Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/netdevice.h>
15#include <linux/etherdevice.h>
16#include <linux/ip.h>
17#include <linux/init.h>
18#include <linux/moduleparam.h>
19#include <linux/netfilter.h>
20#include <linux/rtnetlink.h>
21#include <net/rtnetlink.h>
22#include <linux/u64_stats_sync.h>
23#include <linux/hashtable.h>
24
25#include <linux/inetdevice.h>
26#include <net/arp.h>
27#include <net/ip.h>
28#include <net/ip_fib.h>
29#include <net/ip6_fib.h>
30#include <net/ip6_route.h>
31#include <net/route.h>
32#include <net/addrconf.h>
33#include <net/l3mdev.h>
34#include <net/fib_rules.h>
35#include <net/netns/generic.h>
36
37#define DRV_NAME "vrf"
38#define DRV_VERSION "1.0"
39
40#define FIB_RULE_PREF 1000 /* default preference for FIB rules */
41
42static unsigned int vrf_net_id;
43
44struct net_vrf {
45 struct rtable __rcu *rth;
46 struct rt6_info __rcu *rt6;
47#if IS_ENABLED(CONFIG_IPV6)
48 struct fib6_table *fib6_table;
49#endif
50 u32 tb_id;
51};
52
53struct pcpu_dstats {
54 u64 tx_pkts;
55 u64 tx_bytes;
56 u64 tx_drps;
57 u64 rx_pkts;
58 u64 rx_bytes;
59 u64 rx_drps;
60 struct u64_stats_sync syncp;
61};
62
63static void vrf_rx_stats(struct net_device *dev, int len)
64{
65 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
66
67 u64_stats_update_begin(&dstats->syncp);
68 dstats->rx_pkts++;
69 dstats->rx_bytes += len;
70 u64_stats_update_end(&dstats->syncp);
71}
72
73static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
74{
75 vrf_dev->stats.tx_errors++;
76 kfree_skb(skb);
77}
78
79static void vrf_get_stats64(struct net_device *dev,
80 struct rtnl_link_stats64 *stats)
81{
82 int i;
83
84 for_each_possible_cpu(i) {
85 const struct pcpu_dstats *dstats;
86 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
87 unsigned int start;
88
89 dstats = per_cpu_ptr(dev->dstats, i);
90 do {
91 start = u64_stats_fetch_begin_irq(&dstats->syncp);
92 tbytes = dstats->tx_bytes;
93 tpkts = dstats->tx_pkts;
94 tdrops = dstats->tx_drps;
95 rbytes = dstats->rx_bytes;
96 rpkts = dstats->rx_pkts;
97 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
98 stats->tx_bytes += tbytes;
99 stats->tx_packets += tpkts;
100 stats->tx_dropped += tdrops;
101 stats->rx_bytes += rbytes;
102 stats->rx_packets += rpkts;
103 }
104}
105
106/* by default VRF devices do not have a qdisc and are expected
107 * to be created with only a single queue.
108 */
109static bool qdisc_tx_is_default(const struct net_device *dev)
110{
111 struct netdev_queue *txq;
112 struct Qdisc *qdisc;
113
114 if (dev->num_tx_queues > 1)
115 return false;
116
117 txq = netdev_get_tx_queue(dev, 0);
118 qdisc = rcu_access_pointer(txq->qdisc);
119
120 return !qdisc->enqueue;
121}
122
123/* Local traffic destined to local address. Reinsert the packet to rx
124 * path, similar to loopback handling.
125 */
126static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
127 struct dst_entry *dst)
128{
129 int len = skb->len;
130
131 skb_orphan(skb);
132
133 skb_dst_set(skb, dst);
134
135 /* set pkt_type to avoid skb hitting packet taps twice -
136 * once on Tx and again in Rx processing
137 */
138 skb->pkt_type = PACKET_LOOPBACK;
139
140 skb->protocol = eth_type_trans(skb, dev);
141
142 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
143 vrf_rx_stats(dev, len);
144 else
145 this_cpu_inc(dev->dstats->rx_drps);
146
147 return NETDEV_TX_OK;
148}
149
150#if IS_ENABLED(CONFIG_IPV6)
151static int vrf_ip6_local_out(struct net *net, struct sock *sk,
152 struct sk_buff *skb)
153{
154 int err;
155
156 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
157 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
158
159 if (likely(err == 1))
160 err = dst_output(net, sk, skb);
161
162 return err;
163}
164
165static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
166 struct net_device *dev)
167{
168 const struct ipv6hdr *iph;
169 struct net *net = dev_net(skb->dev);
170 struct flowi6 fl6;
171 int ret = NET_XMIT_DROP;
172 struct dst_entry *dst;
173 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
174
175 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
176 goto err;
177
178 iph = ipv6_hdr(skb);
179
180 memset(&fl6, 0, sizeof(fl6));
181 /* needed to match OIF rule */
182 fl6.flowi6_oif = dev->ifindex;
183 fl6.flowi6_iif = LOOPBACK_IFINDEX;
184 fl6.daddr = iph->daddr;
185 fl6.saddr = iph->saddr;
186 fl6.flowlabel = ip6_flowinfo(iph);
187 fl6.flowi6_mark = skb->mark;
188 fl6.flowi6_proto = iph->nexthdr;
189 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
190
191 dst = ip6_route_output(net, NULL, &fl6);
192 if (dst == dst_null)
193 goto err;
194
195 skb_dst_drop(skb);
196
197 /* if dst.dev is loopback or the VRF device again this is locally
198 * originated traffic destined to a local address. Short circuit
199 * to Rx path
200 */
201 if (dst->dev == dev)
202 return vrf_local_xmit(skb, dev, dst);
203
204 skb_dst_set(skb, dst);
205
206 /* strip the ethernet header added for pass through VRF device */
207 __skb_pull(skb, skb_network_offset(skb));
208
209 ret = vrf_ip6_local_out(net, skb->sk, skb);
210 if (unlikely(net_xmit_eval(ret)))
211 dev->stats.tx_errors++;
212 else
213 ret = NET_XMIT_SUCCESS;
214
215 return ret;
216err:
217 vrf_tx_error(dev, skb);
218 return NET_XMIT_DROP;
219}
220#else
221static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
222 struct net_device *dev)
223{
224 vrf_tx_error(dev, skb);
225 return NET_XMIT_DROP;
226}
227#endif
228
229/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
230static int vrf_ip_local_out(struct net *net, struct sock *sk,
231 struct sk_buff *skb)
232{
233 int err;
234
235 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
236 skb, NULL, skb_dst(skb)->dev, dst_output);
237 if (likely(err == 1))
238 err = dst_output(net, sk, skb);
239
240 return err;
241}
242
243static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
244 struct net_device *vrf_dev)
245{
246 struct iphdr *ip4h;
247 int ret = NET_XMIT_DROP;
248 struct flowi4 fl4;
249 struct net *net = dev_net(vrf_dev);
250 struct rtable *rt;
251
252 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
253 goto err;
254
255 ip4h = ip_hdr(skb);
256
257 memset(&fl4, 0, sizeof(fl4));
258 /* needed to match OIF rule */
259 fl4.flowi4_oif = vrf_dev->ifindex;
260 fl4.flowi4_iif = LOOPBACK_IFINDEX;
261 fl4.flowi4_tos = RT_TOS(ip4h->tos);
262 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
263 fl4.flowi4_proto = ip4h->protocol;
264 fl4.daddr = ip4h->daddr;
265 fl4.saddr = ip4h->saddr;
266
267 rt = ip_route_output_flow(net, &fl4, NULL);
268 if (IS_ERR(rt))
269 goto err;
270
271 skb_dst_drop(skb);
272
273 /* if dst.dev is loopback or the VRF device again this is locally
274 * originated traffic destined to a local address. Short circuit
275 * to Rx path
276 */
277 if (rt->dst.dev == vrf_dev)
278 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
279
280 skb_dst_set(skb, &rt->dst);
281
282 /* strip the ethernet header added for pass through VRF device */
283 __skb_pull(skb, skb_network_offset(skb));
284
285 if (!ip4h->saddr) {
286 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
287 RT_SCOPE_LINK);
288 }
289
290 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
291 if (unlikely(net_xmit_eval(ret)))
292 vrf_dev->stats.tx_errors++;
293 else
294 ret = NET_XMIT_SUCCESS;
295
296out:
297 return ret;
298err:
299 vrf_tx_error(vrf_dev, skb);
300 goto out;
301}
302
303static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
304{
305 switch (skb->protocol) {
306 case htons(ETH_P_IP):
307 return vrf_process_v4_outbound(skb, dev);
308 case htons(ETH_P_IPV6):
309 return vrf_process_v6_outbound(skb, dev);
310 default:
311 vrf_tx_error(dev, skb);
312 return NET_XMIT_DROP;
313 }
314}
315
316static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
317{
318 int len = skb->len;
319 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
320
321 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
322 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
323
324 u64_stats_update_begin(&dstats->syncp);
325 dstats->tx_pkts++;
326 dstats->tx_bytes += len;
327 u64_stats_update_end(&dstats->syncp);
328 } else {
329 this_cpu_inc(dev->dstats->tx_drps);
330 }
331
332 return ret;
333}
334
335static int vrf_finish_direct(struct net *net, struct sock *sk,
336 struct sk_buff *skb)
337{
338 struct net_device *vrf_dev = skb->dev;
339
340 if (!list_empty(&vrf_dev->ptype_all) &&
341 likely(skb_headroom(skb) >= ETH_HLEN)) {
342 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
343
344 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
345 eth_zero_addr(eth->h_dest);
346 eth->h_proto = skb->protocol;
347
348 rcu_read_lock_bh();
349 dev_queue_xmit_nit(skb, vrf_dev);
350 rcu_read_unlock_bh();
351
352 skb_pull(skb, ETH_HLEN);
353 }
354
355 return 1;
356}
357
358#if IS_ENABLED(CONFIG_IPV6)
359/* modelled after ip6_finish_output2 */
360static int vrf_finish_output6(struct net *net, struct sock *sk,
361 struct sk_buff *skb)
362{
363 struct dst_entry *dst = skb_dst(skb);
364 struct net_device *dev = dst->dev;
365 const struct in6_addr *nexthop;
366 struct neighbour *neigh;
367 int ret;
368
369 nf_reset_ct(skb);
370
371 skb->protocol = htons(ETH_P_IPV6);
372 skb->dev = dev;
373
374 rcu_read_lock_bh();
375 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
376 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
377 if (unlikely(!neigh))
378 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
379 if (!IS_ERR(neigh)) {
380 sock_confirm_neigh(skb, neigh);
381 ret = neigh_output(neigh, skb, false);
382 rcu_read_unlock_bh();
383 return ret;
384 }
385 rcu_read_unlock_bh();
386
387 IP6_INC_STATS(dev_net(dst->dev),
388 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
389 kfree_skb(skb);
390 return -EINVAL;
391}
392
393/* modelled after ip6_output */
394static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
395{
396 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
397 net, sk, skb, NULL, skb_dst(skb)->dev,
398 vrf_finish_output6,
399 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
400}
401
402/* set dst on skb to send packet to us via dev_xmit path. Allows
403 * packet to go through device based features such as qdisc, netfilter
404 * hooks and packet sockets with skb->dev set to vrf device.
405 */
406static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
407 struct sk_buff *skb)
408{
409 struct net_vrf *vrf = netdev_priv(vrf_dev);
410 struct dst_entry *dst = NULL;
411 struct rt6_info *rt6;
412
413 rcu_read_lock();
414
415 rt6 = rcu_dereference(vrf->rt6);
416 if (likely(rt6)) {
417 dst = &rt6->dst;
418 dst_hold(dst);
419 }
420
421 rcu_read_unlock();
422
423 if (unlikely(!dst)) {
424 vrf_tx_error(vrf_dev, skb);
425 return NULL;
426 }
427
428 skb_dst_drop(skb);
429 skb_dst_set(skb, dst);
430
431 return skb;
432}
433
434static int vrf_output6_direct(struct net *net, struct sock *sk,
435 struct sk_buff *skb)
436{
437 skb->protocol = htons(ETH_P_IPV6);
438
439 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
440 net, sk, skb, NULL, skb->dev,
441 vrf_finish_direct,
442 !(IPCB(skb)->flags & IPSKB_REROUTED));
443}
444
445static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
446 struct sock *sk,
447 struct sk_buff *skb)
448{
449 struct net *net = dev_net(vrf_dev);
450 int err;
451
452 skb->dev = vrf_dev;
453
454 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
455 skb, NULL, vrf_dev, vrf_output6_direct);
456
457 if (likely(err == 1))
458 err = vrf_output6_direct(net, sk, skb);
459
460 /* reset skb device */
461 if (likely(err == 1))
462 nf_reset_ct(skb);
463 else
464 skb = NULL;
465
466 return skb;
467}
468
469static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
470 struct sock *sk,
471 struct sk_buff *skb)
472{
473 /* don't divert link scope packets */
474 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
475 return skb;
476
477 if (qdisc_tx_is_default(vrf_dev))
478 return vrf_ip6_out_direct(vrf_dev, sk, skb);
479
480 return vrf_ip6_out_redirect(vrf_dev, skb);
481}
482
483/* holding rtnl */
484static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
485{
486 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
487 struct net *net = dev_net(dev);
488 struct dst_entry *dst;
489
490 RCU_INIT_POINTER(vrf->rt6, NULL);
491 synchronize_rcu();
492
493 /* move dev in dst's to loopback so this VRF device can be deleted
494 * - based on dst_ifdown
495 */
496 if (rt6) {
497 dst = &rt6->dst;
498 dev_put(dst->dev);
499 dst->dev = net->loopback_dev;
500 dev_hold(dst->dev);
501 dst_release(dst);
502 }
503}
504
505static int vrf_rt6_create(struct net_device *dev)
506{
507 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
508 struct net_vrf *vrf = netdev_priv(dev);
509 struct net *net = dev_net(dev);
510 struct rt6_info *rt6;
511 int rc = -ENOMEM;
512
513 /* IPv6 can be CONFIG enabled and then disabled runtime */
514 if (!ipv6_mod_enabled())
515 return 0;
516
517 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
518 if (!vrf->fib6_table)
519 goto out;
520
521 /* create a dst for routing packets out a VRF device */
522 rt6 = ip6_dst_alloc(net, dev, flags);
523 if (!rt6)
524 goto out;
525
526 rt6->dst.output = vrf_output6;
527
528 rcu_assign_pointer(vrf->rt6, rt6);
529
530 rc = 0;
531out:
532 return rc;
533}
534#else
535static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
536 struct sock *sk,
537 struct sk_buff *skb)
538{
539 return skb;
540}
541
542static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
543{
544}
545
546static int vrf_rt6_create(struct net_device *dev)
547{
548 return 0;
549}
550#endif
551
552/* modelled after ip_finish_output2 */
553static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
554{
555 struct dst_entry *dst = skb_dst(skb);
556 struct rtable *rt = (struct rtable *)dst;
557 struct net_device *dev = dst->dev;
558 unsigned int hh_len = LL_RESERVED_SPACE(dev);
559 struct neighbour *neigh;
560 bool is_v6gw = false;
561 int ret = -EINVAL;
562
563 nf_reset_ct(skb);
564
565 /* Be paranoid, rather than too clever. */
566 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
567 struct sk_buff *skb2;
568
569 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
570 if (!skb2) {
571 ret = -ENOMEM;
572 goto err;
573 }
574 if (skb->sk)
575 skb_set_owner_w(skb2, skb->sk);
576
577 consume_skb(skb);
578 skb = skb2;
579 }
580
581 rcu_read_lock_bh();
582
583 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
584 if (!IS_ERR(neigh)) {
585 sock_confirm_neigh(skb, neigh);
586 /* if crossing protocols, can not use the cached header */
587 ret = neigh_output(neigh, skb, is_v6gw);
588 rcu_read_unlock_bh();
589 return ret;
590 }
591
592 rcu_read_unlock_bh();
593err:
594 vrf_tx_error(skb->dev, skb);
595 return ret;
596}
597
598static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
599{
600 struct net_device *dev = skb_dst(skb)->dev;
601
602 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
603
604 skb->dev = dev;
605 skb->protocol = htons(ETH_P_IP);
606
607 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
608 net, sk, skb, NULL, dev,
609 vrf_finish_output,
610 !(IPCB(skb)->flags & IPSKB_REROUTED));
611}
612
613/* set dst on skb to send packet to us via dev_xmit path. Allows
614 * packet to go through device based features such as qdisc, netfilter
615 * hooks and packet sockets with skb->dev set to vrf device.
616 */
617static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
618 struct sk_buff *skb)
619{
620 struct net_vrf *vrf = netdev_priv(vrf_dev);
621 struct dst_entry *dst = NULL;
622 struct rtable *rth;
623
624 rcu_read_lock();
625
626 rth = rcu_dereference(vrf->rth);
627 if (likely(rth)) {
628 dst = &rth->dst;
629 dst_hold(dst);
630 }
631
632 rcu_read_unlock();
633
634 if (unlikely(!dst)) {
635 vrf_tx_error(vrf_dev, skb);
636 return NULL;
637 }
638
639 skb_dst_drop(skb);
640 skb_dst_set(skb, dst);
641
642 return skb;
643}
644
645static int vrf_output_direct(struct net *net, struct sock *sk,
646 struct sk_buff *skb)
647{
648 skb->protocol = htons(ETH_P_IP);
649
650 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
651 net, sk, skb, NULL, skb->dev,
652 vrf_finish_direct,
653 !(IPCB(skb)->flags & IPSKB_REROUTED));
654}
655
656static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
657 struct sock *sk,
658 struct sk_buff *skb)
659{
660 struct net *net = dev_net(vrf_dev);
661 int err;
662
663 skb->dev = vrf_dev;
664
665 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
666 skb, NULL, vrf_dev, vrf_output_direct);
667
668 if (likely(err == 1))
669 err = vrf_output_direct(net, sk, skb);
670
671 /* reset skb device */
672 if (likely(err == 1))
673 nf_reset_ct(skb);
674 else
675 skb = NULL;
676
677 return skb;
678}
679
680static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
681 struct sock *sk,
682 struct sk_buff *skb)
683{
684 /* don't divert multicast or local broadcast */
685 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
686 ipv4_is_lbcast(ip_hdr(skb)->daddr))
687 return skb;
688
689 if (qdisc_tx_is_default(vrf_dev))
690 return vrf_ip_out_direct(vrf_dev, sk, skb);
691
692 return vrf_ip_out_redirect(vrf_dev, skb);
693}
694
695/* called with rcu lock held */
696static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
697 struct sock *sk,
698 struct sk_buff *skb,
699 u16 proto)
700{
701 switch (proto) {
702 case AF_INET:
703 return vrf_ip_out(vrf_dev, sk, skb);
704 case AF_INET6:
705 return vrf_ip6_out(vrf_dev, sk, skb);
706 }
707
708 return skb;
709}
710
711/* holding rtnl */
712static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
713{
714 struct rtable *rth = rtnl_dereference(vrf->rth);
715 struct net *net = dev_net(dev);
716 struct dst_entry *dst;
717
718 RCU_INIT_POINTER(vrf->rth, NULL);
719 synchronize_rcu();
720
721 /* move dev in dst's to loopback so this VRF device can be deleted
722 * - based on dst_ifdown
723 */
724 if (rth) {
725 dst = &rth->dst;
726 dev_put(dst->dev);
727 dst->dev = net->loopback_dev;
728 dev_hold(dst->dev);
729 dst_release(dst);
730 }
731}
732
733static int vrf_rtable_create(struct net_device *dev)
734{
735 struct net_vrf *vrf = netdev_priv(dev);
736 struct rtable *rth;
737
738 if (!fib_new_table(dev_net(dev), vrf->tb_id))
739 return -ENOMEM;
740
741 /* create a dst for routing packets out through a VRF device */
742 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
743 if (!rth)
744 return -ENOMEM;
745
746 rth->dst.output = vrf_output;
747
748 rcu_assign_pointer(vrf->rth, rth);
749
750 return 0;
751}
752
753/**************************** device handling ********************/
754
755/* cycle interface to flush neighbor cache and move routes across tables */
756static void cycle_netdev(struct net_device *dev,
757 struct netlink_ext_ack *extack)
758{
759 unsigned int flags = dev->flags;
760 int ret;
761
762 if (!netif_running(dev))
763 return;
764
765 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
766 if (ret >= 0)
767 ret = dev_change_flags(dev, flags, extack);
768
769 if (ret < 0) {
770 netdev_err(dev,
771 "Failed to cycle device %s; route tables might be wrong!\n",
772 dev->name);
773 }
774}
775
776static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
777 struct netlink_ext_ack *extack)
778{
779 int ret;
780
781 /* do not allow loopback device to be enslaved to a VRF.
782 * The vrf device acts as the loopback for the vrf.
783 */
784 if (port_dev == dev_net(dev)->loopback_dev) {
785 NL_SET_ERR_MSG(extack,
786 "Can not enslave loopback device to a VRF");
787 return -EOPNOTSUPP;
788 }
789
790 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
791 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
792 if (ret < 0)
793 goto err;
794
795 cycle_netdev(port_dev, extack);
796
797 return 0;
798
799err:
800 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
801 return ret;
802}
803
804static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
805 struct netlink_ext_ack *extack)
806{
807 if (netif_is_l3_master(port_dev)) {
808 NL_SET_ERR_MSG(extack,
809 "Can not enslave an L3 master device to a VRF");
810 return -EINVAL;
811 }
812
813 if (netif_is_l3_slave(port_dev))
814 return -EINVAL;
815
816 return do_vrf_add_slave(dev, port_dev, extack);
817}
818
819/* inverse of do_vrf_add_slave */
820static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
821{
822 netdev_upper_dev_unlink(port_dev, dev);
823 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
824
825 cycle_netdev(port_dev, NULL);
826
827 return 0;
828}
829
830static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
831{
832 return do_vrf_del_slave(dev, port_dev);
833}
834
835static void vrf_dev_uninit(struct net_device *dev)
836{
837 struct net_vrf *vrf = netdev_priv(dev);
838
839 vrf_rtable_release(dev, vrf);
840 vrf_rt6_release(dev, vrf);
841
842 free_percpu(dev->dstats);
843 dev->dstats = NULL;
844}
845
846static int vrf_dev_init(struct net_device *dev)
847{
848 struct net_vrf *vrf = netdev_priv(dev);
849
850 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
851 if (!dev->dstats)
852 goto out_nomem;
853
854 /* create the default dst which points back to us */
855 if (vrf_rtable_create(dev) != 0)
856 goto out_stats;
857
858 if (vrf_rt6_create(dev) != 0)
859 goto out_rth;
860
861 dev->flags = IFF_MASTER | IFF_NOARP;
862
863 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
864 dev->mtu = 64 * 1024;
865
866 /* similarly, oper state is irrelevant; set to up to avoid confusion */
867 dev->operstate = IF_OPER_UP;
868 return 0;
869
870out_rth:
871 vrf_rtable_release(dev, vrf);
872out_stats:
873 free_percpu(dev->dstats);
874 dev->dstats = NULL;
875out_nomem:
876 return -ENOMEM;
877}
878
879static const struct net_device_ops vrf_netdev_ops = {
880 .ndo_init = vrf_dev_init,
881 .ndo_uninit = vrf_dev_uninit,
882 .ndo_start_xmit = vrf_xmit,
883 .ndo_set_mac_address = eth_mac_addr,
884 .ndo_get_stats64 = vrf_get_stats64,
885 .ndo_add_slave = vrf_add_slave,
886 .ndo_del_slave = vrf_del_slave,
887};
888
889static u32 vrf_fib_table(const struct net_device *dev)
890{
891 struct net_vrf *vrf = netdev_priv(dev);
892
893 return vrf->tb_id;
894}
895
896static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
897{
898 kfree_skb(skb);
899 return 0;
900}
901
902static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
903 struct sk_buff *skb,
904 struct net_device *dev)
905{
906 struct net *net = dev_net(dev);
907
908 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
909 skb = NULL; /* kfree_skb(skb) handled by nf code */
910
911 return skb;
912}
913
914#if IS_ENABLED(CONFIG_IPV6)
915/* neighbor handling is done with actual device; do not want
916 * to flip skb->dev for those ndisc packets. This really fails
917 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
918 * a start.
919 */
920static bool ipv6_ndisc_frame(const struct sk_buff *skb)
921{
922 const struct ipv6hdr *iph = ipv6_hdr(skb);
923 bool rc = false;
924
925 if (iph->nexthdr == NEXTHDR_ICMP) {
926 const struct icmp6hdr *icmph;
927 struct icmp6hdr _icmph;
928
929 icmph = skb_header_pointer(skb, sizeof(*iph),
930 sizeof(_icmph), &_icmph);
931 if (!icmph)
932 goto out;
933
934 switch (icmph->icmp6_type) {
935 case NDISC_ROUTER_SOLICITATION:
936 case NDISC_ROUTER_ADVERTISEMENT:
937 case NDISC_NEIGHBOUR_SOLICITATION:
938 case NDISC_NEIGHBOUR_ADVERTISEMENT:
939 case NDISC_REDIRECT:
940 rc = true;
941 break;
942 }
943 }
944
945out:
946 return rc;
947}
948
949static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
950 const struct net_device *dev,
951 struct flowi6 *fl6,
952 int ifindex,
953 const struct sk_buff *skb,
954 int flags)
955{
956 struct net_vrf *vrf = netdev_priv(dev);
957
958 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
959}
960
961static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
962 int ifindex)
963{
964 const struct ipv6hdr *iph = ipv6_hdr(skb);
965 struct flowi6 fl6 = {
966 .flowi6_iif = ifindex,
967 .flowi6_mark = skb->mark,
968 .flowi6_proto = iph->nexthdr,
969 .daddr = iph->daddr,
970 .saddr = iph->saddr,
971 .flowlabel = ip6_flowinfo(iph),
972 };
973 struct net *net = dev_net(vrf_dev);
974 struct rt6_info *rt6;
975
976 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
977 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
978 if (unlikely(!rt6))
979 return;
980
981 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
982 return;
983
984 skb_dst_set(skb, &rt6->dst);
985}
986
987static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
988 struct sk_buff *skb)
989{
990 int orig_iif = skb->skb_iif;
991 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
992 bool is_ndisc = ipv6_ndisc_frame(skb);
993
994 /* loopback, multicast & non-ND link-local traffic; do not push through
995 * packet taps again. Reset pkt_type for upper layers to process skb
996 */
997 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
998 skb->dev = vrf_dev;
999 skb->skb_iif = vrf_dev->ifindex;
1000 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1001 if (skb->pkt_type == PACKET_LOOPBACK)
1002 skb->pkt_type = PACKET_HOST;
1003 goto out;
1004 }
1005
1006 /* if packet is NDISC then keep the ingress interface */
1007 if (!is_ndisc) {
1008 vrf_rx_stats(vrf_dev, skb->len);
1009 skb->dev = vrf_dev;
1010 skb->skb_iif = vrf_dev->ifindex;
1011
1012 if (!list_empty(&vrf_dev->ptype_all)) {
1013 skb_push(skb, skb->mac_len);
1014 dev_queue_xmit_nit(skb, vrf_dev);
1015 skb_pull(skb, skb->mac_len);
1016 }
1017
1018 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1019 }
1020
1021 if (need_strict)
1022 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1023
1024 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1025out:
1026 return skb;
1027}
1028
1029#else
1030static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1031 struct sk_buff *skb)
1032{
1033 return skb;
1034}
1035#endif
1036
1037static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1038 struct sk_buff *skb)
1039{
1040 skb->dev = vrf_dev;
1041 skb->skb_iif = vrf_dev->ifindex;
1042 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1043
1044 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1045 goto out;
1046
1047 /* loopback traffic; do not push through packet taps again.
1048 * Reset pkt_type for upper layers to process skb
1049 */
1050 if (skb->pkt_type == PACKET_LOOPBACK) {
1051 skb->pkt_type = PACKET_HOST;
1052 goto out;
1053 }
1054
1055 vrf_rx_stats(vrf_dev, skb->len);
1056
1057 if (!list_empty(&vrf_dev->ptype_all)) {
1058 skb_push(skb, skb->mac_len);
1059 dev_queue_xmit_nit(skb, vrf_dev);
1060 skb_pull(skb, skb->mac_len);
1061 }
1062
1063 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1064out:
1065 return skb;
1066}
1067
1068/* called with rcu lock held */
1069static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1070 struct sk_buff *skb,
1071 u16 proto)
1072{
1073 switch (proto) {
1074 case AF_INET:
1075 return vrf_ip_rcv(vrf_dev, skb);
1076 case AF_INET6:
1077 return vrf_ip6_rcv(vrf_dev, skb);
1078 }
1079
1080 return skb;
1081}
1082
1083#if IS_ENABLED(CONFIG_IPV6)
1084/* send to link-local or multicast address via interface enslaved to
1085 * VRF device. Force lookup to VRF table without changing flow struct
1086 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1087 * is taken on the dst by this function.
1088 */
1089static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1090 struct flowi6 *fl6)
1091{
1092 struct net *net = dev_net(dev);
1093 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1094 struct dst_entry *dst = NULL;
1095 struct rt6_info *rt;
1096
1097 /* VRF device does not have a link-local address and
1098 * sending packets to link-local or mcast addresses over
1099 * a VRF device does not make sense
1100 */
1101 if (fl6->flowi6_oif == dev->ifindex) {
1102 dst = &net->ipv6.ip6_null_entry->dst;
1103 return dst;
1104 }
1105
1106 if (!ipv6_addr_any(&fl6->saddr))
1107 flags |= RT6_LOOKUP_F_HAS_SADDR;
1108
1109 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1110 if (rt)
1111 dst = &rt->dst;
1112
1113 return dst;
1114}
1115#endif
1116
1117static const struct l3mdev_ops vrf_l3mdev_ops = {
1118 .l3mdev_fib_table = vrf_fib_table,
1119 .l3mdev_l3_rcv = vrf_l3_rcv,
1120 .l3mdev_l3_out = vrf_l3_out,
1121#if IS_ENABLED(CONFIG_IPV6)
1122 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1123#endif
1124};
1125
1126static void vrf_get_drvinfo(struct net_device *dev,
1127 struct ethtool_drvinfo *info)
1128{
1129 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1130 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1131}
1132
1133static const struct ethtool_ops vrf_ethtool_ops = {
1134 .get_drvinfo = vrf_get_drvinfo,
1135};
1136
1137static inline size_t vrf_fib_rule_nl_size(void)
1138{
1139 size_t sz;
1140
1141 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1142 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1143 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1144 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1145
1146 return sz;
1147}
1148
1149static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1150{
1151 struct fib_rule_hdr *frh;
1152 struct nlmsghdr *nlh;
1153 struct sk_buff *skb;
1154 int err;
1155
1156 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1157 !ipv6_mod_enabled())
1158 return 0;
1159
1160 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1161 if (!skb)
1162 return -ENOMEM;
1163
1164 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1165 if (!nlh)
1166 goto nla_put_failure;
1167
1168 /* rule only needs to appear once */
1169 nlh->nlmsg_flags |= NLM_F_EXCL;
1170
1171 frh = nlmsg_data(nlh);
1172 memset(frh, 0, sizeof(*frh));
1173 frh->family = family;
1174 frh->action = FR_ACT_TO_TBL;
1175
1176 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1177 goto nla_put_failure;
1178
1179 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1180 goto nla_put_failure;
1181
1182 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1183 goto nla_put_failure;
1184
1185 nlmsg_end(skb, nlh);
1186
1187 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1188 skb->sk = dev_net(dev)->rtnl;
1189 if (add_it) {
1190 err = fib_nl_newrule(skb, nlh, NULL);
1191 if (err == -EEXIST)
1192 err = 0;
1193 } else {
1194 err = fib_nl_delrule(skb, nlh, NULL);
1195 if (err == -ENOENT)
1196 err = 0;
1197 }
1198 nlmsg_free(skb);
1199
1200 return err;
1201
1202nla_put_failure:
1203 nlmsg_free(skb);
1204
1205 return -EMSGSIZE;
1206}
1207
1208static int vrf_add_fib_rules(const struct net_device *dev)
1209{
1210 int err;
1211
1212 err = vrf_fib_rule(dev, AF_INET, true);
1213 if (err < 0)
1214 goto out_err;
1215
1216 err = vrf_fib_rule(dev, AF_INET6, true);
1217 if (err < 0)
1218 goto ipv6_err;
1219
1220#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1221 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1222 if (err < 0)
1223 goto ipmr_err;
1224#endif
1225
1226#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1227 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1228 if (err < 0)
1229 goto ip6mr_err;
1230#endif
1231
1232 return 0;
1233
1234#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1235ip6mr_err:
1236 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1237#endif
1238
1239#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1240ipmr_err:
1241 vrf_fib_rule(dev, AF_INET6, false);
1242#endif
1243
1244ipv6_err:
1245 vrf_fib_rule(dev, AF_INET, false);
1246
1247out_err:
1248 netdev_err(dev, "Failed to add FIB rules.\n");
1249 return err;
1250}
1251
1252static void vrf_setup(struct net_device *dev)
1253{
1254 ether_setup(dev);
1255
1256 /* Initialize the device structure. */
1257 dev->netdev_ops = &vrf_netdev_ops;
1258 dev->l3mdev_ops = &vrf_l3mdev_ops;
1259 dev->ethtool_ops = &vrf_ethtool_ops;
1260 dev->needs_free_netdev = true;
1261
1262 /* Fill in device structure with ethernet-generic values. */
1263 eth_hw_addr_random(dev);
1264
1265 /* don't acquire vrf device's netif_tx_lock when transmitting */
1266 dev->features |= NETIF_F_LLTX;
1267
1268 /* don't allow vrf devices to change network namespaces. */
1269 dev->features |= NETIF_F_NETNS_LOCAL;
1270
1271 /* does not make sense for a VLAN to be added to a vrf device */
1272 dev->features |= NETIF_F_VLAN_CHALLENGED;
1273
1274 /* enable offload features */
1275 dev->features |= NETIF_F_GSO_SOFTWARE;
1276 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1277 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1278
1279 dev->hw_features = dev->features;
1280 dev->hw_enc_features = dev->features;
1281
1282 /* default to no qdisc; user can add if desired */
1283 dev->priv_flags |= IFF_NO_QUEUE;
1284 dev->priv_flags |= IFF_NO_RX_HANDLER;
1285 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1286
1287 /* VRF devices do not care about MTU, but if the MTU is set
1288 * too low then the ipv4 and ipv6 protocols are disabled
1289 * which breaks networking.
1290 */
1291 dev->min_mtu = IPV6_MIN_MTU;
1292 dev->max_mtu = ETH_MAX_MTU;
1293}
1294
1295static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1296 struct netlink_ext_ack *extack)
1297{
1298 if (tb[IFLA_ADDRESS]) {
1299 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1300 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1301 return -EINVAL;
1302 }
1303 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1304 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1305 return -EADDRNOTAVAIL;
1306 }
1307 }
1308 return 0;
1309}
1310
1311static void vrf_dellink(struct net_device *dev, struct list_head *head)
1312{
1313 struct net_device *port_dev;
1314 struct list_head *iter;
1315
1316 netdev_for_each_lower_dev(dev, port_dev, iter)
1317 vrf_del_slave(dev, port_dev);
1318
1319 unregister_netdevice_queue(dev, head);
1320}
1321
1322static int vrf_newlink(struct net *src_net, struct net_device *dev,
1323 struct nlattr *tb[], struct nlattr *data[],
1324 struct netlink_ext_ack *extack)
1325{
1326 struct net_vrf *vrf = netdev_priv(dev);
1327 bool *add_fib_rules;
1328 struct net *net;
1329 int err;
1330
1331 if (!data || !data[IFLA_VRF_TABLE]) {
1332 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1333 return -EINVAL;
1334 }
1335
1336 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1337 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1338 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1339 "Invalid VRF table id");
1340 return -EINVAL;
1341 }
1342
1343 dev->priv_flags |= IFF_L3MDEV_MASTER;
1344
1345 err = register_netdevice(dev);
1346 if (err)
1347 goto out;
1348
1349 net = dev_net(dev);
1350 add_fib_rules = net_generic(net, vrf_net_id);
1351 if (*add_fib_rules) {
1352 err = vrf_add_fib_rules(dev);
1353 if (err) {
1354 unregister_netdevice(dev);
1355 goto out;
1356 }
1357 *add_fib_rules = false;
1358 }
1359
1360out:
1361 return err;
1362}
1363
1364static size_t vrf_nl_getsize(const struct net_device *dev)
1365{
1366 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1367}
1368
1369static int vrf_fillinfo(struct sk_buff *skb,
1370 const struct net_device *dev)
1371{
1372 struct net_vrf *vrf = netdev_priv(dev);
1373
1374 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1375}
1376
1377static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1378 const struct net_device *slave_dev)
1379{
1380 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1381}
1382
1383static int vrf_fill_slave_info(struct sk_buff *skb,
1384 const struct net_device *vrf_dev,
1385 const struct net_device *slave_dev)
1386{
1387 struct net_vrf *vrf = netdev_priv(vrf_dev);
1388
1389 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1390 return -EMSGSIZE;
1391
1392 return 0;
1393}
1394
1395static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1396 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1397};
1398
1399static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1400 .kind = DRV_NAME,
1401 .priv_size = sizeof(struct net_vrf),
1402
1403 .get_size = vrf_nl_getsize,
1404 .policy = vrf_nl_policy,
1405 .validate = vrf_validate,
1406 .fill_info = vrf_fillinfo,
1407
1408 .get_slave_size = vrf_get_slave_size,
1409 .fill_slave_info = vrf_fill_slave_info,
1410
1411 .newlink = vrf_newlink,
1412 .dellink = vrf_dellink,
1413 .setup = vrf_setup,
1414 .maxtype = IFLA_VRF_MAX,
1415};
1416
1417static int vrf_device_event(struct notifier_block *unused,
1418 unsigned long event, void *ptr)
1419{
1420 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1421
1422 /* only care about unregister events to drop slave references */
1423 if (event == NETDEV_UNREGISTER) {
1424 struct net_device *vrf_dev;
1425
1426 if (!netif_is_l3_slave(dev))
1427 goto out;
1428
1429 vrf_dev = netdev_master_upper_dev_get(dev);
1430 vrf_del_slave(vrf_dev, dev);
1431 }
1432out:
1433 return NOTIFY_DONE;
1434}
1435
1436static struct notifier_block vrf_notifier_block __read_mostly = {
1437 .notifier_call = vrf_device_event,
1438};
1439
1440/* Initialize per network namespace state */
1441static int __net_init vrf_netns_init(struct net *net)
1442{
1443 bool *add_fib_rules = net_generic(net, vrf_net_id);
1444
1445 *add_fib_rules = true;
1446
1447 return 0;
1448}
1449
1450static struct pernet_operations vrf_net_ops __net_initdata = {
1451 .init = vrf_netns_init,
1452 .id = &vrf_net_id,
1453 .size = sizeof(bool),
1454};
1455
1456static int __init vrf_init_module(void)
1457{
1458 int rc;
1459
1460 register_netdevice_notifier(&vrf_notifier_block);
1461
1462 rc = register_pernet_subsys(&vrf_net_ops);
1463 if (rc < 0)
1464 goto error;
1465
1466 rc = rtnl_link_register(&vrf_link_ops);
1467 if (rc < 0) {
1468 unregister_pernet_subsys(&vrf_net_ops);
1469 goto error;
1470 }
1471
1472 return 0;
1473
1474error:
1475 unregister_netdevice_notifier(&vrf_notifier_block);
1476 return rc;
1477}
1478
1479module_init(vrf_init_module);
1480MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1481MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1482MODULE_LICENSE("GPL");
1483MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1484MODULE_VERSION(DRV_VERSION);
1/*
2 * vrf.c: device driver to encapsulate a VRF space
3 *
4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7 *
8 * Based on dummy, team and ipvlan drivers
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16#include <linux/module.h>
17#include <linux/kernel.h>
18#include <linux/netdevice.h>
19#include <linux/etherdevice.h>
20#include <linux/ip.h>
21#include <linux/init.h>
22#include <linux/moduleparam.h>
23#include <linux/netfilter.h>
24#include <linux/rtnetlink.h>
25#include <net/rtnetlink.h>
26#include <linux/u64_stats_sync.h>
27#include <linux/hashtable.h>
28
29#include <linux/inetdevice.h>
30#include <net/arp.h>
31#include <net/ip.h>
32#include <net/ip_fib.h>
33#include <net/ip6_fib.h>
34#include <net/ip6_route.h>
35#include <net/route.h>
36#include <net/addrconf.h>
37#include <net/l3mdev.h>
38
39#define RT_FL_TOS(oldflp4) \
40 ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
41
42#define DRV_NAME "vrf"
43#define DRV_VERSION "1.0"
44
45#define vrf_master_get_rcu(dev) \
46 ((struct net_device *)rcu_dereference(dev->rx_handler_data))
47
48struct net_vrf {
49 struct rtable *rth;
50 struct rt6_info *rt6;
51 u32 tb_id;
52};
53
54struct pcpu_dstats {
55 u64 tx_pkts;
56 u64 tx_bytes;
57 u64 tx_drps;
58 u64 rx_pkts;
59 u64 rx_bytes;
60 struct u64_stats_sync syncp;
61};
62
63/* neighbor handling is done with actual device; do not want
64 * to flip skb->dev for those ndisc packets. This really fails
65 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
66 * a start.
67 */
68#if IS_ENABLED(CONFIG_IPV6)
69static bool check_ipv6_frame(const struct sk_buff *skb)
70{
71 const struct ipv6hdr *ipv6h;
72 struct ipv6hdr _ipv6h;
73 bool rc = true;
74
75 ipv6h = skb_header_pointer(skb, 0, sizeof(_ipv6h), &_ipv6h);
76 if (!ipv6h)
77 goto out;
78
79 if (ipv6h->nexthdr == NEXTHDR_ICMP) {
80 const struct icmp6hdr *icmph;
81 struct icmp6hdr _icmph;
82
83 icmph = skb_header_pointer(skb, sizeof(_ipv6h),
84 sizeof(_icmph), &_icmph);
85 if (!icmph)
86 goto out;
87
88 switch (icmph->icmp6_type) {
89 case NDISC_ROUTER_SOLICITATION:
90 case NDISC_ROUTER_ADVERTISEMENT:
91 case NDISC_NEIGHBOUR_SOLICITATION:
92 case NDISC_NEIGHBOUR_ADVERTISEMENT:
93 case NDISC_REDIRECT:
94 rc = false;
95 break;
96 }
97 }
98
99out:
100 return rc;
101}
102#else
103static bool check_ipv6_frame(const struct sk_buff *skb)
104{
105 return false;
106}
107#endif
108
109static bool is_ip_rx_frame(struct sk_buff *skb)
110{
111 switch (skb->protocol) {
112 case htons(ETH_P_IP):
113 return true;
114 case htons(ETH_P_IPV6):
115 return check_ipv6_frame(skb);
116 }
117 return false;
118}
119
120static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
121{
122 vrf_dev->stats.tx_errors++;
123 kfree_skb(skb);
124}
125
126/* note: already called with rcu_read_lock */
127static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
128{
129 struct sk_buff *skb = *pskb;
130
131 if (is_ip_rx_frame(skb)) {
132 struct net_device *dev = vrf_master_get_rcu(skb->dev);
133 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
134
135 u64_stats_update_begin(&dstats->syncp);
136 dstats->rx_pkts++;
137 dstats->rx_bytes += skb->len;
138 u64_stats_update_end(&dstats->syncp);
139
140 skb->dev = dev;
141
142 return RX_HANDLER_ANOTHER;
143 }
144 return RX_HANDLER_PASS;
145}
146
147static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
148 struct rtnl_link_stats64 *stats)
149{
150 int i;
151
152 for_each_possible_cpu(i) {
153 const struct pcpu_dstats *dstats;
154 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
155 unsigned int start;
156
157 dstats = per_cpu_ptr(dev->dstats, i);
158 do {
159 start = u64_stats_fetch_begin_irq(&dstats->syncp);
160 tbytes = dstats->tx_bytes;
161 tpkts = dstats->tx_pkts;
162 tdrops = dstats->tx_drps;
163 rbytes = dstats->rx_bytes;
164 rpkts = dstats->rx_pkts;
165 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
166 stats->tx_bytes += tbytes;
167 stats->tx_packets += tpkts;
168 stats->tx_dropped += tdrops;
169 stats->rx_bytes += rbytes;
170 stats->rx_packets += rpkts;
171 }
172 return stats;
173}
174
175#if IS_ENABLED(CONFIG_IPV6)
176static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
177 struct net_device *dev)
178{
179 const struct ipv6hdr *iph = ipv6_hdr(skb);
180 struct net *net = dev_net(skb->dev);
181 struct flowi6 fl6 = {
182 /* needed to match OIF rule */
183 .flowi6_oif = dev->ifindex,
184 .flowi6_iif = LOOPBACK_IFINDEX,
185 .daddr = iph->daddr,
186 .saddr = iph->saddr,
187 .flowlabel = ip6_flowinfo(iph),
188 .flowi6_mark = skb->mark,
189 .flowi6_proto = iph->nexthdr,
190 .flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
191 };
192 int ret = NET_XMIT_DROP;
193 struct dst_entry *dst;
194 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
195
196 dst = ip6_route_output(net, NULL, &fl6);
197 if (dst == dst_null)
198 goto err;
199
200 skb_dst_drop(skb);
201 skb_dst_set(skb, dst);
202
203 ret = ip6_local_out(net, skb->sk, skb);
204 if (unlikely(net_xmit_eval(ret)))
205 dev->stats.tx_errors++;
206 else
207 ret = NET_XMIT_SUCCESS;
208
209 return ret;
210err:
211 vrf_tx_error(dev, skb);
212 return NET_XMIT_DROP;
213}
214#else
215static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
216 struct net_device *dev)
217{
218 vrf_tx_error(dev, skb);
219 return NET_XMIT_DROP;
220}
221#endif
222
223static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
224 struct net_device *vrf_dev)
225{
226 struct rtable *rt;
227 int err = 1;
228
229 rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
230 if (IS_ERR(rt))
231 goto out;
232
233 /* TO-DO: what about broadcast ? */
234 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
235 ip_rt_put(rt);
236 goto out;
237 }
238
239 skb_dst_drop(skb);
240 skb_dst_set(skb, &rt->dst);
241 err = 0;
242out:
243 return err;
244}
245
246static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
247 struct net_device *vrf_dev)
248{
249 struct iphdr *ip4h = ip_hdr(skb);
250 int ret = NET_XMIT_DROP;
251 struct flowi4 fl4 = {
252 /* needed to match OIF rule */
253 .flowi4_oif = vrf_dev->ifindex,
254 .flowi4_iif = LOOPBACK_IFINDEX,
255 .flowi4_tos = RT_TOS(ip4h->tos),
256 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
257 FLOWI_FLAG_SKIP_NH_OIF,
258 .daddr = ip4h->daddr,
259 };
260
261 if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
262 goto err;
263
264 if (!ip4h->saddr) {
265 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
266 RT_SCOPE_LINK);
267 }
268
269 ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
270 if (unlikely(net_xmit_eval(ret)))
271 vrf_dev->stats.tx_errors++;
272 else
273 ret = NET_XMIT_SUCCESS;
274
275out:
276 return ret;
277err:
278 vrf_tx_error(vrf_dev, skb);
279 goto out;
280}
281
282static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
283{
284 /* strip the ethernet header added for pass through VRF device */
285 __skb_pull(skb, skb_network_offset(skb));
286
287 switch (skb->protocol) {
288 case htons(ETH_P_IP):
289 return vrf_process_v4_outbound(skb, dev);
290 case htons(ETH_P_IPV6):
291 return vrf_process_v6_outbound(skb, dev);
292 default:
293 vrf_tx_error(dev, skb);
294 return NET_XMIT_DROP;
295 }
296}
297
298static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
299{
300 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
301
302 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
303 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
304
305 u64_stats_update_begin(&dstats->syncp);
306 dstats->tx_pkts++;
307 dstats->tx_bytes += skb->len;
308 u64_stats_update_end(&dstats->syncp);
309 } else {
310 this_cpu_inc(dev->dstats->tx_drps);
311 }
312
313 return ret;
314}
315
316#if IS_ENABLED(CONFIG_IPV6)
317/* modelled after ip6_finish_output2 */
318static int vrf_finish_output6(struct net *net, struct sock *sk,
319 struct sk_buff *skb)
320{
321 struct dst_entry *dst = skb_dst(skb);
322 struct net_device *dev = dst->dev;
323 struct neighbour *neigh;
324 struct in6_addr *nexthop;
325 int ret;
326
327 skb->protocol = htons(ETH_P_IPV6);
328 skb->dev = dev;
329
330 rcu_read_lock_bh();
331 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
332 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
333 if (unlikely(!neigh))
334 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
335 if (!IS_ERR(neigh)) {
336 ret = dst_neigh_output(dst, neigh, skb);
337 rcu_read_unlock_bh();
338 return ret;
339 }
340 rcu_read_unlock_bh();
341
342 IP6_INC_STATS(dev_net(dst->dev),
343 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
344 kfree_skb(skb);
345 return -EINVAL;
346}
347
348/* modelled after ip6_output */
349static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
350{
351 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
352 net, sk, skb, NULL, skb_dst(skb)->dev,
353 vrf_finish_output6,
354 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
355}
356
357static void vrf_rt6_release(struct net_vrf *vrf)
358{
359 dst_release(&vrf->rt6->dst);
360 vrf->rt6 = NULL;
361}
362
363static int vrf_rt6_create(struct net_device *dev)
364{
365 struct net_vrf *vrf = netdev_priv(dev);
366 struct net *net = dev_net(dev);
367 struct rt6_info *rt6;
368 int rc = -ENOMEM;
369
370 rt6 = ip6_dst_alloc(net, dev,
371 DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE);
372 if (!rt6)
373 goto out;
374
375 rt6->dst.output = vrf_output6;
376 rt6->rt6i_table = fib6_get_table(net, vrf->tb_id);
377 dst_hold(&rt6->dst);
378 vrf->rt6 = rt6;
379 rc = 0;
380out:
381 return rc;
382}
383#else
384static void vrf_rt6_release(struct net_vrf *vrf)
385{
386}
387
388static int vrf_rt6_create(struct net_device *dev)
389{
390 return 0;
391}
392#endif
393
394/* modelled after ip_finish_output2 */
395static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
396{
397 struct dst_entry *dst = skb_dst(skb);
398 struct rtable *rt = (struct rtable *)dst;
399 struct net_device *dev = dst->dev;
400 unsigned int hh_len = LL_RESERVED_SPACE(dev);
401 struct neighbour *neigh;
402 u32 nexthop;
403 int ret = -EINVAL;
404
405 /* Be paranoid, rather than too clever. */
406 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
407 struct sk_buff *skb2;
408
409 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
410 if (!skb2) {
411 ret = -ENOMEM;
412 goto err;
413 }
414 if (skb->sk)
415 skb_set_owner_w(skb2, skb->sk);
416
417 consume_skb(skb);
418 skb = skb2;
419 }
420
421 rcu_read_lock_bh();
422
423 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
424 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
425 if (unlikely(!neigh))
426 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
427 if (!IS_ERR(neigh))
428 ret = dst_neigh_output(dst, neigh, skb);
429
430 rcu_read_unlock_bh();
431err:
432 if (unlikely(ret < 0))
433 vrf_tx_error(skb->dev, skb);
434 return ret;
435}
436
437static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
438{
439 struct net_device *dev = skb_dst(skb)->dev;
440
441 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
442
443 skb->dev = dev;
444 skb->protocol = htons(ETH_P_IP);
445
446 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
447 net, sk, skb, NULL, dev,
448 vrf_finish_output,
449 !(IPCB(skb)->flags & IPSKB_REROUTED));
450}
451
452static void vrf_rtable_release(struct net_vrf *vrf)
453{
454 struct dst_entry *dst = (struct dst_entry *)vrf->rth;
455
456 dst_release(dst);
457 vrf->rth = NULL;
458}
459
460static struct rtable *vrf_rtable_create(struct net_device *dev)
461{
462 struct net_vrf *vrf = netdev_priv(dev);
463 struct rtable *rth;
464
465 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
466 if (rth) {
467 rth->dst.output = vrf_output;
468 rth->rt_table_id = vrf->tb_id;
469 }
470
471 return rth;
472}
473
474/**************************** device handling ********************/
475
476/* cycle interface to flush neighbor cache and move routes across tables */
477static void cycle_netdev(struct net_device *dev)
478{
479 unsigned int flags = dev->flags;
480 int ret;
481
482 if (!netif_running(dev))
483 return;
484
485 ret = dev_change_flags(dev, flags & ~IFF_UP);
486 if (ret >= 0)
487 ret = dev_change_flags(dev, flags);
488
489 if (ret < 0) {
490 netdev_err(dev,
491 "Failed to cycle device %s; route tables might be wrong!\n",
492 dev->name);
493 }
494}
495
496static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
497{
498 int ret;
499
500 /* register the packet handler for slave ports */
501 ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
502 if (ret) {
503 netdev_err(port_dev,
504 "Device %s failed to register rx_handler\n",
505 port_dev->name);
506 goto out_fail;
507 }
508
509 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
510 if (ret < 0)
511 goto out_unregister;
512
513 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
514 cycle_netdev(port_dev);
515
516 return 0;
517
518out_unregister:
519 netdev_rx_handler_unregister(port_dev);
520out_fail:
521 return ret;
522}
523
524static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
525{
526 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
527 return -EINVAL;
528
529 return do_vrf_add_slave(dev, port_dev);
530}
531
532/* inverse of do_vrf_add_slave */
533static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
534{
535 netdev_upper_dev_unlink(port_dev, dev);
536 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
537
538 netdev_rx_handler_unregister(port_dev);
539
540 cycle_netdev(port_dev);
541
542 return 0;
543}
544
545static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
546{
547 return do_vrf_del_slave(dev, port_dev);
548}
549
550static void vrf_dev_uninit(struct net_device *dev)
551{
552 struct net_vrf *vrf = netdev_priv(dev);
553 struct net_device *port_dev;
554 struct list_head *iter;
555
556 vrf_rtable_release(vrf);
557 vrf_rt6_release(vrf);
558
559 netdev_for_each_lower_dev(dev, port_dev, iter)
560 vrf_del_slave(dev, port_dev);
561
562 free_percpu(dev->dstats);
563 dev->dstats = NULL;
564}
565
566static int vrf_dev_init(struct net_device *dev)
567{
568 struct net_vrf *vrf = netdev_priv(dev);
569
570 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
571 if (!dev->dstats)
572 goto out_nomem;
573
574 /* create the default dst which points back to us */
575 vrf->rth = vrf_rtable_create(dev);
576 if (!vrf->rth)
577 goto out_stats;
578
579 if (vrf_rt6_create(dev) != 0)
580 goto out_rth;
581
582 dev->flags = IFF_MASTER | IFF_NOARP;
583
584 return 0;
585
586out_rth:
587 vrf_rtable_release(vrf);
588out_stats:
589 free_percpu(dev->dstats);
590 dev->dstats = NULL;
591out_nomem:
592 return -ENOMEM;
593}
594
595static const struct net_device_ops vrf_netdev_ops = {
596 .ndo_init = vrf_dev_init,
597 .ndo_uninit = vrf_dev_uninit,
598 .ndo_start_xmit = vrf_xmit,
599 .ndo_get_stats64 = vrf_get_stats64,
600 .ndo_add_slave = vrf_add_slave,
601 .ndo_del_slave = vrf_del_slave,
602};
603
604static u32 vrf_fib_table(const struct net_device *dev)
605{
606 struct net_vrf *vrf = netdev_priv(dev);
607
608 return vrf->tb_id;
609}
610
611static struct rtable *vrf_get_rtable(const struct net_device *dev,
612 const struct flowi4 *fl4)
613{
614 struct rtable *rth = NULL;
615
616 if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
617 struct net_vrf *vrf = netdev_priv(dev);
618
619 rth = vrf->rth;
620 dst_hold(&rth->dst);
621 }
622
623 return rth;
624}
625
626/* called under rcu_read_lock */
627static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
628{
629 struct fib_result res = { .tclassid = 0 };
630 struct net *net = dev_net(dev);
631 u32 orig_tos = fl4->flowi4_tos;
632 u8 flags = fl4->flowi4_flags;
633 u8 scope = fl4->flowi4_scope;
634 u8 tos = RT_FL_TOS(fl4);
635 int rc;
636
637 if (unlikely(!fl4->daddr))
638 return 0;
639
640 fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
641 fl4->flowi4_iif = LOOPBACK_IFINDEX;
642 fl4->flowi4_tos = tos & IPTOS_RT_MASK;
643 fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
644 RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
645
646 rc = fib_lookup(net, fl4, &res, 0);
647 if (!rc) {
648 if (res.type == RTN_LOCAL)
649 fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
650 else
651 fib_select_path(net, &res, fl4, -1);
652 }
653
654 fl4->flowi4_flags = flags;
655 fl4->flowi4_tos = orig_tos;
656 fl4->flowi4_scope = scope;
657
658 return rc;
659}
660
661#if IS_ENABLED(CONFIG_IPV6)
662static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
663 const struct flowi6 *fl6)
664{
665 struct rt6_info *rt = NULL;
666
667 if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
668 struct net_vrf *vrf = netdev_priv(dev);
669
670 rt = vrf->rt6;
671 dst_hold(&rt->dst);
672 }
673
674 return (struct dst_entry *)rt;
675}
676#endif
677
678static const struct l3mdev_ops vrf_l3mdev_ops = {
679 .l3mdev_fib_table = vrf_fib_table,
680 .l3mdev_get_rtable = vrf_get_rtable,
681 .l3mdev_get_saddr = vrf_get_saddr,
682#if IS_ENABLED(CONFIG_IPV6)
683 .l3mdev_get_rt6_dst = vrf_get_rt6_dst,
684#endif
685};
686
687static void vrf_get_drvinfo(struct net_device *dev,
688 struct ethtool_drvinfo *info)
689{
690 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
691 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
692}
693
694static const struct ethtool_ops vrf_ethtool_ops = {
695 .get_drvinfo = vrf_get_drvinfo,
696};
697
698static void vrf_setup(struct net_device *dev)
699{
700 ether_setup(dev);
701
702 /* Initialize the device structure. */
703 dev->netdev_ops = &vrf_netdev_ops;
704 dev->l3mdev_ops = &vrf_l3mdev_ops;
705 dev->ethtool_ops = &vrf_ethtool_ops;
706 dev->destructor = free_netdev;
707
708 /* Fill in device structure with ethernet-generic values. */
709 eth_hw_addr_random(dev);
710
711 /* don't acquire vrf device's netif_tx_lock when transmitting */
712 dev->features |= NETIF_F_LLTX;
713
714 /* don't allow vrf devices to change network namespaces. */
715 dev->features |= NETIF_F_NETNS_LOCAL;
716}
717
718static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
719{
720 if (tb[IFLA_ADDRESS]) {
721 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
722 return -EINVAL;
723 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
724 return -EADDRNOTAVAIL;
725 }
726 return 0;
727}
728
729static void vrf_dellink(struct net_device *dev, struct list_head *head)
730{
731 unregister_netdevice_queue(dev, head);
732}
733
734static int vrf_newlink(struct net *src_net, struct net_device *dev,
735 struct nlattr *tb[], struct nlattr *data[])
736{
737 struct net_vrf *vrf = netdev_priv(dev);
738
739 if (!data || !data[IFLA_VRF_TABLE])
740 return -EINVAL;
741
742 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
743
744 dev->priv_flags |= IFF_L3MDEV_MASTER;
745
746 return register_netdevice(dev);
747}
748
749static size_t vrf_nl_getsize(const struct net_device *dev)
750{
751 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
752}
753
754static int vrf_fillinfo(struct sk_buff *skb,
755 const struct net_device *dev)
756{
757 struct net_vrf *vrf = netdev_priv(dev);
758
759 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
760}
761
762static size_t vrf_get_slave_size(const struct net_device *bond_dev,
763 const struct net_device *slave_dev)
764{
765 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
766}
767
768static int vrf_fill_slave_info(struct sk_buff *skb,
769 const struct net_device *vrf_dev,
770 const struct net_device *slave_dev)
771{
772 struct net_vrf *vrf = netdev_priv(vrf_dev);
773
774 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
775 return -EMSGSIZE;
776
777 return 0;
778}
779
780static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
781 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
782};
783
784static struct rtnl_link_ops vrf_link_ops __read_mostly = {
785 .kind = DRV_NAME,
786 .priv_size = sizeof(struct net_vrf),
787
788 .get_size = vrf_nl_getsize,
789 .policy = vrf_nl_policy,
790 .validate = vrf_validate,
791 .fill_info = vrf_fillinfo,
792
793 .get_slave_size = vrf_get_slave_size,
794 .fill_slave_info = vrf_fill_slave_info,
795
796 .newlink = vrf_newlink,
797 .dellink = vrf_dellink,
798 .setup = vrf_setup,
799 .maxtype = IFLA_VRF_MAX,
800};
801
802static int vrf_device_event(struct notifier_block *unused,
803 unsigned long event, void *ptr)
804{
805 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
806
807 /* only care about unregister events to drop slave references */
808 if (event == NETDEV_UNREGISTER) {
809 struct net_device *vrf_dev;
810
811 if (!netif_is_l3_slave(dev))
812 goto out;
813
814 vrf_dev = netdev_master_upper_dev_get(dev);
815 vrf_del_slave(vrf_dev, dev);
816 }
817out:
818 return NOTIFY_DONE;
819}
820
821static struct notifier_block vrf_notifier_block __read_mostly = {
822 .notifier_call = vrf_device_event,
823};
824
825static int __init vrf_init_module(void)
826{
827 int rc;
828
829 register_netdevice_notifier(&vrf_notifier_block);
830
831 rc = rtnl_link_register(&vrf_link_ops);
832 if (rc < 0)
833 goto error;
834
835 return 0;
836
837error:
838 unregister_netdevice_notifier(&vrf_notifier_block);
839 return rc;
840}
841
842module_init(vrf_init_module);
843MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
844MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
845MODULE_LICENSE("GPL");
846MODULE_ALIAS_RTNL_LINK(DRV_NAME);
847MODULE_VERSION(DRV_VERSION);