Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef MM_SLAB_H
  3#define MM_SLAB_H
  4/*
  5 * Internal slab definitions
  6 */
  7
  8#ifdef CONFIG_SLOB
  9/*
 10 * Common fields provided in kmem_cache by all slab allocators
 11 * This struct is either used directly by the allocator (SLOB)
 12 * or the allocator must include definitions for all fields
 13 * provided in kmem_cache_common in their definition of kmem_cache.
 14 *
 15 * Once we can do anonymous structs (C11 standard) we could put a
 16 * anonymous struct definition in these allocators so that the
 17 * separate allocations in the kmem_cache structure of SLAB and
 18 * SLUB is no longer needed.
 19 */
 20struct kmem_cache {
 21	unsigned int object_size;/* The original size of the object */
 22	unsigned int size;	/* The aligned/padded/added on size  */
 23	unsigned int align;	/* Alignment as calculated */
 24	slab_flags_t flags;	/* Active flags on the slab */
 25	unsigned int useroffset;/* Usercopy region offset */
 26	unsigned int usersize;	/* Usercopy region size */
 27	const char *name;	/* Slab name for sysfs */
 28	int refcount;		/* Use counter */
 29	void (*ctor)(void *);	/* Called on object slot creation */
 30	struct list_head list;	/* List of all slab caches on the system */
 31};
 32
 33#else /* !CONFIG_SLOB */
 34
 35struct memcg_cache_array {
 36	struct rcu_head rcu;
 37	struct kmem_cache *entries[0];
 38};
 39
 40/*
 41 * This is the main placeholder for memcg-related information in kmem caches.
 42 * Both the root cache and the child caches will have it. For the root cache,
 43 * this will hold a dynamically allocated array large enough to hold
 44 * information about the currently limited memcgs in the system. To allow the
 45 * array to be accessed without taking any locks, on relocation we free the old
 46 * version only after a grace period.
 47 *
 48 * Root and child caches hold different metadata.
 49 *
 50 * @root_cache:	Common to root and child caches.  NULL for root, pointer to
 51 *		the root cache for children.
 52 *
 53 * The following fields are specific to root caches.
 54 *
 55 * @memcg_caches: kmemcg ID indexed table of child caches.  This table is
 56 *		used to index child cachces during allocation and cleared
 57 *		early during shutdown.
 58 *
 59 * @root_caches_node: List node for slab_root_caches list.
 60 *
 61 * @children:	List of all child caches.  While the child caches are also
 62 *		reachable through @memcg_caches, a child cache remains on
 63 *		this list until it is actually destroyed.
 64 *
 65 * The following fields are specific to child caches.
 66 *
 67 * @memcg:	Pointer to the memcg this cache belongs to.
 68 *
 69 * @children_node: List node for @root_cache->children list.
 70 *
 71 * @kmem_caches_node: List node for @memcg->kmem_caches list.
 72 */
 73struct memcg_cache_params {
 74	struct kmem_cache *root_cache;
 75	union {
 76		struct {
 77			struct memcg_cache_array __rcu *memcg_caches;
 78			struct list_head __root_caches_node;
 79			struct list_head children;
 80			bool dying;
 81		};
 82		struct {
 83			struct mem_cgroup *memcg;
 84			struct list_head children_node;
 85			struct list_head kmem_caches_node;
 86			struct percpu_ref refcnt;
 87
 88			void (*work_fn)(struct kmem_cache *);
 89			union {
 90				struct rcu_head rcu_head;
 91				struct work_struct work;
 92			};
 93		};
 94	};
 95};
 96#endif /* CONFIG_SLOB */
 97
 98#ifdef CONFIG_SLAB
 99#include <linux/slab_def.h>
100#endif
101
102#ifdef CONFIG_SLUB
103#include <linux/slub_def.h>
104#endif
105
106#include <linux/memcontrol.h>
107#include <linux/fault-inject.h>
 
108#include <linux/kasan.h>
109#include <linux/kmemleak.h>
110#include <linux/random.h>
111#include <linux/sched/mm.h>
112
113/*
114 * State of the slab allocator.
115 *
116 * This is used to describe the states of the allocator during bootup.
117 * Allocators use this to gradually bootstrap themselves. Most allocators
118 * have the problem that the structures used for managing slab caches are
119 * allocated from slab caches themselves.
120 */
121enum slab_state {
122	DOWN,			/* No slab functionality yet */
123	PARTIAL,		/* SLUB: kmem_cache_node available */
124	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
125	UP,			/* Slab caches usable but not all extras yet */
126	FULL			/* Everything is working */
127};
128
129extern enum slab_state slab_state;
130
131/* The slab cache mutex protects the management structures during changes */
132extern struct mutex slab_mutex;
133
134/* The list of all slab caches on the system */
135extern struct list_head slab_caches;
136
137/* The slab cache that manages slab cache information */
138extern struct kmem_cache *kmem_cache;
139
140/* A table of kmalloc cache names and sizes */
141extern const struct kmalloc_info_struct {
142	const char *name;
143	unsigned int size;
144} kmalloc_info[];
145
146#ifndef CONFIG_SLOB
147/* Kmalloc array related functions */
148void setup_kmalloc_cache_index_table(void);
149void create_kmalloc_caches(slab_flags_t);
150
151/* Find the kmalloc slab corresponding for a certain size */
152struct kmem_cache *kmalloc_slab(size_t, gfp_t);
153#endif
154
155
156/* Functions provided by the slab allocators */
157int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
158
159struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
160			slab_flags_t flags, unsigned int useroffset,
161			unsigned int usersize);
162extern void create_boot_cache(struct kmem_cache *, const char *name,
163			unsigned int size, slab_flags_t flags,
164			unsigned int useroffset, unsigned int usersize);
165
166int slab_unmergeable(struct kmem_cache *s);
167struct kmem_cache *find_mergeable(unsigned size, unsigned align,
168		slab_flags_t flags, const char *name, void (*ctor)(void *));
169#ifndef CONFIG_SLOB
170struct kmem_cache *
171__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
172		   slab_flags_t flags, void (*ctor)(void *));
173
174slab_flags_t kmem_cache_flags(unsigned int object_size,
175	slab_flags_t flags, const char *name,
176	void (*ctor)(void *));
177#else
178static inline struct kmem_cache *
179__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
180		   slab_flags_t flags, void (*ctor)(void *))
181{ return NULL; }
182
183static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
184	slab_flags_t flags, const char *name,
185	void (*ctor)(void *))
186{
187	return flags;
188}
189#endif
190
191
192/* Legal flag mask for kmem_cache_create(), for various configurations */
193#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
194			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
195			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
196
197#if defined(CONFIG_DEBUG_SLAB)
198#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
199#elif defined(CONFIG_SLUB_DEBUG)
200#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
201			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
202#else
203#define SLAB_DEBUG_FLAGS (0)
204#endif
205
206#if defined(CONFIG_SLAB)
207#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
208			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
209			  SLAB_ACCOUNT)
210#elif defined(CONFIG_SLUB)
211#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
212			  SLAB_TEMPORARY | SLAB_ACCOUNT)
213#else
214#define SLAB_CACHE_FLAGS (0)
215#endif
216
217/* Common flags available with current configuration */
218#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
219
220/* Common flags permitted for kmem_cache_create */
221#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
222			      SLAB_RED_ZONE | \
223			      SLAB_POISON | \
224			      SLAB_STORE_USER | \
225			      SLAB_TRACE | \
226			      SLAB_CONSISTENCY_CHECKS | \
227			      SLAB_MEM_SPREAD | \
228			      SLAB_NOLEAKTRACE | \
229			      SLAB_RECLAIM_ACCOUNT | \
230			      SLAB_TEMPORARY | \
231			      SLAB_ACCOUNT)
232
233bool __kmem_cache_empty(struct kmem_cache *);
234int __kmem_cache_shutdown(struct kmem_cache *);
235void __kmem_cache_release(struct kmem_cache *);
236int __kmem_cache_shrink(struct kmem_cache *);
237void __kmemcg_cache_deactivate(struct kmem_cache *s);
238void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s);
239void slab_kmem_cache_release(struct kmem_cache *);
240void kmem_cache_shrink_all(struct kmem_cache *s);
241
242struct seq_file;
243struct file;
244
245struct slabinfo {
246	unsigned long active_objs;
247	unsigned long num_objs;
248	unsigned long active_slabs;
249	unsigned long num_slabs;
250	unsigned long shared_avail;
251	unsigned int limit;
252	unsigned int batchcount;
253	unsigned int shared;
254	unsigned int objects_per_slab;
255	unsigned int cache_order;
256};
257
258void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
259void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
260ssize_t slabinfo_write(struct file *file, const char __user *buffer,
261		       size_t count, loff_t *ppos);
262
263/*
264 * Generic implementation of bulk operations
265 * These are useful for situations in which the allocator cannot
266 * perform optimizations. In that case segments of the object listed
267 * may be allocated or freed using these operations.
268 */
269void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
270int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
271
272static inline int cache_vmstat_idx(struct kmem_cache *s)
273{
274	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
275		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE;
276}
277
278#ifdef CONFIG_MEMCG_KMEM
279
280/* List of all root caches. */
281extern struct list_head		slab_root_caches;
282#define root_caches_node	memcg_params.__root_caches_node
283
284/*
285 * Iterate over all memcg caches of the given root cache. The caller must hold
286 * slab_mutex.
287 */
288#define for_each_memcg_cache(iter, root) \
289	list_for_each_entry(iter, &(root)->memcg_params.children, \
290			    memcg_params.children_node)
291
292static inline bool is_root_cache(struct kmem_cache *s)
293{
294	return !s->memcg_params.root_cache;
295}
296
297static inline bool slab_equal_or_root(struct kmem_cache *s,
298				      struct kmem_cache *p)
299{
300	return p == s || p == s->memcg_params.root_cache;
301}
302
303/*
304 * We use suffixes to the name in memcg because we can't have caches
305 * created in the system with the same name. But when we print them
306 * locally, better refer to them with the base name
307 */
308static inline const char *cache_name(struct kmem_cache *s)
309{
310	if (!is_root_cache(s))
311		s = s->memcg_params.root_cache;
312	return s->name;
313}
314
315static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
316{
317	if (is_root_cache(s))
318		return s;
319	return s->memcg_params.root_cache;
320}
321
322/*
323 * Expects a pointer to a slab page. Please note, that PageSlab() check
324 * isn't sufficient, as it returns true also for tail compound slab pages,
325 * which do not have slab_cache pointer set.
326 * So this function assumes that the page can pass PageSlab() && !PageTail()
327 * check.
328 *
329 * The kmem_cache can be reparented asynchronously. The caller must ensure
330 * the memcg lifetime, e.g. by taking rcu_read_lock() or cgroup_mutex.
331 */
332static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
 
333{
334	struct kmem_cache *s;
 
335
336	s = READ_ONCE(page->slab_cache);
337	if (s && !is_root_cache(s))
338		return READ_ONCE(s->memcg_params.memcg);
339
340	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341}
342
343/*
344 * Charge the slab page belonging to the non-root kmem_cache.
345 * Can be called for non-root kmem_caches only.
346 */
347static __always_inline int memcg_charge_slab(struct page *page,
348					     gfp_t gfp, int order,
349					     struct kmem_cache *s)
350{
351	struct mem_cgroup *memcg;
352	struct lruvec *lruvec;
353	int ret;
354
355	rcu_read_lock();
356	memcg = READ_ONCE(s->memcg_params.memcg);
357	while (memcg && !css_tryget_online(&memcg->css))
358		memcg = parent_mem_cgroup(memcg);
359	rcu_read_unlock();
360
361	if (unlikely(!memcg || mem_cgroup_is_root(memcg))) {
362		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
363				    (1 << order));
364		percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
365		return 0;
366	}
367
368	ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
 
369	if (ret)
370		goto out;
371
372	lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
373	mod_lruvec_state(lruvec, cache_vmstat_idx(s), 1 << order);
374
375	/* transer try_charge() page references to kmem_cache */
376	percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
377	css_put_many(&memcg->css, 1 << order);
378out:
379	css_put(&memcg->css);
380	return ret;
381}
382
383/*
384 * Uncharge a slab page belonging to a non-root kmem_cache.
385 * Can be called for non-root kmem_caches only.
386 */
387static __always_inline void memcg_uncharge_slab(struct page *page, int order,
388						struct kmem_cache *s)
389{
390	struct mem_cgroup *memcg;
391	struct lruvec *lruvec;
392
393	rcu_read_lock();
394	memcg = READ_ONCE(s->memcg_params.memcg);
395	if (likely(!mem_cgroup_is_root(memcg))) {
396		lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
397		mod_lruvec_state(lruvec, cache_vmstat_idx(s), -(1 << order));
398		memcg_kmem_uncharge_memcg(page, order, memcg);
399	} else {
400		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
401				    -(1 << order));
402	}
403	rcu_read_unlock();
404
405	percpu_ref_put_many(&s->memcg_params.refcnt, 1 << order);
406}
407
408extern void slab_init_memcg_params(struct kmem_cache *);
409extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg);
410
411#else /* CONFIG_MEMCG_KMEM */
412
413/* If !memcg, all caches are root. */
414#define slab_root_caches	slab_caches
415#define root_caches_node	list
416
417#define for_each_memcg_cache(iter, root) \
418	for ((void)(iter), (void)(root); 0; )
419
420static inline bool is_root_cache(struct kmem_cache *s)
421{
422	return true;
423}
424
425static inline bool slab_equal_or_root(struct kmem_cache *s,
426				      struct kmem_cache *p)
427{
428	return s == p;
429}
430
431static inline const char *cache_name(struct kmem_cache *s)
432{
433	return s->name;
434}
435
436static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
 
437{
438	return s;
439}
440
441static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
442{
443	return NULL;
444}
445
446static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
447				    struct kmem_cache *s)
448{
449	return 0;
450}
451
452static inline void memcg_uncharge_slab(struct page *page, int order,
453				       struct kmem_cache *s)
454{
455}
456
457static inline void slab_init_memcg_params(struct kmem_cache *s)
458{
459}
460
461static inline void memcg_link_cache(struct kmem_cache *s,
462				    struct mem_cgroup *memcg)
463{
464}
465
466#endif /* CONFIG_MEMCG_KMEM */
467
468static inline struct kmem_cache *virt_to_cache(const void *obj)
469{
470	struct page *page;
471
472	page = virt_to_head_page(obj);
473	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
474					__func__))
475		return NULL;
476	return page->slab_cache;
477}
478
479static __always_inline int charge_slab_page(struct page *page,
480					    gfp_t gfp, int order,
481					    struct kmem_cache *s)
482{
483	if (is_root_cache(s)) {
484		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
485				    1 << order);
486		return 0;
487	}
488
489	return memcg_charge_slab(page, gfp, order, s);
490}
491
492static __always_inline void uncharge_slab_page(struct page *page, int order,
493					       struct kmem_cache *s)
494{
495	if (is_root_cache(s)) {
496		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
497				    -(1 << order));
498		return;
499	}
500
501	memcg_uncharge_slab(page, order, s);
502}
503
504static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
505{
506	struct kmem_cache *cachep;
 
507
508	/*
509	 * When kmemcg is not being used, both assignments should return the
510	 * same value. but we don't want to pay the assignment price in that
511	 * case. If it is not compiled in, the compiler should be smart enough
512	 * to not do even the assignment. In that case, slab_equal_or_root
513	 * will also be a constant.
514	 */
515	if (!memcg_kmem_enabled() &&
516	    !IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
517	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
518		return s;
519
520	cachep = virt_to_cache(x);
521	WARN_ONCE(cachep && !slab_equal_or_root(cachep, s),
522		  "%s: Wrong slab cache. %s but object is from %s\n",
523		  __func__, s->name, cachep->name);
524	return cachep;
 
 
 
 
525}
526
527static inline size_t slab_ksize(const struct kmem_cache *s)
528{
529#ifndef CONFIG_SLUB
530	return s->object_size;
531
532#else /* CONFIG_SLUB */
533# ifdef CONFIG_SLUB_DEBUG
534	/*
535	 * Debugging requires use of the padding between object
536	 * and whatever may come after it.
537	 */
538	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
539		return s->object_size;
540# endif
541	if (s->flags & SLAB_KASAN)
542		return s->object_size;
543	/*
544	 * If we have the need to store the freelist pointer
545	 * back there or track user information then we can
546	 * only use the space before that information.
547	 */
548	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
549		return s->inuse;
550	/*
551	 * Else we can use all the padding etc for the allocation
552	 */
553	return s->size;
554#endif
555}
556
557static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
558						     gfp_t flags)
559{
560	flags &= gfp_allowed_mask;
561
562	fs_reclaim_acquire(flags);
563	fs_reclaim_release(flags);
564
565	might_sleep_if(gfpflags_allow_blocking(flags));
566
567	if (should_failslab(s, flags))
568		return NULL;
569
570	if (memcg_kmem_enabled() &&
571	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
572		return memcg_kmem_get_cache(s);
573
574	return s;
575}
576
577static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
578					size_t size, void **p)
579{
580	size_t i;
581
582	flags &= gfp_allowed_mask;
583	for (i = 0; i < size; i++) {
584		p[i] = kasan_slab_alloc(s, p[i], flags);
585		/* As p[i] might get tagged, call kmemleak hook after KASAN. */
586		kmemleak_alloc_recursive(p[i], s->object_size, 1,
 
587					 s->flags, flags);
 
588	}
589
590	if (memcg_kmem_enabled())
591		memcg_kmem_put_cache(s);
592}
593
594#ifndef CONFIG_SLOB
595/*
596 * The slab lists for all objects.
597 */
598struct kmem_cache_node {
599	spinlock_t list_lock;
600
601#ifdef CONFIG_SLAB
602	struct list_head slabs_partial;	/* partial list first, better asm code */
603	struct list_head slabs_full;
604	struct list_head slabs_free;
605	unsigned long total_slabs;	/* length of all slab lists */
606	unsigned long free_slabs;	/* length of free slab list only */
607	unsigned long free_objects;
608	unsigned int free_limit;
609	unsigned int colour_next;	/* Per-node cache coloring */
610	struct array_cache *shared;	/* shared per node */
611	struct alien_cache **alien;	/* on other nodes */
612	unsigned long next_reap;	/* updated without locking */
613	int free_touched;		/* updated without locking */
614#endif
615
616#ifdef CONFIG_SLUB
617	unsigned long nr_partial;
618	struct list_head partial;
619#ifdef CONFIG_SLUB_DEBUG
620	atomic_long_t nr_slabs;
621	atomic_long_t total_objects;
622	struct list_head full;
623#endif
624#endif
625
626};
627
628static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
629{
630	return s->node[node];
631}
632
633/*
634 * Iterator over all nodes. The body will be executed for each node that has
635 * a kmem_cache_node structure allocated (which is true for all online nodes)
636 */
637#define for_each_kmem_cache_node(__s, __node, __n) \
638	for (__node = 0; __node < nr_node_ids; __node++) \
639		 if ((__n = get_node(__s, __node)))
640
641#endif
642
643void *slab_start(struct seq_file *m, loff_t *pos);
644void *slab_next(struct seq_file *m, void *p, loff_t *pos);
645void slab_stop(struct seq_file *m, void *p);
646void *memcg_slab_start(struct seq_file *m, loff_t *pos);
647void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
648void memcg_slab_stop(struct seq_file *m, void *p);
649int memcg_slab_show(struct seq_file *m, void *p);
650
651#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
652void dump_unreclaimable_slab(void);
653#else
654static inline void dump_unreclaimable_slab(void)
655{
656}
657#endif
658
659void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
660
661#ifdef CONFIG_SLAB_FREELIST_RANDOM
662int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
663			gfp_t gfp);
664void cache_random_seq_destroy(struct kmem_cache *cachep);
665#else
666static inline int cache_random_seq_create(struct kmem_cache *cachep,
667					unsigned int count, gfp_t gfp)
668{
669	return 0;
670}
671static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
672#endif /* CONFIG_SLAB_FREELIST_RANDOM */
673
674static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
675{
676	if (static_branch_unlikely(&init_on_alloc)) {
677		if (c->ctor)
678			return false;
679		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
680			return flags & __GFP_ZERO;
681		return true;
682	}
683	return flags & __GFP_ZERO;
684}
685
686static inline bool slab_want_init_on_free(struct kmem_cache *c)
687{
688	if (static_branch_unlikely(&init_on_free))
689		return !(c->ctor ||
690			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
691	return false;
692}
693
694#endif /* MM_SLAB_H */
v4.6
 
  1#ifndef MM_SLAB_H
  2#define MM_SLAB_H
  3/*
  4 * Internal slab definitions
  5 */
  6
  7#ifdef CONFIG_SLOB
  8/*
  9 * Common fields provided in kmem_cache by all slab allocators
 10 * This struct is either used directly by the allocator (SLOB)
 11 * or the allocator must include definitions for all fields
 12 * provided in kmem_cache_common in their definition of kmem_cache.
 13 *
 14 * Once we can do anonymous structs (C11 standard) we could put a
 15 * anonymous struct definition in these allocators so that the
 16 * separate allocations in the kmem_cache structure of SLAB and
 17 * SLUB is no longer needed.
 18 */
 19struct kmem_cache {
 20	unsigned int object_size;/* The original size of the object */
 21	unsigned int size;	/* The aligned/padded/added on size  */
 22	unsigned int align;	/* Alignment as calculated */
 23	unsigned long flags;	/* Active flags on the slab */
 
 
 24	const char *name;	/* Slab name for sysfs */
 25	int refcount;		/* Use counter */
 26	void (*ctor)(void *);	/* Called on object slot creation */
 27	struct list_head list;	/* List of all slab caches on the system */
 28};
 29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30#endif /* CONFIG_SLOB */
 31
 32#ifdef CONFIG_SLAB
 33#include <linux/slab_def.h>
 34#endif
 35
 36#ifdef CONFIG_SLUB
 37#include <linux/slub_def.h>
 38#endif
 39
 40#include <linux/memcontrol.h>
 41#include <linux/fault-inject.h>
 42#include <linux/kmemcheck.h>
 43#include <linux/kasan.h>
 44#include <linux/kmemleak.h>
 
 
 45
 46/*
 47 * State of the slab allocator.
 48 *
 49 * This is used to describe the states of the allocator during bootup.
 50 * Allocators use this to gradually bootstrap themselves. Most allocators
 51 * have the problem that the structures used for managing slab caches are
 52 * allocated from slab caches themselves.
 53 */
 54enum slab_state {
 55	DOWN,			/* No slab functionality yet */
 56	PARTIAL,		/* SLUB: kmem_cache_node available */
 57	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
 58	UP,			/* Slab caches usable but not all extras yet */
 59	FULL			/* Everything is working */
 60};
 61
 62extern enum slab_state slab_state;
 63
 64/* The slab cache mutex protects the management structures during changes */
 65extern struct mutex slab_mutex;
 66
 67/* The list of all slab caches on the system */
 68extern struct list_head slab_caches;
 69
 70/* The slab cache that manages slab cache information */
 71extern struct kmem_cache *kmem_cache;
 72
 73unsigned long calculate_alignment(unsigned long flags,
 74		unsigned long align, unsigned long size);
 
 
 
 75
 76#ifndef CONFIG_SLOB
 77/* Kmalloc array related functions */
 78void setup_kmalloc_cache_index_table(void);
 79void create_kmalloc_caches(unsigned long);
 80
 81/* Find the kmalloc slab corresponding for a certain size */
 82struct kmem_cache *kmalloc_slab(size_t, gfp_t);
 83#endif
 84
 85
 86/* Functions provided by the slab allocators */
 87extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
 88
 89extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
 90			unsigned long flags);
 
 91extern void create_boot_cache(struct kmem_cache *, const char *name,
 92			size_t size, unsigned long flags);
 
 93
 94int slab_unmergeable(struct kmem_cache *s);
 95struct kmem_cache *find_mergeable(size_t size, size_t align,
 96		unsigned long flags, const char *name, void (*ctor)(void *));
 97#ifndef CONFIG_SLOB
 98struct kmem_cache *
 99__kmem_cache_alias(const char *name, size_t size, size_t align,
100		   unsigned long flags, void (*ctor)(void *));
101
102unsigned long kmem_cache_flags(unsigned long object_size,
103	unsigned long flags, const char *name,
104	void (*ctor)(void *));
105#else
106static inline struct kmem_cache *
107__kmem_cache_alias(const char *name, size_t size, size_t align,
108		   unsigned long flags, void (*ctor)(void *))
109{ return NULL; }
110
111static inline unsigned long kmem_cache_flags(unsigned long object_size,
112	unsigned long flags, const char *name,
113	void (*ctor)(void *))
114{
115	return flags;
116}
117#endif
118
119
120/* Legal flag mask for kmem_cache_create(), for various configurations */
121#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
122			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
 
123
124#if defined(CONFIG_DEBUG_SLAB)
125#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
126#elif defined(CONFIG_SLUB_DEBUG)
127#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
128			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
129#else
130#define SLAB_DEBUG_FLAGS (0)
131#endif
132
133#if defined(CONFIG_SLAB)
134#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
135			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
136			  SLAB_NOTRACK | SLAB_ACCOUNT)
137#elif defined(CONFIG_SLUB)
138#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
139			  SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
140#else
141#define SLAB_CACHE_FLAGS (0)
142#endif
143
 
144#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146int __kmem_cache_shutdown(struct kmem_cache *);
147void __kmem_cache_release(struct kmem_cache *);
148int __kmem_cache_shrink(struct kmem_cache *, bool);
 
 
149void slab_kmem_cache_release(struct kmem_cache *);
 
150
151struct seq_file;
152struct file;
153
154struct slabinfo {
155	unsigned long active_objs;
156	unsigned long num_objs;
157	unsigned long active_slabs;
158	unsigned long num_slabs;
159	unsigned long shared_avail;
160	unsigned int limit;
161	unsigned int batchcount;
162	unsigned int shared;
163	unsigned int objects_per_slab;
164	unsigned int cache_order;
165};
166
167void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
168void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
169ssize_t slabinfo_write(struct file *file, const char __user *buffer,
170		       size_t count, loff_t *ppos);
171
172/*
173 * Generic implementation of bulk operations
174 * These are useful for situations in which the allocator cannot
175 * perform optimizations. In that case segments of the object listed
176 * may be allocated or freed using these operations.
177 */
178void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
179int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
180
181#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
 
 
 
 
 
 
 
 
 
 
 
182/*
183 * Iterate over all memcg caches of the given root cache. The caller must hold
184 * slab_mutex.
185 */
186#define for_each_memcg_cache(iter, root) \
187	list_for_each_entry(iter, &(root)->memcg_params.list, \
188			    memcg_params.list)
189
190static inline bool is_root_cache(struct kmem_cache *s)
191{
192	return s->memcg_params.is_root_cache;
193}
194
195static inline bool slab_equal_or_root(struct kmem_cache *s,
196				      struct kmem_cache *p)
197{
198	return p == s || p == s->memcg_params.root_cache;
199}
200
201/*
202 * We use suffixes to the name in memcg because we can't have caches
203 * created in the system with the same name. But when we print them
204 * locally, better refer to them with the base name
205 */
206static inline const char *cache_name(struct kmem_cache *s)
207{
208	if (!is_root_cache(s))
209		s = s->memcg_params.root_cache;
210	return s->name;
211}
212
 
 
 
 
 
 
 
213/*
214 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
215 * That said the caller must assure the memcg's cache won't go away by either
216 * taking a css reference to the owner cgroup, or holding the slab_mutex.
 
 
 
 
 
217 */
218static inline struct kmem_cache *
219cache_from_memcg_idx(struct kmem_cache *s, int idx)
220{
221	struct kmem_cache *cachep;
222	struct memcg_cache_array *arr;
223
224	rcu_read_lock();
225	arr = rcu_dereference(s->memcg_params.memcg_caches);
 
226
227	/*
228	 * Make sure we will access the up-to-date value. The code updating
229	 * memcg_caches issues a write barrier to match this (see
230	 * memcg_create_kmem_cache()).
231	 */
232	cachep = lockless_dereference(arr->entries[idx]);
233	rcu_read_unlock();
234
235	return cachep;
236}
237
238static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
239{
240	if (is_root_cache(s))
241		return s;
242	return s->memcg_params.root_cache;
243}
244
 
 
 
 
245static __always_inline int memcg_charge_slab(struct page *page,
246					     gfp_t gfp, int order,
247					     struct kmem_cache *s)
248{
 
 
249	int ret;
250
251	if (!memcg_kmem_enabled())
252		return 0;
253	if (is_root_cache(s))
 
 
 
 
 
 
 
254		return 0;
 
255
256	ret = __memcg_kmem_charge_memcg(page, gfp, order,
257					s->memcg_params.memcg);
258	if (ret)
259		return ret;
260
261	memcg_kmem_update_page_stat(page,
262			(s->flags & SLAB_RECLAIM_ACCOUNT) ?
263			MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
264			1 << order);
265	return 0;
 
 
 
 
266}
267
 
 
 
 
268static __always_inline void memcg_uncharge_slab(struct page *page, int order,
269						struct kmem_cache *s)
270{
271	memcg_kmem_update_page_stat(page,
272			(s->flags & SLAB_RECLAIM_ACCOUNT) ?
273			MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
274			-(1 << order));
275	memcg_kmem_uncharge(page, order);
 
 
 
 
 
 
 
 
 
 
 
276}
277
278extern void slab_init_memcg_params(struct kmem_cache *);
 
279
280#else /* CONFIG_MEMCG && !CONFIG_SLOB */
 
 
 
 
281
282#define for_each_memcg_cache(iter, root) \
283	for ((void)(iter), (void)(root); 0; )
284
285static inline bool is_root_cache(struct kmem_cache *s)
286{
287	return true;
288}
289
290static inline bool slab_equal_or_root(struct kmem_cache *s,
291				      struct kmem_cache *p)
292{
293	return true;
294}
295
296static inline const char *cache_name(struct kmem_cache *s)
297{
298	return s->name;
299}
300
301static inline struct kmem_cache *
302cache_from_memcg_idx(struct kmem_cache *s, int idx)
303{
304	return NULL;
305}
306
307static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
308{
309	return s;
310}
311
312static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
313				    struct kmem_cache *s)
314{
315	return 0;
316}
317
318static inline void memcg_uncharge_slab(struct page *page, int order,
319				       struct kmem_cache *s)
320{
321}
322
323static inline void slab_init_memcg_params(struct kmem_cache *s)
324{
325}
326#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327
328static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
329{
330	struct kmem_cache *cachep;
331	struct page *page;
332
333	/*
334	 * When kmemcg is not being used, both assignments should return the
335	 * same value. but we don't want to pay the assignment price in that
336	 * case. If it is not compiled in, the compiler should be smart enough
337	 * to not do even the assignment. In that case, slab_equal_or_root
338	 * will also be a constant.
339	 */
340	if (!memcg_kmem_enabled() &&
 
341	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
342		return s;
343
344	page = virt_to_head_page(x);
345	cachep = page->slab_cache;
346	if (slab_equal_or_root(cachep, s))
347		return cachep;
348
349	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
350	       __func__, s->name, cachep->name);
351	WARN_ON_ONCE(1);
352	return s;
353}
354
355static inline size_t slab_ksize(const struct kmem_cache *s)
356{
357#ifndef CONFIG_SLUB
358	return s->object_size;
359
360#else /* CONFIG_SLUB */
361# ifdef CONFIG_SLUB_DEBUG
362	/*
363	 * Debugging requires use of the padding between object
364	 * and whatever may come after it.
365	 */
366	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
367		return s->object_size;
368# endif
 
 
369	/*
370	 * If we have the need to store the freelist pointer
371	 * back there or track user information then we can
372	 * only use the space before that information.
373	 */
374	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
375		return s->inuse;
376	/*
377	 * Else we can use all the padding etc for the allocation
378	 */
379	return s->size;
380#endif
381}
382
383static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
384						     gfp_t flags)
385{
386	flags &= gfp_allowed_mask;
387	lockdep_trace_alloc(flags);
 
 
 
388	might_sleep_if(gfpflags_allow_blocking(flags));
389
390	if (should_failslab(s, flags))
391		return NULL;
392
393	return memcg_kmem_get_cache(s, flags);
 
 
 
 
394}
395
396static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
397					size_t size, void **p)
398{
399	size_t i;
400
401	flags &= gfp_allowed_mask;
402	for (i = 0; i < size; i++) {
403		void *object = p[i];
404
405		kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
406		kmemleak_alloc_recursive(object, s->object_size, 1,
407					 s->flags, flags);
408		kasan_slab_alloc(s, object, flags);
409	}
410	memcg_kmem_put_cache(s);
 
 
411}
412
413#ifndef CONFIG_SLOB
414/*
415 * The slab lists for all objects.
416 */
417struct kmem_cache_node {
418	spinlock_t list_lock;
419
420#ifdef CONFIG_SLAB
421	struct list_head slabs_partial;	/* partial list first, better asm code */
422	struct list_head slabs_full;
423	struct list_head slabs_free;
 
 
424	unsigned long free_objects;
425	unsigned int free_limit;
426	unsigned int colour_next;	/* Per-node cache coloring */
427	struct array_cache *shared;	/* shared per node */
428	struct alien_cache **alien;	/* on other nodes */
429	unsigned long next_reap;	/* updated without locking */
430	int free_touched;		/* updated without locking */
431#endif
432
433#ifdef CONFIG_SLUB
434	unsigned long nr_partial;
435	struct list_head partial;
436#ifdef CONFIG_SLUB_DEBUG
437	atomic_long_t nr_slabs;
438	atomic_long_t total_objects;
439	struct list_head full;
440#endif
441#endif
442
443};
444
445static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
446{
447	return s->node[node];
448}
449
450/*
451 * Iterator over all nodes. The body will be executed for each node that has
452 * a kmem_cache_node structure allocated (which is true for all online nodes)
453 */
454#define for_each_kmem_cache_node(__s, __node, __n) \
455	for (__node = 0; __node < nr_node_ids; __node++) \
456		 if ((__n = get_node(__s, __node)))
457
458#endif
459
460void *slab_start(struct seq_file *m, loff_t *pos);
461void *slab_next(struct seq_file *m, void *p, loff_t *pos);
462void slab_stop(struct seq_file *m, void *p);
 
 
 
463int memcg_slab_show(struct seq_file *m, void *p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464
465#endif /* MM_SLAB_H */