Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 */
4
5/*
6 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
7 * Copyright (C) 2000-2001 VERITAS Software Corporation.
8 * Copyright (C) 2002 Andi Kleen, SuSE Labs
9 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
10 * Copyright (C) 2007 MontaVista Software, Inc.
11 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
12 */
13/****************************************************************************
14 * Contributor: Lake Stevens Instrument Division$
15 * Written by: Glenn Engel $
16 * Updated by: Amit Kale<akale@veritas.com>
17 * Updated by: Tom Rini <trini@kernel.crashing.org>
18 * Updated by: Jason Wessel <jason.wessel@windriver.com>
19 * Modified for 386 by Jim Kingdon, Cygnus Support.
20 * Origianl kgdb, compatibility with 2.1.xx kernel by
21 * David Grothe <dave@gcom.com>
22 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
23 * X86_64 changes from Andi Kleen's patch merged by Jim Houston
24 */
25#include <linux/spinlock.h>
26#include <linux/kdebug.h>
27#include <linux/string.h>
28#include <linux/kernel.h>
29#include <linux/ptrace.h>
30#include <linux/sched.h>
31#include <linux/delay.h>
32#include <linux/kgdb.h>
33#include <linux/smp.h>
34#include <linux/nmi.h>
35#include <linux/hw_breakpoint.h>
36#include <linux/uaccess.h>
37#include <linux/memory.h>
38
39#include <asm/text-patching.h>
40#include <asm/debugreg.h>
41#include <asm/apicdef.h>
42#include <asm/apic.h>
43#include <asm/nmi.h>
44#include <asm/switch_to.h>
45
46struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
47{
48#ifdef CONFIG_X86_32
49 { "ax", 4, offsetof(struct pt_regs, ax) },
50 { "cx", 4, offsetof(struct pt_regs, cx) },
51 { "dx", 4, offsetof(struct pt_regs, dx) },
52 { "bx", 4, offsetof(struct pt_regs, bx) },
53 { "sp", 4, offsetof(struct pt_regs, sp) },
54 { "bp", 4, offsetof(struct pt_regs, bp) },
55 { "si", 4, offsetof(struct pt_regs, si) },
56 { "di", 4, offsetof(struct pt_regs, di) },
57 { "ip", 4, offsetof(struct pt_regs, ip) },
58 { "flags", 4, offsetof(struct pt_regs, flags) },
59 { "cs", 4, offsetof(struct pt_regs, cs) },
60 { "ss", 4, offsetof(struct pt_regs, ss) },
61 { "ds", 4, offsetof(struct pt_regs, ds) },
62 { "es", 4, offsetof(struct pt_regs, es) },
63#else
64 { "ax", 8, offsetof(struct pt_regs, ax) },
65 { "bx", 8, offsetof(struct pt_regs, bx) },
66 { "cx", 8, offsetof(struct pt_regs, cx) },
67 { "dx", 8, offsetof(struct pt_regs, dx) },
68 { "si", 8, offsetof(struct pt_regs, si) },
69 { "di", 8, offsetof(struct pt_regs, di) },
70 { "bp", 8, offsetof(struct pt_regs, bp) },
71 { "sp", 8, offsetof(struct pt_regs, sp) },
72 { "r8", 8, offsetof(struct pt_regs, r8) },
73 { "r9", 8, offsetof(struct pt_regs, r9) },
74 { "r10", 8, offsetof(struct pt_regs, r10) },
75 { "r11", 8, offsetof(struct pt_regs, r11) },
76 { "r12", 8, offsetof(struct pt_regs, r12) },
77 { "r13", 8, offsetof(struct pt_regs, r13) },
78 { "r14", 8, offsetof(struct pt_regs, r14) },
79 { "r15", 8, offsetof(struct pt_regs, r15) },
80 { "ip", 8, offsetof(struct pt_regs, ip) },
81 { "flags", 4, offsetof(struct pt_regs, flags) },
82 { "cs", 4, offsetof(struct pt_regs, cs) },
83 { "ss", 4, offsetof(struct pt_regs, ss) },
84 { "ds", 4, -1 },
85 { "es", 4, -1 },
86#endif
87 { "fs", 4, -1 },
88 { "gs", 4, -1 },
89};
90
91int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
92{
93 if (
94#ifdef CONFIG_X86_32
95 regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
96#endif
97 regno == GDB_SP || regno == GDB_ORIG_AX)
98 return 0;
99
100 if (dbg_reg_def[regno].offset != -1)
101 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
102 dbg_reg_def[regno].size);
103 return 0;
104}
105
106char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
107{
108 if (regno == GDB_ORIG_AX) {
109 memcpy(mem, ®s->orig_ax, sizeof(regs->orig_ax));
110 return "orig_ax";
111 }
112 if (regno >= DBG_MAX_REG_NUM || regno < 0)
113 return NULL;
114
115 if (dbg_reg_def[regno].offset != -1)
116 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
117 dbg_reg_def[regno].size);
118
119#ifdef CONFIG_X86_32
120 switch (regno) {
121 case GDB_GS:
122 case GDB_FS:
123 *(unsigned long *)mem = 0xFFFF;
124 break;
125 }
126#endif
127 return dbg_reg_def[regno].name;
128}
129
130/**
131 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
132 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
133 * @p: The &struct task_struct of the desired process.
134 *
135 * Convert the register values of the sleeping process in @p to
136 * the format that GDB expects.
137 * This function is called when kgdb does not have access to the
138 * &struct pt_regs and therefore it should fill the gdb registers
139 * @gdb_regs with what has been saved in &struct thread_struct
140 * thread field during switch_to.
141 */
142void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
143{
144#ifndef CONFIG_X86_32
145 u32 *gdb_regs32 = (u32 *)gdb_regs;
146#endif
147 gdb_regs[GDB_AX] = 0;
148 gdb_regs[GDB_BX] = 0;
149 gdb_regs[GDB_CX] = 0;
150 gdb_regs[GDB_DX] = 0;
151 gdb_regs[GDB_SI] = 0;
152 gdb_regs[GDB_DI] = 0;
153 gdb_regs[GDB_BP] = ((struct inactive_task_frame *)p->thread.sp)->bp;
154#ifdef CONFIG_X86_32
155 gdb_regs[GDB_DS] = __KERNEL_DS;
156 gdb_regs[GDB_ES] = __KERNEL_DS;
157 gdb_regs[GDB_PS] = 0;
158 gdb_regs[GDB_CS] = __KERNEL_CS;
159 gdb_regs[GDB_SS] = __KERNEL_DS;
160 gdb_regs[GDB_FS] = 0xFFFF;
161 gdb_regs[GDB_GS] = 0xFFFF;
162#else
163 gdb_regs32[GDB_PS] = 0;
164 gdb_regs32[GDB_CS] = __KERNEL_CS;
165 gdb_regs32[GDB_SS] = __KERNEL_DS;
166 gdb_regs[GDB_R8] = 0;
167 gdb_regs[GDB_R9] = 0;
168 gdb_regs[GDB_R10] = 0;
169 gdb_regs[GDB_R11] = 0;
170 gdb_regs[GDB_R12] = 0;
171 gdb_regs[GDB_R13] = 0;
172 gdb_regs[GDB_R14] = 0;
173 gdb_regs[GDB_R15] = 0;
174#endif
175 gdb_regs[GDB_PC] = 0;
176 gdb_regs[GDB_SP] = p->thread.sp;
177}
178
179static struct hw_breakpoint {
180 unsigned enabled;
181 unsigned long addr;
182 int len;
183 int type;
184 struct perf_event * __percpu *pev;
185} breakinfo[HBP_NUM];
186
187static unsigned long early_dr7;
188
189static void kgdb_correct_hw_break(void)
190{
191 int breakno;
192
193 for (breakno = 0; breakno < HBP_NUM; breakno++) {
194 struct perf_event *bp;
195 struct arch_hw_breakpoint *info;
196 int val;
197 int cpu = raw_smp_processor_id();
198 if (!breakinfo[breakno].enabled)
199 continue;
200 if (dbg_is_early) {
201 set_debugreg(breakinfo[breakno].addr, breakno);
202 early_dr7 |= encode_dr7(breakno,
203 breakinfo[breakno].len,
204 breakinfo[breakno].type);
205 set_debugreg(early_dr7, 7);
206 continue;
207 }
208 bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
209 info = counter_arch_bp(bp);
210 if (bp->attr.disabled != 1)
211 continue;
212 bp->attr.bp_addr = breakinfo[breakno].addr;
213 bp->attr.bp_len = breakinfo[breakno].len;
214 bp->attr.bp_type = breakinfo[breakno].type;
215 info->address = breakinfo[breakno].addr;
216 info->len = breakinfo[breakno].len;
217 info->type = breakinfo[breakno].type;
218 val = arch_install_hw_breakpoint(bp);
219 if (!val)
220 bp->attr.disabled = 0;
221 }
222 if (!dbg_is_early)
223 hw_breakpoint_restore();
224}
225
226static int hw_break_reserve_slot(int breakno)
227{
228 int cpu;
229 int cnt = 0;
230 struct perf_event **pevent;
231
232 if (dbg_is_early)
233 return 0;
234
235 for_each_online_cpu(cpu) {
236 cnt++;
237 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
238 if (dbg_reserve_bp_slot(*pevent))
239 goto fail;
240 }
241
242 return 0;
243
244fail:
245 for_each_online_cpu(cpu) {
246 cnt--;
247 if (!cnt)
248 break;
249 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
250 dbg_release_bp_slot(*pevent);
251 }
252 return -1;
253}
254
255static int hw_break_release_slot(int breakno)
256{
257 struct perf_event **pevent;
258 int cpu;
259
260 if (dbg_is_early)
261 return 0;
262
263 for_each_online_cpu(cpu) {
264 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
265 if (dbg_release_bp_slot(*pevent))
266 /*
267 * The debugger is responsible for handing the retry on
268 * remove failure.
269 */
270 return -1;
271 }
272 return 0;
273}
274
275static int
276kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
277{
278 int i;
279
280 for (i = 0; i < HBP_NUM; i++)
281 if (breakinfo[i].addr == addr && breakinfo[i].enabled)
282 break;
283 if (i == HBP_NUM)
284 return -1;
285
286 if (hw_break_release_slot(i)) {
287 printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
288 return -1;
289 }
290 breakinfo[i].enabled = 0;
291
292 return 0;
293}
294
295static void kgdb_remove_all_hw_break(void)
296{
297 int i;
298 int cpu = raw_smp_processor_id();
299 struct perf_event *bp;
300
301 for (i = 0; i < HBP_NUM; i++) {
302 if (!breakinfo[i].enabled)
303 continue;
304 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
305 if (!bp->attr.disabled) {
306 arch_uninstall_hw_breakpoint(bp);
307 bp->attr.disabled = 1;
308 continue;
309 }
310 if (dbg_is_early)
311 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
312 breakinfo[i].type);
313 else if (hw_break_release_slot(i))
314 printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
315 breakinfo[i].addr);
316 breakinfo[i].enabled = 0;
317 }
318}
319
320static int
321kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
322{
323 int i;
324
325 for (i = 0; i < HBP_NUM; i++)
326 if (!breakinfo[i].enabled)
327 break;
328 if (i == HBP_NUM)
329 return -1;
330
331 switch (bptype) {
332 case BP_HARDWARE_BREAKPOINT:
333 len = 1;
334 breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
335 break;
336 case BP_WRITE_WATCHPOINT:
337 breakinfo[i].type = X86_BREAKPOINT_WRITE;
338 break;
339 case BP_ACCESS_WATCHPOINT:
340 breakinfo[i].type = X86_BREAKPOINT_RW;
341 break;
342 default:
343 return -1;
344 }
345 switch (len) {
346 case 1:
347 breakinfo[i].len = X86_BREAKPOINT_LEN_1;
348 break;
349 case 2:
350 breakinfo[i].len = X86_BREAKPOINT_LEN_2;
351 break;
352 case 4:
353 breakinfo[i].len = X86_BREAKPOINT_LEN_4;
354 break;
355#ifdef CONFIG_X86_64
356 case 8:
357 breakinfo[i].len = X86_BREAKPOINT_LEN_8;
358 break;
359#endif
360 default:
361 return -1;
362 }
363 breakinfo[i].addr = addr;
364 if (hw_break_reserve_slot(i)) {
365 breakinfo[i].addr = 0;
366 return -1;
367 }
368 breakinfo[i].enabled = 1;
369
370 return 0;
371}
372
373/**
374 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
375 * @regs: Current &struct pt_regs.
376 *
377 * This function will be called if the particular architecture must
378 * disable hardware debugging while it is processing gdb packets or
379 * handling exception.
380 */
381static void kgdb_disable_hw_debug(struct pt_regs *regs)
382{
383 int i;
384 int cpu = raw_smp_processor_id();
385 struct perf_event *bp;
386
387 /* Disable hardware debugging while we are in kgdb: */
388 set_debugreg(0UL, 7);
389 for (i = 0; i < HBP_NUM; i++) {
390 if (!breakinfo[i].enabled)
391 continue;
392 if (dbg_is_early) {
393 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
394 breakinfo[i].type);
395 continue;
396 }
397 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
398 if (bp->attr.disabled == 1)
399 continue;
400 arch_uninstall_hw_breakpoint(bp);
401 bp->attr.disabled = 1;
402 }
403}
404
405#ifdef CONFIG_SMP
406/**
407 * kgdb_roundup_cpus - Get other CPUs into a holding pattern
408 *
409 * On SMP systems, we need to get the attention of the other CPUs
410 * and get them be in a known state. This should do what is needed
411 * to get the other CPUs to call kgdb_wait(). Note that on some arches,
412 * the NMI approach is not used for rounding up all the CPUs. For example,
413 * in case of MIPS, smp_call_function() is used to roundup CPUs.
414 *
415 * On non-SMP systems, this is not called.
416 */
417void kgdb_roundup_cpus(void)
418{
419 apic_send_IPI_allbutself(NMI_VECTOR);
420}
421#endif
422
423/**
424 * kgdb_arch_handle_exception - Handle architecture specific GDB packets.
425 * @e_vector: The error vector of the exception that happened.
426 * @signo: The signal number of the exception that happened.
427 * @err_code: The error code of the exception that happened.
428 * @remcomInBuffer: The buffer of the packet we have read.
429 * @remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
430 * @linux_regs: The &struct pt_regs of the current process.
431 *
432 * This function MUST handle the 'c' and 's' command packets,
433 * as well packets to set / remove a hardware breakpoint, if used.
434 * If there are additional packets which the hardware needs to handle,
435 * they are handled here. The code should return -1 if it wants to
436 * process more packets, and a %0 or %1 if it wants to exit from the
437 * kgdb callback.
438 */
439int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
440 char *remcomInBuffer, char *remcomOutBuffer,
441 struct pt_regs *linux_regs)
442{
443 unsigned long addr;
444 char *ptr;
445
446 switch (remcomInBuffer[0]) {
447 case 'c':
448 case 's':
449 /* try to read optional parameter, pc unchanged if no parm */
450 ptr = &remcomInBuffer[1];
451 if (kgdb_hex2long(&ptr, &addr))
452 linux_regs->ip = addr;
453 /* fall through */
454 case 'D':
455 case 'k':
456 /* clear the trace bit */
457 linux_regs->flags &= ~X86_EFLAGS_TF;
458 atomic_set(&kgdb_cpu_doing_single_step, -1);
459
460 /* set the trace bit if we're stepping */
461 if (remcomInBuffer[0] == 's') {
462 linux_regs->flags |= X86_EFLAGS_TF;
463 atomic_set(&kgdb_cpu_doing_single_step,
464 raw_smp_processor_id());
465 }
466
467 return 0;
468 }
469
470 /* this means that we do not want to exit from the handler: */
471 return -1;
472}
473
474static inline int
475single_step_cont(struct pt_regs *regs, struct die_args *args)
476{
477 /*
478 * Single step exception from kernel space to user space so
479 * eat the exception and continue the process:
480 */
481 printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
482 "resuming...\n");
483 kgdb_arch_handle_exception(args->trapnr, args->signr,
484 args->err, "c", "", regs);
485 /*
486 * Reset the BS bit in dr6 (pointed by args->err) to
487 * denote completion of processing
488 */
489 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
490
491 return NOTIFY_STOP;
492}
493
494static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
495
496static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
497{
498 int cpu;
499
500 switch (cmd) {
501 case NMI_LOCAL:
502 if (atomic_read(&kgdb_active) != -1) {
503 /* KGDB CPU roundup */
504 cpu = raw_smp_processor_id();
505 kgdb_nmicallback(cpu, regs);
506 set_bit(cpu, was_in_debug_nmi);
507 touch_nmi_watchdog();
508
509 return NMI_HANDLED;
510 }
511 break;
512
513 case NMI_UNKNOWN:
514 cpu = raw_smp_processor_id();
515
516 if (__test_and_clear_bit(cpu, was_in_debug_nmi))
517 return NMI_HANDLED;
518
519 break;
520 default:
521 /* do nothing */
522 break;
523 }
524 return NMI_DONE;
525}
526
527static int __kgdb_notify(struct die_args *args, unsigned long cmd)
528{
529 struct pt_regs *regs = args->regs;
530
531 switch (cmd) {
532 case DIE_DEBUG:
533 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
534 if (user_mode(regs))
535 return single_step_cont(regs, args);
536 break;
537 } else if (test_thread_flag(TIF_SINGLESTEP))
538 /* This means a user thread is single stepping
539 * a system call which should be ignored
540 */
541 return NOTIFY_DONE;
542 /* fall through */
543 default:
544 if (user_mode(regs))
545 return NOTIFY_DONE;
546 }
547
548 if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
549 return NOTIFY_DONE;
550
551 /* Must touch watchdog before return to normal operation */
552 touch_nmi_watchdog();
553 return NOTIFY_STOP;
554}
555
556int kgdb_ll_trap(int cmd, const char *str,
557 struct pt_regs *regs, long err, int trap, int sig)
558{
559 struct die_args args = {
560 .regs = regs,
561 .str = str,
562 .err = err,
563 .trapnr = trap,
564 .signr = sig,
565
566 };
567
568 if (!kgdb_io_module_registered)
569 return NOTIFY_DONE;
570
571 return __kgdb_notify(&args, cmd);
572}
573
574static int
575kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
576{
577 unsigned long flags;
578 int ret;
579
580 local_irq_save(flags);
581 ret = __kgdb_notify(ptr, cmd);
582 local_irq_restore(flags);
583
584 return ret;
585}
586
587static struct notifier_block kgdb_notifier = {
588 .notifier_call = kgdb_notify,
589};
590
591/**
592 * kgdb_arch_init - Perform any architecture specific initialization.
593 *
594 * This function will handle the initialization of any architecture
595 * specific callbacks.
596 */
597int kgdb_arch_init(void)
598{
599 int retval;
600
601 retval = register_die_notifier(&kgdb_notifier);
602 if (retval)
603 goto out;
604
605 retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
606 0, "kgdb");
607 if (retval)
608 goto out1;
609
610 retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
611 0, "kgdb");
612
613 if (retval)
614 goto out2;
615
616 return retval;
617
618out2:
619 unregister_nmi_handler(NMI_LOCAL, "kgdb");
620out1:
621 unregister_die_notifier(&kgdb_notifier);
622out:
623 return retval;
624}
625
626static void kgdb_hw_overflow_handler(struct perf_event *event,
627 struct perf_sample_data *data, struct pt_regs *regs)
628{
629 struct task_struct *tsk = current;
630 int i;
631
632 for (i = 0; i < 4; i++)
633 if (breakinfo[i].enabled)
634 tsk->thread.debugreg6 |= (DR_TRAP0 << i);
635}
636
637void kgdb_arch_late(void)
638{
639 int i, cpu;
640 struct perf_event_attr attr;
641 struct perf_event **pevent;
642
643 /*
644 * Pre-allocate the hw breakpoint structions in the non-atomic
645 * portion of kgdb because this operation requires mutexs to
646 * complete.
647 */
648 hw_breakpoint_init(&attr);
649 attr.bp_addr = (unsigned long)kgdb_arch_init;
650 attr.bp_len = HW_BREAKPOINT_LEN_1;
651 attr.bp_type = HW_BREAKPOINT_W;
652 attr.disabled = 1;
653 for (i = 0; i < HBP_NUM; i++) {
654 if (breakinfo[i].pev)
655 continue;
656 breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
657 if (IS_ERR((void * __force)breakinfo[i].pev)) {
658 printk(KERN_ERR "kgdb: Could not allocate hw"
659 "breakpoints\nDisabling the kernel debugger\n");
660 breakinfo[i].pev = NULL;
661 kgdb_arch_exit();
662 return;
663 }
664 for_each_online_cpu(cpu) {
665 pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
666 pevent[0]->hw.sample_period = 1;
667 pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
668 if (pevent[0]->destroy != NULL) {
669 pevent[0]->destroy = NULL;
670 release_bp_slot(*pevent);
671 }
672 }
673 }
674}
675
676/**
677 * kgdb_arch_exit - Perform any architecture specific uninitalization.
678 *
679 * This function will handle the uninitalization of any architecture
680 * specific callbacks, for dynamic registration and unregistration.
681 */
682void kgdb_arch_exit(void)
683{
684 int i;
685 for (i = 0; i < 4; i++) {
686 if (breakinfo[i].pev) {
687 unregister_wide_hw_breakpoint(breakinfo[i].pev);
688 breakinfo[i].pev = NULL;
689 }
690 }
691 unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
692 unregister_nmi_handler(NMI_LOCAL, "kgdb");
693 unregister_die_notifier(&kgdb_notifier);
694}
695
696/**
697 *
698 * kgdb_skipexception - Bail out of KGDB when we've been triggered.
699 * @exception: Exception vector number
700 * @regs: Current &struct pt_regs.
701 *
702 * On some architectures we need to skip a breakpoint exception when
703 * it occurs after a breakpoint has been removed.
704 *
705 * Skip an int3 exception when it occurs after a breakpoint has been
706 * removed. Backtrack eip by 1 since the int3 would have caused it to
707 * increment by 1.
708 */
709int kgdb_skipexception(int exception, struct pt_regs *regs)
710{
711 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
712 regs->ip -= 1;
713 return 1;
714 }
715 return 0;
716}
717
718unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
719{
720 if (exception == 3)
721 return instruction_pointer(regs) - 1;
722 return instruction_pointer(regs);
723}
724
725void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
726{
727 regs->ip = ip;
728}
729
730int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
731{
732 int err;
733
734 bpt->type = BP_BREAKPOINT;
735 err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
736 BREAK_INSTR_SIZE);
737 if (err)
738 return err;
739 err = probe_kernel_write((char *)bpt->bpt_addr,
740 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
741 if (!err)
742 return err;
743 /*
744 * It is safe to call text_poke_kgdb() because normal kernel execution
745 * is stopped on all cores, so long as the text_mutex is not locked.
746 */
747 if (mutex_is_locked(&text_mutex))
748 return -EBUSY;
749 text_poke_kgdb((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
750 BREAK_INSTR_SIZE);
751 bpt->type = BP_POKE_BREAKPOINT;
752
753 return 0;
754}
755
756int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
757{
758 if (bpt->type != BP_POKE_BREAKPOINT)
759 goto knl_write;
760 /*
761 * It is safe to call text_poke_kgdb() because normal kernel execution
762 * is stopped on all cores, so long as the text_mutex is not locked.
763 */
764 if (mutex_is_locked(&text_mutex))
765 goto knl_write;
766 text_poke_kgdb((void *)bpt->bpt_addr, bpt->saved_instr,
767 BREAK_INSTR_SIZE);
768 return 0;
769
770knl_write:
771 return probe_kernel_write((char *)bpt->bpt_addr,
772 (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
773}
774
775const struct kgdb_arch arch_kgdb_ops = {
776 /* Breakpoint instruction: */
777 .gdb_bpt_instr = { 0xcc },
778 .flags = KGDB_HW_BREAKPOINT,
779 .set_hw_breakpoint = kgdb_set_hw_break,
780 .remove_hw_breakpoint = kgdb_remove_hw_break,
781 .disable_hw_break = kgdb_disable_hw_debug,
782 .remove_all_hw_break = kgdb_remove_all_hw_break,
783 .correct_hw_break = kgdb_correct_hw_break,
784};
1/*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 *
12 */
13
14/*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */
22/****************************************************************************
23 * Contributor: Lake Stevens Instrument Division$
24 * Written by: Glenn Engel $
25 * Updated by: Amit Kale<akale@veritas.com>
26 * Updated by: Tom Rini <trini@kernel.crashing.org>
27 * Updated by: Jason Wessel <jason.wessel@windriver.com>
28 * Modified for 386 by Jim Kingdon, Cygnus Support.
29 * Origianl kgdb, compatibility with 2.1.xx kernel by
30 * David Grothe <dave@gcom.com>
31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */
34#include <linux/spinlock.h>
35#include <linux/kdebug.h>
36#include <linux/string.h>
37#include <linux/kernel.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/delay.h>
41#include <linux/kgdb.h>
42#include <linux/smp.h>
43#include <linux/nmi.h>
44#include <linux/hw_breakpoint.h>
45#include <linux/uaccess.h>
46#include <linux/memory.h>
47
48#include <asm/debugreg.h>
49#include <asm/apicdef.h>
50#include <asm/apic.h>
51#include <asm/nmi.h>
52
53struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
54{
55#ifdef CONFIG_X86_32
56 { "ax", 4, offsetof(struct pt_regs, ax) },
57 { "cx", 4, offsetof(struct pt_regs, cx) },
58 { "dx", 4, offsetof(struct pt_regs, dx) },
59 { "bx", 4, offsetof(struct pt_regs, bx) },
60 { "sp", 4, offsetof(struct pt_regs, sp) },
61 { "bp", 4, offsetof(struct pt_regs, bp) },
62 { "si", 4, offsetof(struct pt_regs, si) },
63 { "di", 4, offsetof(struct pt_regs, di) },
64 { "ip", 4, offsetof(struct pt_regs, ip) },
65 { "flags", 4, offsetof(struct pt_regs, flags) },
66 { "cs", 4, offsetof(struct pt_regs, cs) },
67 { "ss", 4, offsetof(struct pt_regs, ss) },
68 { "ds", 4, offsetof(struct pt_regs, ds) },
69 { "es", 4, offsetof(struct pt_regs, es) },
70#else
71 { "ax", 8, offsetof(struct pt_regs, ax) },
72 { "bx", 8, offsetof(struct pt_regs, bx) },
73 { "cx", 8, offsetof(struct pt_regs, cx) },
74 { "dx", 8, offsetof(struct pt_regs, dx) },
75 { "si", 8, offsetof(struct pt_regs, si) },
76 { "di", 8, offsetof(struct pt_regs, di) },
77 { "bp", 8, offsetof(struct pt_regs, bp) },
78 { "sp", 8, offsetof(struct pt_regs, sp) },
79 { "r8", 8, offsetof(struct pt_regs, r8) },
80 { "r9", 8, offsetof(struct pt_regs, r9) },
81 { "r10", 8, offsetof(struct pt_regs, r10) },
82 { "r11", 8, offsetof(struct pt_regs, r11) },
83 { "r12", 8, offsetof(struct pt_regs, r12) },
84 { "r13", 8, offsetof(struct pt_regs, r13) },
85 { "r14", 8, offsetof(struct pt_regs, r14) },
86 { "r15", 8, offsetof(struct pt_regs, r15) },
87 { "ip", 8, offsetof(struct pt_regs, ip) },
88 { "flags", 4, offsetof(struct pt_regs, flags) },
89 { "cs", 4, offsetof(struct pt_regs, cs) },
90 { "ss", 4, offsetof(struct pt_regs, ss) },
91 { "ds", 4, -1 },
92 { "es", 4, -1 },
93#endif
94 { "fs", 4, -1 },
95 { "gs", 4, -1 },
96};
97
98int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
99{
100 if (
101#ifdef CONFIG_X86_32
102 regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
103#endif
104 regno == GDB_SP || regno == GDB_ORIG_AX)
105 return 0;
106
107 if (dbg_reg_def[regno].offset != -1)
108 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
109 dbg_reg_def[regno].size);
110 return 0;
111}
112
113char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
114{
115 if (regno == GDB_ORIG_AX) {
116 memcpy(mem, ®s->orig_ax, sizeof(regs->orig_ax));
117 return "orig_ax";
118 }
119 if (regno >= DBG_MAX_REG_NUM || regno < 0)
120 return NULL;
121
122 if (dbg_reg_def[regno].offset != -1)
123 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
124 dbg_reg_def[regno].size);
125
126#ifdef CONFIG_X86_32
127 switch (regno) {
128 case GDB_SS:
129 if (!user_mode(regs))
130 *(unsigned long *)mem = __KERNEL_DS;
131 break;
132 case GDB_SP:
133 if (!user_mode(regs))
134 *(unsigned long *)mem = kernel_stack_pointer(regs);
135 break;
136 case GDB_GS:
137 case GDB_FS:
138 *(unsigned long *)mem = 0xFFFF;
139 break;
140 }
141#endif
142 return dbg_reg_def[regno].name;
143}
144
145/**
146 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
147 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
148 * @p: The &struct task_struct of the desired process.
149 *
150 * Convert the register values of the sleeping process in @p to
151 * the format that GDB expects.
152 * This function is called when kgdb does not have access to the
153 * &struct pt_regs and therefore it should fill the gdb registers
154 * @gdb_regs with what has been saved in &struct thread_struct
155 * thread field during switch_to.
156 */
157void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
158{
159#ifndef CONFIG_X86_32
160 u32 *gdb_regs32 = (u32 *)gdb_regs;
161#endif
162 gdb_regs[GDB_AX] = 0;
163 gdb_regs[GDB_BX] = 0;
164 gdb_regs[GDB_CX] = 0;
165 gdb_regs[GDB_DX] = 0;
166 gdb_regs[GDB_SI] = 0;
167 gdb_regs[GDB_DI] = 0;
168 gdb_regs[GDB_BP] = *(unsigned long *)p->thread.sp;
169#ifdef CONFIG_X86_32
170 gdb_regs[GDB_DS] = __KERNEL_DS;
171 gdb_regs[GDB_ES] = __KERNEL_DS;
172 gdb_regs[GDB_PS] = 0;
173 gdb_regs[GDB_CS] = __KERNEL_CS;
174 gdb_regs[GDB_PC] = p->thread.ip;
175 gdb_regs[GDB_SS] = __KERNEL_DS;
176 gdb_regs[GDB_FS] = 0xFFFF;
177 gdb_regs[GDB_GS] = 0xFFFF;
178#else
179 gdb_regs32[GDB_PS] = *(unsigned long *)(p->thread.sp + 8);
180 gdb_regs32[GDB_CS] = __KERNEL_CS;
181 gdb_regs32[GDB_SS] = __KERNEL_DS;
182 gdb_regs[GDB_PC] = 0;
183 gdb_regs[GDB_R8] = 0;
184 gdb_regs[GDB_R9] = 0;
185 gdb_regs[GDB_R10] = 0;
186 gdb_regs[GDB_R11] = 0;
187 gdb_regs[GDB_R12] = 0;
188 gdb_regs[GDB_R13] = 0;
189 gdb_regs[GDB_R14] = 0;
190 gdb_regs[GDB_R15] = 0;
191#endif
192 gdb_regs[GDB_SP] = p->thread.sp;
193}
194
195static struct hw_breakpoint {
196 unsigned enabled;
197 unsigned long addr;
198 int len;
199 int type;
200 struct perf_event * __percpu *pev;
201} breakinfo[HBP_NUM];
202
203static unsigned long early_dr7;
204
205static void kgdb_correct_hw_break(void)
206{
207 int breakno;
208
209 for (breakno = 0; breakno < HBP_NUM; breakno++) {
210 struct perf_event *bp;
211 struct arch_hw_breakpoint *info;
212 int val;
213 int cpu = raw_smp_processor_id();
214 if (!breakinfo[breakno].enabled)
215 continue;
216 if (dbg_is_early) {
217 set_debugreg(breakinfo[breakno].addr, breakno);
218 early_dr7 |= encode_dr7(breakno,
219 breakinfo[breakno].len,
220 breakinfo[breakno].type);
221 set_debugreg(early_dr7, 7);
222 continue;
223 }
224 bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
225 info = counter_arch_bp(bp);
226 if (bp->attr.disabled != 1)
227 continue;
228 bp->attr.bp_addr = breakinfo[breakno].addr;
229 bp->attr.bp_len = breakinfo[breakno].len;
230 bp->attr.bp_type = breakinfo[breakno].type;
231 info->address = breakinfo[breakno].addr;
232 info->len = breakinfo[breakno].len;
233 info->type = breakinfo[breakno].type;
234 val = arch_install_hw_breakpoint(bp);
235 if (!val)
236 bp->attr.disabled = 0;
237 }
238 if (!dbg_is_early)
239 hw_breakpoint_restore();
240}
241
242static int hw_break_reserve_slot(int breakno)
243{
244 int cpu;
245 int cnt = 0;
246 struct perf_event **pevent;
247
248 if (dbg_is_early)
249 return 0;
250
251 for_each_online_cpu(cpu) {
252 cnt++;
253 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
254 if (dbg_reserve_bp_slot(*pevent))
255 goto fail;
256 }
257
258 return 0;
259
260fail:
261 for_each_online_cpu(cpu) {
262 cnt--;
263 if (!cnt)
264 break;
265 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
266 dbg_release_bp_slot(*pevent);
267 }
268 return -1;
269}
270
271static int hw_break_release_slot(int breakno)
272{
273 struct perf_event **pevent;
274 int cpu;
275
276 if (dbg_is_early)
277 return 0;
278
279 for_each_online_cpu(cpu) {
280 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
281 if (dbg_release_bp_slot(*pevent))
282 /*
283 * The debugger is responsible for handing the retry on
284 * remove failure.
285 */
286 return -1;
287 }
288 return 0;
289}
290
291static int
292kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
293{
294 int i;
295
296 for (i = 0; i < HBP_NUM; i++)
297 if (breakinfo[i].addr == addr && breakinfo[i].enabled)
298 break;
299 if (i == HBP_NUM)
300 return -1;
301
302 if (hw_break_release_slot(i)) {
303 printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
304 return -1;
305 }
306 breakinfo[i].enabled = 0;
307
308 return 0;
309}
310
311static void kgdb_remove_all_hw_break(void)
312{
313 int i;
314 int cpu = raw_smp_processor_id();
315 struct perf_event *bp;
316
317 for (i = 0; i < HBP_NUM; i++) {
318 if (!breakinfo[i].enabled)
319 continue;
320 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
321 if (!bp->attr.disabled) {
322 arch_uninstall_hw_breakpoint(bp);
323 bp->attr.disabled = 1;
324 continue;
325 }
326 if (dbg_is_early)
327 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
328 breakinfo[i].type);
329 else if (hw_break_release_slot(i))
330 printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
331 breakinfo[i].addr);
332 breakinfo[i].enabled = 0;
333 }
334}
335
336static int
337kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
338{
339 int i;
340
341 for (i = 0; i < HBP_NUM; i++)
342 if (!breakinfo[i].enabled)
343 break;
344 if (i == HBP_NUM)
345 return -1;
346
347 switch (bptype) {
348 case BP_HARDWARE_BREAKPOINT:
349 len = 1;
350 breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
351 break;
352 case BP_WRITE_WATCHPOINT:
353 breakinfo[i].type = X86_BREAKPOINT_WRITE;
354 break;
355 case BP_ACCESS_WATCHPOINT:
356 breakinfo[i].type = X86_BREAKPOINT_RW;
357 break;
358 default:
359 return -1;
360 }
361 switch (len) {
362 case 1:
363 breakinfo[i].len = X86_BREAKPOINT_LEN_1;
364 break;
365 case 2:
366 breakinfo[i].len = X86_BREAKPOINT_LEN_2;
367 break;
368 case 4:
369 breakinfo[i].len = X86_BREAKPOINT_LEN_4;
370 break;
371#ifdef CONFIG_X86_64
372 case 8:
373 breakinfo[i].len = X86_BREAKPOINT_LEN_8;
374 break;
375#endif
376 default:
377 return -1;
378 }
379 breakinfo[i].addr = addr;
380 if (hw_break_reserve_slot(i)) {
381 breakinfo[i].addr = 0;
382 return -1;
383 }
384 breakinfo[i].enabled = 1;
385
386 return 0;
387}
388
389/**
390 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
391 * @regs: Current &struct pt_regs.
392 *
393 * This function will be called if the particular architecture must
394 * disable hardware debugging while it is processing gdb packets or
395 * handling exception.
396 */
397static void kgdb_disable_hw_debug(struct pt_regs *regs)
398{
399 int i;
400 int cpu = raw_smp_processor_id();
401 struct perf_event *bp;
402
403 /* Disable hardware debugging while we are in kgdb: */
404 set_debugreg(0UL, 7);
405 for (i = 0; i < HBP_NUM; i++) {
406 if (!breakinfo[i].enabled)
407 continue;
408 if (dbg_is_early) {
409 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
410 breakinfo[i].type);
411 continue;
412 }
413 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
414 if (bp->attr.disabled == 1)
415 continue;
416 arch_uninstall_hw_breakpoint(bp);
417 bp->attr.disabled = 1;
418 }
419}
420
421#ifdef CONFIG_SMP
422/**
423 * kgdb_roundup_cpus - Get other CPUs into a holding pattern
424 * @flags: Current IRQ state
425 *
426 * On SMP systems, we need to get the attention of the other CPUs
427 * and get them be in a known state. This should do what is needed
428 * to get the other CPUs to call kgdb_wait(). Note that on some arches,
429 * the NMI approach is not used for rounding up all the CPUs. For example,
430 * in case of MIPS, smp_call_function() is used to roundup CPUs. In
431 * this case, we have to make sure that interrupts are enabled before
432 * calling smp_call_function(). The argument to this function is
433 * the flags that will be used when restoring the interrupts. There is
434 * local_irq_save() call before kgdb_roundup_cpus().
435 *
436 * On non-SMP systems, this is not called.
437 */
438void kgdb_roundup_cpus(unsigned long flags)
439{
440 apic->send_IPI_allbutself(APIC_DM_NMI);
441}
442#endif
443
444/**
445 * kgdb_arch_handle_exception - Handle architecture specific GDB packets.
446 * @e_vector: The error vector of the exception that happened.
447 * @signo: The signal number of the exception that happened.
448 * @err_code: The error code of the exception that happened.
449 * @remcomInBuffer: The buffer of the packet we have read.
450 * @remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
451 * @linux_regs: The &struct pt_regs of the current process.
452 *
453 * This function MUST handle the 'c' and 's' command packets,
454 * as well packets to set / remove a hardware breakpoint, if used.
455 * If there are additional packets which the hardware needs to handle,
456 * they are handled here. The code should return -1 if it wants to
457 * process more packets, and a %0 or %1 if it wants to exit from the
458 * kgdb callback.
459 */
460int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
461 char *remcomInBuffer, char *remcomOutBuffer,
462 struct pt_regs *linux_regs)
463{
464 unsigned long addr;
465 char *ptr;
466
467 switch (remcomInBuffer[0]) {
468 case 'c':
469 case 's':
470 /* try to read optional parameter, pc unchanged if no parm */
471 ptr = &remcomInBuffer[1];
472 if (kgdb_hex2long(&ptr, &addr))
473 linux_regs->ip = addr;
474 case 'D':
475 case 'k':
476 /* clear the trace bit */
477 linux_regs->flags &= ~X86_EFLAGS_TF;
478 atomic_set(&kgdb_cpu_doing_single_step, -1);
479
480 /* set the trace bit if we're stepping */
481 if (remcomInBuffer[0] == 's') {
482 linux_regs->flags |= X86_EFLAGS_TF;
483 atomic_set(&kgdb_cpu_doing_single_step,
484 raw_smp_processor_id());
485 }
486
487 return 0;
488 }
489
490 /* this means that we do not want to exit from the handler: */
491 return -1;
492}
493
494static inline int
495single_step_cont(struct pt_regs *regs, struct die_args *args)
496{
497 /*
498 * Single step exception from kernel space to user space so
499 * eat the exception and continue the process:
500 */
501 printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
502 "resuming...\n");
503 kgdb_arch_handle_exception(args->trapnr, args->signr,
504 args->err, "c", "", regs);
505 /*
506 * Reset the BS bit in dr6 (pointed by args->err) to
507 * denote completion of processing
508 */
509 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
510
511 return NOTIFY_STOP;
512}
513
514static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
515
516static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
517{
518 int cpu;
519
520 switch (cmd) {
521 case NMI_LOCAL:
522 if (atomic_read(&kgdb_active) != -1) {
523 /* KGDB CPU roundup */
524 cpu = raw_smp_processor_id();
525 kgdb_nmicallback(cpu, regs);
526 set_bit(cpu, was_in_debug_nmi);
527 touch_nmi_watchdog();
528
529 return NMI_HANDLED;
530 }
531 break;
532
533 case NMI_UNKNOWN:
534 cpu = raw_smp_processor_id();
535
536 if (__test_and_clear_bit(cpu, was_in_debug_nmi))
537 return NMI_HANDLED;
538
539 break;
540 default:
541 /* do nothing */
542 break;
543 }
544 return NMI_DONE;
545}
546
547static int __kgdb_notify(struct die_args *args, unsigned long cmd)
548{
549 struct pt_regs *regs = args->regs;
550
551 switch (cmd) {
552 case DIE_DEBUG:
553 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
554 if (user_mode(regs))
555 return single_step_cont(regs, args);
556 break;
557 } else if (test_thread_flag(TIF_SINGLESTEP))
558 /* This means a user thread is single stepping
559 * a system call which should be ignored
560 */
561 return NOTIFY_DONE;
562 /* fall through */
563 default:
564 if (user_mode(regs))
565 return NOTIFY_DONE;
566 }
567
568 if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
569 return NOTIFY_DONE;
570
571 /* Must touch watchdog before return to normal operation */
572 touch_nmi_watchdog();
573 return NOTIFY_STOP;
574}
575
576int kgdb_ll_trap(int cmd, const char *str,
577 struct pt_regs *regs, long err, int trap, int sig)
578{
579 struct die_args args = {
580 .regs = regs,
581 .str = str,
582 .err = err,
583 .trapnr = trap,
584 .signr = sig,
585
586 };
587
588 if (!kgdb_io_module_registered)
589 return NOTIFY_DONE;
590
591 return __kgdb_notify(&args, cmd);
592}
593
594static int
595kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
596{
597 unsigned long flags;
598 int ret;
599
600 local_irq_save(flags);
601 ret = __kgdb_notify(ptr, cmd);
602 local_irq_restore(flags);
603
604 return ret;
605}
606
607static struct notifier_block kgdb_notifier = {
608 .notifier_call = kgdb_notify,
609};
610
611/**
612 * kgdb_arch_init - Perform any architecture specific initialization.
613 *
614 * This function will handle the initialization of any architecture
615 * specific callbacks.
616 */
617int kgdb_arch_init(void)
618{
619 int retval;
620
621 retval = register_die_notifier(&kgdb_notifier);
622 if (retval)
623 goto out;
624
625 retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
626 0, "kgdb");
627 if (retval)
628 goto out1;
629
630 retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
631 0, "kgdb");
632
633 if (retval)
634 goto out2;
635
636 return retval;
637
638out2:
639 unregister_nmi_handler(NMI_LOCAL, "kgdb");
640out1:
641 unregister_die_notifier(&kgdb_notifier);
642out:
643 return retval;
644}
645
646static void kgdb_hw_overflow_handler(struct perf_event *event,
647 struct perf_sample_data *data, struct pt_regs *regs)
648{
649 struct task_struct *tsk = current;
650 int i;
651
652 for (i = 0; i < 4; i++)
653 if (breakinfo[i].enabled)
654 tsk->thread.debugreg6 |= (DR_TRAP0 << i);
655}
656
657void kgdb_arch_late(void)
658{
659 int i, cpu;
660 struct perf_event_attr attr;
661 struct perf_event **pevent;
662
663 /*
664 * Pre-allocate the hw breakpoint structions in the non-atomic
665 * portion of kgdb because this operation requires mutexs to
666 * complete.
667 */
668 hw_breakpoint_init(&attr);
669 attr.bp_addr = (unsigned long)kgdb_arch_init;
670 attr.bp_len = HW_BREAKPOINT_LEN_1;
671 attr.bp_type = HW_BREAKPOINT_W;
672 attr.disabled = 1;
673 for (i = 0; i < HBP_NUM; i++) {
674 if (breakinfo[i].pev)
675 continue;
676 breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
677 if (IS_ERR((void * __force)breakinfo[i].pev)) {
678 printk(KERN_ERR "kgdb: Could not allocate hw"
679 "breakpoints\nDisabling the kernel debugger\n");
680 breakinfo[i].pev = NULL;
681 kgdb_arch_exit();
682 return;
683 }
684 for_each_online_cpu(cpu) {
685 pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
686 pevent[0]->hw.sample_period = 1;
687 pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
688 if (pevent[0]->destroy != NULL) {
689 pevent[0]->destroy = NULL;
690 release_bp_slot(*pevent);
691 }
692 }
693 }
694}
695
696/**
697 * kgdb_arch_exit - Perform any architecture specific uninitalization.
698 *
699 * This function will handle the uninitalization of any architecture
700 * specific callbacks, for dynamic registration and unregistration.
701 */
702void kgdb_arch_exit(void)
703{
704 int i;
705 for (i = 0; i < 4; i++) {
706 if (breakinfo[i].pev) {
707 unregister_wide_hw_breakpoint(breakinfo[i].pev);
708 breakinfo[i].pev = NULL;
709 }
710 }
711 unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
712 unregister_nmi_handler(NMI_LOCAL, "kgdb");
713 unregister_die_notifier(&kgdb_notifier);
714}
715
716/**
717 *
718 * kgdb_skipexception - Bail out of KGDB when we've been triggered.
719 * @exception: Exception vector number
720 * @regs: Current &struct pt_regs.
721 *
722 * On some architectures we need to skip a breakpoint exception when
723 * it occurs after a breakpoint has been removed.
724 *
725 * Skip an int3 exception when it occurs after a breakpoint has been
726 * removed. Backtrack eip by 1 since the int3 would have caused it to
727 * increment by 1.
728 */
729int kgdb_skipexception(int exception, struct pt_regs *regs)
730{
731 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
732 regs->ip -= 1;
733 return 1;
734 }
735 return 0;
736}
737
738unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
739{
740 if (exception == 3)
741 return instruction_pointer(regs) - 1;
742 return instruction_pointer(regs);
743}
744
745void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
746{
747 regs->ip = ip;
748}
749
750int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
751{
752 int err;
753 char opc[BREAK_INSTR_SIZE];
754
755 bpt->type = BP_BREAKPOINT;
756 err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
757 BREAK_INSTR_SIZE);
758 if (err)
759 return err;
760 err = probe_kernel_write((char *)bpt->bpt_addr,
761 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
762 if (!err)
763 return err;
764 /*
765 * It is safe to call text_poke() because normal kernel execution
766 * is stopped on all cores, so long as the text_mutex is not locked.
767 */
768 if (mutex_is_locked(&text_mutex))
769 return -EBUSY;
770 text_poke((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
771 BREAK_INSTR_SIZE);
772 err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
773 if (err)
774 return err;
775 if (memcmp(opc, arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE))
776 return -EINVAL;
777 bpt->type = BP_POKE_BREAKPOINT;
778
779 return err;
780}
781
782int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
783{
784 int err;
785 char opc[BREAK_INSTR_SIZE];
786
787 if (bpt->type != BP_POKE_BREAKPOINT)
788 goto knl_write;
789 /*
790 * It is safe to call text_poke() because normal kernel execution
791 * is stopped on all cores, so long as the text_mutex is not locked.
792 */
793 if (mutex_is_locked(&text_mutex))
794 goto knl_write;
795 text_poke((void *)bpt->bpt_addr, bpt->saved_instr, BREAK_INSTR_SIZE);
796 err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
797 if (err || memcmp(opc, bpt->saved_instr, BREAK_INSTR_SIZE))
798 goto knl_write;
799 return err;
800
801knl_write:
802 return probe_kernel_write((char *)bpt->bpt_addr,
803 (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
804}
805
806struct kgdb_arch arch_kgdb_ops = {
807 /* Breakpoint instruction: */
808 .gdb_bpt_instr = { 0xcc },
809 .flags = KGDB_HW_BREAKPOINT,
810 .set_hw_breakpoint = kgdb_set_hw_break,
811 .remove_hw_breakpoint = kgdb_remove_hw_break,
812 .disable_hw_break = kgdb_disable_hw_debug,
813 .remove_all_hw_break = kgdb_remove_all_hw_break,
814 .correct_hw_break = kgdb_correct_hw_break,
815};