Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/utsname.h>
11#include <linux/mman.h>
12#include <linux/reboot.h>
13#include <linux/prctl.h>
14#include <linux/highuid.h>
15#include <linux/fs.h>
16#include <linux/kmod.h>
17#include <linux/perf_event.h>
18#include <linux/resource.h>
19#include <linux/kernel.h>
20#include <linux/workqueue.h>
21#include <linux/capability.h>
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
30#include <linux/signal.h>
31#include <linux/cn_proc.h>
32#include <linux/getcpu.h>
33#include <linux/task_io_accounting_ops.h>
34#include <linux/seccomp.h>
35#include <linux/cpu.h>
36#include <linux/personality.h>
37#include <linux/ptrace.h>
38#include <linux/fs_struct.h>
39#include <linux/file.h>
40#include <linux/mount.h>
41#include <linux/gfp.h>
42#include <linux/syscore_ops.h>
43#include <linux/version.h>
44#include <linux/ctype.h>
45
46#include <linux/compat.h>
47#include <linux/syscalls.h>
48#include <linux/kprobes.h>
49#include <linux/user_namespace.h>
50#include <linux/binfmts.h>
51
52#include <linux/sched.h>
53#include <linux/sched/autogroup.h>
54#include <linux/sched/loadavg.h>
55#include <linux/sched/stat.h>
56#include <linux/sched/mm.h>
57#include <linux/sched/coredump.h>
58#include <linux/sched/task.h>
59#include <linux/sched/cputime.h>
60#include <linux/rcupdate.h>
61#include <linux/uidgid.h>
62#include <linux/cred.h>
63
64#include <linux/nospec.h>
65
66#include <linux/kmsg_dump.h>
67/* Move somewhere else to avoid recompiling? */
68#include <generated/utsrelease.h>
69
70#include <linux/uaccess.h>
71#include <asm/io.h>
72#include <asm/unistd.h>
73
74#include "uid16.h"
75
76#ifndef SET_UNALIGN_CTL
77# define SET_UNALIGN_CTL(a, b) (-EINVAL)
78#endif
79#ifndef GET_UNALIGN_CTL
80# define GET_UNALIGN_CTL(a, b) (-EINVAL)
81#endif
82#ifndef SET_FPEMU_CTL
83# define SET_FPEMU_CTL(a, b) (-EINVAL)
84#endif
85#ifndef GET_FPEMU_CTL
86# define GET_FPEMU_CTL(a, b) (-EINVAL)
87#endif
88#ifndef SET_FPEXC_CTL
89# define SET_FPEXC_CTL(a, b) (-EINVAL)
90#endif
91#ifndef GET_FPEXC_CTL
92# define GET_FPEXC_CTL(a, b) (-EINVAL)
93#endif
94#ifndef GET_ENDIAN
95# define GET_ENDIAN(a, b) (-EINVAL)
96#endif
97#ifndef SET_ENDIAN
98# define SET_ENDIAN(a, b) (-EINVAL)
99#endif
100#ifndef GET_TSC_CTL
101# define GET_TSC_CTL(a) (-EINVAL)
102#endif
103#ifndef SET_TSC_CTL
104# define SET_TSC_CTL(a) (-EINVAL)
105#endif
106#ifndef GET_FP_MODE
107# define GET_FP_MODE(a) (-EINVAL)
108#endif
109#ifndef SET_FP_MODE
110# define SET_FP_MODE(a,b) (-EINVAL)
111#endif
112#ifndef SVE_SET_VL
113# define SVE_SET_VL(a) (-EINVAL)
114#endif
115#ifndef SVE_GET_VL
116# define SVE_GET_VL() (-EINVAL)
117#endif
118#ifndef PAC_RESET_KEYS
119# define PAC_RESET_KEYS(a, b) (-EINVAL)
120#endif
121#ifndef SET_TAGGED_ADDR_CTRL
122# define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
123#endif
124#ifndef GET_TAGGED_ADDR_CTRL
125# define GET_TAGGED_ADDR_CTRL() (-EINVAL)
126#endif
127
128/*
129 * this is where the system-wide overflow UID and GID are defined, for
130 * architectures that now have 32-bit UID/GID but didn't in the past
131 */
132
133int overflowuid = DEFAULT_OVERFLOWUID;
134int overflowgid = DEFAULT_OVERFLOWGID;
135
136EXPORT_SYMBOL(overflowuid);
137EXPORT_SYMBOL(overflowgid);
138
139/*
140 * the same as above, but for filesystems which can only store a 16-bit
141 * UID and GID. as such, this is needed on all architectures
142 */
143
144int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
145int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
146
147EXPORT_SYMBOL(fs_overflowuid);
148EXPORT_SYMBOL(fs_overflowgid);
149
150/*
151 * Returns true if current's euid is same as p's uid or euid,
152 * or has CAP_SYS_NICE to p's user_ns.
153 *
154 * Called with rcu_read_lock, creds are safe
155 */
156static bool set_one_prio_perm(struct task_struct *p)
157{
158 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
159
160 if (uid_eq(pcred->uid, cred->euid) ||
161 uid_eq(pcred->euid, cred->euid))
162 return true;
163 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
164 return true;
165 return false;
166}
167
168/*
169 * set the priority of a task
170 * - the caller must hold the RCU read lock
171 */
172static int set_one_prio(struct task_struct *p, int niceval, int error)
173{
174 int no_nice;
175
176 if (!set_one_prio_perm(p)) {
177 error = -EPERM;
178 goto out;
179 }
180 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
181 error = -EACCES;
182 goto out;
183 }
184 no_nice = security_task_setnice(p, niceval);
185 if (no_nice) {
186 error = no_nice;
187 goto out;
188 }
189 if (error == -ESRCH)
190 error = 0;
191 set_user_nice(p, niceval);
192out:
193 return error;
194}
195
196SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
197{
198 struct task_struct *g, *p;
199 struct user_struct *user;
200 const struct cred *cred = current_cred();
201 int error = -EINVAL;
202 struct pid *pgrp;
203 kuid_t uid;
204
205 if (which > PRIO_USER || which < PRIO_PROCESS)
206 goto out;
207
208 /* normalize: avoid signed division (rounding problems) */
209 error = -ESRCH;
210 if (niceval < MIN_NICE)
211 niceval = MIN_NICE;
212 if (niceval > MAX_NICE)
213 niceval = MAX_NICE;
214
215 rcu_read_lock();
216 read_lock(&tasklist_lock);
217 switch (which) {
218 case PRIO_PROCESS:
219 if (who)
220 p = find_task_by_vpid(who);
221 else
222 p = current;
223 if (p)
224 error = set_one_prio(p, niceval, error);
225 break;
226 case PRIO_PGRP:
227 if (who)
228 pgrp = find_vpid(who);
229 else
230 pgrp = task_pgrp(current);
231 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
232 error = set_one_prio(p, niceval, error);
233 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
234 break;
235 case PRIO_USER:
236 uid = make_kuid(cred->user_ns, who);
237 user = cred->user;
238 if (!who)
239 uid = cred->uid;
240 else if (!uid_eq(uid, cred->uid)) {
241 user = find_user(uid);
242 if (!user)
243 goto out_unlock; /* No processes for this user */
244 }
245 do_each_thread(g, p) {
246 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
247 error = set_one_prio(p, niceval, error);
248 } while_each_thread(g, p);
249 if (!uid_eq(uid, cred->uid))
250 free_uid(user); /* For find_user() */
251 break;
252 }
253out_unlock:
254 read_unlock(&tasklist_lock);
255 rcu_read_unlock();
256out:
257 return error;
258}
259
260/*
261 * Ugh. To avoid negative return values, "getpriority()" will
262 * not return the normal nice-value, but a negated value that
263 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
264 * to stay compatible.
265 */
266SYSCALL_DEFINE2(getpriority, int, which, int, who)
267{
268 struct task_struct *g, *p;
269 struct user_struct *user;
270 const struct cred *cred = current_cred();
271 long niceval, retval = -ESRCH;
272 struct pid *pgrp;
273 kuid_t uid;
274
275 if (which > PRIO_USER || which < PRIO_PROCESS)
276 return -EINVAL;
277
278 rcu_read_lock();
279 read_lock(&tasklist_lock);
280 switch (which) {
281 case PRIO_PROCESS:
282 if (who)
283 p = find_task_by_vpid(who);
284 else
285 p = current;
286 if (p) {
287 niceval = nice_to_rlimit(task_nice(p));
288 if (niceval > retval)
289 retval = niceval;
290 }
291 break;
292 case PRIO_PGRP:
293 if (who)
294 pgrp = find_vpid(who);
295 else
296 pgrp = task_pgrp(current);
297 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
298 niceval = nice_to_rlimit(task_nice(p));
299 if (niceval > retval)
300 retval = niceval;
301 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
302 break;
303 case PRIO_USER:
304 uid = make_kuid(cred->user_ns, who);
305 user = cred->user;
306 if (!who)
307 uid = cred->uid;
308 else if (!uid_eq(uid, cred->uid)) {
309 user = find_user(uid);
310 if (!user)
311 goto out_unlock; /* No processes for this user */
312 }
313 do_each_thread(g, p) {
314 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
315 niceval = nice_to_rlimit(task_nice(p));
316 if (niceval > retval)
317 retval = niceval;
318 }
319 } while_each_thread(g, p);
320 if (!uid_eq(uid, cred->uid))
321 free_uid(user); /* for find_user() */
322 break;
323 }
324out_unlock:
325 read_unlock(&tasklist_lock);
326 rcu_read_unlock();
327
328 return retval;
329}
330
331/*
332 * Unprivileged users may change the real gid to the effective gid
333 * or vice versa. (BSD-style)
334 *
335 * If you set the real gid at all, or set the effective gid to a value not
336 * equal to the real gid, then the saved gid is set to the new effective gid.
337 *
338 * This makes it possible for a setgid program to completely drop its
339 * privileges, which is often a useful assertion to make when you are doing
340 * a security audit over a program.
341 *
342 * The general idea is that a program which uses just setregid() will be
343 * 100% compatible with BSD. A program which uses just setgid() will be
344 * 100% compatible with POSIX with saved IDs.
345 *
346 * SMP: There are not races, the GIDs are checked only by filesystem
347 * operations (as far as semantic preservation is concerned).
348 */
349#ifdef CONFIG_MULTIUSER
350long __sys_setregid(gid_t rgid, gid_t egid)
351{
352 struct user_namespace *ns = current_user_ns();
353 const struct cred *old;
354 struct cred *new;
355 int retval;
356 kgid_t krgid, kegid;
357
358 krgid = make_kgid(ns, rgid);
359 kegid = make_kgid(ns, egid);
360
361 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
362 return -EINVAL;
363 if ((egid != (gid_t) -1) && !gid_valid(kegid))
364 return -EINVAL;
365
366 new = prepare_creds();
367 if (!new)
368 return -ENOMEM;
369 old = current_cred();
370
371 retval = -EPERM;
372 if (rgid != (gid_t) -1) {
373 if (gid_eq(old->gid, krgid) ||
374 gid_eq(old->egid, krgid) ||
375 ns_capable(old->user_ns, CAP_SETGID))
376 new->gid = krgid;
377 else
378 goto error;
379 }
380 if (egid != (gid_t) -1) {
381 if (gid_eq(old->gid, kegid) ||
382 gid_eq(old->egid, kegid) ||
383 gid_eq(old->sgid, kegid) ||
384 ns_capable(old->user_ns, CAP_SETGID))
385 new->egid = kegid;
386 else
387 goto error;
388 }
389
390 if (rgid != (gid_t) -1 ||
391 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
392 new->sgid = new->egid;
393 new->fsgid = new->egid;
394
395 return commit_creds(new);
396
397error:
398 abort_creds(new);
399 return retval;
400}
401
402SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
403{
404 return __sys_setregid(rgid, egid);
405}
406
407/*
408 * setgid() is implemented like SysV w/ SAVED_IDS
409 *
410 * SMP: Same implicit races as above.
411 */
412long __sys_setgid(gid_t gid)
413{
414 struct user_namespace *ns = current_user_ns();
415 const struct cred *old;
416 struct cred *new;
417 int retval;
418 kgid_t kgid;
419
420 kgid = make_kgid(ns, gid);
421 if (!gid_valid(kgid))
422 return -EINVAL;
423
424 new = prepare_creds();
425 if (!new)
426 return -ENOMEM;
427 old = current_cred();
428
429 retval = -EPERM;
430 if (ns_capable(old->user_ns, CAP_SETGID))
431 new->gid = new->egid = new->sgid = new->fsgid = kgid;
432 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
433 new->egid = new->fsgid = kgid;
434 else
435 goto error;
436
437 return commit_creds(new);
438
439error:
440 abort_creds(new);
441 return retval;
442}
443
444SYSCALL_DEFINE1(setgid, gid_t, gid)
445{
446 return __sys_setgid(gid);
447}
448
449/*
450 * change the user struct in a credentials set to match the new UID
451 */
452static int set_user(struct cred *new)
453{
454 struct user_struct *new_user;
455
456 new_user = alloc_uid(new->uid);
457 if (!new_user)
458 return -EAGAIN;
459
460 /*
461 * We don't fail in case of NPROC limit excess here because too many
462 * poorly written programs don't check set*uid() return code, assuming
463 * it never fails if called by root. We may still enforce NPROC limit
464 * for programs doing set*uid()+execve() by harmlessly deferring the
465 * failure to the execve() stage.
466 */
467 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
468 new_user != INIT_USER)
469 current->flags |= PF_NPROC_EXCEEDED;
470 else
471 current->flags &= ~PF_NPROC_EXCEEDED;
472
473 free_uid(new->user);
474 new->user = new_user;
475 return 0;
476}
477
478/*
479 * Unprivileged users may change the real uid to the effective uid
480 * or vice versa. (BSD-style)
481 *
482 * If you set the real uid at all, or set the effective uid to a value not
483 * equal to the real uid, then the saved uid is set to the new effective uid.
484 *
485 * This makes it possible for a setuid program to completely drop its
486 * privileges, which is often a useful assertion to make when you are doing
487 * a security audit over a program.
488 *
489 * The general idea is that a program which uses just setreuid() will be
490 * 100% compatible with BSD. A program which uses just setuid() will be
491 * 100% compatible with POSIX with saved IDs.
492 */
493long __sys_setreuid(uid_t ruid, uid_t euid)
494{
495 struct user_namespace *ns = current_user_ns();
496 const struct cred *old;
497 struct cred *new;
498 int retval;
499 kuid_t kruid, keuid;
500
501 kruid = make_kuid(ns, ruid);
502 keuid = make_kuid(ns, euid);
503
504 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
505 return -EINVAL;
506 if ((euid != (uid_t) -1) && !uid_valid(keuid))
507 return -EINVAL;
508
509 new = prepare_creds();
510 if (!new)
511 return -ENOMEM;
512 old = current_cred();
513
514 retval = -EPERM;
515 if (ruid != (uid_t) -1) {
516 new->uid = kruid;
517 if (!uid_eq(old->uid, kruid) &&
518 !uid_eq(old->euid, kruid) &&
519 !ns_capable_setid(old->user_ns, CAP_SETUID))
520 goto error;
521 }
522
523 if (euid != (uid_t) -1) {
524 new->euid = keuid;
525 if (!uid_eq(old->uid, keuid) &&
526 !uid_eq(old->euid, keuid) &&
527 !uid_eq(old->suid, keuid) &&
528 !ns_capable_setid(old->user_ns, CAP_SETUID))
529 goto error;
530 }
531
532 if (!uid_eq(new->uid, old->uid)) {
533 retval = set_user(new);
534 if (retval < 0)
535 goto error;
536 }
537 if (ruid != (uid_t) -1 ||
538 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
539 new->suid = new->euid;
540 new->fsuid = new->euid;
541
542 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
543 if (retval < 0)
544 goto error;
545
546 return commit_creds(new);
547
548error:
549 abort_creds(new);
550 return retval;
551}
552
553SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
554{
555 return __sys_setreuid(ruid, euid);
556}
557
558/*
559 * setuid() is implemented like SysV with SAVED_IDS
560 *
561 * Note that SAVED_ID's is deficient in that a setuid root program
562 * like sendmail, for example, cannot set its uid to be a normal
563 * user and then switch back, because if you're root, setuid() sets
564 * the saved uid too. If you don't like this, blame the bright people
565 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
566 * will allow a root program to temporarily drop privileges and be able to
567 * regain them by swapping the real and effective uid.
568 */
569long __sys_setuid(uid_t uid)
570{
571 struct user_namespace *ns = current_user_ns();
572 const struct cred *old;
573 struct cred *new;
574 int retval;
575 kuid_t kuid;
576
577 kuid = make_kuid(ns, uid);
578 if (!uid_valid(kuid))
579 return -EINVAL;
580
581 new = prepare_creds();
582 if (!new)
583 return -ENOMEM;
584 old = current_cred();
585
586 retval = -EPERM;
587 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
588 new->suid = new->uid = kuid;
589 if (!uid_eq(kuid, old->uid)) {
590 retval = set_user(new);
591 if (retval < 0)
592 goto error;
593 }
594 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
595 goto error;
596 }
597
598 new->fsuid = new->euid = kuid;
599
600 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
601 if (retval < 0)
602 goto error;
603
604 return commit_creds(new);
605
606error:
607 abort_creds(new);
608 return retval;
609}
610
611SYSCALL_DEFINE1(setuid, uid_t, uid)
612{
613 return __sys_setuid(uid);
614}
615
616
617/*
618 * This function implements a generic ability to update ruid, euid,
619 * and suid. This allows you to implement the 4.4 compatible seteuid().
620 */
621long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
622{
623 struct user_namespace *ns = current_user_ns();
624 const struct cred *old;
625 struct cred *new;
626 int retval;
627 kuid_t kruid, keuid, ksuid;
628
629 kruid = make_kuid(ns, ruid);
630 keuid = make_kuid(ns, euid);
631 ksuid = make_kuid(ns, suid);
632
633 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
634 return -EINVAL;
635
636 if ((euid != (uid_t) -1) && !uid_valid(keuid))
637 return -EINVAL;
638
639 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
640 return -EINVAL;
641
642 new = prepare_creds();
643 if (!new)
644 return -ENOMEM;
645
646 old = current_cred();
647
648 retval = -EPERM;
649 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
650 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
651 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
652 goto error;
653 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
654 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
655 goto error;
656 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
657 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
658 goto error;
659 }
660
661 if (ruid != (uid_t) -1) {
662 new->uid = kruid;
663 if (!uid_eq(kruid, old->uid)) {
664 retval = set_user(new);
665 if (retval < 0)
666 goto error;
667 }
668 }
669 if (euid != (uid_t) -1)
670 new->euid = keuid;
671 if (suid != (uid_t) -1)
672 new->suid = ksuid;
673 new->fsuid = new->euid;
674
675 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
676 if (retval < 0)
677 goto error;
678
679 return commit_creds(new);
680
681error:
682 abort_creds(new);
683 return retval;
684}
685
686SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
687{
688 return __sys_setresuid(ruid, euid, suid);
689}
690
691SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
692{
693 const struct cred *cred = current_cred();
694 int retval;
695 uid_t ruid, euid, suid;
696
697 ruid = from_kuid_munged(cred->user_ns, cred->uid);
698 euid = from_kuid_munged(cred->user_ns, cred->euid);
699 suid = from_kuid_munged(cred->user_ns, cred->suid);
700
701 retval = put_user(ruid, ruidp);
702 if (!retval) {
703 retval = put_user(euid, euidp);
704 if (!retval)
705 return put_user(suid, suidp);
706 }
707 return retval;
708}
709
710/*
711 * Same as above, but for rgid, egid, sgid.
712 */
713long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
714{
715 struct user_namespace *ns = current_user_ns();
716 const struct cred *old;
717 struct cred *new;
718 int retval;
719 kgid_t krgid, kegid, ksgid;
720
721 krgid = make_kgid(ns, rgid);
722 kegid = make_kgid(ns, egid);
723 ksgid = make_kgid(ns, sgid);
724
725 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
726 return -EINVAL;
727 if ((egid != (gid_t) -1) && !gid_valid(kegid))
728 return -EINVAL;
729 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
730 return -EINVAL;
731
732 new = prepare_creds();
733 if (!new)
734 return -ENOMEM;
735 old = current_cred();
736
737 retval = -EPERM;
738 if (!ns_capable(old->user_ns, CAP_SETGID)) {
739 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
740 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
741 goto error;
742 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
743 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
744 goto error;
745 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
746 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
747 goto error;
748 }
749
750 if (rgid != (gid_t) -1)
751 new->gid = krgid;
752 if (egid != (gid_t) -1)
753 new->egid = kegid;
754 if (sgid != (gid_t) -1)
755 new->sgid = ksgid;
756 new->fsgid = new->egid;
757
758 return commit_creds(new);
759
760error:
761 abort_creds(new);
762 return retval;
763}
764
765SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
766{
767 return __sys_setresgid(rgid, egid, sgid);
768}
769
770SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
771{
772 const struct cred *cred = current_cred();
773 int retval;
774 gid_t rgid, egid, sgid;
775
776 rgid = from_kgid_munged(cred->user_ns, cred->gid);
777 egid = from_kgid_munged(cred->user_ns, cred->egid);
778 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
779
780 retval = put_user(rgid, rgidp);
781 if (!retval) {
782 retval = put_user(egid, egidp);
783 if (!retval)
784 retval = put_user(sgid, sgidp);
785 }
786
787 return retval;
788}
789
790
791/*
792 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
793 * is used for "access()" and for the NFS daemon (letting nfsd stay at
794 * whatever uid it wants to). It normally shadows "euid", except when
795 * explicitly set by setfsuid() or for access..
796 */
797long __sys_setfsuid(uid_t uid)
798{
799 const struct cred *old;
800 struct cred *new;
801 uid_t old_fsuid;
802 kuid_t kuid;
803
804 old = current_cred();
805 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
806
807 kuid = make_kuid(old->user_ns, uid);
808 if (!uid_valid(kuid))
809 return old_fsuid;
810
811 new = prepare_creds();
812 if (!new)
813 return old_fsuid;
814
815 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
816 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
817 ns_capable_setid(old->user_ns, CAP_SETUID)) {
818 if (!uid_eq(kuid, old->fsuid)) {
819 new->fsuid = kuid;
820 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
821 goto change_okay;
822 }
823 }
824
825 abort_creds(new);
826 return old_fsuid;
827
828change_okay:
829 commit_creds(new);
830 return old_fsuid;
831}
832
833SYSCALL_DEFINE1(setfsuid, uid_t, uid)
834{
835 return __sys_setfsuid(uid);
836}
837
838/*
839 * Samma på svenska..
840 */
841long __sys_setfsgid(gid_t gid)
842{
843 const struct cred *old;
844 struct cred *new;
845 gid_t old_fsgid;
846 kgid_t kgid;
847
848 old = current_cred();
849 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
850
851 kgid = make_kgid(old->user_ns, gid);
852 if (!gid_valid(kgid))
853 return old_fsgid;
854
855 new = prepare_creds();
856 if (!new)
857 return old_fsgid;
858
859 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
860 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
861 ns_capable(old->user_ns, CAP_SETGID)) {
862 if (!gid_eq(kgid, old->fsgid)) {
863 new->fsgid = kgid;
864 goto change_okay;
865 }
866 }
867
868 abort_creds(new);
869 return old_fsgid;
870
871change_okay:
872 commit_creds(new);
873 return old_fsgid;
874}
875
876SYSCALL_DEFINE1(setfsgid, gid_t, gid)
877{
878 return __sys_setfsgid(gid);
879}
880#endif /* CONFIG_MULTIUSER */
881
882/**
883 * sys_getpid - return the thread group id of the current process
884 *
885 * Note, despite the name, this returns the tgid not the pid. The tgid and
886 * the pid are identical unless CLONE_THREAD was specified on clone() in
887 * which case the tgid is the same in all threads of the same group.
888 *
889 * This is SMP safe as current->tgid does not change.
890 */
891SYSCALL_DEFINE0(getpid)
892{
893 return task_tgid_vnr(current);
894}
895
896/* Thread ID - the internal kernel "pid" */
897SYSCALL_DEFINE0(gettid)
898{
899 return task_pid_vnr(current);
900}
901
902/*
903 * Accessing ->real_parent is not SMP-safe, it could
904 * change from under us. However, we can use a stale
905 * value of ->real_parent under rcu_read_lock(), see
906 * release_task()->call_rcu(delayed_put_task_struct).
907 */
908SYSCALL_DEFINE0(getppid)
909{
910 int pid;
911
912 rcu_read_lock();
913 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
914 rcu_read_unlock();
915
916 return pid;
917}
918
919SYSCALL_DEFINE0(getuid)
920{
921 /* Only we change this so SMP safe */
922 return from_kuid_munged(current_user_ns(), current_uid());
923}
924
925SYSCALL_DEFINE0(geteuid)
926{
927 /* Only we change this so SMP safe */
928 return from_kuid_munged(current_user_ns(), current_euid());
929}
930
931SYSCALL_DEFINE0(getgid)
932{
933 /* Only we change this so SMP safe */
934 return from_kgid_munged(current_user_ns(), current_gid());
935}
936
937SYSCALL_DEFINE0(getegid)
938{
939 /* Only we change this so SMP safe */
940 return from_kgid_munged(current_user_ns(), current_egid());
941}
942
943static void do_sys_times(struct tms *tms)
944{
945 u64 tgutime, tgstime, cutime, cstime;
946
947 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
948 cutime = current->signal->cutime;
949 cstime = current->signal->cstime;
950 tms->tms_utime = nsec_to_clock_t(tgutime);
951 tms->tms_stime = nsec_to_clock_t(tgstime);
952 tms->tms_cutime = nsec_to_clock_t(cutime);
953 tms->tms_cstime = nsec_to_clock_t(cstime);
954}
955
956SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
957{
958 if (tbuf) {
959 struct tms tmp;
960
961 do_sys_times(&tmp);
962 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
963 return -EFAULT;
964 }
965 force_successful_syscall_return();
966 return (long) jiffies_64_to_clock_t(get_jiffies_64());
967}
968
969#ifdef CONFIG_COMPAT
970static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
971{
972 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
973}
974
975COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
976{
977 if (tbuf) {
978 struct tms tms;
979 struct compat_tms tmp;
980
981 do_sys_times(&tms);
982 /* Convert our struct tms to the compat version. */
983 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
984 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
985 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
986 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
987 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
988 return -EFAULT;
989 }
990 force_successful_syscall_return();
991 return compat_jiffies_to_clock_t(jiffies);
992}
993#endif
994
995/*
996 * This needs some heavy checking ...
997 * I just haven't the stomach for it. I also don't fully
998 * understand sessions/pgrp etc. Let somebody who does explain it.
999 *
1000 * OK, I think I have the protection semantics right.... this is really
1001 * only important on a multi-user system anyway, to make sure one user
1002 * can't send a signal to a process owned by another. -TYT, 12/12/91
1003 *
1004 * !PF_FORKNOEXEC check to conform completely to POSIX.
1005 */
1006SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1007{
1008 struct task_struct *p;
1009 struct task_struct *group_leader = current->group_leader;
1010 struct pid *pgrp;
1011 int err;
1012
1013 if (!pid)
1014 pid = task_pid_vnr(group_leader);
1015 if (!pgid)
1016 pgid = pid;
1017 if (pgid < 0)
1018 return -EINVAL;
1019 rcu_read_lock();
1020
1021 /* From this point forward we keep holding onto the tasklist lock
1022 * so that our parent does not change from under us. -DaveM
1023 */
1024 write_lock_irq(&tasklist_lock);
1025
1026 err = -ESRCH;
1027 p = find_task_by_vpid(pid);
1028 if (!p)
1029 goto out;
1030
1031 err = -EINVAL;
1032 if (!thread_group_leader(p))
1033 goto out;
1034
1035 if (same_thread_group(p->real_parent, group_leader)) {
1036 err = -EPERM;
1037 if (task_session(p) != task_session(group_leader))
1038 goto out;
1039 err = -EACCES;
1040 if (!(p->flags & PF_FORKNOEXEC))
1041 goto out;
1042 } else {
1043 err = -ESRCH;
1044 if (p != group_leader)
1045 goto out;
1046 }
1047
1048 err = -EPERM;
1049 if (p->signal->leader)
1050 goto out;
1051
1052 pgrp = task_pid(p);
1053 if (pgid != pid) {
1054 struct task_struct *g;
1055
1056 pgrp = find_vpid(pgid);
1057 g = pid_task(pgrp, PIDTYPE_PGID);
1058 if (!g || task_session(g) != task_session(group_leader))
1059 goto out;
1060 }
1061
1062 err = security_task_setpgid(p, pgid);
1063 if (err)
1064 goto out;
1065
1066 if (task_pgrp(p) != pgrp)
1067 change_pid(p, PIDTYPE_PGID, pgrp);
1068
1069 err = 0;
1070out:
1071 /* All paths lead to here, thus we are safe. -DaveM */
1072 write_unlock_irq(&tasklist_lock);
1073 rcu_read_unlock();
1074 return err;
1075}
1076
1077static int do_getpgid(pid_t pid)
1078{
1079 struct task_struct *p;
1080 struct pid *grp;
1081 int retval;
1082
1083 rcu_read_lock();
1084 if (!pid)
1085 grp = task_pgrp(current);
1086 else {
1087 retval = -ESRCH;
1088 p = find_task_by_vpid(pid);
1089 if (!p)
1090 goto out;
1091 grp = task_pgrp(p);
1092 if (!grp)
1093 goto out;
1094
1095 retval = security_task_getpgid(p);
1096 if (retval)
1097 goto out;
1098 }
1099 retval = pid_vnr(grp);
1100out:
1101 rcu_read_unlock();
1102 return retval;
1103}
1104
1105SYSCALL_DEFINE1(getpgid, pid_t, pid)
1106{
1107 return do_getpgid(pid);
1108}
1109
1110#ifdef __ARCH_WANT_SYS_GETPGRP
1111
1112SYSCALL_DEFINE0(getpgrp)
1113{
1114 return do_getpgid(0);
1115}
1116
1117#endif
1118
1119SYSCALL_DEFINE1(getsid, pid_t, pid)
1120{
1121 struct task_struct *p;
1122 struct pid *sid;
1123 int retval;
1124
1125 rcu_read_lock();
1126 if (!pid)
1127 sid = task_session(current);
1128 else {
1129 retval = -ESRCH;
1130 p = find_task_by_vpid(pid);
1131 if (!p)
1132 goto out;
1133 sid = task_session(p);
1134 if (!sid)
1135 goto out;
1136
1137 retval = security_task_getsid(p);
1138 if (retval)
1139 goto out;
1140 }
1141 retval = pid_vnr(sid);
1142out:
1143 rcu_read_unlock();
1144 return retval;
1145}
1146
1147static void set_special_pids(struct pid *pid)
1148{
1149 struct task_struct *curr = current->group_leader;
1150
1151 if (task_session(curr) != pid)
1152 change_pid(curr, PIDTYPE_SID, pid);
1153
1154 if (task_pgrp(curr) != pid)
1155 change_pid(curr, PIDTYPE_PGID, pid);
1156}
1157
1158int ksys_setsid(void)
1159{
1160 struct task_struct *group_leader = current->group_leader;
1161 struct pid *sid = task_pid(group_leader);
1162 pid_t session = pid_vnr(sid);
1163 int err = -EPERM;
1164
1165 write_lock_irq(&tasklist_lock);
1166 /* Fail if I am already a session leader */
1167 if (group_leader->signal->leader)
1168 goto out;
1169
1170 /* Fail if a process group id already exists that equals the
1171 * proposed session id.
1172 */
1173 if (pid_task(sid, PIDTYPE_PGID))
1174 goto out;
1175
1176 group_leader->signal->leader = 1;
1177 set_special_pids(sid);
1178
1179 proc_clear_tty(group_leader);
1180
1181 err = session;
1182out:
1183 write_unlock_irq(&tasklist_lock);
1184 if (err > 0) {
1185 proc_sid_connector(group_leader);
1186 sched_autogroup_create_attach(group_leader);
1187 }
1188 return err;
1189}
1190
1191SYSCALL_DEFINE0(setsid)
1192{
1193 return ksys_setsid();
1194}
1195
1196DECLARE_RWSEM(uts_sem);
1197
1198#ifdef COMPAT_UTS_MACHINE
1199#define override_architecture(name) \
1200 (personality(current->personality) == PER_LINUX32 && \
1201 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1202 sizeof(COMPAT_UTS_MACHINE)))
1203#else
1204#define override_architecture(name) 0
1205#endif
1206
1207/*
1208 * Work around broken programs that cannot handle "Linux 3.0".
1209 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1210 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1211 * 2.6.60.
1212 */
1213static int override_release(char __user *release, size_t len)
1214{
1215 int ret = 0;
1216
1217 if (current->personality & UNAME26) {
1218 const char *rest = UTS_RELEASE;
1219 char buf[65] = { 0 };
1220 int ndots = 0;
1221 unsigned v;
1222 size_t copy;
1223
1224 while (*rest) {
1225 if (*rest == '.' && ++ndots >= 3)
1226 break;
1227 if (!isdigit(*rest) && *rest != '.')
1228 break;
1229 rest++;
1230 }
1231 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1232 copy = clamp_t(size_t, len, 1, sizeof(buf));
1233 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1234 ret = copy_to_user(release, buf, copy + 1);
1235 }
1236 return ret;
1237}
1238
1239SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1240{
1241 struct new_utsname tmp;
1242
1243 down_read(&uts_sem);
1244 memcpy(&tmp, utsname(), sizeof(tmp));
1245 up_read(&uts_sem);
1246 if (copy_to_user(name, &tmp, sizeof(tmp)))
1247 return -EFAULT;
1248
1249 if (override_release(name->release, sizeof(name->release)))
1250 return -EFAULT;
1251 if (override_architecture(name))
1252 return -EFAULT;
1253 return 0;
1254}
1255
1256#ifdef __ARCH_WANT_SYS_OLD_UNAME
1257/*
1258 * Old cruft
1259 */
1260SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1261{
1262 struct old_utsname tmp;
1263
1264 if (!name)
1265 return -EFAULT;
1266
1267 down_read(&uts_sem);
1268 memcpy(&tmp, utsname(), sizeof(tmp));
1269 up_read(&uts_sem);
1270 if (copy_to_user(name, &tmp, sizeof(tmp)))
1271 return -EFAULT;
1272
1273 if (override_release(name->release, sizeof(name->release)))
1274 return -EFAULT;
1275 if (override_architecture(name))
1276 return -EFAULT;
1277 return 0;
1278}
1279
1280SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1281{
1282 struct oldold_utsname tmp = {};
1283
1284 if (!name)
1285 return -EFAULT;
1286
1287 down_read(&uts_sem);
1288 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1289 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1290 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1291 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1292 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1293 up_read(&uts_sem);
1294 if (copy_to_user(name, &tmp, sizeof(tmp)))
1295 return -EFAULT;
1296
1297 if (override_architecture(name))
1298 return -EFAULT;
1299 if (override_release(name->release, sizeof(name->release)))
1300 return -EFAULT;
1301 return 0;
1302}
1303#endif
1304
1305SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1306{
1307 int errno;
1308 char tmp[__NEW_UTS_LEN];
1309
1310 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1311 return -EPERM;
1312
1313 if (len < 0 || len > __NEW_UTS_LEN)
1314 return -EINVAL;
1315 errno = -EFAULT;
1316 if (!copy_from_user(tmp, name, len)) {
1317 struct new_utsname *u;
1318
1319 down_write(&uts_sem);
1320 u = utsname();
1321 memcpy(u->nodename, tmp, len);
1322 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1323 errno = 0;
1324 uts_proc_notify(UTS_PROC_HOSTNAME);
1325 up_write(&uts_sem);
1326 }
1327 return errno;
1328}
1329
1330#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1331
1332SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1333{
1334 int i;
1335 struct new_utsname *u;
1336 char tmp[__NEW_UTS_LEN + 1];
1337
1338 if (len < 0)
1339 return -EINVAL;
1340 down_read(&uts_sem);
1341 u = utsname();
1342 i = 1 + strlen(u->nodename);
1343 if (i > len)
1344 i = len;
1345 memcpy(tmp, u->nodename, i);
1346 up_read(&uts_sem);
1347 if (copy_to_user(name, tmp, i))
1348 return -EFAULT;
1349 return 0;
1350}
1351
1352#endif
1353
1354/*
1355 * Only setdomainname; getdomainname can be implemented by calling
1356 * uname()
1357 */
1358SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1359{
1360 int errno;
1361 char tmp[__NEW_UTS_LEN];
1362
1363 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1364 return -EPERM;
1365 if (len < 0 || len > __NEW_UTS_LEN)
1366 return -EINVAL;
1367
1368 errno = -EFAULT;
1369 if (!copy_from_user(tmp, name, len)) {
1370 struct new_utsname *u;
1371
1372 down_write(&uts_sem);
1373 u = utsname();
1374 memcpy(u->domainname, tmp, len);
1375 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1376 errno = 0;
1377 uts_proc_notify(UTS_PROC_DOMAINNAME);
1378 up_write(&uts_sem);
1379 }
1380 return errno;
1381}
1382
1383SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1384{
1385 struct rlimit value;
1386 int ret;
1387
1388 ret = do_prlimit(current, resource, NULL, &value);
1389 if (!ret)
1390 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1391
1392 return ret;
1393}
1394
1395#ifdef CONFIG_COMPAT
1396
1397COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1398 struct compat_rlimit __user *, rlim)
1399{
1400 struct rlimit r;
1401 struct compat_rlimit r32;
1402
1403 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1404 return -EFAULT;
1405
1406 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1407 r.rlim_cur = RLIM_INFINITY;
1408 else
1409 r.rlim_cur = r32.rlim_cur;
1410 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1411 r.rlim_max = RLIM_INFINITY;
1412 else
1413 r.rlim_max = r32.rlim_max;
1414 return do_prlimit(current, resource, &r, NULL);
1415}
1416
1417COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1418 struct compat_rlimit __user *, rlim)
1419{
1420 struct rlimit r;
1421 int ret;
1422
1423 ret = do_prlimit(current, resource, NULL, &r);
1424 if (!ret) {
1425 struct compat_rlimit r32;
1426 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1427 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1428 else
1429 r32.rlim_cur = r.rlim_cur;
1430 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1431 r32.rlim_max = COMPAT_RLIM_INFINITY;
1432 else
1433 r32.rlim_max = r.rlim_max;
1434
1435 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1436 return -EFAULT;
1437 }
1438 return ret;
1439}
1440
1441#endif
1442
1443#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1444
1445/*
1446 * Back compatibility for getrlimit. Needed for some apps.
1447 */
1448SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1449 struct rlimit __user *, rlim)
1450{
1451 struct rlimit x;
1452 if (resource >= RLIM_NLIMITS)
1453 return -EINVAL;
1454
1455 resource = array_index_nospec(resource, RLIM_NLIMITS);
1456 task_lock(current->group_leader);
1457 x = current->signal->rlim[resource];
1458 task_unlock(current->group_leader);
1459 if (x.rlim_cur > 0x7FFFFFFF)
1460 x.rlim_cur = 0x7FFFFFFF;
1461 if (x.rlim_max > 0x7FFFFFFF)
1462 x.rlim_max = 0x7FFFFFFF;
1463 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1464}
1465
1466#ifdef CONFIG_COMPAT
1467COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1468 struct compat_rlimit __user *, rlim)
1469{
1470 struct rlimit r;
1471
1472 if (resource >= RLIM_NLIMITS)
1473 return -EINVAL;
1474
1475 resource = array_index_nospec(resource, RLIM_NLIMITS);
1476 task_lock(current->group_leader);
1477 r = current->signal->rlim[resource];
1478 task_unlock(current->group_leader);
1479 if (r.rlim_cur > 0x7FFFFFFF)
1480 r.rlim_cur = 0x7FFFFFFF;
1481 if (r.rlim_max > 0x7FFFFFFF)
1482 r.rlim_max = 0x7FFFFFFF;
1483
1484 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1485 put_user(r.rlim_max, &rlim->rlim_max))
1486 return -EFAULT;
1487 return 0;
1488}
1489#endif
1490
1491#endif
1492
1493static inline bool rlim64_is_infinity(__u64 rlim64)
1494{
1495#if BITS_PER_LONG < 64
1496 return rlim64 >= ULONG_MAX;
1497#else
1498 return rlim64 == RLIM64_INFINITY;
1499#endif
1500}
1501
1502static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1503{
1504 if (rlim->rlim_cur == RLIM_INFINITY)
1505 rlim64->rlim_cur = RLIM64_INFINITY;
1506 else
1507 rlim64->rlim_cur = rlim->rlim_cur;
1508 if (rlim->rlim_max == RLIM_INFINITY)
1509 rlim64->rlim_max = RLIM64_INFINITY;
1510 else
1511 rlim64->rlim_max = rlim->rlim_max;
1512}
1513
1514static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1515{
1516 if (rlim64_is_infinity(rlim64->rlim_cur))
1517 rlim->rlim_cur = RLIM_INFINITY;
1518 else
1519 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1520 if (rlim64_is_infinity(rlim64->rlim_max))
1521 rlim->rlim_max = RLIM_INFINITY;
1522 else
1523 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1524}
1525
1526/* make sure you are allowed to change @tsk limits before calling this */
1527int do_prlimit(struct task_struct *tsk, unsigned int resource,
1528 struct rlimit *new_rlim, struct rlimit *old_rlim)
1529{
1530 struct rlimit *rlim;
1531 int retval = 0;
1532
1533 if (resource >= RLIM_NLIMITS)
1534 return -EINVAL;
1535 if (new_rlim) {
1536 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1537 return -EINVAL;
1538 if (resource == RLIMIT_NOFILE &&
1539 new_rlim->rlim_max > sysctl_nr_open)
1540 return -EPERM;
1541 }
1542
1543 /* protect tsk->signal and tsk->sighand from disappearing */
1544 read_lock(&tasklist_lock);
1545 if (!tsk->sighand) {
1546 retval = -ESRCH;
1547 goto out;
1548 }
1549
1550 rlim = tsk->signal->rlim + resource;
1551 task_lock(tsk->group_leader);
1552 if (new_rlim) {
1553 /* Keep the capable check against init_user_ns until
1554 cgroups can contain all limits */
1555 if (new_rlim->rlim_max > rlim->rlim_max &&
1556 !capable(CAP_SYS_RESOURCE))
1557 retval = -EPERM;
1558 if (!retval)
1559 retval = security_task_setrlimit(tsk, resource, new_rlim);
1560 }
1561 if (!retval) {
1562 if (old_rlim)
1563 *old_rlim = *rlim;
1564 if (new_rlim)
1565 *rlim = *new_rlim;
1566 }
1567 task_unlock(tsk->group_leader);
1568
1569 /*
1570 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1571 * infite. In case of RLIM_INFINITY the posix CPU timer code
1572 * ignores the rlimit.
1573 */
1574 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1575 new_rlim->rlim_cur != RLIM_INFINITY &&
1576 IS_ENABLED(CONFIG_POSIX_TIMERS))
1577 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1578out:
1579 read_unlock(&tasklist_lock);
1580 return retval;
1581}
1582
1583/* rcu lock must be held */
1584static int check_prlimit_permission(struct task_struct *task,
1585 unsigned int flags)
1586{
1587 const struct cred *cred = current_cred(), *tcred;
1588 bool id_match;
1589
1590 if (current == task)
1591 return 0;
1592
1593 tcred = __task_cred(task);
1594 id_match = (uid_eq(cred->uid, tcred->euid) &&
1595 uid_eq(cred->uid, tcred->suid) &&
1596 uid_eq(cred->uid, tcred->uid) &&
1597 gid_eq(cred->gid, tcred->egid) &&
1598 gid_eq(cred->gid, tcred->sgid) &&
1599 gid_eq(cred->gid, tcred->gid));
1600 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1601 return -EPERM;
1602
1603 return security_task_prlimit(cred, tcred, flags);
1604}
1605
1606SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1607 const struct rlimit64 __user *, new_rlim,
1608 struct rlimit64 __user *, old_rlim)
1609{
1610 struct rlimit64 old64, new64;
1611 struct rlimit old, new;
1612 struct task_struct *tsk;
1613 unsigned int checkflags = 0;
1614 int ret;
1615
1616 if (old_rlim)
1617 checkflags |= LSM_PRLIMIT_READ;
1618
1619 if (new_rlim) {
1620 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1621 return -EFAULT;
1622 rlim64_to_rlim(&new64, &new);
1623 checkflags |= LSM_PRLIMIT_WRITE;
1624 }
1625
1626 rcu_read_lock();
1627 tsk = pid ? find_task_by_vpid(pid) : current;
1628 if (!tsk) {
1629 rcu_read_unlock();
1630 return -ESRCH;
1631 }
1632 ret = check_prlimit_permission(tsk, checkflags);
1633 if (ret) {
1634 rcu_read_unlock();
1635 return ret;
1636 }
1637 get_task_struct(tsk);
1638 rcu_read_unlock();
1639
1640 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1641 old_rlim ? &old : NULL);
1642
1643 if (!ret && old_rlim) {
1644 rlim_to_rlim64(&old, &old64);
1645 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1646 ret = -EFAULT;
1647 }
1648
1649 put_task_struct(tsk);
1650 return ret;
1651}
1652
1653SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1654{
1655 struct rlimit new_rlim;
1656
1657 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1658 return -EFAULT;
1659 return do_prlimit(current, resource, &new_rlim, NULL);
1660}
1661
1662/*
1663 * It would make sense to put struct rusage in the task_struct,
1664 * except that would make the task_struct be *really big*. After
1665 * task_struct gets moved into malloc'ed memory, it would
1666 * make sense to do this. It will make moving the rest of the information
1667 * a lot simpler! (Which we're not doing right now because we're not
1668 * measuring them yet).
1669 *
1670 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1671 * races with threads incrementing their own counters. But since word
1672 * reads are atomic, we either get new values or old values and we don't
1673 * care which for the sums. We always take the siglock to protect reading
1674 * the c* fields from p->signal from races with exit.c updating those
1675 * fields when reaping, so a sample either gets all the additions of a
1676 * given child after it's reaped, or none so this sample is before reaping.
1677 *
1678 * Locking:
1679 * We need to take the siglock for CHILDEREN, SELF and BOTH
1680 * for the cases current multithreaded, non-current single threaded
1681 * non-current multithreaded. Thread traversal is now safe with
1682 * the siglock held.
1683 * Strictly speaking, we donot need to take the siglock if we are current and
1684 * single threaded, as no one else can take our signal_struct away, no one
1685 * else can reap the children to update signal->c* counters, and no one else
1686 * can race with the signal-> fields. If we do not take any lock, the
1687 * signal-> fields could be read out of order while another thread was just
1688 * exiting. So we should place a read memory barrier when we avoid the lock.
1689 * On the writer side, write memory barrier is implied in __exit_signal
1690 * as __exit_signal releases the siglock spinlock after updating the signal->
1691 * fields. But we don't do this yet to keep things simple.
1692 *
1693 */
1694
1695static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1696{
1697 r->ru_nvcsw += t->nvcsw;
1698 r->ru_nivcsw += t->nivcsw;
1699 r->ru_minflt += t->min_flt;
1700 r->ru_majflt += t->maj_flt;
1701 r->ru_inblock += task_io_get_inblock(t);
1702 r->ru_oublock += task_io_get_oublock(t);
1703}
1704
1705void getrusage(struct task_struct *p, int who, struct rusage *r)
1706{
1707 struct task_struct *t;
1708 unsigned long flags;
1709 u64 tgutime, tgstime, utime, stime;
1710 unsigned long maxrss = 0;
1711
1712 memset((char *)r, 0, sizeof (*r));
1713 utime = stime = 0;
1714
1715 if (who == RUSAGE_THREAD) {
1716 task_cputime_adjusted(current, &utime, &stime);
1717 accumulate_thread_rusage(p, r);
1718 maxrss = p->signal->maxrss;
1719 goto out;
1720 }
1721
1722 if (!lock_task_sighand(p, &flags))
1723 return;
1724
1725 switch (who) {
1726 case RUSAGE_BOTH:
1727 case RUSAGE_CHILDREN:
1728 utime = p->signal->cutime;
1729 stime = p->signal->cstime;
1730 r->ru_nvcsw = p->signal->cnvcsw;
1731 r->ru_nivcsw = p->signal->cnivcsw;
1732 r->ru_minflt = p->signal->cmin_flt;
1733 r->ru_majflt = p->signal->cmaj_flt;
1734 r->ru_inblock = p->signal->cinblock;
1735 r->ru_oublock = p->signal->coublock;
1736 maxrss = p->signal->cmaxrss;
1737
1738 if (who == RUSAGE_CHILDREN)
1739 break;
1740 /* fall through */
1741
1742 case RUSAGE_SELF:
1743 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1744 utime += tgutime;
1745 stime += tgstime;
1746 r->ru_nvcsw += p->signal->nvcsw;
1747 r->ru_nivcsw += p->signal->nivcsw;
1748 r->ru_minflt += p->signal->min_flt;
1749 r->ru_majflt += p->signal->maj_flt;
1750 r->ru_inblock += p->signal->inblock;
1751 r->ru_oublock += p->signal->oublock;
1752 if (maxrss < p->signal->maxrss)
1753 maxrss = p->signal->maxrss;
1754 t = p;
1755 do {
1756 accumulate_thread_rusage(t, r);
1757 } while_each_thread(p, t);
1758 break;
1759
1760 default:
1761 BUG();
1762 }
1763 unlock_task_sighand(p, &flags);
1764
1765out:
1766 r->ru_utime = ns_to_timeval(utime);
1767 r->ru_stime = ns_to_timeval(stime);
1768
1769 if (who != RUSAGE_CHILDREN) {
1770 struct mm_struct *mm = get_task_mm(p);
1771
1772 if (mm) {
1773 setmax_mm_hiwater_rss(&maxrss, mm);
1774 mmput(mm);
1775 }
1776 }
1777 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1778}
1779
1780SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1781{
1782 struct rusage r;
1783
1784 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1785 who != RUSAGE_THREAD)
1786 return -EINVAL;
1787
1788 getrusage(current, who, &r);
1789 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1790}
1791
1792#ifdef CONFIG_COMPAT
1793COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1794{
1795 struct rusage r;
1796
1797 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1798 who != RUSAGE_THREAD)
1799 return -EINVAL;
1800
1801 getrusage(current, who, &r);
1802 return put_compat_rusage(&r, ru);
1803}
1804#endif
1805
1806SYSCALL_DEFINE1(umask, int, mask)
1807{
1808 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1809 return mask;
1810}
1811
1812static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1813{
1814 struct fd exe;
1815 struct file *old_exe, *exe_file;
1816 struct inode *inode;
1817 int err;
1818
1819 exe = fdget(fd);
1820 if (!exe.file)
1821 return -EBADF;
1822
1823 inode = file_inode(exe.file);
1824
1825 /*
1826 * Because the original mm->exe_file points to executable file, make
1827 * sure that this one is executable as well, to avoid breaking an
1828 * overall picture.
1829 */
1830 err = -EACCES;
1831 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1832 goto exit;
1833
1834 err = inode_permission(inode, MAY_EXEC);
1835 if (err)
1836 goto exit;
1837
1838 /*
1839 * Forbid mm->exe_file change if old file still mapped.
1840 */
1841 exe_file = get_mm_exe_file(mm);
1842 err = -EBUSY;
1843 if (exe_file) {
1844 struct vm_area_struct *vma;
1845
1846 down_read(&mm->mmap_sem);
1847 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1848 if (!vma->vm_file)
1849 continue;
1850 if (path_equal(&vma->vm_file->f_path,
1851 &exe_file->f_path))
1852 goto exit_err;
1853 }
1854
1855 up_read(&mm->mmap_sem);
1856 fput(exe_file);
1857 }
1858
1859 err = 0;
1860 /* set the new file, lockless */
1861 get_file(exe.file);
1862 old_exe = xchg(&mm->exe_file, exe.file);
1863 if (old_exe)
1864 fput(old_exe);
1865exit:
1866 fdput(exe);
1867 return err;
1868exit_err:
1869 up_read(&mm->mmap_sem);
1870 fput(exe_file);
1871 goto exit;
1872}
1873
1874/*
1875 * Check arithmetic relations of passed addresses.
1876 *
1877 * WARNING: we don't require any capability here so be very careful
1878 * in what is allowed for modification from userspace.
1879 */
1880static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1881{
1882 unsigned long mmap_max_addr = TASK_SIZE;
1883 int error = -EINVAL, i;
1884
1885 static const unsigned char offsets[] = {
1886 offsetof(struct prctl_mm_map, start_code),
1887 offsetof(struct prctl_mm_map, end_code),
1888 offsetof(struct prctl_mm_map, start_data),
1889 offsetof(struct prctl_mm_map, end_data),
1890 offsetof(struct prctl_mm_map, start_brk),
1891 offsetof(struct prctl_mm_map, brk),
1892 offsetof(struct prctl_mm_map, start_stack),
1893 offsetof(struct prctl_mm_map, arg_start),
1894 offsetof(struct prctl_mm_map, arg_end),
1895 offsetof(struct prctl_mm_map, env_start),
1896 offsetof(struct prctl_mm_map, env_end),
1897 };
1898
1899 /*
1900 * Make sure the members are not somewhere outside
1901 * of allowed address space.
1902 */
1903 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1904 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1905
1906 if ((unsigned long)val >= mmap_max_addr ||
1907 (unsigned long)val < mmap_min_addr)
1908 goto out;
1909 }
1910
1911 /*
1912 * Make sure the pairs are ordered.
1913 */
1914#define __prctl_check_order(__m1, __op, __m2) \
1915 ((unsigned long)prctl_map->__m1 __op \
1916 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1917 error = __prctl_check_order(start_code, <, end_code);
1918 error |= __prctl_check_order(start_data,<=, end_data);
1919 error |= __prctl_check_order(start_brk, <=, brk);
1920 error |= __prctl_check_order(arg_start, <=, arg_end);
1921 error |= __prctl_check_order(env_start, <=, env_end);
1922 if (error)
1923 goto out;
1924#undef __prctl_check_order
1925
1926 error = -EINVAL;
1927
1928 /*
1929 * @brk should be after @end_data in traditional maps.
1930 */
1931 if (prctl_map->start_brk <= prctl_map->end_data ||
1932 prctl_map->brk <= prctl_map->end_data)
1933 goto out;
1934
1935 /*
1936 * Neither we should allow to override limits if they set.
1937 */
1938 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1939 prctl_map->start_brk, prctl_map->end_data,
1940 prctl_map->start_data))
1941 goto out;
1942
1943 error = 0;
1944out:
1945 return error;
1946}
1947
1948#ifdef CONFIG_CHECKPOINT_RESTORE
1949static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1950{
1951 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1952 unsigned long user_auxv[AT_VECTOR_SIZE];
1953 struct mm_struct *mm = current->mm;
1954 int error;
1955
1956 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1957 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1958
1959 if (opt == PR_SET_MM_MAP_SIZE)
1960 return put_user((unsigned int)sizeof(prctl_map),
1961 (unsigned int __user *)addr);
1962
1963 if (data_size != sizeof(prctl_map))
1964 return -EINVAL;
1965
1966 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1967 return -EFAULT;
1968
1969 error = validate_prctl_map_addr(&prctl_map);
1970 if (error)
1971 return error;
1972
1973 if (prctl_map.auxv_size) {
1974 /*
1975 * Someone is trying to cheat the auxv vector.
1976 */
1977 if (!prctl_map.auxv ||
1978 prctl_map.auxv_size > sizeof(mm->saved_auxv))
1979 return -EINVAL;
1980
1981 memset(user_auxv, 0, sizeof(user_auxv));
1982 if (copy_from_user(user_auxv,
1983 (const void __user *)prctl_map.auxv,
1984 prctl_map.auxv_size))
1985 return -EFAULT;
1986
1987 /* Last entry must be AT_NULL as specification requires */
1988 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1989 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1990 }
1991
1992 if (prctl_map.exe_fd != (u32)-1) {
1993 /*
1994 * Make sure the caller has the rights to
1995 * change /proc/pid/exe link: only local sys admin should
1996 * be allowed to.
1997 */
1998 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1999 return -EINVAL;
2000
2001 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2002 if (error)
2003 return error;
2004 }
2005
2006 /*
2007 * arg_lock protects concurent updates but we still need mmap_sem for
2008 * read to exclude races with sys_brk.
2009 */
2010 down_read(&mm->mmap_sem);
2011
2012 /*
2013 * We don't validate if these members are pointing to
2014 * real present VMAs because application may have correspond
2015 * VMAs already unmapped and kernel uses these members for statistics
2016 * output in procfs mostly, except
2017 *
2018 * - @start_brk/@brk which are used in do_brk but kernel lookups
2019 * for VMAs when updating these memvers so anything wrong written
2020 * here cause kernel to swear at userspace program but won't lead
2021 * to any problem in kernel itself
2022 */
2023
2024 spin_lock(&mm->arg_lock);
2025 mm->start_code = prctl_map.start_code;
2026 mm->end_code = prctl_map.end_code;
2027 mm->start_data = prctl_map.start_data;
2028 mm->end_data = prctl_map.end_data;
2029 mm->start_brk = prctl_map.start_brk;
2030 mm->brk = prctl_map.brk;
2031 mm->start_stack = prctl_map.start_stack;
2032 mm->arg_start = prctl_map.arg_start;
2033 mm->arg_end = prctl_map.arg_end;
2034 mm->env_start = prctl_map.env_start;
2035 mm->env_end = prctl_map.env_end;
2036 spin_unlock(&mm->arg_lock);
2037
2038 /*
2039 * Note this update of @saved_auxv is lockless thus
2040 * if someone reads this member in procfs while we're
2041 * updating -- it may get partly updated results. It's
2042 * known and acceptable trade off: we leave it as is to
2043 * not introduce additional locks here making the kernel
2044 * more complex.
2045 */
2046 if (prctl_map.auxv_size)
2047 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2048
2049 up_read(&mm->mmap_sem);
2050 return 0;
2051}
2052#endif /* CONFIG_CHECKPOINT_RESTORE */
2053
2054static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2055 unsigned long len)
2056{
2057 /*
2058 * This doesn't move the auxiliary vector itself since it's pinned to
2059 * mm_struct, but it permits filling the vector with new values. It's
2060 * up to the caller to provide sane values here, otherwise userspace
2061 * tools which use this vector might be unhappy.
2062 */
2063 unsigned long user_auxv[AT_VECTOR_SIZE];
2064
2065 if (len > sizeof(user_auxv))
2066 return -EINVAL;
2067
2068 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2069 return -EFAULT;
2070
2071 /* Make sure the last entry is always AT_NULL */
2072 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2073 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2074
2075 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2076
2077 task_lock(current);
2078 memcpy(mm->saved_auxv, user_auxv, len);
2079 task_unlock(current);
2080
2081 return 0;
2082}
2083
2084static int prctl_set_mm(int opt, unsigned long addr,
2085 unsigned long arg4, unsigned long arg5)
2086{
2087 struct mm_struct *mm = current->mm;
2088 struct prctl_mm_map prctl_map = {
2089 .auxv = NULL,
2090 .auxv_size = 0,
2091 .exe_fd = -1,
2092 };
2093 struct vm_area_struct *vma;
2094 int error;
2095
2096 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2097 opt != PR_SET_MM_MAP &&
2098 opt != PR_SET_MM_MAP_SIZE)))
2099 return -EINVAL;
2100
2101#ifdef CONFIG_CHECKPOINT_RESTORE
2102 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2103 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2104#endif
2105
2106 if (!capable(CAP_SYS_RESOURCE))
2107 return -EPERM;
2108
2109 if (opt == PR_SET_MM_EXE_FILE)
2110 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2111
2112 if (opt == PR_SET_MM_AUXV)
2113 return prctl_set_auxv(mm, addr, arg4);
2114
2115 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2116 return -EINVAL;
2117
2118 error = -EINVAL;
2119
2120 /*
2121 * arg_lock protects concurent updates of arg boundaries, we need
2122 * mmap_sem for a) concurrent sys_brk, b) finding VMA for addr
2123 * validation.
2124 */
2125 down_read(&mm->mmap_sem);
2126 vma = find_vma(mm, addr);
2127
2128 spin_lock(&mm->arg_lock);
2129 prctl_map.start_code = mm->start_code;
2130 prctl_map.end_code = mm->end_code;
2131 prctl_map.start_data = mm->start_data;
2132 prctl_map.end_data = mm->end_data;
2133 prctl_map.start_brk = mm->start_brk;
2134 prctl_map.brk = mm->brk;
2135 prctl_map.start_stack = mm->start_stack;
2136 prctl_map.arg_start = mm->arg_start;
2137 prctl_map.arg_end = mm->arg_end;
2138 prctl_map.env_start = mm->env_start;
2139 prctl_map.env_end = mm->env_end;
2140
2141 switch (opt) {
2142 case PR_SET_MM_START_CODE:
2143 prctl_map.start_code = addr;
2144 break;
2145 case PR_SET_MM_END_CODE:
2146 prctl_map.end_code = addr;
2147 break;
2148 case PR_SET_MM_START_DATA:
2149 prctl_map.start_data = addr;
2150 break;
2151 case PR_SET_MM_END_DATA:
2152 prctl_map.end_data = addr;
2153 break;
2154 case PR_SET_MM_START_STACK:
2155 prctl_map.start_stack = addr;
2156 break;
2157 case PR_SET_MM_START_BRK:
2158 prctl_map.start_brk = addr;
2159 break;
2160 case PR_SET_MM_BRK:
2161 prctl_map.brk = addr;
2162 break;
2163 case PR_SET_MM_ARG_START:
2164 prctl_map.arg_start = addr;
2165 break;
2166 case PR_SET_MM_ARG_END:
2167 prctl_map.arg_end = addr;
2168 break;
2169 case PR_SET_MM_ENV_START:
2170 prctl_map.env_start = addr;
2171 break;
2172 case PR_SET_MM_ENV_END:
2173 prctl_map.env_end = addr;
2174 break;
2175 default:
2176 goto out;
2177 }
2178
2179 error = validate_prctl_map_addr(&prctl_map);
2180 if (error)
2181 goto out;
2182
2183 switch (opt) {
2184 /*
2185 * If command line arguments and environment
2186 * are placed somewhere else on stack, we can
2187 * set them up here, ARG_START/END to setup
2188 * command line argumets and ENV_START/END
2189 * for environment.
2190 */
2191 case PR_SET_MM_START_STACK:
2192 case PR_SET_MM_ARG_START:
2193 case PR_SET_MM_ARG_END:
2194 case PR_SET_MM_ENV_START:
2195 case PR_SET_MM_ENV_END:
2196 if (!vma) {
2197 error = -EFAULT;
2198 goto out;
2199 }
2200 }
2201
2202 mm->start_code = prctl_map.start_code;
2203 mm->end_code = prctl_map.end_code;
2204 mm->start_data = prctl_map.start_data;
2205 mm->end_data = prctl_map.end_data;
2206 mm->start_brk = prctl_map.start_brk;
2207 mm->brk = prctl_map.brk;
2208 mm->start_stack = prctl_map.start_stack;
2209 mm->arg_start = prctl_map.arg_start;
2210 mm->arg_end = prctl_map.arg_end;
2211 mm->env_start = prctl_map.env_start;
2212 mm->env_end = prctl_map.env_end;
2213
2214 error = 0;
2215out:
2216 spin_unlock(&mm->arg_lock);
2217 up_read(&mm->mmap_sem);
2218 return error;
2219}
2220
2221#ifdef CONFIG_CHECKPOINT_RESTORE
2222static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2223{
2224 return put_user(me->clear_child_tid, tid_addr);
2225}
2226#else
2227static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2228{
2229 return -EINVAL;
2230}
2231#endif
2232
2233static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2234{
2235 /*
2236 * If task has has_child_subreaper - all its decendants
2237 * already have these flag too and new decendants will
2238 * inherit it on fork, skip them.
2239 *
2240 * If we've found child_reaper - skip descendants in
2241 * it's subtree as they will never get out pidns.
2242 */
2243 if (p->signal->has_child_subreaper ||
2244 is_child_reaper(task_pid(p)))
2245 return 0;
2246
2247 p->signal->has_child_subreaper = 1;
2248 return 1;
2249}
2250
2251int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2252{
2253 return -EINVAL;
2254}
2255
2256int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2257 unsigned long ctrl)
2258{
2259 return -EINVAL;
2260}
2261
2262SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2263 unsigned long, arg4, unsigned long, arg5)
2264{
2265 struct task_struct *me = current;
2266 unsigned char comm[sizeof(me->comm)];
2267 long error;
2268
2269 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2270 if (error != -ENOSYS)
2271 return error;
2272
2273 error = 0;
2274 switch (option) {
2275 case PR_SET_PDEATHSIG:
2276 if (!valid_signal(arg2)) {
2277 error = -EINVAL;
2278 break;
2279 }
2280 me->pdeath_signal = arg2;
2281 break;
2282 case PR_GET_PDEATHSIG:
2283 error = put_user(me->pdeath_signal, (int __user *)arg2);
2284 break;
2285 case PR_GET_DUMPABLE:
2286 error = get_dumpable(me->mm);
2287 break;
2288 case PR_SET_DUMPABLE:
2289 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2290 error = -EINVAL;
2291 break;
2292 }
2293 set_dumpable(me->mm, arg2);
2294 break;
2295
2296 case PR_SET_UNALIGN:
2297 error = SET_UNALIGN_CTL(me, arg2);
2298 break;
2299 case PR_GET_UNALIGN:
2300 error = GET_UNALIGN_CTL(me, arg2);
2301 break;
2302 case PR_SET_FPEMU:
2303 error = SET_FPEMU_CTL(me, arg2);
2304 break;
2305 case PR_GET_FPEMU:
2306 error = GET_FPEMU_CTL(me, arg2);
2307 break;
2308 case PR_SET_FPEXC:
2309 error = SET_FPEXC_CTL(me, arg2);
2310 break;
2311 case PR_GET_FPEXC:
2312 error = GET_FPEXC_CTL(me, arg2);
2313 break;
2314 case PR_GET_TIMING:
2315 error = PR_TIMING_STATISTICAL;
2316 break;
2317 case PR_SET_TIMING:
2318 if (arg2 != PR_TIMING_STATISTICAL)
2319 error = -EINVAL;
2320 break;
2321 case PR_SET_NAME:
2322 comm[sizeof(me->comm) - 1] = 0;
2323 if (strncpy_from_user(comm, (char __user *)arg2,
2324 sizeof(me->comm) - 1) < 0)
2325 return -EFAULT;
2326 set_task_comm(me, comm);
2327 proc_comm_connector(me);
2328 break;
2329 case PR_GET_NAME:
2330 get_task_comm(comm, me);
2331 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2332 return -EFAULT;
2333 break;
2334 case PR_GET_ENDIAN:
2335 error = GET_ENDIAN(me, arg2);
2336 break;
2337 case PR_SET_ENDIAN:
2338 error = SET_ENDIAN(me, arg2);
2339 break;
2340 case PR_GET_SECCOMP:
2341 error = prctl_get_seccomp();
2342 break;
2343 case PR_SET_SECCOMP:
2344 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2345 break;
2346 case PR_GET_TSC:
2347 error = GET_TSC_CTL(arg2);
2348 break;
2349 case PR_SET_TSC:
2350 error = SET_TSC_CTL(arg2);
2351 break;
2352 case PR_TASK_PERF_EVENTS_DISABLE:
2353 error = perf_event_task_disable();
2354 break;
2355 case PR_TASK_PERF_EVENTS_ENABLE:
2356 error = perf_event_task_enable();
2357 break;
2358 case PR_GET_TIMERSLACK:
2359 if (current->timer_slack_ns > ULONG_MAX)
2360 error = ULONG_MAX;
2361 else
2362 error = current->timer_slack_ns;
2363 break;
2364 case PR_SET_TIMERSLACK:
2365 if (arg2 <= 0)
2366 current->timer_slack_ns =
2367 current->default_timer_slack_ns;
2368 else
2369 current->timer_slack_ns = arg2;
2370 break;
2371 case PR_MCE_KILL:
2372 if (arg4 | arg5)
2373 return -EINVAL;
2374 switch (arg2) {
2375 case PR_MCE_KILL_CLEAR:
2376 if (arg3 != 0)
2377 return -EINVAL;
2378 current->flags &= ~PF_MCE_PROCESS;
2379 break;
2380 case PR_MCE_KILL_SET:
2381 current->flags |= PF_MCE_PROCESS;
2382 if (arg3 == PR_MCE_KILL_EARLY)
2383 current->flags |= PF_MCE_EARLY;
2384 else if (arg3 == PR_MCE_KILL_LATE)
2385 current->flags &= ~PF_MCE_EARLY;
2386 else if (arg3 == PR_MCE_KILL_DEFAULT)
2387 current->flags &=
2388 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2389 else
2390 return -EINVAL;
2391 break;
2392 default:
2393 return -EINVAL;
2394 }
2395 break;
2396 case PR_MCE_KILL_GET:
2397 if (arg2 | arg3 | arg4 | arg5)
2398 return -EINVAL;
2399 if (current->flags & PF_MCE_PROCESS)
2400 error = (current->flags & PF_MCE_EARLY) ?
2401 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2402 else
2403 error = PR_MCE_KILL_DEFAULT;
2404 break;
2405 case PR_SET_MM:
2406 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2407 break;
2408 case PR_GET_TID_ADDRESS:
2409 error = prctl_get_tid_address(me, (int __user **)arg2);
2410 break;
2411 case PR_SET_CHILD_SUBREAPER:
2412 me->signal->is_child_subreaper = !!arg2;
2413 if (!arg2)
2414 break;
2415
2416 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2417 break;
2418 case PR_GET_CHILD_SUBREAPER:
2419 error = put_user(me->signal->is_child_subreaper,
2420 (int __user *)arg2);
2421 break;
2422 case PR_SET_NO_NEW_PRIVS:
2423 if (arg2 != 1 || arg3 || arg4 || arg5)
2424 return -EINVAL;
2425
2426 task_set_no_new_privs(current);
2427 break;
2428 case PR_GET_NO_NEW_PRIVS:
2429 if (arg2 || arg3 || arg4 || arg5)
2430 return -EINVAL;
2431 return task_no_new_privs(current) ? 1 : 0;
2432 case PR_GET_THP_DISABLE:
2433 if (arg2 || arg3 || arg4 || arg5)
2434 return -EINVAL;
2435 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2436 break;
2437 case PR_SET_THP_DISABLE:
2438 if (arg3 || arg4 || arg5)
2439 return -EINVAL;
2440 if (down_write_killable(&me->mm->mmap_sem))
2441 return -EINTR;
2442 if (arg2)
2443 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2444 else
2445 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2446 up_write(&me->mm->mmap_sem);
2447 break;
2448 case PR_MPX_ENABLE_MANAGEMENT:
2449 case PR_MPX_DISABLE_MANAGEMENT:
2450 /* No longer implemented: */
2451 return -EINVAL;
2452 case PR_SET_FP_MODE:
2453 error = SET_FP_MODE(me, arg2);
2454 break;
2455 case PR_GET_FP_MODE:
2456 error = GET_FP_MODE(me);
2457 break;
2458 case PR_SVE_SET_VL:
2459 error = SVE_SET_VL(arg2);
2460 break;
2461 case PR_SVE_GET_VL:
2462 error = SVE_GET_VL();
2463 break;
2464 case PR_GET_SPECULATION_CTRL:
2465 if (arg3 || arg4 || arg5)
2466 return -EINVAL;
2467 error = arch_prctl_spec_ctrl_get(me, arg2);
2468 break;
2469 case PR_SET_SPECULATION_CTRL:
2470 if (arg4 || arg5)
2471 return -EINVAL;
2472 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2473 break;
2474 case PR_PAC_RESET_KEYS:
2475 if (arg3 || arg4 || arg5)
2476 return -EINVAL;
2477 error = PAC_RESET_KEYS(me, arg2);
2478 break;
2479 case PR_SET_TAGGED_ADDR_CTRL:
2480 if (arg3 || arg4 || arg5)
2481 return -EINVAL;
2482 error = SET_TAGGED_ADDR_CTRL(arg2);
2483 break;
2484 case PR_GET_TAGGED_ADDR_CTRL:
2485 if (arg2 || arg3 || arg4 || arg5)
2486 return -EINVAL;
2487 error = GET_TAGGED_ADDR_CTRL();
2488 break;
2489 default:
2490 error = -EINVAL;
2491 break;
2492 }
2493 return error;
2494}
2495
2496SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2497 struct getcpu_cache __user *, unused)
2498{
2499 int err = 0;
2500 int cpu = raw_smp_processor_id();
2501
2502 if (cpup)
2503 err |= put_user(cpu, cpup);
2504 if (nodep)
2505 err |= put_user(cpu_to_node(cpu), nodep);
2506 return err ? -EFAULT : 0;
2507}
2508
2509/**
2510 * do_sysinfo - fill in sysinfo struct
2511 * @info: pointer to buffer to fill
2512 */
2513static int do_sysinfo(struct sysinfo *info)
2514{
2515 unsigned long mem_total, sav_total;
2516 unsigned int mem_unit, bitcount;
2517 struct timespec64 tp;
2518
2519 memset(info, 0, sizeof(struct sysinfo));
2520
2521 ktime_get_boottime_ts64(&tp);
2522 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2523
2524 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2525
2526 info->procs = nr_threads;
2527
2528 si_meminfo(info);
2529 si_swapinfo(info);
2530
2531 /*
2532 * If the sum of all the available memory (i.e. ram + swap)
2533 * is less than can be stored in a 32 bit unsigned long then
2534 * we can be binary compatible with 2.2.x kernels. If not,
2535 * well, in that case 2.2.x was broken anyways...
2536 *
2537 * -Erik Andersen <andersee@debian.org>
2538 */
2539
2540 mem_total = info->totalram + info->totalswap;
2541 if (mem_total < info->totalram || mem_total < info->totalswap)
2542 goto out;
2543 bitcount = 0;
2544 mem_unit = info->mem_unit;
2545 while (mem_unit > 1) {
2546 bitcount++;
2547 mem_unit >>= 1;
2548 sav_total = mem_total;
2549 mem_total <<= 1;
2550 if (mem_total < sav_total)
2551 goto out;
2552 }
2553
2554 /*
2555 * If mem_total did not overflow, multiply all memory values by
2556 * info->mem_unit and set it to 1. This leaves things compatible
2557 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2558 * kernels...
2559 */
2560
2561 info->mem_unit = 1;
2562 info->totalram <<= bitcount;
2563 info->freeram <<= bitcount;
2564 info->sharedram <<= bitcount;
2565 info->bufferram <<= bitcount;
2566 info->totalswap <<= bitcount;
2567 info->freeswap <<= bitcount;
2568 info->totalhigh <<= bitcount;
2569 info->freehigh <<= bitcount;
2570
2571out:
2572 return 0;
2573}
2574
2575SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2576{
2577 struct sysinfo val;
2578
2579 do_sysinfo(&val);
2580
2581 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2582 return -EFAULT;
2583
2584 return 0;
2585}
2586
2587#ifdef CONFIG_COMPAT
2588struct compat_sysinfo {
2589 s32 uptime;
2590 u32 loads[3];
2591 u32 totalram;
2592 u32 freeram;
2593 u32 sharedram;
2594 u32 bufferram;
2595 u32 totalswap;
2596 u32 freeswap;
2597 u16 procs;
2598 u16 pad;
2599 u32 totalhigh;
2600 u32 freehigh;
2601 u32 mem_unit;
2602 char _f[20-2*sizeof(u32)-sizeof(int)];
2603};
2604
2605COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2606{
2607 struct sysinfo s;
2608
2609 do_sysinfo(&s);
2610
2611 /* Check to see if any memory value is too large for 32-bit and scale
2612 * down if needed
2613 */
2614 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2615 int bitcount = 0;
2616
2617 while (s.mem_unit < PAGE_SIZE) {
2618 s.mem_unit <<= 1;
2619 bitcount++;
2620 }
2621
2622 s.totalram >>= bitcount;
2623 s.freeram >>= bitcount;
2624 s.sharedram >>= bitcount;
2625 s.bufferram >>= bitcount;
2626 s.totalswap >>= bitcount;
2627 s.freeswap >>= bitcount;
2628 s.totalhigh >>= bitcount;
2629 s.freehigh >>= bitcount;
2630 }
2631
2632 if (!access_ok(info, sizeof(struct compat_sysinfo)) ||
2633 __put_user(s.uptime, &info->uptime) ||
2634 __put_user(s.loads[0], &info->loads[0]) ||
2635 __put_user(s.loads[1], &info->loads[1]) ||
2636 __put_user(s.loads[2], &info->loads[2]) ||
2637 __put_user(s.totalram, &info->totalram) ||
2638 __put_user(s.freeram, &info->freeram) ||
2639 __put_user(s.sharedram, &info->sharedram) ||
2640 __put_user(s.bufferram, &info->bufferram) ||
2641 __put_user(s.totalswap, &info->totalswap) ||
2642 __put_user(s.freeswap, &info->freeswap) ||
2643 __put_user(s.procs, &info->procs) ||
2644 __put_user(s.totalhigh, &info->totalhigh) ||
2645 __put_user(s.freehigh, &info->freehigh) ||
2646 __put_user(s.mem_unit, &info->mem_unit))
2647 return -EFAULT;
2648
2649 return 0;
2650}
2651#endif /* CONFIG_COMPAT */
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/export.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
11#include <linux/reboot.h>
12#include <linux/prctl.h>
13#include <linux/highuid.h>
14#include <linux/fs.h>
15#include <linux/kmod.h>
16#include <linux/perf_event.h>
17#include <linux/resource.h>
18#include <linux/kernel.h>
19#include <linux/workqueue.h>
20#include <linux/capability.h>
21#include <linux/device.h>
22#include <linux/key.h>
23#include <linux/times.h>
24#include <linux/posix-timers.h>
25#include <linux/security.h>
26#include <linux/dcookies.h>
27#include <linux/suspend.h>
28#include <linux/tty.h>
29#include <linux/signal.h>
30#include <linux/cn_proc.h>
31#include <linux/getcpu.h>
32#include <linux/task_io_accounting_ops.h>
33#include <linux/seccomp.h>
34#include <linux/cpu.h>
35#include <linux/personality.h>
36#include <linux/ptrace.h>
37#include <linux/fs_struct.h>
38#include <linux/file.h>
39#include <linux/mount.h>
40#include <linux/gfp.h>
41#include <linux/syscore_ops.h>
42#include <linux/version.h>
43#include <linux/ctype.h>
44
45#include <linux/compat.h>
46#include <linux/syscalls.h>
47#include <linux/kprobes.h>
48#include <linux/user_namespace.h>
49#include <linux/binfmts.h>
50
51#include <linux/sched.h>
52#include <linux/rcupdate.h>
53#include <linux/uidgid.h>
54#include <linux/cred.h>
55
56#include <linux/kmsg_dump.h>
57/* Move somewhere else to avoid recompiling? */
58#include <generated/utsrelease.h>
59
60#include <asm/uaccess.h>
61#include <asm/io.h>
62#include <asm/unistd.h>
63
64#ifndef SET_UNALIGN_CTL
65# define SET_UNALIGN_CTL(a, b) (-EINVAL)
66#endif
67#ifndef GET_UNALIGN_CTL
68# define GET_UNALIGN_CTL(a, b) (-EINVAL)
69#endif
70#ifndef SET_FPEMU_CTL
71# define SET_FPEMU_CTL(a, b) (-EINVAL)
72#endif
73#ifndef GET_FPEMU_CTL
74# define GET_FPEMU_CTL(a, b) (-EINVAL)
75#endif
76#ifndef SET_FPEXC_CTL
77# define SET_FPEXC_CTL(a, b) (-EINVAL)
78#endif
79#ifndef GET_FPEXC_CTL
80# define GET_FPEXC_CTL(a, b) (-EINVAL)
81#endif
82#ifndef GET_ENDIAN
83# define GET_ENDIAN(a, b) (-EINVAL)
84#endif
85#ifndef SET_ENDIAN
86# define SET_ENDIAN(a, b) (-EINVAL)
87#endif
88#ifndef GET_TSC_CTL
89# define GET_TSC_CTL(a) (-EINVAL)
90#endif
91#ifndef SET_TSC_CTL
92# define SET_TSC_CTL(a) (-EINVAL)
93#endif
94#ifndef MPX_ENABLE_MANAGEMENT
95# define MPX_ENABLE_MANAGEMENT() (-EINVAL)
96#endif
97#ifndef MPX_DISABLE_MANAGEMENT
98# define MPX_DISABLE_MANAGEMENT() (-EINVAL)
99#endif
100#ifndef GET_FP_MODE
101# define GET_FP_MODE(a) (-EINVAL)
102#endif
103#ifndef SET_FP_MODE
104# define SET_FP_MODE(a,b) (-EINVAL)
105#endif
106
107/*
108 * this is where the system-wide overflow UID and GID are defined, for
109 * architectures that now have 32-bit UID/GID but didn't in the past
110 */
111
112int overflowuid = DEFAULT_OVERFLOWUID;
113int overflowgid = DEFAULT_OVERFLOWGID;
114
115EXPORT_SYMBOL(overflowuid);
116EXPORT_SYMBOL(overflowgid);
117
118/*
119 * the same as above, but for filesystems which can only store a 16-bit
120 * UID and GID. as such, this is needed on all architectures
121 */
122
123int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
124int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
125
126EXPORT_SYMBOL(fs_overflowuid);
127EXPORT_SYMBOL(fs_overflowgid);
128
129/*
130 * Returns true if current's euid is same as p's uid or euid,
131 * or has CAP_SYS_NICE to p's user_ns.
132 *
133 * Called with rcu_read_lock, creds are safe
134 */
135static bool set_one_prio_perm(struct task_struct *p)
136{
137 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
138
139 if (uid_eq(pcred->uid, cred->euid) ||
140 uid_eq(pcred->euid, cred->euid))
141 return true;
142 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
143 return true;
144 return false;
145}
146
147/*
148 * set the priority of a task
149 * - the caller must hold the RCU read lock
150 */
151static int set_one_prio(struct task_struct *p, int niceval, int error)
152{
153 int no_nice;
154
155 if (!set_one_prio_perm(p)) {
156 error = -EPERM;
157 goto out;
158 }
159 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
160 error = -EACCES;
161 goto out;
162 }
163 no_nice = security_task_setnice(p, niceval);
164 if (no_nice) {
165 error = no_nice;
166 goto out;
167 }
168 if (error == -ESRCH)
169 error = 0;
170 set_user_nice(p, niceval);
171out:
172 return error;
173}
174
175SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
176{
177 struct task_struct *g, *p;
178 struct user_struct *user;
179 const struct cred *cred = current_cred();
180 int error = -EINVAL;
181 struct pid *pgrp;
182 kuid_t uid;
183
184 if (which > PRIO_USER || which < PRIO_PROCESS)
185 goto out;
186
187 /* normalize: avoid signed division (rounding problems) */
188 error = -ESRCH;
189 if (niceval < MIN_NICE)
190 niceval = MIN_NICE;
191 if (niceval > MAX_NICE)
192 niceval = MAX_NICE;
193
194 rcu_read_lock();
195 read_lock(&tasklist_lock);
196 switch (which) {
197 case PRIO_PROCESS:
198 if (who)
199 p = find_task_by_vpid(who);
200 else
201 p = current;
202 if (p)
203 error = set_one_prio(p, niceval, error);
204 break;
205 case PRIO_PGRP:
206 if (who)
207 pgrp = find_vpid(who);
208 else
209 pgrp = task_pgrp(current);
210 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
211 error = set_one_prio(p, niceval, error);
212 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
213 break;
214 case PRIO_USER:
215 uid = make_kuid(cred->user_ns, who);
216 user = cred->user;
217 if (!who)
218 uid = cred->uid;
219 else if (!uid_eq(uid, cred->uid)) {
220 user = find_user(uid);
221 if (!user)
222 goto out_unlock; /* No processes for this user */
223 }
224 do_each_thread(g, p) {
225 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
226 error = set_one_prio(p, niceval, error);
227 } while_each_thread(g, p);
228 if (!uid_eq(uid, cred->uid))
229 free_uid(user); /* For find_user() */
230 break;
231 }
232out_unlock:
233 read_unlock(&tasklist_lock);
234 rcu_read_unlock();
235out:
236 return error;
237}
238
239/*
240 * Ugh. To avoid negative return values, "getpriority()" will
241 * not return the normal nice-value, but a negated value that
242 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
243 * to stay compatible.
244 */
245SYSCALL_DEFINE2(getpriority, int, which, int, who)
246{
247 struct task_struct *g, *p;
248 struct user_struct *user;
249 const struct cred *cred = current_cred();
250 long niceval, retval = -ESRCH;
251 struct pid *pgrp;
252 kuid_t uid;
253
254 if (which > PRIO_USER || which < PRIO_PROCESS)
255 return -EINVAL;
256
257 rcu_read_lock();
258 read_lock(&tasklist_lock);
259 switch (which) {
260 case PRIO_PROCESS:
261 if (who)
262 p = find_task_by_vpid(who);
263 else
264 p = current;
265 if (p) {
266 niceval = nice_to_rlimit(task_nice(p));
267 if (niceval > retval)
268 retval = niceval;
269 }
270 break;
271 case PRIO_PGRP:
272 if (who)
273 pgrp = find_vpid(who);
274 else
275 pgrp = task_pgrp(current);
276 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
277 niceval = nice_to_rlimit(task_nice(p));
278 if (niceval > retval)
279 retval = niceval;
280 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
281 break;
282 case PRIO_USER:
283 uid = make_kuid(cred->user_ns, who);
284 user = cred->user;
285 if (!who)
286 uid = cred->uid;
287 else if (!uid_eq(uid, cred->uid)) {
288 user = find_user(uid);
289 if (!user)
290 goto out_unlock; /* No processes for this user */
291 }
292 do_each_thread(g, p) {
293 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
294 niceval = nice_to_rlimit(task_nice(p));
295 if (niceval > retval)
296 retval = niceval;
297 }
298 } while_each_thread(g, p);
299 if (!uid_eq(uid, cred->uid))
300 free_uid(user); /* for find_user() */
301 break;
302 }
303out_unlock:
304 read_unlock(&tasklist_lock);
305 rcu_read_unlock();
306
307 return retval;
308}
309
310/*
311 * Unprivileged users may change the real gid to the effective gid
312 * or vice versa. (BSD-style)
313 *
314 * If you set the real gid at all, or set the effective gid to a value not
315 * equal to the real gid, then the saved gid is set to the new effective gid.
316 *
317 * This makes it possible for a setgid program to completely drop its
318 * privileges, which is often a useful assertion to make when you are doing
319 * a security audit over a program.
320 *
321 * The general idea is that a program which uses just setregid() will be
322 * 100% compatible with BSD. A program which uses just setgid() will be
323 * 100% compatible with POSIX with saved IDs.
324 *
325 * SMP: There are not races, the GIDs are checked only by filesystem
326 * operations (as far as semantic preservation is concerned).
327 */
328#ifdef CONFIG_MULTIUSER
329SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
330{
331 struct user_namespace *ns = current_user_ns();
332 const struct cred *old;
333 struct cred *new;
334 int retval;
335 kgid_t krgid, kegid;
336
337 krgid = make_kgid(ns, rgid);
338 kegid = make_kgid(ns, egid);
339
340 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
341 return -EINVAL;
342 if ((egid != (gid_t) -1) && !gid_valid(kegid))
343 return -EINVAL;
344
345 new = prepare_creds();
346 if (!new)
347 return -ENOMEM;
348 old = current_cred();
349
350 retval = -EPERM;
351 if (rgid != (gid_t) -1) {
352 if (gid_eq(old->gid, krgid) ||
353 gid_eq(old->egid, krgid) ||
354 ns_capable(old->user_ns, CAP_SETGID))
355 new->gid = krgid;
356 else
357 goto error;
358 }
359 if (egid != (gid_t) -1) {
360 if (gid_eq(old->gid, kegid) ||
361 gid_eq(old->egid, kegid) ||
362 gid_eq(old->sgid, kegid) ||
363 ns_capable(old->user_ns, CAP_SETGID))
364 new->egid = kegid;
365 else
366 goto error;
367 }
368
369 if (rgid != (gid_t) -1 ||
370 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
371 new->sgid = new->egid;
372 new->fsgid = new->egid;
373
374 return commit_creds(new);
375
376error:
377 abort_creds(new);
378 return retval;
379}
380
381/*
382 * setgid() is implemented like SysV w/ SAVED_IDS
383 *
384 * SMP: Same implicit races as above.
385 */
386SYSCALL_DEFINE1(setgid, gid_t, gid)
387{
388 struct user_namespace *ns = current_user_ns();
389 const struct cred *old;
390 struct cred *new;
391 int retval;
392 kgid_t kgid;
393
394 kgid = make_kgid(ns, gid);
395 if (!gid_valid(kgid))
396 return -EINVAL;
397
398 new = prepare_creds();
399 if (!new)
400 return -ENOMEM;
401 old = current_cred();
402
403 retval = -EPERM;
404 if (ns_capable(old->user_ns, CAP_SETGID))
405 new->gid = new->egid = new->sgid = new->fsgid = kgid;
406 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
407 new->egid = new->fsgid = kgid;
408 else
409 goto error;
410
411 return commit_creds(new);
412
413error:
414 abort_creds(new);
415 return retval;
416}
417
418/*
419 * change the user struct in a credentials set to match the new UID
420 */
421static int set_user(struct cred *new)
422{
423 struct user_struct *new_user;
424
425 new_user = alloc_uid(new->uid);
426 if (!new_user)
427 return -EAGAIN;
428
429 /*
430 * We don't fail in case of NPROC limit excess here because too many
431 * poorly written programs don't check set*uid() return code, assuming
432 * it never fails if called by root. We may still enforce NPROC limit
433 * for programs doing set*uid()+execve() by harmlessly deferring the
434 * failure to the execve() stage.
435 */
436 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
437 new_user != INIT_USER)
438 current->flags |= PF_NPROC_EXCEEDED;
439 else
440 current->flags &= ~PF_NPROC_EXCEEDED;
441
442 free_uid(new->user);
443 new->user = new_user;
444 return 0;
445}
446
447/*
448 * Unprivileged users may change the real uid to the effective uid
449 * or vice versa. (BSD-style)
450 *
451 * If you set the real uid at all, or set the effective uid to a value not
452 * equal to the real uid, then the saved uid is set to the new effective uid.
453 *
454 * This makes it possible for a setuid program to completely drop its
455 * privileges, which is often a useful assertion to make when you are doing
456 * a security audit over a program.
457 *
458 * The general idea is that a program which uses just setreuid() will be
459 * 100% compatible with BSD. A program which uses just setuid() will be
460 * 100% compatible with POSIX with saved IDs.
461 */
462SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
463{
464 struct user_namespace *ns = current_user_ns();
465 const struct cred *old;
466 struct cred *new;
467 int retval;
468 kuid_t kruid, keuid;
469
470 kruid = make_kuid(ns, ruid);
471 keuid = make_kuid(ns, euid);
472
473 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
474 return -EINVAL;
475 if ((euid != (uid_t) -1) && !uid_valid(keuid))
476 return -EINVAL;
477
478 new = prepare_creds();
479 if (!new)
480 return -ENOMEM;
481 old = current_cred();
482
483 retval = -EPERM;
484 if (ruid != (uid_t) -1) {
485 new->uid = kruid;
486 if (!uid_eq(old->uid, kruid) &&
487 !uid_eq(old->euid, kruid) &&
488 !ns_capable(old->user_ns, CAP_SETUID))
489 goto error;
490 }
491
492 if (euid != (uid_t) -1) {
493 new->euid = keuid;
494 if (!uid_eq(old->uid, keuid) &&
495 !uid_eq(old->euid, keuid) &&
496 !uid_eq(old->suid, keuid) &&
497 !ns_capable(old->user_ns, CAP_SETUID))
498 goto error;
499 }
500
501 if (!uid_eq(new->uid, old->uid)) {
502 retval = set_user(new);
503 if (retval < 0)
504 goto error;
505 }
506 if (ruid != (uid_t) -1 ||
507 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
508 new->suid = new->euid;
509 new->fsuid = new->euid;
510
511 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
512 if (retval < 0)
513 goto error;
514
515 return commit_creds(new);
516
517error:
518 abort_creds(new);
519 return retval;
520}
521
522/*
523 * setuid() is implemented like SysV with SAVED_IDS
524 *
525 * Note that SAVED_ID's is deficient in that a setuid root program
526 * like sendmail, for example, cannot set its uid to be a normal
527 * user and then switch back, because if you're root, setuid() sets
528 * the saved uid too. If you don't like this, blame the bright people
529 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
530 * will allow a root program to temporarily drop privileges and be able to
531 * regain them by swapping the real and effective uid.
532 */
533SYSCALL_DEFINE1(setuid, uid_t, uid)
534{
535 struct user_namespace *ns = current_user_ns();
536 const struct cred *old;
537 struct cred *new;
538 int retval;
539 kuid_t kuid;
540
541 kuid = make_kuid(ns, uid);
542 if (!uid_valid(kuid))
543 return -EINVAL;
544
545 new = prepare_creds();
546 if (!new)
547 return -ENOMEM;
548 old = current_cred();
549
550 retval = -EPERM;
551 if (ns_capable(old->user_ns, CAP_SETUID)) {
552 new->suid = new->uid = kuid;
553 if (!uid_eq(kuid, old->uid)) {
554 retval = set_user(new);
555 if (retval < 0)
556 goto error;
557 }
558 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
559 goto error;
560 }
561
562 new->fsuid = new->euid = kuid;
563
564 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
565 if (retval < 0)
566 goto error;
567
568 return commit_creds(new);
569
570error:
571 abort_creds(new);
572 return retval;
573}
574
575
576/*
577 * This function implements a generic ability to update ruid, euid,
578 * and suid. This allows you to implement the 4.4 compatible seteuid().
579 */
580SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
581{
582 struct user_namespace *ns = current_user_ns();
583 const struct cred *old;
584 struct cred *new;
585 int retval;
586 kuid_t kruid, keuid, ksuid;
587
588 kruid = make_kuid(ns, ruid);
589 keuid = make_kuid(ns, euid);
590 ksuid = make_kuid(ns, suid);
591
592 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
593 return -EINVAL;
594
595 if ((euid != (uid_t) -1) && !uid_valid(keuid))
596 return -EINVAL;
597
598 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
599 return -EINVAL;
600
601 new = prepare_creds();
602 if (!new)
603 return -ENOMEM;
604
605 old = current_cred();
606
607 retval = -EPERM;
608 if (!ns_capable(old->user_ns, CAP_SETUID)) {
609 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
610 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
611 goto error;
612 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
613 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
614 goto error;
615 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
616 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
617 goto error;
618 }
619
620 if (ruid != (uid_t) -1) {
621 new->uid = kruid;
622 if (!uid_eq(kruid, old->uid)) {
623 retval = set_user(new);
624 if (retval < 0)
625 goto error;
626 }
627 }
628 if (euid != (uid_t) -1)
629 new->euid = keuid;
630 if (suid != (uid_t) -1)
631 new->suid = ksuid;
632 new->fsuid = new->euid;
633
634 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
635 if (retval < 0)
636 goto error;
637
638 return commit_creds(new);
639
640error:
641 abort_creds(new);
642 return retval;
643}
644
645SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
646{
647 const struct cred *cred = current_cred();
648 int retval;
649 uid_t ruid, euid, suid;
650
651 ruid = from_kuid_munged(cred->user_ns, cred->uid);
652 euid = from_kuid_munged(cred->user_ns, cred->euid);
653 suid = from_kuid_munged(cred->user_ns, cred->suid);
654
655 retval = put_user(ruid, ruidp);
656 if (!retval) {
657 retval = put_user(euid, euidp);
658 if (!retval)
659 return put_user(suid, suidp);
660 }
661 return retval;
662}
663
664/*
665 * Same as above, but for rgid, egid, sgid.
666 */
667SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
668{
669 struct user_namespace *ns = current_user_ns();
670 const struct cred *old;
671 struct cred *new;
672 int retval;
673 kgid_t krgid, kegid, ksgid;
674
675 krgid = make_kgid(ns, rgid);
676 kegid = make_kgid(ns, egid);
677 ksgid = make_kgid(ns, sgid);
678
679 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
680 return -EINVAL;
681 if ((egid != (gid_t) -1) && !gid_valid(kegid))
682 return -EINVAL;
683 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
684 return -EINVAL;
685
686 new = prepare_creds();
687 if (!new)
688 return -ENOMEM;
689 old = current_cred();
690
691 retval = -EPERM;
692 if (!ns_capable(old->user_ns, CAP_SETGID)) {
693 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
694 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
695 goto error;
696 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
697 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
698 goto error;
699 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
700 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
701 goto error;
702 }
703
704 if (rgid != (gid_t) -1)
705 new->gid = krgid;
706 if (egid != (gid_t) -1)
707 new->egid = kegid;
708 if (sgid != (gid_t) -1)
709 new->sgid = ksgid;
710 new->fsgid = new->egid;
711
712 return commit_creds(new);
713
714error:
715 abort_creds(new);
716 return retval;
717}
718
719SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
720{
721 const struct cred *cred = current_cred();
722 int retval;
723 gid_t rgid, egid, sgid;
724
725 rgid = from_kgid_munged(cred->user_ns, cred->gid);
726 egid = from_kgid_munged(cred->user_ns, cred->egid);
727 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
728
729 retval = put_user(rgid, rgidp);
730 if (!retval) {
731 retval = put_user(egid, egidp);
732 if (!retval)
733 retval = put_user(sgid, sgidp);
734 }
735
736 return retval;
737}
738
739
740/*
741 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
742 * is used for "access()" and for the NFS daemon (letting nfsd stay at
743 * whatever uid it wants to). It normally shadows "euid", except when
744 * explicitly set by setfsuid() or for access..
745 */
746SYSCALL_DEFINE1(setfsuid, uid_t, uid)
747{
748 const struct cred *old;
749 struct cred *new;
750 uid_t old_fsuid;
751 kuid_t kuid;
752
753 old = current_cred();
754 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
755
756 kuid = make_kuid(old->user_ns, uid);
757 if (!uid_valid(kuid))
758 return old_fsuid;
759
760 new = prepare_creds();
761 if (!new)
762 return old_fsuid;
763
764 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
765 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
766 ns_capable(old->user_ns, CAP_SETUID)) {
767 if (!uid_eq(kuid, old->fsuid)) {
768 new->fsuid = kuid;
769 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
770 goto change_okay;
771 }
772 }
773
774 abort_creds(new);
775 return old_fsuid;
776
777change_okay:
778 commit_creds(new);
779 return old_fsuid;
780}
781
782/*
783 * Samma på svenska..
784 */
785SYSCALL_DEFINE1(setfsgid, gid_t, gid)
786{
787 const struct cred *old;
788 struct cred *new;
789 gid_t old_fsgid;
790 kgid_t kgid;
791
792 old = current_cred();
793 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
794
795 kgid = make_kgid(old->user_ns, gid);
796 if (!gid_valid(kgid))
797 return old_fsgid;
798
799 new = prepare_creds();
800 if (!new)
801 return old_fsgid;
802
803 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
804 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
805 ns_capable(old->user_ns, CAP_SETGID)) {
806 if (!gid_eq(kgid, old->fsgid)) {
807 new->fsgid = kgid;
808 goto change_okay;
809 }
810 }
811
812 abort_creds(new);
813 return old_fsgid;
814
815change_okay:
816 commit_creds(new);
817 return old_fsgid;
818}
819#endif /* CONFIG_MULTIUSER */
820
821/**
822 * sys_getpid - return the thread group id of the current process
823 *
824 * Note, despite the name, this returns the tgid not the pid. The tgid and
825 * the pid are identical unless CLONE_THREAD was specified on clone() in
826 * which case the tgid is the same in all threads of the same group.
827 *
828 * This is SMP safe as current->tgid does not change.
829 */
830SYSCALL_DEFINE0(getpid)
831{
832 return task_tgid_vnr(current);
833}
834
835/* Thread ID - the internal kernel "pid" */
836SYSCALL_DEFINE0(gettid)
837{
838 return task_pid_vnr(current);
839}
840
841/*
842 * Accessing ->real_parent is not SMP-safe, it could
843 * change from under us. However, we can use a stale
844 * value of ->real_parent under rcu_read_lock(), see
845 * release_task()->call_rcu(delayed_put_task_struct).
846 */
847SYSCALL_DEFINE0(getppid)
848{
849 int pid;
850
851 rcu_read_lock();
852 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
853 rcu_read_unlock();
854
855 return pid;
856}
857
858SYSCALL_DEFINE0(getuid)
859{
860 /* Only we change this so SMP safe */
861 return from_kuid_munged(current_user_ns(), current_uid());
862}
863
864SYSCALL_DEFINE0(geteuid)
865{
866 /* Only we change this so SMP safe */
867 return from_kuid_munged(current_user_ns(), current_euid());
868}
869
870SYSCALL_DEFINE0(getgid)
871{
872 /* Only we change this so SMP safe */
873 return from_kgid_munged(current_user_ns(), current_gid());
874}
875
876SYSCALL_DEFINE0(getegid)
877{
878 /* Only we change this so SMP safe */
879 return from_kgid_munged(current_user_ns(), current_egid());
880}
881
882void do_sys_times(struct tms *tms)
883{
884 cputime_t tgutime, tgstime, cutime, cstime;
885
886 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
887 cutime = current->signal->cutime;
888 cstime = current->signal->cstime;
889 tms->tms_utime = cputime_to_clock_t(tgutime);
890 tms->tms_stime = cputime_to_clock_t(tgstime);
891 tms->tms_cutime = cputime_to_clock_t(cutime);
892 tms->tms_cstime = cputime_to_clock_t(cstime);
893}
894
895SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
896{
897 if (tbuf) {
898 struct tms tmp;
899
900 do_sys_times(&tmp);
901 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
902 return -EFAULT;
903 }
904 force_successful_syscall_return();
905 return (long) jiffies_64_to_clock_t(get_jiffies_64());
906}
907
908/*
909 * This needs some heavy checking ...
910 * I just haven't the stomach for it. I also don't fully
911 * understand sessions/pgrp etc. Let somebody who does explain it.
912 *
913 * OK, I think I have the protection semantics right.... this is really
914 * only important on a multi-user system anyway, to make sure one user
915 * can't send a signal to a process owned by another. -TYT, 12/12/91
916 *
917 * !PF_FORKNOEXEC check to conform completely to POSIX.
918 */
919SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
920{
921 struct task_struct *p;
922 struct task_struct *group_leader = current->group_leader;
923 struct pid *pgrp;
924 int err;
925
926 if (!pid)
927 pid = task_pid_vnr(group_leader);
928 if (!pgid)
929 pgid = pid;
930 if (pgid < 0)
931 return -EINVAL;
932 rcu_read_lock();
933
934 /* From this point forward we keep holding onto the tasklist lock
935 * so that our parent does not change from under us. -DaveM
936 */
937 write_lock_irq(&tasklist_lock);
938
939 err = -ESRCH;
940 p = find_task_by_vpid(pid);
941 if (!p)
942 goto out;
943
944 err = -EINVAL;
945 if (!thread_group_leader(p))
946 goto out;
947
948 if (same_thread_group(p->real_parent, group_leader)) {
949 err = -EPERM;
950 if (task_session(p) != task_session(group_leader))
951 goto out;
952 err = -EACCES;
953 if (!(p->flags & PF_FORKNOEXEC))
954 goto out;
955 } else {
956 err = -ESRCH;
957 if (p != group_leader)
958 goto out;
959 }
960
961 err = -EPERM;
962 if (p->signal->leader)
963 goto out;
964
965 pgrp = task_pid(p);
966 if (pgid != pid) {
967 struct task_struct *g;
968
969 pgrp = find_vpid(pgid);
970 g = pid_task(pgrp, PIDTYPE_PGID);
971 if (!g || task_session(g) != task_session(group_leader))
972 goto out;
973 }
974
975 err = security_task_setpgid(p, pgid);
976 if (err)
977 goto out;
978
979 if (task_pgrp(p) != pgrp)
980 change_pid(p, PIDTYPE_PGID, pgrp);
981
982 err = 0;
983out:
984 /* All paths lead to here, thus we are safe. -DaveM */
985 write_unlock_irq(&tasklist_lock);
986 rcu_read_unlock();
987 return err;
988}
989
990SYSCALL_DEFINE1(getpgid, pid_t, pid)
991{
992 struct task_struct *p;
993 struct pid *grp;
994 int retval;
995
996 rcu_read_lock();
997 if (!pid)
998 grp = task_pgrp(current);
999 else {
1000 retval = -ESRCH;
1001 p = find_task_by_vpid(pid);
1002 if (!p)
1003 goto out;
1004 grp = task_pgrp(p);
1005 if (!grp)
1006 goto out;
1007
1008 retval = security_task_getpgid(p);
1009 if (retval)
1010 goto out;
1011 }
1012 retval = pid_vnr(grp);
1013out:
1014 rcu_read_unlock();
1015 return retval;
1016}
1017
1018#ifdef __ARCH_WANT_SYS_GETPGRP
1019
1020SYSCALL_DEFINE0(getpgrp)
1021{
1022 return sys_getpgid(0);
1023}
1024
1025#endif
1026
1027SYSCALL_DEFINE1(getsid, pid_t, pid)
1028{
1029 struct task_struct *p;
1030 struct pid *sid;
1031 int retval;
1032
1033 rcu_read_lock();
1034 if (!pid)
1035 sid = task_session(current);
1036 else {
1037 retval = -ESRCH;
1038 p = find_task_by_vpid(pid);
1039 if (!p)
1040 goto out;
1041 sid = task_session(p);
1042 if (!sid)
1043 goto out;
1044
1045 retval = security_task_getsid(p);
1046 if (retval)
1047 goto out;
1048 }
1049 retval = pid_vnr(sid);
1050out:
1051 rcu_read_unlock();
1052 return retval;
1053}
1054
1055static void set_special_pids(struct pid *pid)
1056{
1057 struct task_struct *curr = current->group_leader;
1058
1059 if (task_session(curr) != pid)
1060 change_pid(curr, PIDTYPE_SID, pid);
1061
1062 if (task_pgrp(curr) != pid)
1063 change_pid(curr, PIDTYPE_PGID, pid);
1064}
1065
1066SYSCALL_DEFINE0(setsid)
1067{
1068 struct task_struct *group_leader = current->group_leader;
1069 struct pid *sid = task_pid(group_leader);
1070 pid_t session = pid_vnr(sid);
1071 int err = -EPERM;
1072
1073 write_lock_irq(&tasklist_lock);
1074 /* Fail if I am already a session leader */
1075 if (group_leader->signal->leader)
1076 goto out;
1077
1078 /* Fail if a process group id already exists that equals the
1079 * proposed session id.
1080 */
1081 if (pid_task(sid, PIDTYPE_PGID))
1082 goto out;
1083
1084 group_leader->signal->leader = 1;
1085 set_special_pids(sid);
1086
1087 proc_clear_tty(group_leader);
1088
1089 err = session;
1090out:
1091 write_unlock_irq(&tasklist_lock);
1092 if (err > 0) {
1093 proc_sid_connector(group_leader);
1094 sched_autogroup_create_attach(group_leader);
1095 }
1096 return err;
1097}
1098
1099DECLARE_RWSEM(uts_sem);
1100
1101#ifdef COMPAT_UTS_MACHINE
1102#define override_architecture(name) \
1103 (personality(current->personality) == PER_LINUX32 && \
1104 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1105 sizeof(COMPAT_UTS_MACHINE)))
1106#else
1107#define override_architecture(name) 0
1108#endif
1109
1110/*
1111 * Work around broken programs that cannot handle "Linux 3.0".
1112 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1113 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1114 */
1115static int override_release(char __user *release, size_t len)
1116{
1117 int ret = 0;
1118
1119 if (current->personality & UNAME26) {
1120 const char *rest = UTS_RELEASE;
1121 char buf[65] = { 0 };
1122 int ndots = 0;
1123 unsigned v;
1124 size_t copy;
1125
1126 while (*rest) {
1127 if (*rest == '.' && ++ndots >= 3)
1128 break;
1129 if (!isdigit(*rest) && *rest != '.')
1130 break;
1131 rest++;
1132 }
1133 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1134 copy = clamp_t(size_t, len, 1, sizeof(buf));
1135 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1136 ret = copy_to_user(release, buf, copy + 1);
1137 }
1138 return ret;
1139}
1140
1141SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1142{
1143 int errno = 0;
1144
1145 down_read(&uts_sem);
1146 if (copy_to_user(name, utsname(), sizeof *name))
1147 errno = -EFAULT;
1148 up_read(&uts_sem);
1149
1150 if (!errno && override_release(name->release, sizeof(name->release)))
1151 errno = -EFAULT;
1152 if (!errno && override_architecture(name))
1153 errno = -EFAULT;
1154 return errno;
1155}
1156
1157#ifdef __ARCH_WANT_SYS_OLD_UNAME
1158/*
1159 * Old cruft
1160 */
1161SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1162{
1163 int error = 0;
1164
1165 if (!name)
1166 return -EFAULT;
1167
1168 down_read(&uts_sem);
1169 if (copy_to_user(name, utsname(), sizeof(*name)))
1170 error = -EFAULT;
1171 up_read(&uts_sem);
1172
1173 if (!error && override_release(name->release, sizeof(name->release)))
1174 error = -EFAULT;
1175 if (!error && override_architecture(name))
1176 error = -EFAULT;
1177 return error;
1178}
1179
1180SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1181{
1182 int error;
1183
1184 if (!name)
1185 return -EFAULT;
1186 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1187 return -EFAULT;
1188
1189 down_read(&uts_sem);
1190 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1191 __OLD_UTS_LEN);
1192 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1193 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1194 __OLD_UTS_LEN);
1195 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1196 error |= __copy_to_user(&name->release, &utsname()->release,
1197 __OLD_UTS_LEN);
1198 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1199 error |= __copy_to_user(&name->version, &utsname()->version,
1200 __OLD_UTS_LEN);
1201 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1202 error |= __copy_to_user(&name->machine, &utsname()->machine,
1203 __OLD_UTS_LEN);
1204 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1205 up_read(&uts_sem);
1206
1207 if (!error && override_architecture(name))
1208 error = -EFAULT;
1209 if (!error && override_release(name->release, sizeof(name->release)))
1210 error = -EFAULT;
1211 return error ? -EFAULT : 0;
1212}
1213#endif
1214
1215SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1216{
1217 int errno;
1218 char tmp[__NEW_UTS_LEN];
1219
1220 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1221 return -EPERM;
1222
1223 if (len < 0 || len > __NEW_UTS_LEN)
1224 return -EINVAL;
1225 down_write(&uts_sem);
1226 errno = -EFAULT;
1227 if (!copy_from_user(tmp, name, len)) {
1228 struct new_utsname *u = utsname();
1229
1230 memcpy(u->nodename, tmp, len);
1231 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1232 errno = 0;
1233 uts_proc_notify(UTS_PROC_HOSTNAME);
1234 }
1235 up_write(&uts_sem);
1236 return errno;
1237}
1238
1239#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1240
1241SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1242{
1243 int i, errno;
1244 struct new_utsname *u;
1245
1246 if (len < 0)
1247 return -EINVAL;
1248 down_read(&uts_sem);
1249 u = utsname();
1250 i = 1 + strlen(u->nodename);
1251 if (i > len)
1252 i = len;
1253 errno = 0;
1254 if (copy_to_user(name, u->nodename, i))
1255 errno = -EFAULT;
1256 up_read(&uts_sem);
1257 return errno;
1258}
1259
1260#endif
1261
1262/*
1263 * Only setdomainname; getdomainname can be implemented by calling
1264 * uname()
1265 */
1266SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1267{
1268 int errno;
1269 char tmp[__NEW_UTS_LEN];
1270
1271 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1272 return -EPERM;
1273 if (len < 0 || len > __NEW_UTS_LEN)
1274 return -EINVAL;
1275
1276 down_write(&uts_sem);
1277 errno = -EFAULT;
1278 if (!copy_from_user(tmp, name, len)) {
1279 struct new_utsname *u = utsname();
1280
1281 memcpy(u->domainname, tmp, len);
1282 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1283 errno = 0;
1284 uts_proc_notify(UTS_PROC_DOMAINNAME);
1285 }
1286 up_write(&uts_sem);
1287 return errno;
1288}
1289
1290SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1291{
1292 struct rlimit value;
1293 int ret;
1294
1295 ret = do_prlimit(current, resource, NULL, &value);
1296 if (!ret)
1297 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1298
1299 return ret;
1300}
1301
1302#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1303
1304/*
1305 * Back compatibility for getrlimit. Needed for some apps.
1306 */
1307SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1308 struct rlimit __user *, rlim)
1309{
1310 struct rlimit x;
1311 if (resource >= RLIM_NLIMITS)
1312 return -EINVAL;
1313
1314 task_lock(current->group_leader);
1315 x = current->signal->rlim[resource];
1316 task_unlock(current->group_leader);
1317 if (x.rlim_cur > 0x7FFFFFFF)
1318 x.rlim_cur = 0x7FFFFFFF;
1319 if (x.rlim_max > 0x7FFFFFFF)
1320 x.rlim_max = 0x7FFFFFFF;
1321 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1322}
1323
1324#endif
1325
1326static inline bool rlim64_is_infinity(__u64 rlim64)
1327{
1328#if BITS_PER_LONG < 64
1329 return rlim64 >= ULONG_MAX;
1330#else
1331 return rlim64 == RLIM64_INFINITY;
1332#endif
1333}
1334
1335static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1336{
1337 if (rlim->rlim_cur == RLIM_INFINITY)
1338 rlim64->rlim_cur = RLIM64_INFINITY;
1339 else
1340 rlim64->rlim_cur = rlim->rlim_cur;
1341 if (rlim->rlim_max == RLIM_INFINITY)
1342 rlim64->rlim_max = RLIM64_INFINITY;
1343 else
1344 rlim64->rlim_max = rlim->rlim_max;
1345}
1346
1347static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1348{
1349 if (rlim64_is_infinity(rlim64->rlim_cur))
1350 rlim->rlim_cur = RLIM_INFINITY;
1351 else
1352 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1353 if (rlim64_is_infinity(rlim64->rlim_max))
1354 rlim->rlim_max = RLIM_INFINITY;
1355 else
1356 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1357}
1358
1359/* make sure you are allowed to change @tsk limits before calling this */
1360int do_prlimit(struct task_struct *tsk, unsigned int resource,
1361 struct rlimit *new_rlim, struct rlimit *old_rlim)
1362{
1363 struct rlimit *rlim;
1364 int retval = 0;
1365
1366 if (resource >= RLIM_NLIMITS)
1367 return -EINVAL;
1368 if (new_rlim) {
1369 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1370 return -EINVAL;
1371 if (resource == RLIMIT_NOFILE &&
1372 new_rlim->rlim_max > sysctl_nr_open)
1373 return -EPERM;
1374 }
1375
1376 /* protect tsk->signal and tsk->sighand from disappearing */
1377 read_lock(&tasklist_lock);
1378 if (!tsk->sighand) {
1379 retval = -ESRCH;
1380 goto out;
1381 }
1382
1383 rlim = tsk->signal->rlim + resource;
1384 task_lock(tsk->group_leader);
1385 if (new_rlim) {
1386 /* Keep the capable check against init_user_ns until
1387 cgroups can contain all limits */
1388 if (new_rlim->rlim_max > rlim->rlim_max &&
1389 !capable(CAP_SYS_RESOURCE))
1390 retval = -EPERM;
1391 if (!retval)
1392 retval = security_task_setrlimit(tsk->group_leader,
1393 resource, new_rlim);
1394 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1395 /*
1396 * The caller is asking for an immediate RLIMIT_CPU
1397 * expiry. But we use the zero value to mean "it was
1398 * never set". So let's cheat and make it one second
1399 * instead
1400 */
1401 new_rlim->rlim_cur = 1;
1402 }
1403 }
1404 if (!retval) {
1405 if (old_rlim)
1406 *old_rlim = *rlim;
1407 if (new_rlim)
1408 *rlim = *new_rlim;
1409 }
1410 task_unlock(tsk->group_leader);
1411
1412 /*
1413 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1414 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1415 * very long-standing error, and fixing it now risks breakage of
1416 * applications, so we live with it
1417 */
1418 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1419 new_rlim->rlim_cur != RLIM_INFINITY)
1420 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1421out:
1422 read_unlock(&tasklist_lock);
1423 return retval;
1424}
1425
1426/* rcu lock must be held */
1427static int check_prlimit_permission(struct task_struct *task)
1428{
1429 const struct cred *cred = current_cred(), *tcred;
1430
1431 if (current == task)
1432 return 0;
1433
1434 tcred = __task_cred(task);
1435 if (uid_eq(cred->uid, tcred->euid) &&
1436 uid_eq(cred->uid, tcred->suid) &&
1437 uid_eq(cred->uid, tcred->uid) &&
1438 gid_eq(cred->gid, tcred->egid) &&
1439 gid_eq(cred->gid, tcred->sgid) &&
1440 gid_eq(cred->gid, tcred->gid))
1441 return 0;
1442 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1443 return 0;
1444
1445 return -EPERM;
1446}
1447
1448SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1449 const struct rlimit64 __user *, new_rlim,
1450 struct rlimit64 __user *, old_rlim)
1451{
1452 struct rlimit64 old64, new64;
1453 struct rlimit old, new;
1454 struct task_struct *tsk;
1455 int ret;
1456
1457 if (new_rlim) {
1458 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1459 return -EFAULT;
1460 rlim64_to_rlim(&new64, &new);
1461 }
1462
1463 rcu_read_lock();
1464 tsk = pid ? find_task_by_vpid(pid) : current;
1465 if (!tsk) {
1466 rcu_read_unlock();
1467 return -ESRCH;
1468 }
1469 ret = check_prlimit_permission(tsk);
1470 if (ret) {
1471 rcu_read_unlock();
1472 return ret;
1473 }
1474 get_task_struct(tsk);
1475 rcu_read_unlock();
1476
1477 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1478 old_rlim ? &old : NULL);
1479
1480 if (!ret && old_rlim) {
1481 rlim_to_rlim64(&old, &old64);
1482 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1483 ret = -EFAULT;
1484 }
1485
1486 put_task_struct(tsk);
1487 return ret;
1488}
1489
1490SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1491{
1492 struct rlimit new_rlim;
1493
1494 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1495 return -EFAULT;
1496 return do_prlimit(current, resource, &new_rlim, NULL);
1497}
1498
1499/*
1500 * It would make sense to put struct rusage in the task_struct,
1501 * except that would make the task_struct be *really big*. After
1502 * task_struct gets moved into malloc'ed memory, it would
1503 * make sense to do this. It will make moving the rest of the information
1504 * a lot simpler! (Which we're not doing right now because we're not
1505 * measuring them yet).
1506 *
1507 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1508 * races with threads incrementing their own counters. But since word
1509 * reads are atomic, we either get new values or old values and we don't
1510 * care which for the sums. We always take the siglock to protect reading
1511 * the c* fields from p->signal from races with exit.c updating those
1512 * fields when reaping, so a sample either gets all the additions of a
1513 * given child after it's reaped, or none so this sample is before reaping.
1514 *
1515 * Locking:
1516 * We need to take the siglock for CHILDEREN, SELF and BOTH
1517 * for the cases current multithreaded, non-current single threaded
1518 * non-current multithreaded. Thread traversal is now safe with
1519 * the siglock held.
1520 * Strictly speaking, we donot need to take the siglock if we are current and
1521 * single threaded, as no one else can take our signal_struct away, no one
1522 * else can reap the children to update signal->c* counters, and no one else
1523 * can race with the signal-> fields. If we do not take any lock, the
1524 * signal-> fields could be read out of order while another thread was just
1525 * exiting. So we should place a read memory barrier when we avoid the lock.
1526 * On the writer side, write memory barrier is implied in __exit_signal
1527 * as __exit_signal releases the siglock spinlock after updating the signal->
1528 * fields. But we don't do this yet to keep things simple.
1529 *
1530 */
1531
1532static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1533{
1534 r->ru_nvcsw += t->nvcsw;
1535 r->ru_nivcsw += t->nivcsw;
1536 r->ru_minflt += t->min_flt;
1537 r->ru_majflt += t->maj_flt;
1538 r->ru_inblock += task_io_get_inblock(t);
1539 r->ru_oublock += task_io_get_oublock(t);
1540}
1541
1542static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1543{
1544 struct task_struct *t;
1545 unsigned long flags;
1546 cputime_t tgutime, tgstime, utime, stime;
1547 unsigned long maxrss = 0;
1548
1549 memset((char *)r, 0, sizeof (*r));
1550 utime = stime = 0;
1551
1552 if (who == RUSAGE_THREAD) {
1553 task_cputime_adjusted(current, &utime, &stime);
1554 accumulate_thread_rusage(p, r);
1555 maxrss = p->signal->maxrss;
1556 goto out;
1557 }
1558
1559 if (!lock_task_sighand(p, &flags))
1560 return;
1561
1562 switch (who) {
1563 case RUSAGE_BOTH:
1564 case RUSAGE_CHILDREN:
1565 utime = p->signal->cutime;
1566 stime = p->signal->cstime;
1567 r->ru_nvcsw = p->signal->cnvcsw;
1568 r->ru_nivcsw = p->signal->cnivcsw;
1569 r->ru_minflt = p->signal->cmin_flt;
1570 r->ru_majflt = p->signal->cmaj_flt;
1571 r->ru_inblock = p->signal->cinblock;
1572 r->ru_oublock = p->signal->coublock;
1573 maxrss = p->signal->cmaxrss;
1574
1575 if (who == RUSAGE_CHILDREN)
1576 break;
1577
1578 case RUSAGE_SELF:
1579 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1580 utime += tgutime;
1581 stime += tgstime;
1582 r->ru_nvcsw += p->signal->nvcsw;
1583 r->ru_nivcsw += p->signal->nivcsw;
1584 r->ru_minflt += p->signal->min_flt;
1585 r->ru_majflt += p->signal->maj_flt;
1586 r->ru_inblock += p->signal->inblock;
1587 r->ru_oublock += p->signal->oublock;
1588 if (maxrss < p->signal->maxrss)
1589 maxrss = p->signal->maxrss;
1590 t = p;
1591 do {
1592 accumulate_thread_rusage(t, r);
1593 } while_each_thread(p, t);
1594 break;
1595
1596 default:
1597 BUG();
1598 }
1599 unlock_task_sighand(p, &flags);
1600
1601out:
1602 cputime_to_timeval(utime, &r->ru_utime);
1603 cputime_to_timeval(stime, &r->ru_stime);
1604
1605 if (who != RUSAGE_CHILDREN) {
1606 struct mm_struct *mm = get_task_mm(p);
1607
1608 if (mm) {
1609 setmax_mm_hiwater_rss(&maxrss, mm);
1610 mmput(mm);
1611 }
1612 }
1613 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1614}
1615
1616int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1617{
1618 struct rusage r;
1619
1620 k_getrusage(p, who, &r);
1621 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1622}
1623
1624SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1625{
1626 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1627 who != RUSAGE_THREAD)
1628 return -EINVAL;
1629 return getrusage(current, who, ru);
1630}
1631
1632#ifdef CONFIG_COMPAT
1633COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1634{
1635 struct rusage r;
1636
1637 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1638 who != RUSAGE_THREAD)
1639 return -EINVAL;
1640
1641 k_getrusage(current, who, &r);
1642 return put_compat_rusage(&r, ru);
1643}
1644#endif
1645
1646SYSCALL_DEFINE1(umask, int, mask)
1647{
1648 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1649 return mask;
1650}
1651
1652static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1653{
1654 struct fd exe;
1655 struct file *old_exe, *exe_file;
1656 struct inode *inode;
1657 int err;
1658
1659 exe = fdget(fd);
1660 if (!exe.file)
1661 return -EBADF;
1662
1663 inode = file_inode(exe.file);
1664
1665 /*
1666 * Because the original mm->exe_file points to executable file, make
1667 * sure that this one is executable as well, to avoid breaking an
1668 * overall picture.
1669 */
1670 err = -EACCES;
1671 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1672 goto exit;
1673
1674 err = inode_permission(inode, MAY_EXEC);
1675 if (err)
1676 goto exit;
1677
1678 /*
1679 * Forbid mm->exe_file change if old file still mapped.
1680 */
1681 exe_file = get_mm_exe_file(mm);
1682 err = -EBUSY;
1683 if (exe_file) {
1684 struct vm_area_struct *vma;
1685
1686 down_read(&mm->mmap_sem);
1687 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1688 if (!vma->vm_file)
1689 continue;
1690 if (path_equal(&vma->vm_file->f_path,
1691 &exe_file->f_path))
1692 goto exit_err;
1693 }
1694
1695 up_read(&mm->mmap_sem);
1696 fput(exe_file);
1697 }
1698
1699 /*
1700 * The symlink can be changed only once, just to disallow arbitrary
1701 * transitions malicious software might bring in. This means one
1702 * could make a snapshot over all processes running and monitor
1703 * /proc/pid/exe changes to notice unusual activity if needed.
1704 */
1705 err = -EPERM;
1706 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1707 goto exit;
1708
1709 err = 0;
1710 /* set the new file, lockless */
1711 get_file(exe.file);
1712 old_exe = xchg(&mm->exe_file, exe.file);
1713 if (old_exe)
1714 fput(old_exe);
1715exit:
1716 fdput(exe);
1717 return err;
1718exit_err:
1719 up_read(&mm->mmap_sem);
1720 fput(exe_file);
1721 goto exit;
1722}
1723
1724/*
1725 * WARNING: we don't require any capability here so be very careful
1726 * in what is allowed for modification from userspace.
1727 */
1728static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1729{
1730 unsigned long mmap_max_addr = TASK_SIZE;
1731 struct mm_struct *mm = current->mm;
1732 int error = -EINVAL, i;
1733
1734 static const unsigned char offsets[] = {
1735 offsetof(struct prctl_mm_map, start_code),
1736 offsetof(struct prctl_mm_map, end_code),
1737 offsetof(struct prctl_mm_map, start_data),
1738 offsetof(struct prctl_mm_map, end_data),
1739 offsetof(struct prctl_mm_map, start_brk),
1740 offsetof(struct prctl_mm_map, brk),
1741 offsetof(struct prctl_mm_map, start_stack),
1742 offsetof(struct prctl_mm_map, arg_start),
1743 offsetof(struct prctl_mm_map, arg_end),
1744 offsetof(struct prctl_mm_map, env_start),
1745 offsetof(struct prctl_mm_map, env_end),
1746 };
1747
1748 /*
1749 * Make sure the members are not somewhere outside
1750 * of allowed address space.
1751 */
1752 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1753 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1754
1755 if ((unsigned long)val >= mmap_max_addr ||
1756 (unsigned long)val < mmap_min_addr)
1757 goto out;
1758 }
1759
1760 /*
1761 * Make sure the pairs are ordered.
1762 */
1763#define __prctl_check_order(__m1, __op, __m2) \
1764 ((unsigned long)prctl_map->__m1 __op \
1765 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1766 error = __prctl_check_order(start_code, <, end_code);
1767 error |= __prctl_check_order(start_data, <, end_data);
1768 error |= __prctl_check_order(start_brk, <=, brk);
1769 error |= __prctl_check_order(arg_start, <=, arg_end);
1770 error |= __prctl_check_order(env_start, <=, env_end);
1771 if (error)
1772 goto out;
1773#undef __prctl_check_order
1774
1775 error = -EINVAL;
1776
1777 /*
1778 * @brk should be after @end_data in traditional maps.
1779 */
1780 if (prctl_map->start_brk <= prctl_map->end_data ||
1781 prctl_map->brk <= prctl_map->end_data)
1782 goto out;
1783
1784 /*
1785 * Neither we should allow to override limits if they set.
1786 */
1787 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1788 prctl_map->start_brk, prctl_map->end_data,
1789 prctl_map->start_data))
1790 goto out;
1791
1792 /*
1793 * Someone is trying to cheat the auxv vector.
1794 */
1795 if (prctl_map->auxv_size) {
1796 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1797 goto out;
1798 }
1799
1800 /*
1801 * Finally, make sure the caller has the rights to
1802 * change /proc/pid/exe link: only local root should
1803 * be allowed to.
1804 */
1805 if (prctl_map->exe_fd != (u32)-1) {
1806 struct user_namespace *ns = current_user_ns();
1807 const struct cred *cred = current_cred();
1808
1809 if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1810 !gid_eq(cred->gid, make_kgid(ns, 0)))
1811 goto out;
1812 }
1813
1814 error = 0;
1815out:
1816 return error;
1817}
1818
1819#ifdef CONFIG_CHECKPOINT_RESTORE
1820static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1821{
1822 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1823 unsigned long user_auxv[AT_VECTOR_SIZE];
1824 struct mm_struct *mm = current->mm;
1825 int error;
1826
1827 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1828 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1829
1830 if (opt == PR_SET_MM_MAP_SIZE)
1831 return put_user((unsigned int)sizeof(prctl_map),
1832 (unsigned int __user *)addr);
1833
1834 if (data_size != sizeof(prctl_map))
1835 return -EINVAL;
1836
1837 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1838 return -EFAULT;
1839
1840 error = validate_prctl_map(&prctl_map);
1841 if (error)
1842 return error;
1843
1844 if (prctl_map.auxv_size) {
1845 memset(user_auxv, 0, sizeof(user_auxv));
1846 if (copy_from_user(user_auxv,
1847 (const void __user *)prctl_map.auxv,
1848 prctl_map.auxv_size))
1849 return -EFAULT;
1850
1851 /* Last entry must be AT_NULL as specification requires */
1852 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1853 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1854 }
1855
1856 if (prctl_map.exe_fd != (u32)-1) {
1857 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1858 if (error)
1859 return error;
1860 }
1861
1862 down_write(&mm->mmap_sem);
1863
1864 /*
1865 * We don't validate if these members are pointing to
1866 * real present VMAs because application may have correspond
1867 * VMAs already unmapped and kernel uses these members for statistics
1868 * output in procfs mostly, except
1869 *
1870 * - @start_brk/@brk which are used in do_brk but kernel lookups
1871 * for VMAs when updating these memvers so anything wrong written
1872 * here cause kernel to swear at userspace program but won't lead
1873 * to any problem in kernel itself
1874 */
1875
1876 mm->start_code = prctl_map.start_code;
1877 mm->end_code = prctl_map.end_code;
1878 mm->start_data = prctl_map.start_data;
1879 mm->end_data = prctl_map.end_data;
1880 mm->start_brk = prctl_map.start_brk;
1881 mm->brk = prctl_map.brk;
1882 mm->start_stack = prctl_map.start_stack;
1883 mm->arg_start = prctl_map.arg_start;
1884 mm->arg_end = prctl_map.arg_end;
1885 mm->env_start = prctl_map.env_start;
1886 mm->env_end = prctl_map.env_end;
1887
1888 /*
1889 * Note this update of @saved_auxv is lockless thus
1890 * if someone reads this member in procfs while we're
1891 * updating -- it may get partly updated results. It's
1892 * known and acceptable trade off: we leave it as is to
1893 * not introduce additional locks here making the kernel
1894 * more complex.
1895 */
1896 if (prctl_map.auxv_size)
1897 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1898
1899 up_write(&mm->mmap_sem);
1900 return 0;
1901}
1902#endif /* CONFIG_CHECKPOINT_RESTORE */
1903
1904static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
1905 unsigned long len)
1906{
1907 /*
1908 * This doesn't move the auxiliary vector itself since it's pinned to
1909 * mm_struct, but it permits filling the vector with new values. It's
1910 * up to the caller to provide sane values here, otherwise userspace
1911 * tools which use this vector might be unhappy.
1912 */
1913 unsigned long user_auxv[AT_VECTOR_SIZE];
1914
1915 if (len > sizeof(user_auxv))
1916 return -EINVAL;
1917
1918 if (copy_from_user(user_auxv, (const void __user *)addr, len))
1919 return -EFAULT;
1920
1921 /* Make sure the last entry is always AT_NULL */
1922 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1923 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1924
1925 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1926
1927 task_lock(current);
1928 memcpy(mm->saved_auxv, user_auxv, len);
1929 task_unlock(current);
1930
1931 return 0;
1932}
1933
1934static int prctl_set_mm(int opt, unsigned long addr,
1935 unsigned long arg4, unsigned long arg5)
1936{
1937 struct mm_struct *mm = current->mm;
1938 struct prctl_mm_map prctl_map;
1939 struct vm_area_struct *vma;
1940 int error;
1941
1942 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1943 opt != PR_SET_MM_MAP &&
1944 opt != PR_SET_MM_MAP_SIZE)))
1945 return -EINVAL;
1946
1947#ifdef CONFIG_CHECKPOINT_RESTORE
1948 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1949 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1950#endif
1951
1952 if (!capable(CAP_SYS_RESOURCE))
1953 return -EPERM;
1954
1955 if (opt == PR_SET_MM_EXE_FILE)
1956 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1957
1958 if (opt == PR_SET_MM_AUXV)
1959 return prctl_set_auxv(mm, addr, arg4);
1960
1961 if (addr >= TASK_SIZE || addr < mmap_min_addr)
1962 return -EINVAL;
1963
1964 error = -EINVAL;
1965
1966 down_write(&mm->mmap_sem);
1967 vma = find_vma(mm, addr);
1968
1969 prctl_map.start_code = mm->start_code;
1970 prctl_map.end_code = mm->end_code;
1971 prctl_map.start_data = mm->start_data;
1972 prctl_map.end_data = mm->end_data;
1973 prctl_map.start_brk = mm->start_brk;
1974 prctl_map.brk = mm->brk;
1975 prctl_map.start_stack = mm->start_stack;
1976 prctl_map.arg_start = mm->arg_start;
1977 prctl_map.arg_end = mm->arg_end;
1978 prctl_map.env_start = mm->env_start;
1979 prctl_map.env_end = mm->env_end;
1980 prctl_map.auxv = NULL;
1981 prctl_map.auxv_size = 0;
1982 prctl_map.exe_fd = -1;
1983
1984 switch (opt) {
1985 case PR_SET_MM_START_CODE:
1986 prctl_map.start_code = addr;
1987 break;
1988 case PR_SET_MM_END_CODE:
1989 prctl_map.end_code = addr;
1990 break;
1991 case PR_SET_MM_START_DATA:
1992 prctl_map.start_data = addr;
1993 break;
1994 case PR_SET_MM_END_DATA:
1995 prctl_map.end_data = addr;
1996 break;
1997 case PR_SET_MM_START_STACK:
1998 prctl_map.start_stack = addr;
1999 break;
2000 case PR_SET_MM_START_BRK:
2001 prctl_map.start_brk = addr;
2002 break;
2003 case PR_SET_MM_BRK:
2004 prctl_map.brk = addr;
2005 break;
2006 case PR_SET_MM_ARG_START:
2007 prctl_map.arg_start = addr;
2008 break;
2009 case PR_SET_MM_ARG_END:
2010 prctl_map.arg_end = addr;
2011 break;
2012 case PR_SET_MM_ENV_START:
2013 prctl_map.env_start = addr;
2014 break;
2015 case PR_SET_MM_ENV_END:
2016 prctl_map.env_end = addr;
2017 break;
2018 default:
2019 goto out;
2020 }
2021
2022 error = validate_prctl_map(&prctl_map);
2023 if (error)
2024 goto out;
2025
2026 switch (opt) {
2027 /*
2028 * If command line arguments and environment
2029 * are placed somewhere else on stack, we can
2030 * set them up here, ARG_START/END to setup
2031 * command line argumets and ENV_START/END
2032 * for environment.
2033 */
2034 case PR_SET_MM_START_STACK:
2035 case PR_SET_MM_ARG_START:
2036 case PR_SET_MM_ARG_END:
2037 case PR_SET_MM_ENV_START:
2038 case PR_SET_MM_ENV_END:
2039 if (!vma) {
2040 error = -EFAULT;
2041 goto out;
2042 }
2043 }
2044
2045 mm->start_code = prctl_map.start_code;
2046 mm->end_code = prctl_map.end_code;
2047 mm->start_data = prctl_map.start_data;
2048 mm->end_data = prctl_map.end_data;
2049 mm->start_brk = prctl_map.start_brk;
2050 mm->brk = prctl_map.brk;
2051 mm->start_stack = prctl_map.start_stack;
2052 mm->arg_start = prctl_map.arg_start;
2053 mm->arg_end = prctl_map.arg_end;
2054 mm->env_start = prctl_map.env_start;
2055 mm->env_end = prctl_map.env_end;
2056
2057 error = 0;
2058out:
2059 up_write(&mm->mmap_sem);
2060 return error;
2061}
2062
2063#ifdef CONFIG_CHECKPOINT_RESTORE
2064static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2065{
2066 return put_user(me->clear_child_tid, tid_addr);
2067}
2068#else
2069static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2070{
2071 return -EINVAL;
2072}
2073#endif
2074
2075SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2076 unsigned long, arg4, unsigned long, arg5)
2077{
2078 struct task_struct *me = current;
2079 unsigned char comm[sizeof(me->comm)];
2080 long error;
2081
2082 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2083 if (error != -ENOSYS)
2084 return error;
2085
2086 error = 0;
2087 switch (option) {
2088 case PR_SET_PDEATHSIG:
2089 if (!valid_signal(arg2)) {
2090 error = -EINVAL;
2091 break;
2092 }
2093 me->pdeath_signal = arg2;
2094 break;
2095 case PR_GET_PDEATHSIG:
2096 error = put_user(me->pdeath_signal, (int __user *)arg2);
2097 break;
2098 case PR_GET_DUMPABLE:
2099 error = get_dumpable(me->mm);
2100 break;
2101 case PR_SET_DUMPABLE:
2102 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2103 error = -EINVAL;
2104 break;
2105 }
2106 set_dumpable(me->mm, arg2);
2107 break;
2108
2109 case PR_SET_UNALIGN:
2110 error = SET_UNALIGN_CTL(me, arg2);
2111 break;
2112 case PR_GET_UNALIGN:
2113 error = GET_UNALIGN_CTL(me, arg2);
2114 break;
2115 case PR_SET_FPEMU:
2116 error = SET_FPEMU_CTL(me, arg2);
2117 break;
2118 case PR_GET_FPEMU:
2119 error = GET_FPEMU_CTL(me, arg2);
2120 break;
2121 case PR_SET_FPEXC:
2122 error = SET_FPEXC_CTL(me, arg2);
2123 break;
2124 case PR_GET_FPEXC:
2125 error = GET_FPEXC_CTL(me, arg2);
2126 break;
2127 case PR_GET_TIMING:
2128 error = PR_TIMING_STATISTICAL;
2129 break;
2130 case PR_SET_TIMING:
2131 if (arg2 != PR_TIMING_STATISTICAL)
2132 error = -EINVAL;
2133 break;
2134 case PR_SET_NAME:
2135 comm[sizeof(me->comm) - 1] = 0;
2136 if (strncpy_from_user(comm, (char __user *)arg2,
2137 sizeof(me->comm) - 1) < 0)
2138 return -EFAULT;
2139 set_task_comm(me, comm);
2140 proc_comm_connector(me);
2141 break;
2142 case PR_GET_NAME:
2143 get_task_comm(comm, me);
2144 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2145 return -EFAULT;
2146 break;
2147 case PR_GET_ENDIAN:
2148 error = GET_ENDIAN(me, arg2);
2149 break;
2150 case PR_SET_ENDIAN:
2151 error = SET_ENDIAN(me, arg2);
2152 break;
2153 case PR_GET_SECCOMP:
2154 error = prctl_get_seccomp();
2155 break;
2156 case PR_SET_SECCOMP:
2157 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2158 break;
2159 case PR_GET_TSC:
2160 error = GET_TSC_CTL(arg2);
2161 break;
2162 case PR_SET_TSC:
2163 error = SET_TSC_CTL(arg2);
2164 break;
2165 case PR_TASK_PERF_EVENTS_DISABLE:
2166 error = perf_event_task_disable();
2167 break;
2168 case PR_TASK_PERF_EVENTS_ENABLE:
2169 error = perf_event_task_enable();
2170 break;
2171 case PR_GET_TIMERSLACK:
2172 if (current->timer_slack_ns > ULONG_MAX)
2173 error = ULONG_MAX;
2174 else
2175 error = current->timer_slack_ns;
2176 break;
2177 case PR_SET_TIMERSLACK:
2178 if (arg2 <= 0)
2179 current->timer_slack_ns =
2180 current->default_timer_slack_ns;
2181 else
2182 current->timer_slack_ns = arg2;
2183 break;
2184 case PR_MCE_KILL:
2185 if (arg4 | arg5)
2186 return -EINVAL;
2187 switch (arg2) {
2188 case PR_MCE_KILL_CLEAR:
2189 if (arg3 != 0)
2190 return -EINVAL;
2191 current->flags &= ~PF_MCE_PROCESS;
2192 break;
2193 case PR_MCE_KILL_SET:
2194 current->flags |= PF_MCE_PROCESS;
2195 if (arg3 == PR_MCE_KILL_EARLY)
2196 current->flags |= PF_MCE_EARLY;
2197 else if (arg3 == PR_MCE_KILL_LATE)
2198 current->flags &= ~PF_MCE_EARLY;
2199 else if (arg3 == PR_MCE_KILL_DEFAULT)
2200 current->flags &=
2201 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2202 else
2203 return -EINVAL;
2204 break;
2205 default:
2206 return -EINVAL;
2207 }
2208 break;
2209 case PR_MCE_KILL_GET:
2210 if (arg2 | arg3 | arg4 | arg5)
2211 return -EINVAL;
2212 if (current->flags & PF_MCE_PROCESS)
2213 error = (current->flags & PF_MCE_EARLY) ?
2214 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2215 else
2216 error = PR_MCE_KILL_DEFAULT;
2217 break;
2218 case PR_SET_MM:
2219 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2220 break;
2221 case PR_GET_TID_ADDRESS:
2222 error = prctl_get_tid_address(me, (int __user **)arg2);
2223 break;
2224 case PR_SET_CHILD_SUBREAPER:
2225 me->signal->is_child_subreaper = !!arg2;
2226 break;
2227 case PR_GET_CHILD_SUBREAPER:
2228 error = put_user(me->signal->is_child_subreaper,
2229 (int __user *)arg2);
2230 break;
2231 case PR_SET_NO_NEW_PRIVS:
2232 if (arg2 != 1 || arg3 || arg4 || arg5)
2233 return -EINVAL;
2234
2235 task_set_no_new_privs(current);
2236 break;
2237 case PR_GET_NO_NEW_PRIVS:
2238 if (arg2 || arg3 || arg4 || arg5)
2239 return -EINVAL;
2240 return task_no_new_privs(current) ? 1 : 0;
2241 case PR_GET_THP_DISABLE:
2242 if (arg2 || arg3 || arg4 || arg5)
2243 return -EINVAL;
2244 error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2245 break;
2246 case PR_SET_THP_DISABLE:
2247 if (arg3 || arg4 || arg5)
2248 return -EINVAL;
2249 down_write(&me->mm->mmap_sem);
2250 if (arg2)
2251 me->mm->def_flags |= VM_NOHUGEPAGE;
2252 else
2253 me->mm->def_flags &= ~VM_NOHUGEPAGE;
2254 up_write(&me->mm->mmap_sem);
2255 break;
2256 case PR_MPX_ENABLE_MANAGEMENT:
2257 if (arg2 || arg3 || arg4 || arg5)
2258 return -EINVAL;
2259 error = MPX_ENABLE_MANAGEMENT();
2260 break;
2261 case PR_MPX_DISABLE_MANAGEMENT:
2262 if (arg2 || arg3 || arg4 || arg5)
2263 return -EINVAL;
2264 error = MPX_DISABLE_MANAGEMENT();
2265 break;
2266 case PR_SET_FP_MODE:
2267 error = SET_FP_MODE(me, arg2);
2268 break;
2269 case PR_GET_FP_MODE:
2270 error = GET_FP_MODE(me);
2271 break;
2272 default:
2273 error = -EINVAL;
2274 break;
2275 }
2276 return error;
2277}
2278
2279SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2280 struct getcpu_cache __user *, unused)
2281{
2282 int err = 0;
2283 int cpu = raw_smp_processor_id();
2284
2285 if (cpup)
2286 err |= put_user(cpu, cpup);
2287 if (nodep)
2288 err |= put_user(cpu_to_node(cpu), nodep);
2289 return err ? -EFAULT : 0;
2290}
2291
2292/**
2293 * do_sysinfo - fill in sysinfo struct
2294 * @info: pointer to buffer to fill
2295 */
2296static int do_sysinfo(struct sysinfo *info)
2297{
2298 unsigned long mem_total, sav_total;
2299 unsigned int mem_unit, bitcount;
2300 struct timespec tp;
2301
2302 memset(info, 0, sizeof(struct sysinfo));
2303
2304 get_monotonic_boottime(&tp);
2305 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2306
2307 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2308
2309 info->procs = nr_threads;
2310
2311 si_meminfo(info);
2312 si_swapinfo(info);
2313
2314 /*
2315 * If the sum of all the available memory (i.e. ram + swap)
2316 * is less than can be stored in a 32 bit unsigned long then
2317 * we can be binary compatible with 2.2.x kernels. If not,
2318 * well, in that case 2.2.x was broken anyways...
2319 *
2320 * -Erik Andersen <andersee@debian.org>
2321 */
2322
2323 mem_total = info->totalram + info->totalswap;
2324 if (mem_total < info->totalram || mem_total < info->totalswap)
2325 goto out;
2326 bitcount = 0;
2327 mem_unit = info->mem_unit;
2328 while (mem_unit > 1) {
2329 bitcount++;
2330 mem_unit >>= 1;
2331 sav_total = mem_total;
2332 mem_total <<= 1;
2333 if (mem_total < sav_total)
2334 goto out;
2335 }
2336
2337 /*
2338 * If mem_total did not overflow, multiply all memory values by
2339 * info->mem_unit and set it to 1. This leaves things compatible
2340 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2341 * kernels...
2342 */
2343
2344 info->mem_unit = 1;
2345 info->totalram <<= bitcount;
2346 info->freeram <<= bitcount;
2347 info->sharedram <<= bitcount;
2348 info->bufferram <<= bitcount;
2349 info->totalswap <<= bitcount;
2350 info->freeswap <<= bitcount;
2351 info->totalhigh <<= bitcount;
2352 info->freehigh <<= bitcount;
2353
2354out:
2355 return 0;
2356}
2357
2358SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2359{
2360 struct sysinfo val;
2361
2362 do_sysinfo(&val);
2363
2364 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2365 return -EFAULT;
2366
2367 return 0;
2368}
2369
2370#ifdef CONFIG_COMPAT
2371struct compat_sysinfo {
2372 s32 uptime;
2373 u32 loads[3];
2374 u32 totalram;
2375 u32 freeram;
2376 u32 sharedram;
2377 u32 bufferram;
2378 u32 totalswap;
2379 u32 freeswap;
2380 u16 procs;
2381 u16 pad;
2382 u32 totalhigh;
2383 u32 freehigh;
2384 u32 mem_unit;
2385 char _f[20-2*sizeof(u32)-sizeof(int)];
2386};
2387
2388COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2389{
2390 struct sysinfo s;
2391
2392 do_sysinfo(&s);
2393
2394 /* Check to see if any memory value is too large for 32-bit and scale
2395 * down if needed
2396 */
2397 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2398 int bitcount = 0;
2399
2400 while (s.mem_unit < PAGE_SIZE) {
2401 s.mem_unit <<= 1;
2402 bitcount++;
2403 }
2404
2405 s.totalram >>= bitcount;
2406 s.freeram >>= bitcount;
2407 s.sharedram >>= bitcount;
2408 s.bufferram >>= bitcount;
2409 s.totalswap >>= bitcount;
2410 s.freeswap >>= bitcount;
2411 s.totalhigh >>= bitcount;
2412 s.freehigh >>= bitcount;
2413 }
2414
2415 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2416 __put_user(s.uptime, &info->uptime) ||
2417 __put_user(s.loads[0], &info->loads[0]) ||
2418 __put_user(s.loads[1], &info->loads[1]) ||
2419 __put_user(s.loads[2], &info->loads[2]) ||
2420 __put_user(s.totalram, &info->totalram) ||
2421 __put_user(s.freeram, &info->freeram) ||
2422 __put_user(s.sharedram, &info->sharedram) ||
2423 __put_user(s.bufferram, &info->bufferram) ||
2424 __put_user(s.totalswap, &info->totalswap) ||
2425 __put_user(s.freeswap, &info->freeswap) ||
2426 __put_user(s.procs, &info->procs) ||
2427 __put_user(s.totalhigh, &info->totalhigh) ||
2428 __put_user(s.freehigh, &info->freehigh) ||
2429 __put_user(s.mem_unit, &info->mem_unit))
2430 return -EFAULT;
2431
2432 return 0;
2433}
2434#endif /* CONFIG_COMPAT */