Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Implement CPU time clocks for the POSIX clock interface.
   4 */
   5
   6#include <linux/sched/signal.h>
   7#include <linux/sched/cputime.h>
   8#include <linux/posix-timers.h>
   9#include <linux/errno.h>
  10#include <linux/math64.h>
  11#include <linux/uaccess.h>
  12#include <linux/kernel_stat.h>
  13#include <trace/events/timer.h>
 
  14#include <linux/tick.h>
  15#include <linux/workqueue.h>
  16#include <linux/compat.h>
  17#include <linux/sched/deadline.h>
  18
  19#include "posix-timers.h"
  20
  21static void posix_cpu_timer_rearm(struct k_itimer *timer);
  22
  23void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
  24{
  25	posix_cputimers_init(pct);
  26	if (cpu_limit != RLIM_INFINITY) {
  27		pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
  28		pct->timers_active = true;
  29	}
  30}
  31
  32/*
  33 * Called after updating RLIMIT_CPU to run cpu timer and update
  34 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
  35 * necessary. Needs siglock protection since other code may update the
  36 * expiration cache as well.
  37 */
  38void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  39{
  40	u64 nsecs = rlim_new * NSEC_PER_SEC;
  41
  42	spin_lock_irq(&task->sighand->siglock);
  43	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
  44	spin_unlock_irq(&task->sighand->siglock);
  45}
  46
  47/*
  48 * Functions for validating access to tasks.
  49 */
  50static struct task_struct *lookup_task(const pid_t pid, bool thread,
  51				       bool gettime)
  52{
 
  53	struct task_struct *p;
 
  54
  55	/*
  56	 * If the encoded PID is 0, then the timer is targeted at current
  57	 * or the process to which current belongs.
  58	 */
  59	if (!pid)
  60		return thread ? current : current->group_leader;
  61
  62	p = find_task_by_vpid(pid);
  63	if (!p)
  64		return p;
  65
  66	if (thread)
  67		return same_thread_group(p, current) ? p : NULL;
  68
  69	if (gettime) {
  70		/*
  71		 * For clock_gettime(PROCESS) the task does not need to be
  72		 * the actual group leader. tsk->sighand gives
  73		 * access to the group's clock.
  74		 *
  75		 * Timers need the group leader because they take a
  76		 * reference on it and store the task pointer until the
  77		 * timer is destroyed.
  78		 */
  79		return (p == current || thread_group_leader(p)) ? p : NULL;
  80	}
  81
  82	/*
  83	 * For processes require that p is group leader.
  84	 */
  85	return has_group_leader_pid(p) ? p : NULL;
  86}
  87
  88static struct task_struct *__get_task_for_clock(const clockid_t clock,
  89						bool getref, bool gettime)
  90{
  91	const bool thread = !!CPUCLOCK_PERTHREAD(clock);
  92	const pid_t pid = CPUCLOCK_PID(clock);
  93	struct task_struct *p;
  94
  95	if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
  96		return NULL;
  97
  98	rcu_read_lock();
  99	p = lookup_task(pid, thread, gettime);
 100	if (p && getref)
 101		get_task_struct(p);
 
 
 102	rcu_read_unlock();
 103	return p;
 104}
 105
 106static inline struct task_struct *get_task_for_clock(const clockid_t clock)
 107{
 108	return __get_task_for_clock(clock, true, false);
 109}
 110
 111static inline struct task_struct *get_task_for_clock_get(const clockid_t clock)
 
 112{
 113	return __get_task_for_clock(clock, true, true);
 
 
 
 
 
 
 
 
 114}
 115
 116static inline int validate_clock_permissions(const clockid_t clock)
 
 
 117{
 118	return __get_task_for_clock(clock, false, false) ? 0 : -EINVAL;
 
 
 
 119}
 120
 121/*
 122 * Update expiry time from increment, and increase overrun count,
 123 * given the current clock sample.
 124 */
 125static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
 
 126{
 127	u64 delta, incr, expires = timer->it.cpu.node.expires;
 128	int i;
 
 129
 130	if (!timer->it_interval)
 131		return expires;
 132
 133	if (now < expires)
 134		return expires;
 135
 136	incr = timer->it_interval;
 137	delta = now + incr - expires;
 138
 139	/* Don't use (incr*2 < delta), incr*2 might overflow. */
 140	for (i = 0; incr < delta - incr; i++)
 141		incr = incr << 1;
 142
 143	for (; i >= 0; incr >>= 1, i--) {
 144		if (delta < incr)
 145			continue;
 146
 147		timer->it.cpu.node.expires += incr;
 148		timer->it_overrun += 1LL << i;
 149		delta -= incr;
 150	}
 151	return timer->it.cpu.node.expires;
 152}
 153
 154/* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
 155static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
 
 
 
 
 
 
 
 156{
 157	return !(~pct->bases[CPUCLOCK_PROF].nextevt |
 158		 ~pct->bases[CPUCLOCK_VIRT].nextevt |
 159		 ~pct->bases[CPUCLOCK_SCHED].nextevt);
 160}
 161
 162static int
 163posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
 
 
 
 
 
 
 
 164{
 165	int error = validate_clock_permissions(which_clock);
 
 
 166
 
 
 
 
 
 
 
 167	if (!error) {
 168		tp->tv_sec = 0;
 169		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 170		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 171			/*
 172			 * If sched_clock is using a cycle counter, we
 173			 * don't have any idea of its true resolution
 174			 * exported, but it is much more than 1s/HZ.
 175			 */
 176			tp->tv_nsec = 1;
 177		}
 178	}
 179	return error;
 180}
 181
 182static int
 183posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
 184{
 185	int error = validate_clock_permissions(clock);
 186
 187	/*
 188	 * You can never reset a CPU clock, but we check for other errors
 189	 * in the call before failing with EPERM.
 190	 */
 191	return error ? : -EPERM;
 
 
 
 
 192}
 193
 
 194/*
 195 * Sample a per-thread clock for the given task. clkid is validated.
 196 */
 197static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
 
 198{
 199	u64 utime, stime;
 200
 201	if (clkid == CPUCLOCK_SCHED)
 202		return task_sched_runtime(p);
 203
 204	task_cputime(p, &utime, &stime);
 205
 206	switch (clkid) {
 207	case CPUCLOCK_PROF:
 208		return utime + stime;
 
 209	case CPUCLOCK_VIRT:
 210		return utime;
 211	default:
 212		WARN_ON_ONCE(1);
 
 
 213	}
 214	return 0;
 215}
 216
 217static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
 218{
 219	samples[CPUCLOCK_PROF] = stime + utime;
 220	samples[CPUCLOCK_VIRT] = utime;
 221	samples[CPUCLOCK_SCHED] = rtime;
 222}
 223
 224static void task_sample_cputime(struct task_struct *p, u64 *samples)
 225{
 226	u64 stime, utime;
 227
 228	task_cputime(p, &utime, &stime);
 229	store_samples(samples, stime, utime, p->se.sum_exec_runtime);
 230}
 231
 232static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
 233				       u64 *samples)
 234{
 235	u64 stime, utime, rtime;
 236
 237	utime = atomic64_read(&at->utime);
 238	stime = atomic64_read(&at->stime);
 239	rtime = atomic64_read(&at->sum_exec_runtime);
 240	store_samples(samples, stime, utime, rtime);
 241}
 242
 243/*
 244 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
 245 * to avoid race conditions with concurrent updates to cputime.
 246 */
 247static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
 248{
 249	u64 curr_cputime;
 250retry:
 251	curr_cputime = atomic64_read(cputime);
 252	if (sum_cputime > curr_cputime) {
 253		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
 254			goto retry;
 255	}
 256}
 257
 258static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
 259			      struct task_cputime *sum)
 260{
 261	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
 262	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
 263	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
 264}
 265
 266/**
 267 * thread_group_sample_cputime - Sample cputime for a given task
 268 * @tsk:	Task for which cputime needs to be started
 269 * @samples:	Storage for time samples
 270 *
 271 * Called from sys_getitimer() to calculate the expiry time of an active
 272 * timer. That means group cputime accounting is already active. Called
 273 * with task sighand lock held.
 274 *
 275 * Updates @times with an uptodate sample of the thread group cputimes.
 276 */
 277void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
 278{
 279	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 280	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
 281
 282	WARN_ON_ONCE(!pct->timers_active);
 283
 284	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 285}
 286
 287/**
 288 * thread_group_start_cputime - Start cputime and return a sample
 289 * @tsk:	Task for which cputime needs to be started
 290 * @samples:	Storage for time samples
 291 *
 292 * The thread group cputime accouting is avoided when there are no posix
 293 * CPU timers armed. Before starting a timer it's required to check whether
 294 * the time accounting is active. If not, a full update of the atomic
 295 * accounting store needs to be done and the accounting enabled.
 296 *
 297 * Updates @times with an uptodate sample of the thread group cputimes.
 298 */
 299static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
 300{
 301	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 302	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
 303
 304	/* Check if cputimer isn't running. This is accessed without locking. */
 305	if (!READ_ONCE(pct->timers_active)) {
 306		struct task_cputime sum;
 307
 308		/*
 309		 * The POSIX timer interface allows for absolute time expiry
 310		 * values through the TIMER_ABSTIME flag, therefore we have
 311		 * to synchronize the timer to the clock every time we start it.
 312		 */
 313		thread_group_cputime(tsk, &sum);
 314		update_gt_cputime(&cputimer->cputime_atomic, &sum);
 315
 316		/*
 317		 * We're setting timers_active without a lock. Ensure this
 318		 * only gets written to in one operation. We set it after
 319		 * update_gt_cputime() as a small optimization, but
 320		 * barriers are not required because update_gt_cputime()
 321		 * can handle concurrent updates.
 322		 */
 323		WRITE_ONCE(pct->timers_active, true);
 324	}
 325	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 326}
 327
 328static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
 
 
 
 
 
 
 
 329{
 330	struct task_cputime ct;
 331
 332	thread_group_cputime(tsk, &ct);
 333	store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334}
 335
 336/*
 337 * Sample a process (thread group) clock for the given task clkid. If the
 338 * group's cputime accounting is already enabled, read the atomic
 339 * store. Otherwise a full update is required.  Task's sighand lock must be
 340 * held to protect the task traversal on a full update. clkid is already
 341 * validated.
 342 */
 343static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
 344				  bool start)
 345{
 346	struct thread_group_cputimer *cputimer = &p->signal->cputimer;
 347	struct posix_cputimers *pct = &p->signal->posix_cputimers;
 348	u64 samples[CPUCLOCK_MAX];
 349
 350	if (!READ_ONCE(pct->timers_active)) {
 351		if (start)
 352			thread_group_start_cputime(p, samples);
 353		else
 354			__thread_group_cputime(p, samples);
 355	} else {
 356		proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 
 357	}
 358
 359	return samples[clkid];
 
 
 
 360}
 361
 362static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
 363{
 364	const clockid_t clkid = CPUCLOCK_WHICH(clock);
 365	struct task_struct *tsk;
 366	u64 t;
 367
 368	tsk = get_task_for_clock_get(clock);
 369	if (!tsk)
 370		return -EINVAL;
 
 371
 372	if (CPUCLOCK_PERTHREAD(clock))
 373		t = cpu_clock_sample(clkid, tsk);
 374	else
 375		t = cpu_clock_sample_group(clkid, tsk, false);
 376	put_task_struct(tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 377
 378	*tp = ns_to_timespec64(t);
 379	return 0;
 380}
 381
 382/*
 383 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 384 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 385 * new timer already all-zeros initialized.
 386 */
 387static int posix_cpu_timer_create(struct k_itimer *new_timer)
 388{
 389	struct task_struct *p = get_task_for_clock(new_timer->it_clock);
 
 
 390
 391	if (!p)
 392		return -EINVAL;
 393
 394	new_timer->kclock = &clock_posix_cpu;
 395	timerqueue_init(&new_timer->it.cpu.node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396	new_timer->it.cpu.task = p;
 397	return 0;
 
 
 
 
 
 
 
 398}
 399
 400/*
 401 * Clean up a CPU-clock timer that is about to be destroyed.
 402 * This is called from timer deletion with the timer already locked.
 403 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 404 * and try again.  (This happens when the timer is in the middle of firing.)
 405 */
 406static int posix_cpu_timer_del(struct k_itimer *timer)
 407{
 408	struct cpu_timer *ctmr = &timer->it.cpu;
 409	struct task_struct *p = ctmr->task;
 410	struct sighand_struct *sighand;
 411	unsigned long flags;
 412	int ret = 0;
 
 
 
 413
 414	if (WARN_ON_ONCE(!p))
 415		return -EINVAL;
 416
 417	/*
 418	 * Protect against sighand release/switch in exit/exec and process/
 419	 * thread timer list entry concurrent read/writes.
 420	 */
 421	sighand = lock_task_sighand(p, &flags);
 422	if (unlikely(sighand == NULL)) {
 423		/*
 424		 * This raced with the reaping of the task. The exit cleanup
 425		 * should have removed this timer from the timer queue.
 426		 */
 427		WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
 428	} else {
 429		if (timer->it.cpu.firing)
 430			ret = TIMER_RETRY;
 431		else
 432			cpu_timer_dequeue(ctmr);
 433
 434		unlock_task_sighand(p, &flags);
 435	}
 436
 437	if (!ret)
 438		put_task_struct(p);
 439
 440	return ret;
 441}
 442
 443static void cleanup_timerqueue(struct timerqueue_head *head)
 444{
 445	struct timerqueue_node *node;
 446	struct cpu_timer *ctmr;
 447
 448	while ((node = timerqueue_getnext(head))) {
 449		timerqueue_del(head, node);
 450		ctmr = container_of(node, struct cpu_timer, node);
 451		ctmr->head = NULL;
 452	}
 453}
 454
 455/*
 456 * Clean out CPU timers which are still armed when a thread exits. The
 457 * timers are only removed from the list. No other updates are done. The
 458 * corresponding posix timers are still accessible, but cannot be rearmed.
 459 *
 460 * This must be called with the siglock held.
 461 */
 462static void cleanup_timers(struct posix_cputimers *pct)
 463{
 464	cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
 465	cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
 466	cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
 467}
 468
 469/*
 470 * These are both called with the siglock held, when the current thread
 471 * is being reaped.  When the final (leader) thread in the group is reaped,
 472 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 473 */
 474void posix_cpu_timers_exit(struct task_struct *tsk)
 475{
 476	cleanup_timers(&tsk->posix_cputimers);
 
 
 
 477}
 478void posix_cpu_timers_exit_group(struct task_struct *tsk)
 479{
 480	cleanup_timers(&tsk->signal->posix_cputimers);
 
 
 
 
 
 481}
 482
 483/*
 484 * Insert the timer on the appropriate list before any timers that
 485 * expire later.  This must be called with the sighand lock held.
 486 */
 487static void arm_timer(struct k_itimer *timer)
 488{
 489	int clkidx = CPUCLOCK_WHICH(timer->it_clock);
 490	struct cpu_timer *ctmr = &timer->it.cpu;
 491	u64 newexp = cpu_timer_getexpires(ctmr);
 492	struct task_struct *p = ctmr->task;
 493	struct posix_cputimer_base *base;
 494
 495	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 496		base = p->posix_cputimers.bases + clkidx;
 497	else
 498		base = p->signal->posix_cputimers.bases + clkidx;
 
 
 
 
 499
 500	if (!cpu_timer_enqueue(&base->tqhead, ctmr))
 501		return;
 
 
 
 
 
 502
 503	/*
 504	 * We are the new earliest-expiring POSIX 1.b timer, hence
 505	 * need to update expiration cache. Take into account that
 506	 * for process timers we share expiration cache with itimers
 507	 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 508	 */
 509	if (newexp < base->nextevt)
 510		base->nextevt = newexp;
 511
 512	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 513		tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
 514	else
 515		tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516}
 517
 518/*
 519 * The timer is locked, fire it and arrange for its reload.
 520 */
 521static void cpu_timer_fire(struct k_itimer *timer)
 522{
 523	struct cpu_timer *ctmr = &timer->it.cpu;
 524
 525	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 526		/*
 527		 * User don't want any signal.
 528		 */
 529		cpu_timer_setexpires(ctmr, 0);
 530	} else if (unlikely(timer->sigq == NULL)) {
 531		/*
 532		 * This a special case for clock_nanosleep,
 533		 * not a normal timer from sys_timer_create.
 534		 */
 535		wake_up_process(timer->it_process);
 536		cpu_timer_setexpires(ctmr, 0);
 537	} else if (!timer->it_interval) {
 538		/*
 539		 * One-shot timer.  Clear it as soon as it's fired.
 540		 */
 541		posix_timer_event(timer, 0);
 542		cpu_timer_setexpires(ctmr, 0);
 543	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 544		/*
 545		 * The signal did not get queued because the signal
 546		 * was ignored, so we won't get any callback to
 547		 * reload the timer.  But we need to keep it
 548		 * ticking in case the signal is deliverable next time.
 549		 */
 550		posix_cpu_timer_rearm(timer);
 551		++timer->it_requeue_pending;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552	}
 
 553}
 554
 555/*
 556 * Guts of sys_timer_settime for CPU timers.
 557 * This is called with the timer locked and interrupts disabled.
 558 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 559 * and try again.  (This happens when the timer is in the middle of firing.)
 560 */
 561static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 562			       struct itimerspec64 *new, struct itimerspec64 *old)
 563{
 564	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 565	u64 old_expires, new_expires, old_incr, val;
 566	struct cpu_timer *ctmr = &timer->it.cpu;
 567	struct task_struct *p = ctmr->task;
 568	struct sighand_struct *sighand;
 569	unsigned long flags;
 570	int ret = 0;
 
 
 
 571
 572	if (WARN_ON_ONCE(!p))
 573		return -EINVAL;
 574
 575	/*
 576	 * Use the to_ktime conversion because that clamps the maximum
 577	 * value to KTIME_MAX and avoid multiplication overflows.
 578	 */
 579	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
 580
 581	/*
 582	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
 583	 * and p->signal->cpu_timers read/write in arm_timer()
 584	 */
 585	sighand = lock_task_sighand(p, &flags);
 586	/*
 587	 * If p has just been reaped, we can no
 588	 * longer get any information about it at all.
 589	 */
 590	if (unlikely(sighand == NULL))
 591		return -ESRCH;
 
 592
 593	/*
 594	 * Disarm any old timer after extracting its expiry time.
 595	 */
 596	old_incr = timer->it_interval;
 597	old_expires = cpu_timer_getexpires(ctmr);
 598
 
 
 
 599	if (unlikely(timer->it.cpu.firing)) {
 600		timer->it.cpu.firing = -1;
 601		ret = TIMER_RETRY;
 602	} else {
 603		cpu_timer_dequeue(ctmr);
 604	}
 605
 606	/*
 607	 * We need to sample the current value to convert the new
 608	 * value from to relative and absolute, and to convert the
 609	 * old value from absolute to relative.  To set a process
 610	 * timer, we need a sample to balance the thread expiry
 611	 * times (in arm_timer).  With an absolute time, we must
 612	 * check if it's already passed.  In short, we need a sample.
 613	 */
 614	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 615		val = cpu_clock_sample(clkid, p);
 616	else
 617		val = cpu_clock_sample_group(clkid, p, true);
 
 618
 619	if (old) {
 620		if (old_expires == 0) {
 621			old->it_value.tv_sec = 0;
 622			old->it_value.tv_nsec = 0;
 623		} else {
 624			/*
 625			 * Update the timer in case it has overrun already.
 626			 * If it has, we'll report it as having overrun and
 627			 * with the next reloaded timer already ticking,
 628			 * though we are swallowing that pending
 629			 * notification here to install the new setting.
 
 
 
 630			 */
 631			u64 exp = bump_cpu_timer(timer, val);
 632
 633			if (val < exp) {
 634				old_expires = exp - val;
 635				old->it_value = ns_to_timespec64(old_expires);
 
 636			} else {
 637				old->it_value.tv_nsec = 1;
 638				old->it_value.tv_sec = 0;
 639			}
 640		}
 641	}
 642
 643	if (unlikely(ret)) {
 644		/*
 645		 * We are colliding with the timer actually firing.
 646		 * Punt after filling in the timer's old value, and
 647		 * disable this firing since we are already reporting
 648		 * it as an overrun (thanks to bump_cpu_timer above).
 649		 */
 650		unlock_task_sighand(p, &flags);
 651		goto out;
 652	}
 653
 654	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
 655		new_expires += val;
 656	}
 657
 658	/*
 659	 * Install the new expiry time (or zero).
 660	 * For a timer with no notification action, we don't actually
 661	 * arm the timer (we'll just fake it for timer_gettime).
 662	 */
 663	cpu_timer_setexpires(ctmr, new_expires);
 664	if (new_expires != 0 && val < new_expires) {
 665		arm_timer(timer);
 666	}
 667
 668	unlock_task_sighand(p, &flags);
 669	/*
 670	 * Install the new reload setting, and
 671	 * set up the signal and overrun bookkeeping.
 672	 */
 673	timer->it_interval = timespec64_to_ktime(new->it_interval);
 
 674
 675	/*
 676	 * This acts as a modification timestamp for the timer,
 677	 * so any automatic reload attempt will punt on seeing
 678	 * that we have reset the timer manually.
 679	 */
 680	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 681		~REQUEUE_PENDING;
 682	timer->it_overrun_last = 0;
 683	timer->it_overrun = -1;
 684
 685	if (new_expires != 0 && !(val < new_expires)) {
 686		/*
 687		 * The designated time already passed, so we notify
 688		 * immediately, even if the thread never runs to
 689		 * accumulate more time on this clock.
 690		 */
 691		cpu_timer_fire(timer);
 692	}
 693
 694	ret = 0;
 695 out:
 696	if (old)
 697		old->it_interval = ns_to_timespec64(old_incr);
 
 
 698
 699	return ret;
 700}
 701
 702static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
 703{
 704	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 705	struct cpu_timer *ctmr = &timer->it.cpu;
 706	u64 now, expires = cpu_timer_getexpires(ctmr);
 707	struct task_struct *p = ctmr->task;
 708
 709	if (WARN_ON_ONCE(!p))
 710		return;
 711
 712	/*
 713	 * Easy part: convert the reload time.
 714	 */
 715	itp->it_interval = ktime_to_timespec64(timer->it_interval);
 
 716
 717	if (!expires)
 
 718		return;
 
 719
 720	/*
 721	 * Sample the clock to take the difference with the expiry time.
 722	 */
 723	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 724		now = cpu_clock_sample(clkid, p);
 725	} else {
 726		struct sighand_struct *sighand;
 727		unsigned long flags;
 728
 729		/*
 730		 * Protect against sighand release/switch in exit/exec and
 731		 * also make timer sampling safe if it ends up calling
 732		 * thread_group_cputime().
 733		 */
 734		sighand = lock_task_sighand(p, &flags);
 735		if (unlikely(sighand == NULL)) {
 736			/*
 737			 * The process has been reaped.
 738			 * We can't even collect a sample any more.
 739			 * Disarm the timer, nothing else to do.
 740			 */
 741			cpu_timer_setexpires(ctmr, 0);
 742			return;
 
 743		} else {
 744			now = cpu_clock_sample_group(clkid, p, false);
 745			unlock_task_sighand(p, &flags);
 746		}
 747	}
 748
 749	if (now < expires) {
 750		itp->it_value = ns_to_timespec64(expires - now);
 
 
 751	} else {
 752		/*
 753		 * The timer should have expired already, but the firing
 754		 * hasn't taken place yet.  Say it's just about to expire.
 755		 */
 756		itp->it_value.tv_nsec = 1;
 757		itp->it_value.tv_sec = 0;
 758	}
 759}
 760
 761#define MAX_COLLECTED	20
 762
 763static u64 collect_timerqueue(struct timerqueue_head *head,
 764			      struct list_head *firing, u64 now)
 765{
 766	struct timerqueue_node *next;
 767	int i = 0;
 768
 769	while ((next = timerqueue_getnext(head))) {
 770		struct cpu_timer *ctmr;
 771		u64 expires;
 772
 773		ctmr = container_of(next, struct cpu_timer, node);
 774		expires = cpu_timer_getexpires(ctmr);
 775		/* Limit the number of timers to expire at once */
 776		if (++i == MAX_COLLECTED || now < expires)
 777			return expires;
 778
 779		ctmr->firing = 1;
 780		cpu_timer_dequeue(ctmr);
 781		list_add_tail(&ctmr->elist, firing);
 782	}
 783
 784	return U64_MAX;
 785}
 786
 787static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
 788				    struct list_head *firing)
 789{
 790	struct posix_cputimer_base *base = pct->bases;
 791	int i;
 792
 793	for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
 794		base->nextevt = collect_timerqueue(&base->tqhead, firing,
 795						    samples[i]);
 796	}
 797}
 798
 799static inline void check_dl_overrun(struct task_struct *tsk)
 800{
 801	if (tsk->dl.dl_overrun) {
 802		tsk->dl.dl_overrun = 0;
 803		__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 804	}
 805}
 806
 807static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
 808{
 809	if (time < limit)
 810		return false;
 811
 812	if (print_fatal_signals) {
 813		pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
 814			rt ? "RT" : "CPU", hard ? "hard" : "soft",
 815			current->comm, task_pid_nr(current));
 816	}
 817	__group_send_sig_info(signo, SEND_SIG_PRIV, current);
 818	return true;
 819}
 820
 821/*
 822 * Check for any per-thread CPU timers that have fired and move them off
 823 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 824 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 825 */
 826static void check_thread_timers(struct task_struct *tsk,
 827				struct list_head *firing)
 828{
 829	struct posix_cputimers *pct = &tsk->posix_cputimers;
 830	u64 samples[CPUCLOCK_MAX];
 
 
 831	unsigned long soft;
 832
 833	if (dl_task(tsk))
 834		check_dl_overrun(tsk);
 835
 836	if (expiry_cache_is_inactive(pct))
 
 837		return;
 838
 839	task_sample_cputime(tsk, samples);
 840	collect_posix_cputimers(pct, samples, firing);
 
 
 
 
 
 
 841
 842	/*
 843	 * Check for the special case thread timers.
 844	 */
 845	soft = task_rlimit(tsk, RLIMIT_RTTIME);
 846	if (soft != RLIM_INFINITY) {
 847		/* Task RT timeout is accounted in jiffies. RTTIME is usec */
 848		unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
 849		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
 850
 851		/* At the hard limit, send SIGKILL. No further action. */
 852		if (hard != RLIM_INFINITY &&
 853		    check_rlimit(rttime, hard, SIGKILL, true, true))
 
 
 
 
 
 854			return;
 855
 856		/* At the soft limit, send a SIGXCPU every second */
 857		if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
 858			soft += USEC_PER_SEC;
 859			tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 
 
 
 
 
 
 
 
 860		}
 861	}
 862
 863	if (expiry_cache_is_inactive(pct))
 864		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
 865}
 866
 867static inline void stop_process_timers(struct signal_struct *sig)
 868{
 869	struct posix_cputimers *pct = &sig->posix_cputimers;
 870
 871	/* Turn off the active flag. This is done without locking. */
 872	WRITE_ONCE(pct->timers_active, false);
 873	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
 874}
 875
 
 
 876static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 877			     u64 *expires, u64 cur_time, int signo)
 
 878{
 879	if (!it->expires)
 880		return;
 881
 882	if (cur_time >= it->expires) {
 883		if (it->incr)
 884			it->expires += it->incr;
 885		else
 
 
 
 
 
 886			it->expires = 0;
 
 887
 888		trace_itimer_expire(signo == SIGPROF ?
 889				    ITIMER_PROF : ITIMER_VIRTUAL,
 890				    task_tgid(tsk), cur_time);
 891		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
 892	}
 893
 894	if (it->expires && it->expires < *expires)
 895		*expires = it->expires;
 
 896}
 897
 898/*
 899 * Check for any per-thread CPU timers that have fired and move them
 900 * off the tsk->*_timers list onto the firing list.  Per-thread timers
 901 * have already been taken off.
 902 */
 903static void check_process_timers(struct task_struct *tsk,
 904				 struct list_head *firing)
 905{
 906	struct signal_struct *const sig = tsk->signal;
 907	struct posix_cputimers *pct = &sig->posix_cputimers;
 908	u64 samples[CPUCLOCK_MAX];
 
 
 909	unsigned long soft;
 910
 911	/*
 912	 * If there are no active process wide timers (POSIX 1.b, itimers,
 913	 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
 914	 * processing when there is already another task handling them.
 915	 */
 916	if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
 917		return;
 918
 919	/*
 920	 * Signify that a thread is checking for process timers.
 921	 * Write access to this field is protected by the sighand lock.
 922	 */
 923	pct->expiry_active = true;
 924
 925	/*
 926	 * Collect the current process totals. Group accounting is active
 927	 * so the sample can be taken directly.
 928	 */
 929	proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
 930	collect_posix_cputimers(pct, samples, firing);
 
 
 
 
 
 
 931
 932	/*
 933	 * Check for the special case process timers.
 934	 */
 935	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
 936			 &pct->bases[CPUCLOCK_PROF].nextevt,
 937			 samples[CPUCLOCK_PROF], SIGPROF);
 938	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
 939			 &pct->bases[CPUCLOCK_VIRT].nextevt,
 940			 samples[CPUCLOCK_VIRT], SIGVTALRM);
 941
 942	soft = task_rlimit(tsk, RLIMIT_CPU);
 943	if (soft != RLIM_INFINITY) {
 944		/* RLIMIT_CPU is in seconds. Samples are nanoseconds */
 945		unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
 946		u64 ptime = samples[CPUCLOCK_PROF];
 947		u64 softns = (u64)soft * NSEC_PER_SEC;
 948		u64 hardns = (u64)hard * NSEC_PER_SEC;
 949
 950		/* At the hard limit, send SIGKILL. No further action. */
 951		if (hard != RLIM_INFINITY &&
 952		    check_rlimit(ptime, hardns, SIGKILL, false, true))
 
 953			return;
 954
 955		/* At the soft limit, send a SIGXCPU every second */
 956		if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
 957			sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
 958			softns += NSEC_PER_SEC;
 959		}
 960
 961		/* Update the expiry cache */
 962		if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
 963			pct->bases[CPUCLOCK_PROF].nextevt = softns;
 
 
 
 
 
 
 
 
 
 
 964	}
 965
 966	if (expiry_cache_is_inactive(pct))
 
 
 
 967		stop_process_timers(sig);
 968
 969	pct->expiry_active = false;
 970}
 971
 972/*
 973 * This is called from the signal code (via posixtimer_rearm)
 974 * when the last timer signal was delivered and we have to reload the timer.
 975 */
 976static void posix_cpu_timer_rearm(struct k_itimer *timer)
 977{
 978	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 979	struct cpu_timer *ctmr = &timer->it.cpu;
 980	struct task_struct *p = ctmr->task;
 981	struct sighand_struct *sighand;
 982	unsigned long flags;
 983	u64 now;
 
 984
 985	if (WARN_ON_ONCE(!p))
 986		return;
 987
 988	/*
 989	 * Fetch the current sample and update the timer's expiry time.
 990	 */
 991	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 992		now = cpu_clock_sample(clkid, p);
 993		bump_cpu_timer(timer, now);
 994		if (unlikely(p->exit_state))
 995			return;
 996
 997		/* Protect timer list r/w in arm_timer() */
 998		sighand = lock_task_sighand(p, &flags);
 999		if (!sighand)
1000			return;
1001	} else {
1002		/*
1003		 * Protect arm_timer() and timer sampling in case of call to
1004		 * thread_group_cputime().
1005		 */
1006		sighand = lock_task_sighand(p, &flags);
1007		if (unlikely(sighand == NULL)) {
1008			/*
1009			 * The process has been reaped.
1010			 * We can't even collect a sample any more.
1011			 */
1012			cpu_timer_setexpires(ctmr, 0);
1013			return;
1014		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1015			/* If the process is dying, no need to rearm */
1016			goto unlock;
 
1017		}
1018		now = cpu_clock_sample_group(clkid, p, true);
1019		bump_cpu_timer(timer, now);
1020		/* Leave the sighand locked for the call below.  */
1021	}
1022
1023	/*
1024	 * Now re-arm for the new expiry time.
1025	 */
 
1026	arm_timer(timer);
1027unlock:
1028	unlock_task_sighand(p, &flags);
 
 
 
 
 
1029}
1030
1031/**
1032 * task_cputimers_expired - Check whether posix CPU timers are expired
1033 *
1034 * @samples:	Array of current samples for the CPUCLOCK clocks
1035 * @pct:	Pointer to a posix_cputimers container
1036 *
1037 * Returns true if any member of @samples is greater than the corresponding
1038 * member of @pct->bases[CLK].nextevt. False otherwise
1039 */
1040static inline bool
1041task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
1042{
1043	int i;
1044
1045	for (i = 0; i < CPUCLOCK_MAX; i++) {
1046		if (samples[i] >= pct->bases[i].nextevt)
1047			return true;
1048	}
1049	return false;
 
 
1050}
1051
1052/**
1053 * fastpath_timer_check - POSIX CPU timers fast path.
1054 *
1055 * @tsk:	The task (thread) being checked.
1056 *
1057 * Check the task and thread group timers.  If both are zero (there are no
1058 * timers set) return false.  Otherwise snapshot the task and thread group
1059 * timers and compare them with the corresponding expiration times.  Return
1060 * true if a timer has expired, else return false.
1061 */
1062static inline bool fastpath_timer_check(struct task_struct *tsk)
1063{
1064	struct posix_cputimers *pct = &tsk->posix_cputimers;
1065	struct signal_struct *sig;
1066
1067	if (!expiry_cache_is_inactive(pct)) {
1068		u64 samples[CPUCLOCK_MAX];
1069
1070		task_sample_cputime(tsk, samples);
1071		if (task_cputimers_expired(samples, pct))
1072			return true;
 
1073	}
1074
1075	sig = tsk->signal;
1076	pct = &sig->posix_cputimers;
1077	/*
1078	 * Check if thread group timers expired when timers are active and
1079	 * no other thread in the group is already handling expiry for
1080	 * thread group cputimers. These fields are read without the
1081	 * sighand lock. However, this is fine because this is meant to be
1082	 * a fastpath heuristic to determine whether we should try to
1083	 * acquire the sighand lock to handle timer expiry.
1084	 *
1085	 * In the worst case scenario, if concurrently timers_active is set
1086	 * or expiry_active is cleared, but the current thread doesn't see
1087	 * the change yet, the timer checks are delayed until the next
1088	 * thread in the group gets a scheduler interrupt to handle the
1089	 * timer. This isn't an issue in practice because these types of
1090	 * delays with signals actually getting sent are expected.
1091	 */
1092	if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1093		u64 samples[CPUCLOCK_MAX];
1094
1095		proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1096					   samples);
1097
1098		if (task_cputimers_expired(samples, pct))
1099			return true;
1100	}
1101
1102	if (dl_task(tsk) && tsk->dl.dl_overrun)
1103		return true;
1104
1105	return false;
1106}
1107
1108/*
1109 * This is called from the timer interrupt handler.  The irq handler has
1110 * already updated our counts.  We need to check if any timers fire now.
1111 * Interrupts are disabled.
1112 */
1113void run_posix_cpu_timers(void)
1114{
1115	struct task_struct *tsk = current;
1116	struct k_itimer *timer, *next;
1117	unsigned long flags;
1118	LIST_HEAD(firing);
1119
1120	lockdep_assert_irqs_disabled();
1121
1122	/*
1123	 * The fast path checks that there are no expired thread or thread
1124	 * group timers.  If that's so, just return.
1125	 */
1126	if (!fastpath_timer_check(tsk))
1127		return;
1128
1129	if (!lock_task_sighand(tsk, &flags))
1130		return;
1131	/*
1132	 * Here we take off tsk->signal->cpu_timers[N] and
1133	 * tsk->cpu_timers[N] all the timers that are firing, and
1134	 * put them on the firing list.
1135	 */
1136	check_thread_timers(tsk, &firing);
1137
1138	check_process_timers(tsk, &firing);
1139
1140	/*
1141	 * We must release these locks before taking any timer's lock.
1142	 * There is a potential race with timer deletion here, as the
1143	 * siglock now protects our private firing list.  We have set
1144	 * the firing flag in each timer, so that a deletion attempt
1145	 * that gets the timer lock before we do will give it up and
1146	 * spin until we've taken care of that timer below.
1147	 */
1148	unlock_task_sighand(tsk, &flags);
1149
1150	/*
1151	 * Now that all the timers on our list have the firing flag,
1152	 * no one will touch their list entries but us.  We'll take
1153	 * each timer's lock before clearing its firing flag, so no
1154	 * timer call will interfere.
1155	 */
1156	list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1157		int cpu_firing;
1158
1159		spin_lock(&timer->it_lock);
1160		list_del_init(&timer->it.cpu.elist);
1161		cpu_firing = timer->it.cpu.firing;
1162		timer->it.cpu.firing = 0;
1163		/*
1164		 * The firing flag is -1 if we collided with a reset
1165		 * of the timer, which already reported this
1166		 * almost-firing as an overrun.  So don't generate an event.
1167		 */
1168		if (likely(cpu_firing >= 0))
1169			cpu_timer_fire(timer);
1170		spin_unlock(&timer->it_lock);
1171	}
1172}
1173
1174/*
1175 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1176 * The tsk->sighand->siglock must be held by the caller.
1177 */
1178void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1179			   u64 *newval, u64 *oldval)
1180{
1181	u64 now, *nextevt;
1182
1183	if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1184		return;
1185
1186	nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1187	now = cpu_clock_sample_group(clkid, tsk, true);
1188
1189	if (oldval) {
1190		/*
1191		 * We are setting itimer. The *oldval is absolute and we update
1192		 * it to be relative, *newval argument is relative and we update
1193		 * it to be absolute.
1194		 */
1195		if (*oldval) {
1196			if (*oldval <= now) {
1197				/* Just about to fire. */
1198				*oldval = TICK_NSEC;
1199			} else {
1200				*oldval -= now;
1201			}
1202		}
1203
1204		if (!*newval)
1205			return;
1206		*newval += now;
1207	}
1208
1209	/*
1210	 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1211	 * expiry cache is also used by RLIMIT_CPU!.
1212	 */
1213	if (*newval < *nextevt)
1214		*nextevt = *newval;
 
 
 
 
 
 
 
 
1215
1216	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1217}
1218
1219static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1220			    const struct timespec64 *rqtp)
1221{
1222	struct itimerspec64 it;
1223	struct k_itimer timer;
1224	u64 expires;
1225	int error;
1226
1227	/*
1228	 * Set up a temporary timer and then wait for it to go off.
1229	 */
1230	memset(&timer, 0, sizeof timer);
1231	spin_lock_init(&timer.it_lock);
1232	timer.it_clock = which_clock;
1233	timer.it_overrun = -1;
1234	error = posix_cpu_timer_create(&timer);
1235	timer.it_process = current;
1236
1237	if (!error) {
1238		static struct itimerspec64 zero_it;
1239		struct restart_block *restart;
1240
1241		memset(&it, 0, sizeof(it));
1242		it.it_value = *rqtp;
1243
1244		spin_lock_irq(&timer.it_lock);
1245		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1246		if (error) {
1247			spin_unlock_irq(&timer.it_lock);
1248			return error;
1249		}
1250
1251		while (!signal_pending(current)) {
1252			if (!cpu_timer_getexpires(&timer.it.cpu)) {
1253				/*
1254				 * Our timer fired and was reset, below
1255				 * deletion can not fail.
1256				 */
1257				posix_cpu_timer_del(&timer);
1258				spin_unlock_irq(&timer.it_lock);
1259				return 0;
1260			}
1261
1262			/*
1263			 * Block until cpu_timer_fire (or a signal) wakes us.
1264			 */
1265			__set_current_state(TASK_INTERRUPTIBLE);
1266			spin_unlock_irq(&timer.it_lock);
1267			schedule();
1268			spin_lock_irq(&timer.it_lock);
1269		}
1270
1271		/*
1272		 * We were interrupted by a signal.
1273		 */
1274		expires = cpu_timer_getexpires(&timer.it.cpu);
1275		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1276		if (!error) {
1277			/*
1278			 * Timer is now unarmed, deletion can not fail.
1279			 */
1280			posix_cpu_timer_del(&timer);
1281		}
1282		spin_unlock_irq(&timer.it_lock);
1283
1284		while (error == TIMER_RETRY) {
1285			/*
1286			 * We need to handle case when timer was or is in the
1287			 * middle of firing. In other cases we already freed
1288			 * resources.
1289			 */
1290			spin_lock_irq(&timer.it_lock);
1291			error = posix_cpu_timer_del(&timer);
1292			spin_unlock_irq(&timer.it_lock);
1293		}
1294
1295		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1296			/*
1297			 * It actually did fire already.
1298			 */
1299			return 0;
1300		}
1301
1302		error = -ERESTART_RESTARTBLOCK;
1303		/*
1304		 * Report back to the user the time still remaining.
1305		 */
1306		restart = &current->restart_block;
1307		restart->nanosleep.expires = expires;
1308		if (restart->nanosleep.type != TT_NONE)
1309			error = nanosleep_copyout(restart, &it.it_value);
1310	}
1311
1312	return error;
1313}
1314
1315static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1316
1317static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1318			    const struct timespec64 *rqtp)
1319{
1320	struct restart_block *restart_block = &current->restart_block;
 
1321	int error;
1322
1323	/*
1324	 * Diagnose required errors first.
1325	 */
1326	if (CPUCLOCK_PERTHREAD(which_clock) &&
1327	    (CPUCLOCK_PID(which_clock) == 0 ||
1328	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1329		return -EINVAL;
1330
1331	error = do_cpu_nanosleep(which_clock, flags, rqtp);
1332
1333	if (error == -ERESTART_RESTARTBLOCK) {
1334
1335		if (flags & TIMER_ABSTIME)
1336			return -ERESTARTNOHAND;
 
 
 
 
 
1337
1338		restart_block->fn = posix_cpu_nsleep_restart;
1339		restart_block->nanosleep.clockid = which_clock;
 
 
1340	}
1341	return error;
1342}
1343
1344static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1345{
1346	clockid_t which_clock = restart_block->nanosleep.clockid;
1347	struct timespec64 t;
 
 
 
 
1348
1349	t = ns_to_timespec64(restart_block->nanosleep.expires);
 
 
 
 
 
 
 
 
 
 
 
 
1350
1351	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1352}
1353
1354#define PROCESS_CLOCK	make_process_cpuclock(0, CPUCLOCK_SCHED)
1355#define THREAD_CLOCK	make_thread_cpuclock(0, CPUCLOCK_SCHED)
1356
1357static int process_cpu_clock_getres(const clockid_t which_clock,
1358				    struct timespec64 *tp)
1359{
1360	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1361}
1362static int process_cpu_clock_get(const clockid_t which_clock,
1363				 struct timespec64 *tp)
1364{
1365	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1366}
1367static int process_cpu_timer_create(struct k_itimer *timer)
1368{
1369	timer->it_clock = PROCESS_CLOCK;
1370	return posix_cpu_timer_create(timer);
1371}
1372static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1373			      const struct timespec64 *rqtp)
 
 
 
 
 
1374{
1375	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1376}
1377static int thread_cpu_clock_getres(const clockid_t which_clock,
1378				   struct timespec64 *tp)
1379{
1380	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1381}
1382static int thread_cpu_clock_get(const clockid_t which_clock,
1383				struct timespec64 *tp)
1384{
1385	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1386}
1387static int thread_cpu_timer_create(struct k_itimer *timer)
1388{
1389	timer->it_clock = THREAD_CLOCK;
1390	return posix_cpu_timer_create(timer);
1391}
1392
1393const struct k_clock clock_posix_cpu = {
1394	.clock_getres	= posix_cpu_clock_getres,
1395	.clock_set	= posix_cpu_clock_set,
1396	.clock_get	= posix_cpu_clock_get,
1397	.timer_create	= posix_cpu_timer_create,
1398	.nsleep		= posix_cpu_nsleep,
 
1399	.timer_set	= posix_cpu_timer_set,
1400	.timer_del	= posix_cpu_timer_del,
1401	.timer_get	= posix_cpu_timer_get,
1402	.timer_rearm	= posix_cpu_timer_rearm,
1403};
1404
1405const struct k_clock clock_process = {
1406	.clock_getres	= process_cpu_clock_getres,
1407	.clock_get	= process_cpu_clock_get,
1408	.timer_create	= process_cpu_timer_create,
1409	.nsleep		= process_cpu_nsleep,
1410};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1411
1412const struct k_clock clock_thread = {
1413	.clock_getres	= thread_cpu_clock_getres,
1414	.clock_get	= thread_cpu_clock_get,
1415	.timer_create	= thread_cpu_timer_create,
1416};
v4.6
 
   1/*
   2 * Implement CPU time clocks for the POSIX clock interface.
   3 */
   4
   5#include <linux/sched.h>
 
   6#include <linux/posix-timers.h>
   7#include <linux/errno.h>
   8#include <linux/math64.h>
   9#include <asm/uaccess.h>
  10#include <linux/kernel_stat.h>
  11#include <trace/events/timer.h>
  12#include <linux/random.h>
  13#include <linux/tick.h>
  14#include <linux/workqueue.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  15
  16/*
  17 * Called after updating RLIMIT_CPU to run cpu timer and update
  18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
  19 * siglock protection since other code may update expiration cache as
  20 * well.
  21 */
  22void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  23{
  24	cputime_t cputime = secs_to_cputime(rlim_new);
  25
  26	spin_lock_irq(&task->sighand->siglock);
  27	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
  28	spin_unlock_irq(&task->sighand->siglock);
  29}
  30
  31static int check_clock(const clockid_t which_clock)
 
 
 
 
  32{
  33	int error = 0;
  34	struct task_struct *p;
  35	const pid_t pid = CPUCLOCK_PID(which_clock);
  36
  37	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  38		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39
  40	if (pid == 0)
  41		return 0;
  42
  43	rcu_read_lock();
  44	p = find_task_by_vpid(pid);
  45	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  46		   same_thread_group(p, current) : has_group_leader_pid(p))) {
  47		error = -EINVAL;
  48	}
  49	rcu_read_unlock();
 
 
  50
  51	return error;
 
 
  52}
  53
  54static inline unsigned long long
  55timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
  56{
  57	unsigned long long ret;
  58
  59	ret = 0;		/* high half always zero when .cpu used */
  60	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  61		ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
  62	} else {
  63		ret = cputime_to_expires(timespec_to_cputime(tp));
  64	}
  65	return ret;
  66}
  67
  68static void sample_to_timespec(const clockid_t which_clock,
  69			       unsigned long long expires,
  70			       struct timespec *tp)
  71{
  72	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
  73		*tp = ns_to_timespec(expires);
  74	else
  75		cputime_to_timespec((__force cputime_t)expires, tp);
  76}
  77
  78/*
  79 * Update expiry time from increment, and increase overrun count,
  80 * given the current clock sample.
  81 */
  82static void bump_cpu_timer(struct k_itimer *timer,
  83			   unsigned long long now)
  84{
 
  85	int i;
  86	unsigned long long delta, incr;
  87
  88	if (timer->it.cpu.incr == 0)
  89		return;
  90
  91	if (now < timer->it.cpu.expires)
  92		return;
  93
  94	incr = timer->it.cpu.incr;
  95	delta = now + incr - timer->it.cpu.expires;
  96
  97	/* Don't use (incr*2 < delta), incr*2 might overflow. */
  98	for (i = 0; incr < delta - incr; i++)
  99		incr = incr << 1;
 100
 101	for (; i >= 0; incr >>= 1, i--) {
 102		if (delta < incr)
 103			continue;
 104
 105		timer->it.cpu.expires += incr;
 106		timer->it_overrun += 1 << i;
 107		delta -= incr;
 108	}
 
 109}
 110
 111/**
 112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
 113 *
 114 * @cputime:	The struct to compare.
 115 *
 116 * Checks @cputime to see if all fields are zero.  Returns true if all fields
 117 * are zero, false if any field is nonzero.
 118 */
 119static inline int task_cputime_zero(const struct task_cputime *cputime)
 120{
 121	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
 122		return 1;
 123	return 0;
 124}
 125
 126static inline unsigned long long prof_ticks(struct task_struct *p)
 127{
 128	cputime_t utime, stime;
 129
 130	task_cputime(p, &utime, &stime);
 131
 132	return cputime_to_expires(utime + stime);
 133}
 134static inline unsigned long long virt_ticks(struct task_struct *p)
 135{
 136	cputime_t utime;
 137
 138	task_cputime(p, &utime, NULL);
 139
 140	return cputime_to_expires(utime);
 141}
 142
 143static int
 144posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
 145{
 146	int error = check_clock(which_clock);
 147	if (!error) {
 148		tp->tv_sec = 0;
 149		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 150		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 151			/*
 152			 * If sched_clock is using a cycle counter, we
 153			 * don't have any idea of its true resolution
 154			 * exported, but it is much more than 1s/HZ.
 155			 */
 156			tp->tv_nsec = 1;
 157		}
 158	}
 159	return error;
 160}
 161
 162static int
 163posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
 164{
 
 
 165	/*
 166	 * You can never reset a CPU clock, but we check for other errors
 167	 * in the call before failing with EPERM.
 168	 */
 169	int error = check_clock(which_clock);
 170	if (error == 0) {
 171		error = -EPERM;
 172	}
 173	return error;
 174}
 175
 176
 177/*
 178 * Sample a per-thread clock for the given task.
 179 */
 180static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
 181			    unsigned long long *sample)
 182{
 183	switch (CPUCLOCK_WHICH(which_clock)) {
 184	default:
 185		return -EINVAL;
 
 
 
 
 
 186	case CPUCLOCK_PROF:
 187		*sample = prof_ticks(p);
 188		break;
 189	case CPUCLOCK_VIRT:
 190		*sample = virt_ticks(p);
 191		break;
 192	case CPUCLOCK_SCHED:
 193		*sample = task_sched_runtime(p);
 194		break;
 195	}
 196	return 0;
 197}
 198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199/*
 200 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
 201 * to avoid race conditions with concurrent updates to cputime.
 202 */
 203static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
 204{
 205	u64 curr_cputime;
 206retry:
 207	curr_cputime = atomic64_read(cputime);
 208	if (sum_cputime > curr_cputime) {
 209		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
 210			goto retry;
 211	}
 212}
 213
 214static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
 
 215{
 216	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
 217	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
 218	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
 219}
 220
 221/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
 222static inline void sample_cputime_atomic(struct task_cputime *times,
 223					 struct task_cputime_atomic *atomic_times)
 
 
 
 
 
 
 
 
 
 224{
 225	times->utime = atomic64_read(&atomic_times->utime);
 226	times->stime = atomic64_read(&atomic_times->stime);
 227	times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
 
 
 
 228}
 229
 230void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
 
 
 
 
 
 
 
 
 
 
 
 
 231{
 232	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 233	struct task_cputime sum;
 234
 235	/* Check if cputimer isn't running. This is accessed without locking. */
 236	if (!READ_ONCE(cputimer->running)) {
 
 
 237		/*
 238		 * The POSIX timer interface allows for absolute time expiry
 239		 * values through the TIMER_ABSTIME flag, therefore we have
 240		 * to synchronize the timer to the clock every time we start it.
 241		 */
 242		thread_group_cputime(tsk, &sum);
 243		update_gt_cputime(&cputimer->cputime_atomic, &sum);
 244
 245		/*
 246		 * We're setting cputimer->running without a lock. Ensure
 247		 * this only gets written to in one operation. We set
 248		 * running after update_gt_cputime() as a small optimization,
 249		 * but barriers are not required because update_gt_cputime()
 250		 * can handle concurrent updates.
 251		 */
 252		WRITE_ONCE(cputimer->running, true);
 253	}
 254	sample_cputime_atomic(times, &cputimer->cputime_atomic);
 255}
 256
 257/*
 258 * Sample a process (thread group) clock for the given group_leader task.
 259 * Must be called with task sighand lock held for safe while_each_thread()
 260 * traversal.
 261 */
 262static int cpu_clock_sample_group(const clockid_t which_clock,
 263				  struct task_struct *p,
 264				  unsigned long long *sample)
 265{
 266	struct task_cputime cputime;
 267
 268	switch (CPUCLOCK_WHICH(which_clock)) {
 269	default:
 270		return -EINVAL;
 271	case CPUCLOCK_PROF:
 272		thread_group_cputime(p, &cputime);
 273		*sample = cputime_to_expires(cputime.utime + cputime.stime);
 274		break;
 275	case CPUCLOCK_VIRT:
 276		thread_group_cputime(p, &cputime);
 277		*sample = cputime_to_expires(cputime.utime);
 278		break;
 279	case CPUCLOCK_SCHED:
 280		thread_group_cputime(p, &cputime);
 281		*sample = cputime.sum_exec_runtime;
 282		break;
 283	}
 284	return 0;
 285}
 286
 287static int posix_cpu_clock_get_task(struct task_struct *tsk,
 288				    const clockid_t which_clock,
 289				    struct timespec *tp)
 290{
 291	int err = -EINVAL;
 292	unsigned long long rtn;
 293
 294	if (CPUCLOCK_PERTHREAD(which_clock)) {
 295		if (same_thread_group(tsk, current))
 296			err = cpu_clock_sample(which_clock, tsk, &rtn);
 
 
 
 
 
 
 
 
 
 297	} else {
 298		if (tsk == current || thread_group_leader(tsk))
 299			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
 300	}
 301
 302	if (!err)
 303		sample_to_timespec(which_clock, rtn, tp);
 304
 305	return err;
 306}
 307
 
 
 
 
 
 308
 309static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
 310{
 311	const pid_t pid = CPUCLOCK_PID(which_clock);
 312	int err = -EINVAL;
 313
 314	if (pid == 0) {
 315		/*
 316		 * Special case constant value for our own clocks.
 317		 * We don't have to do any lookup to find ourselves.
 318		 */
 319		err = posix_cpu_clock_get_task(current, which_clock, tp);
 320	} else {
 321		/*
 322		 * Find the given PID, and validate that the caller
 323		 * should be able to see it.
 324		 */
 325		struct task_struct *p;
 326		rcu_read_lock();
 327		p = find_task_by_vpid(pid);
 328		if (p)
 329			err = posix_cpu_clock_get_task(p, which_clock, tp);
 330		rcu_read_unlock();
 331	}
 332
 333	return err;
 
 334}
 335
 336/*
 337 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 338 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 339 * new timer already all-zeros initialized.
 340 */
 341static int posix_cpu_timer_create(struct k_itimer *new_timer)
 342{
 343	int ret = 0;
 344	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 345	struct task_struct *p;
 346
 347	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 348		return -EINVAL;
 349
 350	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 351
 352	rcu_read_lock();
 353	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 354		if (pid == 0) {
 355			p = current;
 356		} else {
 357			p = find_task_by_vpid(pid);
 358			if (p && !same_thread_group(p, current))
 359				p = NULL;
 360		}
 361	} else {
 362		if (pid == 0) {
 363			p = current->group_leader;
 364		} else {
 365			p = find_task_by_vpid(pid);
 366			if (p && !has_group_leader_pid(p))
 367				p = NULL;
 368		}
 369	}
 370	new_timer->it.cpu.task = p;
 371	if (p) {
 372		get_task_struct(p);
 373	} else {
 374		ret = -EINVAL;
 375	}
 376	rcu_read_unlock();
 377
 378	return ret;
 379}
 380
 381/*
 382 * Clean up a CPU-clock timer that is about to be destroyed.
 383 * This is called from timer deletion with the timer already locked.
 384 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 385 * and try again.  (This happens when the timer is in the middle of firing.)
 386 */
 387static int posix_cpu_timer_del(struct k_itimer *timer)
 388{
 
 
 
 
 389	int ret = 0;
 390	unsigned long flags;
 391	struct sighand_struct *sighand;
 392	struct task_struct *p = timer->it.cpu.task;
 393
 394	WARN_ON_ONCE(p == NULL);
 
 395
 396	/*
 397	 * Protect against sighand release/switch in exit/exec and process/
 398	 * thread timer list entry concurrent read/writes.
 399	 */
 400	sighand = lock_task_sighand(p, &flags);
 401	if (unlikely(sighand == NULL)) {
 402		/*
 403		 * We raced with the reaping of the task.
 404		 * The deletion should have cleared us off the list.
 405		 */
 406		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
 407	} else {
 408		if (timer->it.cpu.firing)
 409			ret = TIMER_RETRY;
 410		else
 411			list_del(&timer->it.cpu.entry);
 412
 413		unlock_task_sighand(p, &flags);
 414	}
 415
 416	if (!ret)
 417		put_task_struct(p);
 418
 419	return ret;
 420}
 421
 422static void cleanup_timers_list(struct list_head *head)
 423{
 424	struct cpu_timer_list *timer, *next;
 
 425
 426	list_for_each_entry_safe(timer, next, head, entry)
 427		list_del_init(&timer->entry);
 
 
 
 428}
 429
 430/*
 431 * Clean out CPU timers still ticking when a thread exited.  The task
 432 * pointer is cleared, and the expiry time is replaced with the residual
 433 * time for later timer_gettime calls to return.
 
 434 * This must be called with the siglock held.
 435 */
 436static void cleanup_timers(struct list_head *head)
 437{
 438	cleanup_timers_list(head);
 439	cleanup_timers_list(++head);
 440	cleanup_timers_list(++head);
 441}
 442
 443/*
 444 * These are both called with the siglock held, when the current thread
 445 * is being reaped.  When the final (leader) thread in the group is reaped,
 446 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 447 */
 448void posix_cpu_timers_exit(struct task_struct *tsk)
 449{
 450	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
 451						sizeof(unsigned long long));
 452	cleanup_timers(tsk->cpu_timers);
 453
 454}
 455void posix_cpu_timers_exit_group(struct task_struct *tsk)
 456{
 457	cleanup_timers(tsk->signal->cpu_timers);
 458}
 459
 460static inline int expires_gt(cputime_t expires, cputime_t new_exp)
 461{
 462	return expires == 0 || expires > new_exp;
 463}
 464
 465/*
 466 * Insert the timer on the appropriate list before any timers that
 467 * expire later.  This must be called with the sighand lock held.
 468 */
 469static void arm_timer(struct k_itimer *timer)
 470{
 471	struct task_struct *p = timer->it.cpu.task;
 472	struct list_head *head, *listpos;
 473	struct task_cputime *cputime_expires;
 474	struct cpu_timer_list *const nt = &timer->it.cpu;
 475	struct cpu_timer_list *next;
 476
 477	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 478		head = p->cpu_timers;
 479		cputime_expires = &p->cputime_expires;
 480	} else {
 481		head = p->signal->cpu_timers;
 482		cputime_expires = &p->signal->cputime_expires;
 483	}
 484	head += CPUCLOCK_WHICH(timer->it_clock);
 485
 486	listpos = head;
 487	list_for_each_entry(next, head, entry) {
 488		if (nt->expires < next->expires)
 489			break;
 490		listpos = &next->entry;
 491	}
 492	list_add(&nt->entry, listpos);
 493
 494	if (listpos == head) {
 495		unsigned long long exp = nt->expires;
 
 
 
 
 
 
 496
 497		/*
 498		 * We are the new earliest-expiring POSIX 1.b timer, hence
 499		 * need to update expiration cache. Take into account that
 500		 * for process timers we share expiration cache with itimers
 501		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 502		 */
 503
 504		switch (CPUCLOCK_WHICH(timer->it_clock)) {
 505		case CPUCLOCK_PROF:
 506			if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
 507				cputime_expires->prof_exp = expires_to_cputime(exp);
 508			break;
 509		case CPUCLOCK_VIRT:
 510			if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
 511				cputime_expires->virt_exp = expires_to_cputime(exp);
 512			break;
 513		case CPUCLOCK_SCHED:
 514			if (cputime_expires->sched_exp == 0 ||
 515			    cputime_expires->sched_exp > exp)
 516				cputime_expires->sched_exp = exp;
 517			break;
 518		}
 519		if (CPUCLOCK_PERTHREAD(timer->it_clock))
 520			tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
 521		else
 522			tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
 523	}
 524}
 525
 526/*
 527 * The timer is locked, fire it and arrange for its reload.
 528 */
 529static void cpu_timer_fire(struct k_itimer *timer)
 530{
 
 
 531	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 532		/*
 533		 * User don't want any signal.
 534		 */
 535		timer->it.cpu.expires = 0;
 536	} else if (unlikely(timer->sigq == NULL)) {
 537		/*
 538		 * This a special case for clock_nanosleep,
 539		 * not a normal timer from sys_timer_create.
 540		 */
 541		wake_up_process(timer->it_process);
 542		timer->it.cpu.expires = 0;
 543	} else if (timer->it.cpu.incr == 0) {
 544		/*
 545		 * One-shot timer.  Clear it as soon as it's fired.
 546		 */
 547		posix_timer_event(timer, 0);
 548		timer->it.cpu.expires = 0;
 549	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 550		/*
 551		 * The signal did not get queued because the signal
 552		 * was ignored, so we won't get any callback to
 553		 * reload the timer.  But we need to keep it
 554		 * ticking in case the signal is deliverable next time.
 555		 */
 556		posix_cpu_timer_schedule(timer);
 557	}
 558}
 559
 560/*
 561 * Sample a process (thread group) timer for the given group_leader task.
 562 * Must be called with task sighand lock held for safe while_each_thread()
 563 * traversal.
 564 */
 565static int cpu_timer_sample_group(const clockid_t which_clock,
 566				  struct task_struct *p,
 567				  unsigned long long *sample)
 568{
 569	struct task_cputime cputime;
 570
 571	thread_group_cputimer(p, &cputime);
 572	switch (CPUCLOCK_WHICH(which_clock)) {
 573	default:
 574		return -EINVAL;
 575	case CPUCLOCK_PROF:
 576		*sample = cputime_to_expires(cputime.utime + cputime.stime);
 577		break;
 578	case CPUCLOCK_VIRT:
 579		*sample = cputime_to_expires(cputime.utime);
 580		break;
 581	case CPUCLOCK_SCHED:
 582		*sample = cputime.sum_exec_runtime;
 583		break;
 584	}
 585	return 0;
 586}
 587
 588/*
 589 * Guts of sys_timer_settime for CPU timers.
 590 * This is called with the timer locked and interrupts disabled.
 591 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 592 * and try again.  (This happens when the timer is in the middle of firing.)
 593 */
 594static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 595			       struct itimerspec *new, struct itimerspec *old)
 596{
 
 
 
 
 
 597	unsigned long flags;
 598	struct sighand_struct *sighand;
 599	struct task_struct *p = timer->it.cpu.task;
 600	unsigned long long old_expires, new_expires, old_incr, val;
 601	int ret;
 602
 603	WARN_ON_ONCE(p == NULL);
 
 604
 605	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
 
 
 
 
 606
 607	/*
 608	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
 609	 * and p->signal->cpu_timers read/write in arm_timer()
 610	 */
 611	sighand = lock_task_sighand(p, &flags);
 612	/*
 613	 * If p has just been reaped, we can no
 614	 * longer get any information about it at all.
 615	 */
 616	if (unlikely(sighand == NULL)) {
 617		return -ESRCH;
 618	}
 619
 620	/*
 621	 * Disarm any old timer after extracting its expiry time.
 622	 */
 623	WARN_ON_ONCE(!irqs_disabled());
 
 624
 625	ret = 0;
 626	old_incr = timer->it.cpu.incr;
 627	old_expires = timer->it.cpu.expires;
 628	if (unlikely(timer->it.cpu.firing)) {
 629		timer->it.cpu.firing = -1;
 630		ret = TIMER_RETRY;
 631	} else
 632		list_del_init(&timer->it.cpu.entry);
 
 633
 634	/*
 635	 * We need to sample the current value to convert the new
 636	 * value from to relative and absolute, and to convert the
 637	 * old value from absolute to relative.  To set a process
 638	 * timer, we need a sample to balance the thread expiry
 639	 * times (in arm_timer).  With an absolute time, we must
 640	 * check if it's already passed.  In short, we need a sample.
 641	 */
 642	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 643		cpu_clock_sample(timer->it_clock, p, &val);
 644	} else {
 645		cpu_timer_sample_group(timer->it_clock, p, &val);
 646	}
 647
 648	if (old) {
 649		if (old_expires == 0) {
 650			old->it_value.tv_sec = 0;
 651			old->it_value.tv_nsec = 0;
 652		} else {
 653			/*
 654			 * Update the timer in case it has
 655			 * overrun already.  If it has,
 656			 * we'll report it as having overrun
 657			 * and with the next reloaded timer
 658			 * already ticking, though we are
 659			 * swallowing that pending
 660			 * notification here to install the
 661			 * new setting.
 662			 */
 663			bump_cpu_timer(timer, val);
 664			if (val < timer->it.cpu.expires) {
 665				old_expires = timer->it.cpu.expires - val;
 666				sample_to_timespec(timer->it_clock,
 667						   old_expires,
 668						   &old->it_value);
 669			} else {
 670				old->it_value.tv_nsec = 1;
 671				old->it_value.tv_sec = 0;
 672			}
 673		}
 674	}
 675
 676	if (unlikely(ret)) {
 677		/*
 678		 * We are colliding with the timer actually firing.
 679		 * Punt after filling in the timer's old value, and
 680		 * disable this firing since we are already reporting
 681		 * it as an overrun (thanks to bump_cpu_timer above).
 682		 */
 683		unlock_task_sighand(p, &flags);
 684		goto out;
 685	}
 686
 687	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
 688		new_expires += val;
 689	}
 690
 691	/*
 692	 * Install the new expiry time (or zero).
 693	 * For a timer with no notification action, we don't actually
 694	 * arm the timer (we'll just fake it for timer_gettime).
 695	 */
 696	timer->it.cpu.expires = new_expires;
 697	if (new_expires != 0 && val < new_expires) {
 698		arm_timer(timer);
 699	}
 700
 701	unlock_task_sighand(p, &flags);
 702	/*
 703	 * Install the new reload setting, and
 704	 * set up the signal and overrun bookkeeping.
 705	 */
 706	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
 707						&new->it_interval);
 708
 709	/*
 710	 * This acts as a modification timestamp for the timer,
 711	 * so any automatic reload attempt will punt on seeing
 712	 * that we have reset the timer manually.
 713	 */
 714	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 715		~REQUEUE_PENDING;
 716	timer->it_overrun_last = 0;
 717	timer->it_overrun = -1;
 718
 719	if (new_expires != 0 && !(val < new_expires)) {
 720		/*
 721		 * The designated time already passed, so we notify
 722		 * immediately, even if the thread never runs to
 723		 * accumulate more time on this clock.
 724		 */
 725		cpu_timer_fire(timer);
 726	}
 727
 728	ret = 0;
 729 out:
 730	if (old) {
 731		sample_to_timespec(timer->it_clock,
 732				   old_incr, &old->it_interval);
 733	}
 734
 735	return ret;
 736}
 737
 738static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
 739{
 740	unsigned long long now;
 741	struct task_struct *p = timer->it.cpu.task;
 
 
 742
 743	WARN_ON_ONCE(p == NULL);
 
 744
 745	/*
 746	 * Easy part: convert the reload time.
 747	 */
 748	sample_to_timespec(timer->it_clock,
 749			   timer->it.cpu.incr, &itp->it_interval);
 750
 751	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
 752		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 753		return;
 754	}
 755
 756	/*
 757	 * Sample the clock to take the difference with the expiry time.
 758	 */
 759	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 760		cpu_clock_sample(timer->it_clock, p, &now);
 761	} else {
 762		struct sighand_struct *sighand;
 763		unsigned long flags;
 764
 765		/*
 766		 * Protect against sighand release/switch in exit/exec and
 767		 * also make timer sampling safe if it ends up calling
 768		 * thread_group_cputime().
 769		 */
 770		sighand = lock_task_sighand(p, &flags);
 771		if (unlikely(sighand == NULL)) {
 772			/*
 773			 * The process has been reaped.
 774			 * We can't even collect a sample any more.
 775			 * Call the timer disarmed, nothing else to do.
 776			 */
 777			timer->it.cpu.expires = 0;
 778			sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
 779					   &itp->it_value);
 780		} else {
 781			cpu_timer_sample_group(timer->it_clock, p, &now);
 782			unlock_task_sighand(p, &flags);
 783		}
 784	}
 785
 786	if (now < timer->it.cpu.expires) {
 787		sample_to_timespec(timer->it_clock,
 788				   timer->it.cpu.expires - now,
 789				   &itp->it_value);
 790	} else {
 791		/*
 792		 * The timer should have expired already, but the firing
 793		 * hasn't taken place yet.  Say it's just about to expire.
 794		 */
 795		itp->it_value.tv_nsec = 1;
 796		itp->it_value.tv_sec = 0;
 797	}
 798}
 799
 800static unsigned long long
 801check_timers_list(struct list_head *timers,
 802		  struct list_head *firing,
 803		  unsigned long long curr)
 804{
 805	int maxfire = 20;
 
 806
 807	while (!list_empty(timers)) {
 808		struct cpu_timer_list *t;
 
 809
 810		t = list_first_entry(timers, struct cpu_timer_list, entry);
 
 
 
 
 811
 812		if (!--maxfire || curr < t->expires)
 813			return t->expires;
 
 
 814
 815		t->firing = 1;
 816		list_move_tail(&t->entry, firing);
 
 
 
 
 
 
 
 
 
 
 817	}
 
 818
 819	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820}
 821
 822/*
 823 * Check for any per-thread CPU timers that have fired and move them off
 824 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 825 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 826 */
 827static void check_thread_timers(struct task_struct *tsk,
 828				struct list_head *firing)
 829{
 830	struct list_head *timers = tsk->cpu_timers;
 831	struct signal_struct *const sig = tsk->signal;
 832	struct task_cputime *tsk_expires = &tsk->cputime_expires;
 833	unsigned long long expires;
 834	unsigned long soft;
 835
 836	/*
 837	 * If cputime_expires is zero, then there are no active
 838	 * per thread CPU timers.
 839	 */
 840	if (task_cputime_zero(&tsk->cputime_expires))
 841		return;
 842
 843	expires = check_timers_list(timers, firing, prof_ticks(tsk));
 844	tsk_expires->prof_exp = expires_to_cputime(expires);
 845
 846	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
 847	tsk_expires->virt_exp = expires_to_cputime(expires);
 848
 849	tsk_expires->sched_exp = check_timers_list(++timers, firing,
 850						   tsk->se.sum_exec_runtime);
 851
 852	/*
 853	 * Check for the special case thread timers.
 854	 */
 855	soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
 856	if (soft != RLIM_INFINITY) {
 857		unsigned long hard =
 858			READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
 
 859
 
 860		if (hard != RLIM_INFINITY &&
 861		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
 862			/*
 863			 * At the hard limit, we just die.
 864			 * No need to calculate anything else now.
 865			 */
 866			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 867			return;
 868		}
 869		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
 870			/*
 871			 * At the soft limit, send a SIGXCPU every second.
 872			 */
 873			if (soft < hard) {
 874				soft += USEC_PER_SEC;
 875				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 876			}
 877			printk(KERN_INFO
 878				"RT Watchdog Timeout: %s[%d]\n",
 879				tsk->comm, task_pid_nr(tsk));
 880			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 881		}
 882	}
 883	if (task_cputime_zero(tsk_expires))
 
 884		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
 885}
 886
 887static inline void stop_process_timers(struct signal_struct *sig)
 888{
 889	struct thread_group_cputimer *cputimer = &sig->cputimer;
 890
 891	/* Turn off cputimer->running. This is done without locking. */
 892	WRITE_ONCE(cputimer->running, false);
 893	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
 894}
 895
 896static u32 onecputick;
 897
 898static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 899			     unsigned long long *expires,
 900			     unsigned long long cur_time, int signo)
 901{
 902	if (!it->expires)
 903		return;
 904
 905	if (cur_time >= it->expires) {
 906		if (it->incr) {
 907			it->expires += it->incr;
 908			it->error += it->incr_error;
 909			if (it->error >= onecputick) {
 910				it->expires -= cputime_one_jiffy;
 911				it->error -= onecputick;
 912			}
 913		} else {
 914			it->expires = 0;
 915		}
 916
 917		trace_itimer_expire(signo == SIGPROF ?
 918				    ITIMER_PROF : ITIMER_VIRTUAL,
 919				    tsk->signal->leader_pid, cur_time);
 920		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
 921	}
 922
 923	if (it->expires && (!*expires || it->expires < *expires)) {
 924		*expires = it->expires;
 925	}
 926}
 927
 928/*
 929 * Check for any per-thread CPU timers that have fired and move them
 930 * off the tsk->*_timers list onto the firing list.  Per-thread timers
 931 * have already been taken off.
 932 */
 933static void check_process_timers(struct task_struct *tsk,
 934				 struct list_head *firing)
 935{
 936	struct signal_struct *const sig = tsk->signal;
 937	unsigned long long utime, ptime, virt_expires, prof_expires;
 938	unsigned long long sum_sched_runtime, sched_expires;
 939	struct list_head *timers = sig->cpu_timers;
 940	struct task_cputime cputime;
 941	unsigned long soft;
 942
 943	/*
 944	 * If cputimer is not running, then there are no active
 945	 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
 
 946	 */
 947	if (!READ_ONCE(tsk->signal->cputimer.running))
 948		return;
 949
 950        /*
 951	 * Signify that a thread is checking for process timers.
 952	 * Write access to this field is protected by the sighand lock.
 953	 */
 954	sig->cputimer.checking_timer = true;
 955
 956	/*
 957	 * Collect the current process totals.
 
 958	 */
 959	thread_group_cputimer(tsk, &cputime);
 960	utime = cputime_to_expires(cputime.utime);
 961	ptime = utime + cputime_to_expires(cputime.stime);
 962	sum_sched_runtime = cputime.sum_exec_runtime;
 963
 964	prof_expires = check_timers_list(timers, firing, ptime);
 965	virt_expires = check_timers_list(++timers, firing, utime);
 966	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
 967
 968	/*
 969	 * Check for the special case process timers.
 970	 */
 971	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
 972			 SIGPROF);
 973	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
 974			 SIGVTALRM);
 975	soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
 
 
 
 976	if (soft != RLIM_INFINITY) {
 977		unsigned long psecs = cputime_to_secs(ptime);
 978		unsigned long hard =
 979			READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
 980		cputime_t x;
 981		if (psecs >= hard) {
 982			/*
 983			 * At the hard limit, we just die.
 984			 * No need to calculate anything else now.
 985			 */
 986			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 987			return;
 
 
 
 
 
 988		}
 989		if (psecs >= soft) {
 990			/*
 991			 * At the soft limit, send a SIGXCPU every second.
 992			 */
 993			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 994			if (soft < hard) {
 995				soft++;
 996				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
 997			}
 998		}
 999		x = secs_to_cputime(soft);
1000		if (!prof_expires || x < prof_expires) {
1001			prof_expires = x;
1002		}
1003	}
1004
1005	sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1006	sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1007	sig->cputime_expires.sched_exp = sched_expires;
1008	if (task_cputime_zero(&sig->cputime_expires))
1009		stop_process_timers(sig);
1010
1011	sig->cputimer.checking_timer = false;
1012}
1013
1014/*
1015 * This is called from the signal code (via do_schedule_next_timer)
1016 * when the last timer signal was delivered and we have to reload the timer.
1017 */
1018void posix_cpu_timer_schedule(struct k_itimer *timer)
1019{
 
 
 
1020	struct sighand_struct *sighand;
1021	unsigned long flags;
1022	struct task_struct *p = timer->it.cpu.task;
1023	unsigned long long now;
1024
1025	WARN_ON_ONCE(p == NULL);
 
1026
1027	/*
1028	 * Fetch the current sample and update the timer's expiry time.
1029	 */
1030	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1031		cpu_clock_sample(timer->it_clock, p, &now);
1032		bump_cpu_timer(timer, now);
1033		if (unlikely(p->exit_state))
1034			goto out;
1035
1036		/* Protect timer list r/w in arm_timer() */
1037		sighand = lock_task_sighand(p, &flags);
1038		if (!sighand)
1039			goto out;
1040	} else {
1041		/*
1042		 * Protect arm_timer() and timer sampling in case of call to
1043		 * thread_group_cputime().
1044		 */
1045		sighand = lock_task_sighand(p, &flags);
1046		if (unlikely(sighand == NULL)) {
1047			/*
1048			 * The process has been reaped.
1049			 * We can't even collect a sample any more.
1050			 */
1051			timer->it.cpu.expires = 0;
1052			goto out;
1053		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1054			unlock_task_sighand(p, &flags);
1055			/* Optimizations: if the process is dying, no need to rearm */
1056			goto out;
1057		}
1058		cpu_timer_sample_group(timer->it_clock, p, &now);
1059		bump_cpu_timer(timer, now);
1060		/* Leave the sighand locked for the call below.  */
1061	}
1062
1063	/*
1064	 * Now re-arm for the new expiry time.
1065	 */
1066	WARN_ON_ONCE(!irqs_disabled());
1067	arm_timer(timer);
 
1068	unlock_task_sighand(p, &flags);
1069
1070out:
1071	timer->it_overrun_last = timer->it_overrun;
1072	timer->it_overrun = -1;
1073	++timer->it_requeue_pending;
1074}
1075
1076/**
1077 * task_cputime_expired - Compare two task_cputime entities.
1078 *
1079 * @sample:	The task_cputime structure to be checked for expiration.
1080 * @expires:	Expiration times, against which @sample will be checked.
1081 *
1082 * Checks @sample against @expires to see if any field of @sample has expired.
1083 * Returns true if any field of the former is greater than the corresponding
1084 * field of the latter if the latter field is set.  Otherwise returns false.
1085 */
1086static inline int task_cputime_expired(const struct task_cputime *sample,
1087					const struct task_cputime *expires)
1088{
1089	if (expires->utime && sample->utime >= expires->utime)
1090		return 1;
1091	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1092		return 1;
1093	if (expires->sum_exec_runtime != 0 &&
1094	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1095		return 1;
1096	return 0;
1097}
1098
1099/**
1100 * fastpath_timer_check - POSIX CPU timers fast path.
1101 *
1102 * @tsk:	The task (thread) being checked.
1103 *
1104 * Check the task and thread group timers.  If both are zero (there are no
1105 * timers set) return false.  Otherwise snapshot the task and thread group
1106 * timers and compare them with the corresponding expiration times.  Return
1107 * true if a timer has expired, else return false.
1108 */
1109static inline int fastpath_timer_check(struct task_struct *tsk)
1110{
 
1111	struct signal_struct *sig;
1112
1113	if (!task_cputime_zero(&tsk->cputime_expires)) {
1114		struct task_cputime task_sample;
1115
1116		task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1117		task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1118		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1119			return 1;
1120	}
1121
1122	sig = tsk->signal;
 
1123	/*
1124	 * Check if thread group timers expired when the cputimer is
1125	 * running and no other thread in the group is already checking
1126	 * for thread group cputimers. These fields are read without the
1127	 * sighand lock. However, this is fine because this is meant to
1128	 * be a fastpath heuristic to determine whether we should try to
1129	 * acquire the sighand lock to check/handle timers.
1130	 *
1131	 * In the worst case scenario, if 'running' or 'checking_timer' gets
1132	 * set but the current thread doesn't see the change yet, we'll wait
1133	 * until the next thread in the group gets a scheduler interrupt to
1134	 * handle the timer. This isn't an issue in practice because these
1135	 * types of delays with signals actually getting sent are expected.
1136	 */
1137	if (READ_ONCE(sig->cputimer.running) &&
1138	    !READ_ONCE(sig->cputimer.checking_timer)) {
1139		struct task_cputime group_sample;
1140
1141		sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
 
1142
1143		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1144			return 1;
1145	}
1146
1147	return 0;
 
 
 
1148}
1149
1150/*
1151 * This is called from the timer interrupt handler.  The irq handler has
1152 * already updated our counts.  We need to check if any timers fire now.
1153 * Interrupts are disabled.
1154 */
1155void run_posix_cpu_timers(struct task_struct *tsk)
1156{
1157	LIST_HEAD(firing);
1158	struct k_itimer *timer, *next;
1159	unsigned long flags;
 
1160
1161	WARN_ON_ONCE(!irqs_disabled());
1162
1163	/*
1164	 * The fast path checks that there are no expired thread or thread
1165	 * group timers.  If that's so, just return.
1166	 */
1167	if (!fastpath_timer_check(tsk))
1168		return;
1169
1170	if (!lock_task_sighand(tsk, &flags))
1171		return;
1172	/*
1173	 * Here we take off tsk->signal->cpu_timers[N] and
1174	 * tsk->cpu_timers[N] all the timers that are firing, and
1175	 * put them on the firing list.
1176	 */
1177	check_thread_timers(tsk, &firing);
1178
1179	check_process_timers(tsk, &firing);
1180
1181	/*
1182	 * We must release these locks before taking any timer's lock.
1183	 * There is a potential race with timer deletion here, as the
1184	 * siglock now protects our private firing list.  We have set
1185	 * the firing flag in each timer, so that a deletion attempt
1186	 * that gets the timer lock before we do will give it up and
1187	 * spin until we've taken care of that timer below.
1188	 */
1189	unlock_task_sighand(tsk, &flags);
1190
1191	/*
1192	 * Now that all the timers on our list have the firing flag,
1193	 * no one will touch their list entries but us.  We'll take
1194	 * each timer's lock before clearing its firing flag, so no
1195	 * timer call will interfere.
1196	 */
1197	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1198		int cpu_firing;
1199
1200		spin_lock(&timer->it_lock);
1201		list_del_init(&timer->it.cpu.entry);
1202		cpu_firing = timer->it.cpu.firing;
1203		timer->it.cpu.firing = 0;
1204		/*
1205		 * The firing flag is -1 if we collided with a reset
1206		 * of the timer, which already reported this
1207		 * almost-firing as an overrun.  So don't generate an event.
1208		 */
1209		if (likely(cpu_firing >= 0))
1210			cpu_timer_fire(timer);
1211		spin_unlock(&timer->it_lock);
1212	}
1213}
1214
1215/*
1216 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1217 * The tsk->sighand->siglock must be held by the caller.
1218 */
1219void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1220			   cputime_t *newval, cputime_t *oldval)
1221{
1222	unsigned long long now;
 
 
 
1223
1224	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1225	cpu_timer_sample_group(clock_idx, tsk, &now);
1226
1227	if (oldval) {
1228		/*
1229		 * We are setting itimer. The *oldval is absolute and we update
1230		 * it to be relative, *newval argument is relative and we update
1231		 * it to be absolute.
1232		 */
1233		if (*oldval) {
1234			if (*oldval <= now) {
1235				/* Just about to fire. */
1236				*oldval = cputime_one_jiffy;
1237			} else {
1238				*oldval -= now;
1239			}
1240		}
1241
1242		if (!*newval)
1243			return;
1244		*newval += now;
1245	}
1246
1247	/*
1248	 * Update expiration cache if we are the earliest timer, or eventually
1249	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1250	 */
1251	switch (clock_idx) {
1252	case CPUCLOCK_PROF:
1253		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1254			tsk->signal->cputime_expires.prof_exp = *newval;
1255		break;
1256	case CPUCLOCK_VIRT:
1257		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1258			tsk->signal->cputime_expires.virt_exp = *newval;
1259		break;
1260	}
1261
1262	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1263}
1264
1265static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1266			    struct timespec *rqtp, struct itimerspec *it)
1267{
 
1268	struct k_itimer timer;
 
1269	int error;
1270
1271	/*
1272	 * Set up a temporary timer and then wait for it to go off.
1273	 */
1274	memset(&timer, 0, sizeof timer);
1275	spin_lock_init(&timer.it_lock);
1276	timer.it_clock = which_clock;
1277	timer.it_overrun = -1;
1278	error = posix_cpu_timer_create(&timer);
1279	timer.it_process = current;
 
1280	if (!error) {
1281		static struct itimerspec zero_it;
 
1282
1283		memset(it, 0, sizeof *it);
1284		it->it_value = *rqtp;
1285
1286		spin_lock_irq(&timer.it_lock);
1287		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1288		if (error) {
1289			spin_unlock_irq(&timer.it_lock);
1290			return error;
1291		}
1292
1293		while (!signal_pending(current)) {
1294			if (timer.it.cpu.expires == 0) {
1295				/*
1296				 * Our timer fired and was reset, below
1297				 * deletion can not fail.
1298				 */
1299				posix_cpu_timer_del(&timer);
1300				spin_unlock_irq(&timer.it_lock);
1301				return 0;
1302			}
1303
1304			/*
1305			 * Block until cpu_timer_fire (or a signal) wakes us.
1306			 */
1307			__set_current_state(TASK_INTERRUPTIBLE);
1308			spin_unlock_irq(&timer.it_lock);
1309			schedule();
1310			spin_lock_irq(&timer.it_lock);
1311		}
1312
1313		/*
1314		 * We were interrupted by a signal.
1315		 */
1316		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1317		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1318		if (!error) {
1319			/*
1320			 * Timer is now unarmed, deletion can not fail.
1321			 */
1322			posix_cpu_timer_del(&timer);
1323		}
1324		spin_unlock_irq(&timer.it_lock);
1325
1326		while (error == TIMER_RETRY) {
1327			/*
1328			 * We need to handle case when timer was or is in the
1329			 * middle of firing. In other cases we already freed
1330			 * resources.
1331			 */
1332			spin_lock_irq(&timer.it_lock);
1333			error = posix_cpu_timer_del(&timer);
1334			spin_unlock_irq(&timer.it_lock);
1335		}
1336
1337		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1338			/*
1339			 * It actually did fire already.
1340			 */
1341			return 0;
1342		}
1343
1344		error = -ERESTART_RESTARTBLOCK;
 
 
 
 
 
 
 
1345	}
1346
1347	return error;
1348}
1349
1350static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1351
1352static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1353			    struct timespec *rqtp, struct timespec __user *rmtp)
1354{
1355	struct restart_block *restart_block = &current->restart_block;
1356	struct itimerspec it;
1357	int error;
1358
1359	/*
1360	 * Diagnose required errors first.
1361	 */
1362	if (CPUCLOCK_PERTHREAD(which_clock) &&
1363	    (CPUCLOCK_PID(which_clock) == 0 ||
1364	     CPUCLOCK_PID(which_clock) == current->pid))
1365		return -EINVAL;
1366
1367	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1368
1369	if (error == -ERESTART_RESTARTBLOCK) {
1370
1371		if (flags & TIMER_ABSTIME)
1372			return -ERESTARTNOHAND;
1373		/*
1374		 * Report back to the user the time still remaining.
1375		 */
1376		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1377			return -EFAULT;
1378
1379		restart_block->fn = posix_cpu_nsleep_restart;
1380		restart_block->nanosleep.clockid = which_clock;
1381		restart_block->nanosleep.rmtp = rmtp;
1382		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1383	}
1384	return error;
1385}
1386
1387static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1388{
1389	clockid_t which_clock = restart_block->nanosleep.clockid;
1390	struct timespec t;
1391	struct itimerspec it;
1392	int error;
1393
1394	t = ns_to_timespec(restart_block->nanosleep.expires);
1395
1396	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1397
1398	if (error == -ERESTART_RESTARTBLOCK) {
1399		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1400		/*
1401		 * Report back to the user the time still remaining.
1402		 */
1403		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1404			return -EFAULT;
1405
1406		restart_block->nanosleep.expires = timespec_to_ns(&t);
1407	}
1408	return error;
1409
 
1410}
1411
1412#define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1413#define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1414
1415static int process_cpu_clock_getres(const clockid_t which_clock,
1416				    struct timespec *tp)
1417{
1418	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1419}
1420static int process_cpu_clock_get(const clockid_t which_clock,
1421				 struct timespec *tp)
1422{
1423	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1424}
1425static int process_cpu_timer_create(struct k_itimer *timer)
1426{
1427	timer->it_clock = PROCESS_CLOCK;
1428	return posix_cpu_timer_create(timer);
1429}
1430static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1431			      struct timespec *rqtp,
1432			      struct timespec __user *rmtp)
1433{
1434	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1435}
1436static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1437{
1438	return -EINVAL;
1439}
1440static int thread_cpu_clock_getres(const clockid_t which_clock,
1441				   struct timespec *tp)
1442{
1443	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1444}
1445static int thread_cpu_clock_get(const clockid_t which_clock,
1446				struct timespec *tp)
1447{
1448	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1449}
1450static int thread_cpu_timer_create(struct k_itimer *timer)
1451{
1452	timer->it_clock = THREAD_CLOCK;
1453	return posix_cpu_timer_create(timer);
1454}
1455
1456struct k_clock clock_posix_cpu = {
1457	.clock_getres	= posix_cpu_clock_getres,
1458	.clock_set	= posix_cpu_clock_set,
1459	.clock_get	= posix_cpu_clock_get,
1460	.timer_create	= posix_cpu_timer_create,
1461	.nsleep		= posix_cpu_nsleep,
1462	.nsleep_restart	= posix_cpu_nsleep_restart,
1463	.timer_set	= posix_cpu_timer_set,
1464	.timer_del	= posix_cpu_timer_del,
1465	.timer_get	= posix_cpu_timer_get,
 
1466};
1467
1468static __init int init_posix_cpu_timers(void)
1469{
1470	struct k_clock process = {
1471		.clock_getres	= process_cpu_clock_getres,
1472		.clock_get	= process_cpu_clock_get,
1473		.timer_create	= process_cpu_timer_create,
1474		.nsleep		= process_cpu_nsleep,
1475		.nsleep_restart	= process_cpu_nsleep_restart,
1476	};
1477	struct k_clock thread = {
1478		.clock_getres	= thread_cpu_clock_getres,
1479		.clock_get	= thread_cpu_clock_get,
1480		.timer_create	= thread_cpu_timer_create,
1481	};
1482	struct timespec ts;
1483
1484	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1485	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1486
1487	cputime_to_timespec(cputime_one_jiffy, &ts);
1488	onecputick = ts.tv_nsec;
1489	WARN_ON(ts.tv_sec != 0);
1490
1491	return 0;
1492}
1493__initcall(init_posix_cpu_timers);