Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
 
 
 
 
 
 
 
 
 
 
  3 */
  4
  5/*
  6 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
  7 * Copyright (C) 2000-2001 VERITAS Software Corporation.
  8 * Copyright (C) 2002 Andi Kleen, SuSE Labs
  9 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
 10 * Copyright (C) 2007 MontaVista Software, Inc.
 11 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
 12 */
 13/****************************************************************************
 14 *  Contributor:     Lake Stevens Instrument Division$
 15 *  Written by:      Glenn Engel $
 16 *  Updated by:	     Amit Kale<akale@veritas.com>
 17 *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
 18 *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
 19 *  Modified for 386 by Jim Kingdon, Cygnus Support.
 20 *  Origianl kgdb, compatibility with 2.1.xx kernel by
 21 *  David Grothe <dave@gcom.com>
 22 *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
 23 *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
 24 */
 25#include <linux/spinlock.h>
 26#include <linux/kdebug.h>
 27#include <linux/string.h>
 28#include <linux/kernel.h>
 29#include <linux/ptrace.h>
 30#include <linux/sched.h>
 31#include <linux/delay.h>
 32#include <linux/kgdb.h>
 33#include <linux/smp.h>
 34#include <linux/nmi.h>
 35#include <linux/hw_breakpoint.h>
 36#include <linux/uaccess.h>
 37#include <linux/memory.h>
 38
 39#include <asm/text-patching.h>
 40#include <asm/debugreg.h>
 41#include <asm/apicdef.h>
 42#include <asm/apic.h>
 43#include <asm/nmi.h>
 44#include <asm/switch_to.h>
 45
 46struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
 47{
 48#ifdef CONFIG_X86_32
 49	{ "ax", 4, offsetof(struct pt_regs, ax) },
 50	{ "cx", 4, offsetof(struct pt_regs, cx) },
 51	{ "dx", 4, offsetof(struct pt_regs, dx) },
 52	{ "bx", 4, offsetof(struct pt_regs, bx) },
 53	{ "sp", 4, offsetof(struct pt_regs, sp) },
 54	{ "bp", 4, offsetof(struct pt_regs, bp) },
 55	{ "si", 4, offsetof(struct pt_regs, si) },
 56	{ "di", 4, offsetof(struct pt_regs, di) },
 57	{ "ip", 4, offsetof(struct pt_regs, ip) },
 58	{ "flags", 4, offsetof(struct pt_regs, flags) },
 59	{ "cs", 4, offsetof(struct pt_regs, cs) },
 60	{ "ss", 4, offsetof(struct pt_regs, ss) },
 61	{ "ds", 4, offsetof(struct pt_regs, ds) },
 62	{ "es", 4, offsetof(struct pt_regs, es) },
 63#else
 64	{ "ax", 8, offsetof(struct pt_regs, ax) },
 65	{ "bx", 8, offsetof(struct pt_regs, bx) },
 66	{ "cx", 8, offsetof(struct pt_regs, cx) },
 67	{ "dx", 8, offsetof(struct pt_regs, dx) },
 68	{ "si", 8, offsetof(struct pt_regs, si) },
 69	{ "di", 8, offsetof(struct pt_regs, di) },
 70	{ "bp", 8, offsetof(struct pt_regs, bp) },
 71	{ "sp", 8, offsetof(struct pt_regs, sp) },
 72	{ "r8", 8, offsetof(struct pt_regs, r8) },
 73	{ "r9", 8, offsetof(struct pt_regs, r9) },
 74	{ "r10", 8, offsetof(struct pt_regs, r10) },
 75	{ "r11", 8, offsetof(struct pt_regs, r11) },
 76	{ "r12", 8, offsetof(struct pt_regs, r12) },
 77	{ "r13", 8, offsetof(struct pt_regs, r13) },
 78	{ "r14", 8, offsetof(struct pt_regs, r14) },
 79	{ "r15", 8, offsetof(struct pt_regs, r15) },
 80	{ "ip", 8, offsetof(struct pt_regs, ip) },
 81	{ "flags", 4, offsetof(struct pt_regs, flags) },
 82	{ "cs", 4, offsetof(struct pt_regs, cs) },
 83	{ "ss", 4, offsetof(struct pt_regs, ss) },
 84	{ "ds", 4, -1 },
 85	{ "es", 4, -1 },
 86#endif
 87	{ "fs", 4, -1 },
 88	{ "gs", 4, -1 },
 89};
 90
 91int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
 92{
 93	if (
 94#ifdef CONFIG_X86_32
 95	    regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
 96#endif
 97	    regno == GDB_SP || regno == GDB_ORIG_AX)
 98		return 0;
 99
100	if (dbg_reg_def[regno].offset != -1)
101		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
102		       dbg_reg_def[regno].size);
103	return 0;
104}
105
106char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
107{
108	if (regno == GDB_ORIG_AX) {
109		memcpy(mem, &regs->orig_ax, sizeof(regs->orig_ax));
110		return "orig_ax";
111	}
112	if (regno >= DBG_MAX_REG_NUM || regno < 0)
113		return NULL;
114
115	if (dbg_reg_def[regno].offset != -1)
116		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
117		       dbg_reg_def[regno].size);
118
119#ifdef CONFIG_X86_32
120	switch (regno) {
 
 
 
 
 
 
 
 
121	case GDB_GS:
122	case GDB_FS:
123		*(unsigned long *)mem = 0xFFFF;
124		break;
125	}
126#endif
127	return dbg_reg_def[regno].name;
128}
129
130/**
131 *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
132 *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
133 *	@p: The &struct task_struct of the desired process.
134 *
135 *	Convert the register values of the sleeping process in @p to
136 *	the format that GDB expects.
137 *	This function is called when kgdb does not have access to the
138 *	&struct pt_regs and therefore it should fill the gdb registers
139 *	@gdb_regs with what has	been saved in &struct thread_struct
140 *	thread field during switch_to.
141 */
142void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
143{
144#ifndef CONFIG_X86_32
145	u32 *gdb_regs32 = (u32 *)gdb_regs;
146#endif
147	gdb_regs[GDB_AX]	= 0;
148	gdb_regs[GDB_BX]	= 0;
149	gdb_regs[GDB_CX]	= 0;
150	gdb_regs[GDB_DX]	= 0;
151	gdb_regs[GDB_SI]	= 0;
152	gdb_regs[GDB_DI]	= 0;
153	gdb_regs[GDB_BP]	= ((struct inactive_task_frame *)p->thread.sp)->bp;
154#ifdef CONFIG_X86_32
155	gdb_regs[GDB_DS]	= __KERNEL_DS;
156	gdb_regs[GDB_ES]	= __KERNEL_DS;
157	gdb_regs[GDB_PS]	= 0;
158	gdb_regs[GDB_CS]	= __KERNEL_CS;
 
159	gdb_regs[GDB_SS]	= __KERNEL_DS;
160	gdb_regs[GDB_FS]	= 0xFFFF;
161	gdb_regs[GDB_GS]	= 0xFFFF;
162#else
163	gdb_regs32[GDB_PS]	= 0;
164	gdb_regs32[GDB_CS]	= __KERNEL_CS;
165	gdb_regs32[GDB_SS]	= __KERNEL_DS;
 
166	gdb_regs[GDB_R8]	= 0;
167	gdb_regs[GDB_R9]	= 0;
168	gdb_regs[GDB_R10]	= 0;
169	gdb_regs[GDB_R11]	= 0;
170	gdb_regs[GDB_R12]	= 0;
171	gdb_regs[GDB_R13]	= 0;
172	gdb_regs[GDB_R14]	= 0;
173	gdb_regs[GDB_R15]	= 0;
174#endif
175	gdb_regs[GDB_PC]	= 0;
176	gdb_regs[GDB_SP]	= p->thread.sp;
177}
178
179static struct hw_breakpoint {
180	unsigned		enabled;
181	unsigned long		addr;
182	int			len;
183	int			type;
184	struct perf_event	* __percpu *pev;
185} breakinfo[HBP_NUM];
186
187static unsigned long early_dr7;
188
189static void kgdb_correct_hw_break(void)
190{
191	int breakno;
192
193	for (breakno = 0; breakno < HBP_NUM; breakno++) {
194		struct perf_event *bp;
195		struct arch_hw_breakpoint *info;
196		int val;
197		int cpu = raw_smp_processor_id();
198		if (!breakinfo[breakno].enabled)
199			continue;
200		if (dbg_is_early) {
201			set_debugreg(breakinfo[breakno].addr, breakno);
202			early_dr7 |= encode_dr7(breakno,
203						breakinfo[breakno].len,
204						breakinfo[breakno].type);
205			set_debugreg(early_dr7, 7);
206			continue;
207		}
208		bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
209		info = counter_arch_bp(bp);
210		if (bp->attr.disabled != 1)
211			continue;
212		bp->attr.bp_addr = breakinfo[breakno].addr;
213		bp->attr.bp_len = breakinfo[breakno].len;
214		bp->attr.bp_type = breakinfo[breakno].type;
215		info->address = breakinfo[breakno].addr;
216		info->len = breakinfo[breakno].len;
217		info->type = breakinfo[breakno].type;
218		val = arch_install_hw_breakpoint(bp);
219		if (!val)
220			bp->attr.disabled = 0;
221	}
222	if (!dbg_is_early)
223		hw_breakpoint_restore();
224}
225
226static int hw_break_reserve_slot(int breakno)
227{
228	int cpu;
229	int cnt = 0;
230	struct perf_event **pevent;
231
232	if (dbg_is_early)
233		return 0;
234
235	for_each_online_cpu(cpu) {
236		cnt++;
237		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
238		if (dbg_reserve_bp_slot(*pevent))
239			goto fail;
240	}
241
242	return 0;
243
244fail:
245	for_each_online_cpu(cpu) {
246		cnt--;
247		if (!cnt)
248			break;
249		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
250		dbg_release_bp_slot(*pevent);
251	}
252	return -1;
253}
254
255static int hw_break_release_slot(int breakno)
256{
257	struct perf_event **pevent;
258	int cpu;
259
260	if (dbg_is_early)
261		return 0;
262
263	for_each_online_cpu(cpu) {
264		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
265		if (dbg_release_bp_slot(*pevent))
266			/*
267			 * The debugger is responsible for handing the retry on
268			 * remove failure.
269			 */
270			return -1;
271	}
272	return 0;
273}
274
275static int
276kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
277{
278	int i;
279
280	for (i = 0; i < HBP_NUM; i++)
281		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
282			break;
283	if (i == HBP_NUM)
284		return -1;
285
286	if (hw_break_release_slot(i)) {
287		printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
288		return -1;
289	}
290	breakinfo[i].enabled = 0;
291
292	return 0;
293}
294
295static void kgdb_remove_all_hw_break(void)
296{
297	int i;
298	int cpu = raw_smp_processor_id();
299	struct perf_event *bp;
300
301	for (i = 0; i < HBP_NUM; i++) {
302		if (!breakinfo[i].enabled)
303			continue;
304		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
305		if (!bp->attr.disabled) {
306			arch_uninstall_hw_breakpoint(bp);
307			bp->attr.disabled = 1;
308			continue;
309		}
310		if (dbg_is_early)
311			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
312						 breakinfo[i].type);
313		else if (hw_break_release_slot(i))
314			printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
315			       breakinfo[i].addr);
316		breakinfo[i].enabled = 0;
317	}
318}
319
320static int
321kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
322{
323	int i;
324
325	for (i = 0; i < HBP_NUM; i++)
326		if (!breakinfo[i].enabled)
327			break;
328	if (i == HBP_NUM)
329		return -1;
330
331	switch (bptype) {
332	case BP_HARDWARE_BREAKPOINT:
333		len = 1;
334		breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
335		break;
336	case BP_WRITE_WATCHPOINT:
337		breakinfo[i].type = X86_BREAKPOINT_WRITE;
338		break;
339	case BP_ACCESS_WATCHPOINT:
340		breakinfo[i].type = X86_BREAKPOINT_RW;
341		break;
342	default:
343		return -1;
344	}
345	switch (len) {
346	case 1:
347		breakinfo[i].len = X86_BREAKPOINT_LEN_1;
348		break;
349	case 2:
350		breakinfo[i].len = X86_BREAKPOINT_LEN_2;
351		break;
352	case 4:
353		breakinfo[i].len = X86_BREAKPOINT_LEN_4;
354		break;
355#ifdef CONFIG_X86_64
356	case 8:
357		breakinfo[i].len = X86_BREAKPOINT_LEN_8;
358		break;
359#endif
360	default:
361		return -1;
362	}
363	breakinfo[i].addr = addr;
364	if (hw_break_reserve_slot(i)) {
365		breakinfo[i].addr = 0;
366		return -1;
367	}
368	breakinfo[i].enabled = 1;
369
370	return 0;
371}
372
373/**
374 *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
375 *	@regs: Current &struct pt_regs.
376 *
377 *	This function will be called if the particular architecture must
378 *	disable hardware debugging while it is processing gdb packets or
379 *	handling exception.
380 */
381static void kgdb_disable_hw_debug(struct pt_regs *regs)
382{
383	int i;
384	int cpu = raw_smp_processor_id();
385	struct perf_event *bp;
386
387	/* Disable hardware debugging while we are in kgdb: */
388	set_debugreg(0UL, 7);
389	for (i = 0; i < HBP_NUM; i++) {
390		if (!breakinfo[i].enabled)
391			continue;
392		if (dbg_is_early) {
393			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
394						 breakinfo[i].type);
395			continue;
396		}
397		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
398		if (bp->attr.disabled == 1)
399			continue;
400		arch_uninstall_hw_breakpoint(bp);
401		bp->attr.disabled = 1;
402	}
403}
404
405#ifdef CONFIG_SMP
406/**
407 *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
 
408 *
409 *	On SMP systems, we need to get the attention of the other CPUs
410 *	and get them be in a known state.  This should do what is needed
411 *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
412 *	the NMI approach is not used for rounding up all the CPUs. For example,
413 *	in case of MIPS, smp_call_function() is used to roundup CPUs.
 
 
 
 
414 *
415 *	On non-SMP systems, this is not called.
416 */
417void kgdb_roundup_cpus(void)
418{
419	apic_send_IPI_allbutself(NMI_VECTOR);
420}
421#endif
422
423/**
424 *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
425 *	@e_vector: The error vector of the exception that happened.
426 *	@signo: The signal number of the exception that happened.
427 *	@err_code: The error code of the exception that happened.
428 *	@remcomInBuffer: The buffer of the packet we have read.
429 *	@remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
430 *	@linux_regs: The &struct pt_regs of the current process.
431 *
432 *	This function MUST handle the 'c' and 's' command packets,
433 *	as well packets to set / remove a hardware breakpoint, if used.
434 *	If there are additional packets which the hardware needs to handle,
435 *	they are handled here.  The code should return -1 if it wants to
436 *	process more packets, and a %0 or %1 if it wants to exit from the
437 *	kgdb callback.
438 */
439int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
440			       char *remcomInBuffer, char *remcomOutBuffer,
441			       struct pt_regs *linux_regs)
442{
443	unsigned long addr;
444	char *ptr;
445
446	switch (remcomInBuffer[0]) {
447	case 'c':
448	case 's':
449		/* try to read optional parameter, pc unchanged if no parm */
450		ptr = &remcomInBuffer[1];
451		if (kgdb_hex2long(&ptr, &addr))
452			linux_regs->ip = addr;
453		/* fall through */
454	case 'D':
455	case 'k':
456		/* clear the trace bit */
457		linux_regs->flags &= ~X86_EFLAGS_TF;
458		atomic_set(&kgdb_cpu_doing_single_step, -1);
459
460		/* set the trace bit if we're stepping */
461		if (remcomInBuffer[0] == 's') {
462			linux_regs->flags |= X86_EFLAGS_TF;
463			atomic_set(&kgdb_cpu_doing_single_step,
464				   raw_smp_processor_id());
465		}
466
467		return 0;
468	}
469
470	/* this means that we do not want to exit from the handler: */
471	return -1;
472}
473
474static inline int
475single_step_cont(struct pt_regs *regs, struct die_args *args)
476{
477	/*
478	 * Single step exception from kernel space to user space so
479	 * eat the exception and continue the process:
480	 */
481	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
482			"resuming...\n");
483	kgdb_arch_handle_exception(args->trapnr, args->signr,
484				   args->err, "c", "", regs);
485	/*
486	 * Reset the BS bit in dr6 (pointed by args->err) to
487	 * denote completion of processing
488	 */
489	(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
490
491	return NOTIFY_STOP;
492}
493
494static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
495
496static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
497{
498	int cpu;
499
500	switch (cmd) {
501	case NMI_LOCAL:
502		if (atomic_read(&kgdb_active) != -1) {
503			/* KGDB CPU roundup */
504			cpu = raw_smp_processor_id();
505			kgdb_nmicallback(cpu, regs);
506			set_bit(cpu, was_in_debug_nmi);
507			touch_nmi_watchdog();
508
509			return NMI_HANDLED;
510		}
511		break;
512
513	case NMI_UNKNOWN:
514		cpu = raw_smp_processor_id();
515
516		if (__test_and_clear_bit(cpu, was_in_debug_nmi))
517			return NMI_HANDLED;
518
519		break;
520	default:
521		/* do nothing */
522		break;
523	}
524	return NMI_DONE;
525}
526
527static int __kgdb_notify(struct die_args *args, unsigned long cmd)
528{
529	struct pt_regs *regs = args->regs;
530
531	switch (cmd) {
532	case DIE_DEBUG:
533		if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
534			if (user_mode(regs))
535				return single_step_cont(regs, args);
536			break;
537		} else if (test_thread_flag(TIF_SINGLESTEP))
538			/* This means a user thread is single stepping
539			 * a system call which should be ignored
540			 */
541			return NOTIFY_DONE;
542		/* fall through */
543	default:
544		if (user_mode(regs))
545			return NOTIFY_DONE;
546	}
547
548	if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
549		return NOTIFY_DONE;
550
551	/* Must touch watchdog before return to normal operation */
552	touch_nmi_watchdog();
553	return NOTIFY_STOP;
554}
555
556int kgdb_ll_trap(int cmd, const char *str,
557		 struct pt_regs *regs, long err, int trap, int sig)
558{
559	struct die_args args = {
560		.regs	= regs,
561		.str	= str,
562		.err	= err,
563		.trapnr	= trap,
564		.signr	= sig,
565
566	};
567
568	if (!kgdb_io_module_registered)
569		return NOTIFY_DONE;
570
571	return __kgdb_notify(&args, cmd);
572}
573
574static int
575kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
576{
577	unsigned long flags;
578	int ret;
579
580	local_irq_save(flags);
581	ret = __kgdb_notify(ptr, cmd);
582	local_irq_restore(flags);
583
584	return ret;
585}
586
587static struct notifier_block kgdb_notifier = {
588	.notifier_call	= kgdb_notify,
589};
590
591/**
592 *	kgdb_arch_init - Perform any architecture specific initialization.
593 *
594 *	This function will handle the initialization of any architecture
595 *	specific callbacks.
596 */
597int kgdb_arch_init(void)
598{
599	int retval;
600
601	retval = register_die_notifier(&kgdb_notifier);
602	if (retval)
603		goto out;
604
605	retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
606					0, "kgdb");
607	if (retval)
608		goto out1;
609
610	retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
611					0, "kgdb");
612
613	if (retval)
614		goto out2;
615
616	return retval;
617
618out2:
619	unregister_nmi_handler(NMI_LOCAL, "kgdb");
620out1:
621	unregister_die_notifier(&kgdb_notifier);
622out:
623	return retval;
624}
625
626static void kgdb_hw_overflow_handler(struct perf_event *event,
627		struct perf_sample_data *data, struct pt_regs *regs)
628{
629	struct task_struct *tsk = current;
630	int i;
631
632	for (i = 0; i < 4; i++)
633		if (breakinfo[i].enabled)
634			tsk->thread.debugreg6 |= (DR_TRAP0 << i);
635}
636
637void kgdb_arch_late(void)
638{
639	int i, cpu;
640	struct perf_event_attr attr;
641	struct perf_event **pevent;
642
643	/*
644	 * Pre-allocate the hw breakpoint structions in the non-atomic
645	 * portion of kgdb because this operation requires mutexs to
646	 * complete.
647	 */
648	hw_breakpoint_init(&attr);
649	attr.bp_addr = (unsigned long)kgdb_arch_init;
650	attr.bp_len = HW_BREAKPOINT_LEN_1;
651	attr.bp_type = HW_BREAKPOINT_W;
652	attr.disabled = 1;
653	for (i = 0; i < HBP_NUM; i++) {
654		if (breakinfo[i].pev)
655			continue;
656		breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
657		if (IS_ERR((void * __force)breakinfo[i].pev)) {
658			printk(KERN_ERR "kgdb: Could not allocate hw"
659			       "breakpoints\nDisabling the kernel debugger\n");
660			breakinfo[i].pev = NULL;
661			kgdb_arch_exit();
662			return;
663		}
664		for_each_online_cpu(cpu) {
665			pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
666			pevent[0]->hw.sample_period = 1;
667			pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
668			if (pevent[0]->destroy != NULL) {
669				pevent[0]->destroy = NULL;
670				release_bp_slot(*pevent);
671			}
672		}
673	}
674}
675
676/**
677 *	kgdb_arch_exit - Perform any architecture specific uninitalization.
678 *
679 *	This function will handle the uninitalization of any architecture
680 *	specific callbacks, for dynamic registration and unregistration.
681 */
682void kgdb_arch_exit(void)
683{
684	int i;
685	for (i = 0; i < 4; i++) {
686		if (breakinfo[i].pev) {
687			unregister_wide_hw_breakpoint(breakinfo[i].pev);
688			breakinfo[i].pev = NULL;
689		}
690	}
691	unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
692	unregister_nmi_handler(NMI_LOCAL, "kgdb");
693	unregister_die_notifier(&kgdb_notifier);
694}
695
696/**
697 *
698 *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
699 *	@exception: Exception vector number
700 *	@regs: Current &struct pt_regs.
701 *
702 *	On some architectures we need to skip a breakpoint exception when
703 *	it occurs after a breakpoint has been removed.
704 *
705 * Skip an int3 exception when it occurs after a breakpoint has been
706 * removed. Backtrack eip by 1 since the int3 would have caused it to
707 * increment by 1.
708 */
709int kgdb_skipexception(int exception, struct pt_regs *regs)
710{
711	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
712		regs->ip -= 1;
713		return 1;
714	}
715	return 0;
716}
717
718unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
719{
720	if (exception == 3)
721		return instruction_pointer(regs) - 1;
722	return instruction_pointer(regs);
723}
724
725void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
726{
727	regs->ip = ip;
728}
729
730int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
731{
732	int err;
 
733
734	bpt->type = BP_BREAKPOINT;
735	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
736				BREAK_INSTR_SIZE);
737	if (err)
738		return err;
739	err = probe_kernel_write((char *)bpt->bpt_addr,
740				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
741	if (!err)
742		return err;
743	/*
744	 * It is safe to call text_poke_kgdb() because normal kernel execution
745	 * is stopped on all cores, so long as the text_mutex is not locked.
746	 */
747	if (mutex_is_locked(&text_mutex))
748		return -EBUSY;
749	text_poke_kgdb((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
750		       BREAK_INSTR_SIZE);
 
 
 
 
 
751	bpt->type = BP_POKE_BREAKPOINT;
752
753	return 0;
754}
755
756int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
757{
 
 
 
758	if (bpt->type != BP_POKE_BREAKPOINT)
759		goto knl_write;
760	/*
761	 * It is safe to call text_poke_kgdb() because normal kernel execution
762	 * is stopped on all cores, so long as the text_mutex is not locked.
763	 */
764	if (mutex_is_locked(&text_mutex))
765		goto knl_write;
766	text_poke_kgdb((void *)bpt->bpt_addr, bpt->saved_instr,
767		       BREAK_INSTR_SIZE);
768	return 0;
 
 
769
770knl_write:
771	return probe_kernel_write((char *)bpt->bpt_addr,
772				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
773}
774
775const struct kgdb_arch arch_kgdb_ops = {
776	/* Breakpoint instruction: */
777	.gdb_bpt_instr		= { 0xcc },
778	.flags			= KGDB_HW_BREAKPOINT,
779	.set_hw_breakpoint	= kgdb_set_hw_break,
780	.remove_hw_breakpoint	= kgdb_remove_hw_break,
781	.disable_hw_break	= kgdb_disable_hw_debug,
782	.remove_all_hw_break	= kgdb_remove_all_hw_break,
783	.correct_hw_break	= kgdb_correct_hw_break,
784};
v4.6
 
  1/*
  2 * This program is free software; you can redistribute it and/or modify it
  3 * under the terms of the GNU General Public License as published by the
  4 * Free Software Foundation; either version 2, or (at your option) any
  5 * later version.
  6 *
  7 * This program is distributed in the hope that it will be useful, but
  8 * WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 10 * General Public License for more details.
 11 *
 12 */
 13
 14/*
 15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
 16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
 17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
 18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
 19 * Copyright (C) 2007 MontaVista Software, Inc.
 20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
 21 */
 22/****************************************************************************
 23 *  Contributor:     Lake Stevens Instrument Division$
 24 *  Written by:      Glenn Engel $
 25 *  Updated by:	     Amit Kale<akale@veritas.com>
 26 *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
 27 *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
 28 *  Modified for 386 by Jim Kingdon, Cygnus Support.
 29 *  Origianl kgdb, compatibility with 2.1.xx kernel by
 30 *  David Grothe <dave@gcom.com>
 31 *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
 32 *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
 33 */
 34#include <linux/spinlock.h>
 35#include <linux/kdebug.h>
 36#include <linux/string.h>
 37#include <linux/kernel.h>
 38#include <linux/ptrace.h>
 39#include <linux/sched.h>
 40#include <linux/delay.h>
 41#include <linux/kgdb.h>
 42#include <linux/smp.h>
 43#include <linux/nmi.h>
 44#include <linux/hw_breakpoint.h>
 45#include <linux/uaccess.h>
 46#include <linux/memory.h>
 47
 
 48#include <asm/debugreg.h>
 49#include <asm/apicdef.h>
 50#include <asm/apic.h>
 51#include <asm/nmi.h>
 
 52
 53struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
 54{
 55#ifdef CONFIG_X86_32
 56	{ "ax", 4, offsetof(struct pt_regs, ax) },
 57	{ "cx", 4, offsetof(struct pt_regs, cx) },
 58	{ "dx", 4, offsetof(struct pt_regs, dx) },
 59	{ "bx", 4, offsetof(struct pt_regs, bx) },
 60	{ "sp", 4, offsetof(struct pt_regs, sp) },
 61	{ "bp", 4, offsetof(struct pt_regs, bp) },
 62	{ "si", 4, offsetof(struct pt_regs, si) },
 63	{ "di", 4, offsetof(struct pt_regs, di) },
 64	{ "ip", 4, offsetof(struct pt_regs, ip) },
 65	{ "flags", 4, offsetof(struct pt_regs, flags) },
 66	{ "cs", 4, offsetof(struct pt_regs, cs) },
 67	{ "ss", 4, offsetof(struct pt_regs, ss) },
 68	{ "ds", 4, offsetof(struct pt_regs, ds) },
 69	{ "es", 4, offsetof(struct pt_regs, es) },
 70#else
 71	{ "ax", 8, offsetof(struct pt_regs, ax) },
 72	{ "bx", 8, offsetof(struct pt_regs, bx) },
 73	{ "cx", 8, offsetof(struct pt_regs, cx) },
 74	{ "dx", 8, offsetof(struct pt_regs, dx) },
 75	{ "si", 8, offsetof(struct pt_regs, si) },
 76	{ "di", 8, offsetof(struct pt_regs, di) },
 77	{ "bp", 8, offsetof(struct pt_regs, bp) },
 78	{ "sp", 8, offsetof(struct pt_regs, sp) },
 79	{ "r8", 8, offsetof(struct pt_regs, r8) },
 80	{ "r9", 8, offsetof(struct pt_regs, r9) },
 81	{ "r10", 8, offsetof(struct pt_regs, r10) },
 82	{ "r11", 8, offsetof(struct pt_regs, r11) },
 83	{ "r12", 8, offsetof(struct pt_regs, r12) },
 84	{ "r13", 8, offsetof(struct pt_regs, r13) },
 85	{ "r14", 8, offsetof(struct pt_regs, r14) },
 86	{ "r15", 8, offsetof(struct pt_regs, r15) },
 87	{ "ip", 8, offsetof(struct pt_regs, ip) },
 88	{ "flags", 4, offsetof(struct pt_regs, flags) },
 89	{ "cs", 4, offsetof(struct pt_regs, cs) },
 90	{ "ss", 4, offsetof(struct pt_regs, ss) },
 91	{ "ds", 4, -1 },
 92	{ "es", 4, -1 },
 93#endif
 94	{ "fs", 4, -1 },
 95	{ "gs", 4, -1 },
 96};
 97
 98int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
 99{
100	if (
101#ifdef CONFIG_X86_32
102	    regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
103#endif
104	    regno == GDB_SP || regno == GDB_ORIG_AX)
105		return 0;
106
107	if (dbg_reg_def[regno].offset != -1)
108		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
109		       dbg_reg_def[regno].size);
110	return 0;
111}
112
113char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
114{
115	if (regno == GDB_ORIG_AX) {
116		memcpy(mem, &regs->orig_ax, sizeof(regs->orig_ax));
117		return "orig_ax";
118	}
119	if (regno >= DBG_MAX_REG_NUM || regno < 0)
120		return NULL;
121
122	if (dbg_reg_def[regno].offset != -1)
123		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
124		       dbg_reg_def[regno].size);
125
126#ifdef CONFIG_X86_32
127	switch (regno) {
128	case GDB_SS:
129		if (!user_mode(regs))
130			*(unsigned long *)mem = __KERNEL_DS;
131		break;
132	case GDB_SP:
133		if (!user_mode(regs))
134			*(unsigned long *)mem = kernel_stack_pointer(regs);
135		break;
136	case GDB_GS:
137	case GDB_FS:
138		*(unsigned long *)mem = 0xFFFF;
139		break;
140	}
141#endif
142	return dbg_reg_def[regno].name;
143}
144
145/**
146 *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
147 *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
148 *	@p: The &struct task_struct of the desired process.
149 *
150 *	Convert the register values of the sleeping process in @p to
151 *	the format that GDB expects.
152 *	This function is called when kgdb does not have access to the
153 *	&struct pt_regs and therefore it should fill the gdb registers
154 *	@gdb_regs with what has	been saved in &struct thread_struct
155 *	thread field during switch_to.
156 */
157void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
158{
159#ifndef CONFIG_X86_32
160	u32 *gdb_regs32 = (u32 *)gdb_regs;
161#endif
162	gdb_regs[GDB_AX]	= 0;
163	gdb_regs[GDB_BX]	= 0;
164	gdb_regs[GDB_CX]	= 0;
165	gdb_regs[GDB_DX]	= 0;
166	gdb_regs[GDB_SI]	= 0;
167	gdb_regs[GDB_DI]	= 0;
168	gdb_regs[GDB_BP]	= *(unsigned long *)p->thread.sp;
169#ifdef CONFIG_X86_32
170	gdb_regs[GDB_DS]	= __KERNEL_DS;
171	gdb_regs[GDB_ES]	= __KERNEL_DS;
172	gdb_regs[GDB_PS]	= 0;
173	gdb_regs[GDB_CS]	= __KERNEL_CS;
174	gdb_regs[GDB_PC]	= p->thread.ip;
175	gdb_regs[GDB_SS]	= __KERNEL_DS;
176	gdb_regs[GDB_FS]	= 0xFFFF;
177	gdb_regs[GDB_GS]	= 0xFFFF;
178#else
179	gdb_regs32[GDB_PS]	= *(unsigned long *)(p->thread.sp + 8);
180	gdb_regs32[GDB_CS]	= __KERNEL_CS;
181	gdb_regs32[GDB_SS]	= __KERNEL_DS;
182	gdb_regs[GDB_PC]	= 0;
183	gdb_regs[GDB_R8]	= 0;
184	gdb_regs[GDB_R9]	= 0;
185	gdb_regs[GDB_R10]	= 0;
186	gdb_regs[GDB_R11]	= 0;
187	gdb_regs[GDB_R12]	= 0;
188	gdb_regs[GDB_R13]	= 0;
189	gdb_regs[GDB_R14]	= 0;
190	gdb_regs[GDB_R15]	= 0;
191#endif
 
192	gdb_regs[GDB_SP]	= p->thread.sp;
193}
194
195static struct hw_breakpoint {
196	unsigned		enabled;
197	unsigned long		addr;
198	int			len;
199	int			type;
200	struct perf_event	* __percpu *pev;
201} breakinfo[HBP_NUM];
202
203static unsigned long early_dr7;
204
205static void kgdb_correct_hw_break(void)
206{
207	int breakno;
208
209	for (breakno = 0; breakno < HBP_NUM; breakno++) {
210		struct perf_event *bp;
211		struct arch_hw_breakpoint *info;
212		int val;
213		int cpu = raw_smp_processor_id();
214		if (!breakinfo[breakno].enabled)
215			continue;
216		if (dbg_is_early) {
217			set_debugreg(breakinfo[breakno].addr, breakno);
218			early_dr7 |= encode_dr7(breakno,
219						breakinfo[breakno].len,
220						breakinfo[breakno].type);
221			set_debugreg(early_dr7, 7);
222			continue;
223		}
224		bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
225		info = counter_arch_bp(bp);
226		if (bp->attr.disabled != 1)
227			continue;
228		bp->attr.bp_addr = breakinfo[breakno].addr;
229		bp->attr.bp_len = breakinfo[breakno].len;
230		bp->attr.bp_type = breakinfo[breakno].type;
231		info->address = breakinfo[breakno].addr;
232		info->len = breakinfo[breakno].len;
233		info->type = breakinfo[breakno].type;
234		val = arch_install_hw_breakpoint(bp);
235		if (!val)
236			bp->attr.disabled = 0;
237	}
238	if (!dbg_is_early)
239		hw_breakpoint_restore();
240}
241
242static int hw_break_reserve_slot(int breakno)
243{
244	int cpu;
245	int cnt = 0;
246	struct perf_event **pevent;
247
248	if (dbg_is_early)
249		return 0;
250
251	for_each_online_cpu(cpu) {
252		cnt++;
253		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
254		if (dbg_reserve_bp_slot(*pevent))
255			goto fail;
256	}
257
258	return 0;
259
260fail:
261	for_each_online_cpu(cpu) {
262		cnt--;
263		if (!cnt)
264			break;
265		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
266		dbg_release_bp_slot(*pevent);
267	}
268	return -1;
269}
270
271static int hw_break_release_slot(int breakno)
272{
273	struct perf_event **pevent;
274	int cpu;
275
276	if (dbg_is_early)
277		return 0;
278
279	for_each_online_cpu(cpu) {
280		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
281		if (dbg_release_bp_slot(*pevent))
282			/*
283			 * The debugger is responsible for handing the retry on
284			 * remove failure.
285			 */
286			return -1;
287	}
288	return 0;
289}
290
291static int
292kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
293{
294	int i;
295
296	for (i = 0; i < HBP_NUM; i++)
297		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
298			break;
299	if (i == HBP_NUM)
300		return -1;
301
302	if (hw_break_release_slot(i)) {
303		printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
304		return -1;
305	}
306	breakinfo[i].enabled = 0;
307
308	return 0;
309}
310
311static void kgdb_remove_all_hw_break(void)
312{
313	int i;
314	int cpu = raw_smp_processor_id();
315	struct perf_event *bp;
316
317	for (i = 0; i < HBP_NUM; i++) {
318		if (!breakinfo[i].enabled)
319			continue;
320		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
321		if (!bp->attr.disabled) {
322			arch_uninstall_hw_breakpoint(bp);
323			bp->attr.disabled = 1;
324			continue;
325		}
326		if (dbg_is_early)
327			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
328						 breakinfo[i].type);
329		else if (hw_break_release_slot(i))
330			printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
331			       breakinfo[i].addr);
332		breakinfo[i].enabled = 0;
333	}
334}
335
336static int
337kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
338{
339	int i;
340
341	for (i = 0; i < HBP_NUM; i++)
342		if (!breakinfo[i].enabled)
343			break;
344	if (i == HBP_NUM)
345		return -1;
346
347	switch (bptype) {
348	case BP_HARDWARE_BREAKPOINT:
349		len = 1;
350		breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
351		break;
352	case BP_WRITE_WATCHPOINT:
353		breakinfo[i].type = X86_BREAKPOINT_WRITE;
354		break;
355	case BP_ACCESS_WATCHPOINT:
356		breakinfo[i].type = X86_BREAKPOINT_RW;
357		break;
358	default:
359		return -1;
360	}
361	switch (len) {
362	case 1:
363		breakinfo[i].len = X86_BREAKPOINT_LEN_1;
364		break;
365	case 2:
366		breakinfo[i].len = X86_BREAKPOINT_LEN_2;
367		break;
368	case 4:
369		breakinfo[i].len = X86_BREAKPOINT_LEN_4;
370		break;
371#ifdef CONFIG_X86_64
372	case 8:
373		breakinfo[i].len = X86_BREAKPOINT_LEN_8;
374		break;
375#endif
376	default:
377		return -1;
378	}
379	breakinfo[i].addr = addr;
380	if (hw_break_reserve_slot(i)) {
381		breakinfo[i].addr = 0;
382		return -1;
383	}
384	breakinfo[i].enabled = 1;
385
386	return 0;
387}
388
389/**
390 *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
391 *	@regs: Current &struct pt_regs.
392 *
393 *	This function will be called if the particular architecture must
394 *	disable hardware debugging while it is processing gdb packets or
395 *	handling exception.
396 */
397static void kgdb_disable_hw_debug(struct pt_regs *regs)
398{
399	int i;
400	int cpu = raw_smp_processor_id();
401	struct perf_event *bp;
402
403	/* Disable hardware debugging while we are in kgdb: */
404	set_debugreg(0UL, 7);
405	for (i = 0; i < HBP_NUM; i++) {
406		if (!breakinfo[i].enabled)
407			continue;
408		if (dbg_is_early) {
409			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
410						 breakinfo[i].type);
411			continue;
412		}
413		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
414		if (bp->attr.disabled == 1)
415			continue;
416		arch_uninstall_hw_breakpoint(bp);
417		bp->attr.disabled = 1;
418	}
419}
420
421#ifdef CONFIG_SMP
422/**
423 *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
424 *	@flags: Current IRQ state
425 *
426 *	On SMP systems, we need to get the attention of the other CPUs
427 *	and get them be in a known state.  This should do what is needed
428 *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
429 *	the NMI approach is not used for rounding up all the CPUs. For example,
430 *	in case of MIPS, smp_call_function() is used to roundup CPUs. In
431 *	this case, we have to make sure that interrupts are enabled before
432 *	calling smp_call_function(). The argument to this function is
433 *	the flags that will be used when restoring the interrupts. There is
434 *	local_irq_save() call before kgdb_roundup_cpus().
435 *
436 *	On non-SMP systems, this is not called.
437 */
438void kgdb_roundup_cpus(unsigned long flags)
439{
440	apic->send_IPI_allbutself(APIC_DM_NMI);
441}
442#endif
443
444/**
445 *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
446 *	@e_vector: The error vector of the exception that happened.
447 *	@signo: The signal number of the exception that happened.
448 *	@err_code: The error code of the exception that happened.
449 *	@remcomInBuffer: The buffer of the packet we have read.
450 *	@remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
451 *	@linux_regs: The &struct pt_regs of the current process.
452 *
453 *	This function MUST handle the 'c' and 's' command packets,
454 *	as well packets to set / remove a hardware breakpoint, if used.
455 *	If there are additional packets which the hardware needs to handle,
456 *	they are handled here.  The code should return -1 if it wants to
457 *	process more packets, and a %0 or %1 if it wants to exit from the
458 *	kgdb callback.
459 */
460int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
461			       char *remcomInBuffer, char *remcomOutBuffer,
462			       struct pt_regs *linux_regs)
463{
464	unsigned long addr;
465	char *ptr;
466
467	switch (remcomInBuffer[0]) {
468	case 'c':
469	case 's':
470		/* try to read optional parameter, pc unchanged if no parm */
471		ptr = &remcomInBuffer[1];
472		if (kgdb_hex2long(&ptr, &addr))
473			linux_regs->ip = addr;
 
474	case 'D':
475	case 'k':
476		/* clear the trace bit */
477		linux_regs->flags &= ~X86_EFLAGS_TF;
478		atomic_set(&kgdb_cpu_doing_single_step, -1);
479
480		/* set the trace bit if we're stepping */
481		if (remcomInBuffer[0] == 's') {
482			linux_regs->flags |= X86_EFLAGS_TF;
483			atomic_set(&kgdb_cpu_doing_single_step,
484				   raw_smp_processor_id());
485		}
486
487		return 0;
488	}
489
490	/* this means that we do not want to exit from the handler: */
491	return -1;
492}
493
494static inline int
495single_step_cont(struct pt_regs *regs, struct die_args *args)
496{
497	/*
498	 * Single step exception from kernel space to user space so
499	 * eat the exception and continue the process:
500	 */
501	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
502			"resuming...\n");
503	kgdb_arch_handle_exception(args->trapnr, args->signr,
504				   args->err, "c", "", regs);
505	/*
506	 * Reset the BS bit in dr6 (pointed by args->err) to
507	 * denote completion of processing
508	 */
509	(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
510
511	return NOTIFY_STOP;
512}
513
514static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
515
516static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
517{
518	int cpu;
519
520	switch (cmd) {
521	case NMI_LOCAL:
522		if (atomic_read(&kgdb_active) != -1) {
523			/* KGDB CPU roundup */
524			cpu = raw_smp_processor_id();
525			kgdb_nmicallback(cpu, regs);
526			set_bit(cpu, was_in_debug_nmi);
527			touch_nmi_watchdog();
528
529			return NMI_HANDLED;
530		}
531		break;
532
533	case NMI_UNKNOWN:
534		cpu = raw_smp_processor_id();
535
536		if (__test_and_clear_bit(cpu, was_in_debug_nmi))
537			return NMI_HANDLED;
538
539		break;
540	default:
541		/* do nothing */
542		break;
543	}
544	return NMI_DONE;
545}
546
547static int __kgdb_notify(struct die_args *args, unsigned long cmd)
548{
549	struct pt_regs *regs = args->regs;
550
551	switch (cmd) {
552	case DIE_DEBUG:
553		if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
554			if (user_mode(regs))
555				return single_step_cont(regs, args);
556			break;
557		} else if (test_thread_flag(TIF_SINGLESTEP))
558			/* This means a user thread is single stepping
559			 * a system call which should be ignored
560			 */
561			return NOTIFY_DONE;
562		/* fall through */
563	default:
564		if (user_mode(regs))
565			return NOTIFY_DONE;
566	}
567
568	if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
569		return NOTIFY_DONE;
570
571	/* Must touch watchdog before return to normal operation */
572	touch_nmi_watchdog();
573	return NOTIFY_STOP;
574}
575
576int kgdb_ll_trap(int cmd, const char *str,
577		 struct pt_regs *regs, long err, int trap, int sig)
578{
579	struct die_args args = {
580		.regs	= regs,
581		.str	= str,
582		.err	= err,
583		.trapnr	= trap,
584		.signr	= sig,
585
586	};
587
588	if (!kgdb_io_module_registered)
589		return NOTIFY_DONE;
590
591	return __kgdb_notify(&args, cmd);
592}
593
594static int
595kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
596{
597	unsigned long flags;
598	int ret;
599
600	local_irq_save(flags);
601	ret = __kgdb_notify(ptr, cmd);
602	local_irq_restore(flags);
603
604	return ret;
605}
606
607static struct notifier_block kgdb_notifier = {
608	.notifier_call	= kgdb_notify,
609};
610
611/**
612 *	kgdb_arch_init - Perform any architecture specific initialization.
613 *
614 *	This function will handle the initialization of any architecture
615 *	specific callbacks.
616 */
617int kgdb_arch_init(void)
618{
619	int retval;
620
621	retval = register_die_notifier(&kgdb_notifier);
622	if (retval)
623		goto out;
624
625	retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
626					0, "kgdb");
627	if (retval)
628		goto out1;
629
630	retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
631					0, "kgdb");
632
633	if (retval)
634		goto out2;
635
636	return retval;
637
638out2:
639	unregister_nmi_handler(NMI_LOCAL, "kgdb");
640out1:
641	unregister_die_notifier(&kgdb_notifier);
642out:
643	return retval;
644}
645
646static void kgdb_hw_overflow_handler(struct perf_event *event,
647		struct perf_sample_data *data, struct pt_regs *regs)
648{
649	struct task_struct *tsk = current;
650	int i;
651
652	for (i = 0; i < 4; i++)
653		if (breakinfo[i].enabled)
654			tsk->thread.debugreg6 |= (DR_TRAP0 << i);
655}
656
657void kgdb_arch_late(void)
658{
659	int i, cpu;
660	struct perf_event_attr attr;
661	struct perf_event **pevent;
662
663	/*
664	 * Pre-allocate the hw breakpoint structions in the non-atomic
665	 * portion of kgdb because this operation requires mutexs to
666	 * complete.
667	 */
668	hw_breakpoint_init(&attr);
669	attr.bp_addr = (unsigned long)kgdb_arch_init;
670	attr.bp_len = HW_BREAKPOINT_LEN_1;
671	attr.bp_type = HW_BREAKPOINT_W;
672	attr.disabled = 1;
673	for (i = 0; i < HBP_NUM; i++) {
674		if (breakinfo[i].pev)
675			continue;
676		breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
677		if (IS_ERR((void * __force)breakinfo[i].pev)) {
678			printk(KERN_ERR "kgdb: Could not allocate hw"
679			       "breakpoints\nDisabling the kernel debugger\n");
680			breakinfo[i].pev = NULL;
681			kgdb_arch_exit();
682			return;
683		}
684		for_each_online_cpu(cpu) {
685			pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
686			pevent[0]->hw.sample_period = 1;
687			pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
688			if (pevent[0]->destroy != NULL) {
689				pevent[0]->destroy = NULL;
690				release_bp_slot(*pevent);
691			}
692		}
693	}
694}
695
696/**
697 *	kgdb_arch_exit - Perform any architecture specific uninitalization.
698 *
699 *	This function will handle the uninitalization of any architecture
700 *	specific callbacks, for dynamic registration and unregistration.
701 */
702void kgdb_arch_exit(void)
703{
704	int i;
705	for (i = 0; i < 4; i++) {
706		if (breakinfo[i].pev) {
707			unregister_wide_hw_breakpoint(breakinfo[i].pev);
708			breakinfo[i].pev = NULL;
709		}
710	}
711	unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
712	unregister_nmi_handler(NMI_LOCAL, "kgdb");
713	unregister_die_notifier(&kgdb_notifier);
714}
715
716/**
717 *
718 *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
719 *	@exception: Exception vector number
720 *	@regs: Current &struct pt_regs.
721 *
722 *	On some architectures we need to skip a breakpoint exception when
723 *	it occurs after a breakpoint has been removed.
724 *
725 * Skip an int3 exception when it occurs after a breakpoint has been
726 * removed. Backtrack eip by 1 since the int3 would have caused it to
727 * increment by 1.
728 */
729int kgdb_skipexception(int exception, struct pt_regs *regs)
730{
731	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
732		regs->ip -= 1;
733		return 1;
734	}
735	return 0;
736}
737
738unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
739{
740	if (exception == 3)
741		return instruction_pointer(regs) - 1;
742	return instruction_pointer(regs);
743}
744
745void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
746{
747	regs->ip = ip;
748}
749
750int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
751{
752	int err;
753	char opc[BREAK_INSTR_SIZE];
754
755	bpt->type = BP_BREAKPOINT;
756	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
757				BREAK_INSTR_SIZE);
758	if (err)
759		return err;
760	err = probe_kernel_write((char *)bpt->bpt_addr,
761				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
762	if (!err)
763		return err;
764	/*
765	 * It is safe to call text_poke() because normal kernel execution
766	 * is stopped on all cores, so long as the text_mutex is not locked.
767	 */
768	if (mutex_is_locked(&text_mutex))
769		return -EBUSY;
770	text_poke((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
771		  BREAK_INSTR_SIZE);
772	err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
773	if (err)
774		return err;
775	if (memcmp(opc, arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE))
776		return -EINVAL;
777	bpt->type = BP_POKE_BREAKPOINT;
778
779	return err;
780}
781
782int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
783{
784	int err;
785	char opc[BREAK_INSTR_SIZE];
786
787	if (bpt->type != BP_POKE_BREAKPOINT)
788		goto knl_write;
789	/*
790	 * It is safe to call text_poke() because normal kernel execution
791	 * is stopped on all cores, so long as the text_mutex is not locked.
792	 */
793	if (mutex_is_locked(&text_mutex))
794		goto knl_write;
795	text_poke((void *)bpt->bpt_addr, bpt->saved_instr, BREAK_INSTR_SIZE);
796	err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
797	if (err || memcmp(opc, bpt->saved_instr, BREAK_INSTR_SIZE))
798		goto knl_write;
799	return err;
800
801knl_write:
802	return probe_kernel_write((char *)bpt->bpt_addr,
803				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
804}
805
806struct kgdb_arch arch_kgdb_ops = {
807	/* Breakpoint instruction: */
808	.gdb_bpt_instr		= { 0xcc },
809	.flags			= KGDB_HW_BREAKPOINT,
810	.set_hw_breakpoint	= kgdb_set_hw_break,
811	.remove_hw_breakpoint	= kgdb_remove_hw_break,
812	.disable_hw_break	= kgdb_disable_hw_debug,
813	.remove_all_hw_break	= kgdb_remove_all_hw_break,
814	.correct_hw_break	= kgdb_correct_hw_break,
815};