Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  Copyright (C) 1994  Linus Torvalds
  4 *
  5 *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
  6 *                stack - Manfred Spraul <manfred@colorfullife.com>
  7 *
  8 *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
  9 *                them correctly. Now the emulation will be in a
 10 *                consistent state after stackfaults - Kasper Dupont
 11 *                <kasperd@daimi.au.dk>
 12 *
 13 *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
 14 *                <kasperd@daimi.au.dk>
 15 *
 16 *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
 17 *                caused by Kasper Dupont's changes - Stas Sergeev
 18 *
 19 *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
 20 *                Kasper Dupont <kasperd@daimi.au.dk>
 21 *
 22 *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
 23 *                Kasper Dupont <kasperd@daimi.au.dk>
 24 *
 25 *   9 apr 2002 - Changed stack access macros to jump to a label
 26 *                instead of returning to userspace. This simplifies
 27 *                do_int, and is needed by handle_vm6_fault. Kasper
 28 *                Dupont <kasperd@daimi.au.dk>
 29 *
 30 */
 31
 32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 33
 34#include <linux/capability.h>
 35#include <linux/errno.h>
 36#include <linux/interrupt.h>
 37#include <linux/syscalls.h>
 38#include <linux/sched.h>
 39#include <linux/sched/task_stack.h>
 40#include <linux/kernel.h>
 41#include <linux/signal.h>
 42#include <linux/string.h>
 43#include <linux/mm.h>
 44#include <linux/smp.h>
 45#include <linux/highmem.h>
 46#include <linux/ptrace.h>
 47#include <linux/audit.h>
 48#include <linux/stddef.h>
 49#include <linux/slab.h>
 50#include <linux/security.h>
 51
 52#include <linux/uaccess.h>
 53#include <asm/io.h>
 54#include <asm/tlbflush.h>
 55#include <asm/irq.h>
 56#include <asm/traps.h>
 57#include <asm/vm86.h>
 58#include <asm/switch_to.h>
 59
 60/*
 61 * Known problems:
 62 *
 63 * Interrupt handling is not guaranteed:
 64 * - a real x86 will disable all interrupts for one instruction
 65 *   after a "mov ss,xx" to make stack handling atomic even without
 66 *   the 'lss' instruction. We can't guarantee this in v86 mode,
 67 *   as the next instruction might result in a page fault or similar.
 68 * - a real x86 will have interrupts disabled for one instruction
 69 *   past the 'sti' that enables them. We don't bother with all the
 70 *   details yet.
 71 *
 72 * Let's hope these problems do not actually matter for anything.
 73 */
 74
 75
 76/*
 77 * 8- and 16-bit register defines..
 78 */
 79#define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
 80#define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
 81#define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
 82#define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
 83
 84/*
 85 * virtual flags (16 and 32-bit versions)
 86 */
 87#define VFLAGS	(*(unsigned short *)&(current->thread.vm86->veflags))
 88#define VEFLAGS	(current->thread.vm86->veflags)
 89
 90#define set_flags(X, new, mask) \
 91((X) = ((X) & ~(mask)) | ((new) & (mask)))
 92
 93#define SAFE_MASK	(0xDD5)
 94#define RETURN_MASK	(0xDFF)
 95
 96void save_v86_state(struct kernel_vm86_regs *regs, int retval)
 97{
 
 98	struct task_struct *tsk = current;
 99	struct vm86plus_struct __user *user;
100	struct vm86 *vm86 = current->thread.vm86;
101	long err = 0;
102
103	/*
104	 * This gets called from entry.S with interrupts disabled, but
105	 * from process context. Enable interrupts here, before trying
106	 * to access user space.
107	 */
108	local_irq_enable();
109
110	if (!vm86 || !vm86->user_vm86) {
111		pr_alert("no user_vm86: BAD\n");
112		do_exit(SIGSEGV);
113	}
114	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
115	user = vm86->user_vm86;
116
117	if (!access_ok(user, vm86->vm86plus.is_vm86pus ?
118		       sizeof(struct vm86plus_struct) :
119		       sizeof(struct vm86_struct))) {
120		pr_alert("could not access userspace vm86 info\n");
121		do_exit(SIGSEGV);
122	}
123
124	put_user_try {
125		put_user_ex(regs->pt.bx, &user->regs.ebx);
126		put_user_ex(regs->pt.cx, &user->regs.ecx);
127		put_user_ex(regs->pt.dx, &user->regs.edx);
128		put_user_ex(regs->pt.si, &user->regs.esi);
129		put_user_ex(regs->pt.di, &user->regs.edi);
130		put_user_ex(regs->pt.bp, &user->regs.ebp);
131		put_user_ex(regs->pt.ax, &user->regs.eax);
132		put_user_ex(regs->pt.ip, &user->regs.eip);
133		put_user_ex(regs->pt.cs, &user->regs.cs);
134		put_user_ex(regs->pt.flags, &user->regs.eflags);
135		put_user_ex(regs->pt.sp, &user->regs.esp);
136		put_user_ex(regs->pt.ss, &user->regs.ss);
137		put_user_ex(regs->es, &user->regs.es);
138		put_user_ex(regs->ds, &user->regs.ds);
139		put_user_ex(regs->fs, &user->regs.fs);
140		put_user_ex(regs->gs, &user->regs.gs);
141
142		put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
143	} put_user_catch(err);
144	if (err) {
145		pr_alert("could not access userspace vm86 info\n");
146		do_exit(SIGSEGV);
147	}
148
149	preempt_disable();
150	tsk->thread.sp0 = vm86->saved_sp0;
151	tsk->thread.sysenter_cs = __KERNEL_CS;
152	update_task_stack(tsk);
153	refresh_sysenter_cs(&tsk->thread);
154	vm86->saved_sp0 = 0;
155	preempt_enable();
156
157	memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
158
159	lazy_load_gs(vm86->regs32.gs);
160
161	regs->pt.ax = retval;
162}
163
164static void mark_screen_rdonly(struct mm_struct *mm)
165{
166	struct vm_area_struct *vma;
167	spinlock_t *ptl;
168	pgd_t *pgd;
169	p4d_t *p4d;
170	pud_t *pud;
171	pmd_t *pmd;
172	pte_t *pte;
 
173	int i;
174
175	down_write(&mm->mmap_sem);
176	pgd = pgd_offset(mm, 0xA0000);
177	if (pgd_none_or_clear_bad(pgd))
178		goto out;
179	p4d = p4d_offset(pgd, 0xA0000);
180	if (p4d_none_or_clear_bad(p4d))
181		goto out;
182	pud = pud_offset(p4d, 0xA0000);
183	if (pud_none_or_clear_bad(pud))
184		goto out;
185	pmd = pmd_offset(pud, 0xA0000);
186
187	if (pmd_trans_huge(*pmd)) {
188		vma = find_vma(mm, 0xA0000);
189		split_huge_pmd(vma, pmd, 0xA0000);
190	}
191	if (pmd_none_or_clear_bad(pmd))
192		goto out;
193	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
194	for (i = 0; i < 32; i++) {
195		if (pte_present(*pte))
196			set_pte(pte, pte_wrprotect(*pte));
197		pte++;
198	}
199	pte_unmap_unlock(pte, ptl);
200out:
201	up_write(&mm->mmap_sem);
202	flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, PAGE_SHIFT, false);
203}
204
205
206
207static int do_vm86_irq_handling(int subfunction, int irqnumber);
208static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
209
210SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
211{
212	return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
213}
214
215
216SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
217{
218	switch (cmd) {
219	case VM86_REQUEST_IRQ:
220	case VM86_FREE_IRQ:
221	case VM86_GET_IRQ_BITS:
222	case VM86_GET_AND_RESET_IRQ:
223		return do_vm86_irq_handling(cmd, (int)arg);
224	case VM86_PLUS_INSTALL_CHECK:
225		/*
226		 * NOTE: on old vm86 stuff this will return the error
227		 *  from access_ok(), because the subfunction is
228		 *  interpreted as (invalid) address to vm86_struct.
229		 *  So the installation check works.
230		 */
231		return 0;
232	}
233
234	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
235	return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
236}
237
238
239static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
240{
 
241	struct task_struct *tsk = current;
242	struct vm86 *vm86 = tsk->thread.vm86;
243	struct kernel_vm86_regs vm86regs;
244	struct pt_regs *regs = current_pt_regs();
245	unsigned long err = 0;
246
247	err = security_mmap_addr(0);
248	if (err) {
249		/*
250		 * vm86 cannot virtualize the address space, so vm86 users
251		 * need to manage the low 1MB themselves using mmap.  Given
252		 * that BIOS places important data in the first page, vm86
253		 * is essentially useless if mmap_min_addr != 0.  DOSEMU,
254		 * for example, won't even bother trying to use vm86 if it
255		 * can't map a page at virtual address 0.
256		 *
257		 * To reduce the available kernel attack surface, simply
258		 * disallow vm86(old) for users who cannot mmap at va 0.
259		 *
260		 * The implementation of security_mmap_addr will allow
261		 * suitably privileged users to map va 0 even if
262		 * vm.mmap_min_addr is set above 0, and we want this
263		 * behavior for vm86 as well, as it ensures that legacy
264		 * tools like vbetool will not fail just because of
265		 * vm.mmap_min_addr.
266		 */
267		pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
268			     current->comm, task_pid_nr(current),
269			     from_kuid_munged(&init_user_ns, current_uid()));
270		return -EPERM;
271	}
272
273	if (!vm86) {
274		if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
275			return -ENOMEM;
276		tsk->thread.vm86 = vm86;
277	}
278	if (vm86->saved_sp0)
279		return -EPERM;
280
281	if (!access_ok(user_vm86, plus ?
282		       sizeof(struct vm86_struct) :
283		       sizeof(struct vm86plus_struct)))
284		return -EFAULT;
285
286	memset(&vm86regs, 0, sizeof(vm86regs));
287	get_user_try {
288		unsigned short seg;
289		get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
290		get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
291		get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
292		get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
293		get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
294		get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
295		get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
296		get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
297		get_user_ex(seg, &user_vm86->regs.cs);
298		vm86regs.pt.cs = seg;
299		get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
300		get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
301		get_user_ex(seg, &user_vm86->regs.ss);
302		vm86regs.pt.ss = seg;
303		get_user_ex(vm86regs.es, &user_vm86->regs.es);
304		get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
305		get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
306		get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
307
308		get_user_ex(vm86->flags, &user_vm86->flags);
309		get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
310		get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
311	} get_user_catch(err);
312	if (err)
313		return err;
314
315	if (copy_from_user(&vm86->int_revectored,
316			   &user_vm86->int_revectored,
317			   sizeof(struct revectored_struct)))
318		return -EFAULT;
319	if (copy_from_user(&vm86->int21_revectored,
320			   &user_vm86->int21_revectored,
321			   sizeof(struct revectored_struct)))
322		return -EFAULT;
323	if (plus) {
324		if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
325				   sizeof(struct vm86plus_info_struct)))
326			return -EFAULT;
327		vm86->vm86plus.is_vm86pus = 1;
328	} else
329		memset(&vm86->vm86plus, 0,
330		       sizeof(struct vm86plus_info_struct));
331
332	memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
333	vm86->user_vm86 = user_vm86;
334
335/*
336 * The flags register is also special: we cannot trust that the user
337 * has set it up safely, so this makes sure interrupt etc flags are
338 * inherited from protected mode.
339 */
340	VEFLAGS = vm86regs.pt.flags;
341	vm86regs.pt.flags &= SAFE_MASK;
342	vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
343	vm86regs.pt.flags |= X86_VM_MASK;
344
345	vm86regs.pt.orig_ax = regs->orig_ax;
346
347	switch (vm86->cpu_type) {
348	case CPU_286:
349		vm86->veflags_mask = 0;
350		break;
351	case CPU_386:
352		vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
353		break;
354	case CPU_486:
355		vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
356		break;
357	default:
358		vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
359		break;
360	}
361
362/*
363 * Save old state
364 */
365	vm86->saved_sp0 = tsk->thread.sp0;
366	lazy_save_gs(vm86->regs32.gs);
367
 
368	/* make room for real-mode segments */
369	preempt_disable();
370	tsk->thread.sp0 += 16;
371
372	if (boot_cpu_has(X86_FEATURE_SEP)) {
373		tsk->thread.sysenter_cs = 0;
374		refresh_sysenter_cs(&tsk->thread);
375	}
376
377	update_task_stack(tsk);
378	preempt_enable();
379
380	if (vm86->flags & VM86_SCREEN_BITMAP)
381		mark_screen_rdonly(tsk->mm);
382
383	memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
384	force_iret();
385	return regs->ax;
386}
387
388static inline void set_IF(struct kernel_vm86_regs *regs)
389{
390	VEFLAGS |= X86_EFLAGS_VIF;
391}
392
393static inline void clear_IF(struct kernel_vm86_regs *regs)
394{
395	VEFLAGS &= ~X86_EFLAGS_VIF;
396}
397
398static inline void clear_TF(struct kernel_vm86_regs *regs)
399{
400	regs->pt.flags &= ~X86_EFLAGS_TF;
401}
402
403static inline void clear_AC(struct kernel_vm86_regs *regs)
404{
405	regs->pt.flags &= ~X86_EFLAGS_AC;
406}
407
408/*
409 * It is correct to call set_IF(regs) from the set_vflags_*
410 * functions. However someone forgot to call clear_IF(regs)
411 * in the opposite case.
412 * After the command sequence CLI PUSHF STI POPF you should
413 * end up with interrupts disabled, but you ended up with
414 * interrupts enabled.
415 *  ( I was testing my own changes, but the only bug I
416 *    could find was in a function I had not changed. )
417 * [KD]
418 */
419
420static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
421{
422	set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
423	set_flags(regs->pt.flags, flags, SAFE_MASK);
424	if (flags & X86_EFLAGS_IF)
425		set_IF(regs);
426	else
427		clear_IF(regs);
428}
429
430static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
431{
432	set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
433	set_flags(regs->pt.flags, flags, SAFE_MASK);
434	if (flags & X86_EFLAGS_IF)
435		set_IF(regs);
436	else
437		clear_IF(regs);
438}
439
440static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
441{
442	unsigned long flags = regs->pt.flags & RETURN_MASK;
443
444	if (VEFLAGS & X86_EFLAGS_VIF)
445		flags |= X86_EFLAGS_IF;
446	flags |= X86_EFLAGS_IOPL;
447	return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
448}
449
450static inline int is_revectored(int nr, struct revectored_struct *bitmap)
451{
452	return test_bit(nr, bitmap->__map);
 
 
 
453}
454
455#define val_byte(val, n) (((__u8 *)&val)[n])
456
457#define pushb(base, ptr, val, err_label) \
458	do { \
459		__u8 __val = val; \
460		ptr--; \
461		if (put_user(__val, base + ptr) < 0) \
462			goto err_label; \
463	} while (0)
464
465#define pushw(base, ptr, val, err_label) \
466	do { \
467		__u16 __val = val; \
468		ptr--; \
469		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
470			goto err_label; \
471		ptr--; \
472		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
473			goto err_label; \
474	} while (0)
475
476#define pushl(base, ptr, val, err_label) \
477	do { \
478		__u32 __val = val; \
479		ptr--; \
480		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
481			goto err_label; \
482		ptr--; \
483		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
484			goto err_label; \
485		ptr--; \
486		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
487			goto err_label; \
488		ptr--; \
489		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
490			goto err_label; \
491	} while (0)
492
493#define popb(base, ptr, err_label) \
494	({ \
495		__u8 __res; \
496		if (get_user(__res, base + ptr) < 0) \
497			goto err_label; \
498		ptr++; \
499		__res; \
500	})
501
502#define popw(base, ptr, err_label) \
503	({ \
504		__u16 __res; \
505		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
506			goto err_label; \
507		ptr++; \
508		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
509			goto err_label; \
510		ptr++; \
511		__res; \
512	})
513
514#define popl(base, ptr, err_label) \
515	({ \
516		__u32 __res; \
517		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
518			goto err_label; \
519		ptr++; \
520		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
521			goto err_label; \
522		ptr++; \
523		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
524			goto err_label; \
525		ptr++; \
526		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
527			goto err_label; \
528		ptr++; \
529		__res; \
530	})
531
532/* There are so many possible reasons for this function to return
533 * VM86_INTx, so adding another doesn't bother me. We can expect
534 * userspace programs to be able to handle it. (Getting a problem
535 * in userspace is always better than an Oops anyway.) [KD]
536 */
537static void do_int(struct kernel_vm86_regs *regs, int i,
538    unsigned char __user *ssp, unsigned short sp)
539{
540	unsigned long __user *intr_ptr;
541	unsigned long segoffs;
542	struct vm86 *vm86 = current->thread.vm86;
543
544	if (regs->pt.cs == BIOSSEG)
545		goto cannot_handle;
546	if (is_revectored(i, &vm86->int_revectored))
547		goto cannot_handle;
548	if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
549		goto cannot_handle;
550	intr_ptr = (unsigned long __user *) (i << 2);
551	if (get_user(segoffs, intr_ptr))
552		goto cannot_handle;
553	if ((segoffs >> 16) == BIOSSEG)
554		goto cannot_handle;
555	pushw(ssp, sp, get_vflags(regs), cannot_handle);
556	pushw(ssp, sp, regs->pt.cs, cannot_handle);
557	pushw(ssp, sp, IP(regs), cannot_handle);
558	regs->pt.cs = segoffs >> 16;
559	SP(regs) -= 6;
560	IP(regs) = segoffs & 0xffff;
561	clear_TF(regs);
562	clear_IF(regs);
563	clear_AC(regs);
564	return;
565
566cannot_handle:
567	save_v86_state(regs, VM86_INTx + (i << 8));
568}
569
570int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
571{
572	struct vm86 *vm86 = current->thread.vm86;
573
574	if (vm86->vm86plus.is_vm86pus) {
575		if ((trapno == 3) || (trapno == 1)) {
576			save_v86_state(regs, VM86_TRAP + (trapno << 8));
577			return 0;
578		}
579		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
580		return 0;
581	}
582	if (trapno != 1)
583		return 1; /* we let this handle by the calling routine */
584	current->thread.trap_nr = trapno;
585	current->thread.error_code = error_code;
586	force_sig(SIGTRAP);
587	return 0;
588}
589
590void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
591{
592	unsigned char opcode;
593	unsigned char __user *csp;
594	unsigned char __user *ssp;
595	unsigned short ip, sp, orig_flags;
596	int data32, pref_done;
597	struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
598
599#define CHECK_IF_IN_TRAP \
600	if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
601		newflags |= X86_EFLAGS_TF
602
603	orig_flags = *(unsigned short *)&regs->pt.flags;
604
605	csp = (unsigned char __user *) (regs->pt.cs << 4);
606	ssp = (unsigned char __user *) (regs->pt.ss << 4);
607	sp = SP(regs);
608	ip = IP(regs);
609
610	data32 = 0;
611	pref_done = 0;
612	do {
613		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
614		case 0x66:      /* 32-bit data */     data32 = 1; break;
615		case 0x67:      /* 32-bit address */  break;
616		case 0x2e:      /* CS */              break;
617		case 0x3e:      /* DS */              break;
618		case 0x26:      /* ES */              break;
619		case 0x36:      /* SS */              break;
620		case 0x65:      /* GS */              break;
621		case 0x64:      /* FS */              break;
622		case 0xf2:      /* repnz */       break;
623		case 0xf3:      /* rep */             break;
624		default: pref_done = 1;
625		}
626	} while (!pref_done);
627
628	switch (opcode) {
629
630	/* pushf */
631	case 0x9c:
632		if (data32) {
633			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
634			SP(regs) -= 4;
635		} else {
636			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
637			SP(regs) -= 2;
638		}
639		IP(regs) = ip;
640		goto vm86_fault_return;
641
642	/* popf */
643	case 0x9d:
644		{
645		unsigned long newflags;
646		if (data32) {
647			newflags = popl(ssp, sp, simulate_sigsegv);
648			SP(regs) += 4;
649		} else {
650			newflags = popw(ssp, sp, simulate_sigsegv);
651			SP(regs) += 2;
652		}
653		IP(regs) = ip;
654		CHECK_IF_IN_TRAP;
655		if (data32)
656			set_vflags_long(newflags, regs);
657		else
658			set_vflags_short(newflags, regs);
659
660		goto check_vip;
661		}
662
663	/* int xx */
664	case 0xcd: {
665		int intno = popb(csp, ip, simulate_sigsegv);
666		IP(regs) = ip;
667		if (vmpi->vm86dbg_active) {
668			if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
669				save_v86_state(regs, VM86_INTx + (intno << 8));
670				return;
671			}
672		}
673		do_int(regs, intno, ssp, sp);
674		return;
675	}
676
677	/* iret */
678	case 0xcf:
679		{
680		unsigned long newip;
681		unsigned long newcs;
682		unsigned long newflags;
683		if (data32) {
684			newip = popl(ssp, sp, simulate_sigsegv);
685			newcs = popl(ssp, sp, simulate_sigsegv);
686			newflags = popl(ssp, sp, simulate_sigsegv);
687			SP(regs) += 12;
688		} else {
689			newip = popw(ssp, sp, simulate_sigsegv);
690			newcs = popw(ssp, sp, simulate_sigsegv);
691			newflags = popw(ssp, sp, simulate_sigsegv);
692			SP(regs) += 6;
693		}
694		IP(regs) = newip;
695		regs->pt.cs = newcs;
696		CHECK_IF_IN_TRAP;
697		if (data32) {
698			set_vflags_long(newflags, regs);
699		} else {
700			set_vflags_short(newflags, regs);
701		}
702		goto check_vip;
703		}
704
705	/* cli */
706	case 0xfa:
707		IP(regs) = ip;
708		clear_IF(regs);
709		goto vm86_fault_return;
710
711	/* sti */
712	/*
713	 * Damn. This is incorrect: the 'sti' instruction should actually
714	 * enable interrupts after the /next/ instruction. Not good.
715	 *
716	 * Probably needs some horsing around with the TF flag. Aiee..
717	 */
718	case 0xfb:
719		IP(regs) = ip;
720		set_IF(regs);
721		goto check_vip;
722
723	default:
724		save_v86_state(regs, VM86_UNKNOWN);
725	}
726
727	return;
728
729check_vip:
730	if ((VEFLAGS & (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) ==
731	    (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) {
732		save_v86_state(regs, VM86_STI);
733		return;
734	}
735
736vm86_fault_return:
737	if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
738		save_v86_state(regs, VM86_PICRETURN);
739		return;
740	}
741	if (orig_flags & X86_EFLAGS_TF)
742		handle_vm86_trap(regs, 0, X86_TRAP_DB);
743	return;
744
745simulate_sigsegv:
746	/* FIXME: After a long discussion with Stas we finally
747	 *        agreed, that this is wrong. Here we should
748	 *        really send a SIGSEGV to the user program.
749	 *        But how do we create the correct context? We
750	 *        are inside a general protection fault handler
751	 *        and has just returned from a page fault handler.
752	 *        The correct context for the signal handler
753	 *        should be a mixture of the two, but how do we
754	 *        get the information? [KD]
755	 */
756	save_v86_state(regs, VM86_UNKNOWN);
757}
758
759/* ---------------- vm86 special IRQ passing stuff ----------------- */
760
761#define VM86_IRQNAME		"vm86irq"
762
763static struct vm86_irqs {
764	struct task_struct *tsk;
765	int sig;
766} vm86_irqs[16];
767
768static DEFINE_SPINLOCK(irqbits_lock);
769static int irqbits;
770
771#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
772	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
773	| (1 << SIGUNUSED))
774
775static irqreturn_t irq_handler(int intno, void *dev_id)
776{
777	int irq_bit;
778	unsigned long flags;
779
780	spin_lock_irqsave(&irqbits_lock, flags);
781	irq_bit = 1 << intno;
782	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
783		goto out;
784	irqbits |= irq_bit;
785	if (vm86_irqs[intno].sig)
786		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
787	/*
788	 * IRQ will be re-enabled when user asks for the irq (whether
789	 * polling or as a result of the signal)
790	 */
791	disable_irq_nosync(intno);
792	spin_unlock_irqrestore(&irqbits_lock, flags);
793	return IRQ_HANDLED;
794
795out:
796	spin_unlock_irqrestore(&irqbits_lock, flags);
797	return IRQ_NONE;
798}
799
800static inline void free_vm86_irq(int irqnumber)
801{
802	unsigned long flags;
803
804	free_irq(irqnumber, NULL);
805	vm86_irqs[irqnumber].tsk = NULL;
806
807	spin_lock_irqsave(&irqbits_lock, flags);
808	irqbits &= ~(1 << irqnumber);
809	spin_unlock_irqrestore(&irqbits_lock, flags);
810}
811
812void release_vm86_irqs(struct task_struct *task)
813{
814	int i;
815	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
816	    if (vm86_irqs[i].tsk == task)
817		free_vm86_irq(i);
818}
819
820static inline int get_and_reset_irq(int irqnumber)
821{
822	int bit;
823	unsigned long flags;
824	int ret = 0;
825
826	if (invalid_vm86_irq(irqnumber)) return 0;
827	if (vm86_irqs[irqnumber].tsk != current) return 0;
828	spin_lock_irqsave(&irqbits_lock, flags);
829	bit = irqbits & (1 << irqnumber);
830	irqbits &= ~bit;
831	if (bit) {
832		enable_irq(irqnumber);
833		ret = 1;
834	}
835
836	spin_unlock_irqrestore(&irqbits_lock, flags);
837	return ret;
838}
839
840
841static int do_vm86_irq_handling(int subfunction, int irqnumber)
842{
843	int ret;
844	switch (subfunction) {
845		case VM86_GET_AND_RESET_IRQ: {
846			return get_and_reset_irq(irqnumber);
847		}
848		case VM86_GET_IRQ_BITS: {
849			return irqbits;
850		}
851		case VM86_REQUEST_IRQ: {
852			int sig = irqnumber >> 8;
853			int irq = irqnumber & 255;
854			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
855			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
856			if (invalid_vm86_irq(irq)) return -EPERM;
857			if (vm86_irqs[irq].tsk) return -EPERM;
858			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
859			if (ret) return ret;
860			vm86_irqs[irq].sig = sig;
861			vm86_irqs[irq].tsk = current;
862			return irq;
863		}
864		case  VM86_FREE_IRQ: {
865			if (invalid_vm86_irq(irqnumber)) return -EPERM;
866			if (!vm86_irqs[irqnumber].tsk) return 0;
867			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
868			free_vm86_irq(irqnumber);
869			return 0;
870		}
871	}
872	return -EINVAL;
873}
874
v4.6
 
  1/*
  2 *  Copyright (C) 1994  Linus Torvalds
  3 *
  4 *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
  5 *                stack - Manfred Spraul <manfred@colorfullife.com>
  6 *
  7 *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
  8 *                them correctly. Now the emulation will be in a
  9 *                consistent state after stackfaults - Kasper Dupont
 10 *                <kasperd@daimi.au.dk>
 11 *
 12 *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
 13 *                <kasperd@daimi.au.dk>
 14 *
 15 *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
 16 *                caused by Kasper Dupont's changes - Stas Sergeev
 17 *
 18 *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
 19 *                Kasper Dupont <kasperd@daimi.au.dk>
 20 *
 21 *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
 22 *                Kasper Dupont <kasperd@daimi.au.dk>
 23 *
 24 *   9 apr 2002 - Changed stack access macros to jump to a label
 25 *                instead of returning to userspace. This simplifies
 26 *                do_int, and is needed by handle_vm6_fault. Kasper
 27 *                Dupont <kasperd@daimi.au.dk>
 28 *
 29 */
 30
 31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 32
 33#include <linux/capability.h>
 34#include <linux/errno.h>
 35#include <linux/interrupt.h>
 36#include <linux/syscalls.h>
 37#include <linux/sched.h>
 
 38#include <linux/kernel.h>
 39#include <linux/signal.h>
 40#include <linux/string.h>
 41#include <linux/mm.h>
 42#include <linux/smp.h>
 43#include <linux/highmem.h>
 44#include <linux/ptrace.h>
 45#include <linux/audit.h>
 46#include <linux/stddef.h>
 47#include <linux/slab.h>
 48#include <linux/security.h>
 49
 50#include <asm/uaccess.h>
 51#include <asm/io.h>
 52#include <asm/tlbflush.h>
 53#include <asm/irq.h>
 54#include <asm/traps.h>
 55#include <asm/vm86.h>
 
 56
 57/*
 58 * Known problems:
 59 *
 60 * Interrupt handling is not guaranteed:
 61 * - a real x86 will disable all interrupts for one instruction
 62 *   after a "mov ss,xx" to make stack handling atomic even without
 63 *   the 'lss' instruction. We can't guarantee this in v86 mode,
 64 *   as the next instruction might result in a page fault or similar.
 65 * - a real x86 will have interrupts disabled for one instruction
 66 *   past the 'sti' that enables them. We don't bother with all the
 67 *   details yet.
 68 *
 69 * Let's hope these problems do not actually matter for anything.
 70 */
 71
 72
 73/*
 74 * 8- and 16-bit register defines..
 75 */
 76#define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
 77#define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
 78#define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
 79#define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
 80
 81/*
 82 * virtual flags (16 and 32-bit versions)
 83 */
 84#define VFLAGS	(*(unsigned short *)&(current->thread.vm86->veflags))
 85#define VEFLAGS	(current->thread.vm86->veflags)
 86
 87#define set_flags(X, new, mask) \
 88((X) = ((X) & ~(mask)) | ((new) & (mask)))
 89
 90#define SAFE_MASK	(0xDD5)
 91#define RETURN_MASK	(0xDFF)
 92
 93void save_v86_state(struct kernel_vm86_regs *regs, int retval)
 94{
 95	struct tss_struct *tss;
 96	struct task_struct *tsk = current;
 97	struct vm86plus_struct __user *user;
 98	struct vm86 *vm86 = current->thread.vm86;
 99	long err = 0;
100
101	/*
102	 * This gets called from entry.S with interrupts disabled, but
103	 * from process context. Enable interrupts here, before trying
104	 * to access user space.
105	 */
106	local_irq_enable();
107
108	if (!vm86 || !vm86->user_vm86) {
109		pr_alert("no user_vm86: BAD\n");
110		do_exit(SIGSEGV);
111	}
112	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
113	user = vm86->user_vm86;
114
115	if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
116		       sizeof(struct vm86plus_struct) :
117		       sizeof(struct vm86_struct))) {
118		pr_alert("could not access userspace vm86 info\n");
119		do_exit(SIGSEGV);
120	}
121
122	put_user_try {
123		put_user_ex(regs->pt.bx, &user->regs.ebx);
124		put_user_ex(regs->pt.cx, &user->regs.ecx);
125		put_user_ex(regs->pt.dx, &user->regs.edx);
126		put_user_ex(regs->pt.si, &user->regs.esi);
127		put_user_ex(regs->pt.di, &user->regs.edi);
128		put_user_ex(regs->pt.bp, &user->regs.ebp);
129		put_user_ex(regs->pt.ax, &user->regs.eax);
130		put_user_ex(regs->pt.ip, &user->regs.eip);
131		put_user_ex(regs->pt.cs, &user->regs.cs);
132		put_user_ex(regs->pt.flags, &user->regs.eflags);
133		put_user_ex(regs->pt.sp, &user->regs.esp);
134		put_user_ex(regs->pt.ss, &user->regs.ss);
135		put_user_ex(regs->es, &user->regs.es);
136		put_user_ex(regs->ds, &user->regs.ds);
137		put_user_ex(regs->fs, &user->regs.fs);
138		put_user_ex(regs->gs, &user->regs.gs);
139
140		put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
141	} put_user_catch(err);
142	if (err) {
143		pr_alert("could not access userspace vm86 info\n");
144		do_exit(SIGSEGV);
145	}
146
147	tss = &per_cpu(cpu_tss, get_cpu());
148	tsk->thread.sp0 = vm86->saved_sp0;
149	tsk->thread.sysenter_cs = __KERNEL_CS;
150	load_sp0(tss, &tsk->thread);
 
151	vm86->saved_sp0 = 0;
152	put_cpu();
153
154	memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
155
156	lazy_load_gs(vm86->regs32.gs);
157
158	regs->pt.ax = retval;
159}
160
161static void mark_screen_rdonly(struct mm_struct *mm)
162{
 
 
163	pgd_t *pgd;
 
164	pud_t *pud;
165	pmd_t *pmd;
166	pte_t *pte;
167	spinlock_t *ptl;
168	int i;
169
170	down_write(&mm->mmap_sem);
171	pgd = pgd_offset(mm, 0xA0000);
172	if (pgd_none_or_clear_bad(pgd))
173		goto out;
174	pud = pud_offset(pgd, 0xA0000);
 
 
 
175	if (pud_none_or_clear_bad(pud))
176		goto out;
177	pmd = pmd_offset(pud, 0xA0000);
178
179	if (pmd_trans_huge(*pmd)) {
180		struct vm_area_struct *vma = find_vma(mm, 0xA0000);
181		split_huge_pmd(vma, pmd, 0xA0000);
182	}
183	if (pmd_none_or_clear_bad(pmd))
184		goto out;
185	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
186	for (i = 0; i < 32; i++) {
187		if (pte_present(*pte))
188			set_pte(pte, pte_wrprotect(*pte));
189		pte++;
190	}
191	pte_unmap_unlock(pte, ptl);
192out:
193	up_write(&mm->mmap_sem);
194	flush_tlb();
195}
196
197
198
199static int do_vm86_irq_handling(int subfunction, int irqnumber);
200static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
201
202SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
203{
204	return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
205}
206
207
208SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
209{
210	switch (cmd) {
211	case VM86_REQUEST_IRQ:
212	case VM86_FREE_IRQ:
213	case VM86_GET_IRQ_BITS:
214	case VM86_GET_AND_RESET_IRQ:
215		return do_vm86_irq_handling(cmd, (int)arg);
216	case VM86_PLUS_INSTALL_CHECK:
217		/*
218		 * NOTE: on old vm86 stuff this will return the error
219		 *  from access_ok(), because the subfunction is
220		 *  interpreted as (invalid) address to vm86_struct.
221		 *  So the installation check works.
222		 */
223		return 0;
224	}
225
226	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
227	return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
228}
229
230
231static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
232{
233	struct tss_struct *tss;
234	struct task_struct *tsk = current;
235	struct vm86 *vm86 = tsk->thread.vm86;
236	struct kernel_vm86_regs vm86regs;
237	struct pt_regs *regs = current_pt_regs();
238	unsigned long err = 0;
239
240	err = security_mmap_addr(0);
241	if (err) {
242		/*
243		 * vm86 cannot virtualize the address space, so vm86 users
244		 * need to manage the low 1MB themselves using mmap.  Given
245		 * that BIOS places important data in the first page, vm86
246		 * is essentially useless if mmap_min_addr != 0.  DOSEMU,
247		 * for example, won't even bother trying to use vm86 if it
248		 * can't map a page at virtual address 0.
249		 *
250		 * To reduce the available kernel attack surface, simply
251		 * disallow vm86(old) for users who cannot mmap at va 0.
252		 *
253		 * The implementation of security_mmap_addr will allow
254		 * suitably privileged users to map va 0 even if
255		 * vm.mmap_min_addr is set above 0, and we want this
256		 * behavior for vm86 as well, as it ensures that legacy
257		 * tools like vbetool will not fail just because of
258		 * vm.mmap_min_addr.
259		 */
260		pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
261			     current->comm, task_pid_nr(current),
262			     from_kuid_munged(&init_user_ns, current_uid()));
263		return -EPERM;
264	}
265
266	if (!vm86) {
267		if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
268			return -ENOMEM;
269		tsk->thread.vm86 = vm86;
270	}
271	if (vm86->saved_sp0)
272		return -EPERM;
273
274	if (!access_ok(VERIFY_READ, user_vm86, plus ?
275		       sizeof(struct vm86_struct) :
276		       sizeof(struct vm86plus_struct)))
277		return -EFAULT;
278
279	memset(&vm86regs, 0, sizeof(vm86regs));
280	get_user_try {
281		unsigned short seg;
282		get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
283		get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
284		get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
285		get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
286		get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
287		get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
288		get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
289		get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
290		get_user_ex(seg, &user_vm86->regs.cs);
291		vm86regs.pt.cs = seg;
292		get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
293		get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
294		get_user_ex(seg, &user_vm86->regs.ss);
295		vm86regs.pt.ss = seg;
296		get_user_ex(vm86regs.es, &user_vm86->regs.es);
297		get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
298		get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
299		get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
300
301		get_user_ex(vm86->flags, &user_vm86->flags);
302		get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
303		get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
304	} get_user_catch(err);
305	if (err)
306		return err;
307
308	if (copy_from_user(&vm86->int_revectored,
309			   &user_vm86->int_revectored,
310			   sizeof(struct revectored_struct)))
311		return -EFAULT;
312	if (copy_from_user(&vm86->int21_revectored,
313			   &user_vm86->int21_revectored,
314			   sizeof(struct revectored_struct)))
315		return -EFAULT;
316	if (plus) {
317		if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
318				   sizeof(struct vm86plus_info_struct)))
319			return -EFAULT;
320		vm86->vm86plus.is_vm86pus = 1;
321	} else
322		memset(&vm86->vm86plus, 0,
323		       sizeof(struct vm86plus_info_struct));
324
325	memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
326	vm86->user_vm86 = user_vm86;
327
328/*
329 * The flags register is also special: we cannot trust that the user
330 * has set it up safely, so this makes sure interrupt etc flags are
331 * inherited from protected mode.
332 */
333	VEFLAGS = vm86regs.pt.flags;
334	vm86regs.pt.flags &= SAFE_MASK;
335	vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
336	vm86regs.pt.flags |= X86_VM_MASK;
337
338	vm86regs.pt.orig_ax = regs->orig_ax;
339
340	switch (vm86->cpu_type) {
341	case CPU_286:
342		vm86->veflags_mask = 0;
343		break;
344	case CPU_386:
345		vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
346		break;
347	case CPU_486:
348		vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
349		break;
350	default:
351		vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
352		break;
353	}
354
355/*
356 * Save old state
357 */
358	vm86->saved_sp0 = tsk->thread.sp0;
359	lazy_save_gs(vm86->regs32.gs);
360
361	tss = &per_cpu(cpu_tss, get_cpu());
362	/* make room for real-mode segments */
 
363	tsk->thread.sp0 += 16;
364
365	if (static_cpu_has(X86_FEATURE_SEP))
366		tsk->thread.sysenter_cs = 0;
 
 
367
368	load_sp0(tss, &tsk->thread);
369	put_cpu();
370
371	if (vm86->flags & VM86_SCREEN_BITMAP)
372		mark_screen_rdonly(tsk->mm);
373
374	memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
375	force_iret();
376	return regs->ax;
377}
378
379static inline void set_IF(struct kernel_vm86_regs *regs)
380{
381	VEFLAGS |= X86_EFLAGS_VIF;
382}
383
384static inline void clear_IF(struct kernel_vm86_regs *regs)
385{
386	VEFLAGS &= ~X86_EFLAGS_VIF;
387}
388
389static inline void clear_TF(struct kernel_vm86_regs *regs)
390{
391	regs->pt.flags &= ~X86_EFLAGS_TF;
392}
393
394static inline void clear_AC(struct kernel_vm86_regs *regs)
395{
396	regs->pt.flags &= ~X86_EFLAGS_AC;
397}
398
399/*
400 * It is correct to call set_IF(regs) from the set_vflags_*
401 * functions. However someone forgot to call clear_IF(regs)
402 * in the opposite case.
403 * After the command sequence CLI PUSHF STI POPF you should
404 * end up with interrupts disabled, but you ended up with
405 * interrupts enabled.
406 *  ( I was testing my own changes, but the only bug I
407 *    could find was in a function I had not changed. )
408 * [KD]
409 */
410
411static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
412{
413	set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
414	set_flags(regs->pt.flags, flags, SAFE_MASK);
415	if (flags & X86_EFLAGS_IF)
416		set_IF(regs);
417	else
418		clear_IF(regs);
419}
420
421static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
422{
423	set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
424	set_flags(regs->pt.flags, flags, SAFE_MASK);
425	if (flags & X86_EFLAGS_IF)
426		set_IF(regs);
427	else
428		clear_IF(regs);
429}
430
431static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
432{
433	unsigned long flags = regs->pt.flags & RETURN_MASK;
434
435	if (VEFLAGS & X86_EFLAGS_VIF)
436		flags |= X86_EFLAGS_IF;
437	flags |= X86_EFLAGS_IOPL;
438	return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
439}
440
441static inline int is_revectored(int nr, struct revectored_struct *bitmap)
442{
443	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
444		:"=r" (nr)
445		:"m" (*bitmap), "r" (nr));
446	return nr;
447}
448
449#define val_byte(val, n) (((__u8 *)&val)[n])
450
451#define pushb(base, ptr, val, err_label) \
452	do { \
453		__u8 __val = val; \
454		ptr--; \
455		if (put_user(__val, base + ptr) < 0) \
456			goto err_label; \
457	} while (0)
458
459#define pushw(base, ptr, val, err_label) \
460	do { \
461		__u16 __val = val; \
462		ptr--; \
463		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
464			goto err_label; \
465		ptr--; \
466		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
467			goto err_label; \
468	} while (0)
469
470#define pushl(base, ptr, val, err_label) \
471	do { \
472		__u32 __val = val; \
473		ptr--; \
474		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
475			goto err_label; \
476		ptr--; \
477		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
478			goto err_label; \
479		ptr--; \
480		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
481			goto err_label; \
482		ptr--; \
483		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
484			goto err_label; \
485	} while (0)
486
487#define popb(base, ptr, err_label) \
488	({ \
489		__u8 __res; \
490		if (get_user(__res, base + ptr) < 0) \
491			goto err_label; \
492		ptr++; \
493		__res; \
494	})
495
496#define popw(base, ptr, err_label) \
497	({ \
498		__u16 __res; \
499		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
500			goto err_label; \
501		ptr++; \
502		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
503			goto err_label; \
504		ptr++; \
505		__res; \
506	})
507
508#define popl(base, ptr, err_label) \
509	({ \
510		__u32 __res; \
511		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
512			goto err_label; \
513		ptr++; \
514		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
515			goto err_label; \
516		ptr++; \
517		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
518			goto err_label; \
519		ptr++; \
520		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
521			goto err_label; \
522		ptr++; \
523		__res; \
524	})
525
526/* There are so many possible reasons for this function to return
527 * VM86_INTx, so adding another doesn't bother me. We can expect
528 * userspace programs to be able to handle it. (Getting a problem
529 * in userspace is always better than an Oops anyway.) [KD]
530 */
531static void do_int(struct kernel_vm86_regs *regs, int i,
532    unsigned char __user *ssp, unsigned short sp)
533{
534	unsigned long __user *intr_ptr;
535	unsigned long segoffs;
536	struct vm86 *vm86 = current->thread.vm86;
537
538	if (regs->pt.cs == BIOSSEG)
539		goto cannot_handle;
540	if (is_revectored(i, &vm86->int_revectored))
541		goto cannot_handle;
542	if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
543		goto cannot_handle;
544	intr_ptr = (unsigned long __user *) (i << 2);
545	if (get_user(segoffs, intr_ptr))
546		goto cannot_handle;
547	if ((segoffs >> 16) == BIOSSEG)
548		goto cannot_handle;
549	pushw(ssp, sp, get_vflags(regs), cannot_handle);
550	pushw(ssp, sp, regs->pt.cs, cannot_handle);
551	pushw(ssp, sp, IP(regs), cannot_handle);
552	regs->pt.cs = segoffs >> 16;
553	SP(regs) -= 6;
554	IP(regs) = segoffs & 0xffff;
555	clear_TF(regs);
556	clear_IF(regs);
557	clear_AC(regs);
558	return;
559
560cannot_handle:
561	save_v86_state(regs, VM86_INTx + (i << 8));
562}
563
564int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
565{
566	struct vm86 *vm86 = current->thread.vm86;
567
568	if (vm86->vm86plus.is_vm86pus) {
569		if ((trapno == 3) || (trapno == 1)) {
570			save_v86_state(regs, VM86_TRAP + (trapno << 8));
571			return 0;
572		}
573		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
574		return 0;
575	}
576	if (trapno != 1)
577		return 1; /* we let this handle by the calling routine */
578	current->thread.trap_nr = trapno;
579	current->thread.error_code = error_code;
580	force_sig(SIGTRAP, current);
581	return 0;
582}
583
584void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
585{
586	unsigned char opcode;
587	unsigned char __user *csp;
588	unsigned char __user *ssp;
589	unsigned short ip, sp, orig_flags;
590	int data32, pref_done;
591	struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
592
593#define CHECK_IF_IN_TRAP \
594	if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
595		newflags |= X86_EFLAGS_TF
596
597	orig_flags = *(unsigned short *)&regs->pt.flags;
598
599	csp = (unsigned char __user *) (regs->pt.cs << 4);
600	ssp = (unsigned char __user *) (regs->pt.ss << 4);
601	sp = SP(regs);
602	ip = IP(regs);
603
604	data32 = 0;
605	pref_done = 0;
606	do {
607		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
608		case 0x66:      /* 32-bit data */     data32 = 1; break;
609		case 0x67:      /* 32-bit address */  break;
610		case 0x2e:      /* CS */              break;
611		case 0x3e:      /* DS */              break;
612		case 0x26:      /* ES */              break;
613		case 0x36:      /* SS */              break;
614		case 0x65:      /* GS */              break;
615		case 0x64:      /* FS */              break;
616		case 0xf2:      /* repnz */       break;
617		case 0xf3:      /* rep */             break;
618		default: pref_done = 1;
619		}
620	} while (!pref_done);
621
622	switch (opcode) {
623
624	/* pushf */
625	case 0x9c:
626		if (data32) {
627			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
628			SP(regs) -= 4;
629		} else {
630			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
631			SP(regs) -= 2;
632		}
633		IP(regs) = ip;
634		goto vm86_fault_return;
635
636	/* popf */
637	case 0x9d:
638		{
639		unsigned long newflags;
640		if (data32) {
641			newflags = popl(ssp, sp, simulate_sigsegv);
642			SP(regs) += 4;
643		} else {
644			newflags = popw(ssp, sp, simulate_sigsegv);
645			SP(regs) += 2;
646		}
647		IP(regs) = ip;
648		CHECK_IF_IN_TRAP;
649		if (data32)
650			set_vflags_long(newflags, regs);
651		else
652			set_vflags_short(newflags, regs);
653
654		goto check_vip;
655		}
656
657	/* int xx */
658	case 0xcd: {
659		int intno = popb(csp, ip, simulate_sigsegv);
660		IP(regs) = ip;
661		if (vmpi->vm86dbg_active) {
662			if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
663				save_v86_state(regs, VM86_INTx + (intno << 8));
664				return;
665			}
666		}
667		do_int(regs, intno, ssp, sp);
668		return;
669	}
670
671	/* iret */
672	case 0xcf:
673		{
674		unsigned long newip;
675		unsigned long newcs;
676		unsigned long newflags;
677		if (data32) {
678			newip = popl(ssp, sp, simulate_sigsegv);
679			newcs = popl(ssp, sp, simulate_sigsegv);
680			newflags = popl(ssp, sp, simulate_sigsegv);
681			SP(regs) += 12;
682		} else {
683			newip = popw(ssp, sp, simulate_sigsegv);
684			newcs = popw(ssp, sp, simulate_sigsegv);
685			newflags = popw(ssp, sp, simulate_sigsegv);
686			SP(regs) += 6;
687		}
688		IP(regs) = newip;
689		regs->pt.cs = newcs;
690		CHECK_IF_IN_TRAP;
691		if (data32) {
692			set_vflags_long(newflags, regs);
693		} else {
694			set_vflags_short(newflags, regs);
695		}
696		goto check_vip;
697		}
698
699	/* cli */
700	case 0xfa:
701		IP(regs) = ip;
702		clear_IF(regs);
703		goto vm86_fault_return;
704
705	/* sti */
706	/*
707	 * Damn. This is incorrect: the 'sti' instruction should actually
708	 * enable interrupts after the /next/ instruction. Not good.
709	 *
710	 * Probably needs some horsing around with the TF flag. Aiee..
711	 */
712	case 0xfb:
713		IP(regs) = ip;
714		set_IF(regs);
715		goto check_vip;
716
717	default:
718		save_v86_state(regs, VM86_UNKNOWN);
719	}
720
721	return;
722
723check_vip:
724	if (VEFLAGS & X86_EFLAGS_VIP) {
 
725		save_v86_state(regs, VM86_STI);
726		return;
727	}
728
729vm86_fault_return:
730	if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
731		save_v86_state(regs, VM86_PICRETURN);
732		return;
733	}
734	if (orig_flags & X86_EFLAGS_TF)
735		handle_vm86_trap(regs, 0, X86_TRAP_DB);
736	return;
737
738simulate_sigsegv:
739	/* FIXME: After a long discussion with Stas we finally
740	 *        agreed, that this is wrong. Here we should
741	 *        really send a SIGSEGV to the user program.
742	 *        But how do we create the correct context? We
743	 *        are inside a general protection fault handler
744	 *        and has just returned from a page fault handler.
745	 *        The correct context for the signal handler
746	 *        should be a mixture of the two, but how do we
747	 *        get the information? [KD]
748	 */
749	save_v86_state(regs, VM86_UNKNOWN);
750}
751
752/* ---------------- vm86 special IRQ passing stuff ----------------- */
753
754#define VM86_IRQNAME		"vm86irq"
755
756static struct vm86_irqs {
757	struct task_struct *tsk;
758	int sig;
759} vm86_irqs[16];
760
761static DEFINE_SPINLOCK(irqbits_lock);
762static int irqbits;
763
764#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
765	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
766	| (1 << SIGUNUSED))
767
768static irqreturn_t irq_handler(int intno, void *dev_id)
769{
770	int irq_bit;
771	unsigned long flags;
772
773	spin_lock_irqsave(&irqbits_lock, flags);
774	irq_bit = 1 << intno;
775	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
776		goto out;
777	irqbits |= irq_bit;
778	if (vm86_irqs[intno].sig)
779		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
780	/*
781	 * IRQ will be re-enabled when user asks for the irq (whether
782	 * polling or as a result of the signal)
783	 */
784	disable_irq_nosync(intno);
785	spin_unlock_irqrestore(&irqbits_lock, flags);
786	return IRQ_HANDLED;
787
788out:
789	spin_unlock_irqrestore(&irqbits_lock, flags);
790	return IRQ_NONE;
791}
792
793static inline void free_vm86_irq(int irqnumber)
794{
795	unsigned long flags;
796
797	free_irq(irqnumber, NULL);
798	vm86_irqs[irqnumber].tsk = NULL;
799
800	spin_lock_irqsave(&irqbits_lock, flags);
801	irqbits &= ~(1 << irqnumber);
802	spin_unlock_irqrestore(&irqbits_lock, flags);
803}
804
805void release_vm86_irqs(struct task_struct *task)
806{
807	int i;
808	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
809	    if (vm86_irqs[i].tsk == task)
810		free_vm86_irq(i);
811}
812
813static inline int get_and_reset_irq(int irqnumber)
814{
815	int bit;
816	unsigned long flags;
817	int ret = 0;
818
819	if (invalid_vm86_irq(irqnumber)) return 0;
820	if (vm86_irqs[irqnumber].tsk != current) return 0;
821	spin_lock_irqsave(&irqbits_lock, flags);
822	bit = irqbits & (1 << irqnumber);
823	irqbits &= ~bit;
824	if (bit) {
825		enable_irq(irqnumber);
826		ret = 1;
827	}
828
829	spin_unlock_irqrestore(&irqbits_lock, flags);
830	return ret;
831}
832
833
834static int do_vm86_irq_handling(int subfunction, int irqnumber)
835{
836	int ret;
837	switch (subfunction) {
838		case VM86_GET_AND_RESET_IRQ: {
839			return get_and_reset_irq(irqnumber);
840		}
841		case VM86_GET_IRQ_BITS: {
842			return irqbits;
843		}
844		case VM86_REQUEST_IRQ: {
845			int sig = irqnumber >> 8;
846			int irq = irqnumber & 255;
847			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
848			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
849			if (invalid_vm86_irq(irq)) return -EPERM;
850			if (vm86_irqs[irq].tsk) return -EPERM;
851			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
852			if (ret) return ret;
853			vm86_irqs[irq].sig = sig;
854			vm86_irqs[irq].tsk = current;
855			return irq;
856		}
857		case  VM86_FREE_IRQ: {
858			if (invalid_vm86_irq(irqnumber)) return -EPERM;
859			if (!vm86_irqs[irqnumber].tsk) return 0;
860			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
861			free_vm86_irq(irqnumber);
862			return 0;
863		}
864	}
865	return -EINVAL;
866}
867