Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * x86 FPU boot time init code:
4 */
5#include <asm/fpu/internal.h>
6#include <asm/tlbflush.h>
7#include <asm/setup.h>
8#include <asm/cmdline.h>
9
10#include <linux/sched.h>
11#include <linux/sched/task.h>
12#include <linux/init.h>
13
14/*
15 * Initialize the registers found in all CPUs, CR0 and CR4:
16 */
17static void fpu__init_cpu_generic(void)
18{
19 unsigned long cr0;
20 unsigned long cr4_mask = 0;
21
22 if (boot_cpu_has(X86_FEATURE_FXSR))
23 cr4_mask |= X86_CR4_OSFXSR;
24 if (boot_cpu_has(X86_FEATURE_XMM))
25 cr4_mask |= X86_CR4_OSXMMEXCPT;
26 if (cr4_mask)
27 cr4_set_bits(cr4_mask);
28
29 cr0 = read_cr0();
30 cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
31 if (!boot_cpu_has(X86_FEATURE_FPU))
32 cr0 |= X86_CR0_EM;
33 write_cr0(cr0);
34
35 /* Flush out any pending x87 state: */
36#ifdef CONFIG_MATH_EMULATION
37 if (!boot_cpu_has(X86_FEATURE_FPU))
38 fpstate_init_soft(¤t->thread.fpu.state.soft);
39 else
40#endif
41 asm volatile ("fninit");
42}
43
44/*
45 * Enable all supported FPU features. Called when a CPU is brought online:
46 */
47void fpu__init_cpu(void)
48{
49 fpu__init_cpu_generic();
50 fpu__init_cpu_xstate();
51}
52
53static bool fpu__probe_without_cpuid(void)
54{
55 unsigned long cr0;
56 u16 fsw, fcw;
57
58 fsw = fcw = 0xffff;
59
60 cr0 = read_cr0();
61 cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
62 write_cr0(cr0);
63
64 asm volatile("fninit ; fnstsw %0 ; fnstcw %1" : "+m" (fsw), "+m" (fcw));
65
66 pr_info("x86/fpu: Probing for FPU: FSW=0x%04hx FCW=0x%04hx\n", fsw, fcw);
67
68 return fsw == 0 && (fcw & 0x103f) == 0x003f;
69}
70
71static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
72{
73 if (!boot_cpu_has(X86_FEATURE_CPUID) &&
74 !test_bit(X86_FEATURE_FPU, (unsigned long *)cpu_caps_cleared)) {
75 if (fpu__probe_without_cpuid())
76 setup_force_cpu_cap(X86_FEATURE_FPU);
77 else
78 setup_clear_cpu_cap(X86_FEATURE_FPU);
79 }
80
81#ifndef CONFIG_MATH_EMULATION
82 if (!test_cpu_cap(&boot_cpu_data, X86_FEATURE_FPU)) {
83 pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n");
84 for (;;)
85 asm volatile("hlt");
86 }
87#endif
88}
89
90/*
91 * Boot time FPU feature detection code:
92 */
93unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
94EXPORT_SYMBOL_GPL(mxcsr_feature_mask);
95
96static void __init fpu__init_system_mxcsr(void)
97{
98 unsigned int mask = 0;
99
100 if (boot_cpu_has(X86_FEATURE_FXSR)) {
101 /* Static because GCC does not get 16-byte stack alignment right: */
102 static struct fxregs_state fxregs __initdata;
103
104 asm volatile("fxsave %0" : "+m" (fxregs));
105
106 mask = fxregs.mxcsr_mask;
107
108 /*
109 * If zero then use the default features mask,
110 * which has all features set, except the
111 * denormals-are-zero feature bit:
112 */
113 if (mask == 0)
114 mask = 0x0000ffbf;
115 }
116 mxcsr_feature_mask &= mask;
117}
118
119/*
120 * Once per bootup FPU initialization sequences that will run on most x86 CPUs:
121 */
122static void __init fpu__init_system_generic(void)
123{
124 /*
125 * Set up the legacy init FPU context. (xstate init might overwrite this
126 * with a more modern format, if the CPU supports it.)
127 */
128 fpstate_init(&init_fpstate);
129
130 fpu__init_system_mxcsr();
131}
132
133/*
134 * Size of the FPU context state. All tasks in the system use the
135 * same context size, regardless of what portion they use.
136 * This is inherent to the XSAVE architecture which puts all state
137 * components into a single, continuous memory block:
138 */
139unsigned int fpu_kernel_xstate_size;
140EXPORT_SYMBOL_GPL(fpu_kernel_xstate_size);
141
142/* Get alignment of the TYPE. */
143#define TYPE_ALIGN(TYPE) offsetof(struct { char x; TYPE test; }, test)
144
145/*
146 * Enforce that 'MEMBER' is the last field of 'TYPE'.
147 *
148 * Align the computed size with alignment of the TYPE,
149 * because that's how C aligns structs.
150 */
151#define CHECK_MEMBER_AT_END_OF(TYPE, MEMBER) \
152 BUILD_BUG_ON(sizeof(TYPE) != ALIGN(offsetofend(TYPE, MEMBER), \
153 TYPE_ALIGN(TYPE)))
154
155/*
156 * We append the 'struct fpu' to the task_struct:
157 */
158static void __init fpu__init_task_struct_size(void)
159{
160 int task_size = sizeof(struct task_struct);
161
162 /*
163 * Subtract off the static size of the register state.
164 * It potentially has a bunch of padding.
165 */
166 task_size -= sizeof(((struct task_struct *)0)->thread.fpu.state);
167
168 /*
169 * Add back the dynamically-calculated register state
170 * size.
171 */
172 task_size += fpu_kernel_xstate_size;
173
174 /*
175 * We dynamically size 'struct fpu', so we require that
176 * it be at the end of 'thread_struct' and that
177 * 'thread_struct' be at the end of 'task_struct'. If
178 * you hit a compile error here, check the structure to
179 * see if something got added to the end.
180 */
181 CHECK_MEMBER_AT_END_OF(struct fpu, state);
182 CHECK_MEMBER_AT_END_OF(struct thread_struct, fpu);
183 CHECK_MEMBER_AT_END_OF(struct task_struct, thread);
184
185 arch_task_struct_size = task_size;
186}
187
188/*
189 * Set up the user and kernel xstate sizes based on the legacy FPU context size.
190 *
191 * We set this up first, and later it will be overwritten by
192 * fpu__init_system_xstate() if the CPU knows about xstates.
193 */
194static void __init fpu__init_system_xstate_size_legacy(void)
195{
196 static int on_boot_cpu __initdata = 1;
197
198 WARN_ON_FPU(!on_boot_cpu);
199 on_boot_cpu = 0;
200
201 /*
202 * Note that xstate sizes might be overwritten later during
203 * fpu__init_system_xstate().
204 */
205
206 if (!boot_cpu_has(X86_FEATURE_FPU)) {
207 fpu_kernel_xstate_size = sizeof(struct swregs_state);
208 } else {
209 if (boot_cpu_has(X86_FEATURE_FXSR))
210 fpu_kernel_xstate_size =
211 sizeof(struct fxregs_state);
212 else
213 fpu_kernel_xstate_size =
214 sizeof(struct fregs_state);
215 }
216
217 fpu_user_xstate_size = fpu_kernel_xstate_size;
218}
219
220/*
221 * Find supported xfeatures based on cpu features and command-line input.
222 * This must be called after fpu__init_parse_early_param() is called and
223 * xfeatures_mask is enumerated.
224 */
225u64 __init fpu__get_supported_xfeatures_mask(void)
226{
227 return XCNTXT_MASK;
228}
229
230/* Legacy code to initialize eager fpu mode. */
231static void __init fpu__init_system_ctx_switch(void)
232{
233 static bool on_boot_cpu __initdata = 1;
234
235 WARN_ON_FPU(!on_boot_cpu);
236 on_boot_cpu = 0;
237}
238
239/*
240 * We parse fpu parameters early because fpu__init_system() is executed
241 * before parse_early_param().
242 */
243static void __init fpu__init_parse_early_param(void)
244{
245 char arg[32];
246 char *argptr = arg;
247 int bit;
248
249#ifdef CONFIG_X86_32
250 if (cmdline_find_option_bool(boot_command_line, "no387"))
251#ifdef CONFIG_MATH_EMULATION
252 setup_clear_cpu_cap(X86_FEATURE_FPU);
253#else
254 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
255#endif
256
257 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
258 setup_clear_cpu_cap(X86_FEATURE_FXSR);
259#endif
260
261 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
262 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
263
264 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
265 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
266
267 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
268 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
269
270 if (cmdline_find_option(boot_command_line, "clearcpuid", arg,
271 sizeof(arg)) &&
272 get_option(&argptr, &bit) &&
273 bit >= 0 &&
274 bit < NCAPINTS * 32)
275 setup_clear_cpu_cap(bit);
276}
277
278/*
279 * Called on the boot CPU once per system bootup, to set up the initial
280 * FPU state that is later cloned into all processes:
281 */
282void __init fpu__init_system(struct cpuinfo_x86 *c)
283{
284 fpu__init_parse_early_param();
285 fpu__init_system_early_generic(c);
286
287 /*
288 * The FPU has to be operational for some of the
289 * later FPU init activities:
290 */
291 fpu__init_cpu();
292
293 fpu__init_system_generic();
294 fpu__init_system_xstate_size_legacy();
295 fpu__init_system_xstate();
296 fpu__init_task_struct_size();
297
298 fpu__init_system_ctx_switch();
299}
1/*
2 * x86 FPU boot time init code:
3 */
4#include <asm/fpu/internal.h>
5#include <asm/tlbflush.h>
6#include <asm/setup.h>
7#include <asm/cmdline.h>
8
9#include <linux/sched.h>
10#include <linux/init.h>
11
12/*
13 * Initialize the TS bit in CR0 according to the style of context-switches
14 * we are using:
15 */
16static void fpu__init_cpu_ctx_switch(void)
17{
18 if (!boot_cpu_has(X86_FEATURE_EAGER_FPU))
19 stts();
20 else
21 clts();
22}
23
24/*
25 * Initialize the registers found in all CPUs, CR0 and CR4:
26 */
27static void fpu__init_cpu_generic(void)
28{
29 unsigned long cr0;
30 unsigned long cr4_mask = 0;
31
32 if (cpu_has_fxsr)
33 cr4_mask |= X86_CR4_OSFXSR;
34 if (cpu_has_xmm)
35 cr4_mask |= X86_CR4_OSXMMEXCPT;
36 if (cr4_mask)
37 cr4_set_bits(cr4_mask);
38
39 cr0 = read_cr0();
40 cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
41 if (!cpu_has_fpu)
42 cr0 |= X86_CR0_EM;
43 write_cr0(cr0);
44
45 /* Flush out any pending x87 state: */
46#ifdef CONFIG_MATH_EMULATION
47 if (!cpu_has_fpu)
48 fpstate_init_soft(¤t->thread.fpu.state.soft);
49 else
50#endif
51 asm volatile ("fninit");
52}
53
54/*
55 * Enable all supported FPU features. Called when a CPU is brought online:
56 */
57void fpu__init_cpu(void)
58{
59 fpu__init_cpu_generic();
60 fpu__init_cpu_xstate();
61 fpu__init_cpu_ctx_switch();
62}
63
64/*
65 * The earliest FPU detection code.
66 *
67 * Set the X86_FEATURE_FPU CPU-capability bit based on
68 * trying to execute an actual sequence of FPU instructions:
69 */
70static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
71{
72 unsigned long cr0;
73 u16 fsw, fcw;
74
75 fsw = fcw = 0xffff;
76
77 cr0 = read_cr0();
78 cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
79 write_cr0(cr0);
80
81 if (!test_bit(X86_FEATURE_FPU, (unsigned long *)cpu_caps_cleared)) {
82 asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
83 : "+m" (fsw), "+m" (fcw));
84
85 if (fsw == 0 && (fcw & 0x103f) == 0x003f)
86 set_cpu_cap(c, X86_FEATURE_FPU);
87 else
88 clear_cpu_cap(c, X86_FEATURE_FPU);
89 }
90
91#ifndef CONFIG_MATH_EMULATION
92 if (!cpu_has_fpu) {
93 pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n");
94 for (;;)
95 asm volatile("hlt");
96 }
97#endif
98}
99
100/*
101 * Boot time FPU feature detection code:
102 */
103unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
104
105static void __init fpu__init_system_mxcsr(void)
106{
107 unsigned int mask = 0;
108
109 if (cpu_has_fxsr) {
110 /* Static because GCC does not get 16-byte stack alignment right: */
111 static struct fxregs_state fxregs __initdata;
112
113 asm volatile("fxsave %0" : "+m" (fxregs));
114
115 mask = fxregs.mxcsr_mask;
116
117 /*
118 * If zero then use the default features mask,
119 * which has all features set, except the
120 * denormals-are-zero feature bit:
121 */
122 if (mask == 0)
123 mask = 0x0000ffbf;
124 }
125 mxcsr_feature_mask &= mask;
126}
127
128/*
129 * Once per bootup FPU initialization sequences that will run on most x86 CPUs:
130 */
131static void __init fpu__init_system_generic(void)
132{
133 /*
134 * Set up the legacy init FPU context. (xstate init might overwrite this
135 * with a more modern format, if the CPU supports it.)
136 */
137 fpstate_init(&init_fpstate);
138
139 fpu__init_system_mxcsr();
140}
141
142/*
143 * Size of the FPU context state. All tasks in the system use the
144 * same context size, regardless of what portion they use.
145 * This is inherent to the XSAVE architecture which puts all state
146 * components into a single, continuous memory block:
147 */
148unsigned int xstate_size;
149EXPORT_SYMBOL_GPL(xstate_size);
150
151/* Get alignment of the TYPE. */
152#define TYPE_ALIGN(TYPE) offsetof(struct { char x; TYPE test; }, test)
153
154/*
155 * Enforce that 'MEMBER' is the last field of 'TYPE'.
156 *
157 * Align the computed size with alignment of the TYPE,
158 * because that's how C aligns structs.
159 */
160#define CHECK_MEMBER_AT_END_OF(TYPE, MEMBER) \
161 BUILD_BUG_ON(sizeof(TYPE) != ALIGN(offsetofend(TYPE, MEMBER), \
162 TYPE_ALIGN(TYPE)))
163
164/*
165 * We append the 'struct fpu' to the task_struct:
166 */
167static void __init fpu__init_task_struct_size(void)
168{
169 int task_size = sizeof(struct task_struct);
170
171 /*
172 * Subtract off the static size of the register state.
173 * It potentially has a bunch of padding.
174 */
175 task_size -= sizeof(((struct task_struct *)0)->thread.fpu.state);
176
177 /*
178 * Add back the dynamically-calculated register state
179 * size.
180 */
181 task_size += xstate_size;
182
183 /*
184 * We dynamically size 'struct fpu', so we require that
185 * it be at the end of 'thread_struct' and that
186 * 'thread_struct' be at the end of 'task_struct'. If
187 * you hit a compile error here, check the structure to
188 * see if something got added to the end.
189 */
190 CHECK_MEMBER_AT_END_OF(struct fpu, state);
191 CHECK_MEMBER_AT_END_OF(struct thread_struct, fpu);
192 CHECK_MEMBER_AT_END_OF(struct task_struct, thread);
193
194 arch_task_struct_size = task_size;
195}
196
197/*
198 * Set up the xstate_size based on the legacy FPU context size.
199 *
200 * We set this up first, and later it will be overwritten by
201 * fpu__init_system_xstate() if the CPU knows about xstates.
202 */
203static void __init fpu__init_system_xstate_size_legacy(void)
204{
205 static int on_boot_cpu __initdata = 1;
206
207 WARN_ON_FPU(!on_boot_cpu);
208 on_boot_cpu = 0;
209
210 /*
211 * Note that xstate_size might be overwriten later during
212 * fpu__init_system_xstate().
213 */
214
215 if (!cpu_has_fpu) {
216 /*
217 * Disable xsave as we do not support it if i387
218 * emulation is enabled.
219 */
220 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
221 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
222 xstate_size = sizeof(struct swregs_state);
223 } else {
224 if (cpu_has_fxsr)
225 xstate_size = sizeof(struct fxregs_state);
226 else
227 xstate_size = sizeof(struct fregs_state);
228 }
229 /*
230 * Quirk: we don't yet handle the XSAVES* instructions
231 * correctly, as we don't correctly convert between
232 * standard and compacted format when interfacing
233 * with user-space - so disable it for now.
234 *
235 * The difference is small: with recent CPUs the
236 * compacted format is only marginally smaller than
237 * the standard FPU state format.
238 *
239 * ( This is easy to backport while we are fixing
240 * XSAVES* support. )
241 */
242 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
243}
244
245/*
246 * FPU context switching strategies:
247 *
248 * Against popular belief, we don't do lazy FPU saves, due to the
249 * task migration complications it brings on SMP - we only do
250 * lazy FPU restores.
251 *
252 * 'lazy' is the traditional strategy, which is based on setting
253 * CR0::TS to 1 during context-switch (instead of doing a full
254 * restore of the FPU state), which causes the first FPU instruction
255 * after the context switch (whenever it is executed) to fault - at
256 * which point we lazily restore the FPU state into FPU registers.
257 *
258 * Tasks are of course under no obligation to execute FPU instructions,
259 * so it can easily happen that another context-switch occurs without
260 * a single FPU instruction being executed. If we eventually switch
261 * back to the original task (that still owns the FPU) then we have
262 * not only saved the restores along the way, but we also have the
263 * FPU ready to be used for the original task.
264 *
265 * 'lazy' is deprecated because it's almost never a performance win
266 * and it's much more complicated than 'eager'.
267 *
268 * 'eager' switching is by default on all CPUs, there we switch the FPU
269 * state during every context switch, regardless of whether the task
270 * has used FPU instructions in that time slice or not. This is done
271 * because modern FPU context saving instructions are able to optimize
272 * state saving and restoration in hardware: they can detect both
273 * unused and untouched FPU state and optimize accordingly.
274 *
275 * [ Note that even in 'lazy' mode we might optimize context switches
276 * to use 'eager' restores, if we detect that a task is using the FPU
277 * frequently. See the fpu->counter logic in fpu/internal.h for that. ]
278 */
279static enum { ENABLE, DISABLE } eagerfpu = ENABLE;
280
281/*
282 * Find supported xfeatures based on cpu features and command-line input.
283 * This must be called after fpu__init_parse_early_param() is called and
284 * xfeatures_mask is enumerated.
285 */
286u64 __init fpu__get_supported_xfeatures_mask(void)
287{
288 /* Support all xfeatures known to us */
289 if (eagerfpu != DISABLE)
290 return XCNTXT_MASK;
291
292 /* Warning of xfeatures being disabled for no eagerfpu mode */
293 if (xfeatures_mask & XFEATURE_MASK_EAGER) {
294 pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n",
295 xfeatures_mask & XFEATURE_MASK_EAGER);
296 }
297
298 /* Return a mask that masks out all features requiring eagerfpu mode */
299 return ~XFEATURE_MASK_EAGER;
300}
301
302/*
303 * Disable features dependent on eagerfpu.
304 */
305static void __init fpu__clear_eager_fpu_features(void)
306{
307 setup_clear_cpu_cap(X86_FEATURE_MPX);
308}
309
310/*
311 * Pick the FPU context switching strategy:
312 *
313 * When eagerfpu is AUTO or ENABLE, we ensure it is ENABLE if either of
314 * the following is true:
315 *
316 * (1) the cpu has xsaveopt, as it has the optimization and doing eager
317 * FPU switching has a relatively low cost compared to a plain xsave;
318 * (2) the cpu has xsave features (e.g. MPX) that depend on eager FPU
319 * switching. Should the kernel boot with noxsaveopt, we support MPX
320 * with eager FPU switching at a higher cost.
321 */
322static void __init fpu__init_system_ctx_switch(void)
323{
324 static bool on_boot_cpu __initdata = 1;
325
326 WARN_ON_FPU(!on_boot_cpu);
327 on_boot_cpu = 0;
328
329 WARN_ON_FPU(current->thread.fpu.fpstate_active);
330 current_thread_info()->status = 0;
331
332 if (boot_cpu_has(X86_FEATURE_XSAVEOPT) && eagerfpu != DISABLE)
333 eagerfpu = ENABLE;
334
335 if (xfeatures_mask & XFEATURE_MASK_EAGER)
336 eagerfpu = ENABLE;
337
338 if (eagerfpu == ENABLE)
339 setup_force_cpu_cap(X86_FEATURE_EAGER_FPU);
340
341 printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy");
342}
343
344/*
345 * We parse fpu parameters early because fpu__init_system() is executed
346 * before parse_early_param().
347 */
348static void __init fpu__init_parse_early_param(void)
349{
350 if (cmdline_find_option_bool(boot_command_line, "eagerfpu=off")) {
351 eagerfpu = DISABLE;
352 fpu__clear_eager_fpu_features();
353 }
354
355 if (cmdline_find_option_bool(boot_command_line, "no387"))
356 setup_clear_cpu_cap(X86_FEATURE_FPU);
357
358 if (cmdline_find_option_bool(boot_command_line, "nofxsr")) {
359 setup_clear_cpu_cap(X86_FEATURE_FXSR);
360 setup_clear_cpu_cap(X86_FEATURE_FXSR_OPT);
361 setup_clear_cpu_cap(X86_FEATURE_XMM);
362 }
363
364 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
365 fpu__xstate_clear_all_cpu_caps();
366
367 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
368 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
369
370 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
371 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
372}
373
374/*
375 * Called on the boot CPU once per system bootup, to set up the initial
376 * FPU state that is later cloned into all processes:
377 */
378void __init fpu__init_system(struct cpuinfo_x86 *c)
379{
380 fpu__init_parse_early_param();
381 fpu__init_system_early_generic(c);
382
383 /*
384 * The FPU has to be operational for some of the
385 * later FPU init activities:
386 */
387 fpu__init_cpu();
388
389 /*
390 * But don't leave CR0::TS set yet, as some of the FPU setup
391 * methods depend on being able to execute FPU instructions
392 * that will fault on a set TS, such as the FXSAVE in
393 * fpu__init_system_mxcsr().
394 */
395 clts();
396
397 fpu__init_system_generic();
398 fpu__init_system_xstate_size_legacy();
399 fpu__init_system_xstate();
400 fpu__init_task_struct_size();
401
402 fpu__init_system_ctx_switch();
403}