Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Hash: Hash algorithms under the crypto API
4 *
5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7
8#ifndef _CRYPTO_HASH_H
9#define _CRYPTO_HASH_H
10
11#include <linux/crypto.h>
12#include <linux/string.h>
13
14struct crypto_ahash;
15
16/**
17 * DOC: Message Digest Algorithm Definitions
18 *
19 * These data structures define modular message digest algorithm
20 * implementations, managed via crypto_register_ahash(),
21 * crypto_register_shash(), crypto_unregister_ahash() and
22 * crypto_unregister_shash().
23 */
24
25/**
26 * struct hash_alg_common - define properties of message digest
27 * @digestsize: Size of the result of the transformation. A buffer of this size
28 * must be available to the @final and @finup calls, so they can
29 * store the resulting hash into it. For various predefined sizes,
30 * search include/crypto/ using
31 * git grep _DIGEST_SIZE include/crypto.
32 * @statesize: Size of the block for partial state of the transformation. A
33 * buffer of this size must be passed to the @export function as it
34 * will save the partial state of the transformation into it. On the
35 * other side, the @import function will load the state from a
36 * buffer of this size as well.
37 * @base: Start of data structure of cipher algorithm. The common data
38 * structure of crypto_alg contains information common to all ciphers.
39 * The hash_alg_common data structure now adds the hash-specific
40 * information.
41 */
42struct hash_alg_common {
43 unsigned int digestsize;
44 unsigned int statesize;
45
46 struct crypto_alg base;
47};
48
49struct ahash_request {
50 struct crypto_async_request base;
51
52 unsigned int nbytes;
53 struct scatterlist *src;
54 u8 *result;
55
56 /* This field may only be used by the ahash API code. */
57 void *priv;
58
59 void *__ctx[] CRYPTO_MINALIGN_ATTR;
60};
61
62#define AHASH_REQUEST_ON_STACK(name, ahash) \
63 char __##name##_desc[sizeof(struct ahash_request) + \
64 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
65 struct ahash_request *name = (void *)__##name##_desc
66
67/**
68 * struct ahash_alg - asynchronous message digest definition
69 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
70 * state of the HASH transformation at the beginning. This shall fill in
71 * the internal structures used during the entire duration of the whole
72 * transformation. No data processing happens at this point. Driver code
73 * implementation must not use req->result.
74 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
75 * function actually pushes blocks of data from upper layers into the
76 * driver, which then passes those to the hardware as seen fit. This
77 * function must not finalize the HASH transformation by calculating the
78 * final message digest as this only adds more data into the
79 * transformation. This function shall not modify the transformation
80 * context, as this function may be called in parallel with the same
81 * transformation object. Data processing can happen synchronously
82 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use
83 * req->result.
84 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
85 * transformation and retrieves the resulting hash from the driver and
86 * pushes it back to upper layers. No data processing happens at this
87 * point unless hardware requires it to finish the transformation
88 * (then the data buffered by the device driver is processed).
89 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
90 * combination of @update and @final calls issued in sequence. As some
91 * hardware cannot do @update and @final separately, this callback was
92 * added to allow such hardware to be used at least by IPsec. Data
93 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
94 * at this point.
95 * @digest: Combination of @init and @update and @final. This function
96 * effectively behaves as the entire chain of operations, @init,
97 * @update and @final issued in sequence. Just like @finup, this was
98 * added for hardware which cannot do even the @finup, but can only do
99 * the whole transformation in one run. Data processing can happen
100 * synchronously [SHASH] or asynchronously [AHASH] at this point.
101 * @setkey: Set optional key used by the hashing algorithm. Intended to push
102 * optional key used by the hashing algorithm from upper layers into
103 * the driver. This function can store the key in the transformation
104 * context or can outright program it into the hardware. In the former
105 * case, one must be careful to program the key into the hardware at
106 * appropriate time and one must be careful that .setkey() can be
107 * called multiple times during the existence of the transformation
108 * object. Not all hashing algorithms do implement this function as it
109 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
110 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
111 * this function. This function must be called before any other of the
112 * @init, @update, @final, @finup, @digest is called. No data
113 * processing happens at this point.
114 * @export: Export partial state of the transformation. This function dumps the
115 * entire state of the ongoing transformation into a provided block of
116 * data so it can be @import 'ed back later on. This is useful in case
117 * you want to save partial result of the transformation after
118 * processing certain amount of data and reload this partial result
119 * multiple times later on for multiple re-use. No data processing
120 * happens at this point. Driver must not use req->result.
121 * @import: Import partial state of the transformation. This function loads the
122 * entire state of the ongoing transformation from a provided block of
123 * data so the transformation can continue from this point onward. No
124 * data processing happens at this point. Driver must not use
125 * req->result.
126 * @halg: see struct hash_alg_common
127 */
128struct ahash_alg {
129 int (*init)(struct ahash_request *req);
130 int (*update)(struct ahash_request *req);
131 int (*final)(struct ahash_request *req);
132 int (*finup)(struct ahash_request *req);
133 int (*digest)(struct ahash_request *req);
134 int (*export)(struct ahash_request *req, void *out);
135 int (*import)(struct ahash_request *req, const void *in);
136 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
137 unsigned int keylen);
138
139 struct hash_alg_common halg;
140};
141
142struct shash_desc {
143 struct crypto_shash *tfm;
144 void *__ctx[] CRYPTO_MINALIGN_ATTR;
145};
146
147#define HASH_MAX_DIGESTSIZE 64
148
149/*
150 * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc'
151 * containing a 'struct sha3_state'.
152 */
153#define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360)
154
155#define HASH_MAX_STATESIZE 512
156
157#define SHASH_DESC_ON_STACK(shash, ctx) \
158 char __##shash##_desc[sizeof(struct shash_desc) + \
159 HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \
160 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
161
162/**
163 * struct shash_alg - synchronous message digest definition
164 * @init: see struct ahash_alg
165 * @update: see struct ahash_alg
166 * @final: see struct ahash_alg
167 * @finup: see struct ahash_alg
168 * @digest: see struct ahash_alg
169 * @export: see struct ahash_alg
170 * @import: see struct ahash_alg
171 * @setkey: see struct ahash_alg
172 * @digestsize: see struct ahash_alg
173 * @statesize: see struct ahash_alg
174 * @descsize: Size of the operational state for the message digest. This state
175 * size is the memory size that needs to be allocated for
176 * shash_desc.__ctx
177 * @base: internally used
178 */
179struct shash_alg {
180 int (*init)(struct shash_desc *desc);
181 int (*update)(struct shash_desc *desc, const u8 *data,
182 unsigned int len);
183 int (*final)(struct shash_desc *desc, u8 *out);
184 int (*finup)(struct shash_desc *desc, const u8 *data,
185 unsigned int len, u8 *out);
186 int (*digest)(struct shash_desc *desc, const u8 *data,
187 unsigned int len, u8 *out);
188 int (*export)(struct shash_desc *desc, void *out);
189 int (*import)(struct shash_desc *desc, const void *in);
190 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
191 unsigned int keylen);
192
193 unsigned int descsize;
194
195 /* These fields must match hash_alg_common. */
196 unsigned int digestsize
197 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
198 unsigned int statesize;
199
200 struct crypto_alg base;
201};
202
203struct crypto_ahash {
204 int (*init)(struct ahash_request *req);
205 int (*update)(struct ahash_request *req);
206 int (*final)(struct ahash_request *req);
207 int (*finup)(struct ahash_request *req);
208 int (*digest)(struct ahash_request *req);
209 int (*export)(struct ahash_request *req, void *out);
210 int (*import)(struct ahash_request *req, const void *in);
211 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
212 unsigned int keylen);
213
214 unsigned int reqsize;
215 struct crypto_tfm base;
216};
217
218struct crypto_shash {
219 unsigned int descsize;
220 struct crypto_tfm base;
221};
222
223/**
224 * DOC: Asynchronous Message Digest API
225 *
226 * The asynchronous message digest API is used with the ciphers of type
227 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
228 *
229 * The asynchronous cipher operation discussion provided for the
230 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
231 */
232
233static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
234{
235 return container_of(tfm, struct crypto_ahash, base);
236}
237
238/**
239 * crypto_alloc_ahash() - allocate ahash cipher handle
240 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
241 * ahash cipher
242 * @type: specifies the type of the cipher
243 * @mask: specifies the mask for the cipher
244 *
245 * Allocate a cipher handle for an ahash. The returned struct
246 * crypto_ahash is the cipher handle that is required for any subsequent
247 * API invocation for that ahash.
248 *
249 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
250 * of an error, PTR_ERR() returns the error code.
251 */
252struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
253 u32 mask);
254
255static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
256{
257 return &tfm->base;
258}
259
260/**
261 * crypto_free_ahash() - zeroize and free the ahash handle
262 * @tfm: cipher handle to be freed
263 */
264static inline void crypto_free_ahash(struct crypto_ahash *tfm)
265{
266 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
267}
268
269/**
270 * crypto_has_ahash() - Search for the availability of an ahash.
271 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
272 * ahash
273 * @type: specifies the type of the ahash
274 * @mask: specifies the mask for the ahash
275 *
276 * Return: true when the ahash is known to the kernel crypto API; false
277 * otherwise
278 */
279int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
280
281static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
282{
283 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
284}
285
286static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
287{
288 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
289}
290
291static inline unsigned int crypto_ahash_alignmask(
292 struct crypto_ahash *tfm)
293{
294 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
295}
296
297/**
298 * crypto_ahash_blocksize() - obtain block size for cipher
299 * @tfm: cipher handle
300 *
301 * The block size for the message digest cipher referenced with the cipher
302 * handle is returned.
303 *
304 * Return: block size of cipher
305 */
306static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
307{
308 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
309}
310
311static inline struct hash_alg_common *__crypto_hash_alg_common(
312 struct crypto_alg *alg)
313{
314 return container_of(alg, struct hash_alg_common, base);
315}
316
317static inline struct hash_alg_common *crypto_hash_alg_common(
318 struct crypto_ahash *tfm)
319{
320 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
321}
322
323/**
324 * crypto_ahash_digestsize() - obtain message digest size
325 * @tfm: cipher handle
326 *
327 * The size for the message digest created by the message digest cipher
328 * referenced with the cipher handle is returned.
329 *
330 *
331 * Return: message digest size of cipher
332 */
333static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
334{
335 return crypto_hash_alg_common(tfm)->digestsize;
336}
337
338/**
339 * crypto_ahash_statesize() - obtain size of the ahash state
340 * @tfm: cipher handle
341 *
342 * Return the size of the ahash state. With the crypto_ahash_export()
343 * function, the caller can export the state into a buffer whose size is
344 * defined with this function.
345 *
346 * Return: size of the ahash state
347 */
348static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
349{
350 return crypto_hash_alg_common(tfm)->statesize;
351}
352
353static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
354{
355 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
356}
357
358static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
359{
360 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
361}
362
363static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
364{
365 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
366}
367
368/**
369 * crypto_ahash_reqtfm() - obtain cipher handle from request
370 * @req: asynchronous request handle that contains the reference to the ahash
371 * cipher handle
372 *
373 * Return the ahash cipher handle that is registered with the asynchronous
374 * request handle ahash_request.
375 *
376 * Return: ahash cipher handle
377 */
378static inline struct crypto_ahash *crypto_ahash_reqtfm(
379 struct ahash_request *req)
380{
381 return __crypto_ahash_cast(req->base.tfm);
382}
383
384/**
385 * crypto_ahash_reqsize() - obtain size of the request data structure
386 * @tfm: cipher handle
387 *
388 * Return: size of the request data
389 */
390static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
391{
392 return tfm->reqsize;
393}
394
395static inline void *ahash_request_ctx(struct ahash_request *req)
396{
397 return req->__ctx;
398}
399
400/**
401 * crypto_ahash_setkey - set key for cipher handle
402 * @tfm: cipher handle
403 * @key: buffer holding the key
404 * @keylen: length of the key in bytes
405 *
406 * The caller provided key is set for the ahash cipher. The cipher
407 * handle must point to a keyed hash in order for this function to succeed.
408 *
409 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
410 */
411int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
412 unsigned int keylen);
413
414/**
415 * crypto_ahash_finup() - update and finalize message digest
416 * @req: reference to the ahash_request handle that holds all information
417 * needed to perform the cipher operation
418 *
419 * This function is a "short-hand" for the function calls of
420 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
421 * meaning as discussed for those separate functions.
422 *
423 * Return: see crypto_ahash_final()
424 */
425int crypto_ahash_finup(struct ahash_request *req);
426
427/**
428 * crypto_ahash_final() - calculate message digest
429 * @req: reference to the ahash_request handle that holds all information
430 * needed to perform the cipher operation
431 *
432 * Finalize the message digest operation and create the message digest
433 * based on all data added to the cipher handle. The message digest is placed
434 * into the output buffer registered with the ahash_request handle.
435 *
436 * Return:
437 * 0 if the message digest was successfully calculated;
438 * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later;
439 * -EBUSY if queue is full and request should be resubmitted later;
440 * other < 0 if an error occurred
441 */
442int crypto_ahash_final(struct ahash_request *req);
443
444/**
445 * crypto_ahash_digest() - calculate message digest for a buffer
446 * @req: reference to the ahash_request handle that holds all information
447 * needed to perform the cipher operation
448 *
449 * This function is a "short-hand" for the function calls of crypto_ahash_init,
450 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
451 * meaning as discussed for those separate three functions.
452 *
453 * Return: see crypto_ahash_final()
454 */
455int crypto_ahash_digest(struct ahash_request *req);
456
457/**
458 * crypto_ahash_export() - extract current message digest state
459 * @req: reference to the ahash_request handle whose state is exported
460 * @out: output buffer of sufficient size that can hold the hash state
461 *
462 * This function exports the hash state of the ahash_request handle into the
463 * caller-allocated output buffer out which must have sufficient size (e.g. by
464 * calling crypto_ahash_statesize()).
465 *
466 * Return: 0 if the export was successful; < 0 if an error occurred
467 */
468static inline int crypto_ahash_export(struct ahash_request *req, void *out)
469{
470 return crypto_ahash_reqtfm(req)->export(req, out);
471}
472
473/**
474 * crypto_ahash_import() - import message digest state
475 * @req: reference to ahash_request handle the state is imported into
476 * @in: buffer holding the state
477 *
478 * This function imports the hash state into the ahash_request handle from the
479 * input buffer. That buffer should have been generated with the
480 * crypto_ahash_export function.
481 *
482 * Return: 0 if the import was successful; < 0 if an error occurred
483 */
484static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
485{
486 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
487
488 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
489 return -ENOKEY;
490
491 return tfm->import(req, in);
492}
493
494/**
495 * crypto_ahash_init() - (re)initialize message digest handle
496 * @req: ahash_request handle that already is initialized with all necessary
497 * data using the ahash_request_* API functions
498 *
499 * The call (re-)initializes the message digest referenced by the ahash_request
500 * handle. Any potentially existing state created by previous operations is
501 * discarded.
502 *
503 * Return: see crypto_ahash_final()
504 */
505static inline int crypto_ahash_init(struct ahash_request *req)
506{
507 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
508
509 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
510 return -ENOKEY;
511
512 return tfm->init(req);
513}
514
515/**
516 * crypto_ahash_update() - add data to message digest for processing
517 * @req: ahash_request handle that was previously initialized with the
518 * crypto_ahash_init call.
519 *
520 * Updates the message digest state of the &ahash_request handle. The input data
521 * is pointed to by the scatter/gather list registered in the &ahash_request
522 * handle
523 *
524 * Return: see crypto_ahash_final()
525 */
526static inline int crypto_ahash_update(struct ahash_request *req)
527{
528 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
529 struct crypto_alg *alg = tfm->base.__crt_alg;
530 unsigned int nbytes = req->nbytes;
531 int ret;
532
533 crypto_stats_get(alg);
534 ret = crypto_ahash_reqtfm(req)->update(req);
535 crypto_stats_ahash_update(nbytes, ret, alg);
536 return ret;
537}
538
539/**
540 * DOC: Asynchronous Hash Request Handle
541 *
542 * The &ahash_request data structure contains all pointers to data
543 * required for the asynchronous cipher operation. This includes the cipher
544 * handle (which can be used by multiple &ahash_request instances), pointer
545 * to plaintext and the message digest output buffer, asynchronous callback
546 * function, etc. It acts as a handle to the ahash_request_* API calls in a
547 * similar way as ahash handle to the crypto_ahash_* API calls.
548 */
549
550/**
551 * ahash_request_set_tfm() - update cipher handle reference in request
552 * @req: request handle to be modified
553 * @tfm: cipher handle that shall be added to the request handle
554 *
555 * Allow the caller to replace the existing ahash handle in the request
556 * data structure with a different one.
557 */
558static inline void ahash_request_set_tfm(struct ahash_request *req,
559 struct crypto_ahash *tfm)
560{
561 req->base.tfm = crypto_ahash_tfm(tfm);
562}
563
564/**
565 * ahash_request_alloc() - allocate request data structure
566 * @tfm: cipher handle to be registered with the request
567 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
568 *
569 * Allocate the request data structure that must be used with the ahash
570 * message digest API calls. During
571 * the allocation, the provided ahash handle
572 * is registered in the request data structure.
573 *
574 * Return: allocated request handle in case of success, or NULL if out of memory
575 */
576static inline struct ahash_request *ahash_request_alloc(
577 struct crypto_ahash *tfm, gfp_t gfp)
578{
579 struct ahash_request *req;
580
581 req = kmalloc(sizeof(struct ahash_request) +
582 crypto_ahash_reqsize(tfm), gfp);
583
584 if (likely(req))
585 ahash_request_set_tfm(req, tfm);
586
587 return req;
588}
589
590/**
591 * ahash_request_free() - zeroize and free the request data structure
592 * @req: request data structure cipher handle to be freed
593 */
594static inline void ahash_request_free(struct ahash_request *req)
595{
596 kzfree(req);
597}
598
599static inline void ahash_request_zero(struct ahash_request *req)
600{
601 memzero_explicit(req, sizeof(*req) +
602 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
603}
604
605static inline struct ahash_request *ahash_request_cast(
606 struct crypto_async_request *req)
607{
608 return container_of(req, struct ahash_request, base);
609}
610
611/**
612 * ahash_request_set_callback() - set asynchronous callback function
613 * @req: request handle
614 * @flags: specify zero or an ORing of the flags
615 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
616 * increase the wait queue beyond the initial maximum size;
617 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
618 * @compl: callback function pointer to be registered with the request handle
619 * @data: The data pointer refers to memory that is not used by the kernel
620 * crypto API, but provided to the callback function for it to use. Here,
621 * the caller can provide a reference to memory the callback function can
622 * operate on. As the callback function is invoked asynchronously to the
623 * related functionality, it may need to access data structures of the
624 * related functionality which can be referenced using this pointer. The
625 * callback function can access the memory via the "data" field in the
626 * &crypto_async_request data structure provided to the callback function.
627 *
628 * This function allows setting the callback function that is triggered once
629 * the cipher operation completes.
630 *
631 * The callback function is registered with the &ahash_request handle and
632 * must comply with the following template::
633 *
634 * void callback_function(struct crypto_async_request *req, int error)
635 */
636static inline void ahash_request_set_callback(struct ahash_request *req,
637 u32 flags,
638 crypto_completion_t compl,
639 void *data)
640{
641 req->base.complete = compl;
642 req->base.data = data;
643 req->base.flags = flags;
644}
645
646/**
647 * ahash_request_set_crypt() - set data buffers
648 * @req: ahash_request handle to be updated
649 * @src: source scatter/gather list
650 * @result: buffer that is filled with the message digest -- the caller must
651 * ensure that the buffer has sufficient space by, for example, calling
652 * crypto_ahash_digestsize()
653 * @nbytes: number of bytes to process from the source scatter/gather list
654 *
655 * By using this call, the caller references the source scatter/gather list.
656 * The source scatter/gather list points to the data the message digest is to
657 * be calculated for.
658 */
659static inline void ahash_request_set_crypt(struct ahash_request *req,
660 struct scatterlist *src, u8 *result,
661 unsigned int nbytes)
662{
663 req->src = src;
664 req->nbytes = nbytes;
665 req->result = result;
666}
667
668/**
669 * DOC: Synchronous Message Digest API
670 *
671 * The synchronous message digest API is used with the ciphers of type
672 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
673 *
674 * The message digest API is able to maintain state information for the
675 * caller.
676 *
677 * The synchronous message digest API can store user-related context in in its
678 * shash_desc request data structure.
679 */
680
681/**
682 * crypto_alloc_shash() - allocate message digest handle
683 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
684 * message digest cipher
685 * @type: specifies the type of the cipher
686 * @mask: specifies the mask for the cipher
687 *
688 * Allocate a cipher handle for a message digest. The returned &struct
689 * crypto_shash is the cipher handle that is required for any subsequent
690 * API invocation for that message digest.
691 *
692 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
693 * of an error, PTR_ERR() returns the error code.
694 */
695struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
696 u32 mask);
697
698static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
699{
700 return &tfm->base;
701}
702
703/**
704 * crypto_free_shash() - zeroize and free the message digest handle
705 * @tfm: cipher handle to be freed
706 */
707static inline void crypto_free_shash(struct crypto_shash *tfm)
708{
709 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
710}
711
712static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
713{
714 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
715}
716
717static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
718{
719 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
720}
721
722static inline unsigned int crypto_shash_alignmask(
723 struct crypto_shash *tfm)
724{
725 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
726}
727
728/**
729 * crypto_shash_blocksize() - obtain block size for cipher
730 * @tfm: cipher handle
731 *
732 * The block size for the message digest cipher referenced with the cipher
733 * handle is returned.
734 *
735 * Return: block size of cipher
736 */
737static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
738{
739 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
740}
741
742static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
743{
744 return container_of(alg, struct shash_alg, base);
745}
746
747static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
748{
749 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
750}
751
752/**
753 * crypto_shash_digestsize() - obtain message digest size
754 * @tfm: cipher handle
755 *
756 * The size for the message digest created by the message digest cipher
757 * referenced with the cipher handle is returned.
758 *
759 * Return: digest size of cipher
760 */
761static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
762{
763 return crypto_shash_alg(tfm)->digestsize;
764}
765
766static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
767{
768 return crypto_shash_alg(tfm)->statesize;
769}
770
771static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
772{
773 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
774}
775
776static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
777{
778 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
779}
780
781static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
782{
783 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
784}
785
786/**
787 * crypto_shash_descsize() - obtain the operational state size
788 * @tfm: cipher handle
789 *
790 * The size of the operational state the cipher needs during operation is
791 * returned for the hash referenced with the cipher handle. This size is
792 * required to calculate the memory requirements to allow the caller allocating
793 * sufficient memory for operational state.
794 *
795 * The operational state is defined with struct shash_desc where the size of
796 * that data structure is to be calculated as
797 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
798 *
799 * Return: size of the operational state
800 */
801static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
802{
803 return tfm->descsize;
804}
805
806static inline void *shash_desc_ctx(struct shash_desc *desc)
807{
808 return desc->__ctx;
809}
810
811/**
812 * crypto_shash_setkey() - set key for message digest
813 * @tfm: cipher handle
814 * @key: buffer holding the key
815 * @keylen: length of the key in bytes
816 *
817 * The caller provided key is set for the keyed message digest cipher. The
818 * cipher handle must point to a keyed message digest cipher in order for this
819 * function to succeed.
820 *
821 * Context: Any context.
822 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
823 */
824int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
825 unsigned int keylen);
826
827/**
828 * crypto_shash_digest() - calculate message digest for buffer
829 * @desc: see crypto_shash_final()
830 * @data: see crypto_shash_update()
831 * @len: see crypto_shash_update()
832 * @out: see crypto_shash_final()
833 *
834 * This function is a "short-hand" for the function calls of crypto_shash_init,
835 * crypto_shash_update and crypto_shash_final. The parameters have the same
836 * meaning as discussed for those separate three functions.
837 *
838 * Context: Any context.
839 * Return: 0 if the message digest creation was successful; < 0 if an error
840 * occurred
841 */
842int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
843 unsigned int len, u8 *out);
844
845/**
846 * crypto_shash_export() - extract operational state for message digest
847 * @desc: reference to the operational state handle whose state is exported
848 * @out: output buffer of sufficient size that can hold the hash state
849 *
850 * This function exports the hash state of the operational state handle into the
851 * caller-allocated output buffer out which must have sufficient size (e.g. by
852 * calling crypto_shash_descsize).
853 *
854 * Context: Any context.
855 * Return: 0 if the export creation was successful; < 0 if an error occurred
856 */
857static inline int crypto_shash_export(struct shash_desc *desc, void *out)
858{
859 return crypto_shash_alg(desc->tfm)->export(desc, out);
860}
861
862/**
863 * crypto_shash_import() - import operational state
864 * @desc: reference to the operational state handle the state imported into
865 * @in: buffer holding the state
866 *
867 * This function imports the hash state into the operational state handle from
868 * the input buffer. That buffer should have been generated with the
869 * crypto_ahash_export function.
870 *
871 * Context: Any context.
872 * Return: 0 if the import was successful; < 0 if an error occurred
873 */
874static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
875{
876 struct crypto_shash *tfm = desc->tfm;
877
878 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
879 return -ENOKEY;
880
881 return crypto_shash_alg(tfm)->import(desc, in);
882}
883
884/**
885 * crypto_shash_init() - (re)initialize message digest
886 * @desc: operational state handle that is already filled
887 *
888 * The call (re-)initializes the message digest referenced by the
889 * operational state handle. Any potentially existing state created by
890 * previous operations is discarded.
891 *
892 * Context: Any context.
893 * Return: 0 if the message digest initialization was successful; < 0 if an
894 * error occurred
895 */
896static inline int crypto_shash_init(struct shash_desc *desc)
897{
898 struct crypto_shash *tfm = desc->tfm;
899
900 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
901 return -ENOKEY;
902
903 return crypto_shash_alg(tfm)->init(desc);
904}
905
906/**
907 * crypto_shash_update() - add data to message digest for processing
908 * @desc: operational state handle that is already initialized
909 * @data: input data to be added to the message digest
910 * @len: length of the input data
911 *
912 * Updates the message digest state of the operational state handle.
913 *
914 * Context: Any context.
915 * Return: 0 if the message digest update was successful; < 0 if an error
916 * occurred
917 */
918int crypto_shash_update(struct shash_desc *desc, const u8 *data,
919 unsigned int len);
920
921/**
922 * crypto_shash_final() - calculate message digest
923 * @desc: operational state handle that is already filled with data
924 * @out: output buffer filled with the message digest
925 *
926 * Finalize the message digest operation and create the message digest
927 * based on all data added to the cipher handle. The message digest is placed
928 * into the output buffer. The caller must ensure that the output buffer is
929 * large enough by using crypto_shash_digestsize.
930 *
931 * Context: Any context.
932 * Return: 0 if the message digest creation was successful; < 0 if an error
933 * occurred
934 */
935int crypto_shash_final(struct shash_desc *desc, u8 *out);
936
937/**
938 * crypto_shash_finup() - calculate message digest of buffer
939 * @desc: see crypto_shash_final()
940 * @data: see crypto_shash_update()
941 * @len: see crypto_shash_update()
942 * @out: see crypto_shash_final()
943 *
944 * This function is a "short-hand" for the function calls of
945 * crypto_shash_update and crypto_shash_final. The parameters have the same
946 * meaning as discussed for those separate functions.
947 *
948 * Context: Any context.
949 * Return: 0 if the message digest creation was successful; < 0 if an error
950 * occurred
951 */
952int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
953 unsigned int len, u8 *out);
954
955static inline void shash_desc_zero(struct shash_desc *desc)
956{
957 memzero_explicit(desc,
958 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
959}
960
961#endif /* _CRYPTO_HASH_H */
1/*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13#ifndef _CRYPTO_HASH_H
14#define _CRYPTO_HASH_H
15
16#include <linux/crypto.h>
17#include <linux/string.h>
18
19struct crypto_ahash;
20
21/**
22 * DOC: Message Digest Algorithm Definitions
23 *
24 * These data structures define modular message digest algorithm
25 * implementations, managed via crypto_register_ahash(),
26 * crypto_register_shash(), crypto_unregister_ahash() and
27 * crypto_unregister_shash().
28 */
29
30/**
31 * struct hash_alg_common - define properties of message digest
32 * @digestsize: Size of the result of the transformation. A buffer of this size
33 * must be available to the @final and @finup calls, so they can
34 * store the resulting hash into it. For various predefined sizes,
35 * search include/crypto/ using
36 * git grep _DIGEST_SIZE include/crypto.
37 * @statesize: Size of the block for partial state of the transformation. A
38 * buffer of this size must be passed to the @export function as it
39 * will save the partial state of the transformation into it. On the
40 * other side, the @import function will load the state from a
41 * buffer of this size as well.
42 * @base: Start of data structure of cipher algorithm. The common data
43 * structure of crypto_alg contains information common to all ciphers.
44 * The hash_alg_common data structure now adds the hash-specific
45 * information.
46 */
47struct hash_alg_common {
48 unsigned int digestsize;
49 unsigned int statesize;
50
51 struct crypto_alg base;
52};
53
54struct ahash_request {
55 struct crypto_async_request base;
56
57 unsigned int nbytes;
58 struct scatterlist *src;
59 u8 *result;
60
61 /* This field may only be used by the ahash API code. */
62 void *priv;
63
64 void *__ctx[] CRYPTO_MINALIGN_ATTR;
65};
66
67#define AHASH_REQUEST_ON_STACK(name, ahash) \
68 char __##name##_desc[sizeof(struct ahash_request) + \
69 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
70 struct ahash_request *name = (void *)__##name##_desc
71
72/**
73 * struct ahash_alg - asynchronous message digest definition
74 * @init: Initialize the transformation context. Intended only to initialize the
75 * state of the HASH transformation at the beginning. This shall fill in
76 * the internal structures used during the entire duration of the whole
77 * transformation. No data processing happens at this point.
78 * @update: Push a chunk of data into the driver for transformation. This
79 * function actually pushes blocks of data from upper layers into the
80 * driver, which then passes those to the hardware as seen fit. This
81 * function must not finalize the HASH transformation by calculating the
82 * final message digest as this only adds more data into the
83 * transformation. This function shall not modify the transformation
84 * context, as this function may be called in parallel with the same
85 * transformation object. Data processing can happen synchronously
86 * [SHASH] or asynchronously [AHASH] at this point.
87 * @final: Retrieve result from the driver. This function finalizes the
88 * transformation and retrieves the resulting hash from the driver and
89 * pushes it back to upper layers. No data processing happens at this
90 * point.
91 * @finup: Combination of @update and @final. This function is effectively a
92 * combination of @update and @final calls issued in sequence. As some
93 * hardware cannot do @update and @final separately, this callback was
94 * added to allow such hardware to be used at least by IPsec. Data
95 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
96 * at this point.
97 * @digest: Combination of @init and @update and @final. This function
98 * effectively behaves as the entire chain of operations, @init,
99 * @update and @final issued in sequence. Just like @finup, this was
100 * added for hardware which cannot do even the @finup, but can only do
101 * the whole transformation in one run. Data processing can happen
102 * synchronously [SHASH] or asynchronously [AHASH] at this point.
103 * @setkey: Set optional key used by the hashing algorithm. Intended to push
104 * optional key used by the hashing algorithm from upper layers into
105 * the driver. This function can store the key in the transformation
106 * context or can outright program it into the hardware. In the former
107 * case, one must be careful to program the key into the hardware at
108 * appropriate time and one must be careful that .setkey() can be
109 * called multiple times during the existence of the transformation
110 * object. Not all hashing algorithms do implement this function as it
111 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
112 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
113 * this function. This function must be called before any other of the
114 * @init, @update, @final, @finup, @digest is called. No data
115 * processing happens at this point.
116 * @export: Export partial state of the transformation. This function dumps the
117 * entire state of the ongoing transformation into a provided block of
118 * data so it can be @import 'ed back later on. This is useful in case
119 * you want to save partial result of the transformation after
120 * processing certain amount of data and reload this partial result
121 * multiple times later on for multiple re-use. No data processing
122 * happens at this point.
123 * @import: Import partial state of the transformation. This function loads the
124 * entire state of the ongoing transformation from a provided block of
125 * data so the transformation can continue from this point onward. No
126 * data processing happens at this point.
127 * @halg: see struct hash_alg_common
128 */
129struct ahash_alg {
130 int (*init)(struct ahash_request *req);
131 int (*update)(struct ahash_request *req);
132 int (*final)(struct ahash_request *req);
133 int (*finup)(struct ahash_request *req);
134 int (*digest)(struct ahash_request *req);
135 int (*export)(struct ahash_request *req, void *out);
136 int (*import)(struct ahash_request *req, const void *in);
137 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
138 unsigned int keylen);
139
140 struct hash_alg_common halg;
141};
142
143struct shash_desc {
144 struct crypto_shash *tfm;
145 u32 flags;
146
147 void *__ctx[] CRYPTO_MINALIGN_ATTR;
148};
149
150#define SHASH_DESC_ON_STACK(shash, ctx) \
151 char __##shash##_desc[sizeof(struct shash_desc) + \
152 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
153 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
154
155/**
156 * struct shash_alg - synchronous message digest definition
157 * @init: see struct ahash_alg
158 * @update: see struct ahash_alg
159 * @final: see struct ahash_alg
160 * @finup: see struct ahash_alg
161 * @digest: see struct ahash_alg
162 * @export: see struct ahash_alg
163 * @import: see struct ahash_alg
164 * @setkey: see struct ahash_alg
165 * @digestsize: see struct ahash_alg
166 * @statesize: see struct ahash_alg
167 * @descsize: Size of the operational state for the message digest. This state
168 * size is the memory size that needs to be allocated for
169 * shash_desc.__ctx
170 * @base: internally used
171 */
172struct shash_alg {
173 int (*init)(struct shash_desc *desc);
174 int (*update)(struct shash_desc *desc, const u8 *data,
175 unsigned int len);
176 int (*final)(struct shash_desc *desc, u8 *out);
177 int (*finup)(struct shash_desc *desc, const u8 *data,
178 unsigned int len, u8 *out);
179 int (*digest)(struct shash_desc *desc, const u8 *data,
180 unsigned int len, u8 *out);
181 int (*export)(struct shash_desc *desc, void *out);
182 int (*import)(struct shash_desc *desc, const void *in);
183 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
184 unsigned int keylen);
185
186 unsigned int descsize;
187
188 /* These fields must match hash_alg_common. */
189 unsigned int digestsize
190 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
191 unsigned int statesize;
192
193 struct crypto_alg base;
194};
195
196struct crypto_ahash {
197 int (*init)(struct ahash_request *req);
198 int (*update)(struct ahash_request *req);
199 int (*final)(struct ahash_request *req);
200 int (*finup)(struct ahash_request *req);
201 int (*digest)(struct ahash_request *req);
202 int (*export)(struct ahash_request *req, void *out);
203 int (*import)(struct ahash_request *req, const void *in);
204 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
205 unsigned int keylen);
206
207 unsigned int reqsize;
208 bool has_setkey;
209 struct crypto_tfm base;
210};
211
212struct crypto_shash {
213 unsigned int descsize;
214 struct crypto_tfm base;
215};
216
217/**
218 * DOC: Asynchronous Message Digest API
219 *
220 * The asynchronous message digest API is used with the ciphers of type
221 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
222 *
223 * The asynchronous cipher operation discussion provided for the
224 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
225 */
226
227static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
228{
229 return container_of(tfm, struct crypto_ahash, base);
230}
231
232/**
233 * crypto_alloc_ahash() - allocate ahash cipher handle
234 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
235 * ahash cipher
236 * @type: specifies the type of the cipher
237 * @mask: specifies the mask for the cipher
238 *
239 * Allocate a cipher handle for an ahash. The returned struct
240 * crypto_ahash is the cipher handle that is required for any subsequent
241 * API invocation for that ahash.
242 *
243 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
244 * of an error, PTR_ERR() returns the error code.
245 */
246struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
247 u32 mask);
248
249static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
250{
251 return &tfm->base;
252}
253
254/**
255 * crypto_free_ahash() - zeroize and free the ahash handle
256 * @tfm: cipher handle to be freed
257 */
258static inline void crypto_free_ahash(struct crypto_ahash *tfm)
259{
260 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
261}
262
263/**
264 * crypto_has_ahash() - Search for the availability of an ahash.
265 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
266 * ahash
267 * @type: specifies the type of the ahash
268 * @mask: specifies the mask for the ahash
269 *
270 * Return: true when the ahash is known to the kernel crypto API; false
271 * otherwise
272 */
273int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
274
275static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
276{
277 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
278}
279
280static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
281{
282 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
283}
284
285static inline unsigned int crypto_ahash_alignmask(
286 struct crypto_ahash *tfm)
287{
288 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
289}
290
291/**
292 * crypto_ahash_blocksize() - obtain block size for cipher
293 * @tfm: cipher handle
294 *
295 * The block size for the message digest cipher referenced with the cipher
296 * handle is returned.
297 *
298 * Return: block size of cipher
299 */
300static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
301{
302 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
303}
304
305static inline struct hash_alg_common *__crypto_hash_alg_common(
306 struct crypto_alg *alg)
307{
308 return container_of(alg, struct hash_alg_common, base);
309}
310
311static inline struct hash_alg_common *crypto_hash_alg_common(
312 struct crypto_ahash *tfm)
313{
314 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
315}
316
317/**
318 * crypto_ahash_digestsize() - obtain message digest size
319 * @tfm: cipher handle
320 *
321 * The size for the message digest created by the message digest cipher
322 * referenced with the cipher handle is returned.
323 *
324 *
325 * Return: message digest size of cipher
326 */
327static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
328{
329 return crypto_hash_alg_common(tfm)->digestsize;
330}
331
332static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
333{
334 return crypto_hash_alg_common(tfm)->statesize;
335}
336
337static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
338{
339 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
340}
341
342static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
343{
344 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
345}
346
347static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
348{
349 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
350}
351
352/**
353 * crypto_ahash_reqtfm() - obtain cipher handle from request
354 * @req: asynchronous request handle that contains the reference to the ahash
355 * cipher handle
356 *
357 * Return the ahash cipher handle that is registered with the asynchronous
358 * request handle ahash_request.
359 *
360 * Return: ahash cipher handle
361 */
362static inline struct crypto_ahash *crypto_ahash_reqtfm(
363 struct ahash_request *req)
364{
365 return __crypto_ahash_cast(req->base.tfm);
366}
367
368/**
369 * crypto_ahash_reqsize() - obtain size of the request data structure
370 * @tfm: cipher handle
371 *
372 * Return the size of the ahash state size. With the crypto_ahash_export
373 * function, the caller can export the state into a buffer whose size is
374 * defined with this function.
375 *
376 * Return: size of the ahash state
377 */
378static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
379{
380 return tfm->reqsize;
381}
382
383static inline void *ahash_request_ctx(struct ahash_request *req)
384{
385 return req->__ctx;
386}
387
388/**
389 * crypto_ahash_setkey - set key for cipher handle
390 * @tfm: cipher handle
391 * @key: buffer holding the key
392 * @keylen: length of the key in bytes
393 *
394 * The caller provided key is set for the ahash cipher. The cipher
395 * handle must point to a keyed hash in order for this function to succeed.
396 *
397 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
398 */
399int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
400 unsigned int keylen);
401
402static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm)
403{
404 return tfm->has_setkey;
405}
406
407/**
408 * crypto_ahash_finup() - update and finalize message digest
409 * @req: reference to the ahash_request handle that holds all information
410 * needed to perform the cipher operation
411 *
412 * This function is a "short-hand" for the function calls of
413 * crypto_ahash_update and crypto_shash_final. The parameters have the same
414 * meaning as discussed for those separate functions.
415 *
416 * Return: 0 if the message digest creation was successful; < 0 if an error
417 * occurred
418 */
419int crypto_ahash_finup(struct ahash_request *req);
420
421/**
422 * crypto_ahash_final() - calculate message digest
423 * @req: reference to the ahash_request handle that holds all information
424 * needed to perform the cipher operation
425 *
426 * Finalize the message digest operation and create the message digest
427 * based on all data added to the cipher handle. The message digest is placed
428 * into the output buffer registered with the ahash_request handle.
429 *
430 * Return: 0 if the message digest creation was successful; < 0 if an error
431 * occurred
432 */
433int crypto_ahash_final(struct ahash_request *req);
434
435/**
436 * crypto_ahash_digest() - calculate message digest for a buffer
437 * @req: reference to the ahash_request handle that holds all information
438 * needed to perform the cipher operation
439 *
440 * This function is a "short-hand" for the function calls of crypto_ahash_init,
441 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
442 * meaning as discussed for those separate three functions.
443 *
444 * Return: 0 if the message digest creation was successful; < 0 if an error
445 * occurred
446 */
447int crypto_ahash_digest(struct ahash_request *req);
448
449/**
450 * crypto_ahash_export() - extract current message digest state
451 * @req: reference to the ahash_request handle whose state is exported
452 * @out: output buffer of sufficient size that can hold the hash state
453 *
454 * This function exports the hash state of the ahash_request handle into the
455 * caller-allocated output buffer out which must have sufficient size (e.g. by
456 * calling crypto_ahash_reqsize).
457 *
458 * Return: 0 if the export was successful; < 0 if an error occurred
459 */
460static inline int crypto_ahash_export(struct ahash_request *req, void *out)
461{
462 return crypto_ahash_reqtfm(req)->export(req, out);
463}
464
465/**
466 * crypto_ahash_import() - import message digest state
467 * @req: reference to ahash_request handle the state is imported into
468 * @in: buffer holding the state
469 *
470 * This function imports the hash state into the ahash_request handle from the
471 * input buffer. That buffer should have been generated with the
472 * crypto_ahash_export function.
473 *
474 * Return: 0 if the import was successful; < 0 if an error occurred
475 */
476static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
477{
478 return crypto_ahash_reqtfm(req)->import(req, in);
479}
480
481/**
482 * crypto_ahash_init() - (re)initialize message digest handle
483 * @req: ahash_request handle that already is initialized with all necessary
484 * data using the ahash_request_* API functions
485 *
486 * The call (re-)initializes the message digest referenced by the ahash_request
487 * handle. Any potentially existing state created by previous operations is
488 * discarded.
489 *
490 * Return: 0 if the message digest initialization was successful; < 0 if an
491 * error occurred
492 */
493static inline int crypto_ahash_init(struct ahash_request *req)
494{
495 return crypto_ahash_reqtfm(req)->init(req);
496}
497
498/**
499 * crypto_ahash_update() - add data to message digest for processing
500 * @req: ahash_request handle that was previously initialized with the
501 * crypto_ahash_init call.
502 *
503 * Updates the message digest state of the &ahash_request handle. The input data
504 * is pointed to by the scatter/gather list registered in the &ahash_request
505 * handle
506 *
507 * Return: 0 if the message digest update was successful; < 0 if an error
508 * occurred
509 */
510static inline int crypto_ahash_update(struct ahash_request *req)
511{
512 return crypto_ahash_reqtfm(req)->update(req);
513}
514
515/**
516 * DOC: Asynchronous Hash Request Handle
517 *
518 * The &ahash_request data structure contains all pointers to data
519 * required for the asynchronous cipher operation. This includes the cipher
520 * handle (which can be used by multiple &ahash_request instances), pointer
521 * to plaintext and the message digest output buffer, asynchronous callback
522 * function, etc. It acts as a handle to the ahash_request_* API calls in a
523 * similar way as ahash handle to the crypto_ahash_* API calls.
524 */
525
526/**
527 * ahash_request_set_tfm() - update cipher handle reference in request
528 * @req: request handle to be modified
529 * @tfm: cipher handle that shall be added to the request handle
530 *
531 * Allow the caller to replace the existing ahash handle in the request
532 * data structure with a different one.
533 */
534static inline void ahash_request_set_tfm(struct ahash_request *req,
535 struct crypto_ahash *tfm)
536{
537 req->base.tfm = crypto_ahash_tfm(tfm);
538}
539
540/**
541 * ahash_request_alloc() - allocate request data structure
542 * @tfm: cipher handle to be registered with the request
543 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
544 *
545 * Allocate the request data structure that must be used with the ahash
546 * message digest API calls. During
547 * the allocation, the provided ahash handle
548 * is registered in the request data structure.
549 *
550 * Return: allocated request handle in case of success; IS_ERR() is true in case
551 * of an error, PTR_ERR() returns the error code.
552 */
553static inline struct ahash_request *ahash_request_alloc(
554 struct crypto_ahash *tfm, gfp_t gfp)
555{
556 struct ahash_request *req;
557
558 req = kmalloc(sizeof(struct ahash_request) +
559 crypto_ahash_reqsize(tfm), gfp);
560
561 if (likely(req))
562 ahash_request_set_tfm(req, tfm);
563
564 return req;
565}
566
567/**
568 * ahash_request_free() - zeroize and free the request data structure
569 * @req: request data structure cipher handle to be freed
570 */
571static inline void ahash_request_free(struct ahash_request *req)
572{
573 kzfree(req);
574}
575
576static inline void ahash_request_zero(struct ahash_request *req)
577{
578 memzero_explicit(req, sizeof(*req) +
579 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
580}
581
582static inline struct ahash_request *ahash_request_cast(
583 struct crypto_async_request *req)
584{
585 return container_of(req, struct ahash_request, base);
586}
587
588/**
589 * ahash_request_set_callback() - set asynchronous callback function
590 * @req: request handle
591 * @flags: specify zero or an ORing of the flags
592 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
593 * increase the wait queue beyond the initial maximum size;
594 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
595 * @compl: callback function pointer to be registered with the request handle
596 * @data: The data pointer refers to memory that is not used by the kernel
597 * crypto API, but provided to the callback function for it to use. Here,
598 * the caller can provide a reference to memory the callback function can
599 * operate on. As the callback function is invoked asynchronously to the
600 * related functionality, it may need to access data structures of the
601 * related functionality which can be referenced using this pointer. The
602 * callback function can access the memory via the "data" field in the
603 * &crypto_async_request data structure provided to the callback function.
604 *
605 * This function allows setting the callback function that is triggered once
606 * the cipher operation completes.
607 *
608 * The callback function is registered with the &ahash_request handle and
609 * must comply with the following template
610 *
611 * void callback_function(struct crypto_async_request *req, int error)
612 */
613static inline void ahash_request_set_callback(struct ahash_request *req,
614 u32 flags,
615 crypto_completion_t compl,
616 void *data)
617{
618 req->base.complete = compl;
619 req->base.data = data;
620 req->base.flags = flags;
621}
622
623/**
624 * ahash_request_set_crypt() - set data buffers
625 * @req: ahash_request handle to be updated
626 * @src: source scatter/gather list
627 * @result: buffer that is filled with the message digest -- the caller must
628 * ensure that the buffer has sufficient space by, for example, calling
629 * crypto_ahash_digestsize()
630 * @nbytes: number of bytes to process from the source scatter/gather list
631 *
632 * By using this call, the caller references the source scatter/gather list.
633 * The source scatter/gather list points to the data the message digest is to
634 * be calculated for.
635 */
636static inline void ahash_request_set_crypt(struct ahash_request *req,
637 struct scatterlist *src, u8 *result,
638 unsigned int nbytes)
639{
640 req->src = src;
641 req->nbytes = nbytes;
642 req->result = result;
643}
644
645/**
646 * DOC: Synchronous Message Digest API
647 *
648 * The synchronous message digest API is used with the ciphers of type
649 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
650 *
651 * The message digest API is able to maintain state information for the
652 * caller.
653 *
654 * The synchronous message digest API can store user-related context in in its
655 * shash_desc request data structure.
656 */
657
658/**
659 * crypto_alloc_shash() - allocate message digest handle
660 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
661 * message digest cipher
662 * @type: specifies the type of the cipher
663 * @mask: specifies the mask for the cipher
664 *
665 * Allocate a cipher handle for a message digest. The returned &struct
666 * crypto_shash is the cipher handle that is required for any subsequent
667 * API invocation for that message digest.
668 *
669 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
670 * of an error, PTR_ERR() returns the error code.
671 */
672struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
673 u32 mask);
674
675static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
676{
677 return &tfm->base;
678}
679
680/**
681 * crypto_free_shash() - zeroize and free the message digest handle
682 * @tfm: cipher handle to be freed
683 */
684static inline void crypto_free_shash(struct crypto_shash *tfm)
685{
686 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
687}
688
689static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
690{
691 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
692}
693
694static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
695{
696 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
697}
698
699static inline unsigned int crypto_shash_alignmask(
700 struct crypto_shash *tfm)
701{
702 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
703}
704
705/**
706 * crypto_shash_blocksize() - obtain block size for cipher
707 * @tfm: cipher handle
708 *
709 * The block size for the message digest cipher referenced with the cipher
710 * handle is returned.
711 *
712 * Return: block size of cipher
713 */
714static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
715{
716 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
717}
718
719static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
720{
721 return container_of(alg, struct shash_alg, base);
722}
723
724static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
725{
726 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
727}
728
729/**
730 * crypto_shash_digestsize() - obtain message digest size
731 * @tfm: cipher handle
732 *
733 * The size for the message digest created by the message digest cipher
734 * referenced with the cipher handle is returned.
735 *
736 * Return: digest size of cipher
737 */
738static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
739{
740 return crypto_shash_alg(tfm)->digestsize;
741}
742
743static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
744{
745 return crypto_shash_alg(tfm)->statesize;
746}
747
748static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
749{
750 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
751}
752
753static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
754{
755 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
756}
757
758static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
759{
760 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
761}
762
763/**
764 * crypto_shash_descsize() - obtain the operational state size
765 * @tfm: cipher handle
766 *
767 * The size of the operational state the cipher needs during operation is
768 * returned for the hash referenced with the cipher handle. This size is
769 * required to calculate the memory requirements to allow the caller allocating
770 * sufficient memory for operational state.
771 *
772 * The operational state is defined with struct shash_desc where the size of
773 * that data structure is to be calculated as
774 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
775 *
776 * Return: size of the operational state
777 */
778static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
779{
780 return tfm->descsize;
781}
782
783static inline void *shash_desc_ctx(struct shash_desc *desc)
784{
785 return desc->__ctx;
786}
787
788/**
789 * crypto_shash_setkey() - set key for message digest
790 * @tfm: cipher handle
791 * @key: buffer holding the key
792 * @keylen: length of the key in bytes
793 *
794 * The caller provided key is set for the keyed message digest cipher. The
795 * cipher handle must point to a keyed message digest cipher in order for this
796 * function to succeed.
797 *
798 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
799 */
800int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
801 unsigned int keylen);
802
803/**
804 * crypto_shash_digest() - calculate message digest for buffer
805 * @desc: see crypto_shash_final()
806 * @data: see crypto_shash_update()
807 * @len: see crypto_shash_update()
808 * @out: see crypto_shash_final()
809 *
810 * This function is a "short-hand" for the function calls of crypto_shash_init,
811 * crypto_shash_update and crypto_shash_final. The parameters have the same
812 * meaning as discussed for those separate three functions.
813 *
814 * Return: 0 if the message digest creation was successful; < 0 if an error
815 * occurred
816 */
817int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
818 unsigned int len, u8 *out);
819
820/**
821 * crypto_shash_export() - extract operational state for message digest
822 * @desc: reference to the operational state handle whose state is exported
823 * @out: output buffer of sufficient size that can hold the hash state
824 *
825 * This function exports the hash state of the operational state handle into the
826 * caller-allocated output buffer out which must have sufficient size (e.g. by
827 * calling crypto_shash_descsize).
828 *
829 * Return: 0 if the export creation was successful; < 0 if an error occurred
830 */
831static inline int crypto_shash_export(struct shash_desc *desc, void *out)
832{
833 return crypto_shash_alg(desc->tfm)->export(desc, out);
834}
835
836/**
837 * crypto_shash_import() - import operational state
838 * @desc: reference to the operational state handle the state imported into
839 * @in: buffer holding the state
840 *
841 * This function imports the hash state into the operational state handle from
842 * the input buffer. That buffer should have been generated with the
843 * crypto_ahash_export function.
844 *
845 * Return: 0 if the import was successful; < 0 if an error occurred
846 */
847static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
848{
849 return crypto_shash_alg(desc->tfm)->import(desc, in);
850}
851
852/**
853 * crypto_shash_init() - (re)initialize message digest
854 * @desc: operational state handle that is already filled
855 *
856 * The call (re-)initializes the message digest referenced by the
857 * operational state handle. Any potentially existing state created by
858 * previous operations is discarded.
859 *
860 * Return: 0 if the message digest initialization was successful; < 0 if an
861 * error occurred
862 */
863static inline int crypto_shash_init(struct shash_desc *desc)
864{
865 return crypto_shash_alg(desc->tfm)->init(desc);
866}
867
868/**
869 * crypto_shash_update() - add data to message digest for processing
870 * @desc: operational state handle that is already initialized
871 * @data: input data to be added to the message digest
872 * @len: length of the input data
873 *
874 * Updates the message digest state of the operational state handle.
875 *
876 * Return: 0 if the message digest update was successful; < 0 if an error
877 * occurred
878 */
879int crypto_shash_update(struct shash_desc *desc, const u8 *data,
880 unsigned int len);
881
882/**
883 * crypto_shash_final() - calculate message digest
884 * @desc: operational state handle that is already filled with data
885 * @out: output buffer filled with the message digest
886 *
887 * Finalize the message digest operation and create the message digest
888 * based on all data added to the cipher handle. The message digest is placed
889 * into the output buffer. The caller must ensure that the output buffer is
890 * large enough by using crypto_shash_digestsize.
891 *
892 * Return: 0 if the message digest creation was successful; < 0 if an error
893 * occurred
894 */
895int crypto_shash_final(struct shash_desc *desc, u8 *out);
896
897/**
898 * crypto_shash_finup() - calculate message digest of buffer
899 * @desc: see crypto_shash_final()
900 * @data: see crypto_shash_update()
901 * @len: see crypto_shash_update()
902 * @out: see crypto_shash_final()
903 *
904 * This function is a "short-hand" for the function calls of
905 * crypto_shash_update and crypto_shash_final. The parameters have the same
906 * meaning as discussed for those separate functions.
907 *
908 * Return: 0 if the message digest creation was successful; < 0 if an error
909 * occurred
910 */
911int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
912 unsigned int len, u8 *out);
913
914static inline void shash_desc_zero(struct shash_desc *desc)
915{
916 memzero_explicit(desc,
917 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
918}
919
920#endif /* _CRYPTO_HASH_H */