Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include "audit.h"
3#include <linux/fsnotify_backend.h>
4#include <linux/namei.h>
5#include <linux/mount.h>
6#include <linux/kthread.h>
7#include <linux/refcount.h>
8#include <linux/slab.h>
9
10struct audit_tree;
11struct audit_chunk;
12
13struct audit_tree {
14 refcount_t count;
15 int goner;
16 struct audit_chunk *root;
17 struct list_head chunks;
18 struct list_head rules;
19 struct list_head list;
20 struct list_head same_root;
21 struct rcu_head head;
22 char pathname[];
23};
24
25struct audit_chunk {
26 struct list_head hash;
27 unsigned long key;
28 struct fsnotify_mark *mark;
29 struct list_head trees; /* with root here */
30 int count;
31 atomic_long_t refs;
32 struct rcu_head head;
33 struct node {
34 struct list_head list;
35 struct audit_tree *owner;
36 unsigned index; /* index; upper bit indicates 'will prune' */
37 } owners[];
38};
39
40struct audit_tree_mark {
41 struct fsnotify_mark mark;
42 struct audit_chunk *chunk;
43};
44
45static LIST_HEAD(tree_list);
46static LIST_HEAD(prune_list);
47static struct task_struct *prune_thread;
48
49/*
50 * One struct chunk is attached to each inode of interest through
51 * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
52 * untagging, the mark is stable as long as there is chunk attached. The
53 * association between mark and chunk is protected by hash_lock and
54 * audit_tree_group->mark_mutex. Thus as long as we hold
55 * audit_tree_group->mark_mutex and check that the mark is alive by
56 * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
57 * the current chunk.
58 *
59 * Rules have pointer to struct audit_tree.
60 * Rules have struct list_head rlist forming a list of rules over
61 * the same tree.
62 * References to struct chunk are collected at audit_inode{,_child}()
63 * time and used in AUDIT_TREE rule matching.
64 * These references are dropped at the same time we are calling
65 * audit_free_names(), etc.
66 *
67 * Cyclic lists galore:
68 * tree.chunks anchors chunk.owners[].list hash_lock
69 * tree.rules anchors rule.rlist audit_filter_mutex
70 * chunk.trees anchors tree.same_root hash_lock
71 * chunk.hash is a hash with middle bits of watch.inode as
72 * a hash function. RCU, hash_lock
73 *
74 * tree is refcounted; one reference for "some rules on rules_list refer to
75 * it", one for each chunk with pointer to it.
76 *
77 * chunk is refcounted by embedded .refs. Mark associated with the chunk holds
78 * one chunk reference. This reference is dropped either when a mark is going
79 * to be freed (corresponding inode goes away) or when chunk attached to the
80 * mark gets replaced. This reference must be dropped using
81 * audit_mark_put_chunk() to make sure the reference is dropped only after RCU
82 * grace period as it protects RCU readers of the hash table.
83 *
84 * node.index allows to get from node.list to containing chunk.
85 * MSB of that sucker is stolen to mark taggings that we might have to
86 * revert - several operations have very unpleasant cleanup logics and
87 * that makes a difference. Some.
88 */
89
90static struct fsnotify_group *audit_tree_group;
91static struct kmem_cache *audit_tree_mark_cachep __read_mostly;
92
93static struct audit_tree *alloc_tree(const char *s)
94{
95 struct audit_tree *tree;
96
97 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
98 if (tree) {
99 refcount_set(&tree->count, 1);
100 tree->goner = 0;
101 INIT_LIST_HEAD(&tree->chunks);
102 INIT_LIST_HEAD(&tree->rules);
103 INIT_LIST_HEAD(&tree->list);
104 INIT_LIST_HEAD(&tree->same_root);
105 tree->root = NULL;
106 strcpy(tree->pathname, s);
107 }
108 return tree;
109}
110
111static inline void get_tree(struct audit_tree *tree)
112{
113 refcount_inc(&tree->count);
114}
115
116static inline void put_tree(struct audit_tree *tree)
117{
118 if (refcount_dec_and_test(&tree->count))
119 kfree_rcu(tree, head);
120}
121
122/* to avoid bringing the entire thing in audit.h */
123const char *audit_tree_path(struct audit_tree *tree)
124{
125 return tree->pathname;
126}
127
128static void free_chunk(struct audit_chunk *chunk)
129{
130 int i;
131
132 for (i = 0; i < chunk->count; i++) {
133 if (chunk->owners[i].owner)
134 put_tree(chunk->owners[i].owner);
135 }
136 kfree(chunk);
137}
138
139void audit_put_chunk(struct audit_chunk *chunk)
140{
141 if (atomic_long_dec_and_test(&chunk->refs))
142 free_chunk(chunk);
143}
144
145static void __put_chunk(struct rcu_head *rcu)
146{
147 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
148 audit_put_chunk(chunk);
149}
150
151/*
152 * Drop reference to the chunk that was held by the mark. This is the reference
153 * that gets dropped after we've removed the chunk from the hash table and we
154 * use it to make sure chunk cannot be freed before RCU grace period expires.
155 */
156static void audit_mark_put_chunk(struct audit_chunk *chunk)
157{
158 call_rcu(&chunk->head, __put_chunk);
159}
160
161static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark)
162{
163 return container_of(mark, struct audit_tree_mark, mark);
164}
165
166static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark)
167{
168 return audit_mark(mark)->chunk;
169}
170
171static void audit_tree_destroy_watch(struct fsnotify_mark *mark)
172{
173 kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark));
174}
175
176static struct fsnotify_mark *alloc_mark(void)
177{
178 struct audit_tree_mark *amark;
179
180 amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL);
181 if (!amark)
182 return NULL;
183 fsnotify_init_mark(&amark->mark, audit_tree_group);
184 amark->mark.mask = FS_IN_IGNORED;
185 return &amark->mark;
186}
187
188static struct audit_chunk *alloc_chunk(int count)
189{
190 struct audit_chunk *chunk;
191 size_t size;
192 int i;
193
194 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
195 chunk = kzalloc(size, GFP_KERNEL);
196 if (!chunk)
197 return NULL;
198
199 INIT_LIST_HEAD(&chunk->hash);
200 INIT_LIST_HEAD(&chunk->trees);
201 chunk->count = count;
202 atomic_long_set(&chunk->refs, 1);
203 for (i = 0; i < count; i++) {
204 INIT_LIST_HEAD(&chunk->owners[i].list);
205 chunk->owners[i].index = i;
206 }
207 return chunk;
208}
209
210enum {HASH_SIZE = 128};
211static struct list_head chunk_hash_heads[HASH_SIZE];
212static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
213
214/* Function to return search key in our hash from inode. */
215static unsigned long inode_to_key(const struct inode *inode)
216{
217 /* Use address pointed to by connector->obj as the key */
218 return (unsigned long)&inode->i_fsnotify_marks;
219}
220
221static inline struct list_head *chunk_hash(unsigned long key)
222{
223 unsigned long n = key / L1_CACHE_BYTES;
224 return chunk_hash_heads + n % HASH_SIZE;
225}
226
227/* hash_lock & mark->group->mark_mutex is held by caller */
228static void insert_hash(struct audit_chunk *chunk)
229{
230 struct list_head *list;
231
232 /*
233 * Make sure chunk is fully initialized before making it visible in the
234 * hash. Pairs with a data dependency barrier in READ_ONCE() in
235 * audit_tree_lookup().
236 */
237 smp_wmb();
238 WARN_ON_ONCE(!chunk->key);
239 list = chunk_hash(chunk->key);
240 list_add_rcu(&chunk->hash, list);
241}
242
243/* called under rcu_read_lock */
244struct audit_chunk *audit_tree_lookup(const struct inode *inode)
245{
246 unsigned long key = inode_to_key(inode);
247 struct list_head *list = chunk_hash(key);
248 struct audit_chunk *p;
249
250 list_for_each_entry_rcu(p, list, hash) {
251 /*
252 * We use a data dependency barrier in READ_ONCE() to make sure
253 * the chunk we see is fully initialized.
254 */
255 if (READ_ONCE(p->key) == key) {
256 atomic_long_inc(&p->refs);
257 return p;
258 }
259 }
260 return NULL;
261}
262
263bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
264{
265 int n;
266 for (n = 0; n < chunk->count; n++)
267 if (chunk->owners[n].owner == tree)
268 return true;
269 return false;
270}
271
272/* tagging and untagging inodes with trees */
273
274static struct audit_chunk *find_chunk(struct node *p)
275{
276 int index = p->index & ~(1U<<31);
277 p -= index;
278 return container_of(p, struct audit_chunk, owners[0]);
279}
280
281static void replace_mark_chunk(struct fsnotify_mark *mark,
282 struct audit_chunk *chunk)
283{
284 struct audit_chunk *old;
285
286 assert_spin_locked(&hash_lock);
287 old = mark_chunk(mark);
288 audit_mark(mark)->chunk = chunk;
289 if (chunk)
290 chunk->mark = mark;
291 if (old)
292 old->mark = NULL;
293}
294
295static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old)
296{
297 struct audit_tree *owner;
298 int i, j;
299
300 new->key = old->key;
301 list_splice_init(&old->trees, &new->trees);
302 list_for_each_entry(owner, &new->trees, same_root)
303 owner->root = new;
304 for (i = j = 0; j < old->count; i++, j++) {
305 if (!old->owners[j].owner) {
306 i--;
307 continue;
308 }
309 owner = old->owners[j].owner;
310 new->owners[i].owner = owner;
311 new->owners[i].index = old->owners[j].index - j + i;
312 if (!owner) /* result of earlier fallback */
313 continue;
314 get_tree(owner);
315 list_replace_init(&old->owners[j].list, &new->owners[i].list);
316 }
317 replace_mark_chunk(old->mark, new);
318 /*
319 * Make sure chunk is fully initialized before making it visible in the
320 * hash. Pairs with a data dependency barrier in READ_ONCE() in
321 * audit_tree_lookup().
322 */
323 smp_wmb();
324 list_replace_rcu(&old->hash, &new->hash);
325}
326
327static void remove_chunk_node(struct audit_chunk *chunk, struct node *p)
328{
329 struct audit_tree *owner = p->owner;
330
331 if (owner->root == chunk) {
332 list_del_init(&owner->same_root);
333 owner->root = NULL;
334 }
335 list_del_init(&p->list);
336 p->owner = NULL;
337 put_tree(owner);
338}
339
340static int chunk_count_trees(struct audit_chunk *chunk)
341{
342 int i;
343 int ret = 0;
344
345 for (i = 0; i < chunk->count; i++)
346 if (chunk->owners[i].owner)
347 ret++;
348 return ret;
349}
350
351static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark)
352{
353 struct audit_chunk *new;
354 int size;
355
356 mutex_lock(&audit_tree_group->mark_mutex);
357 /*
358 * mark_mutex stabilizes chunk attached to the mark so we can check
359 * whether it didn't change while we've dropped hash_lock.
360 */
361 if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) ||
362 mark_chunk(mark) != chunk)
363 goto out_mutex;
364
365 size = chunk_count_trees(chunk);
366 if (!size) {
367 spin_lock(&hash_lock);
368 list_del_init(&chunk->trees);
369 list_del_rcu(&chunk->hash);
370 replace_mark_chunk(mark, NULL);
371 spin_unlock(&hash_lock);
372 fsnotify_detach_mark(mark);
373 mutex_unlock(&audit_tree_group->mark_mutex);
374 audit_mark_put_chunk(chunk);
375 fsnotify_free_mark(mark);
376 return;
377 }
378
379 new = alloc_chunk(size);
380 if (!new)
381 goto out_mutex;
382
383 spin_lock(&hash_lock);
384 /*
385 * This has to go last when updating chunk as once replace_chunk() is
386 * called, new RCU readers can see the new chunk.
387 */
388 replace_chunk(new, chunk);
389 spin_unlock(&hash_lock);
390 mutex_unlock(&audit_tree_group->mark_mutex);
391 audit_mark_put_chunk(chunk);
392 return;
393
394out_mutex:
395 mutex_unlock(&audit_tree_group->mark_mutex);
396}
397
398/* Call with group->mark_mutex held, releases it */
399static int create_chunk(struct inode *inode, struct audit_tree *tree)
400{
401 struct fsnotify_mark *mark;
402 struct audit_chunk *chunk = alloc_chunk(1);
403
404 if (!chunk) {
405 mutex_unlock(&audit_tree_group->mark_mutex);
406 return -ENOMEM;
407 }
408
409 mark = alloc_mark();
410 if (!mark) {
411 mutex_unlock(&audit_tree_group->mark_mutex);
412 kfree(chunk);
413 return -ENOMEM;
414 }
415
416 if (fsnotify_add_inode_mark_locked(mark, inode, 0)) {
417 mutex_unlock(&audit_tree_group->mark_mutex);
418 fsnotify_put_mark(mark);
419 kfree(chunk);
420 return -ENOSPC;
421 }
422
423 spin_lock(&hash_lock);
424 if (tree->goner) {
425 spin_unlock(&hash_lock);
426 fsnotify_detach_mark(mark);
427 mutex_unlock(&audit_tree_group->mark_mutex);
428 fsnotify_free_mark(mark);
429 fsnotify_put_mark(mark);
430 kfree(chunk);
431 return 0;
432 }
433 replace_mark_chunk(mark, chunk);
434 chunk->owners[0].index = (1U << 31);
435 chunk->owners[0].owner = tree;
436 get_tree(tree);
437 list_add(&chunk->owners[0].list, &tree->chunks);
438 if (!tree->root) {
439 tree->root = chunk;
440 list_add(&tree->same_root, &chunk->trees);
441 }
442 chunk->key = inode_to_key(inode);
443 /*
444 * Inserting into the hash table has to go last as once we do that RCU
445 * readers can see the chunk.
446 */
447 insert_hash(chunk);
448 spin_unlock(&hash_lock);
449 mutex_unlock(&audit_tree_group->mark_mutex);
450 /*
451 * Drop our initial reference. When mark we point to is getting freed,
452 * we get notification through ->freeing_mark callback and cleanup
453 * chunk pointing to this mark.
454 */
455 fsnotify_put_mark(mark);
456 return 0;
457}
458
459/* the first tagged inode becomes root of tree */
460static int tag_chunk(struct inode *inode, struct audit_tree *tree)
461{
462 struct fsnotify_mark *mark;
463 struct audit_chunk *chunk, *old;
464 struct node *p;
465 int n;
466
467 mutex_lock(&audit_tree_group->mark_mutex);
468 mark = fsnotify_find_mark(&inode->i_fsnotify_marks, audit_tree_group);
469 if (!mark)
470 return create_chunk(inode, tree);
471
472 /*
473 * Found mark is guaranteed to be attached and mark_mutex protects mark
474 * from getting detached and thus it makes sure there is chunk attached
475 * to the mark.
476 */
477 /* are we already there? */
478 spin_lock(&hash_lock);
479 old = mark_chunk(mark);
480 for (n = 0; n < old->count; n++) {
481 if (old->owners[n].owner == tree) {
482 spin_unlock(&hash_lock);
483 mutex_unlock(&audit_tree_group->mark_mutex);
484 fsnotify_put_mark(mark);
485 return 0;
486 }
487 }
488 spin_unlock(&hash_lock);
489
490 chunk = alloc_chunk(old->count + 1);
491 if (!chunk) {
492 mutex_unlock(&audit_tree_group->mark_mutex);
493 fsnotify_put_mark(mark);
494 return -ENOMEM;
495 }
496
497 spin_lock(&hash_lock);
498 if (tree->goner) {
499 spin_unlock(&hash_lock);
500 mutex_unlock(&audit_tree_group->mark_mutex);
501 fsnotify_put_mark(mark);
502 kfree(chunk);
503 return 0;
504 }
505 p = &chunk->owners[chunk->count - 1];
506 p->index = (chunk->count - 1) | (1U<<31);
507 p->owner = tree;
508 get_tree(tree);
509 list_add(&p->list, &tree->chunks);
510 if (!tree->root) {
511 tree->root = chunk;
512 list_add(&tree->same_root, &chunk->trees);
513 }
514 /*
515 * This has to go last when updating chunk as once replace_chunk() is
516 * called, new RCU readers can see the new chunk.
517 */
518 replace_chunk(chunk, old);
519 spin_unlock(&hash_lock);
520 mutex_unlock(&audit_tree_group->mark_mutex);
521 fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */
522 audit_mark_put_chunk(old);
523
524 return 0;
525}
526
527static void audit_tree_log_remove_rule(struct audit_context *context,
528 struct audit_krule *rule)
529{
530 struct audit_buffer *ab;
531
532 if (!audit_enabled)
533 return;
534 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
535 if (unlikely(!ab))
536 return;
537 audit_log_format(ab, "op=remove_rule dir=");
538 audit_log_untrustedstring(ab, rule->tree->pathname);
539 audit_log_key(ab, rule->filterkey);
540 audit_log_format(ab, " list=%d res=1", rule->listnr);
541 audit_log_end(ab);
542}
543
544static void kill_rules(struct audit_context *context, struct audit_tree *tree)
545{
546 struct audit_krule *rule, *next;
547 struct audit_entry *entry;
548
549 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
550 entry = container_of(rule, struct audit_entry, rule);
551
552 list_del_init(&rule->rlist);
553 if (rule->tree) {
554 /* not a half-baked one */
555 audit_tree_log_remove_rule(context, rule);
556 if (entry->rule.exe)
557 audit_remove_mark(entry->rule.exe);
558 rule->tree = NULL;
559 list_del_rcu(&entry->list);
560 list_del(&entry->rule.list);
561 call_rcu(&entry->rcu, audit_free_rule_rcu);
562 }
563 }
564}
565
566/*
567 * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
568 * chunks. The function expects tagged chunks are all at the beginning of the
569 * chunks list.
570 */
571static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
572{
573 spin_lock(&hash_lock);
574 while (!list_empty(&victim->chunks)) {
575 struct node *p;
576 struct audit_chunk *chunk;
577 struct fsnotify_mark *mark;
578
579 p = list_first_entry(&victim->chunks, struct node, list);
580 /* have we run out of marked? */
581 if (tagged && !(p->index & (1U<<31)))
582 break;
583 chunk = find_chunk(p);
584 mark = chunk->mark;
585 remove_chunk_node(chunk, p);
586 /* Racing with audit_tree_freeing_mark()? */
587 if (!mark)
588 continue;
589 fsnotify_get_mark(mark);
590 spin_unlock(&hash_lock);
591
592 untag_chunk(chunk, mark);
593 fsnotify_put_mark(mark);
594
595 spin_lock(&hash_lock);
596 }
597 spin_unlock(&hash_lock);
598 put_tree(victim);
599}
600
601/*
602 * finish killing struct audit_tree
603 */
604static void prune_one(struct audit_tree *victim)
605{
606 prune_tree_chunks(victim, false);
607}
608
609/* trim the uncommitted chunks from tree */
610
611static void trim_marked(struct audit_tree *tree)
612{
613 struct list_head *p, *q;
614 spin_lock(&hash_lock);
615 if (tree->goner) {
616 spin_unlock(&hash_lock);
617 return;
618 }
619 /* reorder */
620 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
621 struct node *node = list_entry(p, struct node, list);
622 q = p->next;
623 if (node->index & (1U<<31)) {
624 list_del_init(p);
625 list_add(p, &tree->chunks);
626 }
627 }
628 spin_unlock(&hash_lock);
629
630 prune_tree_chunks(tree, true);
631
632 spin_lock(&hash_lock);
633 if (!tree->root && !tree->goner) {
634 tree->goner = 1;
635 spin_unlock(&hash_lock);
636 mutex_lock(&audit_filter_mutex);
637 kill_rules(audit_context(), tree);
638 list_del_init(&tree->list);
639 mutex_unlock(&audit_filter_mutex);
640 prune_one(tree);
641 } else {
642 spin_unlock(&hash_lock);
643 }
644}
645
646static void audit_schedule_prune(void);
647
648/* called with audit_filter_mutex */
649int audit_remove_tree_rule(struct audit_krule *rule)
650{
651 struct audit_tree *tree;
652 tree = rule->tree;
653 if (tree) {
654 spin_lock(&hash_lock);
655 list_del_init(&rule->rlist);
656 if (list_empty(&tree->rules) && !tree->goner) {
657 tree->root = NULL;
658 list_del_init(&tree->same_root);
659 tree->goner = 1;
660 list_move(&tree->list, &prune_list);
661 rule->tree = NULL;
662 spin_unlock(&hash_lock);
663 audit_schedule_prune();
664 return 1;
665 }
666 rule->tree = NULL;
667 spin_unlock(&hash_lock);
668 return 1;
669 }
670 return 0;
671}
672
673static int compare_root(struct vfsmount *mnt, void *arg)
674{
675 return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
676 (unsigned long)arg;
677}
678
679void audit_trim_trees(void)
680{
681 struct list_head cursor;
682
683 mutex_lock(&audit_filter_mutex);
684 list_add(&cursor, &tree_list);
685 while (cursor.next != &tree_list) {
686 struct audit_tree *tree;
687 struct path path;
688 struct vfsmount *root_mnt;
689 struct node *node;
690 int err;
691
692 tree = container_of(cursor.next, struct audit_tree, list);
693 get_tree(tree);
694 list_del(&cursor);
695 list_add(&cursor, &tree->list);
696 mutex_unlock(&audit_filter_mutex);
697
698 err = kern_path(tree->pathname, 0, &path);
699 if (err)
700 goto skip_it;
701
702 root_mnt = collect_mounts(&path);
703 path_put(&path);
704 if (IS_ERR(root_mnt))
705 goto skip_it;
706
707 spin_lock(&hash_lock);
708 list_for_each_entry(node, &tree->chunks, list) {
709 struct audit_chunk *chunk = find_chunk(node);
710 /* this could be NULL if the watch is dying else where... */
711 node->index |= 1U<<31;
712 if (iterate_mounts(compare_root,
713 (void *)(chunk->key),
714 root_mnt))
715 node->index &= ~(1U<<31);
716 }
717 spin_unlock(&hash_lock);
718 trim_marked(tree);
719 drop_collected_mounts(root_mnt);
720skip_it:
721 put_tree(tree);
722 mutex_lock(&audit_filter_mutex);
723 }
724 list_del(&cursor);
725 mutex_unlock(&audit_filter_mutex);
726}
727
728int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
729{
730
731 if (pathname[0] != '/' ||
732 rule->listnr != AUDIT_FILTER_EXIT ||
733 op != Audit_equal ||
734 rule->inode_f || rule->watch || rule->tree)
735 return -EINVAL;
736 rule->tree = alloc_tree(pathname);
737 if (!rule->tree)
738 return -ENOMEM;
739 return 0;
740}
741
742void audit_put_tree(struct audit_tree *tree)
743{
744 put_tree(tree);
745}
746
747static int tag_mount(struct vfsmount *mnt, void *arg)
748{
749 return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
750}
751
752/*
753 * That gets run when evict_chunk() ends up needing to kill audit_tree.
754 * Runs from a separate thread.
755 */
756static int prune_tree_thread(void *unused)
757{
758 for (;;) {
759 if (list_empty(&prune_list)) {
760 set_current_state(TASK_INTERRUPTIBLE);
761 schedule();
762 }
763
764 audit_ctl_lock();
765 mutex_lock(&audit_filter_mutex);
766
767 while (!list_empty(&prune_list)) {
768 struct audit_tree *victim;
769
770 victim = list_entry(prune_list.next,
771 struct audit_tree, list);
772 list_del_init(&victim->list);
773
774 mutex_unlock(&audit_filter_mutex);
775
776 prune_one(victim);
777
778 mutex_lock(&audit_filter_mutex);
779 }
780
781 mutex_unlock(&audit_filter_mutex);
782 audit_ctl_unlock();
783 }
784 return 0;
785}
786
787static int audit_launch_prune(void)
788{
789 if (prune_thread)
790 return 0;
791 prune_thread = kthread_run(prune_tree_thread, NULL,
792 "audit_prune_tree");
793 if (IS_ERR(prune_thread)) {
794 pr_err("cannot start thread audit_prune_tree");
795 prune_thread = NULL;
796 return -ENOMEM;
797 }
798 return 0;
799}
800
801/* called with audit_filter_mutex */
802int audit_add_tree_rule(struct audit_krule *rule)
803{
804 struct audit_tree *seed = rule->tree, *tree;
805 struct path path;
806 struct vfsmount *mnt;
807 int err;
808
809 rule->tree = NULL;
810 list_for_each_entry(tree, &tree_list, list) {
811 if (!strcmp(seed->pathname, tree->pathname)) {
812 put_tree(seed);
813 rule->tree = tree;
814 list_add(&rule->rlist, &tree->rules);
815 return 0;
816 }
817 }
818 tree = seed;
819 list_add(&tree->list, &tree_list);
820 list_add(&rule->rlist, &tree->rules);
821 /* do not set rule->tree yet */
822 mutex_unlock(&audit_filter_mutex);
823
824 if (unlikely(!prune_thread)) {
825 err = audit_launch_prune();
826 if (err)
827 goto Err;
828 }
829
830 err = kern_path(tree->pathname, 0, &path);
831 if (err)
832 goto Err;
833 mnt = collect_mounts(&path);
834 path_put(&path);
835 if (IS_ERR(mnt)) {
836 err = PTR_ERR(mnt);
837 goto Err;
838 }
839
840 get_tree(tree);
841 err = iterate_mounts(tag_mount, tree, mnt);
842 drop_collected_mounts(mnt);
843
844 if (!err) {
845 struct node *node;
846 spin_lock(&hash_lock);
847 list_for_each_entry(node, &tree->chunks, list)
848 node->index &= ~(1U<<31);
849 spin_unlock(&hash_lock);
850 } else {
851 trim_marked(tree);
852 goto Err;
853 }
854
855 mutex_lock(&audit_filter_mutex);
856 if (list_empty(&rule->rlist)) {
857 put_tree(tree);
858 return -ENOENT;
859 }
860 rule->tree = tree;
861 put_tree(tree);
862
863 return 0;
864Err:
865 mutex_lock(&audit_filter_mutex);
866 list_del_init(&tree->list);
867 list_del_init(&tree->rules);
868 put_tree(tree);
869 return err;
870}
871
872int audit_tag_tree(char *old, char *new)
873{
874 struct list_head cursor, barrier;
875 int failed = 0;
876 struct path path1, path2;
877 struct vfsmount *tagged;
878 int err;
879
880 err = kern_path(new, 0, &path2);
881 if (err)
882 return err;
883 tagged = collect_mounts(&path2);
884 path_put(&path2);
885 if (IS_ERR(tagged))
886 return PTR_ERR(tagged);
887
888 err = kern_path(old, 0, &path1);
889 if (err) {
890 drop_collected_mounts(tagged);
891 return err;
892 }
893
894 mutex_lock(&audit_filter_mutex);
895 list_add(&barrier, &tree_list);
896 list_add(&cursor, &barrier);
897
898 while (cursor.next != &tree_list) {
899 struct audit_tree *tree;
900 int good_one = 0;
901
902 tree = container_of(cursor.next, struct audit_tree, list);
903 get_tree(tree);
904 list_del(&cursor);
905 list_add(&cursor, &tree->list);
906 mutex_unlock(&audit_filter_mutex);
907
908 err = kern_path(tree->pathname, 0, &path2);
909 if (!err) {
910 good_one = path_is_under(&path1, &path2);
911 path_put(&path2);
912 }
913
914 if (!good_one) {
915 put_tree(tree);
916 mutex_lock(&audit_filter_mutex);
917 continue;
918 }
919
920 failed = iterate_mounts(tag_mount, tree, tagged);
921 if (failed) {
922 put_tree(tree);
923 mutex_lock(&audit_filter_mutex);
924 break;
925 }
926
927 mutex_lock(&audit_filter_mutex);
928 spin_lock(&hash_lock);
929 if (!tree->goner) {
930 list_del(&tree->list);
931 list_add(&tree->list, &tree_list);
932 }
933 spin_unlock(&hash_lock);
934 put_tree(tree);
935 }
936
937 while (barrier.prev != &tree_list) {
938 struct audit_tree *tree;
939
940 tree = container_of(barrier.prev, struct audit_tree, list);
941 get_tree(tree);
942 list_del(&tree->list);
943 list_add(&tree->list, &barrier);
944 mutex_unlock(&audit_filter_mutex);
945
946 if (!failed) {
947 struct node *node;
948 spin_lock(&hash_lock);
949 list_for_each_entry(node, &tree->chunks, list)
950 node->index &= ~(1U<<31);
951 spin_unlock(&hash_lock);
952 } else {
953 trim_marked(tree);
954 }
955
956 put_tree(tree);
957 mutex_lock(&audit_filter_mutex);
958 }
959 list_del(&barrier);
960 list_del(&cursor);
961 mutex_unlock(&audit_filter_mutex);
962 path_put(&path1);
963 drop_collected_mounts(tagged);
964 return failed;
965}
966
967
968static void audit_schedule_prune(void)
969{
970 wake_up_process(prune_thread);
971}
972
973/*
974 * ... and that one is done if evict_chunk() decides to delay until the end
975 * of syscall. Runs synchronously.
976 */
977void audit_kill_trees(struct audit_context *context)
978{
979 struct list_head *list = &context->killed_trees;
980
981 audit_ctl_lock();
982 mutex_lock(&audit_filter_mutex);
983
984 while (!list_empty(list)) {
985 struct audit_tree *victim;
986
987 victim = list_entry(list->next, struct audit_tree, list);
988 kill_rules(context, victim);
989 list_del_init(&victim->list);
990
991 mutex_unlock(&audit_filter_mutex);
992
993 prune_one(victim);
994
995 mutex_lock(&audit_filter_mutex);
996 }
997
998 mutex_unlock(&audit_filter_mutex);
999 audit_ctl_unlock();
1000}
1001
1002/*
1003 * Here comes the stuff asynchronous to auditctl operations
1004 */
1005
1006static void evict_chunk(struct audit_chunk *chunk)
1007{
1008 struct audit_tree *owner;
1009 struct list_head *postponed = audit_killed_trees();
1010 int need_prune = 0;
1011 int n;
1012
1013 mutex_lock(&audit_filter_mutex);
1014 spin_lock(&hash_lock);
1015 while (!list_empty(&chunk->trees)) {
1016 owner = list_entry(chunk->trees.next,
1017 struct audit_tree, same_root);
1018 owner->goner = 1;
1019 owner->root = NULL;
1020 list_del_init(&owner->same_root);
1021 spin_unlock(&hash_lock);
1022 if (!postponed) {
1023 kill_rules(audit_context(), owner);
1024 list_move(&owner->list, &prune_list);
1025 need_prune = 1;
1026 } else {
1027 list_move(&owner->list, postponed);
1028 }
1029 spin_lock(&hash_lock);
1030 }
1031 list_del_rcu(&chunk->hash);
1032 for (n = 0; n < chunk->count; n++)
1033 list_del_init(&chunk->owners[n].list);
1034 spin_unlock(&hash_lock);
1035 mutex_unlock(&audit_filter_mutex);
1036 if (need_prune)
1037 audit_schedule_prune();
1038}
1039
1040static int audit_tree_handle_event(struct fsnotify_group *group,
1041 struct inode *to_tell,
1042 u32 mask, const void *data, int data_type,
1043 const struct qstr *file_name, u32 cookie,
1044 struct fsnotify_iter_info *iter_info)
1045{
1046 return 0;
1047}
1048
1049static void audit_tree_freeing_mark(struct fsnotify_mark *mark,
1050 struct fsnotify_group *group)
1051{
1052 struct audit_chunk *chunk;
1053
1054 mutex_lock(&mark->group->mark_mutex);
1055 spin_lock(&hash_lock);
1056 chunk = mark_chunk(mark);
1057 replace_mark_chunk(mark, NULL);
1058 spin_unlock(&hash_lock);
1059 mutex_unlock(&mark->group->mark_mutex);
1060 if (chunk) {
1061 evict_chunk(chunk);
1062 audit_mark_put_chunk(chunk);
1063 }
1064
1065 /*
1066 * We are guaranteed to have at least one reference to the mark from
1067 * either the inode or the caller of fsnotify_destroy_mark().
1068 */
1069 BUG_ON(refcount_read(&mark->refcnt) < 1);
1070}
1071
1072static const struct fsnotify_ops audit_tree_ops = {
1073 .handle_event = audit_tree_handle_event,
1074 .freeing_mark = audit_tree_freeing_mark,
1075 .free_mark = audit_tree_destroy_watch,
1076};
1077
1078static int __init audit_tree_init(void)
1079{
1080 int i;
1081
1082 audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC);
1083
1084 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1085 if (IS_ERR(audit_tree_group))
1086 audit_panic("cannot initialize fsnotify group for rectree watches");
1087
1088 for (i = 0; i < HASH_SIZE; i++)
1089 INIT_LIST_HEAD(&chunk_hash_heads[i]);
1090
1091 return 0;
1092}
1093__initcall(audit_tree_init);
1#include "audit.h"
2#include <linux/fsnotify_backend.h>
3#include <linux/namei.h>
4#include <linux/mount.h>
5#include <linux/kthread.h>
6#include <linux/slab.h>
7
8struct audit_tree;
9struct audit_chunk;
10
11struct audit_tree {
12 atomic_t count;
13 int goner;
14 struct audit_chunk *root;
15 struct list_head chunks;
16 struct list_head rules;
17 struct list_head list;
18 struct list_head same_root;
19 struct rcu_head head;
20 char pathname[];
21};
22
23struct audit_chunk {
24 struct list_head hash;
25 struct fsnotify_mark mark;
26 struct list_head trees; /* with root here */
27 int dead;
28 int count;
29 atomic_long_t refs;
30 struct rcu_head head;
31 struct node {
32 struct list_head list;
33 struct audit_tree *owner;
34 unsigned index; /* index; upper bit indicates 'will prune' */
35 } owners[];
36};
37
38static LIST_HEAD(tree_list);
39static LIST_HEAD(prune_list);
40static struct task_struct *prune_thread;
41
42/*
43 * One struct chunk is attached to each inode of interest.
44 * We replace struct chunk on tagging/untagging.
45 * Rules have pointer to struct audit_tree.
46 * Rules have struct list_head rlist forming a list of rules over
47 * the same tree.
48 * References to struct chunk are collected at audit_inode{,_child}()
49 * time and used in AUDIT_TREE rule matching.
50 * These references are dropped at the same time we are calling
51 * audit_free_names(), etc.
52 *
53 * Cyclic lists galore:
54 * tree.chunks anchors chunk.owners[].list hash_lock
55 * tree.rules anchors rule.rlist audit_filter_mutex
56 * chunk.trees anchors tree.same_root hash_lock
57 * chunk.hash is a hash with middle bits of watch.inode as
58 * a hash function. RCU, hash_lock
59 *
60 * tree is refcounted; one reference for "some rules on rules_list refer to
61 * it", one for each chunk with pointer to it.
62 *
63 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
64 * of watch contributes 1 to .refs).
65 *
66 * node.index allows to get from node.list to containing chunk.
67 * MSB of that sucker is stolen to mark taggings that we might have to
68 * revert - several operations have very unpleasant cleanup logics and
69 * that makes a difference. Some.
70 */
71
72static struct fsnotify_group *audit_tree_group;
73
74static struct audit_tree *alloc_tree(const char *s)
75{
76 struct audit_tree *tree;
77
78 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
79 if (tree) {
80 atomic_set(&tree->count, 1);
81 tree->goner = 0;
82 INIT_LIST_HEAD(&tree->chunks);
83 INIT_LIST_HEAD(&tree->rules);
84 INIT_LIST_HEAD(&tree->list);
85 INIT_LIST_HEAD(&tree->same_root);
86 tree->root = NULL;
87 strcpy(tree->pathname, s);
88 }
89 return tree;
90}
91
92static inline void get_tree(struct audit_tree *tree)
93{
94 atomic_inc(&tree->count);
95}
96
97static inline void put_tree(struct audit_tree *tree)
98{
99 if (atomic_dec_and_test(&tree->count))
100 kfree_rcu(tree, head);
101}
102
103/* to avoid bringing the entire thing in audit.h */
104const char *audit_tree_path(struct audit_tree *tree)
105{
106 return tree->pathname;
107}
108
109static void free_chunk(struct audit_chunk *chunk)
110{
111 int i;
112
113 for (i = 0; i < chunk->count; i++) {
114 if (chunk->owners[i].owner)
115 put_tree(chunk->owners[i].owner);
116 }
117 kfree(chunk);
118}
119
120void audit_put_chunk(struct audit_chunk *chunk)
121{
122 if (atomic_long_dec_and_test(&chunk->refs))
123 free_chunk(chunk);
124}
125
126static void __put_chunk(struct rcu_head *rcu)
127{
128 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
129 audit_put_chunk(chunk);
130}
131
132static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
133{
134 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
135 call_rcu(&chunk->head, __put_chunk);
136}
137
138static struct audit_chunk *alloc_chunk(int count)
139{
140 struct audit_chunk *chunk;
141 size_t size;
142 int i;
143
144 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
145 chunk = kzalloc(size, GFP_KERNEL);
146 if (!chunk)
147 return NULL;
148
149 INIT_LIST_HEAD(&chunk->hash);
150 INIT_LIST_HEAD(&chunk->trees);
151 chunk->count = count;
152 atomic_long_set(&chunk->refs, 1);
153 for (i = 0; i < count; i++) {
154 INIT_LIST_HEAD(&chunk->owners[i].list);
155 chunk->owners[i].index = i;
156 }
157 fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
158 chunk->mark.mask = FS_IN_IGNORED;
159 return chunk;
160}
161
162enum {HASH_SIZE = 128};
163static struct list_head chunk_hash_heads[HASH_SIZE];
164static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
165
166static inline struct list_head *chunk_hash(const struct inode *inode)
167{
168 unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
169 return chunk_hash_heads + n % HASH_SIZE;
170}
171
172/* hash_lock & entry->lock is held by caller */
173static void insert_hash(struct audit_chunk *chunk)
174{
175 struct fsnotify_mark *entry = &chunk->mark;
176 struct list_head *list;
177
178 if (!entry->inode)
179 return;
180 list = chunk_hash(entry->inode);
181 list_add_rcu(&chunk->hash, list);
182}
183
184/* called under rcu_read_lock */
185struct audit_chunk *audit_tree_lookup(const struct inode *inode)
186{
187 struct list_head *list = chunk_hash(inode);
188 struct audit_chunk *p;
189
190 list_for_each_entry_rcu(p, list, hash) {
191 /* mark.inode may have gone NULL, but who cares? */
192 if (p->mark.inode == inode) {
193 atomic_long_inc(&p->refs);
194 return p;
195 }
196 }
197 return NULL;
198}
199
200bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
201{
202 int n;
203 for (n = 0; n < chunk->count; n++)
204 if (chunk->owners[n].owner == tree)
205 return true;
206 return false;
207}
208
209/* tagging and untagging inodes with trees */
210
211static struct audit_chunk *find_chunk(struct node *p)
212{
213 int index = p->index & ~(1U<<31);
214 p -= index;
215 return container_of(p, struct audit_chunk, owners[0]);
216}
217
218static void untag_chunk(struct node *p)
219{
220 struct audit_chunk *chunk = find_chunk(p);
221 struct fsnotify_mark *entry = &chunk->mark;
222 struct audit_chunk *new = NULL;
223 struct audit_tree *owner;
224 int size = chunk->count - 1;
225 int i, j;
226
227 fsnotify_get_mark(entry);
228
229 spin_unlock(&hash_lock);
230
231 if (size)
232 new = alloc_chunk(size);
233
234 spin_lock(&entry->lock);
235 if (chunk->dead || !entry->inode) {
236 spin_unlock(&entry->lock);
237 if (new)
238 free_chunk(new);
239 goto out;
240 }
241
242 owner = p->owner;
243
244 if (!size) {
245 chunk->dead = 1;
246 spin_lock(&hash_lock);
247 list_del_init(&chunk->trees);
248 if (owner->root == chunk)
249 owner->root = NULL;
250 list_del_init(&p->list);
251 list_del_rcu(&chunk->hash);
252 spin_unlock(&hash_lock);
253 spin_unlock(&entry->lock);
254 fsnotify_destroy_mark(entry, audit_tree_group);
255 goto out;
256 }
257
258 if (!new)
259 goto Fallback;
260
261 fsnotify_duplicate_mark(&new->mark, entry);
262 if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.inode, NULL, 1)) {
263 fsnotify_put_mark(&new->mark);
264 goto Fallback;
265 }
266
267 chunk->dead = 1;
268 spin_lock(&hash_lock);
269 list_replace_init(&chunk->trees, &new->trees);
270 if (owner->root == chunk) {
271 list_del_init(&owner->same_root);
272 owner->root = NULL;
273 }
274
275 for (i = j = 0; j <= size; i++, j++) {
276 struct audit_tree *s;
277 if (&chunk->owners[j] == p) {
278 list_del_init(&p->list);
279 i--;
280 continue;
281 }
282 s = chunk->owners[j].owner;
283 new->owners[i].owner = s;
284 new->owners[i].index = chunk->owners[j].index - j + i;
285 if (!s) /* result of earlier fallback */
286 continue;
287 get_tree(s);
288 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
289 }
290
291 list_replace_rcu(&chunk->hash, &new->hash);
292 list_for_each_entry(owner, &new->trees, same_root)
293 owner->root = new;
294 spin_unlock(&hash_lock);
295 spin_unlock(&entry->lock);
296 fsnotify_destroy_mark(entry, audit_tree_group);
297 fsnotify_put_mark(&new->mark); /* drop initial reference */
298 goto out;
299
300Fallback:
301 // do the best we can
302 spin_lock(&hash_lock);
303 if (owner->root == chunk) {
304 list_del_init(&owner->same_root);
305 owner->root = NULL;
306 }
307 list_del_init(&p->list);
308 p->owner = NULL;
309 put_tree(owner);
310 spin_unlock(&hash_lock);
311 spin_unlock(&entry->lock);
312out:
313 fsnotify_put_mark(entry);
314 spin_lock(&hash_lock);
315}
316
317static int create_chunk(struct inode *inode, struct audit_tree *tree)
318{
319 struct fsnotify_mark *entry;
320 struct audit_chunk *chunk = alloc_chunk(1);
321 if (!chunk)
322 return -ENOMEM;
323
324 entry = &chunk->mark;
325 if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
326 fsnotify_put_mark(entry);
327 return -ENOSPC;
328 }
329
330 spin_lock(&entry->lock);
331 spin_lock(&hash_lock);
332 if (tree->goner) {
333 spin_unlock(&hash_lock);
334 chunk->dead = 1;
335 spin_unlock(&entry->lock);
336 fsnotify_destroy_mark(entry, audit_tree_group);
337 fsnotify_put_mark(entry);
338 return 0;
339 }
340 chunk->owners[0].index = (1U << 31);
341 chunk->owners[0].owner = tree;
342 get_tree(tree);
343 list_add(&chunk->owners[0].list, &tree->chunks);
344 if (!tree->root) {
345 tree->root = chunk;
346 list_add(&tree->same_root, &chunk->trees);
347 }
348 insert_hash(chunk);
349 spin_unlock(&hash_lock);
350 spin_unlock(&entry->lock);
351 fsnotify_put_mark(entry); /* drop initial reference */
352 return 0;
353}
354
355/* the first tagged inode becomes root of tree */
356static int tag_chunk(struct inode *inode, struct audit_tree *tree)
357{
358 struct fsnotify_mark *old_entry, *chunk_entry;
359 struct audit_tree *owner;
360 struct audit_chunk *chunk, *old;
361 struct node *p;
362 int n;
363
364 old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
365 if (!old_entry)
366 return create_chunk(inode, tree);
367
368 old = container_of(old_entry, struct audit_chunk, mark);
369
370 /* are we already there? */
371 spin_lock(&hash_lock);
372 for (n = 0; n < old->count; n++) {
373 if (old->owners[n].owner == tree) {
374 spin_unlock(&hash_lock);
375 fsnotify_put_mark(old_entry);
376 return 0;
377 }
378 }
379 spin_unlock(&hash_lock);
380
381 chunk = alloc_chunk(old->count + 1);
382 if (!chunk) {
383 fsnotify_put_mark(old_entry);
384 return -ENOMEM;
385 }
386
387 chunk_entry = &chunk->mark;
388
389 spin_lock(&old_entry->lock);
390 if (!old_entry->inode) {
391 /* old_entry is being shot, lets just lie */
392 spin_unlock(&old_entry->lock);
393 fsnotify_put_mark(old_entry);
394 free_chunk(chunk);
395 return -ENOENT;
396 }
397
398 fsnotify_duplicate_mark(chunk_entry, old_entry);
399 if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->inode, NULL, 1)) {
400 spin_unlock(&old_entry->lock);
401 fsnotify_put_mark(chunk_entry);
402 fsnotify_put_mark(old_entry);
403 return -ENOSPC;
404 }
405
406 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
407 spin_lock(&chunk_entry->lock);
408 spin_lock(&hash_lock);
409
410 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
411 if (tree->goner) {
412 spin_unlock(&hash_lock);
413 chunk->dead = 1;
414 spin_unlock(&chunk_entry->lock);
415 spin_unlock(&old_entry->lock);
416
417 fsnotify_destroy_mark(chunk_entry, audit_tree_group);
418
419 fsnotify_put_mark(chunk_entry);
420 fsnotify_put_mark(old_entry);
421 return 0;
422 }
423 list_replace_init(&old->trees, &chunk->trees);
424 for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
425 struct audit_tree *s = old->owners[n].owner;
426 p->owner = s;
427 p->index = old->owners[n].index;
428 if (!s) /* result of fallback in untag */
429 continue;
430 get_tree(s);
431 list_replace_init(&old->owners[n].list, &p->list);
432 }
433 p->index = (chunk->count - 1) | (1U<<31);
434 p->owner = tree;
435 get_tree(tree);
436 list_add(&p->list, &tree->chunks);
437 list_replace_rcu(&old->hash, &chunk->hash);
438 list_for_each_entry(owner, &chunk->trees, same_root)
439 owner->root = chunk;
440 old->dead = 1;
441 if (!tree->root) {
442 tree->root = chunk;
443 list_add(&tree->same_root, &chunk->trees);
444 }
445 spin_unlock(&hash_lock);
446 spin_unlock(&chunk_entry->lock);
447 spin_unlock(&old_entry->lock);
448 fsnotify_destroy_mark(old_entry, audit_tree_group);
449 fsnotify_put_mark(chunk_entry); /* drop initial reference */
450 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
451 return 0;
452}
453
454static void audit_tree_log_remove_rule(struct audit_krule *rule)
455{
456 struct audit_buffer *ab;
457
458 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
459 if (unlikely(!ab))
460 return;
461 audit_log_format(ab, "op=");
462 audit_log_string(ab, "remove_rule");
463 audit_log_format(ab, " dir=");
464 audit_log_untrustedstring(ab, rule->tree->pathname);
465 audit_log_key(ab, rule->filterkey);
466 audit_log_format(ab, " list=%d res=1", rule->listnr);
467 audit_log_end(ab);
468}
469
470static void kill_rules(struct audit_tree *tree)
471{
472 struct audit_krule *rule, *next;
473 struct audit_entry *entry;
474
475 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
476 entry = container_of(rule, struct audit_entry, rule);
477
478 list_del_init(&rule->rlist);
479 if (rule->tree) {
480 /* not a half-baked one */
481 audit_tree_log_remove_rule(rule);
482 if (entry->rule.exe)
483 audit_remove_mark(entry->rule.exe);
484 rule->tree = NULL;
485 list_del_rcu(&entry->list);
486 list_del(&entry->rule.list);
487 call_rcu(&entry->rcu, audit_free_rule_rcu);
488 }
489 }
490}
491
492/*
493 * finish killing struct audit_tree
494 */
495static void prune_one(struct audit_tree *victim)
496{
497 spin_lock(&hash_lock);
498 while (!list_empty(&victim->chunks)) {
499 struct node *p;
500
501 p = list_entry(victim->chunks.next, struct node, list);
502
503 untag_chunk(p);
504 }
505 spin_unlock(&hash_lock);
506 put_tree(victim);
507}
508
509/* trim the uncommitted chunks from tree */
510
511static void trim_marked(struct audit_tree *tree)
512{
513 struct list_head *p, *q;
514 spin_lock(&hash_lock);
515 if (tree->goner) {
516 spin_unlock(&hash_lock);
517 return;
518 }
519 /* reorder */
520 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
521 struct node *node = list_entry(p, struct node, list);
522 q = p->next;
523 if (node->index & (1U<<31)) {
524 list_del_init(p);
525 list_add(p, &tree->chunks);
526 }
527 }
528
529 while (!list_empty(&tree->chunks)) {
530 struct node *node;
531
532 node = list_entry(tree->chunks.next, struct node, list);
533
534 /* have we run out of marked? */
535 if (!(node->index & (1U<<31)))
536 break;
537
538 untag_chunk(node);
539 }
540 if (!tree->root && !tree->goner) {
541 tree->goner = 1;
542 spin_unlock(&hash_lock);
543 mutex_lock(&audit_filter_mutex);
544 kill_rules(tree);
545 list_del_init(&tree->list);
546 mutex_unlock(&audit_filter_mutex);
547 prune_one(tree);
548 } else {
549 spin_unlock(&hash_lock);
550 }
551}
552
553static void audit_schedule_prune(void);
554
555/* called with audit_filter_mutex */
556int audit_remove_tree_rule(struct audit_krule *rule)
557{
558 struct audit_tree *tree;
559 tree = rule->tree;
560 if (tree) {
561 spin_lock(&hash_lock);
562 list_del_init(&rule->rlist);
563 if (list_empty(&tree->rules) && !tree->goner) {
564 tree->root = NULL;
565 list_del_init(&tree->same_root);
566 tree->goner = 1;
567 list_move(&tree->list, &prune_list);
568 rule->tree = NULL;
569 spin_unlock(&hash_lock);
570 audit_schedule_prune();
571 return 1;
572 }
573 rule->tree = NULL;
574 spin_unlock(&hash_lock);
575 return 1;
576 }
577 return 0;
578}
579
580static int compare_root(struct vfsmount *mnt, void *arg)
581{
582 return d_backing_inode(mnt->mnt_root) == arg;
583}
584
585void audit_trim_trees(void)
586{
587 struct list_head cursor;
588
589 mutex_lock(&audit_filter_mutex);
590 list_add(&cursor, &tree_list);
591 while (cursor.next != &tree_list) {
592 struct audit_tree *tree;
593 struct path path;
594 struct vfsmount *root_mnt;
595 struct node *node;
596 int err;
597
598 tree = container_of(cursor.next, struct audit_tree, list);
599 get_tree(tree);
600 list_del(&cursor);
601 list_add(&cursor, &tree->list);
602 mutex_unlock(&audit_filter_mutex);
603
604 err = kern_path(tree->pathname, 0, &path);
605 if (err)
606 goto skip_it;
607
608 root_mnt = collect_mounts(&path);
609 path_put(&path);
610 if (IS_ERR(root_mnt))
611 goto skip_it;
612
613 spin_lock(&hash_lock);
614 list_for_each_entry(node, &tree->chunks, list) {
615 struct audit_chunk *chunk = find_chunk(node);
616 /* this could be NULL if the watch is dying else where... */
617 struct inode *inode = chunk->mark.inode;
618 node->index |= 1U<<31;
619 if (iterate_mounts(compare_root, inode, root_mnt))
620 node->index &= ~(1U<<31);
621 }
622 spin_unlock(&hash_lock);
623 trim_marked(tree);
624 drop_collected_mounts(root_mnt);
625skip_it:
626 put_tree(tree);
627 mutex_lock(&audit_filter_mutex);
628 }
629 list_del(&cursor);
630 mutex_unlock(&audit_filter_mutex);
631}
632
633int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
634{
635
636 if (pathname[0] != '/' ||
637 rule->listnr != AUDIT_FILTER_EXIT ||
638 op != Audit_equal ||
639 rule->inode_f || rule->watch || rule->tree)
640 return -EINVAL;
641 rule->tree = alloc_tree(pathname);
642 if (!rule->tree)
643 return -ENOMEM;
644 return 0;
645}
646
647void audit_put_tree(struct audit_tree *tree)
648{
649 put_tree(tree);
650}
651
652static int tag_mount(struct vfsmount *mnt, void *arg)
653{
654 return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
655}
656
657/*
658 * That gets run when evict_chunk() ends up needing to kill audit_tree.
659 * Runs from a separate thread.
660 */
661static int prune_tree_thread(void *unused)
662{
663 for (;;) {
664 set_current_state(TASK_INTERRUPTIBLE);
665 if (list_empty(&prune_list))
666 schedule();
667 __set_current_state(TASK_RUNNING);
668
669 mutex_lock(&audit_cmd_mutex);
670 mutex_lock(&audit_filter_mutex);
671
672 while (!list_empty(&prune_list)) {
673 struct audit_tree *victim;
674
675 victim = list_entry(prune_list.next,
676 struct audit_tree, list);
677 list_del_init(&victim->list);
678
679 mutex_unlock(&audit_filter_mutex);
680
681 prune_one(victim);
682
683 mutex_lock(&audit_filter_mutex);
684 }
685
686 mutex_unlock(&audit_filter_mutex);
687 mutex_unlock(&audit_cmd_mutex);
688 }
689 return 0;
690}
691
692static int audit_launch_prune(void)
693{
694 if (prune_thread)
695 return 0;
696 prune_thread = kthread_create(prune_tree_thread, NULL,
697 "audit_prune_tree");
698 if (IS_ERR(prune_thread)) {
699 pr_err("cannot start thread audit_prune_tree");
700 prune_thread = NULL;
701 return -ENOMEM;
702 } else {
703 wake_up_process(prune_thread);
704 return 0;
705 }
706}
707
708/* called with audit_filter_mutex */
709int audit_add_tree_rule(struct audit_krule *rule)
710{
711 struct audit_tree *seed = rule->tree, *tree;
712 struct path path;
713 struct vfsmount *mnt;
714 int err;
715
716 rule->tree = NULL;
717 list_for_each_entry(tree, &tree_list, list) {
718 if (!strcmp(seed->pathname, tree->pathname)) {
719 put_tree(seed);
720 rule->tree = tree;
721 list_add(&rule->rlist, &tree->rules);
722 return 0;
723 }
724 }
725 tree = seed;
726 list_add(&tree->list, &tree_list);
727 list_add(&rule->rlist, &tree->rules);
728 /* do not set rule->tree yet */
729 mutex_unlock(&audit_filter_mutex);
730
731 if (unlikely(!prune_thread)) {
732 err = audit_launch_prune();
733 if (err)
734 goto Err;
735 }
736
737 err = kern_path(tree->pathname, 0, &path);
738 if (err)
739 goto Err;
740 mnt = collect_mounts(&path);
741 path_put(&path);
742 if (IS_ERR(mnt)) {
743 err = PTR_ERR(mnt);
744 goto Err;
745 }
746
747 get_tree(tree);
748 err = iterate_mounts(tag_mount, tree, mnt);
749 drop_collected_mounts(mnt);
750
751 if (!err) {
752 struct node *node;
753 spin_lock(&hash_lock);
754 list_for_each_entry(node, &tree->chunks, list)
755 node->index &= ~(1U<<31);
756 spin_unlock(&hash_lock);
757 } else {
758 trim_marked(tree);
759 goto Err;
760 }
761
762 mutex_lock(&audit_filter_mutex);
763 if (list_empty(&rule->rlist)) {
764 put_tree(tree);
765 return -ENOENT;
766 }
767 rule->tree = tree;
768 put_tree(tree);
769
770 return 0;
771Err:
772 mutex_lock(&audit_filter_mutex);
773 list_del_init(&tree->list);
774 list_del_init(&tree->rules);
775 put_tree(tree);
776 return err;
777}
778
779int audit_tag_tree(char *old, char *new)
780{
781 struct list_head cursor, barrier;
782 int failed = 0;
783 struct path path1, path2;
784 struct vfsmount *tagged;
785 int err;
786
787 err = kern_path(new, 0, &path2);
788 if (err)
789 return err;
790 tagged = collect_mounts(&path2);
791 path_put(&path2);
792 if (IS_ERR(tagged))
793 return PTR_ERR(tagged);
794
795 err = kern_path(old, 0, &path1);
796 if (err) {
797 drop_collected_mounts(tagged);
798 return err;
799 }
800
801 mutex_lock(&audit_filter_mutex);
802 list_add(&barrier, &tree_list);
803 list_add(&cursor, &barrier);
804
805 while (cursor.next != &tree_list) {
806 struct audit_tree *tree;
807 int good_one = 0;
808
809 tree = container_of(cursor.next, struct audit_tree, list);
810 get_tree(tree);
811 list_del(&cursor);
812 list_add(&cursor, &tree->list);
813 mutex_unlock(&audit_filter_mutex);
814
815 err = kern_path(tree->pathname, 0, &path2);
816 if (!err) {
817 good_one = path_is_under(&path1, &path2);
818 path_put(&path2);
819 }
820
821 if (!good_one) {
822 put_tree(tree);
823 mutex_lock(&audit_filter_mutex);
824 continue;
825 }
826
827 failed = iterate_mounts(tag_mount, tree, tagged);
828 if (failed) {
829 put_tree(tree);
830 mutex_lock(&audit_filter_mutex);
831 break;
832 }
833
834 mutex_lock(&audit_filter_mutex);
835 spin_lock(&hash_lock);
836 if (!tree->goner) {
837 list_del(&tree->list);
838 list_add(&tree->list, &tree_list);
839 }
840 spin_unlock(&hash_lock);
841 put_tree(tree);
842 }
843
844 while (barrier.prev != &tree_list) {
845 struct audit_tree *tree;
846
847 tree = container_of(barrier.prev, struct audit_tree, list);
848 get_tree(tree);
849 list_del(&tree->list);
850 list_add(&tree->list, &barrier);
851 mutex_unlock(&audit_filter_mutex);
852
853 if (!failed) {
854 struct node *node;
855 spin_lock(&hash_lock);
856 list_for_each_entry(node, &tree->chunks, list)
857 node->index &= ~(1U<<31);
858 spin_unlock(&hash_lock);
859 } else {
860 trim_marked(tree);
861 }
862
863 put_tree(tree);
864 mutex_lock(&audit_filter_mutex);
865 }
866 list_del(&barrier);
867 list_del(&cursor);
868 mutex_unlock(&audit_filter_mutex);
869 path_put(&path1);
870 drop_collected_mounts(tagged);
871 return failed;
872}
873
874
875static void audit_schedule_prune(void)
876{
877 wake_up_process(prune_thread);
878}
879
880/*
881 * ... and that one is done if evict_chunk() decides to delay until the end
882 * of syscall. Runs synchronously.
883 */
884void audit_kill_trees(struct list_head *list)
885{
886 mutex_lock(&audit_cmd_mutex);
887 mutex_lock(&audit_filter_mutex);
888
889 while (!list_empty(list)) {
890 struct audit_tree *victim;
891
892 victim = list_entry(list->next, struct audit_tree, list);
893 kill_rules(victim);
894 list_del_init(&victim->list);
895
896 mutex_unlock(&audit_filter_mutex);
897
898 prune_one(victim);
899
900 mutex_lock(&audit_filter_mutex);
901 }
902
903 mutex_unlock(&audit_filter_mutex);
904 mutex_unlock(&audit_cmd_mutex);
905}
906
907/*
908 * Here comes the stuff asynchronous to auditctl operations
909 */
910
911static void evict_chunk(struct audit_chunk *chunk)
912{
913 struct audit_tree *owner;
914 struct list_head *postponed = audit_killed_trees();
915 int need_prune = 0;
916 int n;
917
918 if (chunk->dead)
919 return;
920
921 chunk->dead = 1;
922 mutex_lock(&audit_filter_mutex);
923 spin_lock(&hash_lock);
924 while (!list_empty(&chunk->trees)) {
925 owner = list_entry(chunk->trees.next,
926 struct audit_tree, same_root);
927 owner->goner = 1;
928 owner->root = NULL;
929 list_del_init(&owner->same_root);
930 spin_unlock(&hash_lock);
931 if (!postponed) {
932 kill_rules(owner);
933 list_move(&owner->list, &prune_list);
934 need_prune = 1;
935 } else {
936 list_move(&owner->list, postponed);
937 }
938 spin_lock(&hash_lock);
939 }
940 list_del_rcu(&chunk->hash);
941 for (n = 0; n < chunk->count; n++)
942 list_del_init(&chunk->owners[n].list);
943 spin_unlock(&hash_lock);
944 mutex_unlock(&audit_filter_mutex);
945 if (need_prune)
946 audit_schedule_prune();
947}
948
949static int audit_tree_handle_event(struct fsnotify_group *group,
950 struct inode *to_tell,
951 struct fsnotify_mark *inode_mark,
952 struct fsnotify_mark *vfsmount_mark,
953 u32 mask, void *data, int data_type,
954 const unsigned char *file_name, u32 cookie)
955{
956 return 0;
957}
958
959static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
960{
961 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
962
963 evict_chunk(chunk);
964
965 /*
966 * We are guaranteed to have at least one reference to the mark from
967 * either the inode or the caller of fsnotify_destroy_mark().
968 */
969 BUG_ON(atomic_read(&entry->refcnt) < 1);
970}
971
972static const struct fsnotify_ops audit_tree_ops = {
973 .handle_event = audit_tree_handle_event,
974 .freeing_mark = audit_tree_freeing_mark,
975};
976
977static int __init audit_tree_init(void)
978{
979 int i;
980
981 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
982 if (IS_ERR(audit_tree_group))
983 audit_panic("cannot initialize fsnotify group for rectree watches");
984
985 for (i = 0; i < HASH_SIZE; i++)
986 INIT_LIST_HEAD(&chunk_hash_heads[i]);
987
988 return 0;
989}
990__initcall(audit_tree_init);