Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_sched.h"
   6#include "ice_adminq_cmd.h"
   7
   8#define ICE_PF_RESET_WAIT_COUNT	200
   9
  10#define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
  11	wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
  12	     ((ICE_RX_OPC_MDID << \
  13	       GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
  14	      GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
  15	     (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
  16	      GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
  17
  18#define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
  19	wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
  20	     (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
  21	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
  22	     (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
  23	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
  24	     (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
  25	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
  26	     (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
  27	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
  28
  29/**
  30 * ice_set_mac_type - Sets MAC type
  31 * @hw: pointer to the HW structure
  32 *
  33 * This function sets the MAC type of the adapter based on the
  34 * vendor ID and device ID stored in the HW structure.
  35 */
  36static enum ice_status ice_set_mac_type(struct ice_hw *hw)
  37{
  38	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
  39		return ICE_ERR_DEVICE_NOT_SUPPORTED;
  40
  41	hw->mac_type = ICE_MAC_GENERIC;
  42	return 0;
  43}
  44
  45/**
  46 * ice_dev_onetime_setup - Temporary HW/FW workarounds
  47 * @hw: pointer to the HW structure
  48 *
  49 * This function provides temporary workarounds for certain issues
  50 * that are expected to be fixed in the HW/FW.
  51 */
  52void ice_dev_onetime_setup(struct ice_hw *hw)
  53{
  54#define MBX_PF_VT_PFALLOC	0x00231E80
  55	/* set VFs per PF */
  56	wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF));
  57}
  58
  59/**
  60 * ice_clear_pf_cfg - Clear PF configuration
  61 * @hw: pointer to the hardware structure
  62 *
  63 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
  64 * configuration, flow director filters, etc.).
  65 */
  66enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
  67{
  68	struct ice_aq_desc desc;
  69
  70	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
  71
  72	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
  73}
  74
  75/**
  76 * ice_aq_manage_mac_read - manage MAC address read command
  77 * @hw: pointer to the HW struct
  78 * @buf: a virtual buffer to hold the manage MAC read response
  79 * @buf_size: Size of the virtual buffer
  80 * @cd: pointer to command details structure or NULL
  81 *
  82 * This function is used to return per PF station MAC address (0x0107).
  83 * NOTE: Upon successful completion of this command, MAC address information
  84 * is returned in user specified buffer. Please interpret user specified
  85 * buffer as "manage_mac_read" response.
  86 * Response such as various MAC addresses are stored in HW struct (port.mac)
  87 * ice_aq_discover_caps is expected to be called before this function is called.
  88 */
  89static enum ice_status
  90ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
  91		       struct ice_sq_cd *cd)
  92{
  93	struct ice_aqc_manage_mac_read_resp *resp;
  94	struct ice_aqc_manage_mac_read *cmd;
  95	struct ice_aq_desc desc;
  96	enum ice_status status;
  97	u16 flags;
  98	u8 i;
  99
 100	cmd = &desc.params.mac_read;
 101
 102	if (buf_size < sizeof(*resp))
 103		return ICE_ERR_BUF_TOO_SHORT;
 104
 105	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
 106
 107	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 108	if (status)
 109		return status;
 110
 111	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
 112	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
 113
 114	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
 115		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
 116		return ICE_ERR_CFG;
 117	}
 118
 119	/* A single port can report up to two (LAN and WoL) addresses */
 120	for (i = 0; i < cmd->num_addr; i++)
 121		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
 122			ether_addr_copy(hw->port_info->mac.lan_addr,
 123					resp[i].mac_addr);
 124			ether_addr_copy(hw->port_info->mac.perm_addr,
 125					resp[i].mac_addr);
 126			break;
 127		}
 128
 129	return 0;
 130}
 131
 132/**
 133 * ice_aq_get_phy_caps - returns PHY capabilities
 134 * @pi: port information structure
 135 * @qual_mods: report qualified modules
 136 * @report_mode: report mode capabilities
 137 * @pcaps: structure for PHY capabilities to be filled
 138 * @cd: pointer to command details structure or NULL
 139 *
 140 * Returns the various PHY capabilities supported on the Port (0x0600)
 141 */
 142enum ice_status
 143ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
 144		    struct ice_aqc_get_phy_caps_data *pcaps,
 145		    struct ice_sq_cd *cd)
 146{
 147	struct ice_aqc_get_phy_caps *cmd;
 148	u16 pcaps_size = sizeof(*pcaps);
 149	struct ice_aq_desc desc;
 150	enum ice_status status;
 151
 152	cmd = &desc.params.get_phy;
 153
 154	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
 155		return ICE_ERR_PARAM;
 156
 157	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
 158
 159	if (qual_mods)
 160		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
 161
 162	cmd->param0 |= cpu_to_le16(report_mode);
 163	status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
 164
 165	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
 166		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
 167		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
 168	}
 169
 170	return status;
 171}
 172
 173/**
 174 * ice_get_media_type - Gets media type
 175 * @pi: port information structure
 176 */
 177static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
 178{
 179	struct ice_link_status *hw_link_info;
 180
 181	if (!pi)
 182		return ICE_MEDIA_UNKNOWN;
 183
 184	hw_link_info = &pi->phy.link_info;
 185	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
 186		/* If more than one media type is selected, report unknown */
 187		return ICE_MEDIA_UNKNOWN;
 188
 189	if (hw_link_info->phy_type_low) {
 190		switch (hw_link_info->phy_type_low) {
 191		case ICE_PHY_TYPE_LOW_1000BASE_SX:
 192		case ICE_PHY_TYPE_LOW_1000BASE_LX:
 193		case ICE_PHY_TYPE_LOW_10GBASE_SR:
 194		case ICE_PHY_TYPE_LOW_10GBASE_LR:
 195		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
 196		case ICE_PHY_TYPE_LOW_25GBASE_SR:
 197		case ICE_PHY_TYPE_LOW_25GBASE_LR:
 198		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
 199		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
 200		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
 201		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
 202		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
 203		case ICE_PHY_TYPE_LOW_50GBASE_SR:
 204		case ICE_PHY_TYPE_LOW_50GBASE_FR:
 205		case ICE_PHY_TYPE_LOW_50GBASE_LR:
 206		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
 207		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
 208		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
 209		case ICE_PHY_TYPE_LOW_100GBASE_DR:
 210			return ICE_MEDIA_FIBER;
 211		case ICE_PHY_TYPE_LOW_100BASE_TX:
 212		case ICE_PHY_TYPE_LOW_1000BASE_T:
 213		case ICE_PHY_TYPE_LOW_2500BASE_T:
 214		case ICE_PHY_TYPE_LOW_5GBASE_T:
 215		case ICE_PHY_TYPE_LOW_10GBASE_T:
 216		case ICE_PHY_TYPE_LOW_25GBASE_T:
 217			return ICE_MEDIA_BASET;
 218		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
 219		case ICE_PHY_TYPE_LOW_25GBASE_CR:
 220		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
 221		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
 222		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
 223		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
 224		case ICE_PHY_TYPE_LOW_50GBASE_CP:
 225		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
 226		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
 227		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
 228			return ICE_MEDIA_DA;
 229		case ICE_PHY_TYPE_LOW_1000BASE_KX:
 230		case ICE_PHY_TYPE_LOW_2500BASE_KX:
 231		case ICE_PHY_TYPE_LOW_2500BASE_X:
 232		case ICE_PHY_TYPE_LOW_5GBASE_KR:
 233		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
 234		case ICE_PHY_TYPE_LOW_25GBASE_KR:
 235		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
 236		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
 237		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
 238		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
 239		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
 240		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
 241		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
 242			return ICE_MEDIA_BACKPLANE;
 243		}
 244	} else {
 245		switch (hw_link_info->phy_type_high) {
 246		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
 247			return ICE_MEDIA_BACKPLANE;
 248		}
 249	}
 250	return ICE_MEDIA_UNKNOWN;
 251}
 252
 253/**
 254 * ice_aq_get_link_info
 255 * @pi: port information structure
 256 * @ena_lse: enable/disable LinkStatusEvent reporting
 257 * @link: pointer to link status structure - optional
 258 * @cd: pointer to command details structure or NULL
 259 *
 260 * Get Link Status (0x607). Returns the link status of the adapter.
 261 */
 262enum ice_status
 263ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
 264		     struct ice_link_status *link, struct ice_sq_cd *cd)
 265{
 266	struct ice_aqc_get_link_status_data link_data = { 0 };
 267	struct ice_aqc_get_link_status *resp;
 268	struct ice_link_status *li_old, *li;
 269	enum ice_media_type *hw_media_type;
 270	struct ice_fc_info *hw_fc_info;
 271	bool tx_pause, rx_pause;
 272	struct ice_aq_desc desc;
 273	enum ice_status status;
 274	struct ice_hw *hw;
 275	u16 cmd_flags;
 276
 277	if (!pi)
 278		return ICE_ERR_PARAM;
 279	hw = pi->hw;
 280	li_old = &pi->phy.link_info_old;
 281	hw_media_type = &pi->phy.media_type;
 282	li = &pi->phy.link_info;
 283	hw_fc_info = &pi->fc;
 284
 285	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
 286	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
 287	resp = &desc.params.get_link_status;
 288	resp->cmd_flags = cpu_to_le16(cmd_flags);
 289	resp->lport_num = pi->lport;
 290
 291	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
 292
 293	if (status)
 294		return status;
 295
 296	/* save off old link status information */
 297	*li_old = *li;
 298
 299	/* update current link status information */
 300	li->link_speed = le16_to_cpu(link_data.link_speed);
 301	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
 302	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
 303	*hw_media_type = ice_get_media_type(pi);
 304	li->link_info = link_data.link_info;
 305	li->an_info = link_data.an_info;
 306	li->ext_info = link_data.ext_info;
 307	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
 308	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
 309	li->topo_media_conflict = link_data.topo_media_conflict;
 310	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
 311				      ICE_AQ_CFG_PACING_TYPE_M);
 312
 313	/* update fc info */
 314	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
 315	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
 316	if (tx_pause && rx_pause)
 317		hw_fc_info->current_mode = ICE_FC_FULL;
 318	else if (tx_pause)
 319		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
 320	else if (rx_pause)
 321		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
 322	else
 323		hw_fc_info->current_mode = ICE_FC_NONE;
 324
 325	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
 326
 327	ice_debug(hw, ICE_DBG_LINK, "link_speed = 0x%x\n", li->link_speed);
 328	ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
 329		  (unsigned long long)li->phy_type_low);
 330	ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
 331		  (unsigned long long)li->phy_type_high);
 332	ice_debug(hw, ICE_DBG_LINK, "media_type = 0x%x\n", *hw_media_type);
 333	ice_debug(hw, ICE_DBG_LINK, "link_info = 0x%x\n", li->link_info);
 334	ice_debug(hw, ICE_DBG_LINK, "an_info = 0x%x\n", li->an_info);
 335	ice_debug(hw, ICE_DBG_LINK, "ext_info = 0x%x\n", li->ext_info);
 336	ice_debug(hw, ICE_DBG_LINK, "lse_ena = 0x%x\n", li->lse_ena);
 337	ice_debug(hw, ICE_DBG_LINK, "max_frame = 0x%x\n", li->max_frame_size);
 338	ice_debug(hw, ICE_DBG_LINK, "pacing = 0x%x\n", li->pacing);
 339
 340	/* save link status information */
 341	if (link)
 342		*link = *li;
 343
 344	/* flag cleared so calling functions don't call AQ again */
 345	pi->phy.get_link_info = false;
 346
 347	return 0;
 348}
 349
 350/**
 351 * ice_init_flex_flags
 352 * @hw: pointer to the hardware structure
 353 * @prof_id: Rx Descriptor Builder profile ID
 354 *
 355 * Function to initialize Rx flex flags
 356 */
 357static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
 358{
 359	u8 idx = 0;
 360
 361	/* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
 362	 * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
 363	 * flexiflags1[3:0] - Not used for flag programming
 364	 * flexiflags2[7:0] - Tunnel and VLAN types
 365	 * 2 invalid fields in last index
 366	 */
 367	switch (prof_id) {
 368	/* Rx flex flags are currently programmed for the NIC profiles only.
 369	 * Different flag bit programming configurations can be added per
 370	 * profile as needed.
 371	 */
 372	case ICE_RXDID_FLEX_NIC:
 373	case ICE_RXDID_FLEX_NIC_2:
 374		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_FRG,
 375				   ICE_FLG_UDP_GRE, ICE_FLG_PKT_DSI,
 376				   ICE_FLG_FIN, idx++);
 377		/* flex flag 1 is not used for flexi-flag programming, skipping
 378		 * these four FLG64 bits.
 379		 */
 380		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_SYN, ICE_FLG_RST,
 381				   ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx++);
 382		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_DSI,
 383				   ICE_FLG_PKT_DSI, ICE_FLG_EVLAN_x8100,
 384				   ICE_FLG_EVLAN_x9100, idx++);
 385		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_VLAN_x8100,
 386				   ICE_FLG_TNL_VLAN, ICE_FLG_TNL_MAC,
 387				   ICE_FLG_TNL0, idx++);
 388		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_TNL1, ICE_FLG_TNL2,
 389				   ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx);
 390		break;
 391
 392	default:
 393		ice_debug(hw, ICE_DBG_INIT,
 394			  "Flag programming for profile ID %d not supported\n",
 395			  prof_id);
 396	}
 397}
 398
 399/**
 400 * ice_init_flex_flds
 401 * @hw: pointer to the hardware structure
 402 * @prof_id: Rx Descriptor Builder profile ID
 403 *
 404 * Function to initialize flex descriptors
 405 */
 406static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
 407{
 408	enum ice_flex_rx_mdid mdid;
 409
 410	switch (prof_id) {
 411	case ICE_RXDID_FLEX_NIC:
 412	case ICE_RXDID_FLEX_NIC_2:
 413		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
 414		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
 415		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);
 416
 417		mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
 418			ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;
 419
 420		ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);
 421
 422		ice_init_flex_flags(hw, prof_id);
 423		break;
 424
 425	default:
 426		ice_debug(hw, ICE_DBG_INIT,
 427			  "Field init for profile ID %d not supported\n",
 428			  prof_id);
 429	}
 430}
 431
 432/**
 433 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
 434 * @hw: pointer to the HW struct
 435 */
 436static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
 437{
 438	struct ice_switch_info *sw;
 439
 440	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
 441				       sizeof(*hw->switch_info), GFP_KERNEL);
 442	sw = hw->switch_info;
 443
 444	if (!sw)
 445		return ICE_ERR_NO_MEMORY;
 446
 447	INIT_LIST_HEAD(&sw->vsi_list_map_head);
 448
 449	return ice_init_def_sw_recp(hw);
 450}
 451
 452/**
 453 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
 454 * @hw: pointer to the HW struct
 455 */
 456static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
 457{
 458	struct ice_switch_info *sw = hw->switch_info;
 459	struct ice_vsi_list_map_info *v_pos_map;
 460	struct ice_vsi_list_map_info *v_tmp_map;
 461	struct ice_sw_recipe *recps;
 462	u8 i;
 463
 464	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
 465				 list_entry) {
 466		list_del(&v_pos_map->list_entry);
 467		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
 468	}
 469	recps = hw->switch_info->recp_list;
 470	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
 471		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
 472
 473		recps[i].root_rid = i;
 474		mutex_destroy(&recps[i].filt_rule_lock);
 475		list_for_each_entry_safe(lst_itr, tmp_entry,
 476					 &recps[i].filt_rules, list_entry) {
 477			list_del(&lst_itr->list_entry);
 478			devm_kfree(ice_hw_to_dev(hw), lst_itr);
 479		}
 480	}
 481	ice_rm_all_sw_replay_rule_info(hw);
 482	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
 483	devm_kfree(ice_hw_to_dev(hw), sw);
 484}
 485
 486#define ICE_FW_LOG_DESC_SIZE(n)	(sizeof(struct ice_aqc_fw_logging_data) + \
 487	(((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
 488#define ICE_FW_LOG_DESC_SIZE_MAX	\
 489	ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)
 490
 491/**
 492 * ice_get_fw_log_cfg - get FW logging configuration
 493 * @hw: pointer to the HW struct
 494 */
 495static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
 496{
 497	struct ice_aqc_fw_logging_data *config;
 498	struct ice_aq_desc desc;
 499	enum ice_status status;
 500	u16 size;
 501
 502	size = ICE_FW_LOG_DESC_SIZE_MAX;
 503	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
 504	if (!config)
 505		return ICE_ERR_NO_MEMORY;
 506
 507	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
 508
 509	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF);
 510	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 511
 512	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
 513	if (!status) {
 514		u16 i;
 515
 516		/* Save FW logging information into the HW structure */
 517		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 518			u16 v, m, flgs;
 519
 520			v = le16_to_cpu(config->entry[i]);
 521			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 522			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
 523
 524			if (m < ICE_AQC_FW_LOG_ID_MAX)
 525				hw->fw_log.evnts[m].cur = flgs;
 526		}
 527	}
 528
 529	devm_kfree(ice_hw_to_dev(hw), config);
 530
 531	return status;
 532}
 533
 534/**
 535 * ice_cfg_fw_log - configure FW logging
 536 * @hw: pointer to the HW struct
 537 * @enable: enable certain FW logging events if true, disable all if false
 538 *
 539 * This function enables/disables the FW logging via Rx CQ events and a UART
 540 * port based on predetermined configurations. FW logging via the Rx CQ can be
 541 * enabled/disabled for individual PF's. However, FW logging via the UART can
 542 * only be enabled/disabled for all PFs on the same device.
 543 *
 544 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
 545 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
 546 * before initializing the device.
 547 *
 548 * When re/configuring FW logging, callers need to update the "cfg" elements of
 549 * the hw->fw_log.evnts array with the desired logging event configurations for
 550 * modules of interest. When disabling FW logging completely, the callers can
 551 * just pass false in the "enable" parameter. On completion, the function will
 552 * update the "cur" element of the hw->fw_log.evnts array with the resulting
 553 * logging event configurations of the modules that are being re/configured. FW
 554 * logging modules that are not part of a reconfiguration operation retain their
 555 * previous states.
 556 *
 557 * Before resetting the device, it is recommended that the driver disables FW
 558 * logging before shutting down the control queue. When disabling FW logging
 559 * ("enable" = false), the latest configurations of FW logging events stored in
 560 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
 561 * a device reset.
 562 *
 563 * When enabling FW logging to emit log messages via the Rx CQ during the
 564 * device's initialization phase, a mechanism alternative to interrupt handlers
 565 * needs to be used to extract FW log messages from the Rx CQ periodically and
 566 * to prevent the Rx CQ from being full and stalling other types of control
 567 * messages from FW to SW. Interrupts are typically disabled during the device's
 568 * initialization phase.
 569 */
 570static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
 571{
 572	struct ice_aqc_fw_logging_data *data = NULL;
 573	struct ice_aqc_fw_logging *cmd;
 574	enum ice_status status = 0;
 575	u16 i, chgs = 0, len = 0;
 576	struct ice_aq_desc desc;
 577	u8 actv_evnts = 0;
 578	void *buf = NULL;
 579
 580	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
 581		return 0;
 582
 583	/* Disable FW logging only when the control queue is still responsive */
 584	if (!enable &&
 585	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
 586		return 0;
 587
 588	/* Get current FW log settings */
 589	status = ice_get_fw_log_cfg(hw);
 590	if (status)
 591		return status;
 592
 593	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
 594	cmd = &desc.params.fw_logging;
 595
 596	/* Indicate which controls are valid */
 597	if (hw->fw_log.cq_en)
 598		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
 599
 600	if (hw->fw_log.uart_en)
 601		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
 602
 603	if (enable) {
 604		/* Fill in an array of entries with FW logging modules and
 605		 * logging events being reconfigured.
 606		 */
 607		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 608			u16 val;
 609
 610			/* Keep track of enabled event types */
 611			actv_evnts |= hw->fw_log.evnts[i].cfg;
 612
 613			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
 614				continue;
 615
 616			if (!data) {
 617				data = devm_kzalloc(ice_hw_to_dev(hw),
 618						    ICE_FW_LOG_DESC_SIZE_MAX,
 619						    GFP_KERNEL);
 620				if (!data)
 621					return ICE_ERR_NO_MEMORY;
 622			}
 623
 624			val = i << ICE_AQC_FW_LOG_ID_S;
 625			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
 626			data->entry[chgs++] = cpu_to_le16(val);
 627		}
 628
 629		/* Only enable FW logging if at least one module is specified.
 630		 * If FW logging is currently enabled but all modules are not
 631		 * enabled to emit log messages, disable FW logging altogether.
 632		 */
 633		if (actv_evnts) {
 634			/* Leave if there is effectively no change */
 635			if (!chgs)
 636				goto out;
 637
 638			if (hw->fw_log.cq_en)
 639				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
 640
 641			if (hw->fw_log.uart_en)
 642				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
 643
 644			buf = data;
 645			len = ICE_FW_LOG_DESC_SIZE(chgs);
 646			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 647		}
 648	}
 649
 650	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
 651	if (!status) {
 652		/* Update the current configuration to reflect events enabled.
 653		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
 654		 * logging mode is enabled for the device. They do not reflect
 655		 * actual modules being enabled to emit log messages. So, their
 656		 * values remain unchanged even when all modules are disabled.
 657		 */
 658		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
 659
 660		hw->fw_log.actv_evnts = actv_evnts;
 661		for (i = 0; i < cnt; i++) {
 662			u16 v, m;
 663
 664			if (!enable) {
 665				/* When disabling all FW logging events as part
 666				 * of device's de-initialization, the original
 667				 * configurations are retained, and can be used
 668				 * to reconfigure FW logging later if the device
 669				 * is re-initialized.
 670				 */
 671				hw->fw_log.evnts[i].cur = 0;
 672				continue;
 673			}
 674
 675			v = le16_to_cpu(data->entry[i]);
 676			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 677			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
 678		}
 679	}
 680
 681out:
 682	if (data)
 683		devm_kfree(ice_hw_to_dev(hw), data);
 684
 685	return status;
 686}
 687
 688/**
 689 * ice_output_fw_log
 690 * @hw: pointer to the HW struct
 691 * @desc: pointer to the AQ message descriptor
 692 * @buf: pointer to the buffer accompanying the AQ message
 693 *
 694 * Formats a FW Log message and outputs it via the standard driver logs.
 695 */
 696void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
 697{
 698	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
 699	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
 700			le16_to_cpu(desc->datalen));
 701	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
 702}
 703
 704/**
 705 * ice_get_itr_intrl_gran - determine int/intrl granularity
 706 * @hw: pointer to the HW struct
 707 *
 708 * Determines the ITR/intrl granularities based on the maximum aggregate
 709 * bandwidth according to the device's configuration during power-on.
 710 */
 711static void ice_get_itr_intrl_gran(struct ice_hw *hw)
 712{
 713	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
 714			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
 715			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
 716
 717	switch (max_agg_bw) {
 718	case ICE_MAX_AGG_BW_200G:
 719	case ICE_MAX_AGG_BW_100G:
 720	case ICE_MAX_AGG_BW_50G:
 721		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
 722		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
 723		break;
 724	case ICE_MAX_AGG_BW_25G:
 725		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
 726		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
 727		break;
 728	}
 729}
 730
 731/**
 732 * ice_get_nvm_version - get cached NVM version data
 733 * @hw: pointer to the hardware structure
 734 * @oem_ver: 8 bit NVM version
 735 * @oem_build: 16 bit NVM build number
 736 * @oem_patch: 8 NVM patch number
 737 * @ver_hi: high 16 bits of the NVM version
 738 * @ver_lo: low 16 bits of the NVM version
 739 */
 740void
 741ice_get_nvm_version(struct ice_hw *hw, u8 *oem_ver, u16 *oem_build,
 742		    u8 *oem_patch, u8 *ver_hi, u8 *ver_lo)
 743{
 744	struct ice_nvm_info *nvm = &hw->nvm;
 745
 746	*oem_ver = (u8)((nvm->oem_ver & ICE_OEM_VER_MASK) >> ICE_OEM_VER_SHIFT);
 747	*oem_patch = (u8)(nvm->oem_ver & ICE_OEM_VER_PATCH_MASK);
 748	*oem_build = (u16)((nvm->oem_ver & ICE_OEM_VER_BUILD_MASK) >>
 749			   ICE_OEM_VER_BUILD_SHIFT);
 750	*ver_hi = (nvm->ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
 751	*ver_lo = (nvm->ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
 752}
 753
 754/**
 755 * ice_init_hw - main hardware initialization routine
 756 * @hw: pointer to the hardware structure
 757 */
 758enum ice_status ice_init_hw(struct ice_hw *hw)
 759{
 760	struct ice_aqc_get_phy_caps_data *pcaps;
 761	enum ice_status status;
 762	u16 mac_buf_len;
 763	void *mac_buf;
 764
 765	/* Set MAC type based on DeviceID */
 766	status = ice_set_mac_type(hw);
 767	if (status)
 768		return status;
 769
 770	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
 771			 PF_FUNC_RID_FUNC_NUM_M) >>
 772		PF_FUNC_RID_FUNC_NUM_S;
 773
 774	status = ice_reset(hw, ICE_RESET_PFR);
 775	if (status)
 776		return status;
 777
 778	ice_get_itr_intrl_gran(hw);
 779
 780	status = ice_create_all_ctrlq(hw);
 781	if (status)
 782		goto err_unroll_cqinit;
 783
 784	/* Enable FW logging. Not fatal if this fails. */
 785	status = ice_cfg_fw_log(hw, true);
 786	if (status)
 787		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
 788
 789	status = ice_clear_pf_cfg(hw);
 790	if (status)
 791		goto err_unroll_cqinit;
 792
 793	ice_clear_pxe_mode(hw);
 794
 795	status = ice_init_nvm(hw);
 796	if (status)
 797		goto err_unroll_cqinit;
 798
 799	status = ice_get_caps(hw);
 800	if (status)
 801		goto err_unroll_cqinit;
 802
 803	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
 804				     sizeof(*hw->port_info), GFP_KERNEL);
 805	if (!hw->port_info) {
 806		status = ICE_ERR_NO_MEMORY;
 807		goto err_unroll_cqinit;
 808	}
 809
 810	/* set the back pointer to HW */
 811	hw->port_info->hw = hw;
 812
 813	/* Initialize port_info struct with switch configuration data */
 814	status = ice_get_initial_sw_cfg(hw);
 815	if (status)
 816		goto err_unroll_alloc;
 817
 818	hw->evb_veb = true;
 819
 820	/* Query the allocated resources for Tx scheduler */
 821	status = ice_sched_query_res_alloc(hw);
 822	if (status) {
 823		ice_debug(hw, ICE_DBG_SCHED,
 824			  "Failed to get scheduler allocated resources\n");
 825		goto err_unroll_alloc;
 826	}
 827
 828	/* Initialize port_info struct with scheduler data */
 829	status = ice_sched_init_port(hw->port_info);
 830	if (status)
 831		goto err_unroll_sched;
 832
 833	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
 834	if (!pcaps) {
 835		status = ICE_ERR_NO_MEMORY;
 836		goto err_unroll_sched;
 837	}
 838
 839	/* Initialize port_info struct with PHY capabilities */
 840	status = ice_aq_get_phy_caps(hw->port_info, false,
 841				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
 842	devm_kfree(ice_hw_to_dev(hw), pcaps);
 843	if (status)
 844		goto err_unroll_sched;
 845
 846	/* Initialize port_info struct with link information */
 847	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
 848	if (status)
 849		goto err_unroll_sched;
 850
 851	/* need a valid SW entry point to build a Tx tree */
 852	if (!hw->sw_entry_point_layer) {
 853		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
 854		status = ICE_ERR_CFG;
 855		goto err_unroll_sched;
 856	}
 857	INIT_LIST_HEAD(&hw->agg_list);
 858
 859	status = ice_init_fltr_mgmt_struct(hw);
 860	if (status)
 861		goto err_unroll_sched;
 862
 863	ice_dev_onetime_setup(hw);
 864
 865	/* Get MAC information */
 866	/* A single port can report up to two (LAN and WoL) addresses */
 867	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
 868			       sizeof(struct ice_aqc_manage_mac_read_resp),
 869			       GFP_KERNEL);
 870	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
 871
 872	if (!mac_buf) {
 873		status = ICE_ERR_NO_MEMORY;
 874		goto err_unroll_fltr_mgmt_struct;
 875	}
 876
 877	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
 878	devm_kfree(ice_hw_to_dev(hw), mac_buf);
 879
 880	if (status)
 881		goto err_unroll_fltr_mgmt_struct;
 882
 883	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
 884	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
 885	status = ice_init_hw_tbls(hw);
 886	if (status)
 887		goto err_unroll_fltr_mgmt_struct;
 888	return 0;
 889
 890err_unroll_fltr_mgmt_struct:
 891	ice_cleanup_fltr_mgmt_struct(hw);
 892err_unroll_sched:
 893	ice_sched_cleanup_all(hw);
 894err_unroll_alloc:
 895	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
 896err_unroll_cqinit:
 897	ice_destroy_all_ctrlq(hw);
 898	return status;
 899}
 900
 901/**
 902 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
 903 * @hw: pointer to the hardware structure
 904 *
 905 * This should be called only during nominal operation, not as a result of
 906 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
 907 * applicable initializations if it fails for any reason.
 908 */
 909void ice_deinit_hw(struct ice_hw *hw)
 910{
 911	ice_cleanup_fltr_mgmt_struct(hw);
 912
 913	ice_sched_cleanup_all(hw);
 914	ice_sched_clear_agg(hw);
 915	ice_free_seg(hw);
 916	ice_free_hw_tbls(hw);
 917
 918	if (hw->port_info) {
 919		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
 920		hw->port_info = NULL;
 921	}
 922
 923	/* Attempt to disable FW logging before shutting down control queues */
 924	ice_cfg_fw_log(hw, false);
 925	ice_destroy_all_ctrlq(hw);
 926
 927	/* Clear VSI contexts if not already cleared */
 928	ice_clear_all_vsi_ctx(hw);
 929}
 930
 931/**
 932 * ice_check_reset - Check to see if a global reset is complete
 933 * @hw: pointer to the hardware structure
 934 */
 935enum ice_status ice_check_reset(struct ice_hw *hw)
 936{
 937	u32 cnt, reg = 0, grst_delay;
 938
 939	/* Poll for Device Active state in case a recent CORER, GLOBR,
 940	 * or EMPR has occurred. The grst delay value is in 100ms units.
 941	 * Add 1sec for outstanding AQ commands that can take a long time.
 942	 */
 943	grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
 944		      GLGEN_RSTCTL_GRSTDEL_S) + 10;
 945
 946	for (cnt = 0; cnt < grst_delay; cnt++) {
 947		mdelay(100);
 948		reg = rd32(hw, GLGEN_RSTAT);
 949		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
 950			break;
 951	}
 952
 953	if (cnt == grst_delay) {
 954		ice_debug(hw, ICE_DBG_INIT,
 955			  "Global reset polling failed to complete.\n");
 956		return ICE_ERR_RESET_FAILED;
 957	}
 958
 959#define ICE_RESET_DONE_MASK	(GLNVM_ULD_CORER_DONE_M | \
 960				 GLNVM_ULD_GLOBR_DONE_M)
 961
 962	/* Device is Active; check Global Reset processes are done */
 963	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
 964		reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
 965		if (reg == ICE_RESET_DONE_MASK) {
 966			ice_debug(hw, ICE_DBG_INIT,
 967				  "Global reset processes done. %d\n", cnt);
 968			break;
 969		}
 970		mdelay(10);
 971	}
 972
 973	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
 974		ice_debug(hw, ICE_DBG_INIT,
 975			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
 976			  reg);
 977		return ICE_ERR_RESET_FAILED;
 978	}
 979
 980	return 0;
 981}
 982
 983/**
 984 * ice_pf_reset - Reset the PF
 985 * @hw: pointer to the hardware structure
 986 *
 987 * If a global reset has been triggered, this function checks
 988 * for its completion and then issues the PF reset
 989 */
 990static enum ice_status ice_pf_reset(struct ice_hw *hw)
 991{
 992	u32 cnt, reg;
 993
 994	/* If at function entry a global reset was already in progress, i.e.
 995	 * state is not 'device active' or any of the reset done bits are not
 996	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
 997	 * global reset is done.
 998	 */
 999	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1000	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1001		/* poll on global reset currently in progress until done */
1002		if (ice_check_reset(hw))
1003			return ICE_ERR_RESET_FAILED;
1004
1005		return 0;
1006	}
1007
1008	/* Reset the PF */
1009	reg = rd32(hw, PFGEN_CTRL);
1010
1011	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1012
1013	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1014		reg = rd32(hw, PFGEN_CTRL);
1015		if (!(reg & PFGEN_CTRL_PFSWR_M))
1016			break;
1017
1018		mdelay(1);
1019	}
1020
1021	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1022		ice_debug(hw, ICE_DBG_INIT,
1023			  "PF reset polling failed to complete.\n");
1024		return ICE_ERR_RESET_FAILED;
1025	}
1026
1027	return 0;
1028}
1029
1030/**
1031 * ice_reset - Perform different types of reset
1032 * @hw: pointer to the hardware structure
1033 * @req: reset request
1034 *
1035 * This function triggers a reset as specified by the req parameter.
1036 *
1037 * Note:
1038 * If anything other than a PF reset is triggered, PXE mode is restored.
1039 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1040 * interface has been restored in the rebuild flow.
1041 */
1042enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1043{
1044	u32 val = 0;
1045
1046	switch (req) {
1047	case ICE_RESET_PFR:
1048		return ice_pf_reset(hw);
1049	case ICE_RESET_CORER:
1050		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1051		val = GLGEN_RTRIG_CORER_M;
1052		break;
1053	case ICE_RESET_GLOBR:
1054		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1055		val = GLGEN_RTRIG_GLOBR_M;
1056		break;
1057	default:
1058		return ICE_ERR_PARAM;
1059	}
1060
1061	val |= rd32(hw, GLGEN_RTRIG);
1062	wr32(hw, GLGEN_RTRIG, val);
1063	ice_flush(hw);
1064
1065	/* wait for the FW to be ready */
1066	return ice_check_reset(hw);
1067}
1068
1069/**
1070 * ice_copy_rxq_ctx_to_hw
1071 * @hw: pointer to the hardware structure
1072 * @ice_rxq_ctx: pointer to the rxq context
1073 * @rxq_index: the index of the Rx queue
1074 *
1075 * Copies rxq context from dense structure to HW register space
1076 */
1077static enum ice_status
1078ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1079{
1080	u8 i;
1081
1082	if (!ice_rxq_ctx)
1083		return ICE_ERR_BAD_PTR;
1084
1085	if (rxq_index > QRX_CTRL_MAX_INDEX)
1086		return ICE_ERR_PARAM;
1087
1088	/* Copy each dword separately to HW */
1089	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1090		wr32(hw, QRX_CONTEXT(i, rxq_index),
1091		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1092
1093		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1094			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1095	}
1096
1097	return 0;
1098}
1099
1100/* LAN Rx Queue Context */
1101static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1102	/* Field		Width	LSB */
1103	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1104	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1105	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1106	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1107	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1108	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1109	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1110	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1111	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1112	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1113	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1114	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1115	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1116	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1117	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1118	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1119	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1120	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1121	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1122	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1123	{ 0 }
1124};
1125
1126/**
1127 * ice_write_rxq_ctx
1128 * @hw: pointer to the hardware structure
1129 * @rlan_ctx: pointer to the rxq context
1130 * @rxq_index: the index of the Rx queue
1131 *
1132 * Converts rxq context from sparse to dense structure and then writes
1133 * it to HW register space and enables the hardware to prefetch descriptors
1134 * instead of only fetching them on demand
1135 */
1136enum ice_status
1137ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1138		  u32 rxq_index)
1139{
1140	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1141
1142	if (!rlan_ctx)
1143		return ICE_ERR_BAD_PTR;
1144
1145	rlan_ctx->prefena = 1;
1146
1147	ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1148	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1149}
1150
1151/* LAN Tx Queue Context */
1152const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1153				    /* Field			Width	LSB */
1154	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1155	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1156	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1157	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1158	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1159	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1160	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1161	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1162	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1163	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1164	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1165	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1166	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1167	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1168	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1169	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1170	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1171	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1172	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1173	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1174	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1175	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1176	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1177	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1178	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1179	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1180	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1181	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1182	{ 0 }
1183};
1184
1185/**
1186 * ice_debug_cq
1187 * @hw: pointer to the hardware structure
1188 * @mask: debug mask
1189 * @desc: pointer to control queue descriptor
1190 * @buf: pointer to command buffer
1191 * @buf_len: max length of buf
1192 *
1193 * Dumps debug log about control command with descriptor contents.
1194 */
1195void
1196ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc, void *buf,
1197	     u16 buf_len)
1198{
1199	struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
1200	u16 len;
1201
1202#ifndef CONFIG_DYNAMIC_DEBUG
1203	if (!(mask & hw->debug_mask))
1204		return;
1205#endif
1206
1207	if (!desc)
1208		return;
1209
1210	len = le16_to_cpu(cq_desc->datalen);
1211
1212	ice_debug(hw, mask,
1213		  "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
1214		  le16_to_cpu(cq_desc->opcode),
1215		  le16_to_cpu(cq_desc->flags),
1216		  le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
1217	ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
1218		  le32_to_cpu(cq_desc->cookie_high),
1219		  le32_to_cpu(cq_desc->cookie_low));
1220	ice_debug(hw, mask, "\tparam (0,1)  0x%08X 0x%08X\n",
1221		  le32_to_cpu(cq_desc->params.generic.param0),
1222		  le32_to_cpu(cq_desc->params.generic.param1));
1223	ice_debug(hw, mask, "\taddr (h,l)   0x%08X 0x%08X\n",
1224		  le32_to_cpu(cq_desc->params.generic.addr_high),
1225		  le32_to_cpu(cq_desc->params.generic.addr_low));
1226	if (buf && cq_desc->datalen != 0) {
1227		ice_debug(hw, mask, "Buffer:\n");
1228		if (buf_len < len)
1229			len = buf_len;
1230
1231		ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
1232	}
1233}
1234
1235/* FW Admin Queue command wrappers */
1236
1237/* Software lock/mutex that is meant to be held while the Global Config Lock
1238 * in firmware is acquired by the software to prevent most (but not all) types
1239 * of AQ commands from being sent to FW
1240 */
1241DEFINE_MUTEX(ice_global_cfg_lock_sw);
1242
1243/**
1244 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1245 * @hw: pointer to the HW struct
1246 * @desc: descriptor describing the command
1247 * @buf: buffer to use for indirect commands (NULL for direct commands)
1248 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1249 * @cd: pointer to command details structure
1250 *
1251 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1252 */
1253enum ice_status
1254ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1255		u16 buf_size, struct ice_sq_cd *cd)
1256{
1257	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1258	bool lock_acquired = false;
1259	enum ice_status status;
1260
1261	/* When a package download is in process (i.e. when the firmware's
1262	 * Global Configuration Lock resource is held), only the Download
1263	 * Package, Get Version, Get Package Info List and Release Resource
1264	 * (with resource ID set to Global Config Lock) AdminQ commands are
1265	 * allowed; all others must block until the package download completes
1266	 * and the Global Config Lock is released.  See also
1267	 * ice_acquire_global_cfg_lock().
1268	 */
1269	switch (le16_to_cpu(desc->opcode)) {
1270	case ice_aqc_opc_download_pkg:
1271	case ice_aqc_opc_get_pkg_info_list:
1272	case ice_aqc_opc_get_ver:
1273		break;
1274	case ice_aqc_opc_release_res:
1275		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1276			break;
1277		/* fall-through */
1278	default:
1279		mutex_lock(&ice_global_cfg_lock_sw);
1280		lock_acquired = true;
1281		break;
1282	}
1283
1284	status = ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1285	if (lock_acquired)
1286		mutex_unlock(&ice_global_cfg_lock_sw);
1287
1288	return status;
1289}
1290
1291/**
1292 * ice_aq_get_fw_ver
1293 * @hw: pointer to the HW struct
1294 * @cd: pointer to command details structure or NULL
1295 *
1296 * Get the firmware version (0x0001) from the admin queue commands
1297 */
1298enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1299{
1300	struct ice_aqc_get_ver *resp;
1301	struct ice_aq_desc desc;
1302	enum ice_status status;
1303
1304	resp = &desc.params.get_ver;
1305
1306	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1307
1308	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1309
1310	if (!status) {
1311		hw->fw_branch = resp->fw_branch;
1312		hw->fw_maj_ver = resp->fw_major;
1313		hw->fw_min_ver = resp->fw_minor;
1314		hw->fw_patch = resp->fw_patch;
1315		hw->fw_build = le32_to_cpu(resp->fw_build);
1316		hw->api_branch = resp->api_branch;
1317		hw->api_maj_ver = resp->api_major;
1318		hw->api_min_ver = resp->api_minor;
1319		hw->api_patch = resp->api_patch;
1320	}
1321
1322	return status;
1323}
1324
1325/**
1326 * ice_aq_send_driver_ver
1327 * @hw: pointer to the HW struct
1328 * @dv: driver's major, minor version
1329 * @cd: pointer to command details structure or NULL
1330 *
1331 * Send the driver version (0x0002) to the firmware
1332 */
1333enum ice_status
1334ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1335		       struct ice_sq_cd *cd)
1336{
1337	struct ice_aqc_driver_ver *cmd;
1338	struct ice_aq_desc desc;
1339	u16 len;
1340
1341	cmd = &desc.params.driver_ver;
1342
1343	if (!dv)
1344		return ICE_ERR_PARAM;
1345
1346	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1347
1348	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1349	cmd->major_ver = dv->major_ver;
1350	cmd->minor_ver = dv->minor_ver;
1351	cmd->build_ver = dv->build_ver;
1352	cmd->subbuild_ver = dv->subbuild_ver;
1353
1354	len = 0;
1355	while (len < sizeof(dv->driver_string) &&
1356	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1357		len++;
1358
1359	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1360}
1361
1362/**
1363 * ice_aq_q_shutdown
1364 * @hw: pointer to the HW struct
1365 * @unloading: is the driver unloading itself
1366 *
1367 * Tell the Firmware that we're shutting down the AdminQ and whether
1368 * or not the driver is unloading as well (0x0003).
1369 */
1370enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1371{
1372	struct ice_aqc_q_shutdown *cmd;
1373	struct ice_aq_desc desc;
1374
1375	cmd = &desc.params.q_shutdown;
1376
1377	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1378
1379	if (unloading)
1380		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1381
1382	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1383}
1384
1385/**
1386 * ice_aq_req_res
1387 * @hw: pointer to the HW struct
1388 * @res: resource ID
1389 * @access: access type
1390 * @sdp_number: resource number
1391 * @timeout: the maximum time in ms that the driver may hold the resource
1392 * @cd: pointer to command details structure or NULL
1393 *
1394 * Requests common resource using the admin queue commands (0x0008).
1395 * When attempting to acquire the Global Config Lock, the driver can
1396 * learn of three states:
1397 *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1398 *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1399 *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1400 *                          successfully downloaded the package; the driver does
1401 *                          not have to download the package and can continue
1402 *                          loading
1403 *
1404 * Note that if the caller is in an acquire lock, perform action, release lock
1405 * phase of operation, it is possible that the FW may detect a timeout and issue
1406 * a CORER. In this case, the driver will receive a CORER interrupt and will
1407 * have to determine its cause. The calling thread that is handling this flow
1408 * will likely get an error propagated back to it indicating the Download
1409 * Package, Update Package or the Release Resource AQ commands timed out.
1410 */
1411static enum ice_status
1412ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1413	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1414	       struct ice_sq_cd *cd)
1415{
1416	struct ice_aqc_req_res *cmd_resp;
1417	struct ice_aq_desc desc;
1418	enum ice_status status;
1419
1420	cmd_resp = &desc.params.res_owner;
1421
1422	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1423
1424	cmd_resp->res_id = cpu_to_le16(res);
1425	cmd_resp->access_type = cpu_to_le16(access);
1426	cmd_resp->res_number = cpu_to_le32(sdp_number);
1427	cmd_resp->timeout = cpu_to_le32(*timeout);
1428	*timeout = 0;
1429
1430	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1431
1432	/* The completion specifies the maximum time in ms that the driver
1433	 * may hold the resource in the Timeout field.
1434	 */
1435
1436	/* Global config lock response utilizes an additional status field.
1437	 *
1438	 * If the Global config lock resource is held by some other driver, the
1439	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1440	 * and the timeout field indicates the maximum time the current owner
1441	 * of the resource has to free it.
1442	 */
1443	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1444		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1445			*timeout = le32_to_cpu(cmd_resp->timeout);
1446			return 0;
1447		} else if (le16_to_cpu(cmd_resp->status) ==
1448			   ICE_AQ_RES_GLBL_IN_PROG) {
1449			*timeout = le32_to_cpu(cmd_resp->timeout);
1450			return ICE_ERR_AQ_ERROR;
1451		} else if (le16_to_cpu(cmd_resp->status) ==
1452			   ICE_AQ_RES_GLBL_DONE) {
1453			return ICE_ERR_AQ_NO_WORK;
1454		}
1455
1456		/* invalid FW response, force a timeout immediately */
1457		*timeout = 0;
1458		return ICE_ERR_AQ_ERROR;
1459	}
1460
1461	/* If the resource is held by some other driver, the command completes
1462	 * with a busy return value and the timeout field indicates the maximum
1463	 * time the current owner of the resource has to free it.
1464	 */
1465	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1466		*timeout = le32_to_cpu(cmd_resp->timeout);
1467
1468	return status;
1469}
1470
1471/**
1472 * ice_aq_release_res
1473 * @hw: pointer to the HW struct
1474 * @res: resource ID
1475 * @sdp_number: resource number
1476 * @cd: pointer to command details structure or NULL
1477 *
1478 * release common resource using the admin queue commands (0x0009)
1479 */
1480static enum ice_status
1481ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1482		   struct ice_sq_cd *cd)
1483{
1484	struct ice_aqc_req_res *cmd;
1485	struct ice_aq_desc desc;
1486
1487	cmd = &desc.params.res_owner;
1488
1489	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1490
1491	cmd->res_id = cpu_to_le16(res);
1492	cmd->res_number = cpu_to_le32(sdp_number);
1493
1494	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1495}
1496
1497/**
1498 * ice_acquire_res
1499 * @hw: pointer to the HW structure
1500 * @res: resource ID
1501 * @access: access type (read or write)
1502 * @timeout: timeout in milliseconds
1503 *
1504 * This function will attempt to acquire the ownership of a resource.
1505 */
1506enum ice_status
1507ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1508		enum ice_aq_res_access_type access, u32 timeout)
1509{
1510#define ICE_RES_POLLING_DELAY_MS	10
1511	u32 delay = ICE_RES_POLLING_DELAY_MS;
1512	u32 time_left = timeout;
1513	enum ice_status status;
1514
1515	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1516
1517	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1518	 * previously acquired the resource and performed any necessary updates;
1519	 * in this case the caller does not obtain the resource and has no
1520	 * further work to do.
1521	 */
1522	if (status == ICE_ERR_AQ_NO_WORK)
1523		goto ice_acquire_res_exit;
1524
1525	if (status)
1526		ice_debug(hw, ICE_DBG_RES,
1527			  "resource %d acquire type %d failed.\n", res, access);
1528
1529	/* If necessary, poll until the current lock owner timeouts */
1530	timeout = time_left;
1531	while (status && timeout && time_left) {
1532		mdelay(delay);
1533		timeout = (timeout > delay) ? timeout - delay : 0;
1534		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1535
1536		if (status == ICE_ERR_AQ_NO_WORK)
1537			/* lock free, but no work to do */
1538			break;
1539
1540		if (!status)
1541			/* lock acquired */
1542			break;
1543	}
1544	if (status && status != ICE_ERR_AQ_NO_WORK)
1545		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1546
1547ice_acquire_res_exit:
1548	if (status == ICE_ERR_AQ_NO_WORK) {
1549		if (access == ICE_RES_WRITE)
1550			ice_debug(hw, ICE_DBG_RES,
1551				  "resource indicates no work to do.\n");
1552		else
1553			ice_debug(hw, ICE_DBG_RES,
1554				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1555	}
1556	return status;
1557}
1558
1559/**
1560 * ice_release_res
1561 * @hw: pointer to the HW structure
1562 * @res: resource ID
1563 *
1564 * This function will release a resource using the proper Admin Command.
1565 */
1566void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1567{
1568	enum ice_status status;
1569	u32 total_delay = 0;
1570
1571	status = ice_aq_release_res(hw, res, 0, NULL);
1572
1573	/* there are some rare cases when trying to release the resource
1574	 * results in an admin queue timeout, so handle them correctly
1575	 */
1576	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1577	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1578		mdelay(1);
1579		status = ice_aq_release_res(hw, res, 0, NULL);
1580		total_delay++;
1581	}
1582}
1583
1584/**
1585 * ice_get_num_per_func - determine number of resources per PF
1586 * @hw: pointer to the HW structure
1587 * @max: value to be evenly split between each PF
1588 *
1589 * Determine the number of valid functions by going through the bitmap returned
1590 * from parsing capabilities and use this to calculate the number of resources
1591 * per PF based on the max value passed in.
1592 */
1593static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1594{
1595	u8 funcs;
1596
1597#define ICE_CAPS_VALID_FUNCS_M	0xFF
1598	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1599			 ICE_CAPS_VALID_FUNCS_M);
1600
1601	if (!funcs)
1602		return 0;
1603
1604	return max / funcs;
1605}
1606
1607/**
1608 * ice_parse_caps - parse function/device capabilities
1609 * @hw: pointer to the HW struct
1610 * @buf: pointer to a buffer containing function/device capability records
1611 * @cap_count: number of capability records in the list
1612 * @opc: type of capabilities list to parse
1613 *
1614 * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1615 */
1616static void
1617ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1618	       enum ice_adminq_opc opc)
1619{
1620	struct ice_aqc_list_caps_elem *cap_resp;
1621	struct ice_hw_func_caps *func_p = NULL;
1622	struct ice_hw_dev_caps *dev_p = NULL;
1623	struct ice_hw_common_caps *caps;
1624	char const *prefix;
1625	u32 i;
1626
1627	if (!buf)
1628		return;
1629
1630	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1631
1632	if (opc == ice_aqc_opc_list_dev_caps) {
1633		dev_p = &hw->dev_caps;
1634		caps = &dev_p->common_cap;
1635		prefix = "dev cap";
1636	} else if (opc == ice_aqc_opc_list_func_caps) {
1637		func_p = &hw->func_caps;
1638		caps = &func_p->common_cap;
1639		prefix = "func cap";
1640	} else {
1641		ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1642		return;
1643	}
1644
1645	for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1646		u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1647		u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1648		u32 number = le32_to_cpu(cap_resp->number);
1649		u16 cap = le16_to_cpu(cap_resp->cap);
1650
1651		switch (cap) {
1652		case ICE_AQC_CAPS_VALID_FUNCTIONS:
1653			caps->valid_functions = number;
1654			ice_debug(hw, ICE_DBG_INIT,
1655				  "%s: valid_functions (bitmap) = %d\n", prefix,
1656				  caps->valid_functions);
1657			break;
1658		case ICE_AQC_CAPS_SRIOV:
1659			caps->sr_iov_1_1 = (number == 1);
1660			ice_debug(hw, ICE_DBG_INIT,
1661				  "%s: sr_iov_1_1 = %d\n", prefix,
1662				  caps->sr_iov_1_1);
1663			break;
1664		case ICE_AQC_CAPS_VF:
1665			if (dev_p) {
1666				dev_p->num_vfs_exposed = number;
1667				ice_debug(hw, ICE_DBG_INIT,
1668					  "%s: num_vfs_exposed = %d\n", prefix,
1669					  dev_p->num_vfs_exposed);
1670			} else if (func_p) {
1671				func_p->num_allocd_vfs = number;
1672				func_p->vf_base_id = logical_id;
1673				ice_debug(hw, ICE_DBG_INIT,
1674					  "%s: num_allocd_vfs = %d\n", prefix,
1675					  func_p->num_allocd_vfs);
1676				ice_debug(hw, ICE_DBG_INIT,
1677					  "%s: vf_base_id = %d\n", prefix,
1678					  func_p->vf_base_id);
1679			}
1680			break;
1681		case ICE_AQC_CAPS_VSI:
1682			if (dev_p) {
1683				dev_p->num_vsi_allocd_to_host = number;
1684				ice_debug(hw, ICE_DBG_INIT,
1685					  "%s: num_vsi_allocd_to_host = %d\n",
1686					  prefix,
1687					  dev_p->num_vsi_allocd_to_host);
1688			} else if (func_p) {
1689				func_p->guar_num_vsi =
1690					ice_get_num_per_func(hw, ICE_MAX_VSI);
1691				ice_debug(hw, ICE_DBG_INIT,
1692					  "%s: guar_num_vsi (fw) = %d\n",
1693					  prefix, number);
1694				ice_debug(hw, ICE_DBG_INIT,
1695					  "%s: guar_num_vsi = %d\n",
1696					  prefix, func_p->guar_num_vsi);
1697			}
1698			break;
1699		case ICE_AQC_CAPS_DCB:
1700			caps->dcb = (number == 1);
1701			caps->active_tc_bitmap = logical_id;
1702			caps->maxtc = phys_id;
1703			ice_debug(hw, ICE_DBG_INIT,
1704				  "%s: dcb = %d\n", prefix, caps->dcb);
1705			ice_debug(hw, ICE_DBG_INIT,
1706				  "%s: active_tc_bitmap = %d\n", prefix,
1707				  caps->active_tc_bitmap);
1708			ice_debug(hw, ICE_DBG_INIT,
1709				  "%s: maxtc = %d\n", prefix, caps->maxtc);
1710			break;
1711		case ICE_AQC_CAPS_RSS:
1712			caps->rss_table_size = number;
1713			caps->rss_table_entry_width = logical_id;
1714			ice_debug(hw, ICE_DBG_INIT,
1715				  "%s: rss_table_size = %d\n", prefix,
1716				  caps->rss_table_size);
1717			ice_debug(hw, ICE_DBG_INIT,
1718				  "%s: rss_table_entry_width = %d\n", prefix,
1719				  caps->rss_table_entry_width);
1720			break;
1721		case ICE_AQC_CAPS_RXQS:
1722			caps->num_rxq = number;
1723			caps->rxq_first_id = phys_id;
1724			ice_debug(hw, ICE_DBG_INIT,
1725				  "%s: num_rxq = %d\n", prefix,
1726				  caps->num_rxq);
1727			ice_debug(hw, ICE_DBG_INIT,
1728				  "%s: rxq_first_id = %d\n", prefix,
1729				  caps->rxq_first_id);
1730			break;
1731		case ICE_AQC_CAPS_TXQS:
1732			caps->num_txq = number;
1733			caps->txq_first_id = phys_id;
1734			ice_debug(hw, ICE_DBG_INIT,
1735				  "%s: num_txq = %d\n", prefix,
1736				  caps->num_txq);
1737			ice_debug(hw, ICE_DBG_INIT,
1738				  "%s: txq_first_id = %d\n", prefix,
1739				  caps->txq_first_id);
1740			break;
1741		case ICE_AQC_CAPS_MSIX:
1742			caps->num_msix_vectors = number;
1743			caps->msix_vector_first_id = phys_id;
1744			ice_debug(hw, ICE_DBG_INIT,
1745				  "%s: num_msix_vectors = %d\n", prefix,
1746				  caps->num_msix_vectors);
1747			ice_debug(hw, ICE_DBG_INIT,
1748				  "%s: msix_vector_first_id = %d\n", prefix,
1749				  caps->msix_vector_first_id);
1750			break;
1751		case ICE_AQC_CAPS_MAX_MTU:
1752			caps->max_mtu = number;
1753			ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
1754				  prefix, caps->max_mtu);
1755			break;
1756		default:
1757			ice_debug(hw, ICE_DBG_INIT,
1758				  "%s: unknown capability[%d]: 0x%x\n", prefix,
1759				  i, cap);
1760			break;
1761		}
1762	}
1763}
1764
1765/**
1766 * ice_aq_discover_caps - query function/device capabilities
1767 * @hw: pointer to the HW struct
1768 * @buf: a virtual buffer to hold the capabilities
1769 * @buf_size: Size of the virtual buffer
1770 * @cap_count: cap count needed if AQ err==ENOMEM
1771 * @opc: capabilities type to discover - pass in the command opcode
1772 * @cd: pointer to command details structure or NULL
1773 *
1774 * Get the function(0x000a)/device(0x000b) capabilities description from
1775 * the firmware.
1776 */
1777static enum ice_status
1778ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
1779		     enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1780{
1781	struct ice_aqc_list_caps *cmd;
1782	struct ice_aq_desc desc;
1783	enum ice_status status;
1784
1785	cmd = &desc.params.get_cap;
1786
1787	if (opc != ice_aqc_opc_list_func_caps &&
1788	    opc != ice_aqc_opc_list_dev_caps)
1789		return ICE_ERR_PARAM;
1790
1791	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1792
1793	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1794	if (!status)
1795		ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1796	else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
1797		*cap_count = le32_to_cpu(cmd->count);
1798	return status;
1799}
1800
1801/**
1802 * ice_discover_caps - get info about the HW
1803 * @hw: pointer to the hardware structure
1804 * @opc: capabilities type to discover - pass in the command opcode
1805 */
1806static enum ice_status
1807ice_discover_caps(struct ice_hw *hw, enum ice_adminq_opc opc)
1808{
1809	enum ice_status status;
1810	u32 cap_count;
1811	u16 cbuf_len;
1812	u8 retries;
1813
1814	/* The driver doesn't know how many capabilities the device will return
1815	 * so the buffer size required isn't known ahead of time. The driver
1816	 * starts with cbuf_len and if this turns out to be insufficient, the
1817	 * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
1818	 * The driver then allocates the buffer based on the count and retries
1819	 * the operation. So it follows that the retry count is 2.
1820	 */
1821#define ICE_GET_CAP_BUF_COUNT	40
1822#define ICE_GET_CAP_RETRY_COUNT	2
1823
1824	cap_count = ICE_GET_CAP_BUF_COUNT;
1825	retries = ICE_GET_CAP_RETRY_COUNT;
1826
1827	do {
1828		void *cbuf;
1829
1830		cbuf_len = (u16)(cap_count *
1831				 sizeof(struct ice_aqc_list_caps_elem));
1832		cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1833		if (!cbuf)
1834			return ICE_ERR_NO_MEMORY;
1835
1836		status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
1837					      opc, NULL);
1838		devm_kfree(ice_hw_to_dev(hw), cbuf);
1839
1840		if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1841			break;
1842
1843		/* If ENOMEM is returned, try again with bigger buffer */
1844	} while (--retries);
1845
1846	return status;
1847}
1848
1849/**
1850 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
1851 * @hw: pointer to the hardware structure
1852 */
1853void ice_set_safe_mode_caps(struct ice_hw *hw)
1854{
1855	struct ice_hw_func_caps *func_caps = &hw->func_caps;
1856	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
1857	u32 valid_func, rxq_first_id, txq_first_id;
1858	u32 msix_vector_first_id, max_mtu;
1859	u32 num_func = 0;
1860	u8 i;
1861
1862	/* cache some func_caps values that should be restored after memset */
1863	valid_func = func_caps->common_cap.valid_functions;
1864	txq_first_id = func_caps->common_cap.txq_first_id;
1865	rxq_first_id = func_caps->common_cap.rxq_first_id;
1866	msix_vector_first_id = func_caps->common_cap.msix_vector_first_id;
1867	max_mtu = func_caps->common_cap.max_mtu;
1868
1869	/* unset func capabilities */
1870	memset(func_caps, 0, sizeof(*func_caps));
1871
1872	/* restore cached values */
1873	func_caps->common_cap.valid_functions = valid_func;
1874	func_caps->common_cap.txq_first_id = txq_first_id;
1875	func_caps->common_cap.rxq_first_id = rxq_first_id;
1876	func_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
1877	func_caps->common_cap.max_mtu = max_mtu;
1878
1879	/* one Tx and one Rx queue in safe mode */
1880	func_caps->common_cap.num_rxq = 1;
1881	func_caps->common_cap.num_txq = 1;
1882
1883	/* two MSIX vectors, one for traffic and one for misc causes */
1884	func_caps->common_cap.num_msix_vectors = 2;
1885	func_caps->guar_num_vsi = 1;
1886
1887	/* cache some dev_caps values that should be restored after memset */
1888	valid_func = dev_caps->common_cap.valid_functions;
1889	txq_first_id = dev_caps->common_cap.txq_first_id;
1890	rxq_first_id = dev_caps->common_cap.rxq_first_id;
1891	msix_vector_first_id = dev_caps->common_cap.msix_vector_first_id;
1892	max_mtu = dev_caps->common_cap.max_mtu;
1893
1894	/* unset dev capabilities */
1895	memset(dev_caps, 0, sizeof(*dev_caps));
1896
1897	/* restore cached values */
1898	dev_caps->common_cap.valid_functions = valid_func;
1899	dev_caps->common_cap.txq_first_id = txq_first_id;
1900	dev_caps->common_cap.rxq_first_id = rxq_first_id;
1901	dev_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
1902	dev_caps->common_cap.max_mtu = max_mtu;
1903
1904	/* valid_func is a bitmap. get number of functions */
1905#define ICE_MAX_FUNCS 8
1906	for (i = 0; i < ICE_MAX_FUNCS; i++)
1907		if (valid_func & BIT(i))
1908			num_func++;
1909
1910	/* one Tx and one Rx queue per function in safe mode */
1911	dev_caps->common_cap.num_rxq = num_func;
1912	dev_caps->common_cap.num_txq = num_func;
1913
1914	/* two MSIX vectors per function */
1915	dev_caps->common_cap.num_msix_vectors = 2 * num_func;
1916}
1917
1918/**
1919 * ice_get_caps - get info about the HW
1920 * @hw: pointer to the hardware structure
1921 */
1922enum ice_status ice_get_caps(struct ice_hw *hw)
1923{
1924	enum ice_status status;
1925
1926	status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
1927	if (!status)
1928		status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
1929
1930	return status;
1931}
1932
1933/**
1934 * ice_aq_manage_mac_write - manage MAC address write command
1935 * @hw: pointer to the HW struct
1936 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1937 * @flags: flags to control write behavior
1938 * @cd: pointer to command details structure or NULL
1939 *
1940 * This function is used to write MAC address to the NVM (0x0108).
1941 */
1942enum ice_status
1943ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
1944			struct ice_sq_cd *cd)
1945{
1946	struct ice_aqc_manage_mac_write *cmd;
1947	struct ice_aq_desc desc;
1948
1949	cmd = &desc.params.mac_write;
1950	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1951
1952	cmd->flags = flags;
1953
1954	/* Prep values for flags, sah, sal */
1955	cmd->sah = htons(*((const u16 *)mac_addr));
1956	cmd->sal = htonl(*((const u32 *)(mac_addr + 2)));
1957
1958	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1959}
1960
1961/**
1962 * ice_aq_clear_pxe_mode
1963 * @hw: pointer to the HW struct
1964 *
1965 * Tell the firmware that the driver is taking over from PXE (0x0110).
1966 */
1967static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1968{
1969	struct ice_aq_desc desc;
1970
1971	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1972	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1973
1974	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1975}
1976
1977/**
1978 * ice_clear_pxe_mode - clear pxe operations mode
1979 * @hw: pointer to the HW struct
1980 *
1981 * Make sure all PXE mode settings are cleared, including things
1982 * like descriptor fetch/write-back mode.
1983 */
1984void ice_clear_pxe_mode(struct ice_hw *hw)
1985{
1986	if (ice_check_sq_alive(hw, &hw->adminq))
1987		ice_aq_clear_pxe_mode(hw);
1988}
1989
1990/**
1991 * ice_get_link_speed_based_on_phy_type - returns link speed
1992 * @phy_type_low: lower part of phy_type
1993 * @phy_type_high: higher part of phy_type
1994 *
1995 * This helper function will convert an entry in PHY type structure
1996 * [phy_type_low, phy_type_high] to its corresponding link speed.
1997 * Note: In the structure of [phy_type_low, phy_type_high], there should
1998 * be one bit set, as this function will convert one PHY type to its
1999 * speed.
2000 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2001 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2002 */
2003static u16
2004ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2005{
2006	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2007	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2008
2009	switch (phy_type_low) {
2010	case ICE_PHY_TYPE_LOW_100BASE_TX:
2011	case ICE_PHY_TYPE_LOW_100M_SGMII:
2012		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2013		break;
2014	case ICE_PHY_TYPE_LOW_1000BASE_T:
2015	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2016	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2017	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2018	case ICE_PHY_TYPE_LOW_1G_SGMII:
2019		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2020		break;
2021	case ICE_PHY_TYPE_LOW_2500BASE_T:
2022	case ICE_PHY_TYPE_LOW_2500BASE_X:
2023	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2024		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2025		break;
2026	case ICE_PHY_TYPE_LOW_5GBASE_T:
2027	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2028		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2029		break;
2030	case ICE_PHY_TYPE_LOW_10GBASE_T:
2031	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2032	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2033	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2034	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2035	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2036	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2037		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2038		break;
2039	case ICE_PHY_TYPE_LOW_25GBASE_T:
2040	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2041	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2042	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2043	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2044	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2045	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2046	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2047	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2048	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2049	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2050		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2051		break;
2052	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2053	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2054	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2055	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2056	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2057	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2058		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2059		break;
2060	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2061	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2062	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2063	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2064	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2065	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2066	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2067	case ICE_PHY_TYPE_LOW_50G_AUI2:
2068	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2069	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2070	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2071	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2072	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2073	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2074	case ICE_PHY_TYPE_LOW_50G_AUI1:
2075		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2076		break;
2077	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2078	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2079	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2080	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2081	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2082	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2083	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2084	case ICE_PHY_TYPE_LOW_100G_AUI4:
2085	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2086	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2087	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2088	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2089	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2090		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2091		break;
2092	default:
2093		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2094		break;
2095	}
2096
2097	switch (phy_type_high) {
2098	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2099	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2100	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2101	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2102	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2103		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2104		break;
2105	default:
2106		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2107		break;
2108	}
2109
2110	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2111	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2112		return ICE_AQ_LINK_SPEED_UNKNOWN;
2113	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2114		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2115		return ICE_AQ_LINK_SPEED_UNKNOWN;
2116	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2117		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2118		return speed_phy_type_low;
2119	else
2120		return speed_phy_type_high;
2121}
2122
2123/**
2124 * ice_update_phy_type
2125 * @phy_type_low: pointer to the lower part of phy_type
2126 * @phy_type_high: pointer to the higher part of phy_type
2127 * @link_speeds_bitmap: targeted link speeds bitmap
2128 *
2129 * Note: For the link_speeds_bitmap structure, you can check it at
2130 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2131 * link_speeds_bitmap include multiple speeds.
2132 *
2133 * Each entry in this [phy_type_low, phy_type_high] structure will
2134 * present a certain link speed. This helper function will turn on bits
2135 * in [phy_type_low, phy_type_high] structure based on the value of
2136 * link_speeds_bitmap input parameter.
2137 */
2138void
2139ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2140		    u16 link_speeds_bitmap)
2141{
2142	u64 pt_high;
2143	u64 pt_low;
2144	int index;
2145	u16 speed;
2146
2147	/* We first check with low part of phy_type */
2148	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2149		pt_low = BIT_ULL(index);
2150		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2151
2152		if (link_speeds_bitmap & speed)
2153			*phy_type_low |= BIT_ULL(index);
2154	}
2155
2156	/* We then check with high part of phy_type */
2157	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2158		pt_high = BIT_ULL(index);
2159		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2160
2161		if (link_speeds_bitmap & speed)
2162			*phy_type_high |= BIT_ULL(index);
2163	}
2164}
2165
2166/**
2167 * ice_aq_set_phy_cfg
2168 * @hw: pointer to the HW struct
2169 * @lport: logical port number
2170 * @cfg: structure with PHY configuration data to be set
2171 * @cd: pointer to command details structure or NULL
2172 *
2173 * Set the various PHY configuration parameters supported on the Port.
2174 * One or more of the Set PHY config parameters may be ignored in an MFP
2175 * mode as the PF may not have the privilege to set some of the PHY Config
2176 * parameters. This status will be indicated by the command response (0x0601).
2177 */
2178enum ice_status
2179ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
2180		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2181{
2182	struct ice_aq_desc desc;
2183
2184	if (!cfg)
2185		return ICE_ERR_PARAM;
2186
2187	/* Ensure that only valid bits of cfg->caps can be turned on. */
2188	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2189		ice_debug(hw, ICE_DBG_PHY,
2190			  "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2191			  cfg->caps);
2192
2193		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2194	}
2195
2196	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2197	desc.params.set_phy.lport_num = lport;
2198	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2199
2200	ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
2201		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2202	ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
2203		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2204	ice_debug(hw, ICE_DBG_LINK, "caps = 0x%x\n", cfg->caps);
2205	ice_debug(hw, ICE_DBG_LINK, "low_power_ctrl = 0x%x\n",
2206		  cfg->low_power_ctrl);
2207	ice_debug(hw, ICE_DBG_LINK, "eee_cap = 0x%x\n", cfg->eee_cap);
2208	ice_debug(hw, ICE_DBG_LINK, "eeer_value = 0x%x\n", cfg->eeer_value);
2209	ice_debug(hw, ICE_DBG_LINK, "link_fec_opt = 0x%x\n", cfg->link_fec_opt);
2210
2211	return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2212}
2213
2214/**
2215 * ice_update_link_info - update status of the HW network link
2216 * @pi: port info structure of the interested logical port
2217 */
2218enum ice_status ice_update_link_info(struct ice_port_info *pi)
2219{
2220	struct ice_link_status *li;
2221	enum ice_status status;
2222
2223	if (!pi)
2224		return ICE_ERR_PARAM;
2225
2226	li = &pi->phy.link_info;
2227
2228	status = ice_aq_get_link_info(pi, true, NULL, NULL);
2229	if (status)
2230		return status;
2231
2232	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2233		struct ice_aqc_get_phy_caps_data *pcaps;
2234		struct ice_hw *hw;
2235
2236		hw = pi->hw;
2237		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2238				     GFP_KERNEL);
2239		if (!pcaps)
2240			return ICE_ERR_NO_MEMORY;
2241
2242		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2243					     pcaps, NULL);
2244		if (!status)
2245			memcpy(li->module_type, &pcaps->module_type,
2246			       sizeof(li->module_type));
2247
2248		devm_kfree(ice_hw_to_dev(hw), pcaps);
2249	}
2250
2251	return status;
2252}
2253
2254/**
2255 * ice_set_fc
2256 * @pi: port information structure
2257 * @aq_failures: pointer to status code, specific to ice_set_fc routine
2258 * @ena_auto_link_update: enable automatic link update
2259 *
2260 * Set the requested flow control mode.
2261 */
2262enum ice_status
2263ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
2264{
2265	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
2266	struct ice_aqc_get_phy_caps_data *pcaps;
2267	enum ice_status status;
2268	u8 pause_mask = 0x0;
2269	struct ice_hw *hw;
2270
2271	if (!pi)
2272		return ICE_ERR_PARAM;
2273	hw = pi->hw;
2274	*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
2275
2276	switch (pi->fc.req_mode) {
2277	case ICE_FC_FULL:
2278		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2279		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2280		break;
2281	case ICE_FC_RX_PAUSE:
2282		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2283		break;
2284	case ICE_FC_TX_PAUSE:
2285		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2286		break;
2287	default:
2288		break;
2289	}
2290
2291	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2292	if (!pcaps)
2293		return ICE_ERR_NO_MEMORY;
2294
2295	/* Get the current PHY config */
2296	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
2297				     NULL);
2298	if (status) {
2299		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2300		goto out;
2301	}
2302
2303	/* clear the old pause settings */
2304	cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2305				   ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2306
2307	/* set the new capabilities */
2308	cfg.caps |= pause_mask;
2309
2310	/* If the capabilities have changed, then set the new config */
2311	if (cfg.caps != pcaps->caps) {
2312		int retry_count, retry_max = 10;
2313
2314		/* Auto restart link so settings take effect */
2315		if (ena_auto_link_update)
2316			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2317		/* Copy over all the old settings */
2318		cfg.phy_type_high = pcaps->phy_type_high;
2319		cfg.phy_type_low = pcaps->phy_type_low;
2320		cfg.low_power_ctrl = pcaps->low_power_ctrl;
2321		cfg.eee_cap = pcaps->eee_cap;
2322		cfg.eeer_value = pcaps->eeer_value;
2323		cfg.link_fec_opt = pcaps->link_fec_options;
2324
2325		status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
2326		if (status) {
2327			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2328			goto out;
2329		}
2330
2331		/* Update the link info
2332		 * It sometimes takes a really long time for link to
2333		 * come back from the atomic reset. Thus, we wait a
2334		 * little bit.
2335		 */
2336		for (retry_count = 0; retry_count < retry_max; retry_count++) {
2337			status = ice_update_link_info(pi);
2338
2339			if (!status)
2340				break;
2341
2342			mdelay(100);
2343		}
2344
2345		if (status)
2346			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2347	}
2348
2349out:
2350	devm_kfree(ice_hw_to_dev(hw), pcaps);
2351	return status;
2352}
2353
2354/**
2355 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
2356 * @caps: PHY ability structure to copy date from
2357 * @cfg: PHY configuration structure to copy data to
2358 *
2359 * Helper function to copy AQC PHY get ability data to PHY set configuration
2360 * data structure
2361 */
2362void
2363ice_copy_phy_caps_to_cfg(struct ice_aqc_get_phy_caps_data *caps,
2364			 struct ice_aqc_set_phy_cfg_data *cfg)
2365{
2366	if (!caps || !cfg)
2367		return;
2368
2369	cfg->phy_type_low = caps->phy_type_low;
2370	cfg->phy_type_high = caps->phy_type_high;
2371	cfg->caps = caps->caps;
2372	cfg->low_power_ctrl = caps->low_power_ctrl;
2373	cfg->eee_cap = caps->eee_cap;
2374	cfg->eeer_value = caps->eeer_value;
2375	cfg->link_fec_opt = caps->link_fec_options;
2376}
2377
2378/**
2379 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
2380 * @cfg: PHY configuration data to set FEC mode
2381 * @fec: FEC mode to configure
2382 *
2383 * Caller should copy ice_aqc_get_phy_caps_data.caps ICE_AQC_PHY_EN_AUTO_FEC
2384 * (bit 7) and ice_aqc_get_phy_caps_data.link_fec_options to cfg.caps
2385 * ICE_AQ_PHY_ENA_AUTO_FEC (bit 7) and cfg.link_fec_options before calling.
2386 */
2387void
2388ice_cfg_phy_fec(struct ice_aqc_set_phy_cfg_data *cfg, enum ice_fec_mode fec)
2389{
2390	switch (fec) {
2391	case ICE_FEC_BASER:
2392		/* Clear RS bits, and AND BASE-R ability
2393		 * bits and OR request bits.
2394		 */
2395		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2396				     ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
2397		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2398				     ICE_AQC_PHY_FEC_25G_KR_REQ;
2399		break;
2400	case ICE_FEC_RS:
2401		/* Clear BASE-R bits, and AND RS ability
2402		 * bits and OR request bits.
2403		 */
2404		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
2405		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2406				     ICE_AQC_PHY_FEC_25G_RS_544_REQ;
2407		break;
2408	case ICE_FEC_NONE:
2409		/* Clear all FEC option bits. */
2410		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
2411		break;
2412	case ICE_FEC_AUTO:
2413		/* AND auto FEC bit, and all caps bits. */
2414		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
2415		break;
2416	}
2417}
2418
2419/**
2420 * ice_get_link_status - get status of the HW network link
2421 * @pi: port information structure
2422 * @link_up: pointer to bool (true/false = linkup/linkdown)
2423 *
2424 * Variable link_up is true if link is up, false if link is down.
2425 * The variable link_up is invalid if status is non zero. As a
2426 * result of this call, link status reporting becomes enabled
2427 */
2428enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
2429{
2430	struct ice_phy_info *phy_info;
2431	enum ice_status status = 0;
2432
2433	if (!pi || !link_up)
2434		return ICE_ERR_PARAM;
2435
2436	phy_info = &pi->phy;
2437
2438	if (phy_info->get_link_info) {
2439		status = ice_update_link_info(pi);
2440
2441		if (status)
2442			ice_debug(pi->hw, ICE_DBG_LINK,
2443				  "get link status error, status = %d\n",
2444				  status);
2445	}
2446
2447	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
2448
2449	return status;
2450}
2451
2452/**
2453 * ice_aq_set_link_restart_an
2454 * @pi: pointer to the port information structure
2455 * @ena_link: if true: enable link, if false: disable link
2456 * @cd: pointer to command details structure or NULL
2457 *
2458 * Sets up the link and restarts the Auto-Negotiation over the link.
2459 */
2460enum ice_status
2461ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
2462			   struct ice_sq_cd *cd)
2463{
2464	struct ice_aqc_restart_an *cmd;
2465	struct ice_aq_desc desc;
2466
2467	cmd = &desc.params.restart_an;
2468
2469	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
2470
2471	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
2472	cmd->lport_num = pi->lport;
2473	if (ena_link)
2474		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
2475	else
2476		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
2477
2478	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
2479}
2480
2481/**
2482 * ice_aq_set_event_mask
2483 * @hw: pointer to the HW struct
2484 * @port_num: port number of the physical function
2485 * @mask: event mask to be set
2486 * @cd: pointer to command details structure or NULL
2487 *
2488 * Set event mask (0x0613)
2489 */
2490enum ice_status
2491ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
2492		      struct ice_sq_cd *cd)
2493{
2494	struct ice_aqc_set_event_mask *cmd;
2495	struct ice_aq_desc desc;
2496
2497	cmd = &desc.params.set_event_mask;
2498
2499	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
2500
2501	cmd->lport_num = port_num;
2502
2503	cmd->event_mask = cpu_to_le16(mask);
2504	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2505}
2506
2507/**
2508 * ice_aq_set_mac_loopback
2509 * @hw: pointer to the HW struct
2510 * @ena_lpbk: Enable or Disable loopback
2511 * @cd: pointer to command details structure or NULL
2512 *
2513 * Enable/disable loopback on a given port
2514 */
2515enum ice_status
2516ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
2517{
2518	struct ice_aqc_set_mac_lb *cmd;
2519	struct ice_aq_desc desc;
2520
2521	cmd = &desc.params.set_mac_lb;
2522
2523	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
2524	if (ena_lpbk)
2525		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
2526
2527	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2528}
2529
2530/**
2531 * ice_aq_set_port_id_led
2532 * @pi: pointer to the port information
2533 * @is_orig_mode: is this LED set to original mode (by the net-list)
2534 * @cd: pointer to command details structure or NULL
2535 *
2536 * Set LED value for the given port (0x06e9)
2537 */
2538enum ice_status
2539ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
2540		       struct ice_sq_cd *cd)
2541{
2542	struct ice_aqc_set_port_id_led *cmd;
2543	struct ice_hw *hw = pi->hw;
2544	struct ice_aq_desc desc;
2545
2546	cmd = &desc.params.set_port_id_led;
2547
2548	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
2549
2550	if (is_orig_mode)
2551		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
2552	else
2553		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
2554
2555	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2556}
2557
2558/**
2559 * __ice_aq_get_set_rss_lut
2560 * @hw: pointer to the hardware structure
2561 * @vsi_id: VSI FW index
2562 * @lut_type: LUT table type
2563 * @lut: pointer to the LUT buffer provided by the caller
2564 * @lut_size: size of the LUT buffer
2565 * @glob_lut_idx: global LUT index
2566 * @set: set true to set the table, false to get the table
2567 *
2568 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
2569 */
2570static enum ice_status
2571__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
2572			 u16 lut_size, u8 glob_lut_idx, bool set)
2573{
2574	struct ice_aqc_get_set_rss_lut *cmd_resp;
2575	struct ice_aq_desc desc;
2576	enum ice_status status;
2577	u16 flags = 0;
2578
2579	cmd_resp = &desc.params.get_set_rss_lut;
2580
2581	if (set) {
2582		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
2583		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2584	} else {
2585		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
2586	}
2587
2588	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2589					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
2590					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
2591				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
2592
2593	switch (lut_type) {
2594	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
2595	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
2596	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
2597		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
2598			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
2599		break;
2600	default:
2601		status = ICE_ERR_PARAM;
2602		goto ice_aq_get_set_rss_lut_exit;
2603	}
2604
2605	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
2606		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
2607			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
2608
2609		if (!set)
2610			goto ice_aq_get_set_rss_lut_send;
2611	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2612		if (!set)
2613			goto ice_aq_get_set_rss_lut_send;
2614	} else {
2615		goto ice_aq_get_set_rss_lut_send;
2616	}
2617
2618	/* LUT size is only valid for Global and PF table types */
2619	switch (lut_size) {
2620	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
2621		break;
2622	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
2623		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
2624			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2625			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2626		break;
2627	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
2628		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2629			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
2630				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2631				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2632			break;
2633		}
2634		/* fall-through */
2635	default:
2636		status = ICE_ERR_PARAM;
2637		goto ice_aq_get_set_rss_lut_exit;
2638	}
2639
2640ice_aq_get_set_rss_lut_send:
2641	cmd_resp->flags = cpu_to_le16(flags);
2642	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
2643
2644ice_aq_get_set_rss_lut_exit:
2645	return status;
2646}
2647
2648/**
2649 * ice_aq_get_rss_lut
2650 * @hw: pointer to the hardware structure
2651 * @vsi_handle: software VSI handle
2652 * @lut_type: LUT table type
2653 * @lut: pointer to the LUT buffer provided by the caller
2654 * @lut_size: size of the LUT buffer
2655 *
2656 * get the RSS lookup table, PF or VSI type
2657 */
2658enum ice_status
2659ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2660		   u8 *lut, u16 lut_size)
2661{
2662	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2663		return ICE_ERR_PARAM;
2664
2665	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2666					lut_type, lut, lut_size, 0, false);
2667}
2668
2669/**
2670 * ice_aq_set_rss_lut
2671 * @hw: pointer to the hardware structure
2672 * @vsi_handle: software VSI handle
2673 * @lut_type: LUT table type
2674 * @lut: pointer to the LUT buffer provided by the caller
2675 * @lut_size: size of the LUT buffer
2676 *
2677 * set the RSS lookup table, PF or VSI type
2678 */
2679enum ice_status
2680ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2681		   u8 *lut, u16 lut_size)
2682{
2683	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2684		return ICE_ERR_PARAM;
2685
2686	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2687					lut_type, lut, lut_size, 0, true);
2688}
2689
2690/**
2691 * __ice_aq_get_set_rss_key
2692 * @hw: pointer to the HW struct
2693 * @vsi_id: VSI FW index
2694 * @key: pointer to key info struct
2695 * @set: set true to set the key, false to get the key
2696 *
2697 * get (0x0B04) or set (0x0B02) the RSS key per VSI
2698 */
2699static enum
2700ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
2701				    struct ice_aqc_get_set_rss_keys *key,
2702				    bool set)
2703{
2704	struct ice_aqc_get_set_rss_key *cmd_resp;
2705	u16 key_size = sizeof(*key);
2706	struct ice_aq_desc desc;
2707
2708	cmd_resp = &desc.params.get_set_rss_key;
2709
2710	if (set) {
2711		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
2712		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2713	} else {
2714		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
2715	}
2716
2717	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2718					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
2719					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
2720				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
2721
2722	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
2723}
2724
2725/**
2726 * ice_aq_get_rss_key
2727 * @hw: pointer to the HW struct
2728 * @vsi_handle: software VSI handle
2729 * @key: pointer to key info struct
2730 *
2731 * get the RSS key per VSI
2732 */
2733enum ice_status
2734ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
2735		   struct ice_aqc_get_set_rss_keys *key)
2736{
2737	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
2738		return ICE_ERR_PARAM;
2739
2740	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2741					key, false);
2742}
2743
2744/**
2745 * ice_aq_set_rss_key
2746 * @hw: pointer to the HW struct
2747 * @vsi_handle: software VSI handle
2748 * @keys: pointer to key info struct
2749 *
2750 * set the RSS key per VSI
2751 */
2752enum ice_status
2753ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
2754		   struct ice_aqc_get_set_rss_keys *keys)
2755{
2756	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
2757		return ICE_ERR_PARAM;
2758
2759	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2760					keys, true);
2761}
2762
2763/**
2764 * ice_aq_add_lan_txq
2765 * @hw: pointer to the hardware structure
2766 * @num_qgrps: Number of added queue groups
2767 * @qg_list: list of queue groups to be added
2768 * @buf_size: size of buffer for indirect command
2769 * @cd: pointer to command details structure or NULL
2770 *
2771 * Add Tx LAN queue (0x0C30)
2772 *
2773 * NOTE:
2774 * Prior to calling add Tx LAN queue:
2775 * Initialize the following as part of the Tx queue context:
2776 * Completion queue ID if the queue uses Completion queue, Quanta profile,
2777 * Cache profile and Packet shaper profile.
2778 *
2779 * After add Tx LAN queue AQ command is completed:
2780 * Interrupts should be associated with specific queues,
2781 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
2782 * flow.
2783 */
2784static enum ice_status
2785ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2786		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
2787		   struct ice_sq_cd *cd)
2788{
2789	u16 i, sum_header_size, sum_q_size = 0;
2790	struct ice_aqc_add_tx_qgrp *list;
2791	struct ice_aqc_add_txqs *cmd;
2792	struct ice_aq_desc desc;
2793
2794	cmd = &desc.params.add_txqs;
2795
2796	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
2797
2798	if (!qg_list)
2799		return ICE_ERR_PARAM;
2800
2801	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2802		return ICE_ERR_PARAM;
2803
2804	sum_header_size = num_qgrps *
2805		(sizeof(*qg_list) - sizeof(*qg_list->txqs));
2806
2807	list = qg_list;
2808	for (i = 0; i < num_qgrps; i++) {
2809		struct ice_aqc_add_txqs_perq *q = list->txqs;
2810
2811		sum_q_size += list->num_txqs * sizeof(*q);
2812		list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
2813	}
2814
2815	if (buf_size != (sum_header_size + sum_q_size))
2816		return ICE_ERR_PARAM;
2817
2818	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2819
2820	cmd->num_qgrps = num_qgrps;
2821
2822	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2823}
2824
2825/**
2826 * ice_aq_dis_lan_txq
2827 * @hw: pointer to the hardware structure
2828 * @num_qgrps: number of groups in the list
2829 * @qg_list: the list of groups to disable
2830 * @buf_size: the total size of the qg_list buffer in bytes
2831 * @rst_src: if called due to reset, specifies the reset source
2832 * @vmvf_num: the relative VM or VF number that is undergoing the reset
2833 * @cd: pointer to command details structure or NULL
2834 *
2835 * Disable LAN Tx queue (0x0C31)
2836 */
2837static enum ice_status
2838ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2839		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
2840		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
2841		   struct ice_sq_cd *cd)
2842{
2843	struct ice_aqc_dis_txqs *cmd;
2844	struct ice_aq_desc desc;
2845	enum ice_status status;
2846	u16 i, sz = 0;
2847
2848	cmd = &desc.params.dis_txqs;
2849	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
2850
2851	/* qg_list can be NULL only in VM/VF reset flow */
2852	if (!qg_list && !rst_src)
2853		return ICE_ERR_PARAM;
2854
2855	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2856		return ICE_ERR_PARAM;
2857
2858	cmd->num_entries = num_qgrps;
2859
2860	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
2861					    ICE_AQC_Q_DIS_TIMEOUT_M);
2862
2863	switch (rst_src) {
2864	case ICE_VM_RESET:
2865		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
2866		cmd->vmvf_and_timeout |=
2867			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
2868		break;
2869	case ICE_VF_RESET:
2870		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
2871		/* In this case, FW expects vmvf_num to be absolute VF ID */
2872		cmd->vmvf_and_timeout |=
2873			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
2874				    ICE_AQC_Q_DIS_VMVF_NUM_M);
2875		break;
2876	case ICE_NO_RESET:
2877	default:
2878		break;
2879	}
2880
2881	/* flush pipe on time out */
2882	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
2883	/* If no queue group info, we are in a reset flow. Issue the AQ */
2884	if (!qg_list)
2885		goto do_aq;
2886
2887	/* set RD bit to indicate that command buffer is provided by the driver
2888	 * and it needs to be read by the firmware
2889	 */
2890	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2891
2892	for (i = 0; i < num_qgrps; ++i) {
2893		/* Calculate the size taken up by the queue IDs in this group */
2894		sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
2895
2896		/* Add the size of the group header */
2897		sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
2898
2899		/* If the num of queues is even, add 2 bytes of padding */
2900		if ((qg_list[i].num_qs % 2) == 0)
2901			sz += 2;
2902	}
2903
2904	if (buf_size != sz)
2905		return ICE_ERR_PARAM;
2906
2907do_aq:
2908	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2909	if (status) {
2910		if (!qg_list)
2911			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
2912				  vmvf_num, hw->adminq.sq_last_status);
2913		else
2914			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
2915				  le16_to_cpu(qg_list[0].q_id[0]),
2916				  hw->adminq.sq_last_status);
2917	}
2918	return status;
2919}
2920
2921/* End of FW Admin Queue command wrappers */
2922
2923/**
2924 * ice_write_byte - write a byte to a packed context structure
2925 * @src_ctx:  the context structure to read from
2926 * @dest_ctx: the context to be written to
2927 * @ce_info:  a description of the struct to be filled
2928 */
2929static void
2930ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2931{
2932	u8 src_byte, dest_byte, mask;
2933	u8 *from, *dest;
2934	u16 shift_width;
2935
2936	/* copy from the next struct field */
2937	from = src_ctx + ce_info->offset;
2938
2939	/* prepare the bits and mask */
2940	shift_width = ce_info->lsb % 8;
2941	mask = (u8)(BIT(ce_info->width) - 1);
2942
2943	src_byte = *from;
2944	src_byte &= mask;
2945
2946	/* shift to correct alignment */
2947	mask <<= shift_width;
2948	src_byte <<= shift_width;
2949
2950	/* get the current bits from the target bit string */
2951	dest = dest_ctx + (ce_info->lsb / 8);
2952
2953	memcpy(&dest_byte, dest, sizeof(dest_byte));
2954
2955	dest_byte &= ~mask;	/* get the bits not changing */
2956	dest_byte |= src_byte;	/* add in the new bits */
2957
2958	/* put it all back */
2959	memcpy(dest, &dest_byte, sizeof(dest_byte));
2960}
2961
2962/**
2963 * ice_write_word - write a word to a packed context structure
2964 * @src_ctx:  the context structure to read from
2965 * @dest_ctx: the context to be written to
2966 * @ce_info:  a description of the struct to be filled
2967 */
2968static void
2969ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2970{
2971	u16 src_word, mask;
2972	__le16 dest_word;
2973	u8 *from, *dest;
2974	u16 shift_width;
2975
2976	/* copy from the next struct field */
2977	from = src_ctx + ce_info->offset;
2978
2979	/* prepare the bits and mask */
2980	shift_width = ce_info->lsb % 8;
2981	mask = BIT(ce_info->width) - 1;
2982
2983	/* don't swizzle the bits until after the mask because the mask bits
2984	 * will be in a different bit position on big endian machines
2985	 */
2986	src_word = *(u16 *)from;
2987	src_word &= mask;
2988
2989	/* shift to correct alignment */
2990	mask <<= shift_width;
2991	src_word <<= shift_width;
2992
2993	/* get the current bits from the target bit string */
2994	dest = dest_ctx + (ce_info->lsb / 8);
2995
2996	memcpy(&dest_word, dest, sizeof(dest_word));
2997
2998	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
2999	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
3000
3001	/* put it all back */
3002	memcpy(dest, &dest_word, sizeof(dest_word));
3003}
3004
3005/**
3006 * ice_write_dword - write a dword to a packed context structure
3007 * @src_ctx:  the context structure to read from
3008 * @dest_ctx: the context to be written to
3009 * @ce_info:  a description of the struct to be filled
3010 */
3011static void
3012ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3013{
3014	u32 src_dword, mask;
3015	__le32 dest_dword;
3016	u8 *from, *dest;
3017	u16 shift_width;
3018
3019	/* copy from the next struct field */
3020	from = src_ctx + ce_info->offset;
3021
3022	/* prepare the bits and mask */
3023	shift_width = ce_info->lsb % 8;
3024
3025	/* if the field width is exactly 32 on an x86 machine, then the shift
3026	 * operation will not work because the SHL instructions count is masked
3027	 * to 5 bits so the shift will do nothing
3028	 */
3029	if (ce_info->width < 32)
3030		mask = BIT(ce_info->width) - 1;
3031	else
3032		mask = (u32)~0;
3033
3034	/* don't swizzle the bits until after the mask because the mask bits
3035	 * will be in a different bit position on big endian machines
3036	 */
3037	src_dword = *(u32 *)from;
3038	src_dword &= mask;
3039
3040	/* shift to correct alignment */
3041	mask <<= shift_width;
3042	src_dword <<= shift_width;
3043
3044	/* get the current bits from the target bit string */
3045	dest = dest_ctx + (ce_info->lsb / 8);
3046
3047	memcpy(&dest_dword, dest, sizeof(dest_dword));
3048
3049	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
3050	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
3051
3052	/* put it all back */
3053	memcpy(dest, &dest_dword, sizeof(dest_dword));
3054}
3055
3056/**
3057 * ice_write_qword - write a qword to a packed context structure
3058 * @src_ctx:  the context structure to read from
3059 * @dest_ctx: the context to be written to
3060 * @ce_info:  a description of the struct to be filled
3061 */
3062static void
3063ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3064{
3065	u64 src_qword, mask;
3066	__le64 dest_qword;
3067	u8 *from, *dest;
3068	u16 shift_width;
3069
3070	/* copy from the next struct field */
3071	from = src_ctx + ce_info->offset;
3072
3073	/* prepare the bits and mask */
3074	shift_width = ce_info->lsb % 8;
3075
3076	/* if the field width is exactly 64 on an x86 machine, then the shift
3077	 * operation will not work because the SHL instructions count is masked
3078	 * to 6 bits so the shift will do nothing
3079	 */
3080	if (ce_info->width < 64)
3081		mask = BIT_ULL(ce_info->width) - 1;
3082	else
3083		mask = (u64)~0;
3084
3085	/* don't swizzle the bits until after the mask because the mask bits
3086	 * will be in a different bit position on big endian machines
3087	 */
3088	src_qword = *(u64 *)from;
3089	src_qword &= mask;
3090
3091	/* shift to correct alignment */
3092	mask <<= shift_width;
3093	src_qword <<= shift_width;
3094
3095	/* get the current bits from the target bit string */
3096	dest = dest_ctx + (ce_info->lsb / 8);
3097
3098	memcpy(&dest_qword, dest, sizeof(dest_qword));
3099
3100	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
3101	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
3102
3103	/* put it all back */
3104	memcpy(dest, &dest_qword, sizeof(dest_qword));
3105}
3106
3107/**
3108 * ice_set_ctx - set context bits in packed structure
3109 * @src_ctx:  pointer to a generic non-packed context structure
3110 * @dest_ctx: pointer to memory for the packed structure
3111 * @ce_info:  a description of the structure to be transformed
3112 */
3113enum ice_status
3114ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3115{
3116	int f;
3117
3118	for (f = 0; ce_info[f].width; f++) {
3119		/* We have to deal with each element of the FW response
3120		 * using the correct size so that we are correct regardless
3121		 * of the endianness of the machine.
3122		 */
3123		switch (ce_info[f].size_of) {
3124		case sizeof(u8):
3125			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
3126			break;
3127		case sizeof(u16):
3128			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
3129			break;
3130		case sizeof(u32):
3131			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
3132			break;
3133		case sizeof(u64):
3134			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
3135			break;
3136		default:
3137			return ICE_ERR_INVAL_SIZE;
3138		}
3139	}
3140
3141	return 0;
3142}
3143
3144/**
3145 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
3146 * @hw: pointer to the HW struct
3147 * @vsi_handle: software VSI handle
3148 * @tc: TC number
3149 * @q_handle: software queue handle
3150 */
3151static struct ice_q_ctx *
3152ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
3153{
3154	struct ice_vsi_ctx *vsi;
3155	struct ice_q_ctx *q_ctx;
3156
3157	vsi = ice_get_vsi_ctx(hw, vsi_handle);
3158	if (!vsi)
3159		return NULL;
3160	if (q_handle >= vsi->num_lan_q_entries[tc])
3161		return NULL;
3162	if (!vsi->lan_q_ctx[tc])
3163		return NULL;
3164	q_ctx = vsi->lan_q_ctx[tc];
3165	return &q_ctx[q_handle];
3166}
3167
3168/**
3169 * ice_ena_vsi_txq
3170 * @pi: port information structure
3171 * @vsi_handle: software VSI handle
3172 * @tc: TC number
3173 * @q_handle: software queue handle
3174 * @num_qgrps: Number of added queue groups
3175 * @buf: list of queue groups to be added
3176 * @buf_size: size of buffer for indirect command
3177 * @cd: pointer to command details structure or NULL
3178 *
3179 * This function adds one LAN queue
3180 */
3181enum ice_status
3182ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
3183		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
3184		struct ice_sq_cd *cd)
3185{
3186	struct ice_aqc_txsched_elem_data node = { 0 };
3187	struct ice_sched_node *parent;
3188	struct ice_q_ctx *q_ctx;
3189	enum ice_status status;
3190	struct ice_hw *hw;
3191
3192	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3193		return ICE_ERR_CFG;
3194
3195	if (num_qgrps > 1 || buf->num_txqs > 1)
3196		return ICE_ERR_MAX_LIMIT;
3197
3198	hw = pi->hw;
3199
3200	if (!ice_is_vsi_valid(hw, vsi_handle))
3201		return ICE_ERR_PARAM;
3202
3203	mutex_lock(&pi->sched_lock);
3204
3205	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
3206	if (!q_ctx) {
3207		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
3208			  q_handle);
3209		status = ICE_ERR_PARAM;
3210		goto ena_txq_exit;
3211	}
3212
3213	/* find a parent node */
3214	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
3215					    ICE_SCHED_NODE_OWNER_LAN);
3216	if (!parent) {
3217		status = ICE_ERR_PARAM;
3218		goto ena_txq_exit;
3219	}
3220
3221	buf->parent_teid = parent->info.node_teid;
3222	node.parent_teid = parent->info.node_teid;
3223	/* Mark that the values in the "generic" section as valid. The default
3224	 * value in the "generic" section is zero. This means that :
3225	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
3226	 * - 0 priority among siblings, indicated by Bit 1-3.
3227	 * - WFQ, indicated by Bit 4.
3228	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
3229	 * Bit 5-6.
3230	 * - Bit 7 is reserved.
3231	 * Without setting the generic section as valid in valid_sections, the
3232	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
3233	 */
3234	buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
3235
3236	/* add the LAN queue */
3237	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
3238	if (status) {
3239		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
3240			  le16_to_cpu(buf->txqs[0].txq_id),
3241			  hw->adminq.sq_last_status);
3242		goto ena_txq_exit;
3243	}
3244
3245	node.node_teid = buf->txqs[0].q_teid;
3246	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
3247	q_ctx->q_handle = q_handle;
3248
3249	/* add a leaf node into schduler tree queue layer */
3250	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
3251
3252ena_txq_exit:
3253	mutex_unlock(&pi->sched_lock);
3254	return status;
3255}
3256
3257/**
3258 * ice_dis_vsi_txq
3259 * @pi: port information structure
3260 * @vsi_handle: software VSI handle
3261 * @tc: TC number
3262 * @num_queues: number of queues
3263 * @q_handles: pointer to software queue handle array
3264 * @q_ids: pointer to the q_id array
3265 * @q_teids: pointer to queue node teids
3266 * @rst_src: if called due to reset, specifies the reset source
3267 * @vmvf_num: the relative VM or VF number that is undergoing the reset
3268 * @cd: pointer to command details structure or NULL
3269 *
3270 * This function removes queues and their corresponding nodes in SW DB
3271 */
3272enum ice_status
3273ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
3274		u16 *q_handles, u16 *q_ids, u32 *q_teids,
3275		enum ice_disq_rst_src rst_src, u16 vmvf_num,
3276		struct ice_sq_cd *cd)
3277{
3278	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
3279	struct ice_aqc_dis_txq_item qg_list;
3280	struct ice_q_ctx *q_ctx;
3281	u16 i;
3282
3283	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3284		return ICE_ERR_CFG;
3285
3286	if (!num_queues) {
3287		/* if queue is disabled already yet the disable queue command
3288		 * has to be sent to complete the VF reset, then call
3289		 * ice_aq_dis_lan_txq without any queue information
3290		 */
3291		if (rst_src)
3292			return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src,
3293						  vmvf_num, NULL);
3294		return ICE_ERR_CFG;
3295	}
3296
3297	mutex_lock(&pi->sched_lock);
3298
3299	for (i = 0; i < num_queues; i++) {
3300		struct ice_sched_node *node;
3301
3302		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
3303		if (!node)
3304			continue;
3305		q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handles[i]);
3306		if (!q_ctx) {
3307			ice_debug(pi->hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
3308				  q_handles[i]);
3309			continue;
3310		}
3311		if (q_ctx->q_handle != q_handles[i]) {
3312			ice_debug(pi->hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
3313				  q_ctx->q_handle, q_handles[i]);
3314			continue;
3315		}
3316		qg_list.parent_teid = node->info.parent_teid;
3317		qg_list.num_qs = 1;
3318		qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
3319		status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
3320					    sizeof(qg_list), rst_src, vmvf_num,
3321					    cd);
3322
3323		if (status)
3324			break;
3325		ice_free_sched_node(pi, node);
3326		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
3327	}
3328	mutex_unlock(&pi->sched_lock);
3329	return status;
3330}
3331
3332/**
3333 * ice_cfg_vsi_qs - configure the new/existing VSI queues
3334 * @pi: port information structure
3335 * @vsi_handle: software VSI handle
3336 * @tc_bitmap: TC bitmap
3337 * @maxqs: max queues array per TC
3338 * @owner: LAN or RDMA
3339 *
3340 * This function adds/updates the VSI queues per TC.
3341 */
3342static enum ice_status
3343ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3344	       u16 *maxqs, u8 owner)
3345{
3346	enum ice_status status = 0;
3347	u8 i;
3348
3349	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3350		return ICE_ERR_CFG;
3351
3352	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3353		return ICE_ERR_PARAM;
3354
3355	mutex_lock(&pi->sched_lock);
3356
3357	ice_for_each_traffic_class(i) {
3358		/* configuration is possible only if TC node is present */
3359		if (!ice_sched_get_tc_node(pi, i))
3360			continue;
3361
3362		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
3363					   ice_is_tc_ena(tc_bitmap, i));
3364		if (status)
3365			break;
3366	}
3367
3368	mutex_unlock(&pi->sched_lock);
3369	return status;
3370}
3371
3372/**
3373 * ice_cfg_vsi_lan - configure VSI LAN queues
3374 * @pi: port information structure
3375 * @vsi_handle: software VSI handle
3376 * @tc_bitmap: TC bitmap
3377 * @max_lanqs: max LAN queues array per TC
3378 *
3379 * This function adds/updates the VSI LAN queues per TC.
3380 */
3381enum ice_status
3382ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3383		u16 *max_lanqs)
3384{
3385	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
3386			      ICE_SCHED_NODE_OWNER_LAN);
3387}
3388
3389/**
3390 * ice_replay_pre_init - replay pre initialization
3391 * @hw: pointer to the HW struct
3392 *
3393 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
3394 */
3395static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
3396{
3397	struct ice_switch_info *sw = hw->switch_info;
3398	u8 i;
3399
3400	/* Delete old entries from replay filter list head if there is any */
3401	ice_rm_all_sw_replay_rule_info(hw);
3402	/* In start of replay, move entries into replay_rules list, it
3403	 * will allow adding rules entries back to filt_rules list,
3404	 * which is operational list.
3405	 */
3406	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
3407		list_replace_init(&sw->recp_list[i].filt_rules,
3408				  &sw->recp_list[i].filt_replay_rules);
3409
3410	return 0;
3411}
3412
3413/**
3414 * ice_replay_vsi - replay VSI configuration
3415 * @hw: pointer to the HW struct
3416 * @vsi_handle: driver VSI handle
3417 *
3418 * Restore all VSI configuration after reset. It is required to call this
3419 * function with main VSI first.
3420 */
3421enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
3422{
3423	enum ice_status status;
3424
3425	if (!ice_is_vsi_valid(hw, vsi_handle))
3426		return ICE_ERR_PARAM;
3427
3428	/* Replay pre-initialization if there is any */
3429	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
3430		status = ice_replay_pre_init(hw);
3431		if (status)
3432			return status;
3433	}
3434
3435	/* Replay per VSI all filters */
3436	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
3437	return status;
3438}
3439
3440/**
3441 * ice_replay_post - post replay configuration cleanup
3442 * @hw: pointer to the HW struct
3443 *
3444 * Post replay cleanup.
3445 */
3446void ice_replay_post(struct ice_hw *hw)
3447{
3448	/* Delete old entries from replay filter list head */
3449	ice_rm_all_sw_replay_rule_info(hw);
3450}
3451
3452/**
3453 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
3454 * @hw: ptr to the hardware info
3455 * @reg: offset of 64 bit HW register to read from
3456 * @prev_stat_loaded: bool to specify if previous stats are loaded
3457 * @prev_stat: ptr to previous loaded stat value
3458 * @cur_stat: ptr to current stat value
3459 */
3460void
3461ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3462		  u64 *prev_stat, u64 *cur_stat)
3463{
3464	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
3465
3466	/* device stats are not reset at PFR, they likely will not be zeroed
3467	 * when the driver starts. Thus, save the value from the first read
3468	 * without adding to the statistic value so that we report stats which
3469	 * count up from zero.
3470	 */
3471	if (!prev_stat_loaded) {
3472		*prev_stat = new_data;
3473		return;
3474	}
3475
3476	/* Calculate the difference between the new and old values, and then
3477	 * add it to the software stat value.
3478	 */
3479	if (new_data >= *prev_stat)
3480		*cur_stat += new_data - *prev_stat;
3481	else
3482		/* to manage the potential roll-over */
3483		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
3484
3485	/* Update the previously stored value to prepare for next read */
3486	*prev_stat = new_data;
3487}
3488
3489/**
3490 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
3491 * @hw: ptr to the hardware info
3492 * @reg: offset of HW register to read from
3493 * @prev_stat_loaded: bool to specify if previous stats are loaded
3494 * @prev_stat: ptr to previous loaded stat value
3495 * @cur_stat: ptr to current stat value
3496 */
3497void
3498ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3499		  u64 *prev_stat, u64 *cur_stat)
3500{
3501	u32 new_data;
3502
3503	new_data = rd32(hw, reg);
3504
3505	/* device stats are not reset at PFR, they likely will not be zeroed
3506	 * when the driver starts. Thus, save the value from the first read
3507	 * without adding to the statistic value so that we report stats which
3508	 * count up from zero.
3509	 */
3510	if (!prev_stat_loaded) {
3511		*prev_stat = new_data;
3512		return;
3513	}
3514
3515	/* Calculate the difference between the new and old values, and then
3516	 * add it to the software stat value.
3517	 */
3518	if (new_data >= *prev_stat)
3519		*cur_stat += new_data - *prev_stat;
3520	else
3521		/* to manage the potential roll-over */
3522		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
3523
3524	/* Update the previously stored value to prepare for next read */
3525	*prev_stat = new_data;
3526}
3527
3528/**
3529 * ice_sched_query_elem - query element information from HW
3530 * @hw: pointer to the HW struct
3531 * @node_teid: node TEID to be queried
3532 * @buf: buffer to element information
3533 *
3534 * This function queries HW element information
3535 */
3536enum ice_status
3537ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
3538		     struct ice_aqc_get_elem *buf)
3539{
3540	u16 buf_size, num_elem_ret = 0;
3541	enum ice_status status;
3542
3543	buf_size = sizeof(*buf);
3544	memset(buf, 0, buf_size);
3545	buf->generic[0].node_teid = cpu_to_le32(node_teid);
3546	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
3547					  NULL);
3548	if (status || num_elem_ret != 1)
3549		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
3550	return status;
3551}