sysctl_vm_numa_stat)
91 goto out;
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
95 } else {
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
99 }
100
101out:
102 mutex_unlock(&vm_numa_stat_lock);
103 return ret;
104}
105#endif
106
107#ifdef CONFIG_VM_EVENT_COUNTERS
108DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109EXPORT_PER_CPU_SYMBOL(vm_event_states);
110
111static void sum_vm_events(unsigned long *ret)
112{
113 int cpu;
114 int i;
115
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117
118 for_each_online_cpu(cpu) {
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
123 }
124}
125
126/*
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
130*/
131void all_vm_events(unsigned long *ret)
132{
133 get_online_cpus();
134 sum_vm_events(ret);
135 put_online_cpus();
136}
137EXPORT_SYMBOL_GPL(all_vm_events);
138
139/*
140 * Fold the foreign cpu events into our own.
141 *
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
144 */
145void vm_events_fold_cpu(int cpu)
146{
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 int i;
149
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
153 }
154}
155
156#endif /* CONFIG_VM_EVENT_COUNTERS */
157
158/*
159 * Manage combined zone based / global counters
160 *
161 * vm_stat contains the global counters
162 */
163atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
165atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
166EXPORT_SYMBOL(vm_zone_stat);
167EXPORT_SYMBOL(vm_numa_stat);
168EXPORT_SYMBOL(vm_node_stat);
169
170#ifdef CONFIG_SMP
171
172int calculate_pressure_threshold(struct zone *zone)
173{
174 int threshold;
175 int watermark_distance;
176
177 /*
178 * As vmstats are not up to date, there is drift between the estimated
179 * and real values. For high thresholds and a high number of CPUs, it
180 * is possible for the min watermark to be breached while the estimated
181 * value looks fine. The pressure threshold is a reduced value such
182 * that even the maximum amount of drift will not accidentally breach
183 * the min watermark
184 */
185 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
186 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
187
188 /*
189 * Maximum threshold is 125
190 */
191 threshold = min(125, threshold);
192
193 return threshold;
194}
195
196int calculate_normal_threshold(struct zone *zone)
197{
198 int threshold;
199 int mem; /* memory in 128 MB units */
200
201 /*
202 * The threshold scales with the number of processors and the amount
203 * of memory per zone. More memory means that we can defer updates for
204 * longer, more processors could lead to more contention.
205 * fls() is used to have a cheap way of logarithmic scaling.
206 *
207 * Some sample thresholds:
208 *
209 * Threshold Processors (fls) Zonesize fls(mem+1)
210 * ------------------------------------------------------------------
211 * 8 1 1 0.9-1 GB 4
212 * 16 2 2 0.9-1 GB 4
213 * 20 2 2 1-2 GB 5
214 * 24 2 2 2-4 GB 6
215 * 28 2 2 4-8 GB 7
216 * 32 2 2 8-16 GB 8
217 * 4 2 2 <128M 1
218 * 30 4 3 2-4 GB 5
219 * 48 4 3 8-16 GB 8
220 * 32 8 4 1-2 GB 4
221 * 32 8 4 0.9-1GB 4
222 * 10 16 5 <128M 1
223 * 40 16 5 900M 4
224 * 70 64 7 2-4 GB 5
225 * 84 64 7 4-8 GB 6
226 * 108 512 9 4-8 GB 6
227 * 125 1024 10 8-16 GB 8
228 * 125 1024 10 16-32 GB 9
229 */
230
231 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
232
233 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
234
235 /*
236 * Maximum threshold is 125
237 */
238 threshold = min(125, threshold);
239
240 return threshold;
241}
242
243/*
244 * Refresh the thresholds for each zone.
245 */
246void refresh_zone_stat_thresholds(void)
247{
248 struct pglist_data *pgdat;
249 struct zone *zone;
250 int cpu;
251 int threshold;
252
253 /* Zero current pgdat thresholds */
254 for_each_online_pgdat(pgdat) {
255 for_each_online_cpu(cpu) {
256 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
257 }
258 }
259
260 for_each_populated_zone(zone) {
261 struct pglist_data *pgdat = zone->zone_pgdat;
262 unsigned long max_drift, tolerate_drift;
263
264 threshold = calculate_normal_threshold(zone);
265
266 for_each_online_cpu(cpu) {
267 int pgdat_threshold;
268
269 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
270 = threshold;
271
272 /* Base nodestat threshold on the largest populated zone. */
273 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
274 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
275 = max(threshold, pgdat_threshold);
276 }
277
278 /*
279 * Only set percpu_drift_mark if there is a danger that
280 * NR_FREE_PAGES reports the low watermark is ok when in fact
281 * the min watermark could be breached by an allocation
282 */
283 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
284 max_drift = num_online_cpus() * threshold;
285 if (max_drift > tolerate_drift)
286 zone->percpu_drift_mark = high_wmark_pages(zone) +
287 max_drift;
288 }
289}
290
291void set_pgdat_percpu_threshold(pg_data_t *pgdat,
292 int (*calculate_pressure)(struct zone *))
293{
294 struct zone *zone;
295 int cpu;
296 int threshold;
297 int i;
298
299 for (i = 0; i < pgdat->nr_zones; i++) {
300 zone = &pgdat->node_zones[i];
301 if (!zone->percpu_drift_mark)
302 continue;
303
304 threshold = (*calculate_pressure)(zone);
305 for_each_online_cpu(cpu)
306 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
307 = threshold;
308 }
309}
310
311/*
312 * For use when we know that interrupts are disabled,
313 * or when we know that preemption is disabled and that
314 * particular counter cannot be updated from interrupt context.
315 */
316void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
317 long delta)
318{
319 struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 s8 __percpu *p = pcp->vm_stat_diff + item;
321 long x;
322 long t;
323
324 x = delta + __this_cpu_read(*p);
325
326 t = __this_cpu_read(pcp->stat_threshold);
327
328 if (unlikely(x > t || x < -t)) {
329 zone_page_state_add(x, zone, item);
330 x = 0;
331 }
332 __this_cpu_write(*p, x);
333}
334EXPORT_SYMBOL(__mod_zone_page_state);
335
336void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
337 long delta)
338{
339 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
340 s8 __percpu *p = pcp->vm_node_stat_diff + item;
341 long x;
342 long t;
343
344 x = delta + __this_cpu_read(*p);
345
346 t = __this_cpu_read(pcp->stat_threshold);
347
348 if (unlikely(x > t || x < -t)) {
349 node_page_state_add(x, pgdat, item);
350 x = 0;
351 }
352 __this_cpu_write(*p, x);
353}
354EXPORT_SYMBOL(__mod_node_page_state);
355
356/*
357 * Optimized increment and decrement functions.
358 *
359 * These are only for a single page and therefore can take a struct page *
360 * argument instead of struct zone *. This allows the inclusion of the code
361 * generated for page_zone(page) into the optimized functions.
362 *
363 * No overflow check is necessary and therefore the differential can be
364 * incremented or decremented in place which may allow the compilers to
365 * generate better code.
366 * The increment or decrement is known and therefore one boundary check can
367 * be omitted.
368 *
369 * NOTE: These functions are very performance sensitive. Change only
370 * with care.
371 *
372 * Some processors have inc/dec instructions that are atomic vs an interrupt.
373 * However, the code must first determine the differential location in a zone
374 * based on the processor number and then inc/dec the counter. There is no
375 * guarantee without disabling preemption that the processor will not change
376 * in between and therefore the atomicity vs. interrupt cannot be exploited
377 * in a useful way here.
378 */
379void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
380{
381 struct per_cpu_pageset __percpu *pcp = zone->pageset;
382 s8 __percpu *p = pcp->vm_stat_diff + item;
383 s8 v, t;
384
385 v = __this_cpu_inc_return(*p);
386 t = __this_cpu_read(pcp->stat_threshold);
387 if (unlikely(v > t)) {
388 s8 overstep = t >> 1;
389
390 zone_page_state_add(v + overstep, zone, item);
391 __this_cpu_write(*p, -overstep);
392 }
393}
394
395void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
396{
397 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
398 s8 __percpu *p = pcp->vm_node_stat_diff + item;
399 s8 v, t;
400
401 v = __this_cpu_inc_return(*p);
402 t = __this_cpu_read(pcp->stat_threshold);
403 if (unlikely(v > t)) {
404 s8 overstep = t >> 1;
405
406 node_page_state_add(v + overstep, pgdat, item);
407 __this_cpu_write(*p, -overstep);
408 }
409}
410
411void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
412{
413 __inc_zone_state(page_zone(page), item);
414}
415EXPORT_SYMBOL(__inc_zone_page_state);
416
417void __inc_node_page_state(struct page *page, enum node_stat_item item)
418{
419 __inc_node_state(page_pgdat(page), item);
420}
421EXPORT_SYMBOL(__inc_node_page_state);
422
423void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
424{
425 struct per_cpu_pageset __percpu *pcp = zone->pageset;
426 s8 __percpu *p = pcp->vm_stat_diff + item;
427 s8 v, t;
428
429 v = __this_cpu_dec_return(*p);
430 t = __this_cpu_read(pcp->stat_threshold);
431 if (unlikely(v < - t)) {
432 s8 overstep = t >> 1;
433
434 zone_page_state_add(v - overstep, zone, item);
435 __this_cpu_write(*p, overstep);
436 }
437}
438
439void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
440{
441 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
442 s8 __percpu *p = pcp->vm_node_stat_diff + item;
443 s8 v, t;
444
445 v = __this_cpu_dec_return(*p);
446 t = __this_cpu_read(pcp->stat_threshold);
447 if (unlikely(v < - t)) {
448 s8 overstep = t >> 1;
449
450 node_page_state_add(v - overstep, pgdat, item);
451 __this_cpu_write(*p, overstep);
452 }
453}
454
455void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
456{
457 __dec_zone_state(page_zone(page), item);
458}
459EXPORT_SYMBOL(__dec_zone_page_state);
460
461void __dec_node_page_state(struct page *page, enum node_stat_item item)
462{
463 __dec_node_state(page_pgdat(page), item);
464}
465EXPORT_SYMBOL(__dec_node_page_state);
466
467#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
468/*
469 * If we have cmpxchg_local support then we do not need to incur the overhead
470 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
471 *
472 * mod_state() modifies the zone counter state through atomic per cpu
473 * operations.
474 *
475 * Overstep mode specifies how overstep should handled:
476 * 0 No overstepping
477 * 1 Overstepping half of threshold
478 * -1 Overstepping minus half of threshold
479*/
480static inline void mod_zone_state(struct zone *zone,
481 enum zone_stat_item item, long delta, int overstep_mode)
482{
483 struct per_cpu_pageset __percpu *pcp = zone->pageset;
484 s8 __percpu *p = pcp->vm_stat_diff + item;
485 long o, n, t, z;
486
487 do {
488 z = 0; /* overflow to zone counters */
489
490 /*
491 * The fetching of the stat_threshold is racy. We may apply
492 * a counter threshold to the wrong the cpu if we get
493 * rescheduled while executing here. However, the next
494 * counter update will apply the threshold again and
495 * therefore bring the counter under the threshold again.
496 *
497 * Most of the time the thresholds are the same anyways
498 * for all cpus in a zone.
499 */
500 t = this_cpu_read(pcp->stat_threshold);
501
502 o = this_cpu_read(*p);
503 n = delta + o;
504
505 if (n > t || n < -t) {
506 int os = overstep_mode * (t >> 1) ;
507
508 /* Overflow must be added to zone counters */
509 z = n + os;
510 n = -os;
511 }
512 } while (this_cpu_cmpxchg(*p, o, n) != o);
513
514 if (z)
515 zone_page_state_add(z, zone, item);
516}
517
518void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
519 long delta)
520{
521 mod_zone_state(zone, item, delta, 0);
522}
523EXPORT_SYMBOL(mod_zone_page_state);
524
525void inc_zone_page_state(struct page *page, enum zone_stat_item item)
526{
527 mod_zone_state(page_zone(page), item, 1, 1);
528}
529EXPORT_SYMBOL(inc_zone_page_state);
530
531void dec_zone_page_state(struct page *page, enum zone_stat_item item)
532{
533 mod_zone_state(page_zone(page), item, -1, -1);
534}
535EXPORT_SYMBOL(dec_zone_page_state);
536
537static inline void mod_node_state(struct pglist_data *pgdat,
538 enum node_stat_item item, int delta, int overstep_mode)
539{
540 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
541 s8 __percpu *p = pcp->vm_node_stat_diff + item;
542 long o, n, t, z;
543
544 do {
545 z = 0; /* overflow to node counters */
546
547 /*
548 * The fetching of the stat_threshold is racy. We may apply
549 * a counter threshold to the wrong the cpu if we get
550 * rescheduled while executing here. However, the next
551 * counter update will apply the threshold again and
552 * therefore bring the counter under the threshold again.
553 *
554 * Most of the time the thresholds are the same anyways
555 * for all cpus in a node.
556 */
557 t = this_cpu_read(pcp->stat_threshold);
558
559 o = this_cpu_read(*p);
560 n = delta + o;
561
562 if (n > t || n < -t) {
563 int os = overstep_mode * (t >> 1) ;
564
565 /* Overflow must be added to node counters */
566 z = n + os;
567 n = -os;
568 }
569 } while (this_cpu_cmpxchg(*p, o, n) != o);
570
571 if (z)
572 node_page_state_add(z, pgdat, item);
573}
574
575void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
576 long delta)
577{
578 mod_node_state(pgdat, item, delta, 0);
579}
580EXPORT_SYMBOL(mod_node_page_state);
581
582void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
583{
584 mod_node_state(pgdat, item, 1, 1);
585}
586
587void inc_node_page_state(struct page *page, enum node_stat_item item)
588{
589 mod_node_state(page_pgdat(page), item, 1, 1);
590}
591EXPORT_SYMBOL(inc_node_page_state);
592
593void dec_node_page_state(struct page *page, enum node_stat_item item)
594{
595 mod_node_state(page_pgdat(page), item, -1, -1);
596}
597EXPORT_SYMBOL(dec_node_page_state);
598#else
599/*
600 * Use interrupt disable to serialize counter updates
601 */
602void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
603 long delta)
604{
605 unsigned long flags;
606
607 local_irq_save(flags);
608 __mod_zone_page_state(zone, item, delta);
609 local_irq_restore(flags);
610}
611EXPORT_SYMBOL(mod_zone_page_state);
612
613void inc_zone_page_state(struct page *page, enum zone_stat_item item)
614{
615 unsigned long flags;
616 struct zone *zone;
617
618 zone = page_zone(page);
619 local_irq_save(flags);
620 __inc_zone_state(zone, item);
621 local_irq_restore(flags);
622}
623EXPORT_SYMBOL(inc_zone_page_state);
624
625void dec_zone_page_state(struct page *page, enum zone_stat_item item)
626{
627 unsigned long flags;
628
629 local_irq_save(flags);
630 __dec_zone_page_state(page, item);
631 local_irq_restore(flags);
632}
633EXPORT_SYMBOL(dec_zone_page_state);
634
635void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
636{
637 unsigned long flags;
638
639 local_irq_save(flags);
640 __inc_node_state(pgdat, item);
641 local_irq_restore(flags);
642}
643EXPORT_SYMBOL(inc_node_state);
644
645void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
646 long delta)
647{
648 unsigned long flags;
649
650 local_irq_save(flags);
651 __mod_node_page_state(pgdat, item, delta);
652 local_irq_restore(flags);
653}
654EXPORT_SYMBOL(mod_node_page_state);
655
656void inc_node_page_state(struct page *page, enum node_stat_item item)
657{
658 unsigned long flags;
659 struct pglist_data *pgdat;
660
661 pgdat = page_pgdat(page);
662 local_irq_save(flags);
663 __inc_node_state(pgdat, item);
664 local_irq_restore(flags);
665}
666EXPORT_SYMBOL(inc_node_page_state);
667
668void dec_node_page_state(struct page *page, enum node_stat_item item)
669{
670 unsigned long flags;
671
672 local_irq_save(flags);
673 __dec_node_page_state(page, item);
674 local_irq_restore(flags);
675}
676EXPORT_SYMBOL(dec_node_page_state);
677#endif
678
679/*
680 * Fold a differential into the global counters.
681 * Returns the number of counters updated.
682 */
683#ifdef CONFIG_NUMA
684static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
685{
686 int i;
687 int changes = 0;
688
689 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
690 if (zone_diff[i]) {
691 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
692 changes++;
693 }
694
695 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
696 if (numa_diff[i]) {
697 atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
698 changes++;
699 }
700
701 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
702 if (node_diff[i]) {
703 atomic_long_add(node_diff[i], &vm_node_stat[i]);
704 changes++;
705 }
706 return changes;
707}
708#else
709static int fold_diff(int *zone_diff, int *node_diff)
710{
711 int i;
712 int changes = 0;
713
714 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
715 if (zone_diff[i]) {
716 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
717 changes++;
718 }
719
720 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
721 if (node_diff[i]) {
722 atomic_long_add(node_diff[i], &vm_node_stat[i]);
723 changes++;
724 }
725 return changes;
726}
727#endif /* CONFIG_NUMA */
728
729/*
730 * Update the zone counters for the current cpu.
731 *
732 * Note that refresh_cpu_vm_stats strives to only access
733 * node local memory. The per cpu pagesets on remote zones are placed
734 * in the memory local to the processor using that pageset. So the
735 * loop over all zones will access a series of cachelines local to
736 * the processor.
737 *
738 * The call to zone_page_state_add updates the cachelines with the
739 * statistics in the remote zone struct as well as the global cachelines
740 * with the global counters. These could cause remote node cache line
741 * bouncing and will have to be only done when necessary.
742 *
743 * The function returns the number of global counters updated.
744 */
745static int refresh_cpu_vm_stats(bool do_pagesets)
746{
747 struct pglist_data *pgdat;
748 struct zone *zone;
749 int i;
750 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
751#ifdef CONFIG_NUMA
752 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
753#endif
754 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
755 int changes = 0;
756
757 for_each_populated_zone(zone) {
758 struct per_cpu_pageset __percpu *p = zone->pageset;
759
760 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
761 int v;
762
763 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
764 if (v) {
765
766 atomic_long_add(v, &zone->vm_stat[i]);
767 global_zone_diff[i] += v;
768#ifdef CONFIG_NUMA
769 /* 3 seconds idle till flush */
770 __this_cpu_write(p->expire, 3);
771#endif
772 }
773 }
774#ifdef CONFIG_NUMA
775 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
776 int v;
777
778 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
779 if (v) {
780
781 atomic_long_add(v, &zone->vm_numa_stat[i]);
782 global_numa_diff[i] += v;
783 __this_cpu_write(p->expire, 3);
784 }
785 }
786
787 if (do_pagesets) {
788 cond_resched();
789 /*
790 * Deal with draining the remote pageset of this
791 * processor
792 *
793 * Check if there are pages remaining in this pageset
794 * if not then there is nothing to expire.
795 */
796 if (!__this_cpu_read(p->expire) ||
797 !__this_cpu_read(p->pcp.count))
798 continue;
799
800 /*
801 * We never drain zones local to this processor.
802 */
803 if (zone_to_nid(zone) == numa_node_id()) {
804 __this_cpu_write(p->expire, 0);
805 continue;
806 }
807
808 if (__this_cpu_dec_return(p->expire))
809 continue;
810
811 if (__this_cpu_read(p->pcp.count)) {
812 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
813 changes++;
814 }
815 }
816#endif
817 }
818
819 for_each_online_pgdat(pgdat) {
820 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
821
822 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
823 int v;
824
825 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
826 if (v) {
827 atomic_long_add(v, &pgdat->vm_stat[i]);
828 global_node_diff[i] += v;
829 }
830 }
831 }
832
833#ifdef CONFIG_NUMA
834 changes += fold_diff(global_zone_diff, global_numa_diff,
835 global_node_diff);
836#else
837 changes += fold_diff(global_zone_diff, global_node_diff);
838#endif
839 return changes;
840}
841
842/*
843 * Fold the data for an offline cpu into the global array.
844 * There cannot be any access by the offline cpu and therefore
845 * synchronization is simplified.
846 */
847void cpu_vm_stats_fold(int cpu)
848{
849 struct pglist_data *pgdat;
850 struct zone *zone;
851 int i;
852 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
853#ifdef CONFIG_NUMA
854 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
855#endif
856 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
857
858 for_each_populated_zone(zone) {
859 struct per_cpu_pageset *p;
860
861 p = per_cpu_ptr(zone->pageset, cpu);
862
863 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
864 if (p->vm_stat_diff[i]) {
865 int v;
866
867 v = p->vm_stat_diff[i];
868 p->vm_stat_diff[i] = 0;
869 atomic_long_add(v, &zone->vm_stat[i]);
870 global_zone_diff[i] += v;
871 }
872
873#ifdef CONFIG_NUMA
874 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
875 if (p->vm_numa_stat_diff[i]) {
876 int v;
877
878 v = p->vm_numa_stat_diff[i];
879 p->vm_numa_stat_diff[i] = 0;
880 atomic_long_add(v, &zone->vm_numa_stat[i]);
881 global_numa_diff[i] += v;
882 }
883#endif
884 }
885
886 for_each_online_pgdat(pgdat) {
887 struct per_cpu_nodestat *p;
888
889 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
890
891 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
892 if (p->vm_node_stat_diff[i]) {
893 int v;
894
895 v = p->vm_node_stat_diff[i];
896 p->vm_node_stat_diff[i] = 0;
897 atomic_long_add(v, &pgdat->vm_stat[i]);
898 global_node_diff[i] += v;
899 }
900 }
901
902#ifdef CONFIG_NUMA
903 fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
904#else
905 fold_diff(global_zone_diff, global_node_diff);
906#endif
907}
908
909/*
910 * this is only called if !populated_zone(zone), which implies no other users of
911 * pset->vm_stat_diff[] exsist.
912 */
913void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
914{
915 int i;
916
917 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
918 if (pset->vm_stat_diff[i]) {
919 int v = pset->vm_stat_diff[i];
920 pset->vm_stat_diff[i] = 0;
921 atomic_long_add(v, &zone->vm_stat[i]);
922 atomic_long_add(v, &vm_zone_stat[i]);
923 }
924
925#ifdef CONFIG_NUMA
926 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
927 if (pset->vm_numa_stat_diff[i]) {
928 int v = pset->vm_numa_stat_diff[i];
929
930 pset->vm_numa_stat_diff[i] = 0;
931 atomic_long_add(v, &zone->vm_numa_stat[i]);
932 atomic_long_add(v, &vm_numa_stat[i]);
933 }
934#endif
935}
936#endif
937
938#ifdef CONFIG_NUMA
939void __inc_numa_state(struct zone *zone,
940 enum numa_stat_item item)
941{
942 struct per_cpu_pageset __percpu *pcp = zone->pageset;
943 u16 __percpu *p = pcp->vm_numa_stat_diff + item;
944 u16 v;
945
946 v = __this_cpu_inc_return(*p);
947
948 if (unlikely(v > NUMA_STATS_THRESHOLD)) {
949 zone_numa_state_add(v, zone, item);
950 __this_cpu_write(*p, 0);
951 }
952}
953
954/*
955 * Determine the per node value of a stat item. This function
956 * is called frequently in a NUMA machine, so try to be as
957 * frugal as possible.
958 */
959unsigned long sum_zone_node_page_state(int node,
960 enum zone_stat_item item)
961{
962 struct zone *zones = NODE_DATA(node)->node_zones;
963 int i;
964 unsigned long count = 0;
965
966 for (i = 0; i < MAX_NR_ZONES; i++)
967 count += zone_page_state(zones + i, item);
968
969 return count;
970}
971
972/*
973 * Determine the per node value of a numa stat item. To avoid deviation,
974 * the per cpu stat number in vm_numa_stat_diff[] is also included.
975 */
976unsigned long sum_zone_numa_state(int node,
977 enum numa_stat_item item)
978{
979 struct zone *zones = NODE_DATA(node)->node_zones;
980 int i;
981 unsigned long count = 0;
982
983 for (i = 0; i < MAX_NR_ZONES; i++)
984 count += zone_numa_state_snapshot(zones + i, item);
985
986 return count;
987}
988
989/*
990 * Determine the per node value of a stat item.
991 */
992unsigned long node_page_state(struct pglist_data *pgdat,
993 enum node_stat_item item)
994{
995 long x = atomic_long_read(&pgdat->vm_stat[item]);
996#ifdef CONFIG_SMP
997 if (x < 0)
998 x = 0;
999#endif
1000 return x;
1001}
1002#endif
1003
1004#ifdef CONFIG_COMPACTION
1005
1006struct contig_page_info {
1007 unsigned long free_pages;
1008 unsigned long free_blocks_total;
1009 unsigned long free_blocks_suitable;
1010};
1011
1012/*
1013 * Calculate the number of free pages in a zone, how many contiguous
1014 * pages are free and how many are large enough to satisfy an allocation of
1015 * the target size. Note that this function makes no attempt to estimate
1016 * how many suitable free blocks there *might* be if MOVABLE pages were
1017 * migrated. Calculating that is possible, but expensive and can be
1018 * figured out from userspace
1019 */
1020static void fill_contig_page_info(struct zone *zone,
1021 unsigned int suitable_order,
1022 struct contig_page_info *info)
1023{
1024 unsigned int order;
1025
1026 info->free_pages = 0;
1027 info->free_blocks_total = 0;
1028 info->free_blocks_suitable = 0;
1029
1030 for (order = 0; order < MAX_ORDER; order++) {
1031 unsigned long blocks;
1032
1033 /* Count number of free blocks */
1034 blocks = zone->free_area[order].nr_free;
1035 info->free_blocks_total += blocks;
1036
1037 /* Count free base pages */
1038 info->free_pages += blocks << order;
1039
1040 /* Count the suitable free blocks */
1041 if (order >= suitable_order)
1042 info->free_blocks_suitable += blocks <<
1043 (order - suitable_order);
1044 }
1045}
1046
1047/*
1048 * A fragmentation index only makes sense if an allocation of a requested
1049 * size would fail. If that is true, the fragmentation index indicates
1050 * whether external fragmentation or a lack of memory was the problem.
1051 * The value can be used to determine if page reclaim or compaction
1052 * should be used
1053 */
1054static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1055{
1056 unsigned long requested = 1UL << order;
1057
1058 if (WARN_ON_ONCE(order >= MAX_ORDER))
1059 return 0;
1060
1061 if (!info->free_blocks_total)
1062 return 0;
1063
1064 /* Fragmentation index only makes sense when a request would fail */
1065 if (info->free_blocks_suitable)
1066 return -1000;
1067
1068 /*
1069 * Index is between 0 and 1 so return within 3 decimal places
1070 *
1071 * 0 => allocation would fail due to lack of memory
1072 * 1 => allocation would fail due to fragmentation
1073 */
1074 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1075}
1076
1077/* Same as __fragmentation index but allocs contig_page_info on stack */
1078int fragmentation_index(struct zone *zone, unsigned int order)
1079{
1080 struct contig_page_info info;
1081
1082 fill_contig_page_info(zone, order, &info);
1083 return __fragmentation_index(order, &info);
1084}
1085#endif
1086
1087#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
1088#ifdef CONFIG_ZONE_DMA
1089#define TEXT_FOR_DMA(xx) xx "_dma",
1090#else
1091#define TEXT_FOR_DMA(xx)
1092#endif
1093
1094#ifdef CONFIG_ZONE_DMA32
1095#define TEXT_FOR_DMA32(xx) xx "_dma32",
1096#else
1097#define TEXT_FOR_DMA32(xx)
1098#endif
1099
1100#ifdef CONFIG_HIGHMEM
1101#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1102#else
1103#define TEXT_FOR_HIGHMEM(xx)
1104#endif
1105
1106#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1107 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1108
1109const char * const vmstat_text[] = {
1110 /* enum zone_stat_item countes */
1111 "nr_free_pages",
1112 "nr_zone_inactive_anon",
1113 "nr_zone_active_anon",
1114 "nr_zone_inactive_file",
1115 "nr_zone_active_file",
1116 "nr_zone_unevictable",
1117 "nr_zone_write_pending",
1118 "nr_mlock",
1119 "nr_page_table_pages",
1120 "nr_kernel_stack",
1121 "nr_bounce",
1122#if IS_ENABLED(CONFIG_ZSMALLOC)
1123 "nr_zspages",
1124#endif
1125 "nr_free_cma",
1126
1127 /* enum numa_stat_item counters */
1128#ifdef CONFIG_NUMA
1129 "numa_hit",
1130 "numa_miss",
1131 "numa_foreign",
1132 "numa_interleave",
1133 "numa_local",
1134 "numa_other",
1135#endif
1136
1137 /* Node-based counters */
1138 "nr_inactive_anon",
1139 "nr_active_anon",
1140 "nr_inactive_file",
1141 "nr_active_file",
1142 "nr_unevictable",
1143 "nr_slab_reclaimable",
1144 "nr_slab_unreclaimable",
1145 "nr_isolated_anon",
1146 "nr_isolated_file",
1147 "workingset_nodes",
1148 "workingset_refault",
1149 "workingset_activate",
1150 "workingset_restore",
1151 "workingset_nodereclaim",
1152 "nr_anon_pages",
1153 "nr_mapped",
1154 "nr_file_pages",
1155 "nr_dirty",
1156 "nr_writeback",
1157 "nr_writeback_temp",
1158 "nr_shmem",
1159 "nr_shmem_hugepages",
1160 "nr_shmem_pmdmapped",
1161 "nr_file_hugepages",
1162 "nr_file_pmdmapped",
1163 "nr_anon_transparent_hugepages",
1164 "nr_unstable",
1165 "nr_vmscan_write",
1166 "nr_vmscan_immediate_reclaim",
1167 "nr_dirtied",
1168 "nr_written",
1169 "nr_kernel_misc_reclaimable",
1170
1171 /* enum writeback_stat_item counters */
1172 "nr_dirty_threshold",
1173 "nr_dirty_background_threshold",
1174
1175#ifdef CONFIG_VM_EVENT_COUNTERS
1176 /* enum vm_event_item counters */
1177 "pgpgin",
1178 "pgpgout",
1179 "pswpin",
1180 "pswpout",
1181
1182 TEXTS_FOR_ZONES("pgalloc")
1183 TEXTS_FOR_ZONES("allocstall")
1184 TEXTS_FOR_ZONES("pgskip")
1185
1186 "pgfree",
1187 "pgactivate",
1188 "pgdeactivate",
1189 "pglazyfree",
1190
1191 "pgfault",
1192 "pgmajfault",
1193 "pglazyfreed",
1194
1195 "pgrefill",
1196 "pgsteal_kswapd",
1197 "pgsteal_direct",
1198 "pgscan_kswapd",
1199 "pgscan_direct",
1200 "pgscan_direct_throttle",
1201
1202#ifdef CONFIG_NUMA
1203 "zone_reclaim_failed",
1204#endif
1205 "pginodesteal",
1206 "slabs_scanned",
1207 "kswapd_inodesteal",
1208 "kswapd_low_wmark_hit_quickly",
1209 "kswapd_high_wmark_hit_quickly",
1210 "pageoutrun",
1211
1212 "pgrotated",
1213
1214 "drop_pagecache",
1215 "drop_slab",
1216 "oom_kill",
1217
1218#ifdef CONFIG_NUMA_BALANCING
1219 "numa_pte_updates",
1220 "numa_huge_pte_updates",
1221 "numa_hint_faults",
1222 "numa_hint_faults_local",
1223 "numa_pages_migrated",
1224#endif
1225#ifdef CONFIG_MIGRATION
1226 "pgmigrate_success",
1227 "pgmigrate_fail",
1228#endif
1229#ifdef CONFIG_COMPACTION
1230 "compact_migrate_scanned",
1231 "compact_free_scanned",
1232 "compact_isolated",
1233 "compact_stall",
1234 "compact_fail",
1235 "compact_success",
1236 "compact_daemon_wake",
1237 "compact_daemon_migrate_scanned",
1238 "compact_daemon_free_scanned",
1239#endif
1240
1241#ifdef CONFIG_HUGETLB_PAGE
1242 "htlb_buddy_alloc_success",
1243 "htlb_buddy_alloc_fail",
1244#endif
1245 "unevictable_pgs_culled",
1246 "unevictable_pgs_scanned",
1247 "unevictable_pgs_rescued",
1248 "unevictable_pgs_mlocked",
1249 "unevictable_pgs_munlocked",
1250 "unevictable_pgs_cleared",
1251 "unevictable_pgs_stranded",
1252
1253#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1254 "thp_fault_alloc",
1255 "thp_fault_fallback",
1256 "thp_collapse_alloc",
1257 "thp_collapse_alloc_failed",
1258 "thp_file_alloc",
1259 "thp_file_mapped",
1260 "thp_split_page",
1261 "thp_split_page_failed",
1262 "thp_deferred_split_page",
1263 "thp_split_pmd",
1264#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1265 "thp_split_pud",
1266#endif
1267 "thp_zero_page_alloc",
1268 "thp_zero_page_alloc_failed",
1269 "thp_swpout",
1270 "thp_swpout_fallback",
1271#endif
1272#ifdef CONFIG_MEMORY_BALLOON
1273 "balloon_inflate",
1274 "balloon_deflate",
1275#ifdef CONFIG_BALLOON_COMPACTION
1276 "balloon_migrate",
1277#endif
1278#endif /* CONFIG_MEMORY_BALLOON */
1279#ifdef CONFIG_DEBUG_TLBFLUSH
1280 "nr_tlb_remote_flush",
1281 "nr_tlb_remote_flush_received",
1282 "nr_tlb_local_flush_all",
1283 "nr_tlb_local_flush_one",
1284#endif /* CONFIG_DEBUG_TLBFLUSH */
1285
1286#ifdef CONFIG_DEBUG_VM_VMACACHE
1287 "vmacache_find_calls",
1288 "vmacache_find_hits",
1289#endif
1290#ifdef CONFIG_SWAP
1291 "swap_ra",
1292 "swap_ra_hit",
1293#endif
1294#endif /* CONFIG_VM_EVENTS_COUNTERS */
1295};
1296#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1297
1298#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1299 defined(CONFIG_PROC_FS)
1300static void *frag_start(struct seq_file *m, loff_t *pos)
1301{
1302 pg_data_t *pgdat;
1303 loff_t node = *pos;
1304
1305 for (pgdat = first_online_pgdat();
1306 pgdat && node;
1307 pgdat = next_online_pgdat(pgdat))
1308 --node;
1309
1310 return pgdat;
1311}
1312
1313static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1314{
1315 pg_data_t *pgdat = (pg_data_t *)arg;
1316
1317 (*pos)++;
1318 return next_online_pgdat(pgdat);
1319}
1320
1321static void frag_stop(struct seq_file *m, void *arg)
1322{
1323}
1324
1325/*
1326 * Walk zones in a node and print using a callback.
1327 * If @assert_populated is true, only use callback for zones that are populated.
1328 */
1329static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1330 bool assert_populated, bool nolock,
1331 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1332{
1333 struct zone *zone;
1334 struct zone *node_zones = pgdat->node_zones;
1335 unsigned long flags;
1336
1337 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1338 if (assert_populated && !populated_zone(zone))
1339 continue;
1340
1341 if (!nolock)
1342 spin_lock_irqsave(&zone->lock, flags);
1343 print(m, pgdat, zone);
1344 if (!nolock)
1345 spin_unlock_irqrestore(&zone->lock, flags);
1346 }
1347}
1348#endif
1349
1350#ifdef CONFIG_PROC_FS
1351static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1352 struct zone *zone)
1353{
1354 int order;
1355
1356 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1357 for (order = 0; order < MAX_ORDER; ++order)
1358 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1359 seq_putc(m, '\n');
1360}
1361
1362/*
1363 * This walks the free areas for each zone.
1364 */
1365static int frag_show(struct seq_file *m, void *arg)
1366{
1367 pg_data_t *pgdat = (pg_data_t *)arg;
1368 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1369 return 0;
1370}
1371
1372static void pagetypeinfo_showfree_print(struct seq_file *m,
1373 pg_data_t *pgdat, struct zone *zone)
1374{
1375 int order, mtype;
1376
1377 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1378 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1379 pgdat->node_id,
1380 zone->name,
1381 migratetype_names[mtype]);
1382 for (order = 0; order < MAX_ORDER; ++order) {
1383 unsigned long freecount = 0;
1384 struct free_area *area;
1385 struct list_head *curr;
1386 bool overflow = false;
1387
1388 area = &(zone->free_area[order]);
1389
1390 list_for_each(curr, &area->free_list[mtype]) {
1391 /*
1392 * Cap the free_list iteration because it might
1393 * be really large and we are under a spinlock
1394 * so a long time spent here could trigger a
1395 * hard lockup detector. Anyway this is a
1396 * debugging tool so knowing there is a handful
1397 * of pages of this order should be more than
1398 * sufficient.
1399 */
1400 if (++freecount >= 100000) {
1401 overflow = true;
1402 break;
1403 }
1404 }
1405 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1406 spin_unlock_irq(&zone->lock);
1407 cond_resched();
1408 spin_lock_irq(&zone->lock);
1409 }
1410 seq_putc(m, '\n');
1411 }
1412}
1413
1414/* Print out the free pages at each order for each migatetype */
1415static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1416{
1417 int order;
1418 pg_data_t *pgdat = (pg_data_t *)arg;
1419
1420 /* Print header */
1421 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1422 for (order = 0; order < MAX_ORDER; ++order)
1423 seq_printf(m, "%6d ", order);
1424 seq_putc(m, '\n');
1425
1426 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1427
1428 return 0;
1429}
1430
1431static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1432 pg_data_t *pgdat, struct zone *zone)
1433{
1434 int mtype;
1435 unsigned long pfn;
1436 unsigned long start_pfn = zone->zone_start_pfn;
1437 unsigned long end_pfn = zone_end_pfn(zone);
1438 unsigned long count[MIGRATE_TYPES] = { 0, };
1439
1440 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1441 struct page *page;
1442
1443 page = pfn_to_online_page(pfn);
1444 if (!page)
1445 continue;
1446
1447 /* Watch for unexpected holes punched in the memmap */
1448 if (!memmap_valid_within(pfn, page, zone))
1449 continue;
1450
1451 if (page_zone(page) != zone)
1452 continue;
1453
1454 mtype = get_pageblock_migratetype(page);
1455
1456 if (mtype < MIGRATE_TYPES)
1457 count[mtype]++;
1458 }
1459
1460 /* Print counts */
1461 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1462 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1463 seq_printf(m, "%12lu ", count[mtype]);
1464 seq_putc(m, '\n');
1465}
1466
1467/* Print out the number of pageblocks for each migratetype */
1468static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1469{
1470 int mtype;
1471 pg_data_t *pgdat = (pg_data_t *)arg;
1472
1473 seq_printf(m, "\n%-23s", "Number of blocks type ");
1474 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1475 seq_printf(m, "%12s ", migratetype_names[mtype]);
1476 seq_putc(m, '\n');
1477 walk_zones_in_node(m, pgdat, true, false,
1478 pagetypeinfo_showblockcount_print);
1479
1480 return 0;
1481}
1482
1483/*
1484 * Print out the number of pageblocks for each migratetype that contain pages
1485 * of other types. This gives an indication of how well fallbacks are being
1486 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1487 * to determine what is going on
1488 */
1489static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1490{
1491#ifdef CONFIG_PAGE_OWNER
1492 int mtype;
1493
1494 if (!static_branch_unlikely(&page_owner_inited))
1495 return;
1496
1497 drain_all_pages(NULL);
1498
1499 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1500 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1501 seq_printf(m, "%12s ", migratetype_names[mtype]);
1502 seq_putc(m, '\n');
1503
1504 walk_zones_in_node(m, pgdat, true, true,
1505 pagetypeinfo_showmixedcount_print);
1506#endif /* CONFIG_PAGE_OWNER */
1507}
1508
1509/*
1510 * This prints out statistics in relation to grouping pages by mobility.
1511 * It is expensive to collect so do not constantly read the file.
1512 */
1513static int pagetypeinfo_show(struct seq_file *m, void *arg)
1514{
1515 pg_data_t *pgdat = (pg_data_t *)arg;
1516
1517 /* check memoryless node */
1518 if (!node_state(pgdat->node_id, N_MEMORY))
1519 return 0;
1520
1521 seq_printf(m, "Page block order: %d\n", pageblock_order);
1522 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1523 seq_putc(m, '\n');
1524 pagetypeinfo_showfree(m, pgdat);
1525 pagetypeinfo_showblockcount(m, pgdat);
1526 pagetypeinfo_showmixedcount(m, pgdat);
1527
1528 return 0;
1529}
1530
1531static const struct seq_operations fragmentation_op = {
1532 .start = frag_start,
1533 .next = frag_next,
1534 .stop = frag_stop,
1535 .show = frag_show,
1536};
1537
1538static const struct seq_operations pagetypeinfo_op = {
1539 .start = frag_start,
1540 .next = frag_next,
1541 .stop = frag_stop,
1542 .show = pagetypeinfo_show,
1543};
1544
1545static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1546{
1547 int zid;
1548
1549 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1550 struct zone *compare = &pgdat->node_zones[zid];
1551
1552 if (populated_zone(compare))
1553 return zone == compare;
1554 }
1555
1556 return false;
1557}
1558
1559static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1560 struct zone *zone)
1561{
1562 int i;
1563 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1564 if (is_zone_first_populated(pgdat, zone)) {
1565 seq_printf(m, "\n per-node stats");
1566 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1567 seq_printf(m, "\n %-12s %lu",
1568 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS +
1569 NR_VM_NUMA_STAT_ITEMS],
1570 node_page_state(pgdat, i));
1571 }
1572 }
1573 seq_printf(m,
1574 "\n pages free %lu"
1575 "\n min %lu"
1576 "\n low %lu"
1577 "\n high %lu"
1578 "\n spanned %lu"
1579 "\n present %lu"
1580 "\n managed %lu",
1581 zone_page_state(zone, NR_FREE_PAGES),
1582 min_wmark_pages(zone),
1583 low_wmark_pages(zone),
1584 high_wmark_pages(zone),
1585 zone->spanned_pages,
1586 zone->present_pages,
1587 zone_managed_pages(zone));
1588
1589 seq_printf(m,
1590 "\n protection: (%ld",
1591 zone->lowmem_reserve[0]);
1592 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1593 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1594 seq_putc(m, ')');
1595
1596 /* If unpopulated, no other information is useful */
1597 if (!populated_zone(zone)) {
1598 seq_putc(m, '\n');
1599 return;
1600 }
1601
1602 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1603 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1604 zone_page_state(zone, i));
1605
1606#ifdef CONFIG_NUMA
1607 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1608 seq_printf(m, "\n %-12s %lu",
1609 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1610 zone_numa_state_snapshot(zone, i));
1611#endif
1612
1613 seq_printf(m, "\n pagesets");
1614 for_each_online_cpu(i) {
1615 struct per_cpu_pageset *pageset;
1616
1617 pageset = per_cpu_ptr(zone->pageset, i);
1618 seq_printf(m,
1619 "\n cpu: %i"
1620 "\n count: %i"
1621 "\n high: %i"
1622 "\n batch: %i",
1623 i,
1624 pageset->pcp.count,
1625 pageset->pcp.high,
1626 pageset->pcp.batch);
1627#ifdef CONFIG_SMP
1628 seq_printf(m, "\n vm stats threshold: %d",
1629 pageset->stat_threshold);
1630#endif
1631 }
1632 seq_printf(m,
1633 "\n node_unreclaimable: %u"
1634 "\n start_pfn: %lu",
1635 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1636 zone->zone_start_pfn);
1637 seq_putc(m, '\n');
1638}
1639
1640/*
1641 * Output information about zones in @pgdat. All zones are printed regardless
1642 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1643 * set of all zones and userspace would not be aware of such zones if they are
1644 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1645 */
1646static int zoneinfo_show(struct seq_file *m, void *arg)
1647{
1648 pg_data_t *pgdat = (pg_data_t *)arg;
1649 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1650 return 0;
1651}
1652
1653static const struct seq_operations zoneinfo_op = {
1654 .start = frag_start, /* iterate over all zones. The same as in
1655 * fragmentation. */
1656 .next = frag_next,
1657 .stop = frag_stop,
1658 .show = zoneinfo_show,
1659};
1660
1661enum writeback_stat_item {
1662 NR_DIRTY_THRESHOLD,
1663 NR_DIRTY_BG_THRESHOLD,
1664 NR_VM_WRITEBACK_STAT_ITEMS,
1665};
1666
1667static void *vmstat_start(struct seq_file *m, loff_t *pos)
1668{
1669 unsigned long *v;
1670 int i, stat_items_size;
1671
1672 if (*pos >= ARRAY_SIZE(vmstat_text))
1673 return NULL;
1674 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1675 NR_VM_NUMA_STAT_ITEMS * sizeof(unsigned long) +
1676 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1677 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1678
1679#ifdef CONFIG_VM_EVENT_COUNTERS
1680 stat_items_size += sizeof(struct vm_event_state);
1681#endif
1682
1683 BUILD_BUG_ON(stat_items_size !=
1684 ARRAY_SIZE(vmstat_text) * sizeof(unsigned long));
1685 v = kmalloc(stat_items_size, GFP_KERNEL);
1686 m->private = v;
1687 if (!v)
1688 return ERR_PTR(-ENOMEM);
1689 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1690 v[i] = global_zone_page_state(i);
1691 v += NR_VM_ZONE_STAT_ITEMS;
1692
1693#ifdef CONFIG_NUMA
1694 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1695 v[i] = global_numa_state(i);
1696 v += NR_VM_NUMA_STAT_ITEMS;
1697#endif
1698
1699 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1700 v[i] = global_node_page_state(i);
1701 v += NR_VM_NODE_STAT_ITEMS;
1702
1703 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1704 v + NR_DIRTY_THRESHOLD);
1705 v += NR_VM_WRITEBACK_STAT_ITEMS;
1706
1707#ifdef CONFIG_VM_EVENT_COUNTERS
1708 all_vm_events(v);
1709 v[PGPGIN] /= 2; /* sectors -> kbytes */
1710 v[PGPGOUT] /= 2;
1711#endif
1712 return (unsigned long *)m->private + *pos;
1713}
1714
1715static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1716{
1717 (*pos)++;
1718 if (*pos >= ARRAY_SIZE(vmstat_text))
1719 return NULL;
1720 return (unsigned long *)m->private + *pos;
1721}
1722
1723static int vmstat_show(struct seq_file *m, void *arg)
1724{
1725 unsigned long *l = arg;
1726 unsigned long off = l - (unsigned long *)m->private;
1727
1728 seq_puts(m, vmstat_text[off]);
1729 seq_put_decimal_ull(m, " ", *l);
1730 seq_putc(m, '\n');
1731 return 0;
1732}
1733
1734static void vmstat_stop(struct seq_file *m, void *arg)
1735{
1736 kfree(m->private);
1737 m->private = NULL;
1738}
1739
1740static const struct seq_operations vmstat_op = {
1741 .start = vmstat_start,
1742 .next = vmstat_next,
1743 .stop = vmstat_stop,
1744 .show = vmstat_show,
1745};
1746#endif /* CONFIG_PROC_FS */
1747
1748#ifdef CONFIG_SMP
1749static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1750int sysctl_stat_interval __read_mostly = HZ;
1751
1752#ifdef CONFIG_PROC_FS
1753static void refresh_vm_stats(struct work_struct *work)
1754{
1755 refresh_cpu_vm_stats(true);
1756}
1757
1758int vmstat_refresh(struct ctl_table *table, int write,
1759 void __user *buffer, size_t *lenp, loff_t *ppos)
1760{
1761 long val;
1762 int err;
1763 int i;
1764
1765 /*
1766 * The regular update, every sysctl_stat_interval, may come later
1767 * than expected: leaving a significant amount in per_cpu buckets.
1768 * This is particularly misleading when checking a quantity of HUGE
1769 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1770 * which can equally be echo'ed to or cat'ted from (by root),
1771 * can be used to update the stats just before reading them.
1772 *
1773 * Oh, and since global_zone_page_state() etc. are so careful to hide
1774 * transiently negative values, report an error here if any of
1775 * the stats is negative, so we know to go looking for imbalance.
1776 */
1777 err = schedule_on_each_cpu(refresh_vm_stats);
1778 if (err)
1779 return err;
1780 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1781 val = atomic_long_read(&vm_zone_stat[i]);
1782 if (val < 0) {
1783 pr_warn("%s: %s %ld\n",
1784 __func__, vmstat_text[i], val);
1785 err = -EINVAL;
1786 }
1787 }
1788#ifdef CONFIG_NUMA
1789 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1790 val = atomic_long_read(&vm_numa_stat[i]);
1791 if (val < 0) {
1792 pr_warn("%s: %s %ld\n",
1793 __func__, vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], val);
1794 err = -EINVAL;
1795 }
1796 }
1797#endif
1798 if (err)
1799 return err;
1800 if (write)
1801 *ppos += *lenp;
1802 else
1803 *lenp = 0;
1804 return 0;
1805}
1806#endif /* CONFIG_PROC_FS */
1807
1808static void vmstat_update(struct work_struct *w)
1809{
1810 if (refresh_cpu_vm_stats(true)) {
1811 /*
1812 * Counters were updated so we expect more updates
1813 * to occur in the future. Keep on running the
1814 * update worker thread.
1815 */
1816 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1817 this_cpu_ptr(&vmstat_work),
1818 round_jiffies_relative(sysctl_stat_interval));
1819 }
1820}
1821
1822/*
1823 * Switch off vmstat processing and then fold all the remaining differentials
1824 * until the diffs stay at zero. The function is used by NOHZ and can only be
1825 * invoked when tick processing is not active.
1826 */
1827/*
1828 * Check if the diffs for a certain cpu indicate that
1829 * an update is needed.
1830 */
1831static bool need_update(int cpu)
1832{
1833 struct zone *zone;
1834
1835 for_each_populated_zone(zone) {
1836 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1837
1838 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1839#ifdef CONFIG_NUMA
1840 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
1841#endif
1842
1843 /*
1844 * The fast way of checking if there are any vmstat diffs.
1845 */
1846 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1847 sizeof(p->vm_stat_diff[0])))
1848 return true;
1849#ifdef CONFIG_NUMA
1850 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1851 sizeof(p->vm_numa_stat_diff[0])))
1852 return true;
1853#endif
1854 }
1855 return false;
1856}
1857
1858/*
1859 * Switch off vmstat processing and then fold all the remaining differentials
1860 * until the diffs stay at zero. The function is used by NOHZ and can only be
1861 * invoked when tick processing is not active.
1862 */
1863void quiet_vmstat(void)
1864{
1865 if (system_state != SYSTEM_RUNNING)
1866 return;
1867
1868 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1869 return;
1870
1871 if (!need_update(smp_processor_id()))
1872 return;
1873
1874 /*
1875 * Just refresh counters and do not care about the pending delayed
1876 * vmstat_update. It doesn't fire that often to matter and canceling
1877 * it would be too expensive from this path.
1878 * vmstat_shepherd will take care about that for us.
1879 */
1880 refresh_cpu_vm_stats(false);
1881}
1882
1883/*
1884 * Shepherd worker thread that checks the
1885 * differentials of processors that have their worker
1886 * threads for vm statistics updates disabled because of
1887 * inactivity.
1888 */
1889static void vmstat_shepherd(struct work_struct *w);
1890
1891static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1892
1893static void vmstat_shepherd(struct work_struct *w)
1894{
1895 int cpu;
1896
1897 get_online_cpus();
1898 /* Check processors whose vmstat worker threads have been disabled */
1899 for_each_online_cpu(cpu) {
1900 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1901
1902 if (!delayed_work_pending(dw) && need_update(cpu))
1903 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1904 }
1905 put_online_cpus();
1906
1907 schedule_delayed_work(&shepherd,
1908 round_jiffies_relative(sysctl_stat_interval));
1909}
1910
1911static void __init start_shepherd_timer(void)
1912{
1913 int cpu;
1914
1915 for_each_possible_cpu(cpu)
1916 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1917 vmstat_update);
1918
1919 schedule_delayed_work(&shepherd,
1920 round_jiffies_relative(sysctl_stat_interval));
1921}
1922
1923static void __init init_cpu_node_state(void)
1924{
1925 int node;
1926
1927 for_each_online_node(node) {
1928 if (cpumask_weight(cpumask_of_node(node)) > 0)
1929 node_set_state(node, N_CPU);
1930 }
1931}
1932
1933static int vmstat_cpu_online(unsigned int cpu)
1934{
1935 refresh_zone_stat_thresholds();
1936 node_set_state(cpu_to_node(cpu), N_CPU);
1937 return 0;
1938}
1939
1940static int vmstat_cpu_down_prep(unsigned int cpu)
1941{
1942 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1943 return 0;
1944}
1945
1946static int vmstat_cpu_dead(unsigned int cpu)
1947{
1948 const struct cpumask *node_cpus;
1949 int node;
1950
1951 node = cpu_to_node(cpu);
1952
1953 refresh_zone_stat_thresholds();
1954 node_cpus = cpumask_of_node(node);
1955 if (cpumask_weight(node_cpus) > 0)
1956 return 0;
1957
1958 node_clear_state(node, N_CPU);
1959 return 0;
1960}
1961
1962#endif
1963
1964struct workqueue_struct *mm_percpu_wq;
1965
1966void __init init_mm_internals(void)
1967{
1968 int ret __maybe_unused;
1969
1970 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
1971
1972#ifdef CONFIG_SMP
1973 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1974 NULL, vmstat_cpu_dead);
1975 if (ret < 0)
1976 pr_err("vmstat: failed to register 'dead' hotplug state\n");
1977
1978 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
1979 vmstat_cpu_online,
1980 vmstat_cpu_down_prep);
1981 if (ret < 0)
1982 pr_err("vmstat: failed to register 'online' hotplug state\n");
1983
1984 get_online_cpus();
1985 init_cpu_node_state();
1986 put_online_cpus();
1987
1988 start_shepherd_timer();
1989#endif
1990#ifdef CONFIG_PROC_FS
1991 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
1992 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
1993 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
1994 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
1995#endif
1996}
1997
1998#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1999
2000/*
2001 * Return an index indicating how much of the available free memory is
2002 * unusable for an allocation of the requested size.
2003 */
2004static int unusable_free_index(unsigned int order,
2005 struct contig_page_info *info)
2006{
2007 /* No free memory is interpreted as all free memory is unusable */
2008 if (info->free_pages == 0)
2009 return 1000;
2010
2011 /*
2012 * Index should be a value between 0 and 1. Return a value to 3
2013 * decimal places.
2014 *
2015 * 0 => no fragmentation
2016 * 1 => high fragmentation
2017 */
2018 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2019
2020}
2021
2022static void unusable_show_print(struct seq_file *m,
2023 pg_data_t *pgdat, struct zone *zone)
2024{
2025 unsigned int order;
2026 int index;
2027 struct contig_page_info info;
2028
2029 seq_printf(m, "Node %d, zone %8s ",
2030 pgdat->node_id,
2031 zone->name);
2032 for (order = 0; order < MAX_ORDER; ++order) {
2033 fill_contig_page_info(zone, order, &info);
2034 index = unusable_free_index(order, &info);
2035 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2036 }
2037
2038 seq_putc(m, '\n');
2039}
2040
2041/*
2042 * Display unusable free space index
2043 *
2044 * The unusable free space index measures how much of the available free
2045 * memory cannot be used to satisfy an allocation of a given size and is a
2046 * value between 0 and 1. The higher the value, the more of free memory is
2047 * unusable and by implication, the worse the external fragmentation is. This
2048 * can be expressed as a percentage by multiplying by 100.
2049 */
2050static int unusable_show(struct seq_file *m, void *arg)
2051{
2052 pg_data_t *pgdat = (pg_data_t *)arg;
2053
2054 /* check memoryless node */
2055 if (!node_state(pgdat->node_id, N_MEMORY))
2056 return 0;
2057
2058 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2059
2060 return 0;
2061}
2062
2063static const struct seq_operations unusable_op = {
2064 .start = frag_start,
2065 .next = frag_next,
2066 .stop = frag_stop,
2067 .show = unusable_show,
2068};
2069
2070static int unusable_open(struct inode *inode, struct file *file)
2071{
2072 return seq_open(file, &unusable_op);
2073}
2074
2075static const struct file_operations unusable_file_ops = {
2076 .open = unusable_open,
2077 .read = seq_read,
2078 .llseek = seq_lseek,
2079 .release = seq_release,
2080};
2081
2082static void extfrag_show_print(struct seq_file *m,
2083 pg_data_t *pgdat, struct zone *zone)
2084{
2085 unsigned int order;
2086 int index;
2087
2088 /* Alloc on stack as interrupts are disabled for zone walk */
2089 struct contig_page_info info;
2090
2091 seq_printf(m, "Node %d, zone %8s ",
2092 pgdat->node_id,
2093 zone->name);
2094 for (order = 0; order < MAX_ORDER; ++order) {
2095 fill_contig_page_info(zone, order, &info);
2096 index = __fragmentation_index(order, &info);
2097 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2098 }
2099
2100 seq_putc(m, '\n');
2101}
2102
2103/*
2104 * Display fragmentation index for orders that allocations would fail for
2105 */
2106static int extfrag_show(struct seq_file *m, void *arg)
2107{
2108 pg_data_t *pgdat = (pg_data_t *)arg;
2109
2110 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2111
2112 return 0;
2113}
2114
2115static const struct seq_operations extfrag_op = {
2116 .start = frag_start,
2117 .next = frag_next,
2118 .stop = frag_stop,
2119 .show = extfrag_show,
2120};
2121
2122static int extfrag_open(struct inode *inode, struct file *file)
2123{
2124 return seq_open(file, &extfrag_op);
2125}
2126
2127static const struct file_operations extfrag_file_ops = {
2128 .open = extfrag_open,
2129 .read = seq_read,
2130 .llseek = seq_lseek,
2131 .release = seq_release,
2132};
2133
2134static int __init extfrag_debug_init(void)
2135{
2136 struct dentry *extfrag_debug_root;
2137
2138 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2139
2140 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2141 &unusable_file_ops);
2142
2143 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2144 &extfrag_file_ops);
2145
2146 return 0;
2147}
2148
2149module_init(extfrag_debug_init);
2150#endif
1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
11 */
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/err.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/cpu.h>
18#include <linux/cpumask.h>
19#include <linux/vmstat.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/debugfs.h>
23#include <linux/sched.h>
24#include <linux/math64.h>
25#include <linux/writeback.h>
26#include <linux/compaction.h>
27#include <linux/mm_inline.h>
28#include <linux/page_ext.h>
29#include <linux/page_owner.h>
30
31#include "internal.h"
32
33#ifdef CONFIG_VM_EVENT_COUNTERS
34DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37static void sum_vm_events(unsigned long *ret)
38{
39 int cpu;
40 int i;
41
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44 for_each_online_cpu(cpu) {
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
49 }
50}
51
52/*
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
56*/
57void all_vm_events(unsigned long *ret)
58{
59 get_online_cpus();
60 sum_vm_events(ret);
61 put_online_cpus();
62}
63EXPORT_SYMBOL_GPL(all_vm_events);
64
65/*
66 * Fold the foreign cpu events into our own.
67 *
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
70 */
71void vm_events_fold_cpu(int cpu)
72{
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
75
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
79 }
80}
81
82#endif /* CONFIG_VM_EVENT_COUNTERS */
83
84/*
85 * Manage combined zone based / global counters
86 *
87 * vm_stat contains the global counters
88 */
89atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90EXPORT_SYMBOL(vm_stat);
91
92#ifdef CONFIG_SMP
93
94int calculate_pressure_threshold(struct zone *zone)
95{
96 int threshold;
97 int watermark_distance;
98
99 /*
100 * As vmstats are not up to date, there is drift between the estimated
101 * and real values. For high thresholds and a high number of CPUs, it
102 * is possible for the min watermark to be breached while the estimated
103 * value looks fine. The pressure threshold is a reduced value such
104 * that even the maximum amount of drift will not accidentally breach
105 * the min watermark
106 */
107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109
110 /*
111 * Maximum threshold is 125
112 */
113 threshold = min(125, threshold);
114
115 return threshold;
116}
117
118int calculate_normal_threshold(struct zone *zone)
119{
120 int threshold;
121 int mem; /* memory in 128 MB units */
122
123 /*
124 * The threshold scales with the number of processors and the amount
125 * of memory per zone. More memory means that we can defer updates for
126 * longer, more processors could lead to more contention.
127 * fls() is used to have a cheap way of logarithmic scaling.
128 *
129 * Some sample thresholds:
130 *
131 * Threshold Processors (fls) Zonesize fls(mem+1)
132 * ------------------------------------------------------------------
133 * 8 1 1 0.9-1 GB 4
134 * 16 2 2 0.9-1 GB 4
135 * 20 2 2 1-2 GB 5
136 * 24 2 2 2-4 GB 6
137 * 28 2 2 4-8 GB 7
138 * 32 2 2 8-16 GB 8
139 * 4 2 2 <128M 1
140 * 30 4 3 2-4 GB 5
141 * 48 4 3 8-16 GB 8
142 * 32 8 4 1-2 GB 4
143 * 32 8 4 0.9-1GB 4
144 * 10 16 5 <128M 1
145 * 40 16 5 900M 4
146 * 70 64 7 2-4 GB 5
147 * 84 64 7 4-8 GB 6
148 * 108 512 9 4-8 GB 6
149 * 125 1024 10 8-16 GB 8
150 * 125 1024 10 16-32 GB 9
151 */
152
153 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154
155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156
157 /*
158 * Maximum threshold is 125
159 */
160 threshold = min(125, threshold);
161
162 return threshold;
163}
164
165/*
166 * Refresh the thresholds for each zone.
167 */
168void refresh_zone_stat_thresholds(void)
169{
170 struct zone *zone;
171 int cpu;
172 int threshold;
173
174 for_each_populated_zone(zone) {
175 unsigned long max_drift, tolerate_drift;
176
177 threshold = calculate_normal_threshold(zone);
178
179 for_each_online_cpu(cpu)
180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181 = threshold;
182
183 /*
184 * Only set percpu_drift_mark if there is a danger that
185 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 * the min watermark could be breached by an allocation
187 */
188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 max_drift = num_online_cpus() * threshold;
190 if (max_drift > tolerate_drift)
191 zone->percpu_drift_mark = high_wmark_pages(zone) +
192 max_drift;
193 }
194}
195
196void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 int (*calculate_pressure)(struct zone *))
198{
199 struct zone *zone;
200 int cpu;
201 int threshold;
202 int i;
203
204 for (i = 0; i < pgdat->nr_zones; i++) {
205 zone = &pgdat->node_zones[i];
206 if (!zone->percpu_drift_mark)
207 continue;
208
209 threshold = (*calculate_pressure)(zone);
210 for_each_online_cpu(cpu)
211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212 = threshold;
213 }
214}
215
216/*
217 * For use when we know that interrupts are disabled,
218 * or when we know that preemption is disabled and that
219 * particular counter cannot be updated from interrupt context.
220 */
221void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222 long delta)
223{
224 struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 s8 __percpu *p = pcp->vm_stat_diff + item;
226 long x;
227 long t;
228
229 x = delta + __this_cpu_read(*p);
230
231 t = __this_cpu_read(pcp->stat_threshold);
232
233 if (unlikely(x > t || x < -t)) {
234 zone_page_state_add(x, zone, item);
235 x = 0;
236 }
237 __this_cpu_write(*p, x);
238}
239EXPORT_SYMBOL(__mod_zone_page_state);
240
241/*
242 * Optimized increment and decrement functions.
243 *
244 * These are only for a single page and therefore can take a struct page *
245 * argument instead of struct zone *. This allows the inclusion of the code
246 * generated for page_zone(page) into the optimized functions.
247 *
248 * No overflow check is necessary and therefore the differential can be
249 * incremented or decremented in place which may allow the compilers to
250 * generate better code.
251 * The increment or decrement is known and therefore one boundary check can
252 * be omitted.
253 *
254 * NOTE: These functions are very performance sensitive. Change only
255 * with care.
256 *
257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
258 * However, the code must first determine the differential location in a zone
259 * based on the processor number and then inc/dec the counter. There is no
260 * guarantee without disabling preemption that the processor will not change
261 * in between and therefore the atomicity vs. interrupt cannot be exploited
262 * in a useful way here.
263 */
264void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
265{
266 struct per_cpu_pageset __percpu *pcp = zone->pageset;
267 s8 __percpu *p = pcp->vm_stat_diff + item;
268 s8 v, t;
269
270 v = __this_cpu_inc_return(*p);
271 t = __this_cpu_read(pcp->stat_threshold);
272 if (unlikely(v > t)) {
273 s8 overstep = t >> 1;
274
275 zone_page_state_add(v + overstep, zone, item);
276 __this_cpu_write(*p, -overstep);
277 }
278}
279
280void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281{
282 __inc_zone_state(page_zone(page), item);
283}
284EXPORT_SYMBOL(__inc_zone_page_state);
285
286void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
287{
288 struct per_cpu_pageset __percpu *pcp = zone->pageset;
289 s8 __percpu *p = pcp->vm_stat_diff + item;
290 s8 v, t;
291
292 v = __this_cpu_dec_return(*p);
293 t = __this_cpu_read(pcp->stat_threshold);
294 if (unlikely(v < - t)) {
295 s8 overstep = t >> 1;
296
297 zone_page_state_add(v - overstep, zone, item);
298 __this_cpu_write(*p, overstep);
299 }
300}
301
302void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303{
304 __dec_zone_state(page_zone(page), item);
305}
306EXPORT_SYMBOL(__dec_zone_page_state);
307
308#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
309/*
310 * If we have cmpxchg_local support then we do not need to incur the overhead
311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312 *
313 * mod_state() modifies the zone counter state through atomic per cpu
314 * operations.
315 *
316 * Overstep mode specifies how overstep should handled:
317 * 0 No overstepping
318 * 1 Overstepping half of threshold
319 * -1 Overstepping minus half of threshold
320*/
321static inline void mod_state(struct zone *zone, enum zone_stat_item item,
322 long delta, int overstep_mode)
323{
324 struct per_cpu_pageset __percpu *pcp = zone->pageset;
325 s8 __percpu *p = pcp->vm_stat_diff + item;
326 long o, n, t, z;
327
328 do {
329 z = 0; /* overflow to zone counters */
330
331 /*
332 * The fetching of the stat_threshold is racy. We may apply
333 * a counter threshold to the wrong the cpu if we get
334 * rescheduled while executing here. However, the next
335 * counter update will apply the threshold again and
336 * therefore bring the counter under the threshold again.
337 *
338 * Most of the time the thresholds are the same anyways
339 * for all cpus in a zone.
340 */
341 t = this_cpu_read(pcp->stat_threshold);
342
343 o = this_cpu_read(*p);
344 n = delta + o;
345
346 if (n > t || n < -t) {
347 int os = overstep_mode * (t >> 1) ;
348
349 /* Overflow must be added to zone counters */
350 z = n + os;
351 n = -os;
352 }
353 } while (this_cpu_cmpxchg(*p, o, n) != o);
354
355 if (z)
356 zone_page_state_add(z, zone, item);
357}
358
359void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360 long delta)
361{
362 mod_state(zone, item, delta, 0);
363}
364EXPORT_SYMBOL(mod_zone_page_state);
365
366void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367{
368 mod_state(zone, item, 1, 1);
369}
370
371void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372{
373 mod_state(page_zone(page), item, 1, 1);
374}
375EXPORT_SYMBOL(inc_zone_page_state);
376
377void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378{
379 mod_state(page_zone(page), item, -1, -1);
380}
381EXPORT_SYMBOL(dec_zone_page_state);
382#else
383/*
384 * Use interrupt disable to serialize counter updates
385 */
386void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387 long delta)
388{
389 unsigned long flags;
390
391 local_irq_save(flags);
392 __mod_zone_page_state(zone, item, delta);
393 local_irq_restore(flags);
394}
395EXPORT_SYMBOL(mod_zone_page_state);
396
397void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398{
399 unsigned long flags;
400
401 local_irq_save(flags);
402 __inc_zone_state(zone, item);
403 local_irq_restore(flags);
404}
405
406void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407{
408 unsigned long flags;
409 struct zone *zone;
410
411 zone = page_zone(page);
412 local_irq_save(flags);
413 __inc_zone_state(zone, item);
414 local_irq_restore(flags);
415}
416EXPORT_SYMBOL(inc_zone_page_state);
417
418void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419{
420 unsigned long flags;
421
422 local_irq_save(flags);
423 __dec_zone_page_state(page, item);
424 local_irq_restore(flags);
425}
426EXPORT_SYMBOL(dec_zone_page_state);
427#endif
428
429
430/*
431 * Fold a differential into the global counters.
432 * Returns the number of counters updated.
433 */
434static int fold_diff(int *diff)
435{
436 int i;
437 int changes = 0;
438
439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440 if (diff[i]) {
441 atomic_long_add(diff[i], &vm_stat[i]);
442 changes++;
443 }
444 return changes;
445}
446
447/*
448 * Update the zone counters for the current cpu.
449 *
450 * Note that refresh_cpu_vm_stats strives to only access
451 * node local memory. The per cpu pagesets on remote zones are placed
452 * in the memory local to the processor using that pageset. So the
453 * loop over all zones will access a series of cachelines local to
454 * the processor.
455 *
456 * The call to zone_page_state_add updates the cachelines with the
457 * statistics in the remote zone struct as well as the global cachelines
458 * with the global counters. These could cause remote node cache line
459 * bouncing and will have to be only done when necessary.
460 *
461 * The function returns the number of global counters updated.
462 */
463static int refresh_cpu_vm_stats(bool do_pagesets)
464{
465 struct zone *zone;
466 int i;
467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468 int changes = 0;
469
470 for_each_populated_zone(zone) {
471 struct per_cpu_pageset __percpu *p = zone->pageset;
472
473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474 int v;
475
476 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477 if (v) {
478
479 atomic_long_add(v, &zone->vm_stat[i]);
480 global_diff[i] += v;
481#ifdef CONFIG_NUMA
482 /* 3 seconds idle till flush */
483 __this_cpu_write(p->expire, 3);
484#endif
485 }
486 }
487#ifdef CONFIG_NUMA
488 if (do_pagesets) {
489 cond_resched();
490 /*
491 * Deal with draining the remote pageset of this
492 * processor
493 *
494 * Check if there are pages remaining in this pageset
495 * if not then there is nothing to expire.
496 */
497 if (!__this_cpu_read(p->expire) ||
498 !__this_cpu_read(p->pcp.count))
499 continue;
500
501 /*
502 * We never drain zones local to this processor.
503 */
504 if (zone_to_nid(zone) == numa_node_id()) {
505 __this_cpu_write(p->expire, 0);
506 continue;
507 }
508
509 if (__this_cpu_dec_return(p->expire))
510 continue;
511
512 if (__this_cpu_read(p->pcp.count)) {
513 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
514 changes++;
515 }
516 }
517#endif
518 }
519 changes += fold_diff(global_diff);
520 return changes;
521}
522
523/*
524 * Fold the data for an offline cpu into the global array.
525 * There cannot be any access by the offline cpu and therefore
526 * synchronization is simplified.
527 */
528void cpu_vm_stats_fold(int cpu)
529{
530 struct zone *zone;
531 int i;
532 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
533
534 for_each_populated_zone(zone) {
535 struct per_cpu_pageset *p;
536
537 p = per_cpu_ptr(zone->pageset, cpu);
538
539 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
540 if (p->vm_stat_diff[i]) {
541 int v;
542
543 v = p->vm_stat_diff[i];
544 p->vm_stat_diff[i] = 0;
545 atomic_long_add(v, &zone->vm_stat[i]);
546 global_diff[i] += v;
547 }
548 }
549
550 fold_diff(global_diff);
551}
552
553/*
554 * this is only called if !populated_zone(zone), which implies no other users of
555 * pset->vm_stat_diff[] exsist.
556 */
557void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
558{
559 int i;
560
561 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
562 if (pset->vm_stat_diff[i]) {
563 int v = pset->vm_stat_diff[i];
564 pset->vm_stat_diff[i] = 0;
565 atomic_long_add(v, &zone->vm_stat[i]);
566 atomic_long_add(v, &vm_stat[i]);
567 }
568}
569#endif
570
571#ifdef CONFIG_NUMA
572/*
573 * zonelist = the list of zones passed to the allocator
574 * z = the zone from which the allocation occurred.
575 *
576 * Must be called with interrupts disabled.
577 *
578 * When __GFP_OTHER_NODE is set assume the node of the preferred
579 * zone is the local node. This is useful for daemons who allocate
580 * memory on behalf of other processes.
581 */
582void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
583{
584 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
585 __inc_zone_state(z, NUMA_HIT);
586 } else {
587 __inc_zone_state(z, NUMA_MISS);
588 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
589 }
590 if (z->node == ((flags & __GFP_OTHER_NODE) ?
591 preferred_zone->node : numa_node_id()))
592 __inc_zone_state(z, NUMA_LOCAL);
593 else
594 __inc_zone_state(z, NUMA_OTHER);
595}
596
597/*
598 * Determine the per node value of a stat item.
599 */
600unsigned long node_page_state(int node, enum zone_stat_item item)
601{
602 struct zone *zones = NODE_DATA(node)->node_zones;
603
604 return
605#ifdef CONFIG_ZONE_DMA
606 zone_page_state(&zones[ZONE_DMA], item) +
607#endif
608#ifdef CONFIG_ZONE_DMA32
609 zone_page_state(&zones[ZONE_DMA32], item) +
610#endif
611#ifdef CONFIG_HIGHMEM
612 zone_page_state(&zones[ZONE_HIGHMEM], item) +
613#endif
614 zone_page_state(&zones[ZONE_NORMAL], item) +
615 zone_page_state(&zones[ZONE_MOVABLE], item);
616}
617
618#endif
619
620#ifdef CONFIG_COMPACTION
621
622struct contig_page_info {
623 unsigned long free_pages;
624 unsigned long free_blocks_total;
625 unsigned long free_blocks_suitable;
626};
627
628/*
629 * Calculate the number of free pages in a zone, how many contiguous
630 * pages are free and how many are large enough to satisfy an allocation of
631 * the target size. Note that this function makes no attempt to estimate
632 * how many suitable free blocks there *might* be if MOVABLE pages were
633 * migrated. Calculating that is possible, but expensive and can be
634 * figured out from userspace
635 */
636static void fill_contig_page_info(struct zone *zone,
637 unsigned int suitable_order,
638 struct contig_page_info *info)
639{
640 unsigned int order;
641
642 info->free_pages = 0;
643 info->free_blocks_total = 0;
644 info->free_blocks_suitable = 0;
645
646 for (order = 0; order < MAX_ORDER; order++) {
647 unsigned long blocks;
648
649 /* Count number of free blocks */
650 blocks = zone->free_area[order].nr_free;
651 info->free_blocks_total += blocks;
652
653 /* Count free base pages */
654 info->free_pages += blocks << order;
655
656 /* Count the suitable free blocks */
657 if (order >= suitable_order)
658 info->free_blocks_suitable += blocks <<
659 (order - suitable_order);
660 }
661}
662
663/*
664 * A fragmentation index only makes sense if an allocation of a requested
665 * size would fail. If that is true, the fragmentation index indicates
666 * whether external fragmentation or a lack of memory was the problem.
667 * The value can be used to determine if page reclaim or compaction
668 * should be used
669 */
670static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
671{
672 unsigned long requested = 1UL << order;
673
674 if (!info->free_blocks_total)
675 return 0;
676
677 /* Fragmentation index only makes sense when a request would fail */
678 if (info->free_blocks_suitable)
679 return -1000;
680
681 /*
682 * Index is between 0 and 1 so return within 3 decimal places
683 *
684 * 0 => allocation would fail due to lack of memory
685 * 1 => allocation would fail due to fragmentation
686 */
687 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
688}
689
690/* Same as __fragmentation index but allocs contig_page_info on stack */
691int fragmentation_index(struct zone *zone, unsigned int order)
692{
693 struct contig_page_info info;
694
695 fill_contig_page_info(zone, order, &info);
696 return __fragmentation_index(order, &info);
697}
698#endif
699
700#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
701#ifdef CONFIG_ZONE_DMA
702#define TEXT_FOR_DMA(xx) xx "_dma",
703#else
704#define TEXT_FOR_DMA(xx)
705#endif
706
707#ifdef CONFIG_ZONE_DMA32
708#define TEXT_FOR_DMA32(xx) xx "_dma32",
709#else
710#define TEXT_FOR_DMA32(xx)
711#endif
712
713#ifdef CONFIG_HIGHMEM
714#define TEXT_FOR_HIGHMEM(xx) xx "_high",
715#else
716#define TEXT_FOR_HIGHMEM(xx)
717#endif
718
719#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
720 TEXT_FOR_HIGHMEM(xx) xx "_movable",
721
722const char * const vmstat_text[] = {
723 /* enum zone_stat_item countes */
724 "nr_free_pages",
725 "nr_alloc_batch",
726 "nr_inactive_anon",
727 "nr_active_anon",
728 "nr_inactive_file",
729 "nr_active_file",
730 "nr_unevictable",
731 "nr_mlock",
732 "nr_anon_pages",
733 "nr_mapped",
734 "nr_file_pages",
735 "nr_dirty",
736 "nr_writeback",
737 "nr_slab_reclaimable",
738 "nr_slab_unreclaimable",
739 "nr_page_table_pages",
740 "nr_kernel_stack",
741 "nr_unstable",
742 "nr_bounce",
743 "nr_vmscan_write",
744 "nr_vmscan_immediate_reclaim",
745 "nr_writeback_temp",
746 "nr_isolated_anon",
747 "nr_isolated_file",
748 "nr_shmem",
749 "nr_dirtied",
750 "nr_written",
751 "nr_pages_scanned",
752
753#ifdef CONFIG_NUMA
754 "numa_hit",
755 "numa_miss",
756 "numa_foreign",
757 "numa_interleave",
758 "numa_local",
759 "numa_other",
760#endif
761 "workingset_refault",
762 "workingset_activate",
763 "workingset_nodereclaim",
764 "nr_anon_transparent_hugepages",
765 "nr_free_cma",
766
767 /* enum writeback_stat_item counters */
768 "nr_dirty_threshold",
769 "nr_dirty_background_threshold",
770
771#ifdef CONFIG_VM_EVENT_COUNTERS
772 /* enum vm_event_item counters */
773 "pgpgin",
774 "pgpgout",
775 "pswpin",
776 "pswpout",
777
778 TEXTS_FOR_ZONES("pgalloc")
779
780 "pgfree",
781 "pgactivate",
782 "pgdeactivate",
783
784 "pgfault",
785 "pgmajfault",
786 "pglazyfreed",
787
788 TEXTS_FOR_ZONES("pgrefill")
789 TEXTS_FOR_ZONES("pgsteal_kswapd")
790 TEXTS_FOR_ZONES("pgsteal_direct")
791 TEXTS_FOR_ZONES("pgscan_kswapd")
792 TEXTS_FOR_ZONES("pgscan_direct")
793 "pgscan_direct_throttle",
794
795#ifdef CONFIG_NUMA
796 "zone_reclaim_failed",
797#endif
798 "pginodesteal",
799 "slabs_scanned",
800 "kswapd_inodesteal",
801 "kswapd_low_wmark_hit_quickly",
802 "kswapd_high_wmark_hit_quickly",
803 "pageoutrun",
804 "allocstall",
805
806 "pgrotated",
807
808 "drop_pagecache",
809 "drop_slab",
810
811#ifdef CONFIG_NUMA_BALANCING
812 "numa_pte_updates",
813 "numa_huge_pte_updates",
814 "numa_hint_faults",
815 "numa_hint_faults_local",
816 "numa_pages_migrated",
817#endif
818#ifdef CONFIG_MIGRATION
819 "pgmigrate_success",
820 "pgmigrate_fail",
821#endif
822#ifdef CONFIG_COMPACTION
823 "compact_migrate_scanned",
824 "compact_free_scanned",
825 "compact_isolated",
826 "compact_stall",
827 "compact_fail",
828 "compact_success",
829 "compact_daemon_wake",
830#endif
831
832#ifdef CONFIG_HUGETLB_PAGE
833 "htlb_buddy_alloc_success",
834 "htlb_buddy_alloc_fail",
835#endif
836 "unevictable_pgs_culled",
837 "unevictable_pgs_scanned",
838 "unevictable_pgs_rescued",
839 "unevictable_pgs_mlocked",
840 "unevictable_pgs_munlocked",
841 "unevictable_pgs_cleared",
842 "unevictable_pgs_stranded",
843
844#ifdef CONFIG_TRANSPARENT_HUGEPAGE
845 "thp_fault_alloc",
846 "thp_fault_fallback",
847 "thp_collapse_alloc",
848 "thp_collapse_alloc_failed",
849 "thp_split_page",
850 "thp_split_page_failed",
851 "thp_deferred_split_page",
852 "thp_split_pmd",
853 "thp_zero_page_alloc",
854 "thp_zero_page_alloc_failed",
855#endif
856#ifdef CONFIG_MEMORY_BALLOON
857 "balloon_inflate",
858 "balloon_deflate",
859#ifdef CONFIG_BALLOON_COMPACTION
860 "balloon_migrate",
861#endif
862#endif /* CONFIG_MEMORY_BALLOON */
863#ifdef CONFIG_DEBUG_TLBFLUSH
864#ifdef CONFIG_SMP
865 "nr_tlb_remote_flush",
866 "nr_tlb_remote_flush_received",
867#endif /* CONFIG_SMP */
868 "nr_tlb_local_flush_all",
869 "nr_tlb_local_flush_one",
870#endif /* CONFIG_DEBUG_TLBFLUSH */
871
872#ifdef CONFIG_DEBUG_VM_VMACACHE
873 "vmacache_find_calls",
874 "vmacache_find_hits",
875 "vmacache_full_flushes",
876#endif
877#endif /* CONFIG_VM_EVENTS_COUNTERS */
878};
879#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
880
881
882#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
883 defined(CONFIG_PROC_FS)
884static void *frag_start(struct seq_file *m, loff_t *pos)
885{
886 pg_data_t *pgdat;
887 loff_t node = *pos;
888
889 for (pgdat = first_online_pgdat();
890 pgdat && node;
891 pgdat = next_online_pgdat(pgdat))
892 --node;
893
894 return pgdat;
895}
896
897static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
898{
899 pg_data_t *pgdat = (pg_data_t *)arg;
900
901 (*pos)++;
902 return next_online_pgdat(pgdat);
903}
904
905static void frag_stop(struct seq_file *m, void *arg)
906{
907}
908
909/* Walk all the zones in a node and print using a callback */
910static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
911 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
912{
913 struct zone *zone;
914 struct zone *node_zones = pgdat->node_zones;
915 unsigned long flags;
916
917 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
918 if (!populated_zone(zone))
919 continue;
920
921 spin_lock_irqsave(&zone->lock, flags);
922 print(m, pgdat, zone);
923 spin_unlock_irqrestore(&zone->lock, flags);
924 }
925}
926#endif
927
928#ifdef CONFIG_PROC_FS
929static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
930 struct zone *zone)
931{
932 int order;
933
934 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
935 for (order = 0; order < MAX_ORDER; ++order)
936 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
937 seq_putc(m, '\n');
938}
939
940/*
941 * This walks the free areas for each zone.
942 */
943static int frag_show(struct seq_file *m, void *arg)
944{
945 pg_data_t *pgdat = (pg_data_t *)arg;
946 walk_zones_in_node(m, pgdat, frag_show_print);
947 return 0;
948}
949
950static void pagetypeinfo_showfree_print(struct seq_file *m,
951 pg_data_t *pgdat, struct zone *zone)
952{
953 int order, mtype;
954
955 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
956 seq_printf(m, "Node %4d, zone %8s, type %12s ",
957 pgdat->node_id,
958 zone->name,
959 migratetype_names[mtype]);
960 for (order = 0; order < MAX_ORDER; ++order) {
961 unsigned long freecount = 0;
962 struct free_area *area;
963 struct list_head *curr;
964
965 area = &(zone->free_area[order]);
966
967 list_for_each(curr, &area->free_list[mtype])
968 freecount++;
969 seq_printf(m, "%6lu ", freecount);
970 }
971 seq_putc(m, '\n');
972 }
973}
974
975/* Print out the free pages at each order for each migatetype */
976static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
977{
978 int order;
979 pg_data_t *pgdat = (pg_data_t *)arg;
980
981 /* Print header */
982 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
983 for (order = 0; order < MAX_ORDER; ++order)
984 seq_printf(m, "%6d ", order);
985 seq_putc(m, '\n');
986
987 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
988
989 return 0;
990}
991
992static void pagetypeinfo_showblockcount_print(struct seq_file *m,
993 pg_data_t *pgdat, struct zone *zone)
994{
995 int mtype;
996 unsigned long pfn;
997 unsigned long start_pfn = zone->zone_start_pfn;
998 unsigned long end_pfn = zone_end_pfn(zone);
999 unsigned long count[MIGRATE_TYPES] = { 0, };
1000
1001 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1002 struct page *page;
1003
1004 if (!pfn_valid(pfn))
1005 continue;
1006
1007 page = pfn_to_page(pfn);
1008
1009 /* Watch for unexpected holes punched in the memmap */
1010 if (!memmap_valid_within(pfn, page, zone))
1011 continue;
1012
1013 mtype = get_pageblock_migratetype(page);
1014
1015 if (mtype < MIGRATE_TYPES)
1016 count[mtype]++;
1017 }
1018
1019 /* Print counts */
1020 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1021 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1022 seq_printf(m, "%12lu ", count[mtype]);
1023 seq_putc(m, '\n');
1024}
1025
1026/* Print out the free pages at each order for each migratetype */
1027static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1028{
1029 int mtype;
1030 pg_data_t *pgdat = (pg_data_t *)arg;
1031
1032 seq_printf(m, "\n%-23s", "Number of blocks type ");
1033 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1034 seq_printf(m, "%12s ", migratetype_names[mtype]);
1035 seq_putc(m, '\n');
1036 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1037
1038 return 0;
1039}
1040
1041#ifdef CONFIG_PAGE_OWNER
1042static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1043 pg_data_t *pgdat,
1044 struct zone *zone)
1045{
1046 struct page *page;
1047 struct page_ext *page_ext;
1048 unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1049 unsigned long end_pfn = pfn + zone->spanned_pages;
1050 unsigned long count[MIGRATE_TYPES] = { 0, };
1051 int pageblock_mt, page_mt;
1052 int i;
1053
1054 /* Scan block by block. First and last block may be incomplete */
1055 pfn = zone->zone_start_pfn;
1056
1057 /*
1058 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1059 * a zone boundary, it will be double counted between zones. This does
1060 * not matter as the mixed block count will still be correct
1061 */
1062 for (; pfn < end_pfn; ) {
1063 if (!pfn_valid(pfn)) {
1064 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1065 continue;
1066 }
1067
1068 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1069 block_end_pfn = min(block_end_pfn, end_pfn);
1070
1071 page = pfn_to_page(pfn);
1072 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1073
1074 for (; pfn < block_end_pfn; pfn++) {
1075 if (!pfn_valid_within(pfn))
1076 continue;
1077
1078 page = pfn_to_page(pfn);
1079 if (PageBuddy(page)) {
1080 pfn += (1UL << page_order(page)) - 1;
1081 continue;
1082 }
1083
1084 if (PageReserved(page))
1085 continue;
1086
1087 page_ext = lookup_page_ext(page);
1088
1089 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1090 continue;
1091
1092 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1093 if (pageblock_mt != page_mt) {
1094 if (is_migrate_cma(pageblock_mt))
1095 count[MIGRATE_MOVABLE]++;
1096 else
1097 count[pageblock_mt]++;
1098
1099 pfn = block_end_pfn;
1100 break;
1101 }
1102 pfn += (1UL << page_ext->order) - 1;
1103 }
1104 }
1105
1106 /* Print counts */
1107 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1108 for (i = 0; i < MIGRATE_TYPES; i++)
1109 seq_printf(m, "%12lu ", count[i]);
1110 seq_putc(m, '\n');
1111}
1112#endif /* CONFIG_PAGE_OWNER */
1113
1114/*
1115 * Print out the number of pageblocks for each migratetype that contain pages
1116 * of other types. This gives an indication of how well fallbacks are being
1117 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1118 * to determine what is going on
1119 */
1120static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1121{
1122#ifdef CONFIG_PAGE_OWNER
1123 int mtype;
1124
1125 if (!static_branch_unlikely(&page_owner_inited))
1126 return;
1127
1128 drain_all_pages(NULL);
1129
1130 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1131 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1132 seq_printf(m, "%12s ", migratetype_names[mtype]);
1133 seq_putc(m, '\n');
1134
1135 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1136#endif /* CONFIG_PAGE_OWNER */
1137}
1138
1139/*
1140 * This prints out statistics in relation to grouping pages by mobility.
1141 * It is expensive to collect so do not constantly read the file.
1142 */
1143static int pagetypeinfo_show(struct seq_file *m, void *arg)
1144{
1145 pg_data_t *pgdat = (pg_data_t *)arg;
1146
1147 /* check memoryless node */
1148 if (!node_state(pgdat->node_id, N_MEMORY))
1149 return 0;
1150
1151 seq_printf(m, "Page block order: %d\n", pageblock_order);
1152 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1153 seq_putc(m, '\n');
1154 pagetypeinfo_showfree(m, pgdat);
1155 pagetypeinfo_showblockcount(m, pgdat);
1156 pagetypeinfo_showmixedcount(m, pgdat);
1157
1158 return 0;
1159}
1160
1161static const struct seq_operations fragmentation_op = {
1162 .start = frag_start,
1163 .next = frag_next,
1164 .stop = frag_stop,
1165 .show = frag_show,
1166};
1167
1168static int fragmentation_open(struct inode *inode, struct file *file)
1169{
1170 return seq_open(file, &fragmentation_op);
1171}
1172
1173static const struct file_operations fragmentation_file_operations = {
1174 .open = fragmentation_open,
1175 .read = seq_read,
1176 .llseek = seq_lseek,
1177 .release = seq_release,
1178};
1179
1180static const struct seq_operations pagetypeinfo_op = {
1181 .start = frag_start,
1182 .next = frag_next,
1183 .stop = frag_stop,
1184 .show = pagetypeinfo_show,
1185};
1186
1187static int pagetypeinfo_open(struct inode *inode, struct file *file)
1188{
1189 return seq_open(file, &pagetypeinfo_op);
1190}
1191
1192static const struct file_operations pagetypeinfo_file_ops = {
1193 .open = pagetypeinfo_open,
1194 .read = seq_read,
1195 .llseek = seq_lseek,
1196 .release = seq_release,
1197};
1198
1199static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1200 struct zone *zone)
1201{
1202 int i;
1203 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1204 seq_printf(m,
1205 "\n pages free %lu"
1206 "\n min %lu"
1207 "\n low %lu"
1208 "\n high %lu"
1209 "\n scanned %lu"
1210 "\n spanned %lu"
1211 "\n present %lu"
1212 "\n managed %lu",
1213 zone_page_state(zone, NR_FREE_PAGES),
1214 min_wmark_pages(zone),
1215 low_wmark_pages(zone),
1216 high_wmark_pages(zone),
1217 zone_page_state(zone, NR_PAGES_SCANNED),
1218 zone->spanned_pages,
1219 zone->present_pages,
1220 zone->managed_pages);
1221
1222 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1223 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1224 zone_page_state(zone, i));
1225
1226 seq_printf(m,
1227 "\n protection: (%ld",
1228 zone->lowmem_reserve[0]);
1229 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1230 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1231 seq_printf(m,
1232 ")"
1233 "\n pagesets");
1234 for_each_online_cpu(i) {
1235 struct per_cpu_pageset *pageset;
1236
1237 pageset = per_cpu_ptr(zone->pageset, i);
1238 seq_printf(m,
1239 "\n cpu: %i"
1240 "\n count: %i"
1241 "\n high: %i"
1242 "\n batch: %i",
1243 i,
1244 pageset->pcp.count,
1245 pageset->pcp.high,
1246 pageset->pcp.batch);
1247#ifdef CONFIG_SMP
1248 seq_printf(m, "\n vm stats threshold: %d",
1249 pageset->stat_threshold);
1250#endif
1251 }
1252 seq_printf(m,
1253 "\n all_unreclaimable: %u"
1254 "\n start_pfn: %lu"
1255 "\n inactive_ratio: %u",
1256 !zone_reclaimable(zone),
1257 zone->zone_start_pfn,
1258 zone->inactive_ratio);
1259 seq_putc(m, '\n');
1260}
1261
1262/*
1263 * Output information about zones in @pgdat.
1264 */
1265static int zoneinfo_show(struct seq_file *m, void *arg)
1266{
1267 pg_data_t *pgdat = (pg_data_t *)arg;
1268 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1269 return 0;
1270}
1271
1272static const struct seq_operations zoneinfo_op = {
1273 .start = frag_start, /* iterate over all zones. The same as in
1274 * fragmentation. */
1275 .next = frag_next,
1276 .stop = frag_stop,
1277 .show = zoneinfo_show,
1278};
1279
1280static int zoneinfo_open(struct inode *inode, struct file *file)
1281{
1282 return seq_open(file, &zoneinfo_op);
1283}
1284
1285static const struct file_operations proc_zoneinfo_file_operations = {
1286 .open = zoneinfo_open,
1287 .read = seq_read,
1288 .llseek = seq_lseek,
1289 .release = seq_release,
1290};
1291
1292enum writeback_stat_item {
1293 NR_DIRTY_THRESHOLD,
1294 NR_DIRTY_BG_THRESHOLD,
1295 NR_VM_WRITEBACK_STAT_ITEMS,
1296};
1297
1298static void *vmstat_start(struct seq_file *m, loff_t *pos)
1299{
1300 unsigned long *v;
1301 int i, stat_items_size;
1302
1303 if (*pos >= ARRAY_SIZE(vmstat_text))
1304 return NULL;
1305 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1306 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1307
1308#ifdef CONFIG_VM_EVENT_COUNTERS
1309 stat_items_size += sizeof(struct vm_event_state);
1310#endif
1311
1312 v = kmalloc(stat_items_size, GFP_KERNEL);
1313 m->private = v;
1314 if (!v)
1315 return ERR_PTR(-ENOMEM);
1316 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1317 v[i] = global_page_state(i);
1318 v += NR_VM_ZONE_STAT_ITEMS;
1319
1320 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1321 v + NR_DIRTY_THRESHOLD);
1322 v += NR_VM_WRITEBACK_STAT_ITEMS;
1323
1324#ifdef CONFIG_VM_EVENT_COUNTERS
1325 all_vm_events(v);
1326 v[PGPGIN] /= 2; /* sectors -> kbytes */
1327 v[PGPGOUT] /= 2;
1328#endif
1329 return (unsigned long *)m->private + *pos;
1330}
1331
1332static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1333{
1334 (*pos)++;
1335 if (*pos >= ARRAY_SIZE(vmstat_text))
1336 return NULL;
1337 return (unsigned long *)m->private + *pos;
1338}
1339
1340static int vmstat_show(struct seq_file *m, void *arg)
1341{
1342 unsigned long *l = arg;
1343 unsigned long off = l - (unsigned long *)m->private;
1344
1345 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1346 return 0;
1347}
1348
1349static void vmstat_stop(struct seq_file *m, void *arg)
1350{
1351 kfree(m->private);
1352 m->private = NULL;
1353}
1354
1355static const struct seq_operations vmstat_op = {
1356 .start = vmstat_start,
1357 .next = vmstat_next,
1358 .stop = vmstat_stop,
1359 .show = vmstat_show,
1360};
1361
1362static int vmstat_open(struct inode *inode, struct file *file)
1363{
1364 return seq_open(file, &vmstat_op);
1365}
1366
1367static const struct file_operations proc_vmstat_file_operations = {
1368 .open = vmstat_open,
1369 .read = seq_read,
1370 .llseek = seq_lseek,
1371 .release = seq_release,
1372};
1373#endif /* CONFIG_PROC_FS */
1374
1375#ifdef CONFIG_SMP
1376static struct workqueue_struct *vmstat_wq;
1377static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1378int sysctl_stat_interval __read_mostly = HZ;
1379static cpumask_var_t cpu_stat_off;
1380
1381static void vmstat_update(struct work_struct *w)
1382{
1383 if (refresh_cpu_vm_stats(true)) {
1384 /*
1385 * Counters were updated so we expect more updates
1386 * to occur in the future. Keep on running the
1387 * update worker thread.
1388 * If we were marked on cpu_stat_off clear the flag
1389 * so that vmstat_shepherd doesn't schedule us again.
1390 */
1391 if (!cpumask_test_and_clear_cpu(smp_processor_id(),
1392 cpu_stat_off)) {
1393 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1394 this_cpu_ptr(&vmstat_work),
1395 round_jiffies_relative(sysctl_stat_interval));
1396 }
1397 } else {
1398 /*
1399 * We did not update any counters so the app may be in
1400 * a mode where it does not cause counter updates.
1401 * We may be uselessly running vmstat_update.
1402 * Defer the checking for differentials to the
1403 * shepherd thread on a different processor.
1404 */
1405 cpumask_set_cpu(smp_processor_id(), cpu_stat_off);
1406 }
1407}
1408
1409/*
1410 * Switch off vmstat processing and then fold all the remaining differentials
1411 * until the diffs stay at zero. The function is used by NOHZ and can only be
1412 * invoked when tick processing is not active.
1413 */
1414/*
1415 * Check if the diffs for a certain cpu indicate that
1416 * an update is needed.
1417 */
1418static bool need_update(int cpu)
1419{
1420 struct zone *zone;
1421
1422 for_each_populated_zone(zone) {
1423 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1424
1425 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1426 /*
1427 * The fast way of checking if there are any vmstat diffs.
1428 * This works because the diffs are byte sized items.
1429 */
1430 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1431 return true;
1432
1433 }
1434 return false;
1435}
1436
1437void quiet_vmstat(void)
1438{
1439 if (system_state != SYSTEM_RUNNING)
1440 return;
1441
1442 /*
1443 * If we are already in hands of the shepherd then there
1444 * is nothing for us to do here.
1445 */
1446 if (cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1447 return;
1448
1449 if (!need_update(smp_processor_id()))
1450 return;
1451
1452 /*
1453 * Just refresh counters and do not care about the pending delayed
1454 * vmstat_update. It doesn't fire that often to matter and canceling
1455 * it would be too expensive from this path.
1456 * vmstat_shepherd will take care about that for us.
1457 */
1458 refresh_cpu_vm_stats(false);
1459}
1460
1461
1462/*
1463 * Shepherd worker thread that checks the
1464 * differentials of processors that have their worker
1465 * threads for vm statistics updates disabled because of
1466 * inactivity.
1467 */
1468static void vmstat_shepherd(struct work_struct *w);
1469
1470static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1471
1472static void vmstat_shepherd(struct work_struct *w)
1473{
1474 int cpu;
1475
1476 get_online_cpus();
1477 /* Check processors whose vmstat worker threads have been disabled */
1478 for_each_cpu(cpu, cpu_stat_off) {
1479 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1480
1481 if (need_update(cpu)) {
1482 if (cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1483 queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1484 } else {
1485 /*
1486 * Cancel the work if quiet_vmstat has put this
1487 * cpu on cpu_stat_off because the work item might
1488 * be still scheduled
1489 */
1490 cancel_delayed_work(dw);
1491 }
1492 }
1493 put_online_cpus();
1494
1495 schedule_delayed_work(&shepherd,
1496 round_jiffies_relative(sysctl_stat_interval));
1497}
1498
1499static void __init start_shepherd_timer(void)
1500{
1501 int cpu;
1502
1503 for_each_possible_cpu(cpu)
1504 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1505 vmstat_update);
1506
1507 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1508 BUG();
1509 cpumask_copy(cpu_stat_off, cpu_online_mask);
1510
1511 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1512 schedule_delayed_work(&shepherd,
1513 round_jiffies_relative(sysctl_stat_interval));
1514}
1515
1516static void vmstat_cpu_dead(int node)
1517{
1518 int cpu;
1519
1520 get_online_cpus();
1521 for_each_online_cpu(cpu)
1522 if (cpu_to_node(cpu) == node)
1523 goto end;
1524
1525 node_clear_state(node, N_CPU);
1526end:
1527 put_online_cpus();
1528}
1529
1530/*
1531 * Use the cpu notifier to insure that the thresholds are recalculated
1532 * when necessary.
1533 */
1534static int vmstat_cpuup_callback(struct notifier_block *nfb,
1535 unsigned long action,
1536 void *hcpu)
1537{
1538 long cpu = (long)hcpu;
1539
1540 switch (action) {
1541 case CPU_ONLINE:
1542 case CPU_ONLINE_FROZEN:
1543 refresh_zone_stat_thresholds();
1544 node_set_state(cpu_to_node(cpu), N_CPU);
1545 cpumask_set_cpu(cpu, cpu_stat_off);
1546 break;
1547 case CPU_DOWN_PREPARE:
1548 case CPU_DOWN_PREPARE_FROZEN:
1549 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1550 cpumask_clear_cpu(cpu, cpu_stat_off);
1551 break;
1552 case CPU_DOWN_FAILED:
1553 case CPU_DOWN_FAILED_FROZEN:
1554 cpumask_set_cpu(cpu, cpu_stat_off);
1555 break;
1556 case CPU_DEAD:
1557 case CPU_DEAD_FROZEN:
1558 refresh_zone_stat_thresholds();
1559 vmstat_cpu_dead(cpu_to_node(cpu));
1560 break;
1561 default:
1562 break;
1563 }
1564 return NOTIFY_OK;
1565}
1566
1567static struct notifier_block vmstat_notifier =
1568 { &vmstat_cpuup_callback, NULL, 0 };
1569#endif
1570
1571static int __init setup_vmstat(void)
1572{
1573#ifdef CONFIG_SMP
1574 cpu_notifier_register_begin();
1575 __register_cpu_notifier(&vmstat_notifier);
1576
1577 start_shepherd_timer();
1578 cpu_notifier_register_done();
1579#endif
1580#ifdef CONFIG_PROC_FS
1581 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1582 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1583 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1584 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1585#endif
1586 return 0;
1587}
1588module_init(setup_vmstat)
1589
1590#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1591
1592/*
1593 * Return an index indicating how much of the available free memory is
1594 * unusable for an allocation of the requested size.
1595 */
1596static int unusable_free_index(unsigned int order,
1597 struct contig_page_info *info)
1598{
1599 /* No free memory is interpreted as all free memory is unusable */
1600 if (info->free_pages == 0)
1601 return 1000;
1602
1603 /*
1604 * Index should be a value between 0 and 1. Return a value to 3
1605 * decimal places.
1606 *
1607 * 0 => no fragmentation
1608 * 1 => high fragmentation
1609 */
1610 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1611
1612}
1613
1614static void unusable_show_print(struct seq_file *m,
1615 pg_data_t *pgdat, struct zone *zone)
1616{
1617 unsigned int order;
1618 int index;
1619 struct contig_page_info info;
1620
1621 seq_printf(m, "Node %d, zone %8s ",
1622 pgdat->node_id,
1623 zone->name);
1624 for (order = 0; order < MAX_ORDER; ++order) {
1625 fill_contig_page_info(zone, order, &info);
1626 index = unusable_free_index(order, &info);
1627 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1628 }
1629
1630 seq_putc(m, '\n');
1631}
1632
1633/*
1634 * Display unusable free space index
1635 *
1636 * The unusable free space index measures how much of the available free
1637 * memory cannot be used to satisfy an allocation of a given size and is a
1638 * value between 0 and 1. The higher the value, the more of free memory is
1639 * unusable and by implication, the worse the external fragmentation is. This
1640 * can be expressed as a percentage by multiplying by 100.
1641 */
1642static int unusable_show(struct seq_file *m, void *arg)
1643{
1644 pg_data_t *pgdat = (pg_data_t *)arg;
1645
1646 /* check memoryless node */
1647 if (!node_state(pgdat->node_id, N_MEMORY))
1648 return 0;
1649
1650 walk_zones_in_node(m, pgdat, unusable_show_print);
1651
1652 return 0;
1653}
1654
1655static const struct seq_operations unusable_op = {
1656 .start = frag_start,
1657 .next = frag_next,
1658 .stop = frag_stop,
1659 .show = unusable_show,
1660};
1661
1662static int unusable_open(struct inode *inode, struct file *file)
1663{
1664 return seq_open(file, &unusable_op);
1665}
1666
1667static const struct file_operations unusable_file_ops = {
1668 .open = unusable_open,
1669 .read = seq_read,
1670 .llseek = seq_lseek,
1671 .release = seq_release,
1672};
1673
1674static void extfrag_show_print(struct seq_file *m,
1675 pg_data_t *pgdat, struct zone *zone)
1676{
1677 unsigned int order;
1678 int index;
1679
1680 /* Alloc on stack as interrupts are disabled for zone walk */
1681 struct contig_page_info info;
1682
1683 seq_printf(m, "Node %d, zone %8s ",
1684 pgdat->node_id,
1685 zone->name);
1686 for (order = 0; order < MAX_ORDER; ++order) {
1687 fill_contig_page_info(zone, order, &info);
1688 index = __fragmentation_index(order, &info);
1689 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1690 }
1691
1692 seq_putc(m, '\n');
1693}
1694
1695/*
1696 * Display fragmentation index for orders that allocations would fail for
1697 */
1698static int extfrag_show(struct seq_file *m, void *arg)
1699{
1700 pg_data_t *pgdat = (pg_data_t *)arg;
1701
1702 walk_zones_in_node(m, pgdat, extfrag_show_print);
1703
1704 return 0;
1705}
1706
1707static const struct seq_operations extfrag_op = {
1708 .start = frag_start,
1709 .next = frag_next,
1710 .stop = frag_stop,
1711 .show = extfrag_show,
1712};
1713
1714static int extfrag_open(struct inode *inode, struct file *file)
1715{
1716 return seq_open(file, &extfrag_op);
1717}
1718
1719static const struct file_operations extfrag_file_ops = {
1720 .open = extfrag_open,
1721 .read = seq_read,
1722 .llseek = seq_lseek,
1723 .release = seq_release,
1724};
1725
1726static int __init extfrag_debug_init(void)
1727{
1728 struct dentry *extfrag_debug_root;
1729
1730 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1731 if (!extfrag_debug_root)
1732 return -ENOMEM;
1733
1734 if (!debugfs_create_file("unusable_index", 0444,
1735 extfrag_debug_root, NULL, &unusable_file_ops))
1736 goto fail;
1737
1738 if (!debugfs_create_file("extfrag_index", 0444,
1739 extfrag_debug_root, NULL, &extfrag_file_ops))
1740 goto fail;
1741
1742 return 0;
1743fail:
1744 debugfs_remove_recursive(extfrag_debug_root);
1745 return -ENOMEM;
1746}
1747
1748module_init(extfrag_debug_init);
1749#endif