Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/uio.h>
10#include <linux/iocontext.h>
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/export.h>
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
17#include <linux/cgroup.h>
18#include <linux/blk-cgroup.h>
19#include <linux/highmem.h>
20
21#include <trace/events/block.h>
22#include "blk.h"
23#include "blk-rq-qos.h"
24
25/*
26 * Test patch to inline a certain number of bi_io_vec's inside the bio
27 * itself, to shrink a bio data allocation from two mempool calls to one
28 */
29#define BIO_INLINE_VECS 4
30
31/*
32 * if you change this list, also change bvec_alloc or things will
33 * break badly! cannot be bigger than what you can fit into an
34 * unsigned short
35 */
36#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
37static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
38 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
39};
40#undef BV
41
42/*
43 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
44 * IO code that does not need private memory pools.
45 */
46struct bio_set fs_bio_set;
47EXPORT_SYMBOL(fs_bio_set);
48
49/*
50 * Our slab pool management
51 */
52struct bio_slab {
53 struct kmem_cache *slab;
54 unsigned int slab_ref;
55 unsigned int slab_size;
56 char name[8];
57};
58static DEFINE_MUTEX(bio_slab_lock);
59static struct bio_slab *bio_slabs;
60static unsigned int bio_slab_nr, bio_slab_max;
61
62static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
63{
64 unsigned int sz = sizeof(struct bio) + extra_size;
65 struct kmem_cache *slab = NULL;
66 struct bio_slab *bslab, *new_bio_slabs;
67 unsigned int new_bio_slab_max;
68 unsigned int i, entry = -1;
69
70 mutex_lock(&bio_slab_lock);
71
72 i = 0;
73 while (i < bio_slab_nr) {
74 bslab = &bio_slabs[i];
75
76 if (!bslab->slab && entry == -1)
77 entry = i;
78 else if (bslab->slab_size == sz) {
79 slab = bslab->slab;
80 bslab->slab_ref++;
81 break;
82 }
83 i++;
84 }
85
86 if (slab)
87 goto out_unlock;
88
89 if (bio_slab_nr == bio_slab_max && entry == -1) {
90 new_bio_slab_max = bio_slab_max << 1;
91 new_bio_slabs = krealloc(bio_slabs,
92 new_bio_slab_max * sizeof(struct bio_slab),
93 GFP_KERNEL);
94 if (!new_bio_slabs)
95 goto out_unlock;
96 bio_slab_max = new_bio_slab_max;
97 bio_slabs = new_bio_slabs;
98 }
99 if (entry == -1)
100 entry = bio_slab_nr++;
101
102 bslab = &bio_slabs[entry];
103
104 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
105 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
106 SLAB_HWCACHE_ALIGN, NULL);
107 if (!slab)
108 goto out_unlock;
109
110 bslab->slab = slab;
111 bslab->slab_ref = 1;
112 bslab->slab_size = sz;
113out_unlock:
114 mutex_unlock(&bio_slab_lock);
115 return slab;
116}
117
118static void bio_put_slab(struct bio_set *bs)
119{
120 struct bio_slab *bslab = NULL;
121 unsigned int i;
122
123 mutex_lock(&bio_slab_lock);
124
125 for (i = 0; i < bio_slab_nr; i++) {
126 if (bs->bio_slab == bio_slabs[i].slab) {
127 bslab = &bio_slabs[i];
128 break;
129 }
130 }
131
132 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
133 goto out;
134
135 WARN_ON(!bslab->slab_ref);
136
137 if (--bslab->slab_ref)
138 goto out;
139
140 kmem_cache_destroy(bslab->slab);
141 bslab->slab = NULL;
142
143out:
144 mutex_unlock(&bio_slab_lock);
145}
146
147unsigned int bvec_nr_vecs(unsigned short idx)
148{
149 return bvec_slabs[--idx].nr_vecs;
150}
151
152void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
153{
154 if (!idx)
155 return;
156 idx--;
157
158 BIO_BUG_ON(idx >= BVEC_POOL_NR);
159
160 if (idx == BVEC_POOL_MAX) {
161 mempool_free(bv, pool);
162 } else {
163 struct biovec_slab *bvs = bvec_slabs + idx;
164
165 kmem_cache_free(bvs->slab, bv);
166 }
167}
168
169struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
170 mempool_t *pool)
171{
172 struct bio_vec *bvl;
173
174 /*
175 * see comment near bvec_array define!
176 */
177 switch (nr) {
178 case 1:
179 *idx = 0;
180 break;
181 case 2 ... 4:
182 *idx = 1;
183 break;
184 case 5 ... 16:
185 *idx = 2;
186 break;
187 case 17 ... 64:
188 *idx = 3;
189 break;
190 case 65 ... 128:
191 *idx = 4;
192 break;
193 case 129 ... BIO_MAX_PAGES:
194 *idx = 5;
195 break;
196 default:
197 return NULL;
198 }
199
200 /*
201 * idx now points to the pool we want to allocate from. only the
202 * 1-vec entry pool is mempool backed.
203 */
204 if (*idx == BVEC_POOL_MAX) {
205fallback:
206 bvl = mempool_alloc(pool, gfp_mask);
207 } else {
208 struct biovec_slab *bvs = bvec_slabs + *idx;
209 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
210
211 /*
212 * Make this allocation restricted and don't dump info on
213 * allocation failures, since we'll fallback to the mempool
214 * in case of failure.
215 */
216 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
217
218 /*
219 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
220 * is set, retry with the 1-entry mempool
221 */
222 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
223 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
224 *idx = BVEC_POOL_MAX;
225 goto fallback;
226 }
227 }
228
229 (*idx)++;
230 return bvl;
231}
232
233void bio_uninit(struct bio *bio)
234{
235 bio_disassociate_blkg(bio);
236}
237EXPORT_SYMBOL(bio_uninit);
238
239static void bio_free(struct bio *bio)
240{
241 struct bio_set *bs = bio->bi_pool;
242 void *p;
243
244 bio_uninit(bio);
245
246 if (bs) {
247 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
248
249 /*
250 * If we have front padding, adjust the bio pointer before freeing
251 */
252 p = bio;
253 p -= bs->front_pad;
254
255 mempool_free(p, &bs->bio_pool);
256 } else {
257 /* Bio was allocated by bio_kmalloc() */
258 kfree(bio);
259 }
260}
261
262/*
263 * Users of this function have their own bio allocation. Subsequently,
264 * they must remember to pair any call to bio_init() with bio_uninit()
265 * when IO has completed, or when the bio is released.
266 */
267void bio_init(struct bio *bio, struct bio_vec *table,
268 unsigned short max_vecs)
269{
270 memset(bio, 0, sizeof(*bio));
271 atomic_set(&bio->__bi_remaining, 1);
272 atomic_set(&bio->__bi_cnt, 1);
273
274 bio->bi_io_vec = table;
275 bio->bi_max_vecs = max_vecs;
276}
277EXPORT_SYMBOL(bio_init);
278
279/**
280 * bio_reset - reinitialize a bio
281 * @bio: bio to reset
282 *
283 * Description:
284 * After calling bio_reset(), @bio will be in the same state as a freshly
285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
286 * preserved are the ones that are initialized by bio_alloc_bioset(). See
287 * comment in struct bio.
288 */
289void bio_reset(struct bio *bio)
290{
291 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292
293 bio_uninit(bio);
294
295 memset(bio, 0, BIO_RESET_BYTES);
296 bio->bi_flags = flags;
297 atomic_set(&bio->__bi_remaining, 1);
298}
299EXPORT_SYMBOL(bio_reset);
300
301static struct bio *__bio_chain_endio(struct bio *bio)
302{
303 struct bio *parent = bio->bi_private;
304
305 if (!parent->bi_status)
306 parent->bi_status = bio->bi_status;
307 bio_put(bio);
308 return parent;
309}
310
311static void bio_chain_endio(struct bio *bio)
312{
313 bio_endio(__bio_chain_endio(bio));
314}
315
316/**
317 * bio_chain - chain bio completions
318 * @bio: the target bio
319 * @parent: the @bio's parent bio
320 *
321 * The caller won't have a bi_end_io called when @bio completes - instead,
322 * @parent's bi_end_io won't be called until both @parent and @bio have
323 * completed; the chained bio will also be freed when it completes.
324 *
325 * The caller must not set bi_private or bi_end_io in @bio.
326 */
327void bio_chain(struct bio *bio, struct bio *parent)
328{
329 BUG_ON(bio->bi_private || bio->bi_end_io);
330
331 bio->bi_private = parent;
332 bio->bi_end_io = bio_chain_endio;
333 bio_inc_remaining(parent);
334}
335EXPORT_SYMBOL(bio_chain);
336
337static void bio_alloc_rescue(struct work_struct *work)
338{
339 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
340 struct bio *bio;
341
342 while (1) {
343 spin_lock(&bs->rescue_lock);
344 bio = bio_list_pop(&bs->rescue_list);
345 spin_unlock(&bs->rescue_lock);
346
347 if (!bio)
348 break;
349
350 generic_make_request(bio);
351 }
352}
353
354static void punt_bios_to_rescuer(struct bio_set *bs)
355{
356 struct bio_list punt, nopunt;
357 struct bio *bio;
358
359 if (WARN_ON_ONCE(!bs->rescue_workqueue))
360 return;
361 /*
362 * In order to guarantee forward progress we must punt only bios that
363 * were allocated from this bio_set; otherwise, if there was a bio on
364 * there for a stacking driver higher up in the stack, processing it
365 * could require allocating bios from this bio_set, and doing that from
366 * our own rescuer would be bad.
367 *
368 * Since bio lists are singly linked, pop them all instead of trying to
369 * remove from the middle of the list:
370 */
371
372 bio_list_init(&punt);
373 bio_list_init(&nopunt);
374
375 while ((bio = bio_list_pop(¤t->bio_list[0])))
376 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
377 current->bio_list[0] = nopunt;
378
379 bio_list_init(&nopunt);
380 while ((bio = bio_list_pop(¤t->bio_list[1])))
381 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
382 current->bio_list[1] = nopunt;
383
384 spin_lock(&bs->rescue_lock);
385 bio_list_merge(&bs->rescue_list, &punt);
386 spin_unlock(&bs->rescue_lock);
387
388 queue_work(bs->rescue_workqueue, &bs->rescue_work);
389}
390
391/**
392 * bio_alloc_bioset - allocate a bio for I/O
393 * @gfp_mask: the GFP_* mask given to the slab allocator
394 * @nr_iovecs: number of iovecs to pre-allocate
395 * @bs: the bio_set to allocate from.
396 *
397 * Description:
398 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
399 * backed by the @bs's mempool.
400 *
401 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
402 * always be able to allocate a bio. This is due to the mempool guarantees.
403 * To make this work, callers must never allocate more than 1 bio at a time
404 * from this pool. Callers that need to allocate more than 1 bio must always
405 * submit the previously allocated bio for IO before attempting to allocate
406 * a new one. Failure to do so can cause deadlocks under memory pressure.
407 *
408 * Note that when running under generic_make_request() (i.e. any block
409 * driver), bios are not submitted until after you return - see the code in
410 * generic_make_request() that converts recursion into iteration, to prevent
411 * stack overflows.
412 *
413 * This would normally mean allocating multiple bios under
414 * generic_make_request() would be susceptible to deadlocks, but we have
415 * deadlock avoidance code that resubmits any blocked bios from a rescuer
416 * thread.
417 *
418 * However, we do not guarantee forward progress for allocations from other
419 * mempools. Doing multiple allocations from the same mempool under
420 * generic_make_request() should be avoided - instead, use bio_set's front_pad
421 * for per bio allocations.
422 *
423 * RETURNS:
424 * Pointer to new bio on success, NULL on failure.
425 */
426struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
427 struct bio_set *bs)
428{
429 gfp_t saved_gfp = gfp_mask;
430 unsigned front_pad;
431 unsigned inline_vecs;
432 struct bio_vec *bvl = NULL;
433 struct bio *bio;
434 void *p;
435
436 if (!bs) {
437 if (nr_iovecs > UIO_MAXIOV)
438 return NULL;
439
440 p = kmalloc(sizeof(struct bio) +
441 nr_iovecs * sizeof(struct bio_vec),
442 gfp_mask);
443 front_pad = 0;
444 inline_vecs = nr_iovecs;
445 } else {
446 /* should not use nobvec bioset for nr_iovecs > 0 */
447 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
448 nr_iovecs > 0))
449 return NULL;
450 /*
451 * generic_make_request() converts recursion to iteration; this
452 * means if we're running beneath it, any bios we allocate and
453 * submit will not be submitted (and thus freed) until after we
454 * return.
455 *
456 * This exposes us to a potential deadlock if we allocate
457 * multiple bios from the same bio_set() while running
458 * underneath generic_make_request(). If we were to allocate
459 * multiple bios (say a stacking block driver that was splitting
460 * bios), we would deadlock if we exhausted the mempool's
461 * reserve.
462 *
463 * We solve this, and guarantee forward progress, with a rescuer
464 * workqueue per bio_set. If we go to allocate and there are
465 * bios on current->bio_list, we first try the allocation
466 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
467 * bios we would be blocking to the rescuer workqueue before
468 * we retry with the original gfp_flags.
469 */
470
471 if (current->bio_list &&
472 (!bio_list_empty(¤t->bio_list[0]) ||
473 !bio_list_empty(¤t->bio_list[1])) &&
474 bs->rescue_workqueue)
475 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
476
477 p = mempool_alloc(&bs->bio_pool, gfp_mask);
478 if (!p && gfp_mask != saved_gfp) {
479 punt_bios_to_rescuer(bs);
480 gfp_mask = saved_gfp;
481 p = mempool_alloc(&bs->bio_pool, gfp_mask);
482 }
483
484 front_pad = bs->front_pad;
485 inline_vecs = BIO_INLINE_VECS;
486 }
487
488 if (unlikely(!p))
489 return NULL;
490
491 bio = p + front_pad;
492 bio_init(bio, NULL, 0);
493
494 if (nr_iovecs > inline_vecs) {
495 unsigned long idx = 0;
496
497 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
498 if (!bvl && gfp_mask != saved_gfp) {
499 punt_bios_to_rescuer(bs);
500 gfp_mask = saved_gfp;
501 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
502 }
503
504 if (unlikely(!bvl))
505 goto err_free;
506
507 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
508 } else if (nr_iovecs) {
509 bvl = bio->bi_inline_vecs;
510 }
511
512 bio->bi_pool = bs;
513 bio->bi_max_vecs = nr_iovecs;
514 bio->bi_io_vec = bvl;
515 return bio;
516
517err_free:
518 mempool_free(p, &bs->bio_pool);
519 return NULL;
520}
521EXPORT_SYMBOL(bio_alloc_bioset);
522
523void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
524{
525 unsigned long flags;
526 struct bio_vec bv;
527 struct bvec_iter iter;
528
529 __bio_for_each_segment(bv, bio, iter, start) {
530 char *data = bvec_kmap_irq(&bv, &flags);
531 memset(data, 0, bv.bv_len);
532 flush_dcache_page(bv.bv_page);
533 bvec_kunmap_irq(data, &flags);
534 }
535}
536EXPORT_SYMBOL(zero_fill_bio_iter);
537
538/**
539 * bio_put - release a reference to a bio
540 * @bio: bio to release reference to
541 *
542 * Description:
543 * Put a reference to a &struct bio, either one you have gotten with
544 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
545 **/
546void bio_put(struct bio *bio)
547{
548 if (!bio_flagged(bio, BIO_REFFED))
549 bio_free(bio);
550 else {
551 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
552
553 /*
554 * last put frees it
555 */
556 if (atomic_dec_and_test(&bio->__bi_cnt))
557 bio_free(bio);
558 }
559}
560EXPORT_SYMBOL(bio_put);
561
562/**
563 * __bio_clone_fast - clone a bio that shares the original bio's biovec
564 * @bio: destination bio
565 * @bio_src: bio to clone
566 *
567 * Clone a &bio. Caller will own the returned bio, but not
568 * the actual data it points to. Reference count of returned
569 * bio will be one.
570 *
571 * Caller must ensure that @bio_src is not freed before @bio.
572 */
573void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
574{
575 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
576
577 /*
578 * most users will be overriding ->bi_disk with a new target,
579 * so we don't set nor calculate new physical/hw segment counts here
580 */
581 bio->bi_disk = bio_src->bi_disk;
582 bio->bi_partno = bio_src->bi_partno;
583 bio_set_flag(bio, BIO_CLONED);
584 if (bio_flagged(bio_src, BIO_THROTTLED))
585 bio_set_flag(bio, BIO_THROTTLED);
586 bio->bi_opf = bio_src->bi_opf;
587 bio->bi_ioprio = bio_src->bi_ioprio;
588 bio->bi_write_hint = bio_src->bi_write_hint;
589 bio->bi_iter = bio_src->bi_iter;
590 bio->bi_io_vec = bio_src->bi_io_vec;
591
592 bio_clone_blkg_association(bio, bio_src);
593 blkcg_bio_issue_init(bio);
594}
595EXPORT_SYMBOL(__bio_clone_fast);
596
597/**
598 * bio_clone_fast - clone a bio that shares the original bio's biovec
599 * @bio: bio to clone
600 * @gfp_mask: allocation priority
601 * @bs: bio_set to allocate from
602 *
603 * Like __bio_clone_fast, only also allocates the returned bio
604 */
605struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
606{
607 struct bio *b;
608
609 b = bio_alloc_bioset(gfp_mask, 0, bs);
610 if (!b)
611 return NULL;
612
613 __bio_clone_fast(b, bio);
614
615 if (bio_integrity(bio)) {
616 int ret;
617
618 ret = bio_integrity_clone(b, bio, gfp_mask);
619
620 if (ret < 0) {
621 bio_put(b);
622 return NULL;
623 }
624 }
625
626 return b;
627}
628EXPORT_SYMBOL(bio_clone_fast);
629
630static inline bool page_is_mergeable(const struct bio_vec *bv,
631 struct page *page, unsigned int len, unsigned int off,
632 bool *same_page)
633{
634 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
635 bv->bv_offset + bv->bv_len - 1;
636 phys_addr_t page_addr = page_to_phys(page);
637
638 if (vec_end_addr + 1 != page_addr + off)
639 return false;
640 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
641 return false;
642
643 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
644 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
645 return false;
646 return true;
647}
648
649static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
650 struct page *page, unsigned len, unsigned offset,
651 bool *same_page)
652{
653 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
654 unsigned long mask = queue_segment_boundary(q);
655 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
656 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
657
658 if ((addr1 | mask) != (addr2 | mask))
659 return false;
660 if (bv->bv_len + len > queue_max_segment_size(q))
661 return false;
662 return __bio_try_merge_page(bio, page, len, offset, same_page);
663}
664
665/**
666 * __bio_add_pc_page - attempt to add page to passthrough bio
667 * @q: the target queue
668 * @bio: destination bio
669 * @page: page to add
670 * @len: vec entry length
671 * @offset: vec entry offset
672 * @same_page: return if the merge happen inside the same page
673 *
674 * Attempt to add a page to the bio_vec maplist. This can fail for a
675 * number of reasons, such as the bio being full or target block device
676 * limitations. The target block device must allow bio's up to PAGE_SIZE,
677 * so it is always possible to add a single page to an empty bio.
678 *
679 * This should only be used by passthrough bios.
680 */
681static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
682 struct page *page, unsigned int len, unsigned int offset,
683 bool *same_page)
684{
685 struct bio_vec *bvec;
686
687 /*
688 * cloned bio must not modify vec list
689 */
690 if (unlikely(bio_flagged(bio, BIO_CLONED)))
691 return 0;
692
693 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
694 return 0;
695
696 if (bio->bi_vcnt > 0) {
697 if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
698 return len;
699
700 /*
701 * If the queue doesn't support SG gaps and adding this segment
702 * would create a gap, disallow it.
703 */
704 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
705 if (bvec_gap_to_prev(q, bvec, offset))
706 return 0;
707 }
708
709 if (bio_full(bio, len))
710 return 0;
711
712 if (bio->bi_vcnt >= queue_max_segments(q))
713 return 0;
714
715 bvec = &bio->bi_io_vec[bio->bi_vcnt];
716 bvec->bv_page = page;
717 bvec->bv_len = len;
718 bvec->bv_offset = offset;
719 bio->bi_vcnt++;
720 bio->bi_iter.bi_size += len;
721 return len;
722}
723
724int bio_add_pc_page(struct request_queue *q, struct bio *bio,
725 struct page *page, unsigned int len, unsigned int offset)
726{
727 bool same_page = false;
728 return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
729}
730EXPORT_SYMBOL(bio_add_pc_page);
731
732/**
733 * __bio_try_merge_page - try appending data to an existing bvec.
734 * @bio: destination bio
735 * @page: start page to add
736 * @len: length of the data to add
737 * @off: offset of the data relative to @page
738 * @same_page: return if the segment has been merged inside the same page
739 *
740 * Try to add the data at @page + @off to the last bvec of @bio. This is a
741 * a useful optimisation for file systems with a block size smaller than the
742 * page size.
743 *
744 * Warn if (@len, @off) crosses pages in case that @same_page is true.
745 *
746 * Return %true on success or %false on failure.
747 */
748bool __bio_try_merge_page(struct bio *bio, struct page *page,
749 unsigned int len, unsigned int off, bool *same_page)
750{
751 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
752 return false;
753
754 if (bio->bi_vcnt > 0 && !bio_full(bio, len)) {
755 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
756
757 if (page_is_mergeable(bv, page, len, off, same_page)) {
758 bv->bv_len += len;
759 bio->bi_iter.bi_size += len;
760 return true;
761 }
762 }
763 return false;
764}
765EXPORT_SYMBOL_GPL(__bio_try_merge_page);
766
767/**
768 * __bio_add_page - add page(s) to a bio in a new segment
769 * @bio: destination bio
770 * @page: start page to add
771 * @len: length of the data to add, may cross pages
772 * @off: offset of the data relative to @page, may cross pages
773 *
774 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
775 * that @bio has space for another bvec.
776 */
777void __bio_add_page(struct bio *bio, struct page *page,
778 unsigned int len, unsigned int off)
779{
780 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
781
782 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
783 WARN_ON_ONCE(bio_full(bio, len));
784
785 bv->bv_page = page;
786 bv->bv_offset = off;
787 bv->bv_len = len;
788
789 bio->bi_iter.bi_size += len;
790 bio->bi_vcnt++;
791
792 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
793 bio_set_flag(bio, BIO_WORKINGSET);
794}
795EXPORT_SYMBOL_GPL(__bio_add_page);
796
797/**
798 * bio_add_page - attempt to add page(s) to bio
799 * @bio: destination bio
800 * @page: start page to add
801 * @len: vec entry length, may cross pages
802 * @offset: vec entry offset relative to @page, may cross pages
803 *
804 * Attempt to add page(s) to the bio_vec maplist. This will only fail
805 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
806 */
807int bio_add_page(struct bio *bio, struct page *page,
808 unsigned int len, unsigned int offset)
809{
810 bool same_page = false;
811
812 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
813 if (bio_full(bio, len))
814 return 0;
815 __bio_add_page(bio, page, len, offset);
816 }
817 return len;
818}
819EXPORT_SYMBOL(bio_add_page);
820
821void bio_release_pages(struct bio *bio, bool mark_dirty)
822{
823 struct bvec_iter_all iter_all;
824 struct bio_vec *bvec;
825
826 if (bio_flagged(bio, BIO_NO_PAGE_REF))
827 return;
828
829 bio_for_each_segment_all(bvec, bio, iter_all) {
830 if (mark_dirty && !PageCompound(bvec->bv_page))
831 set_page_dirty_lock(bvec->bv_page);
832 put_page(bvec->bv_page);
833 }
834}
835
836static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
837{
838 const struct bio_vec *bv = iter->bvec;
839 unsigned int len;
840 size_t size;
841
842 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
843 return -EINVAL;
844
845 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
846 size = bio_add_page(bio, bv->bv_page, len,
847 bv->bv_offset + iter->iov_offset);
848 if (unlikely(size != len))
849 return -EINVAL;
850 iov_iter_advance(iter, size);
851 return 0;
852}
853
854#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
855
856/**
857 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
858 * @bio: bio to add pages to
859 * @iter: iov iterator describing the region to be mapped
860 *
861 * Pins pages from *iter and appends them to @bio's bvec array. The
862 * pages will have to be released using put_page() when done.
863 * For multi-segment *iter, this function only adds pages from the
864 * the next non-empty segment of the iov iterator.
865 */
866static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
867{
868 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
869 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
870 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
871 struct page **pages = (struct page **)bv;
872 bool same_page = false;
873 ssize_t size, left;
874 unsigned len, i;
875 size_t offset;
876
877 /*
878 * Move page array up in the allocated memory for the bio vecs as far as
879 * possible so that we can start filling biovecs from the beginning
880 * without overwriting the temporary page array.
881 */
882 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
883 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
884
885 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
886 if (unlikely(size <= 0))
887 return size ? size : -EFAULT;
888
889 for (left = size, i = 0; left > 0; left -= len, i++) {
890 struct page *page = pages[i];
891
892 len = min_t(size_t, PAGE_SIZE - offset, left);
893
894 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
895 if (same_page)
896 put_page(page);
897 } else {
898 if (WARN_ON_ONCE(bio_full(bio, len)))
899 return -EINVAL;
900 __bio_add_page(bio, page, len, offset);
901 }
902 offset = 0;
903 }
904
905 iov_iter_advance(iter, size);
906 return 0;
907}
908
909/**
910 * bio_iov_iter_get_pages - add user or kernel pages to a bio
911 * @bio: bio to add pages to
912 * @iter: iov iterator describing the region to be added
913 *
914 * This takes either an iterator pointing to user memory, or one pointing to
915 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
916 * map them into the kernel. On IO completion, the caller should put those
917 * pages. If we're adding kernel pages, and the caller told us it's safe to
918 * do so, we just have to add the pages to the bio directly. We don't grab an
919 * extra reference to those pages (the user should already have that), and we
920 * don't put the page on IO completion. The caller needs to check if the bio is
921 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
922 * released.
923 *
924 * The function tries, but does not guarantee, to pin as many pages as
925 * fit into the bio, or are requested in *iter, whatever is smaller. If
926 * MM encounters an error pinning the requested pages, it stops. Error
927 * is returned only if 0 pages could be pinned.
928 */
929int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
930{
931 const bool is_bvec = iov_iter_is_bvec(iter);
932 int ret;
933
934 if (WARN_ON_ONCE(bio->bi_vcnt))
935 return -EINVAL;
936
937 do {
938 if (is_bvec)
939 ret = __bio_iov_bvec_add_pages(bio, iter);
940 else
941 ret = __bio_iov_iter_get_pages(bio, iter);
942 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
943
944 if (is_bvec)
945 bio_set_flag(bio, BIO_NO_PAGE_REF);
946 return bio->bi_vcnt ? 0 : ret;
947}
948
949static void submit_bio_wait_endio(struct bio *bio)
950{
951 complete(bio->bi_private);
952}
953
954/**
955 * submit_bio_wait - submit a bio, and wait until it completes
956 * @bio: The &struct bio which describes the I/O
957 *
958 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
959 * bio_endio() on failure.
960 *
961 * WARNING: Unlike to how submit_bio() is usually used, this function does not
962 * result in bio reference to be consumed. The caller must drop the reference
963 * on his own.
964 */
965int submit_bio_wait(struct bio *bio)
966{
967 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
968
969 bio->bi_private = &done;
970 bio->bi_end_io = submit_bio_wait_endio;
971 bio->bi_opf |= REQ_SYNC;
972 submit_bio(bio);
973 wait_for_completion_io(&done);
974
975 return blk_status_to_errno(bio->bi_status);
976}
977EXPORT_SYMBOL(submit_bio_wait);
978
979/**
980 * bio_advance - increment/complete a bio by some number of bytes
981 * @bio: bio to advance
982 * @bytes: number of bytes to complete
983 *
984 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
985 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
986 * be updated on the last bvec as well.
987 *
988 * @bio will then represent the remaining, uncompleted portion of the io.
989 */
990void bio_advance(struct bio *bio, unsigned bytes)
991{
992 if (bio_integrity(bio))
993 bio_integrity_advance(bio, bytes);
994
995 bio_advance_iter(bio, &bio->bi_iter, bytes);
996}
997EXPORT_SYMBOL(bio_advance);
998
999void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1000 struct bio *src, struct bvec_iter *src_iter)
1001{
1002 struct bio_vec src_bv, dst_bv;
1003 void *src_p, *dst_p;
1004 unsigned bytes;
1005
1006 while (src_iter->bi_size && dst_iter->bi_size) {
1007 src_bv = bio_iter_iovec(src, *src_iter);
1008 dst_bv = bio_iter_iovec(dst, *dst_iter);
1009
1010 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1011
1012 src_p = kmap_atomic(src_bv.bv_page);
1013 dst_p = kmap_atomic(dst_bv.bv_page);
1014
1015 memcpy(dst_p + dst_bv.bv_offset,
1016 src_p + src_bv.bv_offset,
1017 bytes);
1018
1019 kunmap_atomic(dst_p);
1020 kunmap_atomic(src_p);
1021
1022 flush_dcache_page(dst_bv.bv_page);
1023
1024 bio_advance_iter(src, src_iter, bytes);
1025 bio_advance_iter(dst, dst_iter, bytes);
1026 }
1027}
1028EXPORT_SYMBOL(bio_copy_data_iter);
1029
1030/**
1031 * bio_copy_data - copy contents of data buffers from one bio to another
1032 * @src: source bio
1033 * @dst: destination bio
1034 *
1035 * Stops when it reaches the end of either @src or @dst - that is, copies
1036 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1037 */
1038void bio_copy_data(struct bio *dst, struct bio *src)
1039{
1040 struct bvec_iter src_iter = src->bi_iter;
1041 struct bvec_iter dst_iter = dst->bi_iter;
1042
1043 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1044}
1045EXPORT_SYMBOL(bio_copy_data);
1046
1047/**
1048 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1049 * another
1050 * @src: source bio list
1051 * @dst: destination bio list
1052 *
1053 * Stops when it reaches the end of either the @src list or @dst list - that is,
1054 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1055 * bios).
1056 */
1057void bio_list_copy_data(struct bio *dst, struct bio *src)
1058{
1059 struct bvec_iter src_iter = src->bi_iter;
1060 struct bvec_iter dst_iter = dst->bi_iter;
1061
1062 while (1) {
1063 if (!src_iter.bi_size) {
1064 src = src->bi_next;
1065 if (!src)
1066 break;
1067
1068 src_iter = src->bi_iter;
1069 }
1070
1071 if (!dst_iter.bi_size) {
1072 dst = dst->bi_next;
1073 if (!dst)
1074 break;
1075
1076 dst_iter = dst->bi_iter;
1077 }
1078
1079 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1080 }
1081}
1082EXPORT_SYMBOL(bio_list_copy_data);
1083
1084struct bio_map_data {
1085 int is_our_pages;
1086 struct iov_iter iter;
1087 struct iovec iov[];
1088};
1089
1090static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1091 gfp_t gfp_mask)
1092{
1093 struct bio_map_data *bmd;
1094 if (data->nr_segs > UIO_MAXIOV)
1095 return NULL;
1096
1097 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1098 if (!bmd)
1099 return NULL;
1100 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1101 bmd->iter = *data;
1102 bmd->iter.iov = bmd->iov;
1103 return bmd;
1104}
1105
1106/**
1107 * bio_copy_from_iter - copy all pages from iov_iter to bio
1108 * @bio: The &struct bio which describes the I/O as destination
1109 * @iter: iov_iter as source
1110 *
1111 * Copy all pages from iov_iter to bio.
1112 * Returns 0 on success, or error on failure.
1113 */
1114static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1115{
1116 struct bio_vec *bvec;
1117 struct bvec_iter_all iter_all;
1118
1119 bio_for_each_segment_all(bvec, bio, iter_all) {
1120 ssize_t ret;
1121
1122 ret = copy_page_from_iter(bvec->bv_page,
1123 bvec->bv_offset,
1124 bvec->bv_len,
1125 iter);
1126
1127 if (!iov_iter_count(iter))
1128 break;
1129
1130 if (ret < bvec->bv_len)
1131 return -EFAULT;
1132 }
1133
1134 return 0;
1135}
1136
1137/**
1138 * bio_copy_to_iter - copy all pages from bio to iov_iter
1139 * @bio: The &struct bio which describes the I/O as source
1140 * @iter: iov_iter as destination
1141 *
1142 * Copy all pages from bio to iov_iter.
1143 * Returns 0 on success, or error on failure.
1144 */
1145static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1146{
1147 struct bio_vec *bvec;
1148 struct bvec_iter_all iter_all;
1149
1150 bio_for_each_segment_all(bvec, bio, iter_all) {
1151 ssize_t ret;
1152
1153 ret = copy_page_to_iter(bvec->bv_page,
1154 bvec->bv_offset,
1155 bvec->bv_len,
1156 &iter);
1157
1158 if (!iov_iter_count(&iter))
1159 break;
1160
1161 if (ret < bvec->bv_len)
1162 return -EFAULT;
1163 }
1164
1165 return 0;
1166}
1167
1168void bio_free_pages(struct bio *bio)
1169{
1170 struct bio_vec *bvec;
1171 struct bvec_iter_all iter_all;
1172
1173 bio_for_each_segment_all(bvec, bio, iter_all)
1174 __free_page(bvec->bv_page);
1175}
1176EXPORT_SYMBOL(bio_free_pages);
1177
1178/**
1179 * bio_uncopy_user - finish previously mapped bio
1180 * @bio: bio being terminated
1181 *
1182 * Free pages allocated from bio_copy_user_iov() and write back data
1183 * to user space in case of a read.
1184 */
1185int bio_uncopy_user(struct bio *bio)
1186{
1187 struct bio_map_data *bmd = bio->bi_private;
1188 int ret = 0;
1189
1190 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1191 /*
1192 * if we're in a workqueue, the request is orphaned, so
1193 * don't copy into a random user address space, just free
1194 * and return -EINTR so user space doesn't expect any data.
1195 */
1196 if (!current->mm)
1197 ret = -EINTR;
1198 else if (bio_data_dir(bio) == READ)
1199 ret = bio_copy_to_iter(bio, bmd->iter);
1200 if (bmd->is_our_pages)
1201 bio_free_pages(bio);
1202 }
1203 kfree(bmd);
1204 bio_put(bio);
1205 return ret;
1206}
1207
1208/**
1209 * bio_copy_user_iov - copy user data to bio
1210 * @q: destination block queue
1211 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1212 * @iter: iovec iterator
1213 * @gfp_mask: memory allocation flags
1214 *
1215 * Prepares and returns a bio for indirect user io, bouncing data
1216 * to/from kernel pages as necessary. Must be paired with
1217 * call bio_uncopy_user() on io completion.
1218 */
1219struct bio *bio_copy_user_iov(struct request_queue *q,
1220 struct rq_map_data *map_data,
1221 struct iov_iter *iter,
1222 gfp_t gfp_mask)
1223{
1224 struct bio_map_data *bmd;
1225 struct page *page;
1226 struct bio *bio;
1227 int i = 0, ret;
1228 int nr_pages;
1229 unsigned int len = iter->count;
1230 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1231
1232 bmd = bio_alloc_map_data(iter, gfp_mask);
1233 if (!bmd)
1234 return ERR_PTR(-ENOMEM);
1235
1236 /*
1237 * We need to do a deep copy of the iov_iter including the iovecs.
1238 * The caller provided iov might point to an on-stack or otherwise
1239 * shortlived one.
1240 */
1241 bmd->is_our_pages = map_data ? 0 : 1;
1242
1243 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1244 if (nr_pages > BIO_MAX_PAGES)
1245 nr_pages = BIO_MAX_PAGES;
1246
1247 ret = -ENOMEM;
1248 bio = bio_kmalloc(gfp_mask, nr_pages);
1249 if (!bio)
1250 goto out_bmd;
1251
1252 ret = 0;
1253
1254 if (map_data) {
1255 nr_pages = 1 << map_data->page_order;
1256 i = map_data->offset / PAGE_SIZE;
1257 }
1258 while (len) {
1259 unsigned int bytes = PAGE_SIZE;
1260
1261 bytes -= offset;
1262
1263 if (bytes > len)
1264 bytes = len;
1265
1266 if (map_data) {
1267 if (i == map_data->nr_entries * nr_pages) {
1268 ret = -ENOMEM;
1269 break;
1270 }
1271
1272 page = map_data->pages[i / nr_pages];
1273 page += (i % nr_pages);
1274
1275 i++;
1276 } else {
1277 page = alloc_page(q->bounce_gfp | gfp_mask);
1278 if (!page) {
1279 ret = -ENOMEM;
1280 break;
1281 }
1282 }
1283
1284 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1285 if (!map_data)
1286 __free_page(page);
1287 break;
1288 }
1289
1290 len -= bytes;
1291 offset = 0;
1292 }
1293
1294 if (ret)
1295 goto cleanup;
1296
1297 if (map_data)
1298 map_data->offset += bio->bi_iter.bi_size;
1299
1300 /*
1301 * success
1302 */
1303 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1304 (map_data && map_data->from_user)) {
1305 ret = bio_copy_from_iter(bio, iter);
1306 if (ret)
1307 goto cleanup;
1308 } else {
1309 if (bmd->is_our_pages)
1310 zero_fill_bio(bio);
1311 iov_iter_advance(iter, bio->bi_iter.bi_size);
1312 }
1313
1314 bio->bi_private = bmd;
1315 if (map_data && map_data->null_mapped)
1316 bio_set_flag(bio, BIO_NULL_MAPPED);
1317 return bio;
1318cleanup:
1319 if (!map_data)
1320 bio_free_pages(bio);
1321 bio_put(bio);
1322out_bmd:
1323 kfree(bmd);
1324 return ERR_PTR(ret);
1325}
1326
1327/**
1328 * bio_map_user_iov - map user iovec into bio
1329 * @q: the struct request_queue for the bio
1330 * @iter: iovec iterator
1331 * @gfp_mask: memory allocation flags
1332 *
1333 * Map the user space address into a bio suitable for io to a block
1334 * device. Returns an error pointer in case of error.
1335 */
1336struct bio *bio_map_user_iov(struct request_queue *q,
1337 struct iov_iter *iter,
1338 gfp_t gfp_mask)
1339{
1340 int j;
1341 struct bio *bio;
1342 int ret;
1343
1344 if (!iov_iter_count(iter))
1345 return ERR_PTR(-EINVAL);
1346
1347 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1348 if (!bio)
1349 return ERR_PTR(-ENOMEM);
1350
1351 while (iov_iter_count(iter)) {
1352 struct page **pages;
1353 ssize_t bytes;
1354 size_t offs, added = 0;
1355 int npages;
1356
1357 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1358 if (unlikely(bytes <= 0)) {
1359 ret = bytes ? bytes : -EFAULT;
1360 goto out_unmap;
1361 }
1362
1363 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1364
1365 if (unlikely(offs & queue_dma_alignment(q))) {
1366 ret = -EINVAL;
1367 j = 0;
1368 } else {
1369 for (j = 0; j < npages; j++) {
1370 struct page *page = pages[j];
1371 unsigned int n = PAGE_SIZE - offs;
1372 bool same_page = false;
1373
1374 if (n > bytes)
1375 n = bytes;
1376
1377 if (!__bio_add_pc_page(q, bio, page, n, offs,
1378 &same_page)) {
1379 if (same_page)
1380 put_page(page);
1381 break;
1382 }
1383
1384 added += n;
1385 bytes -= n;
1386 offs = 0;
1387 }
1388 iov_iter_advance(iter, added);
1389 }
1390 /*
1391 * release the pages we didn't map into the bio, if any
1392 */
1393 while (j < npages)
1394 put_page(pages[j++]);
1395 kvfree(pages);
1396 /* couldn't stuff something into bio? */
1397 if (bytes)
1398 break;
1399 }
1400
1401 bio_set_flag(bio, BIO_USER_MAPPED);
1402
1403 /*
1404 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1405 * it would normally disappear when its bi_end_io is run.
1406 * however, we need it for the unmap, so grab an extra
1407 * reference to it
1408 */
1409 bio_get(bio);
1410 return bio;
1411
1412 out_unmap:
1413 bio_release_pages(bio, false);
1414 bio_put(bio);
1415 return ERR_PTR(ret);
1416}
1417
1418/**
1419 * bio_unmap_user - unmap a bio
1420 * @bio: the bio being unmapped
1421 *
1422 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1423 * process context.
1424 *
1425 * bio_unmap_user() may sleep.
1426 */
1427void bio_unmap_user(struct bio *bio)
1428{
1429 bio_release_pages(bio, bio_data_dir(bio) == READ);
1430 bio_put(bio);
1431 bio_put(bio);
1432}
1433
1434static void bio_invalidate_vmalloc_pages(struct bio *bio)
1435{
1436#ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1437 if (bio->bi_private && !op_is_write(bio_op(bio))) {
1438 unsigned long i, len = 0;
1439
1440 for (i = 0; i < bio->bi_vcnt; i++)
1441 len += bio->bi_io_vec[i].bv_len;
1442 invalidate_kernel_vmap_range(bio->bi_private, len);
1443 }
1444#endif
1445}
1446
1447static void bio_map_kern_endio(struct bio *bio)
1448{
1449 bio_invalidate_vmalloc_pages(bio);
1450 bio_put(bio);
1451}
1452
1453/**
1454 * bio_map_kern - map kernel address into bio
1455 * @q: the struct request_queue for the bio
1456 * @data: pointer to buffer to map
1457 * @len: length in bytes
1458 * @gfp_mask: allocation flags for bio allocation
1459 *
1460 * Map the kernel address into a bio suitable for io to a block
1461 * device. Returns an error pointer in case of error.
1462 */
1463struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1464 gfp_t gfp_mask)
1465{
1466 unsigned long kaddr = (unsigned long)data;
1467 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1468 unsigned long start = kaddr >> PAGE_SHIFT;
1469 const int nr_pages = end - start;
1470 bool is_vmalloc = is_vmalloc_addr(data);
1471 struct page *page;
1472 int offset, i;
1473 struct bio *bio;
1474
1475 bio = bio_kmalloc(gfp_mask, nr_pages);
1476 if (!bio)
1477 return ERR_PTR(-ENOMEM);
1478
1479 if (is_vmalloc) {
1480 flush_kernel_vmap_range(data, len);
1481 bio->bi_private = data;
1482 }
1483
1484 offset = offset_in_page(kaddr);
1485 for (i = 0; i < nr_pages; i++) {
1486 unsigned int bytes = PAGE_SIZE - offset;
1487
1488 if (len <= 0)
1489 break;
1490
1491 if (bytes > len)
1492 bytes = len;
1493
1494 if (!is_vmalloc)
1495 page = virt_to_page(data);
1496 else
1497 page = vmalloc_to_page(data);
1498 if (bio_add_pc_page(q, bio, page, bytes,
1499 offset) < bytes) {
1500 /* we don't support partial mappings */
1501 bio_put(bio);
1502 return ERR_PTR(-EINVAL);
1503 }
1504
1505 data += bytes;
1506 len -= bytes;
1507 offset = 0;
1508 }
1509
1510 bio->bi_end_io = bio_map_kern_endio;
1511 return bio;
1512}
1513
1514static void bio_copy_kern_endio(struct bio *bio)
1515{
1516 bio_free_pages(bio);
1517 bio_put(bio);
1518}
1519
1520static void bio_copy_kern_endio_read(struct bio *bio)
1521{
1522 char *p = bio->bi_private;
1523 struct bio_vec *bvec;
1524 struct bvec_iter_all iter_all;
1525
1526 bio_for_each_segment_all(bvec, bio, iter_all) {
1527 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1528 p += bvec->bv_len;
1529 }
1530
1531 bio_copy_kern_endio(bio);
1532}
1533
1534/**
1535 * bio_copy_kern - copy kernel address into bio
1536 * @q: the struct request_queue for the bio
1537 * @data: pointer to buffer to copy
1538 * @len: length in bytes
1539 * @gfp_mask: allocation flags for bio and page allocation
1540 * @reading: data direction is READ
1541 *
1542 * copy the kernel address into a bio suitable for io to a block
1543 * device. Returns an error pointer in case of error.
1544 */
1545struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1546 gfp_t gfp_mask, int reading)
1547{
1548 unsigned long kaddr = (unsigned long)data;
1549 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1550 unsigned long start = kaddr >> PAGE_SHIFT;
1551 struct bio *bio;
1552 void *p = data;
1553 int nr_pages = 0;
1554
1555 /*
1556 * Overflow, abort
1557 */
1558 if (end < start)
1559 return ERR_PTR(-EINVAL);
1560
1561 nr_pages = end - start;
1562 bio = bio_kmalloc(gfp_mask, nr_pages);
1563 if (!bio)
1564 return ERR_PTR(-ENOMEM);
1565
1566 while (len) {
1567 struct page *page;
1568 unsigned int bytes = PAGE_SIZE;
1569
1570 if (bytes > len)
1571 bytes = len;
1572
1573 page = alloc_page(q->bounce_gfp | gfp_mask);
1574 if (!page)
1575 goto cleanup;
1576
1577 if (!reading)
1578 memcpy(page_address(page), p, bytes);
1579
1580 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1581 break;
1582
1583 len -= bytes;
1584 p += bytes;
1585 }
1586
1587 if (reading) {
1588 bio->bi_end_io = bio_copy_kern_endio_read;
1589 bio->bi_private = data;
1590 } else {
1591 bio->bi_end_io = bio_copy_kern_endio;
1592 }
1593
1594 return bio;
1595
1596cleanup:
1597 bio_free_pages(bio);
1598 bio_put(bio);
1599 return ERR_PTR(-ENOMEM);
1600}
1601
1602/*
1603 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1604 * for performing direct-IO in BIOs.
1605 *
1606 * The problem is that we cannot run set_page_dirty() from interrupt context
1607 * because the required locks are not interrupt-safe. So what we can do is to
1608 * mark the pages dirty _before_ performing IO. And in interrupt context,
1609 * check that the pages are still dirty. If so, fine. If not, redirty them
1610 * in process context.
1611 *
1612 * We special-case compound pages here: normally this means reads into hugetlb
1613 * pages. The logic in here doesn't really work right for compound pages
1614 * because the VM does not uniformly chase down the head page in all cases.
1615 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1616 * handle them at all. So we skip compound pages here at an early stage.
1617 *
1618 * Note that this code is very hard to test under normal circumstances because
1619 * direct-io pins the pages with get_user_pages(). This makes
1620 * is_page_cache_freeable return false, and the VM will not clean the pages.
1621 * But other code (eg, flusher threads) could clean the pages if they are mapped
1622 * pagecache.
1623 *
1624 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1625 * deferred bio dirtying paths.
1626 */
1627
1628/*
1629 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1630 */
1631void bio_set_pages_dirty(struct bio *bio)
1632{
1633 struct bio_vec *bvec;
1634 struct bvec_iter_all iter_all;
1635
1636 bio_for_each_segment_all(bvec, bio, iter_all) {
1637 if (!PageCompound(bvec->bv_page))
1638 set_page_dirty_lock(bvec->bv_page);
1639 }
1640}
1641
1642/*
1643 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1644 * If they are, then fine. If, however, some pages are clean then they must
1645 * have been written out during the direct-IO read. So we take another ref on
1646 * the BIO and re-dirty the pages in process context.
1647 *
1648 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1649 * here on. It will run one put_page() against each page and will run one
1650 * bio_put() against the BIO.
1651 */
1652
1653static void bio_dirty_fn(struct work_struct *work);
1654
1655static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1656static DEFINE_SPINLOCK(bio_dirty_lock);
1657static struct bio *bio_dirty_list;
1658
1659/*
1660 * This runs in process context
1661 */
1662static void bio_dirty_fn(struct work_struct *work)
1663{
1664 struct bio *bio, *next;
1665
1666 spin_lock_irq(&bio_dirty_lock);
1667 next = bio_dirty_list;
1668 bio_dirty_list = NULL;
1669 spin_unlock_irq(&bio_dirty_lock);
1670
1671 while ((bio = next) != NULL) {
1672 next = bio->bi_private;
1673
1674 bio_release_pages(bio, true);
1675 bio_put(bio);
1676 }
1677}
1678
1679void bio_check_pages_dirty(struct bio *bio)
1680{
1681 struct bio_vec *bvec;
1682 unsigned long flags;
1683 struct bvec_iter_all iter_all;
1684
1685 bio_for_each_segment_all(bvec, bio, iter_all) {
1686 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1687 goto defer;
1688 }
1689
1690 bio_release_pages(bio, false);
1691 bio_put(bio);
1692 return;
1693defer:
1694 spin_lock_irqsave(&bio_dirty_lock, flags);
1695 bio->bi_private = bio_dirty_list;
1696 bio_dirty_list = bio;
1697 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1698 schedule_work(&bio_dirty_work);
1699}
1700
1701void update_io_ticks(struct hd_struct *part, unsigned long now)
1702{
1703 unsigned long stamp;
1704again:
1705 stamp = READ_ONCE(part->stamp);
1706 if (unlikely(stamp != now)) {
1707 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1708 __part_stat_add(part, io_ticks, 1);
1709 }
1710 }
1711 if (part->partno) {
1712 part = &part_to_disk(part)->part0;
1713 goto again;
1714 }
1715}
1716
1717void generic_start_io_acct(struct request_queue *q, int op,
1718 unsigned long sectors, struct hd_struct *part)
1719{
1720 const int sgrp = op_stat_group(op);
1721
1722 part_stat_lock();
1723
1724 update_io_ticks(part, jiffies);
1725 part_stat_inc(part, ios[sgrp]);
1726 part_stat_add(part, sectors[sgrp], sectors);
1727 part_inc_in_flight(q, part, op_is_write(op));
1728
1729 part_stat_unlock();
1730}
1731EXPORT_SYMBOL(generic_start_io_acct);
1732
1733void generic_end_io_acct(struct request_queue *q, int req_op,
1734 struct hd_struct *part, unsigned long start_time)
1735{
1736 unsigned long now = jiffies;
1737 unsigned long duration = now - start_time;
1738 const int sgrp = op_stat_group(req_op);
1739
1740 part_stat_lock();
1741
1742 update_io_ticks(part, now);
1743 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1744 part_stat_add(part, time_in_queue, duration);
1745 part_dec_in_flight(q, part, op_is_write(req_op));
1746
1747 part_stat_unlock();
1748}
1749EXPORT_SYMBOL(generic_end_io_acct);
1750
1751static inline bool bio_remaining_done(struct bio *bio)
1752{
1753 /*
1754 * If we're not chaining, then ->__bi_remaining is always 1 and
1755 * we always end io on the first invocation.
1756 */
1757 if (!bio_flagged(bio, BIO_CHAIN))
1758 return true;
1759
1760 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1761
1762 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1763 bio_clear_flag(bio, BIO_CHAIN);
1764 return true;
1765 }
1766
1767 return false;
1768}
1769
1770/**
1771 * bio_endio - end I/O on a bio
1772 * @bio: bio
1773 *
1774 * Description:
1775 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1776 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1777 * bio unless they own it and thus know that it has an end_io function.
1778 *
1779 * bio_endio() can be called several times on a bio that has been chained
1780 * using bio_chain(). The ->bi_end_io() function will only be called the
1781 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1782 * generated if BIO_TRACE_COMPLETION is set.
1783 **/
1784void bio_endio(struct bio *bio)
1785{
1786again:
1787 if (!bio_remaining_done(bio))
1788 return;
1789 if (!bio_integrity_endio(bio))
1790 return;
1791
1792 if (bio->bi_disk)
1793 rq_qos_done_bio(bio->bi_disk->queue, bio);
1794
1795 /*
1796 * Need to have a real endio function for chained bios, otherwise
1797 * various corner cases will break (like stacking block devices that
1798 * save/restore bi_end_io) - however, we want to avoid unbounded
1799 * recursion and blowing the stack. Tail call optimization would
1800 * handle this, but compiling with frame pointers also disables
1801 * gcc's sibling call optimization.
1802 */
1803 if (bio->bi_end_io == bio_chain_endio) {
1804 bio = __bio_chain_endio(bio);
1805 goto again;
1806 }
1807
1808 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1809 trace_block_bio_complete(bio->bi_disk->queue, bio,
1810 blk_status_to_errno(bio->bi_status));
1811 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1812 }
1813
1814 blk_throtl_bio_endio(bio);
1815 /* release cgroup info */
1816 bio_uninit(bio);
1817 if (bio->bi_end_io)
1818 bio->bi_end_io(bio);
1819}
1820EXPORT_SYMBOL(bio_endio);
1821
1822/**
1823 * bio_split - split a bio
1824 * @bio: bio to split
1825 * @sectors: number of sectors to split from the front of @bio
1826 * @gfp: gfp mask
1827 * @bs: bio set to allocate from
1828 *
1829 * Allocates and returns a new bio which represents @sectors from the start of
1830 * @bio, and updates @bio to represent the remaining sectors.
1831 *
1832 * Unless this is a discard request the newly allocated bio will point
1833 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1834 * neither @bio nor @bs are freed before the split bio.
1835 */
1836struct bio *bio_split(struct bio *bio, int sectors,
1837 gfp_t gfp, struct bio_set *bs)
1838{
1839 struct bio *split;
1840
1841 BUG_ON(sectors <= 0);
1842 BUG_ON(sectors >= bio_sectors(bio));
1843
1844 split = bio_clone_fast(bio, gfp, bs);
1845 if (!split)
1846 return NULL;
1847
1848 split->bi_iter.bi_size = sectors << 9;
1849
1850 if (bio_integrity(split))
1851 bio_integrity_trim(split);
1852
1853 bio_advance(bio, split->bi_iter.bi_size);
1854
1855 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1856 bio_set_flag(split, BIO_TRACE_COMPLETION);
1857
1858 return split;
1859}
1860EXPORT_SYMBOL(bio_split);
1861
1862/**
1863 * bio_trim - trim a bio
1864 * @bio: bio to trim
1865 * @offset: number of sectors to trim from the front of @bio
1866 * @size: size we want to trim @bio to, in sectors
1867 */
1868void bio_trim(struct bio *bio, int offset, int size)
1869{
1870 /* 'bio' is a cloned bio which we need to trim to match
1871 * the given offset and size.
1872 */
1873
1874 size <<= 9;
1875 if (offset == 0 && size == bio->bi_iter.bi_size)
1876 return;
1877
1878 bio_advance(bio, offset << 9);
1879 bio->bi_iter.bi_size = size;
1880
1881 if (bio_integrity(bio))
1882 bio_integrity_trim(bio);
1883
1884}
1885EXPORT_SYMBOL_GPL(bio_trim);
1886
1887/*
1888 * create memory pools for biovec's in a bio_set.
1889 * use the global biovec slabs created for general use.
1890 */
1891int biovec_init_pool(mempool_t *pool, int pool_entries)
1892{
1893 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1894
1895 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1896}
1897
1898/*
1899 * bioset_exit - exit a bioset initialized with bioset_init()
1900 *
1901 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1902 * kzalloc()).
1903 */
1904void bioset_exit(struct bio_set *bs)
1905{
1906 if (bs->rescue_workqueue)
1907 destroy_workqueue(bs->rescue_workqueue);
1908 bs->rescue_workqueue = NULL;
1909
1910 mempool_exit(&bs->bio_pool);
1911 mempool_exit(&bs->bvec_pool);
1912
1913 bioset_integrity_free(bs);
1914 if (bs->bio_slab)
1915 bio_put_slab(bs);
1916 bs->bio_slab = NULL;
1917}
1918EXPORT_SYMBOL(bioset_exit);
1919
1920/**
1921 * bioset_init - Initialize a bio_set
1922 * @bs: pool to initialize
1923 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1924 * @front_pad: Number of bytes to allocate in front of the returned bio
1925 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1926 * and %BIOSET_NEED_RESCUER
1927 *
1928 * Description:
1929 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1930 * to ask for a number of bytes to be allocated in front of the bio.
1931 * Front pad allocation is useful for embedding the bio inside
1932 * another structure, to avoid allocating extra data to go with the bio.
1933 * Note that the bio must be embedded at the END of that structure always,
1934 * or things will break badly.
1935 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1936 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1937 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1938 * dispatch queued requests when the mempool runs out of space.
1939 *
1940 */
1941int bioset_init(struct bio_set *bs,
1942 unsigned int pool_size,
1943 unsigned int front_pad,
1944 int flags)
1945{
1946 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1947
1948 bs->front_pad = front_pad;
1949
1950 spin_lock_init(&bs->rescue_lock);
1951 bio_list_init(&bs->rescue_list);
1952 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1953
1954 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1955 if (!bs->bio_slab)
1956 return -ENOMEM;
1957
1958 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1959 goto bad;
1960
1961 if ((flags & BIOSET_NEED_BVECS) &&
1962 biovec_init_pool(&bs->bvec_pool, pool_size))
1963 goto bad;
1964
1965 if (!(flags & BIOSET_NEED_RESCUER))
1966 return 0;
1967
1968 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1969 if (!bs->rescue_workqueue)
1970 goto bad;
1971
1972 return 0;
1973bad:
1974 bioset_exit(bs);
1975 return -ENOMEM;
1976}
1977EXPORT_SYMBOL(bioset_init);
1978
1979/*
1980 * Initialize and setup a new bio_set, based on the settings from
1981 * another bio_set.
1982 */
1983int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1984{
1985 int flags;
1986
1987 flags = 0;
1988 if (src->bvec_pool.min_nr)
1989 flags |= BIOSET_NEED_BVECS;
1990 if (src->rescue_workqueue)
1991 flags |= BIOSET_NEED_RESCUER;
1992
1993 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1994}
1995EXPORT_SYMBOL(bioset_init_from_src);
1996
1997#ifdef CONFIG_BLK_CGROUP
1998
1999/**
2000 * bio_disassociate_blkg - puts back the blkg reference if associated
2001 * @bio: target bio
2002 *
2003 * Helper to disassociate the blkg from @bio if a blkg is associated.
2004 */
2005void bio_disassociate_blkg(struct bio *bio)
2006{
2007 if (bio->bi_blkg) {
2008 blkg_put(bio->bi_blkg);
2009 bio->bi_blkg = NULL;
2010 }
2011}
2012EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2013
2014/**
2015 * __bio_associate_blkg - associate a bio with the a blkg
2016 * @bio: target bio
2017 * @blkg: the blkg to associate
2018 *
2019 * This tries to associate @bio with the specified @blkg. Association failure
2020 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2021 * be anything between @blkg and the root_blkg. This situation only happens
2022 * when a cgroup is dying and then the remaining bios will spill to the closest
2023 * alive blkg.
2024 *
2025 * A reference will be taken on the @blkg and will be released when @bio is
2026 * freed.
2027 */
2028static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2029{
2030 bio_disassociate_blkg(bio);
2031
2032 bio->bi_blkg = blkg_tryget_closest(blkg);
2033}
2034
2035/**
2036 * bio_associate_blkg_from_css - associate a bio with a specified css
2037 * @bio: target bio
2038 * @css: target css
2039 *
2040 * Associate @bio with the blkg found by combining the css's blkg and the
2041 * request_queue of the @bio. This falls back to the queue's root_blkg if
2042 * the association fails with the css.
2043 */
2044void bio_associate_blkg_from_css(struct bio *bio,
2045 struct cgroup_subsys_state *css)
2046{
2047 struct request_queue *q = bio->bi_disk->queue;
2048 struct blkcg_gq *blkg;
2049
2050 rcu_read_lock();
2051
2052 if (!css || !css->parent)
2053 blkg = q->root_blkg;
2054 else
2055 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2056
2057 __bio_associate_blkg(bio, blkg);
2058
2059 rcu_read_unlock();
2060}
2061EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2062
2063#ifdef CONFIG_MEMCG
2064/**
2065 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2066 * @bio: target bio
2067 * @page: the page to lookup the blkcg from
2068 *
2069 * Associate @bio with the blkg from @page's owning memcg and the respective
2070 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2071 * root_blkg.
2072 */
2073void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2074{
2075 struct cgroup_subsys_state *css;
2076
2077 if (!page->mem_cgroup)
2078 return;
2079
2080 rcu_read_lock();
2081
2082 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2083 bio_associate_blkg_from_css(bio, css);
2084
2085 rcu_read_unlock();
2086}
2087#endif /* CONFIG_MEMCG */
2088
2089/**
2090 * bio_associate_blkg - associate a bio with a blkg
2091 * @bio: target bio
2092 *
2093 * Associate @bio with the blkg found from the bio's css and request_queue.
2094 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2095 * already associated, the css is reused and association redone as the
2096 * request_queue may have changed.
2097 */
2098void bio_associate_blkg(struct bio *bio)
2099{
2100 struct cgroup_subsys_state *css;
2101
2102 rcu_read_lock();
2103
2104 if (bio->bi_blkg)
2105 css = &bio_blkcg(bio)->css;
2106 else
2107 css = blkcg_css();
2108
2109 bio_associate_blkg_from_css(bio, css);
2110
2111 rcu_read_unlock();
2112}
2113EXPORT_SYMBOL_GPL(bio_associate_blkg);
2114
2115/**
2116 * bio_clone_blkg_association - clone blkg association from src to dst bio
2117 * @dst: destination bio
2118 * @src: source bio
2119 */
2120void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2121{
2122 rcu_read_lock();
2123
2124 if (src->bi_blkg)
2125 __bio_associate_blkg(dst, src->bi_blkg);
2126
2127 rcu_read_unlock();
2128}
2129EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2130#endif /* CONFIG_BLK_CGROUP */
2131
2132static void __init biovec_init_slabs(void)
2133{
2134 int i;
2135
2136 for (i = 0; i < BVEC_POOL_NR; i++) {
2137 int size;
2138 struct biovec_slab *bvs = bvec_slabs + i;
2139
2140 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2141 bvs->slab = NULL;
2142 continue;
2143 }
2144
2145 size = bvs->nr_vecs * sizeof(struct bio_vec);
2146 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2147 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2148 }
2149}
2150
2151static int __init init_bio(void)
2152{
2153 bio_slab_max = 2;
2154 bio_slab_nr = 0;
2155 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2156 GFP_KERNEL);
2157
2158 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2159
2160 if (!bio_slabs)
2161 panic("bio: can't allocate bios\n");
2162
2163 bio_integrity_init();
2164 biovec_init_slabs();
2165
2166 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2167 panic("bio: can't allocate bios\n");
2168
2169 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2170 panic("bio: can't create integrity pool\n");
2171
2172 return 0;
2173}
2174subsys_initcall(init_bio);
1/*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/uio.h>
23#include <linux/iocontext.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
27#include <linux/export.h>
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
30#include <linux/cgroup.h>
31
32#include <trace/events/block.h>
33
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55struct bio_set *fs_bio_set;
56EXPORT_SYMBOL(fs_bio_set);
57
58/*
59 * Our slab pool management
60 */
61struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66};
67static DEFINE_MUTEX(bio_slab_lock);
68static struct bio_slab *bio_slabs;
69static unsigned int bio_slab_nr, bio_slab_max;
70
71static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72{
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125}
126
127static void bio_put_slab(struct bio_set *bs)
128{
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152out:
153 mutex_unlock(&bio_slab_lock);
154}
155
156unsigned int bvec_nr_vecs(unsigned short idx)
157{
158 return bvec_slabs[idx].nr_vecs;
159}
160
161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162{
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172}
173
174struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
176{
177 struct bio_vec *bvl;
178
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210fallback:
211 bvl = mempool_alloc(pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
215
216 /*
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
220 */
221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222
223 /*
224 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
225 * is set, retry with the 1-entry mempool
226 */
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
234 return bvl;
235}
236
237static void __bio_free(struct bio *bio)
238{
239 bio_disassociate_task(bio);
240
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
243}
244
245static void bio_free(struct bio *bio)
246{
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
253 if (bio_flagged(bio, BIO_OWNS_VEC))
254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
260 p -= bs->front_pad;
261
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
267}
268
269void bio_init(struct bio *bio)
270{
271 memset(bio, 0, sizeof(*bio));
272 atomic_set(&bio->__bi_remaining, 1);
273 atomic_set(&bio->__bi_cnt, 1);
274}
275EXPORT_SYMBOL(bio_init);
276
277/**
278 * bio_reset - reinitialize a bio
279 * @bio: bio to reset
280 *
281 * Description:
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
286 */
287void bio_reset(struct bio *bio)
288{
289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290
291 __bio_free(bio);
292
293 memset(bio, 0, BIO_RESET_BYTES);
294 bio->bi_flags = flags;
295 atomic_set(&bio->__bi_remaining, 1);
296}
297EXPORT_SYMBOL(bio_reset);
298
299static struct bio *__bio_chain_endio(struct bio *bio)
300{
301 struct bio *parent = bio->bi_private;
302
303 if (!parent->bi_error)
304 parent->bi_error = bio->bi_error;
305 bio_put(bio);
306 return parent;
307}
308
309static void bio_chain_endio(struct bio *bio)
310{
311 bio_endio(__bio_chain_endio(bio));
312}
313
314/*
315 * Increment chain count for the bio. Make sure the CHAIN flag update
316 * is visible before the raised count.
317 */
318static inline void bio_inc_remaining(struct bio *bio)
319{
320 bio_set_flag(bio, BIO_CHAIN);
321 smp_mb__before_atomic();
322 atomic_inc(&bio->__bi_remaining);
323}
324
325/**
326 * bio_chain - chain bio completions
327 * @bio: the target bio
328 * @parent: the @bio's parent bio
329 *
330 * The caller won't have a bi_end_io called when @bio completes - instead,
331 * @parent's bi_end_io won't be called until both @parent and @bio have
332 * completed; the chained bio will also be freed when it completes.
333 *
334 * The caller must not set bi_private or bi_end_io in @bio.
335 */
336void bio_chain(struct bio *bio, struct bio *parent)
337{
338 BUG_ON(bio->bi_private || bio->bi_end_io);
339
340 bio->bi_private = parent;
341 bio->bi_end_io = bio_chain_endio;
342 bio_inc_remaining(parent);
343}
344EXPORT_SYMBOL(bio_chain);
345
346static void bio_alloc_rescue(struct work_struct *work)
347{
348 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
349 struct bio *bio;
350
351 while (1) {
352 spin_lock(&bs->rescue_lock);
353 bio = bio_list_pop(&bs->rescue_list);
354 spin_unlock(&bs->rescue_lock);
355
356 if (!bio)
357 break;
358
359 generic_make_request(bio);
360 }
361}
362
363static void punt_bios_to_rescuer(struct bio_set *bs)
364{
365 struct bio_list punt, nopunt;
366 struct bio *bio;
367
368 /*
369 * In order to guarantee forward progress we must punt only bios that
370 * were allocated from this bio_set; otherwise, if there was a bio on
371 * there for a stacking driver higher up in the stack, processing it
372 * could require allocating bios from this bio_set, and doing that from
373 * our own rescuer would be bad.
374 *
375 * Since bio lists are singly linked, pop them all instead of trying to
376 * remove from the middle of the list:
377 */
378
379 bio_list_init(&punt);
380 bio_list_init(&nopunt);
381
382 while ((bio = bio_list_pop(current->bio_list)))
383 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
384
385 *current->bio_list = nopunt;
386
387 spin_lock(&bs->rescue_lock);
388 bio_list_merge(&bs->rescue_list, &punt);
389 spin_unlock(&bs->rescue_lock);
390
391 queue_work(bs->rescue_workqueue, &bs->rescue_work);
392}
393
394/**
395 * bio_alloc_bioset - allocate a bio for I/O
396 * @gfp_mask: the GFP_ mask given to the slab allocator
397 * @nr_iovecs: number of iovecs to pre-allocate
398 * @bs: the bio_set to allocate from.
399 *
400 * Description:
401 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
402 * backed by the @bs's mempool.
403 *
404 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
405 * always be able to allocate a bio. This is due to the mempool guarantees.
406 * To make this work, callers must never allocate more than 1 bio at a time
407 * from this pool. Callers that need to allocate more than 1 bio must always
408 * submit the previously allocated bio for IO before attempting to allocate
409 * a new one. Failure to do so can cause deadlocks under memory pressure.
410 *
411 * Note that when running under generic_make_request() (i.e. any block
412 * driver), bios are not submitted until after you return - see the code in
413 * generic_make_request() that converts recursion into iteration, to prevent
414 * stack overflows.
415 *
416 * This would normally mean allocating multiple bios under
417 * generic_make_request() would be susceptible to deadlocks, but we have
418 * deadlock avoidance code that resubmits any blocked bios from a rescuer
419 * thread.
420 *
421 * However, we do not guarantee forward progress for allocations from other
422 * mempools. Doing multiple allocations from the same mempool under
423 * generic_make_request() should be avoided - instead, use bio_set's front_pad
424 * for per bio allocations.
425 *
426 * RETURNS:
427 * Pointer to new bio on success, NULL on failure.
428 */
429struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
430{
431 gfp_t saved_gfp = gfp_mask;
432 unsigned front_pad;
433 unsigned inline_vecs;
434 unsigned long idx = BIO_POOL_NONE;
435 struct bio_vec *bvl = NULL;
436 struct bio *bio;
437 void *p;
438
439 if (!bs) {
440 if (nr_iovecs > UIO_MAXIOV)
441 return NULL;
442
443 p = kmalloc(sizeof(struct bio) +
444 nr_iovecs * sizeof(struct bio_vec),
445 gfp_mask);
446 front_pad = 0;
447 inline_vecs = nr_iovecs;
448 } else {
449 /* should not use nobvec bioset for nr_iovecs > 0 */
450 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
451 return NULL;
452 /*
453 * generic_make_request() converts recursion to iteration; this
454 * means if we're running beneath it, any bios we allocate and
455 * submit will not be submitted (and thus freed) until after we
456 * return.
457 *
458 * This exposes us to a potential deadlock if we allocate
459 * multiple bios from the same bio_set() while running
460 * underneath generic_make_request(). If we were to allocate
461 * multiple bios (say a stacking block driver that was splitting
462 * bios), we would deadlock if we exhausted the mempool's
463 * reserve.
464 *
465 * We solve this, and guarantee forward progress, with a rescuer
466 * workqueue per bio_set. If we go to allocate and there are
467 * bios on current->bio_list, we first try the allocation
468 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
469 * bios we would be blocking to the rescuer workqueue before
470 * we retry with the original gfp_flags.
471 */
472
473 if (current->bio_list && !bio_list_empty(current->bio_list))
474 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
475
476 p = mempool_alloc(bs->bio_pool, gfp_mask);
477 if (!p && gfp_mask != saved_gfp) {
478 punt_bios_to_rescuer(bs);
479 gfp_mask = saved_gfp;
480 p = mempool_alloc(bs->bio_pool, gfp_mask);
481 }
482
483 front_pad = bs->front_pad;
484 inline_vecs = BIO_INLINE_VECS;
485 }
486
487 if (unlikely(!p))
488 return NULL;
489
490 bio = p + front_pad;
491 bio_init(bio);
492
493 if (nr_iovecs > inline_vecs) {
494 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
495 if (!bvl && gfp_mask != saved_gfp) {
496 punt_bios_to_rescuer(bs);
497 gfp_mask = saved_gfp;
498 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
499 }
500
501 if (unlikely(!bvl))
502 goto err_free;
503
504 bio_set_flag(bio, BIO_OWNS_VEC);
505 } else if (nr_iovecs) {
506 bvl = bio->bi_inline_vecs;
507 }
508
509 bio->bi_pool = bs;
510 bio->bi_flags |= idx << BIO_POOL_OFFSET;
511 bio->bi_max_vecs = nr_iovecs;
512 bio->bi_io_vec = bvl;
513 return bio;
514
515err_free:
516 mempool_free(p, bs->bio_pool);
517 return NULL;
518}
519EXPORT_SYMBOL(bio_alloc_bioset);
520
521void zero_fill_bio(struct bio *bio)
522{
523 unsigned long flags;
524 struct bio_vec bv;
525 struct bvec_iter iter;
526
527 bio_for_each_segment(bv, bio, iter) {
528 char *data = bvec_kmap_irq(&bv, &flags);
529 memset(data, 0, bv.bv_len);
530 flush_dcache_page(bv.bv_page);
531 bvec_kunmap_irq(data, &flags);
532 }
533}
534EXPORT_SYMBOL(zero_fill_bio);
535
536/**
537 * bio_put - release a reference to a bio
538 * @bio: bio to release reference to
539 *
540 * Description:
541 * Put a reference to a &struct bio, either one you have gotten with
542 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
543 **/
544void bio_put(struct bio *bio)
545{
546 if (!bio_flagged(bio, BIO_REFFED))
547 bio_free(bio);
548 else {
549 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
550
551 /*
552 * last put frees it
553 */
554 if (atomic_dec_and_test(&bio->__bi_cnt))
555 bio_free(bio);
556 }
557}
558EXPORT_SYMBOL(bio_put);
559
560inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
561{
562 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
563 blk_recount_segments(q, bio);
564
565 return bio->bi_phys_segments;
566}
567EXPORT_SYMBOL(bio_phys_segments);
568
569/**
570 * __bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: destination bio
572 * @bio_src: bio to clone
573 *
574 * Clone a &bio. Caller will own the returned bio, but not
575 * the actual data it points to. Reference count of returned
576 * bio will be one.
577 *
578 * Caller must ensure that @bio_src is not freed before @bio.
579 */
580void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
581{
582 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
583
584 /*
585 * most users will be overriding ->bi_bdev with a new target,
586 * so we don't set nor calculate new physical/hw segment counts here
587 */
588 bio->bi_bdev = bio_src->bi_bdev;
589 bio_set_flag(bio, BIO_CLONED);
590 bio->bi_rw = bio_src->bi_rw;
591 bio->bi_iter = bio_src->bi_iter;
592 bio->bi_io_vec = bio_src->bi_io_vec;
593}
594EXPORT_SYMBOL(__bio_clone_fast);
595
596/**
597 * bio_clone_fast - clone a bio that shares the original bio's biovec
598 * @bio: bio to clone
599 * @gfp_mask: allocation priority
600 * @bs: bio_set to allocate from
601 *
602 * Like __bio_clone_fast, only also allocates the returned bio
603 */
604struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
605{
606 struct bio *b;
607
608 b = bio_alloc_bioset(gfp_mask, 0, bs);
609 if (!b)
610 return NULL;
611
612 __bio_clone_fast(b, bio);
613
614 if (bio_integrity(bio)) {
615 int ret;
616
617 ret = bio_integrity_clone(b, bio, gfp_mask);
618
619 if (ret < 0) {
620 bio_put(b);
621 return NULL;
622 }
623 }
624
625 return b;
626}
627EXPORT_SYMBOL(bio_clone_fast);
628
629/**
630 * bio_clone_bioset - clone a bio
631 * @bio_src: bio to clone
632 * @gfp_mask: allocation priority
633 * @bs: bio_set to allocate from
634 *
635 * Clone bio. Caller will own the returned bio, but not the actual data it
636 * points to. Reference count of returned bio will be one.
637 */
638struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
639 struct bio_set *bs)
640{
641 struct bvec_iter iter;
642 struct bio_vec bv;
643 struct bio *bio;
644
645 /*
646 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
647 * bio_src->bi_io_vec to bio->bi_io_vec.
648 *
649 * We can't do that anymore, because:
650 *
651 * - The point of cloning the biovec is to produce a bio with a biovec
652 * the caller can modify: bi_idx and bi_bvec_done should be 0.
653 *
654 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
655 * we tried to clone the whole thing bio_alloc_bioset() would fail.
656 * But the clone should succeed as long as the number of biovecs we
657 * actually need to allocate is fewer than BIO_MAX_PAGES.
658 *
659 * - Lastly, bi_vcnt should not be looked at or relied upon by code
660 * that does not own the bio - reason being drivers don't use it for
661 * iterating over the biovec anymore, so expecting it to be kept up
662 * to date (i.e. for clones that share the parent biovec) is just
663 * asking for trouble and would force extra work on
664 * __bio_clone_fast() anyways.
665 */
666
667 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
668 if (!bio)
669 return NULL;
670
671 bio->bi_bdev = bio_src->bi_bdev;
672 bio->bi_rw = bio_src->bi_rw;
673 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
674 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
675
676 if (bio->bi_rw & REQ_DISCARD)
677 goto integrity_clone;
678
679 if (bio->bi_rw & REQ_WRITE_SAME) {
680 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
681 goto integrity_clone;
682 }
683
684 bio_for_each_segment(bv, bio_src, iter)
685 bio->bi_io_vec[bio->bi_vcnt++] = bv;
686
687integrity_clone:
688 if (bio_integrity(bio_src)) {
689 int ret;
690
691 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
692 if (ret < 0) {
693 bio_put(bio);
694 return NULL;
695 }
696 }
697
698 return bio;
699}
700EXPORT_SYMBOL(bio_clone_bioset);
701
702/**
703 * bio_add_pc_page - attempt to add page to bio
704 * @q: the target queue
705 * @bio: destination bio
706 * @page: page to add
707 * @len: vec entry length
708 * @offset: vec entry offset
709 *
710 * Attempt to add a page to the bio_vec maplist. This can fail for a
711 * number of reasons, such as the bio being full or target block device
712 * limitations. The target block device must allow bio's up to PAGE_SIZE,
713 * so it is always possible to add a single page to an empty bio.
714 *
715 * This should only be used by REQ_PC bios.
716 */
717int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
718 *page, unsigned int len, unsigned int offset)
719{
720 int retried_segments = 0;
721 struct bio_vec *bvec;
722
723 /*
724 * cloned bio must not modify vec list
725 */
726 if (unlikely(bio_flagged(bio, BIO_CLONED)))
727 return 0;
728
729 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
730 return 0;
731
732 /*
733 * For filesystems with a blocksize smaller than the pagesize
734 * we will often be called with the same page as last time and
735 * a consecutive offset. Optimize this special case.
736 */
737 if (bio->bi_vcnt > 0) {
738 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
739
740 if (page == prev->bv_page &&
741 offset == prev->bv_offset + prev->bv_len) {
742 prev->bv_len += len;
743 bio->bi_iter.bi_size += len;
744 goto done;
745 }
746
747 /*
748 * If the queue doesn't support SG gaps and adding this
749 * offset would create a gap, disallow it.
750 */
751 if (bvec_gap_to_prev(q, prev, offset))
752 return 0;
753 }
754
755 if (bio->bi_vcnt >= bio->bi_max_vecs)
756 return 0;
757
758 /*
759 * setup the new entry, we might clear it again later if we
760 * cannot add the page
761 */
762 bvec = &bio->bi_io_vec[bio->bi_vcnt];
763 bvec->bv_page = page;
764 bvec->bv_len = len;
765 bvec->bv_offset = offset;
766 bio->bi_vcnt++;
767 bio->bi_phys_segments++;
768 bio->bi_iter.bi_size += len;
769
770 /*
771 * Perform a recount if the number of segments is greater
772 * than queue_max_segments(q).
773 */
774
775 while (bio->bi_phys_segments > queue_max_segments(q)) {
776
777 if (retried_segments)
778 goto failed;
779
780 retried_segments = 1;
781 blk_recount_segments(q, bio);
782 }
783
784 /* If we may be able to merge these biovecs, force a recount */
785 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
786 bio_clear_flag(bio, BIO_SEG_VALID);
787
788 done:
789 return len;
790
791 failed:
792 bvec->bv_page = NULL;
793 bvec->bv_len = 0;
794 bvec->bv_offset = 0;
795 bio->bi_vcnt--;
796 bio->bi_iter.bi_size -= len;
797 blk_recount_segments(q, bio);
798 return 0;
799}
800EXPORT_SYMBOL(bio_add_pc_page);
801
802/**
803 * bio_add_page - attempt to add page to bio
804 * @bio: destination bio
805 * @page: page to add
806 * @len: vec entry length
807 * @offset: vec entry offset
808 *
809 * Attempt to add a page to the bio_vec maplist. This will only fail
810 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
811 */
812int bio_add_page(struct bio *bio, struct page *page,
813 unsigned int len, unsigned int offset)
814{
815 struct bio_vec *bv;
816
817 /*
818 * cloned bio must not modify vec list
819 */
820 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
821 return 0;
822
823 /*
824 * For filesystems with a blocksize smaller than the pagesize
825 * we will often be called with the same page as last time and
826 * a consecutive offset. Optimize this special case.
827 */
828 if (bio->bi_vcnt > 0) {
829 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
830
831 if (page == bv->bv_page &&
832 offset == bv->bv_offset + bv->bv_len) {
833 bv->bv_len += len;
834 goto done;
835 }
836 }
837
838 if (bio->bi_vcnt >= bio->bi_max_vecs)
839 return 0;
840
841 bv = &bio->bi_io_vec[bio->bi_vcnt];
842 bv->bv_page = page;
843 bv->bv_len = len;
844 bv->bv_offset = offset;
845
846 bio->bi_vcnt++;
847done:
848 bio->bi_iter.bi_size += len;
849 return len;
850}
851EXPORT_SYMBOL(bio_add_page);
852
853struct submit_bio_ret {
854 struct completion event;
855 int error;
856};
857
858static void submit_bio_wait_endio(struct bio *bio)
859{
860 struct submit_bio_ret *ret = bio->bi_private;
861
862 ret->error = bio->bi_error;
863 complete(&ret->event);
864}
865
866/**
867 * submit_bio_wait - submit a bio, and wait until it completes
868 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
869 * @bio: The &struct bio which describes the I/O
870 *
871 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
872 * bio_endio() on failure.
873 */
874int submit_bio_wait(int rw, struct bio *bio)
875{
876 struct submit_bio_ret ret;
877
878 rw |= REQ_SYNC;
879 init_completion(&ret.event);
880 bio->bi_private = &ret;
881 bio->bi_end_io = submit_bio_wait_endio;
882 submit_bio(rw, bio);
883 wait_for_completion_io(&ret.event);
884
885 return ret.error;
886}
887EXPORT_SYMBOL(submit_bio_wait);
888
889/**
890 * bio_advance - increment/complete a bio by some number of bytes
891 * @bio: bio to advance
892 * @bytes: number of bytes to complete
893 *
894 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
895 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
896 * be updated on the last bvec as well.
897 *
898 * @bio will then represent the remaining, uncompleted portion of the io.
899 */
900void bio_advance(struct bio *bio, unsigned bytes)
901{
902 if (bio_integrity(bio))
903 bio_integrity_advance(bio, bytes);
904
905 bio_advance_iter(bio, &bio->bi_iter, bytes);
906}
907EXPORT_SYMBOL(bio_advance);
908
909/**
910 * bio_alloc_pages - allocates a single page for each bvec in a bio
911 * @bio: bio to allocate pages for
912 * @gfp_mask: flags for allocation
913 *
914 * Allocates pages up to @bio->bi_vcnt.
915 *
916 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
917 * freed.
918 */
919int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
920{
921 int i;
922 struct bio_vec *bv;
923
924 bio_for_each_segment_all(bv, bio, i) {
925 bv->bv_page = alloc_page(gfp_mask);
926 if (!bv->bv_page) {
927 while (--bv >= bio->bi_io_vec)
928 __free_page(bv->bv_page);
929 return -ENOMEM;
930 }
931 }
932
933 return 0;
934}
935EXPORT_SYMBOL(bio_alloc_pages);
936
937/**
938 * bio_copy_data - copy contents of data buffers from one chain of bios to
939 * another
940 * @src: source bio list
941 * @dst: destination bio list
942 *
943 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
944 * @src and @dst as linked lists of bios.
945 *
946 * Stops when it reaches the end of either @src or @dst - that is, copies
947 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
948 */
949void bio_copy_data(struct bio *dst, struct bio *src)
950{
951 struct bvec_iter src_iter, dst_iter;
952 struct bio_vec src_bv, dst_bv;
953 void *src_p, *dst_p;
954 unsigned bytes;
955
956 src_iter = src->bi_iter;
957 dst_iter = dst->bi_iter;
958
959 while (1) {
960 if (!src_iter.bi_size) {
961 src = src->bi_next;
962 if (!src)
963 break;
964
965 src_iter = src->bi_iter;
966 }
967
968 if (!dst_iter.bi_size) {
969 dst = dst->bi_next;
970 if (!dst)
971 break;
972
973 dst_iter = dst->bi_iter;
974 }
975
976 src_bv = bio_iter_iovec(src, src_iter);
977 dst_bv = bio_iter_iovec(dst, dst_iter);
978
979 bytes = min(src_bv.bv_len, dst_bv.bv_len);
980
981 src_p = kmap_atomic(src_bv.bv_page);
982 dst_p = kmap_atomic(dst_bv.bv_page);
983
984 memcpy(dst_p + dst_bv.bv_offset,
985 src_p + src_bv.bv_offset,
986 bytes);
987
988 kunmap_atomic(dst_p);
989 kunmap_atomic(src_p);
990
991 bio_advance_iter(src, &src_iter, bytes);
992 bio_advance_iter(dst, &dst_iter, bytes);
993 }
994}
995EXPORT_SYMBOL(bio_copy_data);
996
997struct bio_map_data {
998 int is_our_pages;
999 struct iov_iter iter;
1000 struct iovec iov[];
1001};
1002
1003static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1004 gfp_t gfp_mask)
1005{
1006 if (iov_count > UIO_MAXIOV)
1007 return NULL;
1008
1009 return kmalloc(sizeof(struct bio_map_data) +
1010 sizeof(struct iovec) * iov_count, gfp_mask);
1011}
1012
1013/**
1014 * bio_copy_from_iter - copy all pages from iov_iter to bio
1015 * @bio: The &struct bio which describes the I/O as destination
1016 * @iter: iov_iter as source
1017 *
1018 * Copy all pages from iov_iter to bio.
1019 * Returns 0 on success, or error on failure.
1020 */
1021static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1022{
1023 int i;
1024 struct bio_vec *bvec;
1025
1026 bio_for_each_segment_all(bvec, bio, i) {
1027 ssize_t ret;
1028
1029 ret = copy_page_from_iter(bvec->bv_page,
1030 bvec->bv_offset,
1031 bvec->bv_len,
1032 &iter);
1033
1034 if (!iov_iter_count(&iter))
1035 break;
1036
1037 if (ret < bvec->bv_len)
1038 return -EFAULT;
1039 }
1040
1041 return 0;
1042}
1043
1044/**
1045 * bio_copy_to_iter - copy all pages from bio to iov_iter
1046 * @bio: The &struct bio which describes the I/O as source
1047 * @iter: iov_iter as destination
1048 *
1049 * Copy all pages from bio to iov_iter.
1050 * Returns 0 on success, or error on failure.
1051 */
1052static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1053{
1054 int i;
1055 struct bio_vec *bvec;
1056
1057 bio_for_each_segment_all(bvec, bio, i) {
1058 ssize_t ret;
1059
1060 ret = copy_page_to_iter(bvec->bv_page,
1061 bvec->bv_offset,
1062 bvec->bv_len,
1063 &iter);
1064
1065 if (!iov_iter_count(&iter))
1066 break;
1067
1068 if (ret < bvec->bv_len)
1069 return -EFAULT;
1070 }
1071
1072 return 0;
1073}
1074
1075static void bio_free_pages(struct bio *bio)
1076{
1077 struct bio_vec *bvec;
1078 int i;
1079
1080 bio_for_each_segment_all(bvec, bio, i)
1081 __free_page(bvec->bv_page);
1082}
1083
1084/**
1085 * bio_uncopy_user - finish previously mapped bio
1086 * @bio: bio being terminated
1087 *
1088 * Free pages allocated from bio_copy_user_iov() and write back data
1089 * to user space in case of a read.
1090 */
1091int bio_uncopy_user(struct bio *bio)
1092{
1093 struct bio_map_data *bmd = bio->bi_private;
1094 int ret = 0;
1095
1096 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1097 /*
1098 * if we're in a workqueue, the request is orphaned, so
1099 * don't copy into a random user address space, just free
1100 * and return -EINTR so user space doesn't expect any data.
1101 */
1102 if (!current->mm)
1103 ret = -EINTR;
1104 else if (bio_data_dir(bio) == READ)
1105 ret = bio_copy_to_iter(bio, bmd->iter);
1106 if (bmd->is_our_pages)
1107 bio_free_pages(bio);
1108 }
1109 kfree(bmd);
1110 bio_put(bio);
1111 return ret;
1112}
1113EXPORT_SYMBOL(bio_uncopy_user);
1114
1115/**
1116 * bio_copy_user_iov - copy user data to bio
1117 * @q: destination block queue
1118 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1119 * @iter: iovec iterator
1120 * @gfp_mask: memory allocation flags
1121 *
1122 * Prepares and returns a bio for indirect user io, bouncing data
1123 * to/from kernel pages as necessary. Must be paired with
1124 * call bio_uncopy_user() on io completion.
1125 */
1126struct bio *bio_copy_user_iov(struct request_queue *q,
1127 struct rq_map_data *map_data,
1128 const struct iov_iter *iter,
1129 gfp_t gfp_mask)
1130{
1131 struct bio_map_data *bmd;
1132 struct page *page;
1133 struct bio *bio;
1134 int i, ret;
1135 int nr_pages = 0;
1136 unsigned int len = iter->count;
1137 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1138
1139 for (i = 0; i < iter->nr_segs; i++) {
1140 unsigned long uaddr;
1141 unsigned long end;
1142 unsigned long start;
1143
1144 uaddr = (unsigned long) iter->iov[i].iov_base;
1145 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1146 >> PAGE_SHIFT;
1147 start = uaddr >> PAGE_SHIFT;
1148
1149 /*
1150 * Overflow, abort
1151 */
1152 if (end < start)
1153 return ERR_PTR(-EINVAL);
1154
1155 nr_pages += end - start;
1156 }
1157
1158 if (offset)
1159 nr_pages++;
1160
1161 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1162 if (!bmd)
1163 return ERR_PTR(-ENOMEM);
1164
1165 /*
1166 * We need to do a deep copy of the iov_iter including the iovecs.
1167 * The caller provided iov might point to an on-stack or otherwise
1168 * shortlived one.
1169 */
1170 bmd->is_our_pages = map_data ? 0 : 1;
1171 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1172 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1173 iter->nr_segs, iter->count);
1174
1175 ret = -ENOMEM;
1176 bio = bio_kmalloc(gfp_mask, nr_pages);
1177 if (!bio)
1178 goto out_bmd;
1179
1180 if (iter->type & WRITE)
1181 bio->bi_rw |= REQ_WRITE;
1182
1183 ret = 0;
1184
1185 if (map_data) {
1186 nr_pages = 1 << map_data->page_order;
1187 i = map_data->offset / PAGE_SIZE;
1188 }
1189 while (len) {
1190 unsigned int bytes = PAGE_SIZE;
1191
1192 bytes -= offset;
1193
1194 if (bytes > len)
1195 bytes = len;
1196
1197 if (map_data) {
1198 if (i == map_data->nr_entries * nr_pages) {
1199 ret = -ENOMEM;
1200 break;
1201 }
1202
1203 page = map_data->pages[i / nr_pages];
1204 page += (i % nr_pages);
1205
1206 i++;
1207 } else {
1208 page = alloc_page(q->bounce_gfp | gfp_mask);
1209 if (!page) {
1210 ret = -ENOMEM;
1211 break;
1212 }
1213 }
1214
1215 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1216 break;
1217
1218 len -= bytes;
1219 offset = 0;
1220 }
1221
1222 if (ret)
1223 goto cleanup;
1224
1225 /*
1226 * success
1227 */
1228 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1229 (map_data && map_data->from_user)) {
1230 ret = bio_copy_from_iter(bio, *iter);
1231 if (ret)
1232 goto cleanup;
1233 }
1234
1235 bio->bi_private = bmd;
1236 return bio;
1237cleanup:
1238 if (!map_data)
1239 bio_free_pages(bio);
1240 bio_put(bio);
1241out_bmd:
1242 kfree(bmd);
1243 return ERR_PTR(ret);
1244}
1245
1246/**
1247 * bio_map_user_iov - map user iovec into bio
1248 * @q: the struct request_queue for the bio
1249 * @iter: iovec iterator
1250 * @gfp_mask: memory allocation flags
1251 *
1252 * Map the user space address into a bio suitable for io to a block
1253 * device. Returns an error pointer in case of error.
1254 */
1255struct bio *bio_map_user_iov(struct request_queue *q,
1256 const struct iov_iter *iter,
1257 gfp_t gfp_mask)
1258{
1259 int j;
1260 int nr_pages = 0;
1261 struct page **pages;
1262 struct bio *bio;
1263 int cur_page = 0;
1264 int ret, offset;
1265 struct iov_iter i;
1266 struct iovec iov;
1267
1268 iov_for_each(iov, i, *iter) {
1269 unsigned long uaddr = (unsigned long) iov.iov_base;
1270 unsigned long len = iov.iov_len;
1271 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1272 unsigned long start = uaddr >> PAGE_SHIFT;
1273
1274 /*
1275 * Overflow, abort
1276 */
1277 if (end < start)
1278 return ERR_PTR(-EINVAL);
1279
1280 nr_pages += end - start;
1281 /*
1282 * buffer must be aligned to at least hardsector size for now
1283 */
1284 if (uaddr & queue_dma_alignment(q))
1285 return ERR_PTR(-EINVAL);
1286 }
1287
1288 if (!nr_pages)
1289 return ERR_PTR(-EINVAL);
1290
1291 bio = bio_kmalloc(gfp_mask, nr_pages);
1292 if (!bio)
1293 return ERR_PTR(-ENOMEM);
1294
1295 ret = -ENOMEM;
1296 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1297 if (!pages)
1298 goto out;
1299
1300 iov_for_each(iov, i, *iter) {
1301 unsigned long uaddr = (unsigned long) iov.iov_base;
1302 unsigned long len = iov.iov_len;
1303 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1304 unsigned long start = uaddr >> PAGE_SHIFT;
1305 const int local_nr_pages = end - start;
1306 const int page_limit = cur_page + local_nr_pages;
1307
1308 ret = get_user_pages_fast(uaddr, local_nr_pages,
1309 (iter->type & WRITE) != WRITE,
1310 &pages[cur_page]);
1311 if (ret < local_nr_pages) {
1312 ret = -EFAULT;
1313 goto out_unmap;
1314 }
1315
1316 offset = offset_in_page(uaddr);
1317 for (j = cur_page; j < page_limit; j++) {
1318 unsigned int bytes = PAGE_SIZE - offset;
1319
1320 if (len <= 0)
1321 break;
1322
1323 if (bytes > len)
1324 bytes = len;
1325
1326 /*
1327 * sorry...
1328 */
1329 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1330 bytes)
1331 break;
1332
1333 len -= bytes;
1334 offset = 0;
1335 }
1336
1337 cur_page = j;
1338 /*
1339 * release the pages we didn't map into the bio, if any
1340 */
1341 while (j < page_limit)
1342 put_page(pages[j++]);
1343 }
1344
1345 kfree(pages);
1346
1347 /*
1348 * set data direction, and check if mapped pages need bouncing
1349 */
1350 if (iter->type & WRITE)
1351 bio->bi_rw |= REQ_WRITE;
1352
1353 bio_set_flag(bio, BIO_USER_MAPPED);
1354
1355 /*
1356 * subtle -- if __bio_map_user() ended up bouncing a bio,
1357 * it would normally disappear when its bi_end_io is run.
1358 * however, we need it for the unmap, so grab an extra
1359 * reference to it
1360 */
1361 bio_get(bio);
1362 return bio;
1363
1364 out_unmap:
1365 for (j = 0; j < nr_pages; j++) {
1366 if (!pages[j])
1367 break;
1368 put_page(pages[j]);
1369 }
1370 out:
1371 kfree(pages);
1372 bio_put(bio);
1373 return ERR_PTR(ret);
1374}
1375
1376static void __bio_unmap_user(struct bio *bio)
1377{
1378 struct bio_vec *bvec;
1379 int i;
1380
1381 /*
1382 * make sure we dirty pages we wrote to
1383 */
1384 bio_for_each_segment_all(bvec, bio, i) {
1385 if (bio_data_dir(bio) == READ)
1386 set_page_dirty_lock(bvec->bv_page);
1387
1388 put_page(bvec->bv_page);
1389 }
1390
1391 bio_put(bio);
1392}
1393
1394/**
1395 * bio_unmap_user - unmap a bio
1396 * @bio: the bio being unmapped
1397 *
1398 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1399 * a process context.
1400 *
1401 * bio_unmap_user() may sleep.
1402 */
1403void bio_unmap_user(struct bio *bio)
1404{
1405 __bio_unmap_user(bio);
1406 bio_put(bio);
1407}
1408EXPORT_SYMBOL(bio_unmap_user);
1409
1410static void bio_map_kern_endio(struct bio *bio)
1411{
1412 bio_put(bio);
1413}
1414
1415/**
1416 * bio_map_kern - map kernel address into bio
1417 * @q: the struct request_queue for the bio
1418 * @data: pointer to buffer to map
1419 * @len: length in bytes
1420 * @gfp_mask: allocation flags for bio allocation
1421 *
1422 * Map the kernel address into a bio suitable for io to a block
1423 * device. Returns an error pointer in case of error.
1424 */
1425struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1426 gfp_t gfp_mask)
1427{
1428 unsigned long kaddr = (unsigned long)data;
1429 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1430 unsigned long start = kaddr >> PAGE_SHIFT;
1431 const int nr_pages = end - start;
1432 int offset, i;
1433 struct bio *bio;
1434
1435 bio = bio_kmalloc(gfp_mask, nr_pages);
1436 if (!bio)
1437 return ERR_PTR(-ENOMEM);
1438
1439 offset = offset_in_page(kaddr);
1440 for (i = 0; i < nr_pages; i++) {
1441 unsigned int bytes = PAGE_SIZE - offset;
1442
1443 if (len <= 0)
1444 break;
1445
1446 if (bytes > len)
1447 bytes = len;
1448
1449 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1450 offset) < bytes) {
1451 /* we don't support partial mappings */
1452 bio_put(bio);
1453 return ERR_PTR(-EINVAL);
1454 }
1455
1456 data += bytes;
1457 len -= bytes;
1458 offset = 0;
1459 }
1460
1461 bio->bi_end_io = bio_map_kern_endio;
1462 return bio;
1463}
1464EXPORT_SYMBOL(bio_map_kern);
1465
1466static void bio_copy_kern_endio(struct bio *bio)
1467{
1468 bio_free_pages(bio);
1469 bio_put(bio);
1470}
1471
1472static void bio_copy_kern_endio_read(struct bio *bio)
1473{
1474 char *p = bio->bi_private;
1475 struct bio_vec *bvec;
1476 int i;
1477
1478 bio_for_each_segment_all(bvec, bio, i) {
1479 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1480 p += bvec->bv_len;
1481 }
1482
1483 bio_copy_kern_endio(bio);
1484}
1485
1486/**
1487 * bio_copy_kern - copy kernel address into bio
1488 * @q: the struct request_queue for the bio
1489 * @data: pointer to buffer to copy
1490 * @len: length in bytes
1491 * @gfp_mask: allocation flags for bio and page allocation
1492 * @reading: data direction is READ
1493 *
1494 * copy the kernel address into a bio suitable for io to a block
1495 * device. Returns an error pointer in case of error.
1496 */
1497struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1498 gfp_t gfp_mask, int reading)
1499{
1500 unsigned long kaddr = (unsigned long)data;
1501 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502 unsigned long start = kaddr >> PAGE_SHIFT;
1503 struct bio *bio;
1504 void *p = data;
1505 int nr_pages = 0;
1506
1507 /*
1508 * Overflow, abort
1509 */
1510 if (end < start)
1511 return ERR_PTR(-EINVAL);
1512
1513 nr_pages = end - start;
1514 bio = bio_kmalloc(gfp_mask, nr_pages);
1515 if (!bio)
1516 return ERR_PTR(-ENOMEM);
1517
1518 while (len) {
1519 struct page *page;
1520 unsigned int bytes = PAGE_SIZE;
1521
1522 if (bytes > len)
1523 bytes = len;
1524
1525 page = alloc_page(q->bounce_gfp | gfp_mask);
1526 if (!page)
1527 goto cleanup;
1528
1529 if (!reading)
1530 memcpy(page_address(page), p, bytes);
1531
1532 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1533 break;
1534
1535 len -= bytes;
1536 p += bytes;
1537 }
1538
1539 if (reading) {
1540 bio->bi_end_io = bio_copy_kern_endio_read;
1541 bio->bi_private = data;
1542 } else {
1543 bio->bi_end_io = bio_copy_kern_endio;
1544 bio->bi_rw |= REQ_WRITE;
1545 }
1546
1547 return bio;
1548
1549cleanup:
1550 bio_free_pages(bio);
1551 bio_put(bio);
1552 return ERR_PTR(-ENOMEM);
1553}
1554EXPORT_SYMBOL(bio_copy_kern);
1555
1556/*
1557 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1558 * for performing direct-IO in BIOs.
1559 *
1560 * The problem is that we cannot run set_page_dirty() from interrupt context
1561 * because the required locks are not interrupt-safe. So what we can do is to
1562 * mark the pages dirty _before_ performing IO. And in interrupt context,
1563 * check that the pages are still dirty. If so, fine. If not, redirty them
1564 * in process context.
1565 *
1566 * We special-case compound pages here: normally this means reads into hugetlb
1567 * pages. The logic in here doesn't really work right for compound pages
1568 * because the VM does not uniformly chase down the head page in all cases.
1569 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1570 * handle them at all. So we skip compound pages here at an early stage.
1571 *
1572 * Note that this code is very hard to test under normal circumstances because
1573 * direct-io pins the pages with get_user_pages(). This makes
1574 * is_page_cache_freeable return false, and the VM will not clean the pages.
1575 * But other code (eg, flusher threads) could clean the pages if they are mapped
1576 * pagecache.
1577 *
1578 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1579 * deferred bio dirtying paths.
1580 */
1581
1582/*
1583 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1584 */
1585void bio_set_pages_dirty(struct bio *bio)
1586{
1587 struct bio_vec *bvec;
1588 int i;
1589
1590 bio_for_each_segment_all(bvec, bio, i) {
1591 struct page *page = bvec->bv_page;
1592
1593 if (page && !PageCompound(page))
1594 set_page_dirty_lock(page);
1595 }
1596}
1597
1598static void bio_release_pages(struct bio *bio)
1599{
1600 struct bio_vec *bvec;
1601 int i;
1602
1603 bio_for_each_segment_all(bvec, bio, i) {
1604 struct page *page = bvec->bv_page;
1605
1606 if (page)
1607 put_page(page);
1608 }
1609}
1610
1611/*
1612 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1613 * If they are, then fine. If, however, some pages are clean then they must
1614 * have been written out during the direct-IO read. So we take another ref on
1615 * the BIO and the offending pages and re-dirty the pages in process context.
1616 *
1617 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1618 * here on. It will run one put_page() against each page and will run one
1619 * bio_put() against the BIO.
1620 */
1621
1622static void bio_dirty_fn(struct work_struct *work);
1623
1624static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1625static DEFINE_SPINLOCK(bio_dirty_lock);
1626static struct bio *bio_dirty_list;
1627
1628/*
1629 * This runs in process context
1630 */
1631static void bio_dirty_fn(struct work_struct *work)
1632{
1633 unsigned long flags;
1634 struct bio *bio;
1635
1636 spin_lock_irqsave(&bio_dirty_lock, flags);
1637 bio = bio_dirty_list;
1638 bio_dirty_list = NULL;
1639 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1640
1641 while (bio) {
1642 struct bio *next = bio->bi_private;
1643
1644 bio_set_pages_dirty(bio);
1645 bio_release_pages(bio);
1646 bio_put(bio);
1647 bio = next;
1648 }
1649}
1650
1651void bio_check_pages_dirty(struct bio *bio)
1652{
1653 struct bio_vec *bvec;
1654 int nr_clean_pages = 0;
1655 int i;
1656
1657 bio_for_each_segment_all(bvec, bio, i) {
1658 struct page *page = bvec->bv_page;
1659
1660 if (PageDirty(page) || PageCompound(page)) {
1661 put_page(page);
1662 bvec->bv_page = NULL;
1663 } else {
1664 nr_clean_pages++;
1665 }
1666 }
1667
1668 if (nr_clean_pages) {
1669 unsigned long flags;
1670
1671 spin_lock_irqsave(&bio_dirty_lock, flags);
1672 bio->bi_private = bio_dirty_list;
1673 bio_dirty_list = bio;
1674 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1675 schedule_work(&bio_dirty_work);
1676 } else {
1677 bio_put(bio);
1678 }
1679}
1680
1681void generic_start_io_acct(int rw, unsigned long sectors,
1682 struct hd_struct *part)
1683{
1684 int cpu = part_stat_lock();
1685
1686 part_round_stats(cpu, part);
1687 part_stat_inc(cpu, part, ios[rw]);
1688 part_stat_add(cpu, part, sectors[rw], sectors);
1689 part_inc_in_flight(part, rw);
1690
1691 part_stat_unlock();
1692}
1693EXPORT_SYMBOL(generic_start_io_acct);
1694
1695void generic_end_io_acct(int rw, struct hd_struct *part,
1696 unsigned long start_time)
1697{
1698 unsigned long duration = jiffies - start_time;
1699 int cpu = part_stat_lock();
1700
1701 part_stat_add(cpu, part, ticks[rw], duration);
1702 part_round_stats(cpu, part);
1703 part_dec_in_flight(part, rw);
1704
1705 part_stat_unlock();
1706}
1707EXPORT_SYMBOL(generic_end_io_acct);
1708
1709#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1710void bio_flush_dcache_pages(struct bio *bi)
1711{
1712 struct bio_vec bvec;
1713 struct bvec_iter iter;
1714
1715 bio_for_each_segment(bvec, bi, iter)
1716 flush_dcache_page(bvec.bv_page);
1717}
1718EXPORT_SYMBOL(bio_flush_dcache_pages);
1719#endif
1720
1721static inline bool bio_remaining_done(struct bio *bio)
1722{
1723 /*
1724 * If we're not chaining, then ->__bi_remaining is always 1 and
1725 * we always end io on the first invocation.
1726 */
1727 if (!bio_flagged(bio, BIO_CHAIN))
1728 return true;
1729
1730 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1731
1732 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1733 bio_clear_flag(bio, BIO_CHAIN);
1734 return true;
1735 }
1736
1737 return false;
1738}
1739
1740/**
1741 * bio_endio - end I/O on a bio
1742 * @bio: bio
1743 *
1744 * Description:
1745 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1746 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1747 * bio unless they own it and thus know that it has an end_io function.
1748 **/
1749void bio_endio(struct bio *bio)
1750{
1751again:
1752 if (!bio_remaining_done(bio))
1753 return;
1754
1755 /*
1756 * Need to have a real endio function for chained bios, otherwise
1757 * various corner cases will break (like stacking block devices that
1758 * save/restore bi_end_io) - however, we want to avoid unbounded
1759 * recursion and blowing the stack. Tail call optimization would
1760 * handle this, but compiling with frame pointers also disables
1761 * gcc's sibling call optimization.
1762 */
1763 if (bio->bi_end_io == bio_chain_endio) {
1764 bio = __bio_chain_endio(bio);
1765 goto again;
1766 }
1767
1768 if (bio->bi_end_io)
1769 bio->bi_end_io(bio);
1770}
1771EXPORT_SYMBOL(bio_endio);
1772
1773/**
1774 * bio_split - split a bio
1775 * @bio: bio to split
1776 * @sectors: number of sectors to split from the front of @bio
1777 * @gfp: gfp mask
1778 * @bs: bio set to allocate from
1779 *
1780 * Allocates and returns a new bio which represents @sectors from the start of
1781 * @bio, and updates @bio to represent the remaining sectors.
1782 *
1783 * Unless this is a discard request the newly allocated bio will point
1784 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1785 * @bio is not freed before the split.
1786 */
1787struct bio *bio_split(struct bio *bio, int sectors,
1788 gfp_t gfp, struct bio_set *bs)
1789{
1790 struct bio *split = NULL;
1791
1792 BUG_ON(sectors <= 0);
1793 BUG_ON(sectors >= bio_sectors(bio));
1794
1795 /*
1796 * Discards need a mutable bio_vec to accommodate the payload
1797 * required by the DSM TRIM and UNMAP commands.
1798 */
1799 if (bio->bi_rw & REQ_DISCARD)
1800 split = bio_clone_bioset(bio, gfp, bs);
1801 else
1802 split = bio_clone_fast(bio, gfp, bs);
1803
1804 if (!split)
1805 return NULL;
1806
1807 split->bi_iter.bi_size = sectors << 9;
1808
1809 if (bio_integrity(split))
1810 bio_integrity_trim(split, 0, sectors);
1811
1812 bio_advance(bio, split->bi_iter.bi_size);
1813
1814 return split;
1815}
1816EXPORT_SYMBOL(bio_split);
1817
1818/**
1819 * bio_trim - trim a bio
1820 * @bio: bio to trim
1821 * @offset: number of sectors to trim from the front of @bio
1822 * @size: size we want to trim @bio to, in sectors
1823 */
1824void bio_trim(struct bio *bio, int offset, int size)
1825{
1826 /* 'bio' is a cloned bio which we need to trim to match
1827 * the given offset and size.
1828 */
1829
1830 size <<= 9;
1831 if (offset == 0 && size == bio->bi_iter.bi_size)
1832 return;
1833
1834 bio_clear_flag(bio, BIO_SEG_VALID);
1835
1836 bio_advance(bio, offset << 9);
1837
1838 bio->bi_iter.bi_size = size;
1839}
1840EXPORT_SYMBOL_GPL(bio_trim);
1841
1842/*
1843 * create memory pools for biovec's in a bio_set.
1844 * use the global biovec slabs created for general use.
1845 */
1846mempool_t *biovec_create_pool(int pool_entries)
1847{
1848 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1849
1850 return mempool_create_slab_pool(pool_entries, bp->slab);
1851}
1852
1853void bioset_free(struct bio_set *bs)
1854{
1855 if (bs->rescue_workqueue)
1856 destroy_workqueue(bs->rescue_workqueue);
1857
1858 if (bs->bio_pool)
1859 mempool_destroy(bs->bio_pool);
1860
1861 if (bs->bvec_pool)
1862 mempool_destroy(bs->bvec_pool);
1863
1864 bioset_integrity_free(bs);
1865 bio_put_slab(bs);
1866
1867 kfree(bs);
1868}
1869EXPORT_SYMBOL(bioset_free);
1870
1871static struct bio_set *__bioset_create(unsigned int pool_size,
1872 unsigned int front_pad,
1873 bool create_bvec_pool)
1874{
1875 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1876 struct bio_set *bs;
1877
1878 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1879 if (!bs)
1880 return NULL;
1881
1882 bs->front_pad = front_pad;
1883
1884 spin_lock_init(&bs->rescue_lock);
1885 bio_list_init(&bs->rescue_list);
1886 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1887
1888 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1889 if (!bs->bio_slab) {
1890 kfree(bs);
1891 return NULL;
1892 }
1893
1894 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1895 if (!bs->bio_pool)
1896 goto bad;
1897
1898 if (create_bvec_pool) {
1899 bs->bvec_pool = biovec_create_pool(pool_size);
1900 if (!bs->bvec_pool)
1901 goto bad;
1902 }
1903
1904 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1905 if (!bs->rescue_workqueue)
1906 goto bad;
1907
1908 return bs;
1909bad:
1910 bioset_free(bs);
1911 return NULL;
1912}
1913
1914/**
1915 * bioset_create - Create a bio_set
1916 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1917 * @front_pad: Number of bytes to allocate in front of the returned bio
1918 *
1919 * Description:
1920 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1921 * to ask for a number of bytes to be allocated in front of the bio.
1922 * Front pad allocation is useful for embedding the bio inside
1923 * another structure, to avoid allocating extra data to go with the bio.
1924 * Note that the bio must be embedded at the END of that structure always,
1925 * or things will break badly.
1926 */
1927struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1928{
1929 return __bioset_create(pool_size, front_pad, true);
1930}
1931EXPORT_SYMBOL(bioset_create);
1932
1933/**
1934 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1935 * @pool_size: Number of bio to cache in the mempool
1936 * @front_pad: Number of bytes to allocate in front of the returned bio
1937 *
1938 * Description:
1939 * Same functionality as bioset_create() except that mempool is not
1940 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1941 */
1942struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1943{
1944 return __bioset_create(pool_size, front_pad, false);
1945}
1946EXPORT_SYMBOL(bioset_create_nobvec);
1947
1948#ifdef CONFIG_BLK_CGROUP
1949
1950/**
1951 * bio_associate_blkcg - associate a bio with the specified blkcg
1952 * @bio: target bio
1953 * @blkcg_css: css of the blkcg to associate
1954 *
1955 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1956 * treat @bio as if it were issued by a task which belongs to the blkcg.
1957 *
1958 * This function takes an extra reference of @blkcg_css which will be put
1959 * when @bio is released. The caller must own @bio and is responsible for
1960 * synchronizing calls to this function.
1961 */
1962int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1963{
1964 if (unlikely(bio->bi_css))
1965 return -EBUSY;
1966 css_get(blkcg_css);
1967 bio->bi_css = blkcg_css;
1968 return 0;
1969}
1970EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1971
1972/**
1973 * bio_associate_current - associate a bio with %current
1974 * @bio: target bio
1975 *
1976 * Associate @bio with %current if it hasn't been associated yet. Block
1977 * layer will treat @bio as if it were issued by %current no matter which
1978 * task actually issues it.
1979 *
1980 * This function takes an extra reference of @task's io_context and blkcg
1981 * which will be put when @bio is released. The caller must own @bio,
1982 * ensure %current->io_context exists, and is responsible for synchronizing
1983 * calls to this function.
1984 */
1985int bio_associate_current(struct bio *bio)
1986{
1987 struct io_context *ioc;
1988
1989 if (bio->bi_css)
1990 return -EBUSY;
1991
1992 ioc = current->io_context;
1993 if (!ioc)
1994 return -ENOENT;
1995
1996 get_io_context_active(ioc);
1997 bio->bi_ioc = ioc;
1998 bio->bi_css = task_get_css(current, io_cgrp_id);
1999 return 0;
2000}
2001EXPORT_SYMBOL_GPL(bio_associate_current);
2002
2003/**
2004 * bio_disassociate_task - undo bio_associate_current()
2005 * @bio: target bio
2006 */
2007void bio_disassociate_task(struct bio *bio)
2008{
2009 if (bio->bi_ioc) {
2010 put_io_context(bio->bi_ioc);
2011 bio->bi_ioc = NULL;
2012 }
2013 if (bio->bi_css) {
2014 css_put(bio->bi_css);
2015 bio->bi_css = NULL;
2016 }
2017}
2018
2019#endif /* CONFIG_BLK_CGROUP */
2020
2021static void __init biovec_init_slabs(void)
2022{
2023 int i;
2024
2025 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2026 int size;
2027 struct biovec_slab *bvs = bvec_slabs + i;
2028
2029 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2030 bvs->slab = NULL;
2031 continue;
2032 }
2033
2034 size = bvs->nr_vecs * sizeof(struct bio_vec);
2035 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2036 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2037 }
2038}
2039
2040static int __init init_bio(void)
2041{
2042 bio_slab_max = 2;
2043 bio_slab_nr = 0;
2044 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2045 if (!bio_slabs)
2046 panic("bio: can't allocate bios\n");
2047
2048 bio_integrity_init();
2049 biovec_init_slabs();
2050
2051 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2052 if (!fs_bio_set)
2053 panic("bio: can't allocate bios\n");
2054
2055 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2056 panic("bio: can't create integrity pool\n");
2057
2058 return 0;
2059}
2060subsys_initcall(init_bio);