Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   4 *
   5 *	PDC == Processor Dependent Code
   6 *
   7 * See http://www.parisc-linux.org/documentation/index.html
   8 * for documentation describing the entry points and calling
   9 * conventions defined below.
  10 *
  11 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  12 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  13 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  14 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  15 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
 
 
 
 
 
 
  16 */
  17
  18/*	I think it would be in everyone's best interest to follow this
  19 *	guidelines when writing PDC wrappers:
  20 *
  21 *	 - the name of the pdc wrapper should match one of the macros
  22 *	   used for the first two arguments
  23 *	 - don't use caps for random parts of the name
  24 *	 - use the static PDC result buffers and "copyout" to structs
  25 *	   supplied by the caller to encapsulate alignment restrictions
  26 *	 - hold pdc_lock while in PDC or using static result buffers
  27 *	 - use __pa() to convert virtual (kernel) pointers to physical
  28 *	   ones.
  29 *	 - the name of the struct used for pdc return values should equal
  30 *	   one of the macros used for the first two arguments to the
  31 *	   corresponding PDC call
  32 *	 - keep the order of arguments
  33 *	 - don't be smart (setting trailing NUL bytes for strings, return
  34 *	   something useful even if the call failed) unless you are sure
  35 *	   it's not going to affect functionality or performance
  36 *
  37 *	Example:
  38 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  39 *	{
  40 *		int retval;
  41 *
  42 *		spin_lock_irq(&pdc_lock);
  43 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  44 *		convert_to_wide(pdc_result);
  45 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  46 *		spin_unlock_irq(&pdc_lock);
  47 *
  48 *		return retval;
  49 *	}
  50 *					prumpf	991016	
  51 */
  52
  53#include <stdarg.h>
  54
  55#include <linux/delay.h>
  56#include <linux/init.h>
  57#include <linux/kernel.h>
  58#include <linux/module.h>
  59#include <linux/string.h>
  60#include <linux/spinlock.h>
  61
  62#include <asm/page.h>
  63#include <asm/pdc.h>
  64#include <asm/pdcpat.h>
  65#include <asm/processor.h>	/* for boot_cpu_data */
  66
  67#if defined(BOOTLOADER)
  68# undef  spin_lock_irqsave
  69# define spin_lock_irqsave(a, b) { b = 1; }
  70# undef  spin_unlock_irqrestore
  71# define spin_unlock_irqrestore(a, b)
  72#else
  73static DEFINE_SPINLOCK(pdc_lock);
  74#endif
  75
  76extern unsigned long pdc_result[NUM_PDC_RESULT];
  77extern unsigned long pdc_result2[NUM_PDC_RESULT];
  78
  79#ifdef CONFIG_64BIT
  80#define WIDE_FIRMWARE 0x1
  81#define NARROW_FIRMWARE 0x2
  82
  83/* Firmware needs to be initially set to narrow to determine the 
  84 * actual firmware width. */
  85int parisc_narrow_firmware __ro_after_init = 1;
  86#endif
  87
  88/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  89 * and MEM_PDC calls are always the same width as the OS.
  90 * Some PAT boxes may have 64-bit IODC I/O.
  91 *
  92 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  93 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  94 * This allowed wide kernels to run on Cxxx boxes.
  95 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  96 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  97 */
  98
  99#ifdef CONFIG_64BIT
 100long real64_call(unsigned long function, ...);
 101#endif
 102long real32_call(unsigned long function, ...);
 103
 104#ifdef CONFIG_64BIT
 105#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 106#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 107#else
 108#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 109#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 110#endif
 111
 112
 113/**
 114 * f_extend - Convert PDC addresses to kernel addresses.
 115 * @address: Address returned from PDC.
 116 *
 117 * This function is used to convert PDC addresses into kernel addresses
 118 * when the PDC address size and kernel address size are different.
 119 */
 120static unsigned long f_extend(unsigned long address)
 121{
 122#ifdef CONFIG_64BIT
 123	if(unlikely(parisc_narrow_firmware)) {
 124		if((address & 0xff000000) == 0xf0000000)
 125			return 0xf0f0f0f000000000UL | (u32)address;
 126
 127		if((address & 0xf0000000) == 0xf0000000)
 128			return 0xffffffff00000000UL | (u32)address;
 129	}
 130#endif
 131	return address;
 132}
 133
 134/**
 135 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 136 * @address: The return buffer from PDC.
 137 *
 138 * This function is used to convert the return buffer addresses retrieved from PDC
 139 * into kernel addresses when the PDC address size and kernel address size are
 140 * different.
 141 */
 142static void convert_to_wide(unsigned long *addr)
 143{
 144#ifdef CONFIG_64BIT
 145	int i;
 146	unsigned int *p = (unsigned int *)addr;
 147
 148	if (unlikely(parisc_narrow_firmware)) {
 149		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 150			addr[i] = p[i];
 151	}
 152#endif
 153}
 154
 155#ifdef CONFIG_64BIT
 156void set_firmware_width_unlocked(void)
 157{
 158	int ret;
 159
 160	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 161		__pa(pdc_result), 0);
 162	convert_to_wide(pdc_result);
 163	if (pdc_result[0] != NARROW_FIRMWARE)
 164		parisc_narrow_firmware = 0;
 165}
 166	
 167/**
 168 * set_firmware_width - Determine if the firmware is wide or narrow.
 169 * 
 170 * This function must be called before any pdc_* function that uses the
 171 * convert_to_wide function.
 172 */
 173void set_firmware_width(void)
 174{
 175	unsigned long flags;
 176	spin_lock_irqsave(&pdc_lock, flags);
 177	set_firmware_width_unlocked();
 178	spin_unlock_irqrestore(&pdc_lock, flags);
 179}
 180#else
 181void set_firmware_width_unlocked(void)
 182{
 183	return;
 184}
 185
 186void set_firmware_width(void)
 187{
 188	return;
 189}
 190#endif /*CONFIG_64BIT*/
 191
 192
 193#if !defined(BOOTLOADER)
 194/**
 195 * pdc_emergency_unlock - Unlock the linux pdc lock
 196 *
 197 * This call unlocks the linux pdc lock in case we need some PDC functions
 198 * (like pdc_add_valid) during kernel stack dump.
 199 */
 200void pdc_emergency_unlock(void)
 201{
 202 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 203        if (spin_is_locked(&pdc_lock))
 204		spin_unlock(&pdc_lock);
 205}
 206
 207
 208/**
 209 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 210 * @address: Address to be verified.
 211 *
 212 * This PDC call attempts to read from the specified address and verifies
 213 * if the address is valid.
 214 * 
 215 * The return value is PDC_OK (0) in case accessing this address is valid.
 216 */
 217int pdc_add_valid(unsigned long address)
 218{
 219        int retval;
 220	unsigned long flags;
 221
 222        spin_lock_irqsave(&pdc_lock, flags);
 223        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 224        spin_unlock_irqrestore(&pdc_lock, flags);
 225
 226        return retval;
 227}
 228EXPORT_SYMBOL(pdc_add_valid);
 229
 230/**
 231 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 232 * @instr: Pointer to variable which will get instruction opcode.
 233 *
 234 * The return value is PDC_OK (0) in case call succeeded.
 235 */
 236int __init pdc_instr(unsigned int *instr)
 237{
 238	int retval;
 239	unsigned long flags;
 240
 241	spin_lock_irqsave(&pdc_lock, flags);
 242	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 243	convert_to_wide(pdc_result);
 244	*instr = pdc_result[0];
 245	spin_unlock_irqrestore(&pdc_lock, flags);
 246
 247	return retval;
 248}
 249
 250/**
 251 * pdc_chassis_info - Return chassis information.
 252 * @result: The return buffer.
 253 * @chassis_info: The memory buffer address.
 254 * @len: The size of the memory buffer address.
 255 *
 256 * An HVERSION dependent call for returning the chassis information.
 257 */
 258int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 259{
 260        int retval;
 261	unsigned long flags;
 262
 263        spin_lock_irqsave(&pdc_lock, flags);
 264        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 265        memcpy(&pdc_result2, led_info, len);
 266        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 267                              __pa(pdc_result), __pa(pdc_result2), len);
 268        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 269        memcpy(led_info, pdc_result2, len);
 270        spin_unlock_irqrestore(&pdc_lock, flags);
 271
 272        return retval;
 273}
 274
 275/**
 276 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 277 * @retval: -1 on error, 0 on success. Other value are PDC errors
 278 * 
 279 * Must be correctly formatted or expect system crash
 280 */
 281#ifdef CONFIG_64BIT
 282int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 283{
 284	int retval = 0;
 285	unsigned long flags;
 286        
 287	if (!is_pdc_pat())
 288		return -1;
 289
 290	spin_lock_irqsave(&pdc_lock, flags);
 291	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 292	spin_unlock_irqrestore(&pdc_lock, flags);
 293
 294	return retval;
 295}
 296#endif
 297
 298/**
 299 * pdc_chassis_disp - Updates chassis code
 300 * @retval: -1 on error, 0 on success
 301 */
 302int pdc_chassis_disp(unsigned long disp)
 303{
 304	int retval = 0;
 305	unsigned long flags;
 306
 307	spin_lock_irqsave(&pdc_lock, flags);
 308	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 309	spin_unlock_irqrestore(&pdc_lock, flags);
 310
 311	return retval;
 312}
 313
 314/**
 315 * pdc_cpu_rendenzvous - Stop currently executing CPU
 316 * @retval: -1 on error, 0 on success
 317 */
 318int __pdc_cpu_rendezvous(void)
 319{
 320	if (is_pdc_pat())
 321		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
 322	else
 323		return mem_pdc_call(PDC_PROC, 1, 0);
 324}
 325
 326
 327/**
 328 * pdc_chassis_warn - Fetches chassis warnings
 329 * @retval: -1 on error, 0 on success
 330 */
 331int pdc_chassis_warn(unsigned long *warn)
 332{
 333	int retval = 0;
 334	unsigned long flags;
 335
 336	spin_lock_irqsave(&pdc_lock, flags);
 337	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 338	*warn = pdc_result[0];
 339	spin_unlock_irqrestore(&pdc_lock, flags);
 340
 341	return retval;
 342}
 343
 344int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 345{
 346	int ret;
 347
 348	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 349	convert_to_wide(pdc_result);
 350	pdc_coproc_info->ccr_functional = pdc_result[0];
 351	pdc_coproc_info->ccr_present = pdc_result[1];
 352	pdc_coproc_info->revision = pdc_result[17];
 353	pdc_coproc_info->model = pdc_result[18];
 354
 355	return ret;
 356}
 357
 358/**
 359 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 360 * @pdc_coproc_info: Return buffer address.
 361 *
 362 * This PDC call returns the presence and status of all the coprocessors
 363 * attached to the processor.
 364 */
 365int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 366{
 367	int ret;
 368	unsigned long flags;
 369
 370	spin_lock_irqsave(&pdc_lock, flags);
 371	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 372	spin_unlock_irqrestore(&pdc_lock, flags);
 373
 374	return ret;
 375}
 376
 377/**
 378 * pdc_iodc_read - Read data from the modules IODC.
 379 * @actcnt: The actual number of bytes.
 380 * @hpa: The HPA of the module for the iodc read.
 381 * @index: The iodc entry point.
 382 * @iodc_data: A buffer memory for the iodc options.
 383 * @iodc_data_size: Size of the memory buffer.
 384 *
 385 * This PDC call reads from the IODC of the module specified by the hpa
 386 * argument.
 387 */
 388int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 389		  void *iodc_data, unsigned int iodc_data_size)
 390{
 391	int retval;
 392	unsigned long flags;
 393
 394	spin_lock_irqsave(&pdc_lock, flags);
 395	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 396			      index, __pa(pdc_result2), iodc_data_size);
 397	convert_to_wide(pdc_result);
 398	*actcnt = pdc_result[0];
 399	memcpy(iodc_data, pdc_result2, iodc_data_size);
 400	spin_unlock_irqrestore(&pdc_lock, flags);
 401
 402	return retval;
 403}
 404EXPORT_SYMBOL(pdc_iodc_read);
 405
 406/**
 407 * pdc_system_map_find_mods - Locate unarchitected modules.
 408 * @pdc_mod_info: Return buffer address.
 409 * @mod_path: pointer to dev path structure.
 410 * @mod_index: fixed address module index.
 411 *
 412 * To locate and identify modules which reside at fixed I/O addresses, which
 413 * do not self-identify via architected bus walks.
 414 */
 415int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 416			     struct pdc_module_path *mod_path, long mod_index)
 417{
 418	int retval;
 419	unsigned long flags;
 420
 421	spin_lock_irqsave(&pdc_lock, flags);
 422	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 423			      __pa(pdc_result2), mod_index);
 424	convert_to_wide(pdc_result);
 425	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 426	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 427	spin_unlock_irqrestore(&pdc_lock, flags);
 428
 429	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 430	return retval;
 431}
 432
 433/**
 434 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 435 * @pdc_addr_info: Return buffer address.
 436 * @mod_index: Fixed address module index.
 437 * @addr_index: Address range index.
 438 * 
 439 * Retrieve additional information about subsequent address ranges for modules
 440 * with multiple address ranges.  
 441 */
 442int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 443			      long mod_index, long addr_index)
 444{
 445	int retval;
 446	unsigned long flags;
 447
 448	spin_lock_irqsave(&pdc_lock, flags);
 449	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 450			      mod_index, addr_index);
 451	convert_to_wide(pdc_result);
 452	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 453	spin_unlock_irqrestore(&pdc_lock, flags);
 454
 455	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 456	return retval;
 457}
 458
 459/**
 460 * pdc_model_info - Return model information about the processor.
 461 * @model: The return buffer.
 462 *
 463 * Returns the version numbers, identifiers, and capabilities from the processor module.
 464 */
 465int pdc_model_info(struct pdc_model *model) 
 466{
 467	int retval;
 468	unsigned long flags;
 469
 470	spin_lock_irqsave(&pdc_lock, flags);
 471	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 472	convert_to_wide(pdc_result);
 473	memcpy(model, pdc_result, sizeof(*model));
 474	spin_unlock_irqrestore(&pdc_lock, flags);
 475
 476	return retval;
 477}
 478
 479/**
 480 * pdc_model_sysmodel - Get the system model name.
 481 * @name: A char array of at least 81 characters.
 482 *
 483 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 484 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 485 * on HP/UX.
 486 */
 487int pdc_model_sysmodel(char *name)
 488{
 489        int retval;
 490	unsigned long flags;
 491
 492        spin_lock_irqsave(&pdc_lock, flags);
 493        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 494                              OS_ID_HPUX, __pa(name));
 495        convert_to_wide(pdc_result);
 496
 497        if (retval == PDC_OK) {
 498                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 499        } else {
 500                name[0] = 0;
 501        }
 502        spin_unlock_irqrestore(&pdc_lock, flags);
 503
 504        return retval;
 505}
 506
 507/**
 508 * pdc_model_versions - Identify the version number of each processor.
 509 * @cpu_id: The return buffer.
 510 * @id: The id of the processor to check.
 511 *
 512 * Returns the version number for each processor component.
 513 *
 514 * This comment was here before, but I do not know what it means :( -RB
 515 * id: 0 = cpu revision, 1 = boot-rom-version
 516 */
 517int pdc_model_versions(unsigned long *versions, int id)
 518{
 519        int retval;
 520	unsigned long flags;
 521
 522        spin_lock_irqsave(&pdc_lock, flags);
 523        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 524        convert_to_wide(pdc_result);
 525        *versions = pdc_result[0];
 526        spin_unlock_irqrestore(&pdc_lock, flags);
 527
 528        return retval;
 529}
 530
 531/**
 532 * pdc_model_cpuid - Returns the CPU_ID.
 533 * @cpu_id: The return buffer.
 534 *
 535 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 536 * the processor module.
 537 */
 538int pdc_model_cpuid(unsigned long *cpu_id)
 539{
 540        int retval;
 541	unsigned long flags;
 542
 543        spin_lock_irqsave(&pdc_lock, flags);
 544        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 545        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 546        convert_to_wide(pdc_result);
 547        *cpu_id = pdc_result[0];
 548        spin_unlock_irqrestore(&pdc_lock, flags);
 549
 550        return retval;
 551}
 552
 553/**
 554 * pdc_model_capabilities - Returns the platform capabilities.
 555 * @capabilities: The return buffer.
 556 *
 557 * Returns information about platform support for 32- and/or 64-bit
 558 * OSes, IO-PDIR coherency, and virtual aliasing.
 559 */
 560int pdc_model_capabilities(unsigned long *capabilities)
 561{
 562        int retval;
 563	unsigned long flags;
 564
 565        spin_lock_irqsave(&pdc_lock, flags);
 566        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 567        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 568        convert_to_wide(pdc_result);
 569        if (retval == PDC_OK) {
 570                *capabilities = pdc_result[0];
 571        } else {
 572                *capabilities = PDC_MODEL_OS32;
 573        }
 574        spin_unlock_irqrestore(&pdc_lock, flags);
 575
 576        return retval;
 577}
 578
 579/**
 580 * pdc_model_platform_info - Returns machine product and serial number.
 581 * @orig_prod_num: Return buffer for original product number.
 582 * @current_prod_num: Return buffer for current product number.
 583 * @serial_no: Return buffer for serial number.
 584 *
 585 * Returns strings containing the original and current product numbers and the
 586 * serial number of the system.
 587 */
 588int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
 589		char *serial_no)
 590{
 591	int retval;
 592	unsigned long flags;
 593
 594	spin_lock_irqsave(&pdc_lock, flags);
 595	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
 596		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
 597	convert_to_wide(pdc_result);
 598	spin_unlock_irqrestore(&pdc_lock, flags);
 599
 600	return retval;
 601}
 602
 603/**
 604 * pdc_cache_info - Return cache and TLB information.
 605 * @cache_info: The return buffer.
 606 *
 607 * Returns information about the processor's cache and TLB.
 608 */
 609int pdc_cache_info(struct pdc_cache_info *cache_info)
 610{
 611        int retval;
 612	unsigned long flags;
 613
 614        spin_lock_irqsave(&pdc_lock, flags);
 615        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 616        convert_to_wide(pdc_result);
 617        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 618        spin_unlock_irqrestore(&pdc_lock, flags);
 619
 620        return retval;
 621}
 622
 623/**
 624 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 625 * @space_bits: Should be 0, if not, bad mojo!
 626 *
 627 * Returns information about Space ID hashing.
 628 */
 629int pdc_spaceid_bits(unsigned long *space_bits)
 630{
 631	int retval;
 632	unsigned long flags;
 633
 634	spin_lock_irqsave(&pdc_lock, flags);
 635	pdc_result[0] = 0;
 636	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 637	convert_to_wide(pdc_result);
 638	*space_bits = pdc_result[0];
 639	spin_unlock_irqrestore(&pdc_lock, flags);
 640
 641	return retval;
 642}
 643
 644#ifndef CONFIG_PA20
 645/**
 646 * pdc_btlb_info - Return block TLB information.
 647 * @btlb: The return buffer.
 648 *
 649 * Returns information about the hardware Block TLB.
 650 */
 651int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 652{
 653        int retval;
 654	unsigned long flags;
 655
 656        spin_lock_irqsave(&pdc_lock, flags);
 657        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 658        memcpy(btlb, pdc_result, sizeof(*btlb));
 659        spin_unlock_irqrestore(&pdc_lock, flags);
 660
 661        if(retval < 0) {
 662                btlb->max_size = 0;
 663        }
 664        return retval;
 665}
 666
 667/**
 668 * pdc_mem_map_hpa - Find fixed module information.  
 669 * @address: The return buffer
 670 * @mod_path: pointer to dev path structure.
 671 *
 672 * This call was developed for S700 workstations to allow the kernel to find
 673 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 674 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 675 * call.
 676 *
 677 * This call is supported by all existing S700 workstations (up to  Gecko).
 678 */
 679int pdc_mem_map_hpa(struct pdc_memory_map *address,
 680		struct pdc_module_path *mod_path)
 681{
 682        int retval;
 683	unsigned long flags;
 684
 685        spin_lock_irqsave(&pdc_lock, flags);
 686        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 687        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 688				__pa(pdc_result2));
 689        memcpy(address, pdc_result, sizeof(*address));
 690        spin_unlock_irqrestore(&pdc_lock, flags);
 691
 692        return retval;
 693}
 694#endif	/* !CONFIG_PA20 */
 695
 696/**
 697 * pdc_lan_station_id - Get the LAN address.
 698 * @lan_addr: The return buffer.
 699 * @hpa: The network device HPA.
 700 *
 701 * Get the LAN station address when it is not directly available from the LAN hardware.
 702 */
 703int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 704{
 705	int retval;
 706	unsigned long flags;
 707
 708	spin_lock_irqsave(&pdc_lock, flags);
 709	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 710			__pa(pdc_result), hpa);
 711	if (retval < 0) {
 712		/* FIXME: else read MAC from NVRAM */
 713		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 714	} else {
 715		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 716	}
 717	spin_unlock_irqrestore(&pdc_lock, flags);
 718
 719	return retval;
 720}
 721EXPORT_SYMBOL(pdc_lan_station_id);
 722
 723/**
 724 * pdc_stable_read - Read data from Stable Storage.
 725 * @staddr: Stable Storage address to access.
 726 * @memaddr: The memory address where Stable Storage data shall be copied.
 727 * @count: number of bytes to transfer. count is multiple of 4.
 728 *
 729 * This PDC call reads from the Stable Storage address supplied in staddr
 730 * and copies count bytes to the memory address memaddr.
 731 * The call will fail if staddr+count > PDC_STABLE size.
 732 */
 733int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 734{
 735       int retval;
 736	unsigned long flags;
 737
 738       spin_lock_irqsave(&pdc_lock, flags);
 739       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 740               __pa(pdc_result), count);
 741       convert_to_wide(pdc_result);
 742       memcpy(memaddr, pdc_result, count);
 743       spin_unlock_irqrestore(&pdc_lock, flags);
 744
 745       return retval;
 746}
 747EXPORT_SYMBOL(pdc_stable_read);
 748
 749/**
 750 * pdc_stable_write - Write data to Stable Storage.
 751 * @staddr: Stable Storage address to access.
 752 * @memaddr: The memory address where Stable Storage data shall be read from.
 753 * @count: number of bytes to transfer. count is multiple of 4.
 754 *
 755 * This PDC call reads count bytes from the supplied memaddr address,
 756 * and copies count bytes to the Stable Storage address staddr.
 757 * The call will fail if staddr+count > PDC_STABLE size.
 758 */
 759int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 760{
 761       int retval;
 762	unsigned long flags;
 763
 764       spin_lock_irqsave(&pdc_lock, flags);
 765       memcpy(pdc_result, memaddr, count);
 766       convert_to_wide(pdc_result);
 767       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 768               __pa(pdc_result), count);
 769       spin_unlock_irqrestore(&pdc_lock, flags);
 770
 771       return retval;
 772}
 773EXPORT_SYMBOL(pdc_stable_write);
 774
 775/**
 776 * pdc_stable_get_size - Get Stable Storage size in bytes.
 777 * @size: pointer where the size will be stored.
 778 *
 779 * This PDC call returns the number of bytes in the processor's Stable
 780 * Storage, which is the number of contiguous bytes implemented in Stable
 781 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 782 * which is a multiple of four.
 783 */
 784int pdc_stable_get_size(unsigned long *size)
 785{
 786       int retval;
 787	unsigned long flags;
 788
 789       spin_lock_irqsave(&pdc_lock, flags);
 790       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 791       *size = pdc_result[0];
 792       spin_unlock_irqrestore(&pdc_lock, flags);
 793
 794       return retval;
 795}
 796EXPORT_SYMBOL(pdc_stable_get_size);
 797
 798/**
 799 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 800 *
 801 * This PDC call is meant to be used to check the integrity of the current
 802 * contents of Stable Storage.
 803 */
 804int pdc_stable_verify_contents(void)
 805{
 806       int retval;
 807	unsigned long flags;
 808
 809       spin_lock_irqsave(&pdc_lock, flags);
 810       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 811       spin_unlock_irqrestore(&pdc_lock, flags);
 812
 813       return retval;
 814}
 815EXPORT_SYMBOL(pdc_stable_verify_contents);
 816
 817/**
 818 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 819 * the validity indicator.
 820 *
 821 * This PDC call will erase all contents of Stable Storage. Use with care!
 822 */
 823int pdc_stable_initialize(void)
 824{
 825       int retval;
 826	unsigned long flags;
 827
 828       spin_lock_irqsave(&pdc_lock, flags);
 829       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 830       spin_unlock_irqrestore(&pdc_lock, flags);
 831
 832       return retval;
 833}
 834EXPORT_SYMBOL(pdc_stable_initialize);
 835
 836/**
 837 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 838 * @hwpath: fully bc.mod style path to the device.
 839 * @initiator: the array to return the result into
 840 *
 841 * Get the SCSI operational parameters from PDC.
 842 * Needed since HPUX never used BIOS or symbios card NVRAM.
 843 * Most ncr/sym cards won't have an entry and just use whatever
 844 * capabilities of the card are (eg Ultra, LVD). But there are
 845 * several cases where it's useful:
 846 *    o set SCSI id for Multi-initiator clusters,
 847 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 848 *    o bus width exported is less than what the interface chip supports.
 849 */
 850int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 851{
 852	int retval;
 853	unsigned long flags;
 854
 855	spin_lock_irqsave(&pdc_lock, flags);
 856
 857/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 858#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 859	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 860
 861	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 862			      __pa(pdc_result), __pa(hwpath));
 863	if (retval < PDC_OK)
 864		goto out;
 865
 866	if (pdc_result[0] < 16) {
 867		initiator->host_id = pdc_result[0];
 868	} else {
 869		initiator->host_id = -1;
 870	}
 871
 872	/*
 873	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 874	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 875	 */
 876	switch (pdc_result[1]) {
 877		case  1: initiator->factor = 50; break;
 878		case  2: initiator->factor = 25; break;
 879		case  5: initiator->factor = 12; break;
 880		case 25: initiator->factor = 10; break;
 881		case 20: initiator->factor = 12; break;
 882		case 40: initiator->factor = 10; break;
 883		default: initiator->factor = -1; break;
 884	}
 885
 886	if (IS_SPROCKETS()) {
 887		initiator->width = pdc_result[4];
 888		initiator->mode = pdc_result[5];
 889	} else {
 890		initiator->width = -1;
 891		initiator->mode = -1;
 892	}
 893
 894 out:
 895	spin_unlock_irqrestore(&pdc_lock, flags);
 896
 897	return (retval >= PDC_OK);
 898}
 899EXPORT_SYMBOL(pdc_get_initiator);
 900
 901
 902/**
 903 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 904 * @num_entries: The return value.
 905 * @hpa: The HPA for the device.
 906 *
 907 * This PDC function returns the number of entries in the specified cell's
 908 * interrupt table.
 909 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 910 */ 
 911int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 912{
 913	int retval;
 914	unsigned long flags;
 915
 916	spin_lock_irqsave(&pdc_lock, flags);
 917	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 918			      __pa(pdc_result), hpa);
 919	convert_to_wide(pdc_result);
 920	*num_entries = pdc_result[0];
 921	spin_unlock_irqrestore(&pdc_lock, flags);
 922
 923	return retval;
 924}
 925
 926/** 
 927 * pdc_pci_irt - Get the PCI interrupt routing table.
 928 * @num_entries: The number of entries in the table.
 929 * @hpa: The Hard Physical Address of the device.
 930 * @tbl: 
 931 *
 932 * Get the PCI interrupt routing table for the device at the given HPA.
 933 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 934 */
 935int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 936{
 937	int retval;
 938	unsigned long flags;
 939
 940	BUG_ON((unsigned long)tbl & 0x7);
 941
 942	spin_lock_irqsave(&pdc_lock, flags);
 943	pdc_result[0] = num_entries;
 944	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 945			      __pa(pdc_result), hpa, __pa(tbl));
 946	spin_unlock_irqrestore(&pdc_lock, flags);
 947
 948	return retval;
 949}
 950
 951
 952#if 0	/* UNTEST CODE - left here in case someone needs it */
 953
 954/** 
 955 * pdc_pci_config_read - read PCI config space.
 956 * @hpa		token from PDC to indicate which PCI device
 957 * @pci_addr	configuration space address to read from
 958 *
 959 * Read PCI Configuration space *before* linux PCI subsystem is running.
 960 */
 961unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 962{
 963	int retval;
 964	unsigned long flags;
 965
 966	spin_lock_irqsave(&pdc_lock, flags);
 967	pdc_result[0] = 0;
 968	pdc_result[1] = 0;
 969	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 970			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 971	spin_unlock_irqrestore(&pdc_lock, flags);
 972
 973	return retval ? ~0 : (unsigned int) pdc_result[0];
 974}
 975
 976
 977/** 
 978 * pdc_pci_config_write - read PCI config space.
 979 * @hpa		token from PDC to indicate which PCI device
 980 * @pci_addr	configuration space address to write
 981 * @val		value we want in the 32-bit register
 982 *
 983 * Write PCI Configuration space *before* linux PCI subsystem is running.
 984 */
 985void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 986{
 987	int retval;
 988	unsigned long flags;
 989
 990	spin_lock_irqsave(&pdc_lock, flags);
 991	pdc_result[0] = 0;
 992	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 993			      __pa(pdc_result), hpa,
 994			      cfg_addr&~3UL, 4UL, (unsigned long) val);
 995	spin_unlock_irqrestore(&pdc_lock, flags);
 996
 997	return retval;
 998}
 999#endif /* UNTESTED CODE */
1000
1001/**
1002 * pdc_tod_read - Read the Time-Of-Day clock.
1003 * @tod: The return buffer:
1004 *
1005 * Read the Time-Of-Day clock
1006 */
1007int pdc_tod_read(struct pdc_tod *tod)
1008{
1009        int retval;
1010	unsigned long flags;
1011
1012        spin_lock_irqsave(&pdc_lock, flags);
1013        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1014        convert_to_wide(pdc_result);
1015        memcpy(tod, pdc_result, sizeof(*tod));
1016        spin_unlock_irqrestore(&pdc_lock, flags);
1017
1018        return retval;
1019}
1020EXPORT_SYMBOL(pdc_tod_read);
1021
1022int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1023{
1024	int retval;
1025	unsigned long flags;
1026
1027	spin_lock_irqsave(&pdc_lock, flags);
1028	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1029	convert_to_wide(pdc_result);
1030	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1031	spin_unlock_irqrestore(&pdc_lock, flags);
1032
1033	return retval;
1034}
1035
1036int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1037		unsigned long *pdt_entries_ptr)
1038{
1039	int retval;
1040	unsigned long flags;
1041
1042	spin_lock_irqsave(&pdc_lock, flags);
1043	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1044			__pa(pdt_entries_ptr));
1045	if (retval == PDC_OK) {
1046		convert_to_wide(pdc_result);
1047		memcpy(pret, pdc_result, sizeof(*pret));
1048	}
1049	spin_unlock_irqrestore(&pdc_lock, flags);
1050
1051#ifdef CONFIG_64BIT
1052	/*
1053	 * 64-bit kernels should not call this PDT function in narrow mode.
1054	 * The pdt_entries_ptr array above will now contain 32-bit values
1055	 */
1056	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1057		return PDC_ERROR;
1058#endif
1059
1060	return retval;
1061}
1062
1063/**
1064 * pdc_tod_set - Set the Time-Of-Day clock.
1065 * @sec: The number of seconds since epoch.
1066 * @usec: The number of micro seconds.
1067 *
1068 * Set the Time-Of-Day clock.
1069 */ 
1070int pdc_tod_set(unsigned long sec, unsigned long usec)
1071{
1072        int retval;
1073	unsigned long flags;
1074
1075        spin_lock_irqsave(&pdc_lock, flags);
1076        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1077        spin_unlock_irqrestore(&pdc_lock, flags);
1078
1079        return retval;
1080}
1081EXPORT_SYMBOL(pdc_tod_set);
1082
1083#ifdef CONFIG_64BIT
1084int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1085		struct pdc_memory_table *tbl, unsigned long entries)
1086{
1087	int retval;
1088	unsigned long flags;
1089
1090	spin_lock_irqsave(&pdc_lock, flags);
1091	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1092	convert_to_wide(pdc_result);
1093	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1094	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1095	spin_unlock_irqrestore(&pdc_lock, flags);
1096
1097	return retval;
1098}
1099#endif /* CONFIG_64BIT */
1100
1101/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1102 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1103 * it later. :)
1104 */
1105int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1106{
1107        int retval;
1108	unsigned long flags;
1109
1110        spin_lock_irqsave(&pdc_lock, flags);
1111        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1112                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1113        spin_unlock_irqrestore(&pdc_lock, flags);
1114
1115        return retval;
1116}
1117
1118/*
1119 * pdc_do_reset - Reset the system.
1120 *
1121 * Reset the system.
1122 */
1123int pdc_do_reset(void)
1124{
1125        int retval;
1126	unsigned long flags;
1127
1128        spin_lock_irqsave(&pdc_lock, flags);
1129        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1130        spin_unlock_irqrestore(&pdc_lock, flags);
1131
1132        return retval;
1133}
1134
1135/*
1136 * pdc_soft_power_info - Enable soft power switch.
1137 * @power_reg: address of soft power register
1138 *
1139 * Return the absolute address of the soft power switch register
1140 */
1141int __init pdc_soft_power_info(unsigned long *power_reg)
1142{
1143	int retval;
1144	unsigned long flags;
1145
1146	*power_reg = (unsigned long) (-1);
1147	
1148	spin_lock_irqsave(&pdc_lock, flags);
1149	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1150	if (retval == PDC_OK) {
1151                convert_to_wide(pdc_result);
1152                *power_reg = f_extend(pdc_result[0]);
1153	}
1154	spin_unlock_irqrestore(&pdc_lock, flags);
1155
1156	return retval;
1157}
1158
1159/*
1160 * pdc_soft_power_button - Control the soft power button behaviour
1161 * @sw_control: 0 for hardware control, 1 for software control 
1162 *
1163 *
1164 * This PDC function places the soft power button under software or
1165 * hardware control.
1166 * Under software control the OS may control to when to allow to shut 
1167 * down the system. Under hardware control pressing the power button 
1168 * powers off the system immediately.
1169 */
1170int pdc_soft_power_button(int sw_control)
1171{
1172	int retval;
1173	unsigned long flags;
1174
1175	spin_lock_irqsave(&pdc_lock, flags);
1176	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1177	spin_unlock_irqrestore(&pdc_lock, flags);
1178
1179	return retval;
1180}
1181
1182/*
1183 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1184 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1185 * who knows what other platform firmware might do with this OS "hook".
1186 */
1187void pdc_io_reset(void)
1188{
1189	unsigned long flags;
1190
1191	spin_lock_irqsave(&pdc_lock, flags);
1192	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1193	spin_unlock_irqrestore(&pdc_lock, flags);
1194}
1195
1196/*
1197 * pdc_io_reset_devices - Hack to Stop USB controller
1198 *
1199 * If PDC used the usb controller, the usb controller
1200 * is still running and will crash the machines during iommu 
1201 * setup, because of still running DMA. This PDC call
1202 * stops the USB controller.
1203 * Normally called after calling pdc_io_reset().
1204 */
1205void pdc_io_reset_devices(void)
1206{
1207	unsigned long flags;
1208
1209	spin_lock_irqsave(&pdc_lock, flags);
1210	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1211	spin_unlock_irqrestore(&pdc_lock, flags);
1212}
1213
1214#endif /* defined(BOOTLOADER) */
1215
1216/* locked by pdc_console_lock */
1217static int __attribute__((aligned(8)))   iodc_retbuf[32];
1218static char __attribute__((aligned(64))) iodc_dbuf[4096];
1219
1220/**
1221 * pdc_iodc_print - Console print using IODC.
1222 * @str: the string to output.
1223 * @count: length of str
1224 *
1225 * Note that only these special chars are architected for console IODC io:
1226 * BEL, BS, CR, and LF. Others are passed through.
1227 * Since the HP console requires CR+LF to perform a 'newline', we translate
1228 * "\n" to "\r\n".
1229 */
1230int pdc_iodc_print(const unsigned char *str, unsigned count)
1231{
1232	unsigned int i;
1233	unsigned long flags;
1234
1235	for (i = 0; i < count;) {
1236		switch(str[i]) {
1237		case '\n':
1238			iodc_dbuf[i+0] = '\r';
1239			iodc_dbuf[i+1] = '\n';
1240			i += 2;
1241			goto print;
1242		default:
1243			iodc_dbuf[i] = str[i];
1244			i++;
1245			break;
1246		}
1247	}
1248
1249print:
1250        spin_lock_irqsave(&pdc_lock, flags);
1251        real32_call(PAGE0->mem_cons.iodc_io,
1252                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1253                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1254                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1255        spin_unlock_irqrestore(&pdc_lock, flags);
1256
1257	return i;
1258}
1259
1260#if !defined(BOOTLOADER)
1261/**
1262 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1263 *
1264 * Read a character (non-blocking) from the PDC console, returns -1 if
1265 * key is not present.
1266 */
1267int pdc_iodc_getc(void)
1268{
1269	int ch;
1270	int status;
1271	unsigned long flags;
1272
1273	/* Bail if no console input device. */
1274	if (!PAGE0->mem_kbd.iodc_io)
1275		return 0;
1276	
1277	/* wait for a keyboard (rs232)-input */
1278	spin_lock_irqsave(&pdc_lock, flags);
1279	real32_call(PAGE0->mem_kbd.iodc_io,
1280		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1281		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1282		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1283
1284	ch = *iodc_dbuf;
1285	status = *iodc_retbuf;
1286	spin_unlock_irqrestore(&pdc_lock, flags);
1287
1288	if (status == 0)
1289	    return -1;
1290	
1291	return ch;
1292}
1293
1294int pdc_sti_call(unsigned long func, unsigned long flags,
1295                 unsigned long inptr, unsigned long outputr,
1296                 unsigned long glob_cfg)
1297{
1298        int retval;
1299	unsigned long irqflags;
1300
1301        spin_lock_irqsave(&pdc_lock, irqflags);  
1302        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1303        spin_unlock_irqrestore(&pdc_lock, irqflags);
1304
1305        return retval;
1306}
1307EXPORT_SYMBOL(pdc_sti_call);
1308
1309#ifdef CONFIG_64BIT
1310/**
1311 * pdc_pat_cell_get_number - Returns the cell number.
1312 * @cell_info: The return buffer.
1313 *
1314 * This PDC call returns the cell number of the cell from which the call
1315 * is made.
1316 */
1317int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1318{
1319	int retval;
1320	unsigned long flags;
1321
1322	spin_lock_irqsave(&pdc_lock, flags);
1323	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1324	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1325	spin_unlock_irqrestore(&pdc_lock, flags);
1326
1327	return retval;
1328}
1329
1330/**
1331 * pdc_pat_cell_module - Retrieve the cell's module information.
1332 * @actcnt: The number of bytes written to mem_addr.
1333 * @ploc: The physical location.
1334 * @mod: The module index.
1335 * @view_type: The view of the address type.
1336 * @mem_addr: The return buffer.
1337 *
1338 * This PDC call returns information about each module attached to the cell
1339 * at the specified location.
1340 */
1341int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1342			unsigned long view_type, void *mem_addr)
1343{
1344	int retval;
1345	unsigned long flags;
1346	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1347
1348	spin_lock_irqsave(&pdc_lock, flags);
1349	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1350			      ploc, mod, view_type, __pa(&result));
1351	if(!retval) {
1352		*actcnt = pdc_result[0];
1353		memcpy(mem_addr, &result, *actcnt);
1354	}
1355	spin_unlock_irqrestore(&pdc_lock, flags);
1356
1357	return retval;
1358}
1359
1360/**
1361 * pdc_pat_cell_info - Retrieve the cell's information.
1362 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1363 * @actcnt: The number of bytes which should be written to info.
1364 * @offset: offset of the structure.
1365 * @cell_number: The cell number which should be asked, or -1 for current cell.
1366 *
1367 * This PDC call returns information about the given cell (or all cells).
1368 */
1369int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1370		unsigned long *actcnt, unsigned long offset,
1371		unsigned long cell_number)
1372{
1373	int retval;
1374	unsigned long flags;
1375	struct pdc_pat_cell_info_rtn_block result;
1376
1377	spin_lock_irqsave(&pdc_lock, flags);
1378	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1379			__pa(pdc_result), __pa(&result), *actcnt,
1380			offset, cell_number);
1381	if (!retval) {
1382		*actcnt = pdc_result[0];
1383		memcpy(info, &result, *actcnt);
1384	}
1385	spin_unlock_irqrestore(&pdc_lock, flags);
1386
1387	return retval;
1388}
1389
1390/**
1391 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1392 * @cpu_info: The return buffer.
1393 * @hpa: The Hard Physical Address of the CPU.
1394 *
1395 * Retrieve the cpu number for the cpu at the specified HPA.
1396 */
1397int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1398{
1399	int retval;
1400	unsigned long flags;
1401
1402	spin_lock_irqsave(&pdc_lock, flags);
1403	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1404			      __pa(&pdc_result), hpa);
1405	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1406	spin_unlock_irqrestore(&pdc_lock, flags);
1407
1408	return retval;
1409}
1410
1411/**
1412 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1413 * @num_entries: The return value.
1414 * @cell_num: The target cell.
1415 *
1416 * This PDC function returns the number of entries in the specified cell's
1417 * interrupt table.
1418 */
1419int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1420{
1421	int retval;
1422	unsigned long flags;
1423
1424	spin_lock_irqsave(&pdc_lock, flags);
1425	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1426			      __pa(pdc_result), cell_num);
1427	*num_entries = pdc_result[0];
1428	spin_unlock_irqrestore(&pdc_lock, flags);
1429
1430	return retval;
1431}
1432
1433/**
1434 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1435 * @r_addr: The return buffer.
1436 * @cell_num: The target cell.
1437 *
1438 * This PDC function returns the actual interrupt table for the specified cell.
1439 */
1440int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1441{
1442	int retval;
1443	unsigned long flags;
1444
1445	spin_lock_irqsave(&pdc_lock, flags);
1446	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1447			      __pa(r_addr), cell_num);
1448	spin_unlock_irqrestore(&pdc_lock, flags);
1449
1450	return retval;
1451}
1452
1453/**
1454 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1455 * @actlen: The return buffer.
1456 * @mem_addr: Pointer to the memory buffer.
1457 * @count: The number of bytes to read from the buffer.
1458 * @offset: The offset with respect to the beginning of the buffer.
1459 *
1460 */
1461int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1462			    unsigned long count, unsigned long offset)
1463{
1464	int retval;
1465	unsigned long flags;
1466
1467	spin_lock_irqsave(&pdc_lock, flags);
1468	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1469			      __pa(pdc_result2), count, offset);
1470	*actual_len = pdc_result[0];
1471	memcpy(mem_addr, pdc_result2, *actual_len);
1472	spin_unlock_irqrestore(&pdc_lock, flags);
1473
1474	return retval;
1475}
1476
1477/**
1478 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1479 * @legacy_rev: The legacy revision.
1480 * @pat_rev: The PAT revision.
1481 * @pdc_cap: The PDC capabilities.
1482 *
1483 */
1484int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1485		unsigned long *pat_rev, unsigned long *pdc_cap)
1486{
1487	int retval;
1488	unsigned long flags;
1489
1490	spin_lock_irqsave(&pdc_lock, flags);
1491	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1492				__pa(pdc_result));
1493	if (retval == PDC_OK) {
1494		*legacy_rev = pdc_result[0];
1495		*pat_rev = pdc_result[1];
1496		*pdc_cap = pdc_result[2];
1497	}
1498	spin_unlock_irqrestore(&pdc_lock, flags);
1499
1500	return retval;
1501}
1502
1503
1504/**
1505 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1506 * @pci_addr: PCI configuration space address for which the read request is being made.
1507 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1508 * @mem_addr: Pointer to return memory buffer.
1509 *
1510 */
1511int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1512{
1513	int retval;
1514	unsigned long flags;
1515
1516	spin_lock_irqsave(&pdc_lock, flags);
1517	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1518					__pa(pdc_result), pci_addr, pci_size);
1519	switch(pci_size) {
1520		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1521		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1522		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1523	}
1524	spin_unlock_irqrestore(&pdc_lock, flags);
1525
1526	return retval;
1527}
1528
1529/**
1530 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1531 * @pci_addr: PCI configuration space address for which the write  request is being made.
1532 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1533 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1534 *         written to PCI Config space.
1535 *
1536 */
1537int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1538{
1539	int retval;
1540	unsigned long flags;
1541
1542	spin_lock_irqsave(&pdc_lock, flags);
1543	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1544				pci_addr, pci_size, val);
1545	spin_unlock_irqrestore(&pdc_lock, flags);
1546
1547	return retval;
1548}
1549
1550/**
1551 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1552 * @rinfo: memory pdt information
1553 *
1554 */
1555int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1556{
1557	int retval;
1558	unsigned long flags;
1559
1560	spin_lock_irqsave(&pdc_lock, flags);
1561	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1562			__pa(&pdc_result));
1563	if (retval == PDC_OK)
1564		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1565	spin_unlock_irqrestore(&pdc_lock, flags);
1566
1567	return retval;
1568}
1569
1570/**
1571 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1572 *				table of a cell
1573 * @rinfo: memory pdt information
1574 * @cell: cell number
1575 *
1576 */
1577int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1578		unsigned long cell)
1579{
1580	int retval;
1581	unsigned long flags;
1582
1583	spin_lock_irqsave(&pdc_lock, flags);
1584	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1585			__pa(&pdc_result), cell);
1586	if (retval == PDC_OK)
1587		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1588	spin_unlock_irqrestore(&pdc_lock, flags);
1589
1590	return retval;
1591}
1592
1593/**
1594 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1595 * @pret: array of PDT entries
1596 * @pdt_entries_ptr: ptr to hold number of PDT entries
1597 * @max_entries: maximum number of entries to be read
1598 *
1599 */
1600int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1601		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1602{
1603	int retval;
1604	unsigned long flags, entries;
1605
1606	spin_lock_irqsave(&pdc_lock, flags);
1607	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1608	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1609			__pa(&pdc_result), parisc_cell_num,
1610			__pa(pdt_entries_ptr));
1611
1612	if (retval == PDC_OK) {
1613		/* build up return value as for PDC_PAT_MEM_PD_READ */
1614		entries = min(pdc_result[0], max_entries);
1615		pret->pdt_entries = entries;
1616		pret->actual_count_bytes = entries * sizeof(unsigned long);
1617	}
1618
1619	spin_unlock_irqrestore(&pdc_lock, flags);
1620	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1621
1622	return retval;
1623}
1624/**
1625 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1626 * @pret: array of PDT entries
1627 * @pdt_entries_ptr: ptr to hold number of PDT entries
1628 * @count: number of bytes to read
1629 * @offset: offset to start (in bytes)
1630 *
1631 */
1632int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1633		unsigned long *pdt_entries_ptr, unsigned long count,
1634		unsigned long offset)
1635{
1636	int retval;
1637	unsigned long flags, entries;
1638
1639	spin_lock_irqsave(&pdc_lock, flags);
1640	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1641		__pa(&pdc_result), __pa(pdt_entries_ptr),
1642		count, offset);
1643
1644	if (retval == PDC_OK) {
1645		entries = min(pdc_result[0], count);
1646		pret->actual_count_bytes = entries;
1647		pret->pdt_entries = entries / sizeof(unsigned long);
1648	}
1649
1650	spin_unlock_irqrestore(&pdc_lock, flags);
1651
1652	return retval;
1653}
1654
1655/**
1656 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1657 * @pret: ptr to hold returned information
1658 * @phys_addr: physical address to examine
1659 *
1660 */
1661int pdc_pat_mem_get_dimm_phys_location(
1662		struct pdc_pat_mem_phys_mem_location *pret,
1663		unsigned long phys_addr)
1664{
1665	int retval;
1666	unsigned long flags;
1667
1668	spin_lock_irqsave(&pdc_lock, flags);
1669	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1670		__pa(&pdc_result), phys_addr);
1671
1672	if (retval == PDC_OK)
1673		memcpy(pret, &pdc_result, sizeof(*pret));
1674
1675	spin_unlock_irqrestore(&pdc_lock, flags);
1676
1677	return retval;
1678}
1679#endif /* CONFIG_64BIT */
1680#endif /* defined(BOOTLOADER) */
1681
1682
1683/***************** 32-bit real-mode calls ***********/
1684/* The struct below is used
1685 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1686 * real32_call_asm() then uses this stack in narrow real mode
1687 */
1688
1689struct narrow_stack {
1690	/* use int, not long which is 64 bits */
1691	unsigned int arg13;
1692	unsigned int arg12;
1693	unsigned int arg11;
1694	unsigned int arg10;
1695	unsigned int arg9;
1696	unsigned int arg8;
1697	unsigned int arg7;
1698	unsigned int arg6;
1699	unsigned int arg5;
1700	unsigned int arg4;
1701	unsigned int arg3;
1702	unsigned int arg2;
1703	unsigned int arg1;
1704	unsigned int arg0;
1705	unsigned int frame_marker[8];
1706	unsigned int sp;
1707	/* in reality, there's nearly 8k of stack after this */
1708};
1709
1710long real32_call(unsigned long fn, ...)
1711{
1712	va_list args;
1713	extern struct narrow_stack real_stack;
1714	extern unsigned long real32_call_asm(unsigned int *,
1715					     unsigned int *, 
1716					     unsigned int);
1717	
1718	va_start(args, fn);
1719	real_stack.arg0 = va_arg(args, unsigned int);
1720	real_stack.arg1 = va_arg(args, unsigned int);
1721	real_stack.arg2 = va_arg(args, unsigned int);
1722	real_stack.arg3 = va_arg(args, unsigned int);
1723	real_stack.arg4 = va_arg(args, unsigned int);
1724	real_stack.arg5 = va_arg(args, unsigned int);
1725	real_stack.arg6 = va_arg(args, unsigned int);
1726	real_stack.arg7 = va_arg(args, unsigned int);
1727	real_stack.arg8 = va_arg(args, unsigned int);
1728	real_stack.arg9 = va_arg(args, unsigned int);
1729	real_stack.arg10 = va_arg(args, unsigned int);
1730	real_stack.arg11 = va_arg(args, unsigned int);
1731	real_stack.arg12 = va_arg(args, unsigned int);
1732	real_stack.arg13 = va_arg(args, unsigned int);
1733	va_end(args);
1734	
1735	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1736}
1737
1738#ifdef CONFIG_64BIT
1739/***************** 64-bit real-mode calls ***********/
1740
1741struct wide_stack {
1742	unsigned long arg0;
1743	unsigned long arg1;
1744	unsigned long arg2;
1745	unsigned long arg3;
1746	unsigned long arg4;
1747	unsigned long arg5;
1748	unsigned long arg6;
1749	unsigned long arg7;
1750	unsigned long arg8;
1751	unsigned long arg9;
1752	unsigned long arg10;
1753	unsigned long arg11;
1754	unsigned long arg12;
1755	unsigned long arg13;
1756	unsigned long frame_marker[2];	/* rp, previous sp */
1757	unsigned long sp;
1758	/* in reality, there's nearly 8k of stack after this */
1759};
1760
1761long real64_call(unsigned long fn, ...)
1762{
1763	va_list args;
1764	extern struct wide_stack real64_stack;
1765	extern unsigned long real64_call_asm(unsigned long *,
1766					     unsigned long *, 
1767					     unsigned long);
1768    
1769	va_start(args, fn);
1770	real64_stack.arg0 = va_arg(args, unsigned long);
1771	real64_stack.arg1 = va_arg(args, unsigned long);
1772	real64_stack.arg2 = va_arg(args, unsigned long);
1773	real64_stack.arg3 = va_arg(args, unsigned long);
1774	real64_stack.arg4 = va_arg(args, unsigned long);
1775	real64_stack.arg5 = va_arg(args, unsigned long);
1776	real64_stack.arg6 = va_arg(args, unsigned long);
1777	real64_stack.arg7 = va_arg(args, unsigned long);
1778	real64_stack.arg8 = va_arg(args, unsigned long);
1779	real64_stack.arg9 = va_arg(args, unsigned long);
1780	real64_stack.arg10 = va_arg(args, unsigned long);
1781	real64_stack.arg11 = va_arg(args, unsigned long);
1782	real64_stack.arg12 = va_arg(args, unsigned long);
1783	real64_stack.arg13 = va_arg(args, unsigned long);
1784	va_end(args);
1785	
1786	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1787}
1788
1789#endif /* CONFIG_64BIT */
v4.6
 
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *	PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*	I think it would be in everyone's best interest to follow this
  24 *	guidelines when writing PDC wrappers:
  25 *
  26 *	 - the name of the pdc wrapper should match one of the macros
  27 *	   used for the first two arguments
  28 *	 - don't use caps for random parts of the name
  29 *	 - use the static PDC result buffers and "copyout" to structs
  30 *	   supplied by the caller to encapsulate alignment restrictions
  31 *	 - hold pdc_lock while in PDC or using static result buffers
  32 *	 - use __pa() to convert virtual (kernel) pointers to physical
  33 *	   ones.
  34 *	 - the name of the struct used for pdc return values should equal
  35 *	   one of the macros used for the first two arguments to the
  36 *	   corresponding PDC call
  37 *	 - keep the order of arguments
  38 *	 - don't be smart (setting trailing NUL bytes for strings, return
  39 *	   something useful even if the call failed) unless you are sure
  40 *	   it's not going to affect functionality or performance
  41 *
  42 *	Example:
  43 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *	{
  45 *		int retval;
  46 *
  47 *		spin_lock_irq(&pdc_lock);
  48 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *		convert_to_wide(pdc_result);
  50 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *		spin_unlock_irq(&pdc_lock);
  52 *
  53 *		return retval;
  54 *	}
  55 *					prumpf	991016	
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
  70#include <asm/processor.h>	/* for boot_cpu_data */
  71
 
 
 
 
 
 
  72static DEFINE_SPINLOCK(pdc_lock);
 
 
  73extern unsigned long pdc_result[NUM_PDC_RESULT];
  74extern unsigned long pdc_result2[NUM_PDC_RESULT];
  75
  76#ifdef CONFIG_64BIT
  77#define WIDE_FIRMWARE 0x1
  78#define NARROW_FIRMWARE 0x2
  79
  80/* Firmware needs to be initially set to narrow to determine the 
  81 * actual firmware width. */
  82int parisc_narrow_firmware __read_mostly = 1;
  83#endif
  84
  85/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  86 * and MEM_PDC calls are always the same width as the OS.
  87 * Some PAT boxes may have 64-bit IODC I/O.
  88 *
  89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  91 * This allowed wide kernels to run on Cxxx boxes.
  92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  94 */
  95
  96#ifdef CONFIG_64BIT
  97long real64_call(unsigned long function, ...);
  98#endif
  99long real32_call(unsigned long function, ...);
 100
 101#ifdef CONFIG_64BIT
 102#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 103#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 104#else
 105#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 106#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 107#endif
 108
 109
 110/**
 111 * f_extend - Convert PDC addresses to kernel addresses.
 112 * @address: Address returned from PDC.
 113 *
 114 * This function is used to convert PDC addresses into kernel addresses
 115 * when the PDC address size and kernel address size are different.
 116 */
 117static unsigned long f_extend(unsigned long address)
 118{
 119#ifdef CONFIG_64BIT
 120	if(unlikely(parisc_narrow_firmware)) {
 121		if((address & 0xff000000) == 0xf0000000)
 122			return 0xf0f0f0f000000000UL | (u32)address;
 123
 124		if((address & 0xf0000000) == 0xf0000000)
 125			return 0xffffffff00000000UL | (u32)address;
 126	}
 127#endif
 128	return address;
 129}
 130
 131/**
 132 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 133 * @address: The return buffer from PDC.
 134 *
 135 * This function is used to convert the return buffer addresses retrieved from PDC
 136 * into kernel addresses when the PDC address size and kernel address size are
 137 * different.
 138 */
 139static void convert_to_wide(unsigned long *addr)
 140{
 141#ifdef CONFIG_64BIT
 142	int i;
 143	unsigned int *p = (unsigned int *)addr;
 144
 145	if(unlikely(parisc_narrow_firmware)) {
 146		for(i = 31; i >= 0; --i)
 147			addr[i] = p[i];
 148	}
 149#endif
 150}
 151
 152#ifdef CONFIG_64BIT
 153void set_firmware_width_unlocked(void)
 154{
 155	int ret;
 156
 157	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 158		__pa(pdc_result), 0);
 159	convert_to_wide(pdc_result);
 160	if (pdc_result[0] != NARROW_FIRMWARE)
 161		parisc_narrow_firmware = 0;
 162}
 163	
 164/**
 165 * set_firmware_width - Determine if the firmware is wide or narrow.
 166 * 
 167 * This function must be called before any pdc_* function that uses the
 168 * convert_to_wide function.
 169 */
 170void set_firmware_width(void)
 171{
 172	unsigned long flags;
 173	spin_lock_irqsave(&pdc_lock, flags);
 174	set_firmware_width_unlocked();
 175	spin_unlock_irqrestore(&pdc_lock, flags);
 176}
 177#else
 178void set_firmware_width_unlocked(void)
 179{
 180	return;
 181}
 182
 183void set_firmware_width(void)
 184{
 185	return;
 186}
 187#endif /*CONFIG_64BIT*/
 188
 
 
 189/**
 190 * pdc_emergency_unlock - Unlock the linux pdc lock
 191 *
 192 * This call unlocks the linux pdc lock in case we need some PDC functions
 193 * (like pdc_add_valid) during kernel stack dump.
 194 */
 195void pdc_emergency_unlock(void)
 196{
 197 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 198        if (spin_is_locked(&pdc_lock))
 199		spin_unlock(&pdc_lock);
 200}
 201
 202
 203/**
 204 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 205 * @address: Address to be verified.
 206 *
 207 * This PDC call attempts to read from the specified address and verifies
 208 * if the address is valid.
 209 * 
 210 * The return value is PDC_OK (0) in case accessing this address is valid.
 211 */
 212int pdc_add_valid(unsigned long address)
 213{
 214        int retval;
 215	unsigned long flags;
 216
 217        spin_lock_irqsave(&pdc_lock, flags);
 218        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 219        spin_unlock_irqrestore(&pdc_lock, flags);
 220
 221        return retval;
 222}
 223EXPORT_SYMBOL(pdc_add_valid);
 224
 225/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226 * pdc_chassis_info - Return chassis information.
 227 * @result: The return buffer.
 228 * @chassis_info: The memory buffer address.
 229 * @len: The size of the memory buffer address.
 230 *
 231 * An HVERSION dependent call for returning the chassis information.
 232 */
 233int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 234{
 235        int retval;
 236	unsigned long flags;
 237
 238        spin_lock_irqsave(&pdc_lock, flags);
 239        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 240        memcpy(&pdc_result2, led_info, len);
 241        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 242                              __pa(pdc_result), __pa(pdc_result2), len);
 243        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 244        memcpy(led_info, pdc_result2, len);
 245        spin_unlock_irqrestore(&pdc_lock, flags);
 246
 247        return retval;
 248}
 249
 250/**
 251 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 252 * @retval: -1 on error, 0 on success. Other value are PDC errors
 253 * 
 254 * Must be correctly formatted or expect system crash
 255 */
 256#ifdef CONFIG_64BIT
 257int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 258{
 259	int retval = 0;
 260	unsigned long flags;
 261        
 262	if (!is_pdc_pat())
 263		return -1;
 264
 265	spin_lock_irqsave(&pdc_lock, flags);
 266	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 267	spin_unlock_irqrestore(&pdc_lock, flags);
 268
 269	return retval;
 270}
 271#endif
 272
 273/**
 274 * pdc_chassis_disp - Updates chassis code
 275 * @retval: -1 on error, 0 on success
 276 */
 277int pdc_chassis_disp(unsigned long disp)
 278{
 279	int retval = 0;
 280	unsigned long flags;
 281
 282	spin_lock_irqsave(&pdc_lock, flags);
 283	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 284	spin_unlock_irqrestore(&pdc_lock, flags);
 285
 286	return retval;
 287}
 288
 289/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 290 * pdc_chassis_warn - Fetches chassis warnings
 291 * @retval: -1 on error, 0 on success
 292 */
 293int pdc_chassis_warn(unsigned long *warn)
 294{
 295	int retval = 0;
 296	unsigned long flags;
 297
 298	spin_lock_irqsave(&pdc_lock, flags);
 299	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 300	*warn = pdc_result[0];
 301	spin_unlock_irqrestore(&pdc_lock, flags);
 302
 303	return retval;
 304}
 305
 306int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 307{
 308	int ret;
 309
 310	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 311	convert_to_wide(pdc_result);
 312	pdc_coproc_info->ccr_functional = pdc_result[0];
 313	pdc_coproc_info->ccr_present = pdc_result[1];
 314	pdc_coproc_info->revision = pdc_result[17];
 315	pdc_coproc_info->model = pdc_result[18];
 316
 317	return ret;
 318}
 319
 320/**
 321 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 322 * @pdc_coproc_info: Return buffer address.
 323 *
 324 * This PDC call returns the presence and status of all the coprocessors
 325 * attached to the processor.
 326 */
 327int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 328{
 329	int ret;
 330	unsigned long flags;
 331
 332	spin_lock_irqsave(&pdc_lock, flags);
 333	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 334	spin_unlock_irqrestore(&pdc_lock, flags);
 335
 336	return ret;
 337}
 338
 339/**
 340 * pdc_iodc_read - Read data from the modules IODC.
 341 * @actcnt: The actual number of bytes.
 342 * @hpa: The HPA of the module for the iodc read.
 343 * @index: The iodc entry point.
 344 * @iodc_data: A buffer memory for the iodc options.
 345 * @iodc_data_size: Size of the memory buffer.
 346 *
 347 * This PDC call reads from the IODC of the module specified by the hpa
 348 * argument.
 349 */
 350int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 351		  void *iodc_data, unsigned int iodc_data_size)
 352{
 353	int retval;
 354	unsigned long flags;
 355
 356	spin_lock_irqsave(&pdc_lock, flags);
 357	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 358			      index, __pa(pdc_result2), iodc_data_size);
 359	convert_to_wide(pdc_result);
 360	*actcnt = pdc_result[0];
 361	memcpy(iodc_data, pdc_result2, iodc_data_size);
 362	spin_unlock_irqrestore(&pdc_lock, flags);
 363
 364	return retval;
 365}
 366EXPORT_SYMBOL(pdc_iodc_read);
 367
 368/**
 369 * pdc_system_map_find_mods - Locate unarchitected modules.
 370 * @pdc_mod_info: Return buffer address.
 371 * @mod_path: pointer to dev path structure.
 372 * @mod_index: fixed address module index.
 373 *
 374 * To locate and identify modules which reside at fixed I/O addresses, which
 375 * do not self-identify via architected bus walks.
 376 */
 377int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 378			     struct pdc_module_path *mod_path, long mod_index)
 379{
 380	int retval;
 381	unsigned long flags;
 382
 383	spin_lock_irqsave(&pdc_lock, flags);
 384	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 385			      __pa(pdc_result2), mod_index);
 386	convert_to_wide(pdc_result);
 387	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 388	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 389	spin_unlock_irqrestore(&pdc_lock, flags);
 390
 391	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 392	return retval;
 393}
 394
 395/**
 396 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 397 * @pdc_addr_info: Return buffer address.
 398 * @mod_index: Fixed address module index.
 399 * @addr_index: Address range index.
 400 * 
 401 * Retrieve additional information about subsequent address ranges for modules
 402 * with multiple address ranges.  
 403 */
 404int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 405			      long mod_index, long addr_index)
 406{
 407	int retval;
 408	unsigned long flags;
 409
 410	spin_lock_irqsave(&pdc_lock, flags);
 411	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 412			      mod_index, addr_index);
 413	convert_to_wide(pdc_result);
 414	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 415	spin_unlock_irqrestore(&pdc_lock, flags);
 416
 417	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 418	return retval;
 419}
 420
 421/**
 422 * pdc_model_info - Return model information about the processor.
 423 * @model: The return buffer.
 424 *
 425 * Returns the version numbers, identifiers, and capabilities from the processor module.
 426 */
 427int pdc_model_info(struct pdc_model *model) 
 428{
 429	int retval;
 430	unsigned long flags;
 431
 432	spin_lock_irqsave(&pdc_lock, flags);
 433	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 434	convert_to_wide(pdc_result);
 435	memcpy(model, pdc_result, sizeof(*model));
 436	spin_unlock_irqrestore(&pdc_lock, flags);
 437
 438	return retval;
 439}
 440
 441/**
 442 * pdc_model_sysmodel - Get the system model name.
 443 * @name: A char array of at least 81 characters.
 444 *
 445 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 446 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 447 * on HP/UX.
 448 */
 449int pdc_model_sysmodel(char *name)
 450{
 451        int retval;
 452	unsigned long flags;
 453
 454        spin_lock_irqsave(&pdc_lock, flags);
 455        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 456                              OS_ID_HPUX, __pa(name));
 457        convert_to_wide(pdc_result);
 458
 459        if (retval == PDC_OK) {
 460                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 461        } else {
 462                name[0] = 0;
 463        }
 464        spin_unlock_irqrestore(&pdc_lock, flags);
 465
 466        return retval;
 467}
 468
 469/**
 470 * pdc_model_versions - Identify the version number of each processor.
 471 * @cpu_id: The return buffer.
 472 * @id: The id of the processor to check.
 473 *
 474 * Returns the version number for each processor component.
 475 *
 476 * This comment was here before, but I do not know what it means :( -RB
 477 * id: 0 = cpu revision, 1 = boot-rom-version
 478 */
 479int pdc_model_versions(unsigned long *versions, int id)
 480{
 481        int retval;
 482	unsigned long flags;
 483
 484        spin_lock_irqsave(&pdc_lock, flags);
 485        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 486        convert_to_wide(pdc_result);
 487        *versions = pdc_result[0];
 488        spin_unlock_irqrestore(&pdc_lock, flags);
 489
 490        return retval;
 491}
 492
 493/**
 494 * pdc_model_cpuid - Returns the CPU_ID.
 495 * @cpu_id: The return buffer.
 496 *
 497 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 498 * the processor module.
 499 */
 500int pdc_model_cpuid(unsigned long *cpu_id)
 501{
 502        int retval;
 503	unsigned long flags;
 504
 505        spin_lock_irqsave(&pdc_lock, flags);
 506        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 507        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 508        convert_to_wide(pdc_result);
 509        *cpu_id = pdc_result[0];
 510        spin_unlock_irqrestore(&pdc_lock, flags);
 511
 512        return retval;
 513}
 514
 515/**
 516 * pdc_model_capabilities - Returns the platform capabilities.
 517 * @capabilities: The return buffer.
 518 *
 519 * Returns information about platform support for 32- and/or 64-bit
 520 * OSes, IO-PDIR coherency, and virtual aliasing.
 521 */
 522int pdc_model_capabilities(unsigned long *capabilities)
 523{
 524        int retval;
 525	unsigned long flags;
 526
 527        spin_lock_irqsave(&pdc_lock, flags);
 528        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 529        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 530        convert_to_wide(pdc_result);
 531        if (retval == PDC_OK) {
 532                *capabilities = pdc_result[0];
 533        } else {
 534                *capabilities = PDC_MODEL_OS32;
 535        }
 536        spin_unlock_irqrestore(&pdc_lock, flags);
 537
 538        return retval;
 539}
 540
 541/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542 * pdc_cache_info - Return cache and TLB information.
 543 * @cache_info: The return buffer.
 544 *
 545 * Returns information about the processor's cache and TLB.
 546 */
 547int pdc_cache_info(struct pdc_cache_info *cache_info)
 548{
 549        int retval;
 550	unsigned long flags;
 551
 552        spin_lock_irqsave(&pdc_lock, flags);
 553        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 554        convert_to_wide(pdc_result);
 555        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 556        spin_unlock_irqrestore(&pdc_lock, flags);
 557
 558        return retval;
 559}
 560
 561/**
 562 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 563 * @space_bits: Should be 0, if not, bad mojo!
 564 *
 565 * Returns information about Space ID hashing.
 566 */
 567int pdc_spaceid_bits(unsigned long *space_bits)
 568{
 569	int retval;
 570	unsigned long flags;
 571
 572	spin_lock_irqsave(&pdc_lock, flags);
 573	pdc_result[0] = 0;
 574	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 575	convert_to_wide(pdc_result);
 576	*space_bits = pdc_result[0];
 577	spin_unlock_irqrestore(&pdc_lock, flags);
 578
 579	return retval;
 580}
 581
 582#ifndef CONFIG_PA20
 583/**
 584 * pdc_btlb_info - Return block TLB information.
 585 * @btlb: The return buffer.
 586 *
 587 * Returns information about the hardware Block TLB.
 588 */
 589int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 590{
 591        int retval;
 592	unsigned long flags;
 593
 594        spin_lock_irqsave(&pdc_lock, flags);
 595        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 596        memcpy(btlb, pdc_result, sizeof(*btlb));
 597        spin_unlock_irqrestore(&pdc_lock, flags);
 598
 599        if(retval < 0) {
 600                btlb->max_size = 0;
 601        }
 602        return retval;
 603}
 604
 605/**
 606 * pdc_mem_map_hpa - Find fixed module information.  
 607 * @address: The return buffer
 608 * @mod_path: pointer to dev path structure.
 609 *
 610 * This call was developed for S700 workstations to allow the kernel to find
 611 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 612 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 613 * call.
 614 *
 615 * This call is supported by all existing S700 workstations (up to  Gecko).
 616 */
 617int pdc_mem_map_hpa(struct pdc_memory_map *address,
 618		struct pdc_module_path *mod_path)
 619{
 620        int retval;
 621	unsigned long flags;
 622
 623        spin_lock_irqsave(&pdc_lock, flags);
 624        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 625        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 626				__pa(pdc_result2));
 627        memcpy(address, pdc_result, sizeof(*address));
 628        spin_unlock_irqrestore(&pdc_lock, flags);
 629
 630        return retval;
 631}
 632#endif	/* !CONFIG_PA20 */
 633
 634/**
 635 * pdc_lan_station_id - Get the LAN address.
 636 * @lan_addr: The return buffer.
 637 * @hpa: The network device HPA.
 638 *
 639 * Get the LAN station address when it is not directly available from the LAN hardware.
 640 */
 641int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 642{
 643	int retval;
 644	unsigned long flags;
 645
 646	spin_lock_irqsave(&pdc_lock, flags);
 647	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 648			__pa(pdc_result), hpa);
 649	if (retval < 0) {
 650		/* FIXME: else read MAC from NVRAM */
 651		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 652	} else {
 653		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 654	}
 655	spin_unlock_irqrestore(&pdc_lock, flags);
 656
 657	return retval;
 658}
 659EXPORT_SYMBOL(pdc_lan_station_id);
 660
 661/**
 662 * pdc_stable_read - Read data from Stable Storage.
 663 * @staddr: Stable Storage address to access.
 664 * @memaddr: The memory address where Stable Storage data shall be copied.
 665 * @count: number of bytes to transfer. count is multiple of 4.
 666 *
 667 * This PDC call reads from the Stable Storage address supplied in staddr
 668 * and copies count bytes to the memory address memaddr.
 669 * The call will fail if staddr+count > PDC_STABLE size.
 670 */
 671int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 672{
 673       int retval;
 674	unsigned long flags;
 675
 676       spin_lock_irqsave(&pdc_lock, flags);
 677       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 678               __pa(pdc_result), count);
 679       convert_to_wide(pdc_result);
 680       memcpy(memaddr, pdc_result, count);
 681       spin_unlock_irqrestore(&pdc_lock, flags);
 682
 683       return retval;
 684}
 685EXPORT_SYMBOL(pdc_stable_read);
 686
 687/**
 688 * pdc_stable_write - Write data to Stable Storage.
 689 * @staddr: Stable Storage address to access.
 690 * @memaddr: The memory address where Stable Storage data shall be read from.
 691 * @count: number of bytes to transfer. count is multiple of 4.
 692 *
 693 * This PDC call reads count bytes from the supplied memaddr address,
 694 * and copies count bytes to the Stable Storage address staddr.
 695 * The call will fail if staddr+count > PDC_STABLE size.
 696 */
 697int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 698{
 699       int retval;
 700	unsigned long flags;
 701
 702       spin_lock_irqsave(&pdc_lock, flags);
 703       memcpy(pdc_result, memaddr, count);
 704       convert_to_wide(pdc_result);
 705       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 706               __pa(pdc_result), count);
 707       spin_unlock_irqrestore(&pdc_lock, flags);
 708
 709       return retval;
 710}
 711EXPORT_SYMBOL(pdc_stable_write);
 712
 713/**
 714 * pdc_stable_get_size - Get Stable Storage size in bytes.
 715 * @size: pointer where the size will be stored.
 716 *
 717 * This PDC call returns the number of bytes in the processor's Stable
 718 * Storage, which is the number of contiguous bytes implemented in Stable
 719 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 720 * which is a multiple of four.
 721 */
 722int pdc_stable_get_size(unsigned long *size)
 723{
 724       int retval;
 725	unsigned long flags;
 726
 727       spin_lock_irqsave(&pdc_lock, flags);
 728       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 729       *size = pdc_result[0];
 730       spin_unlock_irqrestore(&pdc_lock, flags);
 731
 732       return retval;
 733}
 734EXPORT_SYMBOL(pdc_stable_get_size);
 735
 736/**
 737 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 738 *
 739 * This PDC call is meant to be used to check the integrity of the current
 740 * contents of Stable Storage.
 741 */
 742int pdc_stable_verify_contents(void)
 743{
 744       int retval;
 745	unsigned long flags;
 746
 747       spin_lock_irqsave(&pdc_lock, flags);
 748       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 749       spin_unlock_irqrestore(&pdc_lock, flags);
 750
 751       return retval;
 752}
 753EXPORT_SYMBOL(pdc_stable_verify_contents);
 754
 755/**
 756 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 757 * the validity indicator.
 758 *
 759 * This PDC call will erase all contents of Stable Storage. Use with care!
 760 */
 761int pdc_stable_initialize(void)
 762{
 763       int retval;
 764	unsigned long flags;
 765
 766       spin_lock_irqsave(&pdc_lock, flags);
 767       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 768       spin_unlock_irqrestore(&pdc_lock, flags);
 769
 770       return retval;
 771}
 772EXPORT_SYMBOL(pdc_stable_initialize);
 773
 774/**
 775 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 776 * @hwpath: fully bc.mod style path to the device.
 777 * @initiator: the array to return the result into
 778 *
 779 * Get the SCSI operational parameters from PDC.
 780 * Needed since HPUX never used BIOS or symbios card NVRAM.
 781 * Most ncr/sym cards won't have an entry and just use whatever
 782 * capabilities of the card are (eg Ultra, LVD). But there are
 783 * several cases where it's useful:
 784 *    o set SCSI id for Multi-initiator clusters,
 785 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 786 *    o bus width exported is less than what the interface chip supports.
 787 */
 788int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 789{
 790	int retval;
 791	unsigned long flags;
 792
 793	spin_lock_irqsave(&pdc_lock, flags);
 794
 795/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 796#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 797	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 798
 799	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 800			      __pa(pdc_result), __pa(hwpath));
 801	if (retval < PDC_OK)
 802		goto out;
 803
 804	if (pdc_result[0] < 16) {
 805		initiator->host_id = pdc_result[0];
 806	} else {
 807		initiator->host_id = -1;
 808	}
 809
 810	/*
 811	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 812	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 813	 */
 814	switch (pdc_result[1]) {
 815		case  1: initiator->factor = 50; break;
 816		case  2: initiator->factor = 25; break;
 817		case  5: initiator->factor = 12; break;
 818		case 25: initiator->factor = 10; break;
 819		case 20: initiator->factor = 12; break;
 820		case 40: initiator->factor = 10; break;
 821		default: initiator->factor = -1; break;
 822	}
 823
 824	if (IS_SPROCKETS()) {
 825		initiator->width = pdc_result[4];
 826		initiator->mode = pdc_result[5];
 827	} else {
 828		initiator->width = -1;
 829		initiator->mode = -1;
 830	}
 831
 832 out:
 833	spin_unlock_irqrestore(&pdc_lock, flags);
 834
 835	return (retval >= PDC_OK);
 836}
 837EXPORT_SYMBOL(pdc_get_initiator);
 838
 839
 840/**
 841 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 842 * @num_entries: The return value.
 843 * @hpa: The HPA for the device.
 844 *
 845 * This PDC function returns the number of entries in the specified cell's
 846 * interrupt table.
 847 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 848 */ 
 849int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 850{
 851	int retval;
 852	unsigned long flags;
 853
 854	spin_lock_irqsave(&pdc_lock, flags);
 855	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 856			      __pa(pdc_result), hpa);
 857	convert_to_wide(pdc_result);
 858	*num_entries = pdc_result[0];
 859	spin_unlock_irqrestore(&pdc_lock, flags);
 860
 861	return retval;
 862}
 863
 864/** 
 865 * pdc_pci_irt - Get the PCI interrupt routing table.
 866 * @num_entries: The number of entries in the table.
 867 * @hpa: The Hard Physical Address of the device.
 868 * @tbl: 
 869 *
 870 * Get the PCI interrupt routing table for the device at the given HPA.
 871 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 872 */
 873int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 874{
 875	int retval;
 876	unsigned long flags;
 877
 878	BUG_ON((unsigned long)tbl & 0x7);
 879
 880	spin_lock_irqsave(&pdc_lock, flags);
 881	pdc_result[0] = num_entries;
 882	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 883			      __pa(pdc_result), hpa, __pa(tbl));
 884	spin_unlock_irqrestore(&pdc_lock, flags);
 885
 886	return retval;
 887}
 888
 889
 890#if 0	/* UNTEST CODE - left here in case someone needs it */
 891
 892/** 
 893 * pdc_pci_config_read - read PCI config space.
 894 * @hpa		token from PDC to indicate which PCI device
 895 * @pci_addr	configuration space address to read from
 896 *
 897 * Read PCI Configuration space *before* linux PCI subsystem is running.
 898 */
 899unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 900{
 901	int retval;
 902	unsigned long flags;
 903
 904	spin_lock_irqsave(&pdc_lock, flags);
 905	pdc_result[0] = 0;
 906	pdc_result[1] = 0;
 907	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 908			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 909	spin_unlock_irqrestore(&pdc_lock, flags);
 910
 911	return retval ? ~0 : (unsigned int) pdc_result[0];
 912}
 913
 914
 915/** 
 916 * pdc_pci_config_write - read PCI config space.
 917 * @hpa		token from PDC to indicate which PCI device
 918 * @pci_addr	configuration space address to write
 919 * @val		value we want in the 32-bit register
 920 *
 921 * Write PCI Configuration space *before* linux PCI subsystem is running.
 922 */
 923void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 924{
 925	int retval;
 926	unsigned long flags;
 927
 928	spin_lock_irqsave(&pdc_lock, flags);
 929	pdc_result[0] = 0;
 930	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 931			      __pa(pdc_result), hpa,
 932			      cfg_addr&~3UL, 4UL, (unsigned long) val);
 933	spin_unlock_irqrestore(&pdc_lock, flags);
 934
 935	return retval;
 936}
 937#endif /* UNTESTED CODE */
 938
 939/**
 940 * pdc_tod_read - Read the Time-Of-Day clock.
 941 * @tod: The return buffer:
 942 *
 943 * Read the Time-Of-Day clock
 944 */
 945int pdc_tod_read(struct pdc_tod *tod)
 946{
 947        int retval;
 948	unsigned long flags;
 949
 950        spin_lock_irqsave(&pdc_lock, flags);
 951        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
 952        convert_to_wide(pdc_result);
 953        memcpy(tod, pdc_result, sizeof(*tod));
 954        spin_unlock_irqrestore(&pdc_lock, flags);
 955
 956        return retval;
 957}
 958EXPORT_SYMBOL(pdc_tod_read);
 959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960/**
 961 * pdc_tod_set - Set the Time-Of-Day clock.
 962 * @sec: The number of seconds since epoch.
 963 * @usec: The number of micro seconds.
 964 *
 965 * Set the Time-Of-Day clock.
 966 */ 
 967int pdc_tod_set(unsigned long sec, unsigned long usec)
 968{
 969        int retval;
 970	unsigned long flags;
 971
 972        spin_lock_irqsave(&pdc_lock, flags);
 973        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
 974        spin_unlock_irqrestore(&pdc_lock, flags);
 975
 976        return retval;
 977}
 978EXPORT_SYMBOL(pdc_tod_set);
 979
 980#ifdef CONFIG_64BIT
 981int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
 982		struct pdc_memory_table *tbl, unsigned long entries)
 983{
 984	int retval;
 985	unsigned long flags;
 986
 987	spin_lock_irqsave(&pdc_lock, flags);
 988	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
 989	convert_to_wide(pdc_result);
 990	memcpy(r_addr, pdc_result, sizeof(*r_addr));
 991	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
 992	spin_unlock_irqrestore(&pdc_lock, flags);
 993
 994	return retval;
 995}
 996#endif /* CONFIG_64BIT */
 997
 998/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
 999 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1000 * it later. :)
1001 */
1002int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1003{
1004        int retval;
1005	unsigned long flags;
1006
1007        spin_lock_irqsave(&pdc_lock, flags);
1008        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1009                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1010        spin_unlock_irqrestore(&pdc_lock, flags);
1011
1012        return retval;
1013}
1014
1015/*
1016 * pdc_do_reset - Reset the system.
1017 *
1018 * Reset the system.
1019 */
1020int pdc_do_reset(void)
1021{
1022        int retval;
1023	unsigned long flags;
1024
1025        spin_lock_irqsave(&pdc_lock, flags);
1026        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1027        spin_unlock_irqrestore(&pdc_lock, flags);
1028
1029        return retval;
1030}
1031
1032/*
1033 * pdc_soft_power_info - Enable soft power switch.
1034 * @power_reg: address of soft power register
1035 *
1036 * Return the absolute address of the soft power switch register
1037 */
1038int __init pdc_soft_power_info(unsigned long *power_reg)
1039{
1040	int retval;
1041	unsigned long flags;
1042
1043	*power_reg = (unsigned long) (-1);
1044	
1045	spin_lock_irqsave(&pdc_lock, flags);
1046	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1047	if (retval == PDC_OK) {
1048                convert_to_wide(pdc_result);
1049                *power_reg = f_extend(pdc_result[0]);
1050	}
1051	spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053	return retval;
1054}
1055
1056/*
1057 * pdc_soft_power_button - Control the soft power button behaviour
1058 * @sw_control: 0 for hardware control, 1 for software control 
1059 *
1060 *
1061 * This PDC function places the soft power button under software or
1062 * hardware control.
1063 * Under software control the OS may control to when to allow to shut 
1064 * down the system. Under hardware control pressing the power button 
1065 * powers off the system immediately.
1066 */
1067int pdc_soft_power_button(int sw_control)
1068{
1069	int retval;
1070	unsigned long flags;
1071
1072	spin_lock_irqsave(&pdc_lock, flags);
1073	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1074	spin_unlock_irqrestore(&pdc_lock, flags);
1075
1076	return retval;
1077}
1078
1079/*
1080 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1081 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1082 * who knows what other platform firmware might do with this OS "hook".
1083 */
1084void pdc_io_reset(void)
1085{
1086	unsigned long flags;
1087
1088	spin_lock_irqsave(&pdc_lock, flags);
1089	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1090	spin_unlock_irqrestore(&pdc_lock, flags);
1091}
1092
1093/*
1094 * pdc_io_reset_devices - Hack to Stop USB controller
1095 *
1096 * If PDC used the usb controller, the usb controller
1097 * is still running and will crash the machines during iommu 
1098 * setup, because of still running DMA. This PDC call
1099 * stops the USB controller.
1100 * Normally called after calling pdc_io_reset().
1101 */
1102void pdc_io_reset_devices(void)
1103{
1104	unsigned long flags;
1105
1106	spin_lock_irqsave(&pdc_lock, flags);
1107	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1108	spin_unlock_irqrestore(&pdc_lock, flags);
1109}
1110
 
 
1111/* locked by pdc_console_lock */
1112static int __attribute__((aligned(8)))   iodc_retbuf[32];
1113static char __attribute__((aligned(64))) iodc_dbuf[4096];
1114
1115/**
1116 * pdc_iodc_print - Console print using IODC.
1117 * @str: the string to output.
1118 * @count: length of str
1119 *
1120 * Note that only these special chars are architected for console IODC io:
1121 * BEL, BS, CR, and LF. Others are passed through.
1122 * Since the HP console requires CR+LF to perform a 'newline', we translate
1123 * "\n" to "\r\n".
1124 */
1125int pdc_iodc_print(const unsigned char *str, unsigned count)
1126{
1127	unsigned int i;
1128	unsigned long flags;
1129
1130	for (i = 0; i < count;) {
1131		switch(str[i]) {
1132		case '\n':
1133			iodc_dbuf[i+0] = '\r';
1134			iodc_dbuf[i+1] = '\n';
1135			i += 2;
1136			goto print;
1137		default:
1138			iodc_dbuf[i] = str[i];
1139			i++;
1140			break;
1141		}
1142	}
1143
1144print:
1145        spin_lock_irqsave(&pdc_lock, flags);
1146        real32_call(PAGE0->mem_cons.iodc_io,
1147                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1148                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1149                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1150        spin_unlock_irqrestore(&pdc_lock, flags);
1151
1152	return i;
1153}
1154
 
1155/**
1156 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1157 *
1158 * Read a character (non-blocking) from the PDC console, returns -1 if
1159 * key is not present.
1160 */
1161int pdc_iodc_getc(void)
1162{
1163	int ch;
1164	int status;
1165	unsigned long flags;
1166
1167	/* Bail if no console input device. */
1168	if (!PAGE0->mem_kbd.iodc_io)
1169		return 0;
1170	
1171	/* wait for a keyboard (rs232)-input */
1172	spin_lock_irqsave(&pdc_lock, flags);
1173	real32_call(PAGE0->mem_kbd.iodc_io,
1174		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1175		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1176		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1177
1178	ch = *iodc_dbuf;
1179	status = *iodc_retbuf;
1180	spin_unlock_irqrestore(&pdc_lock, flags);
1181
1182	if (status == 0)
1183	    return -1;
1184	
1185	return ch;
1186}
1187
1188int pdc_sti_call(unsigned long func, unsigned long flags,
1189                 unsigned long inptr, unsigned long outputr,
1190                 unsigned long glob_cfg)
1191{
1192        int retval;
1193	unsigned long irqflags;
1194
1195        spin_lock_irqsave(&pdc_lock, irqflags);  
1196        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1197        spin_unlock_irqrestore(&pdc_lock, irqflags);
1198
1199        return retval;
1200}
1201EXPORT_SYMBOL(pdc_sti_call);
1202
1203#ifdef CONFIG_64BIT
1204/**
1205 * pdc_pat_cell_get_number - Returns the cell number.
1206 * @cell_info: The return buffer.
1207 *
1208 * This PDC call returns the cell number of the cell from which the call
1209 * is made.
1210 */
1211int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1212{
1213	int retval;
1214	unsigned long flags;
1215
1216	spin_lock_irqsave(&pdc_lock, flags);
1217	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1218	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1219	spin_unlock_irqrestore(&pdc_lock, flags);
1220
1221	return retval;
1222}
1223
1224/**
1225 * pdc_pat_cell_module - Retrieve the cell's module information.
1226 * @actcnt: The number of bytes written to mem_addr.
1227 * @ploc: The physical location.
1228 * @mod: The module index.
1229 * @view_type: The view of the address type.
1230 * @mem_addr: The return buffer.
1231 *
1232 * This PDC call returns information about each module attached to the cell
1233 * at the specified location.
1234 */
1235int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1236			unsigned long view_type, void *mem_addr)
1237{
1238	int retval;
1239	unsigned long flags;
1240	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1241
1242	spin_lock_irqsave(&pdc_lock, flags);
1243	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1244			      ploc, mod, view_type, __pa(&result));
1245	if(!retval) {
1246		*actcnt = pdc_result[0];
1247		memcpy(mem_addr, &result, *actcnt);
1248	}
1249	spin_unlock_irqrestore(&pdc_lock, flags);
1250
1251	return retval;
1252}
1253
1254/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1255 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1256 * @cpu_info: The return buffer.
1257 * @hpa: The Hard Physical Address of the CPU.
1258 *
1259 * Retrieve the cpu number for the cpu at the specified HPA.
1260 */
1261int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1262{
1263	int retval;
1264	unsigned long flags;
1265
1266	spin_lock_irqsave(&pdc_lock, flags);
1267	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1268			      __pa(&pdc_result), hpa);
1269	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1270	spin_unlock_irqrestore(&pdc_lock, flags);
1271
1272	return retval;
1273}
1274
1275/**
1276 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1277 * @num_entries: The return value.
1278 * @cell_num: The target cell.
1279 *
1280 * This PDC function returns the number of entries in the specified cell's
1281 * interrupt table.
1282 */
1283int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1284{
1285	int retval;
1286	unsigned long flags;
1287
1288	spin_lock_irqsave(&pdc_lock, flags);
1289	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1290			      __pa(pdc_result), cell_num);
1291	*num_entries = pdc_result[0];
1292	spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294	return retval;
1295}
1296
1297/**
1298 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1299 * @r_addr: The return buffer.
1300 * @cell_num: The target cell.
1301 *
1302 * This PDC function returns the actual interrupt table for the specified cell.
1303 */
1304int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1305{
1306	int retval;
1307	unsigned long flags;
1308
1309	spin_lock_irqsave(&pdc_lock, flags);
1310	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1311			      __pa(r_addr), cell_num);
1312	spin_unlock_irqrestore(&pdc_lock, flags);
1313
1314	return retval;
1315}
1316
1317/**
1318 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1319 * @actlen: The return buffer.
1320 * @mem_addr: Pointer to the memory buffer.
1321 * @count: The number of bytes to read from the buffer.
1322 * @offset: The offset with respect to the beginning of the buffer.
1323 *
1324 */
1325int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1326			    unsigned long count, unsigned long offset)
1327{
1328	int retval;
1329	unsigned long flags;
1330
1331	spin_lock_irqsave(&pdc_lock, flags);
1332	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1333			      __pa(pdc_result2), count, offset);
1334	*actual_len = pdc_result[0];
1335	memcpy(mem_addr, pdc_result2, *actual_len);
1336	spin_unlock_irqrestore(&pdc_lock, flags);
1337
1338	return retval;
1339}
1340
1341/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1343 * @pci_addr: PCI configuration space address for which the read request is being made.
1344 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1345 * @mem_addr: Pointer to return memory buffer.
1346 *
1347 */
1348int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1349{
1350	int retval;
1351	unsigned long flags;
1352
1353	spin_lock_irqsave(&pdc_lock, flags);
1354	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1355					__pa(pdc_result), pci_addr, pci_size);
1356	switch(pci_size) {
1357		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1358		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1359		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1360	}
1361	spin_unlock_irqrestore(&pdc_lock, flags);
1362
1363	return retval;
1364}
1365
1366/**
1367 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1368 * @pci_addr: PCI configuration space address for which the write  request is being made.
1369 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1370 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1371 *         written to PCI Config space.
1372 *
1373 */
1374int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1375{
1376	int retval;
1377	unsigned long flags;
1378
1379	spin_lock_irqsave(&pdc_lock, flags);
1380	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1381				pci_addr, pci_size, val);
1382	spin_unlock_irqrestore(&pdc_lock, flags);
1383
1384	return retval;
1385}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386#endif /* CONFIG_64BIT */
 
1387
1388
1389/***************** 32-bit real-mode calls ***********/
1390/* The struct below is used
1391 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1392 * real32_call_asm() then uses this stack in narrow real mode
1393 */
1394
1395struct narrow_stack {
1396	/* use int, not long which is 64 bits */
1397	unsigned int arg13;
1398	unsigned int arg12;
1399	unsigned int arg11;
1400	unsigned int arg10;
1401	unsigned int arg9;
1402	unsigned int arg8;
1403	unsigned int arg7;
1404	unsigned int arg6;
1405	unsigned int arg5;
1406	unsigned int arg4;
1407	unsigned int arg3;
1408	unsigned int arg2;
1409	unsigned int arg1;
1410	unsigned int arg0;
1411	unsigned int frame_marker[8];
1412	unsigned int sp;
1413	/* in reality, there's nearly 8k of stack after this */
1414};
1415
1416long real32_call(unsigned long fn, ...)
1417{
1418	va_list args;
1419	extern struct narrow_stack real_stack;
1420	extern unsigned long real32_call_asm(unsigned int *,
1421					     unsigned int *, 
1422					     unsigned int);
1423	
1424	va_start(args, fn);
1425	real_stack.arg0 = va_arg(args, unsigned int);
1426	real_stack.arg1 = va_arg(args, unsigned int);
1427	real_stack.arg2 = va_arg(args, unsigned int);
1428	real_stack.arg3 = va_arg(args, unsigned int);
1429	real_stack.arg4 = va_arg(args, unsigned int);
1430	real_stack.arg5 = va_arg(args, unsigned int);
1431	real_stack.arg6 = va_arg(args, unsigned int);
1432	real_stack.arg7 = va_arg(args, unsigned int);
1433	real_stack.arg8 = va_arg(args, unsigned int);
1434	real_stack.arg9 = va_arg(args, unsigned int);
1435	real_stack.arg10 = va_arg(args, unsigned int);
1436	real_stack.arg11 = va_arg(args, unsigned int);
1437	real_stack.arg12 = va_arg(args, unsigned int);
1438	real_stack.arg13 = va_arg(args, unsigned int);
1439	va_end(args);
1440	
1441	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1442}
1443
1444#ifdef CONFIG_64BIT
1445/***************** 64-bit real-mode calls ***********/
1446
1447struct wide_stack {
1448	unsigned long arg0;
1449	unsigned long arg1;
1450	unsigned long arg2;
1451	unsigned long arg3;
1452	unsigned long arg4;
1453	unsigned long arg5;
1454	unsigned long arg6;
1455	unsigned long arg7;
1456	unsigned long arg8;
1457	unsigned long arg9;
1458	unsigned long arg10;
1459	unsigned long arg11;
1460	unsigned long arg12;
1461	unsigned long arg13;
1462	unsigned long frame_marker[2];	/* rp, previous sp */
1463	unsigned long sp;
1464	/* in reality, there's nearly 8k of stack after this */
1465};
1466
1467long real64_call(unsigned long fn, ...)
1468{
1469	va_list args;
1470	extern struct wide_stack real64_stack;
1471	extern unsigned long real64_call_asm(unsigned long *,
1472					     unsigned long *, 
1473					     unsigned long);
1474    
1475	va_start(args, fn);
1476	real64_stack.arg0 = va_arg(args, unsigned long);
1477	real64_stack.arg1 = va_arg(args, unsigned long);
1478	real64_stack.arg2 = va_arg(args, unsigned long);
1479	real64_stack.arg3 = va_arg(args, unsigned long);
1480	real64_stack.arg4 = va_arg(args, unsigned long);
1481	real64_stack.arg5 = va_arg(args, unsigned long);
1482	real64_stack.arg6 = va_arg(args, unsigned long);
1483	real64_stack.arg7 = va_arg(args, unsigned long);
1484	real64_stack.arg8 = va_arg(args, unsigned long);
1485	real64_stack.arg9 = va_arg(args, unsigned long);
1486	real64_stack.arg10 = va_arg(args, unsigned long);
1487	real64_stack.arg11 = va_arg(args, unsigned long);
1488	real64_stack.arg12 = va_arg(args, unsigned long);
1489	real64_stack.arg13 = va_arg(args, unsigned long);
1490	va_end(args);
1491	
1492	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1493}
1494
1495#endif /* CONFIG_64BIT */
1496