Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * 6pack.c	This module implements the 6pack protocol for kernel-based
  4 *		devices like TTY. It interfaces between a raw TTY and the
  5 *		kernel's AX.25 protocol layers.
  6 *
  7 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
  8 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
  9 *
 10 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
 11 *
 12 *		Laurence Culhane, <loz@holmes.demon.co.uk>
 13 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
 14 */
 15
 16#include <linux/module.h>
 17#include <linux/uaccess.h>
 18#include <linux/bitops.h>
 19#include <linux/string.h>
 20#include <linux/mm.h>
 21#include <linux/interrupt.h>
 22#include <linux/in.h>
 23#include <linux/tty.h>
 24#include <linux/errno.h>
 25#include <linux/netdevice.h>
 26#include <linux/timer.h>
 27#include <linux/slab.h>
 28#include <net/ax25.h>
 29#include <linux/etherdevice.h>
 30#include <linux/skbuff.h>
 31#include <linux/rtnetlink.h>
 32#include <linux/spinlock.h>
 33#include <linux/if_arp.h>
 34#include <linux/init.h>
 35#include <linux/ip.h>
 36#include <linux/tcp.h>
 37#include <linux/semaphore.h>
 38#include <linux/refcount.h>
 
 39
 40#define SIXPACK_VERSION    "Revision: 0.3.0"
 41
 42/* sixpack priority commands */
 43#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
 44#define SIXP_TX_URUN		0x48	/* transmit overrun */
 45#define SIXP_RX_ORUN		0x50	/* receive overrun */
 46#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
 47
 48#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
 49
 50/* masks to get certain bits out of the status bytes sent by the TNC */
 51
 52#define SIXP_CMD_MASK		0xC0
 53#define SIXP_CHN_MASK		0x07
 54#define SIXP_PRIO_CMD_MASK	0x80
 55#define SIXP_STD_CMD_MASK	0x40
 56#define SIXP_PRIO_DATA_MASK	0x38
 57#define SIXP_TX_MASK		0x20
 58#define SIXP_RX_MASK		0x10
 59#define SIXP_RX_DCD_MASK	0x18
 60#define SIXP_LEDS_ON		0x78
 61#define SIXP_LEDS_OFF		0x60
 62#define SIXP_CON		0x08
 63#define SIXP_STA		0x10
 64
 65#define SIXP_FOUND_TNC		0xe9
 66#define SIXP_CON_ON		0x68
 67#define SIXP_DCD_MASK		0x08
 68#define SIXP_DAMA_OFF		0
 69
 70/* default level 2 parameters */
 71#define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
 72#define SIXP_PERSIST			50	/* in 256ths */
 73#define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
 74#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
 75#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
 76
 77/* 6pack configuration. */
 78#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
 79#define SIXP_MTU			256	/* Default MTU */
 80
 81enum sixpack_flags {
 82	SIXPF_ERROR,	/* Parity, etc. error	*/
 83};
 84
 85struct sixpack {
 86	/* Various fields. */
 87	struct tty_struct	*tty;		/* ptr to TTY structure	*/
 88	struct net_device	*dev;		/* easy for intr handling  */
 89
 90	/* These are pointers to the malloc()ed frame buffers. */
 91	unsigned char		*rbuff;		/* receiver buffer	*/
 92	int			rcount;         /* received chars counter  */
 93	unsigned char		*xbuff;		/* transmitter buffer	*/
 94	unsigned char		*xhead;         /* next byte to XMIT */
 95	int			xleft;          /* bytes left in XMIT queue  */
 96
 97	unsigned char		raw_buf[4];
 98	unsigned char		cooked_buf[400];
 99
100	unsigned int		rx_count;
101	unsigned int		rx_count_cooked;
102
103	int			mtu;		/* Our mtu (to spot changes!) */
104	int			buffsize;       /* Max buffers sizes */
105
106	unsigned long		flags;		/* Flag values/ mode etc */
107	unsigned char		mode;		/* 6pack mode */
108
109	/* 6pack stuff */
110	unsigned char		tx_delay;
111	unsigned char		persistence;
112	unsigned char		slottime;
113	unsigned char		duplex;
114	unsigned char		led_state;
115	unsigned char		status;
116	unsigned char		status1;
117	unsigned char		status2;
118	unsigned char		tx_enable;
119	unsigned char		tnc_state;
120
121	struct timer_list	tx_t;
122	struct timer_list	resync_t;
123	refcount_t		refcnt;
124	struct completion	dead;
125	spinlock_t		lock;
126};
127
128#define AX25_6PACK_HEADER_LEN 0
129
130static void sixpack_decode(struct sixpack *, const unsigned char[], int);
131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
132
133/*
134 * Perform the persistence/slottime algorithm for CSMA access. If the
135 * persistence check was successful, write the data to the serial driver.
136 * Note that in case of DAMA operation, the data is not sent here.
137 */
138
139static void sp_xmit_on_air(struct timer_list *t)
140{
141	struct sixpack *sp = from_timer(sp, t, tx_t);
142	int actual, when = sp->slottime;
143	static unsigned char random;
144
145	random = random * 17 + 41;
146
147	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
148		sp->led_state = 0x70;
149		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150		sp->tx_enable = 1;
151		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
152		sp->xleft -= actual;
153		sp->xhead += actual;
154		sp->led_state = 0x60;
155		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
156		sp->status2 = 0;
157	} else
158		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
159}
160
161/* ----> 6pack timer interrupt handler and friends. <---- */
162
163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165{
166	unsigned char *msg, *p = icp;
167	int actual, count;
168
169	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
170		msg = "oversized transmit packet!";
171		goto out_drop;
172	}
173
174	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
175		msg = "oversized transmit packet!";
176		goto out_drop;
177	}
178
179	if (p[0] > 5) {
180		msg = "invalid KISS command";
181		goto out_drop;
182	}
183
184	if ((p[0] != 0) && (len > 2)) {
185		msg = "KISS control packet too long";
186		goto out_drop;
187	}
188
189	if ((p[0] == 0) && (len < 15)) {
190		msg = "bad AX.25 packet to transmit";
191		goto out_drop;
192	}
193
194	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
195	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
196
197	switch (p[0]) {
198	case 1:	sp->tx_delay = p[1];
199		return;
200	case 2:	sp->persistence = p[1];
201		return;
202	case 3:	sp->slottime = p[1];
203		return;
204	case 4:	/* ignored */
205		return;
206	case 5:	sp->duplex = p[1];
207		return;
208	}
209
210	if (p[0] != 0)
211		return;
212
213	/*
214	 * In case of fullduplex or DAMA operation, we don't take care about the
215	 * state of the DCD or of any timers, as the determination of the
216	 * correct time to send is the job of the AX.25 layer. We send
217	 * immediately after data has arrived.
218	 */
219	if (sp->duplex == 1) {
220		sp->led_state = 0x70;
221		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
222		sp->tx_enable = 1;
223		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
224		sp->xleft = count - actual;
225		sp->xhead = sp->xbuff + actual;
226		sp->led_state = 0x60;
227		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
228	} else {
229		sp->xleft = count;
230		sp->xhead = sp->xbuff;
231		sp->status2 = count;
232		sp_xmit_on_air(&sp->tx_t);
233	}
234
235	return;
236
237out_drop:
238	sp->dev->stats.tx_dropped++;
239	netif_start_queue(sp->dev);
240	if (net_ratelimit())
241		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
242}
243
244/* Encapsulate an IP datagram and kick it into a TTY queue. */
245
246static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
247{
248	struct sixpack *sp = netdev_priv(dev);
249
250	if (skb->protocol == htons(ETH_P_IP))
251		return ax25_ip_xmit(skb);
252
253	spin_lock_bh(&sp->lock);
254	/* We were not busy, so we are now... :-) */
255	netif_stop_queue(dev);
256	dev->stats.tx_bytes += skb->len;
257	sp_encaps(sp, skb->data, skb->len);
258	spin_unlock_bh(&sp->lock);
259
260	dev_kfree_skb(skb);
261
262	return NETDEV_TX_OK;
263}
264
265static int sp_open_dev(struct net_device *dev)
266{
267	struct sixpack *sp = netdev_priv(dev);
268
269	if (sp->tty == NULL)
270		return -ENODEV;
271	return 0;
272}
273
274/* Close the low-level part of the 6pack channel. */
275static int sp_close(struct net_device *dev)
276{
277	struct sixpack *sp = netdev_priv(dev);
278
279	spin_lock_bh(&sp->lock);
280	if (sp->tty) {
281		/* TTY discipline is running. */
282		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
283	}
284	netif_stop_queue(dev);
285	spin_unlock_bh(&sp->lock);
286
287	return 0;
288}
289
290static int sp_set_mac_address(struct net_device *dev, void *addr)
291{
292	struct sockaddr_ax25 *sa = addr;
293
294	netif_tx_lock_bh(dev);
295	netif_addr_lock(dev);
296	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
297	netif_addr_unlock(dev);
298	netif_tx_unlock_bh(dev);
299
300	return 0;
301}
302
303static const struct net_device_ops sp_netdev_ops = {
304	.ndo_open		= sp_open_dev,
305	.ndo_stop		= sp_close,
306	.ndo_start_xmit		= sp_xmit,
307	.ndo_set_mac_address    = sp_set_mac_address,
308};
309
310static void sp_setup(struct net_device *dev)
311{
312	/* Finish setting up the DEVICE info. */
313	dev->netdev_ops		= &sp_netdev_ops;
314	dev->needs_free_netdev	= true;
315	dev->mtu		= SIXP_MTU;
316	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
317	dev->header_ops 	= &ax25_header_ops;
318
319	dev->addr_len		= AX25_ADDR_LEN;
320	dev->type		= ARPHRD_AX25;
321	dev->tx_queue_len	= 10;
322
323	/* Only activated in AX.25 mode */
324	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
325	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
326
327	dev->flags		= 0;
328}
329
330/* Send one completely decapsulated IP datagram to the IP layer. */
331
332/*
333 * This is the routine that sends the received data to the kernel AX.25.
334 * 'cmd' is the KISS command. For AX.25 data, it is zero.
335 */
336
337static void sp_bump(struct sixpack *sp, char cmd)
338{
339	struct sk_buff *skb;
340	int count;
341	unsigned char *ptr;
342
343	count = sp->rcount + 1;
344
345	sp->dev->stats.rx_bytes += count;
346
347	if ((skb = dev_alloc_skb(count + 1)) == NULL)
348		goto out_mem;
349
350	ptr = skb_put(skb, count + 1);
351	*ptr++ = cmd;	/* KISS command */
352
353	memcpy(ptr, sp->cooked_buf + 1, count);
354	skb->protocol = ax25_type_trans(skb, sp->dev);
355	netif_rx(skb);
356	sp->dev->stats.rx_packets++;
357
358	return;
359
360out_mem:
361	sp->dev->stats.rx_dropped++;
362}
363
364
365/* ----------------------------------------------------------------------- */
366
367/*
368 * We have a potential race on dereferencing tty->disc_data, because the tty
369 * layer provides no locking at all - thus one cpu could be running
370 * sixpack_receive_buf while another calls sixpack_close, which zeroes
371 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
372 * best way to fix this is to use a rwlock in the tty struct, but for now we
373 * use a single global rwlock for all ttys in ppp line discipline.
374 */
375static DEFINE_RWLOCK(disc_data_lock);
376                                                                                
377static struct sixpack *sp_get(struct tty_struct *tty)
378{
379	struct sixpack *sp;
380
381	read_lock(&disc_data_lock);
382	sp = tty->disc_data;
383	if (sp)
384		refcount_inc(&sp->refcnt);
385	read_unlock(&disc_data_lock);
386
387	return sp;
388}
389
390static void sp_put(struct sixpack *sp)
391{
392	if (refcount_dec_and_test(&sp->refcnt))
393		complete(&sp->dead);
394}
395
396/*
397 * Called by the TTY driver when there's room for more data.  If we have
398 * more packets to send, we send them here.
399 */
400static void sixpack_write_wakeup(struct tty_struct *tty)
401{
402	struct sixpack *sp = sp_get(tty);
403	int actual;
404
405	if (!sp)
406		return;
407	if (sp->xleft <= 0)  {
408		/* Now serial buffer is almost free & we can start
409		 * transmission of another packet */
410		sp->dev->stats.tx_packets++;
411		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
412		sp->tx_enable = 0;
413		netif_wake_queue(sp->dev);
414		goto out;
415	}
416
417	if (sp->tx_enable) {
418		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
419		sp->xleft -= actual;
420		sp->xhead += actual;
421	}
422
423out:
424	sp_put(sp);
425}
426
427/* ----------------------------------------------------------------------- */
428
429/*
430 * Handle the 'receiver data ready' interrupt.
431 * This function is called by the tty module in the kernel when
432 * a block of 6pack data has been received, which can now be decapsulated
433 * and sent on to some IP layer for further processing.
434 */
435static void sixpack_receive_buf(struct tty_struct *tty,
436	const unsigned char *cp, char *fp, int count)
437{
438	struct sixpack *sp;
 
439	int count1;
440
441	if (!count)
442		return;
443
444	sp = sp_get(tty);
445	if (!sp)
446		return;
447
 
 
448	/* Read the characters out of the buffer */
 
449	count1 = count;
450	while (count) {
451		count--;
452		if (fp && *fp++) {
453			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
454				sp->dev->stats.rx_errors++;
455			continue;
456		}
457	}
458	sixpack_decode(sp, cp, count1);
459
460	sp_put(sp);
461	tty_unthrottle(tty);
462}
463
464/*
465 * Try to resync the TNC. Called by the resync timer defined in
466 * decode_prio_command
467 */
468
469#define TNC_UNINITIALIZED	0
470#define TNC_UNSYNC_STARTUP	1
471#define TNC_UNSYNCED		2
472#define TNC_IN_SYNC		3
473
474static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
475{
476	char *msg;
477
478	switch (new_tnc_state) {
479	default:			/* gcc oh piece-o-crap ... */
480	case TNC_UNSYNC_STARTUP:
481		msg = "Synchronizing with TNC";
482		break;
483	case TNC_UNSYNCED:
484		msg = "Lost synchronization with TNC\n";
485		break;
486	case TNC_IN_SYNC:
487		msg = "Found TNC";
488		break;
489	}
490
491	sp->tnc_state = new_tnc_state;
492	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
493}
494
495static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
496{
497	int old_tnc_state = sp->tnc_state;
498
499	if (old_tnc_state != new_tnc_state)
500		__tnc_set_sync_state(sp, new_tnc_state);
501}
502
503static void resync_tnc(struct timer_list *t)
504{
505	struct sixpack *sp = from_timer(sp, t, resync_t);
506	static char resync_cmd = 0xe8;
507
508	/* clear any data that might have been received */
509
510	sp->rx_count = 0;
511	sp->rx_count_cooked = 0;
512
513	/* reset state machine */
514
515	sp->status = 1;
516	sp->status1 = 1;
517	sp->status2 = 0;
518
519	/* resync the TNC */
520
521	sp->led_state = 0x60;
522	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
523	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
524
525
526	/* Start resync timer again -- the TNC might be still absent */
527	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
 
 
 
 
 
528}
529
530static inline int tnc_init(struct sixpack *sp)
531{
532	unsigned char inbyte = 0xe8;
533
534	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
535
536	sp->tty->ops->write(sp->tty, &inbyte, 1);
537
538	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
 
 
 
 
539
540	return 0;
541}
542
543/*
544 * Open the high-level part of the 6pack channel.
545 * This function is called by the TTY module when the
546 * 6pack line discipline is called for.  Because we are
547 * sure the tty line exists, we only have to link it to
548 * a free 6pcack channel...
549 */
550static int sixpack_open(struct tty_struct *tty)
551{
552	char *rbuff = NULL, *xbuff = NULL;
553	struct net_device *dev;
554	struct sixpack *sp;
555	unsigned long len;
556	int err = 0;
557
558	if (!capable(CAP_NET_ADMIN))
559		return -EPERM;
560	if (tty->ops->write == NULL)
561		return -EOPNOTSUPP;
562
563	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
564			   sp_setup);
565	if (!dev) {
566		err = -ENOMEM;
567		goto out;
568	}
569
570	sp = netdev_priv(dev);
571	sp->dev = dev;
572
573	spin_lock_init(&sp->lock);
574	refcount_set(&sp->refcnt, 1);
575	init_completion(&sp->dead);
576
577	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
578
579	len = dev->mtu * 2;
580
581	rbuff = kmalloc(len + 4, GFP_KERNEL);
582	xbuff = kmalloc(len + 4, GFP_KERNEL);
583
584	if (rbuff == NULL || xbuff == NULL) {
585		err = -ENOBUFS;
586		goto out_free;
587	}
588
589	spin_lock_bh(&sp->lock);
590
591	sp->tty = tty;
592
593	sp->rbuff	= rbuff;
594	sp->xbuff	= xbuff;
595
596	sp->mtu		= AX25_MTU + 73;
597	sp->buffsize	= len;
598	sp->rcount	= 0;
599	sp->rx_count	= 0;
600	sp->rx_count_cooked = 0;
601	sp->xleft	= 0;
602
603	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
604
605	sp->duplex	= 0;
606	sp->tx_delay    = SIXP_TXDELAY;
607	sp->persistence = SIXP_PERSIST;
608	sp->slottime    = SIXP_SLOTTIME;
609	sp->led_state   = 0x60;
610	sp->status      = 1;
611	sp->status1     = 1;
612	sp->status2     = 0;
613	sp->tx_enable   = 0;
614
615	netif_start_queue(dev);
616
617	timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
 
 
618
619	timer_setup(&sp->resync_t, resync_tnc, 0);
620
621	spin_unlock_bh(&sp->lock);
622
623	/* Done.  We have linked the TTY line to a channel. */
624	tty->disc_data = sp;
625	tty->receive_room = 65536;
626
627	/* Now we're ready to register. */
628	err = register_netdev(dev);
629	if (err)
630		goto out_free;
631
632	tnc_init(sp);
633
634	return 0;
635
636out_free:
637	kfree(xbuff);
638	kfree(rbuff);
639
640	free_netdev(dev);
641
642out:
643	return err;
644}
645
646
647/*
648 * Close down a 6pack channel.
649 * This means flushing out any pending queues, and then restoring the
650 * TTY line discipline to what it was before it got hooked to 6pack
651 * (which usually is TTY again).
652 */
653static void sixpack_close(struct tty_struct *tty)
654{
655	struct sixpack *sp;
656
657	write_lock_bh(&disc_data_lock);
658	sp = tty->disc_data;
659	tty->disc_data = NULL;
660	write_unlock_bh(&disc_data_lock);
661	if (!sp)
662		return;
663
664	/*
665	 * We have now ensured that nobody can start using ap from now on, but
666	 * we have to wait for all existing users to finish.
667	 */
668	if (!refcount_dec_and_test(&sp->refcnt))
669		wait_for_completion(&sp->dead);
670
671	/* We must stop the queue to avoid potentially scribbling
672	 * on the free buffers. The sp->dead completion is not sufficient
673	 * to protect us from sp->xbuff access.
674	 */
675	netif_stop_queue(sp->dev);
676
677	del_timer_sync(&sp->tx_t);
678	del_timer_sync(&sp->resync_t);
679
680	/* Free all 6pack frame buffers. */
681	kfree(sp->rbuff);
682	kfree(sp->xbuff);
683
684	unregister_netdev(sp->dev);
685}
686
687/* Perform I/O control on an active 6pack channel. */
688static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
689	unsigned int cmd, unsigned long arg)
690{
691	struct sixpack *sp = sp_get(tty);
692	struct net_device *dev;
693	unsigned int tmp, err;
694
695	if (!sp)
696		return -ENXIO;
697	dev = sp->dev;
698
699	switch(cmd) {
700	case SIOCGIFNAME:
701		err = copy_to_user((void __user *) arg, dev->name,
702		                   strlen(dev->name) + 1) ? -EFAULT : 0;
703		break;
704
705	case SIOCGIFENCAP:
706		err = put_user(0, (int __user *) arg);
707		break;
708
709	case SIOCSIFENCAP:
710		if (get_user(tmp, (int __user *) arg)) {
711			err = -EFAULT;
712			break;
713		}
714
715		sp->mode = tmp;
716		dev->addr_len        = AX25_ADDR_LEN;
717		dev->hard_header_len = AX25_KISS_HEADER_LEN +
718		                       AX25_MAX_HEADER_LEN + 3;
719		dev->type            = ARPHRD_AX25;
720
721		err = 0;
722		break;
723
724	 case SIOCSIFHWADDR: {
725		char addr[AX25_ADDR_LEN];
726
727		if (copy_from_user(&addr,
728		                   (void __user *) arg, AX25_ADDR_LEN)) {
729				err = -EFAULT;
730				break;
731			}
732
733			netif_tx_lock_bh(dev);
734			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
735			netif_tx_unlock_bh(dev);
736
737			err = 0;
738			break;
739		}
740
741	default:
742		err = tty_mode_ioctl(tty, file, cmd, arg);
743	}
744
745	sp_put(sp);
746
747	return err;
748}
749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
750static struct tty_ldisc_ops sp_ldisc = {
751	.owner		= THIS_MODULE,
752	.magic		= TTY_LDISC_MAGIC,
753	.name		= "6pack",
754	.open		= sixpack_open,
755	.close		= sixpack_close,
756	.ioctl		= sixpack_ioctl,
 
 
 
757	.receive_buf	= sixpack_receive_buf,
758	.write_wakeup	= sixpack_write_wakeup,
759};
760
761/* Initialize 6pack control device -- register 6pack line discipline */
762
763static const char msg_banner[]  __initconst = KERN_INFO \
764	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
765static const char msg_regfail[] __initconst = KERN_ERR  \
766	"6pack: can't register line discipline (err = %d)\n";
767
768static int __init sixpack_init_driver(void)
769{
770	int status;
771
772	printk(msg_banner);
773
774	/* Register the provided line protocol discipline */
775	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
776		printk(msg_regfail, status);
777
778	return status;
779}
780
781static const char msg_unregfail[] = KERN_ERR \
782	"6pack: can't unregister line discipline (err = %d)\n";
783
784static void __exit sixpack_exit_driver(void)
785{
786	int ret;
787
788	if ((ret = tty_unregister_ldisc(N_6PACK)))
789		printk(msg_unregfail, ret);
790}
791
792/* encode an AX.25 packet into 6pack */
793
794static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
795	int length, unsigned char tx_delay)
796{
797	int count = 0;
798	unsigned char checksum = 0, buf[400];
799	int raw_count = 0;
800
801	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
802	tx_buf_raw[raw_count++] = SIXP_SEOF;
803
804	buf[0] = tx_delay;
805	for (count = 1; count < length; count++)
806		buf[count] = tx_buf[count];
807
808	for (count = 0; count < length; count++)
809		checksum += buf[count];
810	buf[length] = (unsigned char) 0xff - checksum;
811
812	for (count = 0; count <= length; count++) {
813		if ((count % 3) == 0) {
814			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
815			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
816		} else if ((count % 3) == 1) {
817			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
818			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
819		} else {
820			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
821			tx_buf_raw[raw_count++] = (buf[count] >> 2);
822		}
823	}
824	if ((length % 3) != 2)
825		raw_count++;
826	tx_buf_raw[raw_count++] = SIXP_SEOF;
827	return raw_count;
828}
829
830/* decode 4 sixpack-encoded bytes into 3 data bytes */
831
832static void decode_data(struct sixpack *sp, unsigned char inbyte)
833{
834	unsigned char *buf;
835
836	if (sp->rx_count != 3) {
837		sp->raw_buf[sp->rx_count++] = inbyte;
838
839		return;
840	}
841
842	buf = sp->raw_buf;
843	sp->cooked_buf[sp->rx_count_cooked++] =
844		buf[0] | ((buf[1] << 2) & 0xc0);
845	sp->cooked_buf[sp->rx_count_cooked++] =
846		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
847	sp->cooked_buf[sp->rx_count_cooked++] =
848		(buf[2] & 0x03) | (inbyte << 2);
849	sp->rx_count = 0;
850}
851
852/* identify and execute a 6pack priority command byte */
853
854static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
855{
 
856	int actual;
857
 
858	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
859
860	/* RX and DCD flags can only be set in the same prio command,
861	   if the DCD flag has been set without the RX flag in the previous
862	   prio command. If DCD has not been set before, something in the
863	   transmission has gone wrong. In this case, RX and DCD are
864	   cleared in order to prevent the decode_data routine from
865	   reading further data that might be corrupt. */
866
867		if (((sp->status & SIXP_DCD_MASK) == 0) &&
868			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
869				if (sp->status != 1)
870					printk(KERN_DEBUG "6pack: protocol violation\n");
871				else
872					sp->status = 0;
873				cmd &= ~SIXP_RX_DCD_MASK;
874		}
875		sp->status = cmd & SIXP_PRIO_DATA_MASK;
876	} else { /* output watchdog char if idle */
877		if ((sp->status2 != 0) && (sp->duplex == 1)) {
878			sp->led_state = 0x70;
879			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
880			sp->tx_enable = 1;
881			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
882			sp->xleft -= actual;
883			sp->xhead += actual;
884			sp->led_state = 0x60;
885			sp->status2 = 0;
886
887		}
888	}
889
890	/* needed to trigger the TNC watchdog */
891	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
892
893        /* if the state byte has been received, the TNC is present,
894           so the resync timer can be reset. */
895
896	if (sp->tnc_state == TNC_IN_SYNC)
897		mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
 
 
 
 
 
898
899	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
900}
901
902/* identify and execute a standard 6pack command byte */
903
904static void decode_std_command(struct sixpack *sp, unsigned char cmd)
905{
906	unsigned char checksum = 0, rest = 0;
907	short i;
908
 
909	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
910	case SIXP_SEOF:
911		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
912			if ((sp->status & SIXP_RX_DCD_MASK) ==
913				SIXP_RX_DCD_MASK) {
914				sp->led_state = 0x68;
915				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
916			}
917		} else {
918			sp->led_state = 0x60;
919			/* fill trailing bytes with zeroes */
920			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
921			rest = sp->rx_count;
922			if (rest != 0)
923				 for (i = rest; i <= 3; i++)
924					decode_data(sp, 0);
925			if (rest == 2)
926				sp->rx_count_cooked -= 2;
927			else if (rest == 3)
928				sp->rx_count_cooked -= 1;
929			for (i = 0; i < sp->rx_count_cooked; i++)
930				checksum += sp->cooked_buf[i];
931			if (checksum != SIXP_CHKSUM) {
932				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
933			} else {
934				sp->rcount = sp->rx_count_cooked-2;
935				sp_bump(sp, 0);
936			}
937			sp->rx_count_cooked = 0;
938		}
939		break;
940	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
941		break;
942	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
943		break;
944	case SIXP_RX_BUF_OVL:
945		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
946	}
947}
948
949/* decode a 6pack packet */
950
951static void
952sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
953{
954	unsigned char inbyte;
955	int count1;
956
957	for (count1 = 0; count1 < count; count1++) {
958		inbyte = pre_rbuff[count1];
959		if (inbyte == SIXP_FOUND_TNC) {
960			tnc_set_sync_state(sp, TNC_IN_SYNC);
961			del_timer(&sp->resync_t);
962		}
963		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
964			decode_prio_command(sp, inbyte);
965		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
966			decode_std_command(sp, inbyte);
967		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
968			decode_data(sp, inbyte);
969	}
970}
971
972MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
973MODULE_DESCRIPTION("6pack driver for AX.25");
974MODULE_LICENSE("GPL");
975MODULE_ALIAS_LDISC(N_6PACK);
976
977module_init(sixpack_init_driver);
978module_exit(sixpack_exit_driver);
v4.6
 
   1/*
   2 * 6pack.c	This module implements the 6pack protocol for kernel-based
   3 *		devices like TTY. It interfaces between a raw TTY and the
   4 *		kernel's AX.25 protocol layers.
   5 *
   6 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
   7 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
   8 *
   9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
  10 *
  11 *		Laurence Culhane, <loz@holmes.demon.co.uk>
  12 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
  13 */
  14
  15#include <linux/module.h>
  16#include <asm/uaccess.h>
  17#include <linux/bitops.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/interrupt.h>
  21#include <linux/in.h>
  22#include <linux/tty.h>
  23#include <linux/errno.h>
  24#include <linux/netdevice.h>
  25#include <linux/timer.h>
  26#include <linux/slab.h>
  27#include <net/ax25.h>
  28#include <linux/etherdevice.h>
  29#include <linux/skbuff.h>
  30#include <linux/rtnetlink.h>
  31#include <linux/spinlock.h>
  32#include <linux/if_arp.h>
  33#include <linux/init.h>
  34#include <linux/ip.h>
  35#include <linux/tcp.h>
  36#include <linux/semaphore.h>
  37#include <linux/compat.h>
  38#include <linux/atomic.h>
  39
  40#define SIXPACK_VERSION    "Revision: 0.3.0"
  41
  42/* sixpack priority commands */
  43#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
  44#define SIXP_TX_URUN		0x48	/* transmit overrun */
  45#define SIXP_RX_ORUN		0x50	/* receive overrun */
  46#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
  47
  48#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
  49
  50/* masks to get certain bits out of the status bytes sent by the TNC */
  51
  52#define SIXP_CMD_MASK		0xC0
  53#define SIXP_CHN_MASK		0x07
  54#define SIXP_PRIO_CMD_MASK	0x80
  55#define SIXP_STD_CMD_MASK	0x40
  56#define SIXP_PRIO_DATA_MASK	0x38
  57#define SIXP_TX_MASK		0x20
  58#define SIXP_RX_MASK		0x10
  59#define SIXP_RX_DCD_MASK	0x18
  60#define SIXP_LEDS_ON		0x78
  61#define SIXP_LEDS_OFF		0x60
  62#define SIXP_CON		0x08
  63#define SIXP_STA		0x10
  64
  65#define SIXP_FOUND_TNC		0xe9
  66#define SIXP_CON_ON		0x68
  67#define SIXP_DCD_MASK		0x08
  68#define SIXP_DAMA_OFF		0
  69
  70/* default level 2 parameters */
  71#define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
  72#define SIXP_PERSIST			50	/* in 256ths */
  73#define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
  74#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
  75#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
  76
  77/* 6pack configuration. */
  78#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
  79#define SIXP_MTU			256	/* Default MTU */
  80
  81enum sixpack_flags {
  82	SIXPF_ERROR,	/* Parity, etc. error	*/
  83};
  84
  85struct sixpack {
  86	/* Various fields. */
  87	struct tty_struct	*tty;		/* ptr to TTY structure	*/
  88	struct net_device	*dev;		/* easy for intr handling  */
  89
  90	/* These are pointers to the malloc()ed frame buffers. */
  91	unsigned char		*rbuff;		/* receiver buffer	*/
  92	int			rcount;         /* received chars counter  */
  93	unsigned char		*xbuff;		/* transmitter buffer	*/
  94	unsigned char		*xhead;         /* next byte to XMIT */
  95	int			xleft;          /* bytes left in XMIT queue  */
  96
  97	unsigned char		raw_buf[4];
  98	unsigned char		cooked_buf[400];
  99
 100	unsigned int		rx_count;
 101	unsigned int		rx_count_cooked;
 102
 103	int			mtu;		/* Our mtu (to spot changes!) */
 104	int			buffsize;       /* Max buffers sizes */
 105
 106	unsigned long		flags;		/* Flag values/ mode etc */
 107	unsigned char		mode;		/* 6pack mode */
 108
 109	/* 6pack stuff */
 110	unsigned char		tx_delay;
 111	unsigned char		persistence;
 112	unsigned char		slottime;
 113	unsigned char		duplex;
 114	unsigned char		led_state;
 115	unsigned char		status;
 116	unsigned char		status1;
 117	unsigned char		status2;
 118	unsigned char		tx_enable;
 119	unsigned char		tnc_state;
 120
 121	struct timer_list	tx_t;
 122	struct timer_list	resync_t;
 123	atomic_t		refcnt;
 124	struct semaphore	dead_sem;
 125	spinlock_t		lock;
 126};
 127
 128#define AX25_6PACK_HEADER_LEN 0
 129
 130static void sixpack_decode(struct sixpack *, unsigned char[], int);
 131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
 132
 133/*
 134 * Perform the persistence/slottime algorithm for CSMA access. If the
 135 * persistence check was successful, write the data to the serial driver.
 136 * Note that in case of DAMA operation, the data is not sent here.
 137 */
 138
 139static void sp_xmit_on_air(unsigned long channel)
 140{
 141	struct sixpack *sp = (struct sixpack *) channel;
 142	int actual, when = sp->slottime;
 143	static unsigned char random;
 144
 145	random = random * 17 + 41;
 146
 147	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
 148		sp->led_state = 0x70;
 149		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 150		sp->tx_enable = 1;
 151		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 152		sp->xleft -= actual;
 153		sp->xhead += actual;
 154		sp->led_state = 0x60;
 155		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 156		sp->status2 = 0;
 157	} else
 158		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
 159}
 160
 161/* ----> 6pack timer interrupt handler and friends. <---- */
 162
 163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
 164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
 165{
 166	unsigned char *msg, *p = icp;
 167	int actual, count;
 168
 169	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 170		msg = "oversized transmit packet!";
 171		goto out_drop;
 172	}
 173
 174	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 175		msg = "oversized transmit packet!";
 176		goto out_drop;
 177	}
 178
 179	if (p[0] > 5) {
 180		msg = "invalid KISS command";
 181		goto out_drop;
 182	}
 183
 184	if ((p[0] != 0) && (len > 2)) {
 185		msg = "KISS control packet too long";
 186		goto out_drop;
 187	}
 188
 189	if ((p[0] == 0) && (len < 15)) {
 190		msg = "bad AX.25 packet to transmit";
 191		goto out_drop;
 192	}
 193
 194	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
 195	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 196
 197	switch (p[0]) {
 198	case 1:	sp->tx_delay = p[1];
 199		return;
 200	case 2:	sp->persistence = p[1];
 201		return;
 202	case 3:	sp->slottime = p[1];
 203		return;
 204	case 4:	/* ignored */
 205		return;
 206	case 5:	sp->duplex = p[1];
 207		return;
 208	}
 209
 210	if (p[0] != 0)
 211		return;
 212
 213	/*
 214	 * In case of fullduplex or DAMA operation, we don't take care about the
 215	 * state of the DCD or of any timers, as the determination of the
 216	 * correct time to send is the job of the AX.25 layer. We send
 217	 * immediately after data has arrived.
 218	 */
 219	if (sp->duplex == 1) {
 220		sp->led_state = 0x70;
 221		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 222		sp->tx_enable = 1;
 223		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
 224		sp->xleft = count - actual;
 225		sp->xhead = sp->xbuff + actual;
 226		sp->led_state = 0x60;
 227		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 228	} else {
 229		sp->xleft = count;
 230		sp->xhead = sp->xbuff;
 231		sp->status2 = count;
 232		sp_xmit_on_air((unsigned long)sp);
 233	}
 234
 235	return;
 236
 237out_drop:
 238	sp->dev->stats.tx_dropped++;
 239	netif_start_queue(sp->dev);
 240	if (net_ratelimit())
 241		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
 242}
 243
 244/* Encapsulate an IP datagram and kick it into a TTY queue. */
 245
 246static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
 247{
 248	struct sixpack *sp = netdev_priv(dev);
 249
 250	if (skb->protocol == htons(ETH_P_IP))
 251		return ax25_ip_xmit(skb);
 252
 253	spin_lock_bh(&sp->lock);
 254	/* We were not busy, so we are now... :-) */
 255	netif_stop_queue(dev);
 256	dev->stats.tx_bytes += skb->len;
 257	sp_encaps(sp, skb->data, skb->len);
 258	spin_unlock_bh(&sp->lock);
 259
 260	dev_kfree_skb(skb);
 261
 262	return NETDEV_TX_OK;
 263}
 264
 265static int sp_open_dev(struct net_device *dev)
 266{
 267	struct sixpack *sp = netdev_priv(dev);
 268
 269	if (sp->tty == NULL)
 270		return -ENODEV;
 271	return 0;
 272}
 273
 274/* Close the low-level part of the 6pack channel. */
 275static int sp_close(struct net_device *dev)
 276{
 277	struct sixpack *sp = netdev_priv(dev);
 278
 279	spin_lock_bh(&sp->lock);
 280	if (sp->tty) {
 281		/* TTY discipline is running. */
 282		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 283	}
 284	netif_stop_queue(dev);
 285	spin_unlock_bh(&sp->lock);
 286
 287	return 0;
 288}
 289
 290static int sp_set_mac_address(struct net_device *dev, void *addr)
 291{
 292	struct sockaddr_ax25 *sa = addr;
 293
 294	netif_tx_lock_bh(dev);
 295	netif_addr_lock(dev);
 296	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
 297	netif_addr_unlock(dev);
 298	netif_tx_unlock_bh(dev);
 299
 300	return 0;
 301}
 302
 303static const struct net_device_ops sp_netdev_ops = {
 304	.ndo_open		= sp_open_dev,
 305	.ndo_stop		= sp_close,
 306	.ndo_start_xmit		= sp_xmit,
 307	.ndo_set_mac_address    = sp_set_mac_address,
 308};
 309
 310static void sp_setup(struct net_device *dev)
 311{
 312	/* Finish setting up the DEVICE info. */
 313	dev->netdev_ops		= &sp_netdev_ops;
 314	dev->destructor		= free_netdev;
 315	dev->mtu		= SIXP_MTU;
 316	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
 317	dev->header_ops 	= &ax25_header_ops;
 318
 319	dev->addr_len		= AX25_ADDR_LEN;
 320	dev->type		= ARPHRD_AX25;
 321	dev->tx_queue_len	= 10;
 322
 323	/* Only activated in AX.25 mode */
 324	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
 325	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
 326
 327	dev->flags		= 0;
 328}
 329
 330/* Send one completely decapsulated IP datagram to the IP layer. */
 331
 332/*
 333 * This is the routine that sends the received data to the kernel AX.25.
 334 * 'cmd' is the KISS command. For AX.25 data, it is zero.
 335 */
 336
 337static void sp_bump(struct sixpack *sp, char cmd)
 338{
 339	struct sk_buff *skb;
 340	int count;
 341	unsigned char *ptr;
 342
 343	count = sp->rcount + 1;
 344
 345	sp->dev->stats.rx_bytes += count;
 346
 347	if ((skb = dev_alloc_skb(count)) == NULL)
 348		goto out_mem;
 349
 350	ptr = skb_put(skb, count);
 351	*ptr++ = cmd;	/* KISS command */
 352
 353	memcpy(ptr, sp->cooked_buf + 1, count);
 354	skb->protocol = ax25_type_trans(skb, sp->dev);
 355	netif_rx(skb);
 356	sp->dev->stats.rx_packets++;
 357
 358	return;
 359
 360out_mem:
 361	sp->dev->stats.rx_dropped++;
 362}
 363
 364
 365/* ----------------------------------------------------------------------- */
 366
 367/*
 368 * We have a potential race on dereferencing tty->disc_data, because the tty
 369 * layer provides no locking at all - thus one cpu could be running
 370 * sixpack_receive_buf while another calls sixpack_close, which zeroes
 371 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
 372 * best way to fix this is to use a rwlock in the tty struct, but for now we
 373 * use a single global rwlock for all ttys in ppp line discipline.
 374 */
 375static DEFINE_RWLOCK(disc_data_lock);
 376                                                                                
 377static struct sixpack *sp_get(struct tty_struct *tty)
 378{
 379	struct sixpack *sp;
 380
 381	read_lock(&disc_data_lock);
 382	sp = tty->disc_data;
 383	if (sp)
 384		atomic_inc(&sp->refcnt);
 385	read_unlock(&disc_data_lock);
 386
 387	return sp;
 388}
 389
 390static void sp_put(struct sixpack *sp)
 391{
 392	if (atomic_dec_and_test(&sp->refcnt))
 393		up(&sp->dead_sem);
 394}
 395
 396/*
 397 * Called by the TTY driver when there's room for more data.  If we have
 398 * more packets to send, we send them here.
 399 */
 400static void sixpack_write_wakeup(struct tty_struct *tty)
 401{
 402	struct sixpack *sp = sp_get(tty);
 403	int actual;
 404
 405	if (!sp)
 406		return;
 407	if (sp->xleft <= 0)  {
 408		/* Now serial buffer is almost free & we can start
 409		 * transmission of another packet */
 410		sp->dev->stats.tx_packets++;
 411		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 412		sp->tx_enable = 0;
 413		netif_wake_queue(sp->dev);
 414		goto out;
 415	}
 416
 417	if (sp->tx_enable) {
 418		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
 419		sp->xleft -= actual;
 420		sp->xhead += actual;
 421	}
 422
 423out:
 424	sp_put(sp);
 425}
 426
 427/* ----------------------------------------------------------------------- */
 428
 429/*
 430 * Handle the 'receiver data ready' interrupt.
 431 * This function is called by the 'tty_io' module in the kernel when
 432 * a block of 6pack data has been received, which can now be decapsulated
 433 * and sent on to some IP layer for further processing.
 434 */
 435static void sixpack_receive_buf(struct tty_struct *tty,
 436	const unsigned char *cp, char *fp, int count)
 437{
 438	struct sixpack *sp;
 439	unsigned char buf[512];
 440	int count1;
 441
 442	if (!count)
 443		return;
 444
 445	sp = sp_get(tty);
 446	if (!sp)
 447		return;
 448
 449	memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
 450
 451	/* Read the characters out of the buffer */
 452
 453	count1 = count;
 454	while (count) {
 455		count--;
 456		if (fp && *fp++) {
 457			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
 458				sp->dev->stats.rx_errors++;
 459			continue;
 460		}
 461	}
 462	sixpack_decode(sp, buf, count1);
 463
 464	sp_put(sp);
 465	tty_unthrottle(tty);
 466}
 467
 468/*
 469 * Try to resync the TNC. Called by the resync timer defined in
 470 * decode_prio_command
 471 */
 472
 473#define TNC_UNINITIALIZED	0
 474#define TNC_UNSYNC_STARTUP	1
 475#define TNC_UNSYNCED		2
 476#define TNC_IN_SYNC		3
 477
 478static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 479{
 480	char *msg;
 481
 482	switch (new_tnc_state) {
 483	default:			/* gcc oh piece-o-crap ... */
 484	case TNC_UNSYNC_STARTUP:
 485		msg = "Synchronizing with TNC";
 486		break;
 487	case TNC_UNSYNCED:
 488		msg = "Lost synchronization with TNC\n";
 489		break;
 490	case TNC_IN_SYNC:
 491		msg = "Found TNC";
 492		break;
 493	}
 494
 495	sp->tnc_state = new_tnc_state;
 496	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
 497}
 498
 499static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 500{
 501	int old_tnc_state = sp->tnc_state;
 502
 503	if (old_tnc_state != new_tnc_state)
 504		__tnc_set_sync_state(sp, new_tnc_state);
 505}
 506
 507static void resync_tnc(unsigned long channel)
 508{
 509	struct sixpack *sp = (struct sixpack *) channel;
 510	static char resync_cmd = 0xe8;
 511
 512	/* clear any data that might have been received */
 513
 514	sp->rx_count = 0;
 515	sp->rx_count_cooked = 0;
 516
 517	/* reset state machine */
 518
 519	sp->status = 1;
 520	sp->status1 = 1;
 521	sp->status2 = 0;
 522
 523	/* resync the TNC */
 524
 525	sp->led_state = 0x60;
 526	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 527	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
 528
 529
 530	/* Start resync timer again -- the TNC might be still absent */
 531
 532	del_timer(&sp->resync_t);
 533	sp->resync_t.data	= (unsigned long) sp;
 534	sp->resync_t.function	= resync_tnc;
 535	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
 536	add_timer(&sp->resync_t);
 537}
 538
 539static inline int tnc_init(struct sixpack *sp)
 540{
 541	unsigned char inbyte = 0xe8;
 542
 543	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
 544
 545	sp->tty->ops->write(sp->tty, &inbyte, 1);
 546
 547	del_timer(&sp->resync_t);
 548	sp->resync_t.data = (unsigned long) sp;
 549	sp->resync_t.function = resync_tnc;
 550	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
 551	add_timer(&sp->resync_t);
 552
 553	return 0;
 554}
 555
 556/*
 557 * Open the high-level part of the 6pack channel.
 558 * This function is called by the TTY module when the
 559 * 6pack line discipline is called for.  Because we are
 560 * sure the tty line exists, we only have to link it to
 561 * a free 6pcack channel...
 562 */
 563static int sixpack_open(struct tty_struct *tty)
 564{
 565	char *rbuff = NULL, *xbuff = NULL;
 566	struct net_device *dev;
 567	struct sixpack *sp;
 568	unsigned long len;
 569	int err = 0;
 570
 571	if (!capable(CAP_NET_ADMIN))
 572		return -EPERM;
 573	if (tty->ops->write == NULL)
 574		return -EOPNOTSUPP;
 575
 576	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
 577			   sp_setup);
 578	if (!dev) {
 579		err = -ENOMEM;
 580		goto out;
 581	}
 582
 583	sp = netdev_priv(dev);
 584	sp->dev = dev;
 585
 586	spin_lock_init(&sp->lock);
 587	atomic_set(&sp->refcnt, 1);
 588	sema_init(&sp->dead_sem, 0);
 589
 590	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
 591
 592	len = dev->mtu * 2;
 593
 594	rbuff = kmalloc(len + 4, GFP_KERNEL);
 595	xbuff = kmalloc(len + 4, GFP_KERNEL);
 596
 597	if (rbuff == NULL || xbuff == NULL) {
 598		err = -ENOBUFS;
 599		goto out_free;
 600	}
 601
 602	spin_lock_bh(&sp->lock);
 603
 604	sp->tty = tty;
 605
 606	sp->rbuff	= rbuff;
 607	sp->xbuff	= xbuff;
 608
 609	sp->mtu		= AX25_MTU + 73;
 610	sp->buffsize	= len;
 611	sp->rcount	= 0;
 612	sp->rx_count	= 0;
 613	sp->rx_count_cooked = 0;
 614	sp->xleft	= 0;
 615
 616	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
 617
 618	sp->duplex	= 0;
 619	sp->tx_delay    = SIXP_TXDELAY;
 620	sp->persistence = SIXP_PERSIST;
 621	sp->slottime    = SIXP_SLOTTIME;
 622	sp->led_state   = 0x60;
 623	sp->status      = 1;
 624	sp->status1     = 1;
 625	sp->status2     = 0;
 626	sp->tx_enable   = 0;
 627
 628	netif_start_queue(dev);
 629
 630	init_timer(&sp->tx_t);
 631	sp->tx_t.function = sp_xmit_on_air;
 632	sp->tx_t.data = (unsigned long) sp;
 633
 634	init_timer(&sp->resync_t);
 635
 636	spin_unlock_bh(&sp->lock);
 637
 638	/* Done.  We have linked the TTY line to a channel. */
 639	tty->disc_data = sp;
 640	tty->receive_room = 65536;
 641
 642	/* Now we're ready to register. */
 643	err = register_netdev(dev);
 644	if (err)
 645		goto out_free;
 646
 647	tnc_init(sp);
 648
 649	return 0;
 650
 651out_free:
 652	kfree(xbuff);
 653	kfree(rbuff);
 654
 655	free_netdev(dev);
 656
 657out:
 658	return err;
 659}
 660
 661
 662/*
 663 * Close down a 6pack channel.
 664 * This means flushing out any pending queues, and then restoring the
 665 * TTY line discipline to what it was before it got hooked to 6pack
 666 * (which usually is TTY again).
 667 */
 668static void sixpack_close(struct tty_struct *tty)
 669{
 670	struct sixpack *sp;
 671
 672	write_lock_bh(&disc_data_lock);
 673	sp = tty->disc_data;
 674	tty->disc_data = NULL;
 675	write_unlock_bh(&disc_data_lock);
 676	if (!sp)
 677		return;
 678
 679	/*
 680	 * We have now ensured that nobody can start using ap from now on, but
 681	 * we have to wait for all existing users to finish.
 682	 */
 683	if (!atomic_dec_and_test(&sp->refcnt))
 684		down(&sp->dead_sem);
 685
 686	/* We must stop the queue to avoid potentially scribbling
 687	 * on the free buffers. The sp->dead_sem is not sufficient
 688	 * to protect us from sp->xbuff access.
 689	 */
 690	netif_stop_queue(sp->dev);
 691
 692	del_timer_sync(&sp->tx_t);
 693	del_timer_sync(&sp->resync_t);
 694
 695	/* Free all 6pack frame buffers. */
 696	kfree(sp->rbuff);
 697	kfree(sp->xbuff);
 698
 699	unregister_netdev(sp->dev);
 700}
 701
 702/* Perform I/O control on an active 6pack channel. */
 703static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
 704	unsigned int cmd, unsigned long arg)
 705{
 706	struct sixpack *sp = sp_get(tty);
 707	struct net_device *dev;
 708	unsigned int tmp, err;
 709
 710	if (!sp)
 711		return -ENXIO;
 712	dev = sp->dev;
 713
 714	switch(cmd) {
 715	case SIOCGIFNAME:
 716		err = copy_to_user((void __user *) arg, dev->name,
 717		                   strlen(dev->name) + 1) ? -EFAULT : 0;
 718		break;
 719
 720	case SIOCGIFENCAP:
 721		err = put_user(0, (int __user *) arg);
 722		break;
 723
 724	case SIOCSIFENCAP:
 725		if (get_user(tmp, (int __user *) arg)) {
 726			err = -EFAULT;
 727			break;
 728		}
 729
 730		sp->mode = tmp;
 731		dev->addr_len        = AX25_ADDR_LEN;
 732		dev->hard_header_len = AX25_KISS_HEADER_LEN +
 733		                       AX25_MAX_HEADER_LEN + 3;
 734		dev->type            = ARPHRD_AX25;
 735
 736		err = 0;
 737		break;
 738
 739	 case SIOCSIFHWADDR: {
 740		char addr[AX25_ADDR_LEN];
 741
 742		if (copy_from_user(&addr,
 743		                   (void __user *) arg, AX25_ADDR_LEN)) {
 744				err = -EFAULT;
 745				break;
 746			}
 747
 748			netif_tx_lock_bh(dev);
 749			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
 750			netif_tx_unlock_bh(dev);
 751
 752			err = 0;
 753			break;
 754		}
 755
 756	default:
 757		err = tty_mode_ioctl(tty, file, cmd, arg);
 758	}
 759
 760	sp_put(sp);
 761
 762	return err;
 763}
 764
 765#ifdef CONFIG_COMPAT
 766static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
 767				unsigned int cmd, unsigned long arg)
 768{
 769	switch (cmd) {
 770	case SIOCGIFNAME:
 771	case SIOCGIFENCAP:
 772	case SIOCSIFENCAP:
 773	case SIOCSIFHWADDR:
 774		return sixpack_ioctl(tty, file, cmd,
 775				(unsigned long)compat_ptr(arg));
 776	}
 777
 778	return -ENOIOCTLCMD;
 779}
 780#endif
 781
 782static struct tty_ldisc_ops sp_ldisc = {
 783	.owner		= THIS_MODULE,
 784	.magic		= TTY_LDISC_MAGIC,
 785	.name		= "6pack",
 786	.open		= sixpack_open,
 787	.close		= sixpack_close,
 788	.ioctl		= sixpack_ioctl,
 789#ifdef CONFIG_COMPAT
 790	.compat_ioctl	= sixpack_compat_ioctl,
 791#endif
 792	.receive_buf	= sixpack_receive_buf,
 793	.write_wakeup	= sixpack_write_wakeup,
 794};
 795
 796/* Initialize 6pack control device -- register 6pack line discipline */
 797
 798static const char msg_banner[]  __initconst = KERN_INFO \
 799	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
 800static const char msg_regfail[] __initconst = KERN_ERR  \
 801	"6pack: can't register line discipline (err = %d)\n";
 802
 803static int __init sixpack_init_driver(void)
 804{
 805	int status;
 806
 807	printk(msg_banner);
 808
 809	/* Register the provided line protocol discipline */
 810	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
 811		printk(msg_regfail, status);
 812
 813	return status;
 814}
 815
 816static const char msg_unregfail[] = KERN_ERR \
 817	"6pack: can't unregister line discipline (err = %d)\n";
 818
 819static void __exit sixpack_exit_driver(void)
 820{
 821	int ret;
 822
 823	if ((ret = tty_unregister_ldisc(N_6PACK)))
 824		printk(msg_unregfail, ret);
 825}
 826
 827/* encode an AX.25 packet into 6pack */
 828
 829static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
 830	int length, unsigned char tx_delay)
 831{
 832	int count = 0;
 833	unsigned char checksum = 0, buf[400];
 834	int raw_count = 0;
 835
 836	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
 837	tx_buf_raw[raw_count++] = SIXP_SEOF;
 838
 839	buf[0] = tx_delay;
 840	for (count = 1; count < length; count++)
 841		buf[count] = tx_buf[count];
 842
 843	for (count = 0; count < length; count++)
 844		checksum += buf[count];
 845	buf[length] = (unsigned char) 0xff - checksum;
 846
 847	for (count = 0; count <= length; count++) {
 848		if ((count % 3) == 0) {
 849			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
 850			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
 851		} else if ((count % 3) == 1) {
 852			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
 853			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
 854		} else {
 855			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
 856			tx_buf_raw[raw_count++] = (buf[count] >> 2);
 857		}
 858	}
 859	if ((length % 3) != 2)
 860		raw_count++;
 861	tx_buf_raw[raw_count++] = SIXP_SEOF;
 862	return raw_count;
 863}
 864
 865/* decode 4 sixpack-encoded bytes into 3 data bytes */
 866
 867static void decode_data(struct sixpack *sp, unsigned char inbyte)
 868{
 869	unsigned char *buf;
 870
 871	if (sp->rx_count != 3) {
 872		sp->raw_buf[sp->rx_count++] = inbyte;
 873
 874		return;
 875	}
 876
 877	buf = sp->raw_buf;
 878	sp->cooked_buf[sp->rx_count_cooked++] =
 879		buf[0] | ((buf[1] << 2) & 0xc0);
 880	sp->cooked_buf[sp->rx_count_cooked++] =
 881		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
 882	sp->cooked_buf[sp->rx_count_cooked++] =
 883		(buf[2] & 0x03) | (inbyte << 2);
 884	sp->rx_count = 0;
 885}
 886
 887/* identify and execute a 6pack priority command byte */
 888
 889static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
 890{
 891	unsigned char channel;
 892	int actual;
 893
 894	channel = cmd & SIXP_CHN_MASK;
 895	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
 896
 897	/* RX and DCD flags can only be set in the same prio command,
 898	   if the DCD flag has been set without the RX flag in the previous
 899	   prio command. If DCD has not been set before, something in the
 900	   transmission has gone wrong. In this case, RX and DCD are
 901	   cleared in order to prevent the decode_data routine from
 902	   reading further data that might be corrupt. */
 903
 904		if (((sp->status & SIXP_DCD_MASK) == 0) &&
 905			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
 906				if (sp->status != 1)
 907					printk(KERN_DEBUG "6pack: protocol violation\n");
 908				else
 909					sp->status = 0;
 910				cmd &= ~SIXP_RX_DCD_MASK;
 911		}
 912		sp->status = cmd & SIXP_PRIO_DATA_MASK;
 913	} else { /* output watchdog char if idle */
 914		if ((sp->status2 != 0) && (sp->duplex == 1)) {
 915			sp->led_state = 0x70;
 916			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 917			sp->tx_enable = 1;
 918			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 919			sp->xleft -= actual;
 920			sp->xhead += actual;
 921			sp->led_state = 0x60;
 922			sp->status2 = 0;
 923
 924		}
 925	}
 926
 927	/* needed to trigger the TNC watchdog */
 928	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 929
 930        /* if the state byte has been received, the TNC is present,
 931           so the resync timer can be reset. */
 932
 933	if (sp->tnc_state == TNC_IN_SYNC) {
 934		del_timer(&sp->resync_t);
 935		sp->resync_t.data	= (unsigned long) sp;
 936		sp->resync_t.function	= resync_tnc;
 937		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
 938		add_timer(&sp->resync_t);
 939	}
 940
 941	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
 942}
 943
 944/* identify and execute a standard 6pack command byte */
 945
 946static void decode_std_command(struct sixpack *sp, unsigned char cmd)
 947{
 948	unsigned char checksum = 0, rest = 0, channel;
 949	short i;
 950
 951	channel = cmd & SIXP_CHN_MASK;
 952	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
 953	case SIXP_SEOF:
 954		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
 955			if ((sp->status & SIXP_RX_DCD_MASK) ==
 956				SIXP_RX_DCD_MASK) {
 957				sp->led_state = 0x68;
 958				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 959			}
 960		} else {
 961			sp->led_state = 0x60;
 962			/* fill trailing bytes with zeroes */
 963			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 964			rest = sp->rx_count;
 965			if (rest != 0)
 966				 for (i = rest; i <= 3; i++)
 967					decode_data(sp, 0);
 968			if (rest == 2)
 969				sp->rx_count_cooked -= 2;
 970			else if (rest == 3)
 971				sp->rx_count_cooked -= 1;
 972			for (i = 0; i < sp->rx_count_cooked; i++)
 973				checksum += sp->cooked_buf[i];
 974			if (checksum != SIXP_CHKSUM) {
 975				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
 976			} else {
 977				sp->rcount = sp->rx_count_cooked-2;
 978				sp_bump(sp, 0);
 979			}
 980			sp->rx_count_cooked = 0;
 981		}
 982		break;
 983	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
 984		break;
 985	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
 986		break;
 987	case SIXP_RX_BUF_OVL:
 988		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
 989	}
 990}
 991
 992/* decode a 6pack packet */
 993
 994static void
 995sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
 996{
 997	unsigned char inbyte;
 998	int count1;
 999
1000	for (count1 = 0; count1 < count; count1++) {
1001		inbyte = pre_rbuff[count1];
1002		if (inbyte == SIXP_FOUND_TNC) {
1003			tnc_set_sync_state(sp, TNC_IN_SYNC);
1004			del_timer(&sp->resync_t);
1005		}
1006		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1007			decode_prio_command(sp, inbyte);
1008		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1009			decode_std_command(sp, inbyte);
1010		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1011			decode_data(sp, inbyte);
1012	}
1013}
1014
1015MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1016MODULE_DESCRIPTION("6pack driver for AX.25");
1017MODULE_LICENSE("GPL");
1018MODULE_ALIAS_LDISC(N_6PACK);
1019
1020module_init(sixpack_init_driver);
1021module_exit(sixpack_exit_driver);