Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Port on Texas Instruments TMS320C6x architecture
  4 *
  5 *  Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
  6 *  Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
 
 
 
 
  7 */
  8#include <linux/dma-mapping.h>
  9#include <linux/memblock.h>
 10#include <linux/seq_file.h>
 
 11#include <linux/clkdev.h>
 12#include <linux/initrd.h>
 13#include <linux/kernel.h>
 14#include <linux/module.h>
 15#include <linux/of_fdt.h>
 16#include <linux/string.h>
 17#include <linux/errno.h>
 18#include <linux/cache.h>
 19#include <linux/delay.h>
 20#include <linux/sched.h>
 21#include <linux/clk.h>
 22#include <linux/cpu.h>
 23#include <linux/fs.h>
 24#include <linux/of.h>
 25#include <linux/console.h>
 26#include <linux/screen_info.h>
 27
 28#include <asm/sections.h>
 29#include <asm/div64.h>
 30#include <asm/setup.h>
 31#include <asm/dscr.h>
 32#include <asm/clock.h>
 33#include <asm/soc.h>
 34#include <asm/special_insns.h>
 35
 36static const char *c6x_soc_name;
 37
 38struct screen_info screen_info;
 39
 40int c6x_num_cores;
 41EXPORT_SYMBOL_GPL(c6x_num_cores);
 42
 43unsigned int c6x_silicon_rev;
 44EXPORT_SYMBOL_GPL(c6x_silicon_rev);
 45
 46/*
 47 * Device status register. This holds information
 48 * about device configuration needed by some drivers.
 49 */
 50unsigned int c6x_devstat;
 51EXPORT_SYMBOL_GPL(c6x_devstat);
 52
 53/*
 54 * Some SoCs have fuse registers holding a unique MAC
 55 * address. This is parsed out of the device tree with
 56 * the resulting MAC being held here.
 57 */
 58unsigned char c6x_fuse_mac[6];
 59
 60unsigned long memory_start;
 61unsigned long memory_end;
 62EXPORT_SYMBOL(memory_end);
 63
 64unsigned long ram_start;
 65unsigned long ram_end;
 66
 67/* Uncached memory for DMA consistent use (memdma=) */
 68static unsigned long dma_start __initdata;
 69static unsigned long dma_size __initdata;
 70
 71struct cpuinfo_c6x {
 72	const char *cpu_name;
 73	const char *cpu_voltage;
 74	const char *mmu;
 75	const char *fpu;
 76	char *cpu_rev;
 77	unsigned int core_id;
 78	char __cpu_rev[5];
 79};
 80
 81static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
 82
 83unsigned int ticks_per_ns_scaled;
 84EXPORT_SYMBOL(ticks_per_ns_scaled);
 85
 86unsigned int c6x_core_freq;
 87
 88static void __init get_cpuinfo(void)
 89{
 90	unsigned cpu_id, rev_id, csr;
 91	struct clk *coreclk = clk_get_sys(NULL, "core");
 92	unsigned long core_khz;
 93	u64 tmp;
 94	struct cpuinfo_c6x *p;
 95	struct device_node *node;
 96
 97	p = &per_cpu(cpu_data, smp_processor_id());
 98
 99	if (!IS_ERR(coreclk))
100		c6x_core_freq = clk_get_rate(coreclk);
101	else {
102		printk(KERN_WARNING
103		       "Cannot find core clock frequency. Using 700MHz\n");
104		c6x_core_freq = 700000000;
105	}
106
107	core_khz = c6x_core_freq / 1000;
108
109	tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
110	do_div(tmp, 1000000);
111	ticks_per_ns_scaled = tmp;
112
113	csr = get_creg(CSR);
114	cpu_id = csr >> 24;
115	rev_id = (csr >> 16) & 0xff;
116
117	p->mmu = "none";
118	p->fpu = "none";
119	p->cpu_voltage = "unknown";
120
121	switch (cpu_id) {
122	case 0:
123		p->cpu_name = "C67x";
124		p->fpu = "yes";
125		break;
126	case 2:
127		p->cpu_name = "C62x";
128		break;
129	case 8:
130		p->cpu_name = "C64x";
131		break;
132	case 12:
133		p->cpu_name = "C64x";
134		break;
135	case 16:
136		p->cpu_name = "C64x+";
137		p->cpu_voltage = "1.2";
138		break;
139	case 21:
140		p->cpu_name = "C66X";
141		p->cpu_voltage = "1.2";
142		break;
143	default:
144		p->cpu_name = "unknown";
145		break;
146	}
147
148	if (cpu_id < 16) {
149		switch (rev_id) {
150		case 0x1:
151			if (cpu_id > 8) {
152				p->cpu_rev = "DM640/DM641/DM642/DM643";
153				p->cpu_voltage = "1.2 - 1.4";
154			} else {
155				p->cpu_rev = "C6201";
156				p->cpu_voltage = "2.5";
157			}
158			break;
159		case 0x2:
160			p->cpu_rev = "C6201B/C6202/C6211";
161			p->cpu_voltage = "1.8";
162			break;
163		case 0x3:
164			p->cpu_rev = "C6202B/C6203/C6204/C6205";
165			p->cpu_voltage = "1.5";
166			break;
167		case 0x201:
168			p->cpu_rev = "C6701 revision 0 (early CPU)";
169			p->cpu_voltage = "1.8";
170			break;
171		case 0x202:
172			p->cpu_rev = "C6701/C6711/C6712";
173			p->cpu_voltage = "1.8";
174			break;
175		case 0x801:
176			p->cpu_rev = "C64x";
177			p->cpu_voltage = "1.5";
178			break;
179		default:
180			p->cpu_rev = "unknown";
181		}
182	} else {
183		p->cpu_rev = p->__cpu_rev;
184		snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
185	}
186
187	p->core_id = get_coreid();
188
189	for_each_of_cpu_node(node)
190		++c6x_num_cores;
 
 
 
 
 
191
192	node = of_find_node_by_name(NULL, "soc");
193	if (node) {
194		if (of_property_read_string(node, "model", &c6x_soc_name))
195			c6x_soc_name = "unknown";
196		of_node_put(node);
197	} else
198		c6x_soc_name = "unknown";
199
200	printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
201	       p->core_id, p->cpu_name, p->cpu_rev,
202	       p->cpu_voltage, c6x_core_freq / 1000000);
203}
204
205/*
206 * Early parsing of the command line
207 */
208static u32 mem_size __initdata;
209
210/* "mem=" parsing. */
211static int __init early_mem(char *p)
212{
213	if (!p)
214		return -EINVAL;
215
216	mem_size = memparse(p, &p);
217	/* don't remove all of memory when handling "mem={invalid}" */
218	if (mem_size == 0)
219		return -EINVAL;
220
221	return 0;
222}
223early_param("mem", early_mem);
224
225/* "memdma=<size>[@<address>]" parsing. */
226static int __init early_memdma(char *p)
227{
228	if (!p)
229		return -EINVAL;
230
231	dma_size = memparse(p, &p);
232	if (*p == '@')
233		dma_start = memparse(p, &p);
234
235	return 0;
236}
237early_param("memdma", early_memdma);
238
239int __init c6x_add_memory(phys_addr_t start, unsigned long size)
240{
241	static int ram_found __initdata;
242
243	/* We only handle one bank (the one with PAGE_OFFSET) for now */
244	if (ram_found)
245		return -EINVAL;
246
247	if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
248		return 0;
249
250	ram_start = start;
251	ram_end = start + size;
252
253	ram_found = 1;
254	return 0;
255}
256
257/*
258 * Do early machine setup and device tree parsing. This is called very
259 * early on the boot process.
260 */
261notrace void __init machine_init(unsigned long dt_ptr)
262{
263	void *dtb = __va(dt_ptr);
264	void *fdt = __dtb_start;
265
266	/* interrupts must be masked */
267	set_creg(IER, 2);
268
269	/*
270	 * Set the Interrupt Service Table (IST) to the beginning of the
271	 * vector table.
272	 */
273	set_ist(_vectors_start);
274
275	/*
276	 * dtb is passed in from bootloader.
277	 * fdt is linked in blob.
278	 */
279	if (dtb && dtb != fdt)
280		fdt = dtb;
281
282	/* Do some early initialization based on the flat device tree */
283	early_init_dt_scan(fdt);
284
285	parse_early_param();
286}
287
288void __init setup_arch(char **cmdline_p)
289{
 
290	struct memblock_region *reg;
291
292	printk(KERN_INFO "Initializing kernel\n");
293
294	/* Initialize command line */
295	*cmdline_p = boot_command_line;
296
297	memory_end = ram_end;
298	memory_end &= ~(PAGE_SIZE - 1);
299
300	if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
301		memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
302
303	/* add block that this kernel can use */
304	memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
305
306	/* reserve kernel text/data/bss */
307	memblock_reserve(PAGE_OFFSET,
308			 PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
309
310	if (dma_size) {
311		/* align to cacheability granularity */
312		dma_size = CACHE_REGION_END(dma_size);
313
314		if (!dma_start)
315			dma_start = memory_end - dma_size;
316
317		/* align to cacheability granularity */
318		dma_start = CACHE_REGION_START(dma_start);
319
320		/* reserve DMA memory taken from kernel memory */
321		if (memblock_is_region_memory(dma_start, dma_size))
322			memblock_reserve(dma_start, dma_size);
323	}
324
325	memory_start = PAGE_ALIGN((unsigned int) &_end);
326
327	printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
328	       memory_start, memory_end);
329
330#ifdef CONFIG_BLK_DEV_INITRD
331	/*
332	 * Reserve initrd memory if in kernel memory.
333	 */
334	if (initrd_start < initrd_end)
335		if (memblock_is_region_memory(initrd_start,
336					      initrd_end - initrd_start))
337			memblock_reserve(initrd_start,
338					 initrd_end - initrd_start);
339#endif
340
341	init_mm.start_code = (unsigned long) &_stext;
342	init_mm.end_code   = (unsigned long) &_etext;
343	init_mm.end_data   = memory_start;
344	init_mm.brk        = memory_start;
345
346	unflatten_and_copy_device_tree();
 
 
 
 
 
 
 
 
 
 
347
348	c6x_cache_init();
349
350	/* Set the whole external memory as non-cacheable */
351	disable_caching(ram_start, ram_end - 1);
352
353	/* Set caching of external RAM used by Linux */
354	for_each_memblock(memory, reg)
355		enable_caching(CACHE_REGION_START(reg->base),
356			       CACHE_REGION_START(reg->base + reg->size - 1));
357
358#ifdef CONFIG_BLK_DEV_INITRD
359	/*
360	 * Enable caching for initrd which falls outside kernel memory.
361	 */
362	if (initrd_start < initrd_end) {
363		if (!memblock_is_region_memory(initrd_start,
364					       initrd_end - initrd_start))
365			enable_caching(CACHE_REGION_START(initrd_start),
366				       CACHE_REGION_START(initrd_end - 1));
367	}
368#endif
369
370	/*
371	 * Disable caching for dma coherent memory taken from kernel memory.
372	 */
373	if (dma_size && memblock_is_region_memory(dma_start, dma_size))
374		disable_caching(dma_start,
375				CACHE_REGION_START(dma_start + dma_size - 1));
376
377	/* Initialize the coherent memory allocator */
378	coherent_mem_init(dma_start, dma_size);
379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
380	max_low_pfn = PFN_DOWN(memory_end);
381	min_low_pfn = PFN_UP(memory_start);
382	max_pfn = max_low_pfn;
383	max_mapnr = max_low_pfn - min_low_pfn;
384
385	/* Get kmalloc into gear */
386	paging_init();
387
388	/*
389	 * Probe for Device State Configuration Registers.
390	 * We have to do this early in case timer needs to be enabled
391	 * through DSCR.
392	 */
393	dscr_probe();
394
395	/* We do this early for timer and core clock frequency */
396	c64x_setup_clocks();
397
398	/* Get CPU info */
399	get_cpuinfo();
400
401#if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
402	conswitchp = &dummy_con;
403#endif
404}
405
406#define cpu_to_ptr(n) ((void *)((long)(n)+1))
407#define ptr_to_cpu(p) ((long)(p) - 1)
408
409static int show_cpuinfo(struct seq_file *m, void *v)
410{
411	int n = ptr_to_cpu(v);
412	struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
413
414	if (n == 0) {
415		seq_printf(m,
416			   "soc\t\t: %s\n"
417			   "soc revision\t: 0x%x\n"
418			   "soc cores\t: %d\n",
419			   c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
420	}
421
422	seq_printf(m,
423		   "\n"
424		   "processor\t: %d\n"
425		   "cpu\t\t: %s\n"
426		   "core revision\t: %s\n"
427		   "core voltage\t: %s\n"
428		   "core id\t\t: %d\n"
429		   "mmu\t\t: %s\n"
430		   "fpu\t\t: %s\n"
431		   "cpu MHz\t\t: %u\n"
432		   "bogomips\t: %lu.%02lu\n\n",
433		   n,
434		   p->cpu_name, p->cpu_rev, p->cpu_voltage,
435		   p->core_id, p->mmu, p->fpu,
436		   (c6x_core_freq + 500000) / 1000000,
437		   (loops_per_jiffy/(500000/HZ)),
438		   (loops_per_jiffy/(5000/HZ))%100);
439
440	return 0;
441}
442
443static void *c_start(struct seq_file *m, loff_t *pos)
444{
445	return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
446}
447static void *c_next(struct seq_file *m, void *v, loff_t *pos)
448{
449	++*pos;
450	return NULL;
451}
452static void c_stop(struct seq_file *m, void *v)
453{
454}
455
456const struct seq_operations cpuinfo_op = {
457	c_start,
458	c_stop,
459	c_next,
460	show_cpuinfo
461};
462
463static struct cpu cpu_devices[NR_CPUS];
464
465static int __init topology_init(void)
466{
467	int i;
468
469	for_each_present_cpu(i)
470		register_cpu(&cpu_devices[i], i);
471
472	return 0;
473}
474
475subsys_initcall(topology_init);
v4.6
 
  1/*
  2 *  Port on Texas Instruments TMS320C6x architecture
  3 *
  4 *  Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
  5 *  Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
  6 *
  7 *  This program is free software; you can redistribute it and/or modify
  8 *  it under the terms of the GNU General Public License version 2 as
  9 *  published by the Free Software Foundation.
 10 */
 11#include <linux/dma-mapping.h>
 12#include <linux/memblock.h>
 13#include <linux/seq_file.h>
 14#include <linux/bootmem.h>
 15#include <linux/clkdev.h>
 16#include <linux/initrd.h>
 17#include <linux/kernel.h>
 18#include <linux/module.h>
 19#include <linux/of_fdt.h>
 20#include <linux/string.h>
 21#include <linux/errno.h>
 22#include <linux/cache.h>
 23#include <linux/delay.h>
 24#include <linux/sched.h>
 25#include <linux/clk.h>
 26#include <linux/cpu.h>
 27#include <linux/fs.h>
 28#include <linux/of.h>
 29#include <linux/console.h>
 30#include <linux/screen_info.h>
 31
 32#include <asm/sections.h>
 33#include <asm/div64.h>
 34#include <asm/setup.h>
 35#include <asm/dscr.h>
 36#include <asm/clock.h>
 37#include <asm/soc.h>
 38#include <asm/special_insns.h>
 39
 40static const char *c6x_soc_name;
 41
 42struct screen_info screen_info;
 43
 44int c6x_num_cores;
 45EXPORT_SYMBOL_GPL(c6x_num_cores);
 46
 47unsigned int c6x_silicon_rev;
 48EXPORT_SYMBOL_GPL(c6x_silicon_rev);
 49
 50/*
 51 * Device status register. This holds information
 52 * about device configuration needed by some drivers.
 53 */
 54unsigned int c6x_devstat;
 55EXPORT_SYMBOL_GPL(c6x_devstat);
 56
 57/*
 58 * Some SoCs have fuse registers holding a unique MAC
 59 * address. This is parsed out of the device tree with
 60 * the resulting MAC being held here.
 61 */
 62unsigned char c6x_fuse_mac[6];
 63
 64unsigned long memory_start;
 65unsigned long memory_end;
 66EXPORT_SYMBOL(memory_end);
 67
 68unsigned long ram_start;
 69unsigned long ram_end;
 70
 71/* Uncached memory for DMA consistent use (memdma=) */
 72static unsigned long dma_start __initdata;
 73static unsigned long dma_size __initdata;
 74
 75struct cpuinfo_c6x {
 76	const char *cpu_name;
 77	const char *cpu_voltage;
 78	const char *mmu;
 79	const char *fpu;
 80	char *cpu_rev;
 81	unsigned int core_id;
 82	char __cpu_rev[5];
 83};
 84
 85static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
 86
 87unsigned int ticks_per_ns_scaled;
 88EXPORT_SYMBOL(ticks_per_ns_scaled);
 89
 90unsigned int c6x_core_freq;
 91
 92static void __init get_cpuinfo(void)
 93{
 94	unsigned cpu_id, rev_id, csr;
 95	struct clk *coreclk = clk_get_sys(NULL, "core");
 96	unsigned long core_khz;
 97	u64 tmp;
 98	struct cpuinfo_c6x *p;
 99	struct device_node *node, *np;
100
101	p = &per_cpu(cpu_data, smp_processor_id());
102
103	if (!IS_ERR(coreclk))
104		c6x_core_freq = clk_get_rate(coreclk);
105	else {
106		printk(KERN_WARNING
107		       "Cannot find core clock frequency. Using 700MHz\n");
108		c6x_core_freq = 700000000;
109	}
110
111	core_khz = c6x_core_freq / 1000;
112
113	tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
114	do_div(tmp, 1000000);
115	ticks_per_ns_scaled = tmp;
116
117	csr = get_creg(CSR);
118	cpu_id = csr >> 24;
119	rev_id = (csr >> 16) & 0xff;
120
121	p->mmu = "none";
122	p->fpu = "none";
123	p->cpu_voltage = "unknown";
124
125	switch (cpu_id) {
126	case 0:
127		p->cpu_name = "C67x";
128		p->fpu = "yes";
129		break;
130	case 2:
131		p->cpu_name = "C62x";
132		break;
133	case 8:
134		p->cpu_name = "C64x";
135		break;
136	case 12:
137		p->cpu_name = "C64x";
138		break;
139	case 16:
140		p->cpu_name = "C64x+";
141		p->cpu_voltage = "1.2";
142		break;
143	case 21:
144		p->cpu_name = "C66X";
145		p->cpu_voltage = "1.2";
146		break;
147	default:
148		p->cpu_name = "unknown";
149		break;
150	}
151
152	if (cpu_id < 16) {
153		switch (rev_id) {
154		case 0x1:
155			if (cpu_id > 8) {
156				p->cpu_rev = "DM640/DM641/DM642/DM643";
157				p->cpu_voltage = "1.2 - 1.4";
158			} else {
159				p->cpu_rev = "C6201";
160				p->cpu_voltage = "2.5";
161			}
162			break;
163		case 0x2:
164			p->cpu_rev = "C6201B/C6202/C6211";
165			p->cpu_voltage = "1.8";
166			break;
167		case 0x3:
168			p->cpu_rev = "C6202B/C6203/C6204/C6205";
169			p->cpu_voltage = "1.5";
170			break;
171		case 0x201:
172			p->cpu_rev = "C6701 revision 0 (early CPU)";
173			p->cpu_voltage = "1.8";
174			break;
175		case 0x202:
176			p->cpu_rev = "C6701/C6711/C6712";
177			p->cpu_voltage = "1.8";
178			break;
179		case 0x801:
180			p->cpu_rev = "C64x";
181			p->cpu_voltage = "1.5";
182			break;
183		default:
184			p->cpu_rev = "unknown";
185		}
186	} else {
187		p->cpu_rev = p->__cpu_rev;
188		snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
189	}
190
191	p->core_id = get_coreid();
192
193	node = of_find_node_by_name(NULL, "cpus");
194	if (node) {
195		for_each_child_of_node(node, np)
196			if (!strcmp("cpu", np->name))
197				++c6x_num_cores;
198		of_node_put(node);
199	}
200
201	node = of_find_node_by_name(NULL, "soc");
202	if (node) {
203		if (of_property_read_string(node, "model", &c6x_soc_name))
204			c6x_soc_name = "unknown";
205		of_node_put(node);
206	} else
207		c6x_soc_name = "unknown";
208
209	printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
210	       p->core_id, p->cpu_name, p->cpu_rev,
211	       p->cpu_voltage, c6x_core_freq / 1000000);
212}
213
214/*
215 * Early parsing of the command line
216 */
217static u32 mem_size __initdata;
218
219/* "mem=" parsing. */
220static int __init early_mem(char *p)
221{
222	if (!p)
223		return -EINVAL;
224
225	mem_size = memparse(p, &p);
226	/* don't remove all of memory when handling "mem={invalid}" */
227	if (mem_size == 0)
228		return -EINVAL;
229
230	return 0;
231}
232early_param("mem", early_mem);
233
234/* "memdma=<size>[@<address>]" parsing. */
235static int __init early_memdma(char *p)
236{
237	if (!p)
238		return -EINVAL;
239
240	dma_size = memparse(p, &p);
241	if (*p == '@')
242		dma_start = memparse(p, &p);
243
244	return 0;
245}
246early_param("memdma", early_memdma);
247
248int __init c6x_add_memory(phys_addr_t start, unsigned long size)
249{
250	static int ram_found __initdata;
251
252	/* We only handle one bank (the one with PAGE_OFFSET) for now */
253	if (ram_found)
254		return -EINVAL;
255
256	if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
257		return 0;
258
259	ram_start = start;
260	ram_end = start + size;
261
262	ram_found = 1;
263	return 0;
264}
265
266/*
267 * Do early machine setup and device tree parsing. This is called very
268 * early on the boot process.
269 */
270notrace void __init machine_init(unsigned long dt_ptr)
271{
272	void *dtb = __va(dt_ptr);
273	void *fdt = _fdt_start;
274
275	/* interrupts must be masked */
276	set_creg(IER, 2);
277
278	/*
279	 * Set the Interrupt Service Table (IST) to the beginning of the
280	 * vector table.
281	 */
282	set_ist(_vectors_start);
283
284	/*
285	 * dtb is passed in from bootloader.
286	 * fdt is linked in blob.
287	 */
288	if (dtb && dtb != fdt)
289		fdt = dtb;
290
291	/* Do some early initialization based on the flat device tree */
292	early_init_dt_scan(fdt);
293
294	parse_early_param();
295}
296
297void __init setup_arch(char **cmdline_p)
298{
299	int bootmap_size;
300	struct memblock_region *reg;
301
302	printk(KERN_INFO "Initializing kernel\n");
303
304	/* Initialize command line */
305	*cmdline_p = boot_command_line;
306
307	memory_end = ram_end;
308	memory_end &= ~(PAGE_SIZE - 1);
309
310	if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
311		memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
312
313	/* add block that this kernel can use */
314	memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
315
316	/* reserve kernel text/data/bss */
317	memblock_reserve(PAGE_OFFSET,
318			 PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
319
320	if (dma_size) {
321		/* align to cacheability granularity */
322		dma_size = CACHE_REGION_END(dma_size);
323
324		if (!dma_start)
325			dma_start = memory_end - dma_size;
326
327		/* align to cacheability granularity */
328		dma_start = CACHE_REGION_START(dma_start);
329
330		/* reserve DMA memory taken from kernel memory */
331		if (memblock_is_region_memory(dma_start, dma_size))
332			memblock_reserve(dma_start, dma_size);
333	}
334
335	memory_start = PAGE_ALIGN((unsigned int) &_end);
336
337	printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
338	       memory_start, memory_end);
339
340#ifdef CONFIG_BLK_DEV_INITRD
341	/*
342	 * Reserve initrd memory if in kernel memory.
343	 */
344	if (initrd_start < initrd_end)
345		if (memblock_is_region_memory(initrd_start,
346					      initrd_end - initrd_start))
347			memblock_reserve(initrd_start,
348					 initrd_end - initrd_start);
349#endif
350
351	init_mm.start_code = (unsigned long) &_stext;
352	init_mm.end_code   = (unsigned long) &_etext;
353	init_mm.end_data   = memory_start;
354	init_mm.brk        = memory_start;
355
356	/*
357	 * Give all the memory to the bootmap allocator,  tell it to put the
358	 * boot mem_map at the start of memory
359	 */
360	bootmap_size = init_bootmem_node(NODE_DATA(0),
361					 memory_start >> PAGE_SHIFT,
362					 PAGE_OFFSET >> PAGE_SHIFT,
363					 memory_end >> PAGE_SHIFT);
364	memblock_reserve(memory_start, bootmap_size);
365
366	unflatten_device_tree();
367
368	c6x_cache_init();
369
370	/* Set the whole external memory as non-cacheable */
371	disable_caching(ram_start, ram_end - 1);
372
373	/* Set caching of external RAM used by Linux */
374	for_each_memblock(memory, reg)
375		enable_caching(CACHE_REGION_START(reg->base),
376			       CACHE_REGION_START(reg->base + reg->size - 1));
377
378#ifdef CONFIG_BLK_DEV_INITRD
379	/*
380	 * Enable caching for initrd which falls outside kernel memory.
381	 */
382	if (initrd_start < initrd_end) {
383		if (!memblock_is_region_memory(initrd_start,
384					       initrd_end - initrd_start))
385			enable_caching(CACHE_REGION_START(initrd_start),
386				       CACHE_REGION_START(initrd_end - 1));
387	}
388#endif
389
390	/*
391	 * Disable caching for dma coherent memory taken from kernel memory.
392	 */
393	if (dma_size && memblock_is_region_memory(dma_start, dma_size))
394		disable_caching(dma_start,
395				CACHE_REGION_START(dma_start + dma_size - 1));
396
397	/* Initialize the coherent memory allocator */
398	coherent_mem_init(dma_start, dma_size);
399
400	/*
401	 * Free all memory as a starting point.
402	 */
403	free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
404
405	/*
406	 * Then reserve memory which is already being used.
407	 */
408	for_each_memblock(reserved, reg) {
409		pr_debug("reserved - 0x%08x-0x%08x\n",
410			 (u32) reg->base, (u32) reg->size);
411		reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
412	}
413
414	max_low_pfn = PFN_DOWN(memory_end);
415	min_low_pfn = PFN_UP(memory_start);
 
416	max_mapnr = max_low_pfn - min_low_pfn;
417
418	/* Get kmalloc into gear */
419	paging_init();
420
421	/*
422	 * Probe for Device State Configuration Registers.
423	 * We have to do this early in case timer needs to be enabled
424	 * through DSCR.
425	 */
426	dscr_probe();
427
428	/* We do this early for timer and core clock frequency */
429	c64x_setup_clocks();
430
431	/* Get CPU info */
432	get_cpuinfo();
433
434#if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
435	conswitchp = &dummy_con;
436#endif
437}
438
439#define cpu_to_ptr(n) ((void *)((long)(n)+1))
440#define ptr_to_cpu(p) ((long)(p) - 1)
441
442static int show_cpuinfo(struct seq_file *m, void *v)
443{
444	int n = ptr_to_cpu(v);
445	struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
446
447	if (n == 0) {
448		seq_printf(m,
449			   "soc\t\t: %s\n"
450			   "soc revision\t: 0x%x\n"
451			   "soc cores\t: %d\n",
452			   c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
453	}
454
455	seq_printf(m,
456		   "\n"
457		   "processor\t: %d\n"
458		   "cpu\t\t: %s\n"
459		   "core revision\t: %s\n"
460		   "core voltage\t: %s\n"
461		   "core id\t\t: %d\n"
462		   "mmu\t\t: %s\n"
463		   "fpu\t\t: %s\n"
464		   "cpu MHz\t\t: %u\n"
465		   "bogomips\t: %lu.%02lu\n\n",
466		   n,
467		   p->cpu_name, p->cpu_rev, p->cpu_voltage,
468		   p->core_id, p->mmu, p->fpu,
469		   (c6x_core_freq + 500000) / 1000000,
470		   (loops_per_jiffy/(500000/HZ)),
471		   (loops_per_jiffy/(5000/HZ))%100);
472
473	return 0;
474}
475
476static void *c_start(struct seq_file *m, loff_t *pos)
477{
478	return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
479}
480static void *c_next(struct seq_file *m, void *v, loff_t *pos)
481{
482	++*pos;
483	return NULL;
484}
485static void c_stop(struct seq_file *m, void *v)
486{
487}
488
489const struct seq_operations cpuinfo_op = {
490	c_start,
491	c_stop,
492	c_next,
493	show_cpuinfo
494};
495
496static struct cpu cpu_devices[NR_CPUS];
497
498static int __init topology_init(void)
499{
500	int i;
501
502	for_each_present_cpu(i)
503		register_cpu(&cpu_devices[i], i);
504
505	return 0;
506}
507
508subsys_initcall(topology_init);