Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
 
 
 
 
   3 *
   4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   5 *     & Swedish University of Agricultural Sciences.
   6 *
   7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
   8 *     Agricultural Sciences.
   9 *
  10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  11 *
  12 * This work is based on the LPC-trie which is originally described in:
  13 *
  14 * An experimental study of compression methods for dynamic tries
  15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  17 *
 
  18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  20 *
 
  21 * Code from fib_hash has been reused which includes the following header:
  22 *
 
  23 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  24 *		operating system.  INET is implemented using the  BSD Socket
  25 *		interface as the means of communication with the user level.
  26 *
  27 *		IPv4 FIB: lookup engine and maintenance routines.
  28 *
 
  29 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  30 *
 
 
 
 
 
  31 * Substantial contributions to this work comes from:
  32 *
  33 *		David S. Miller, <davem@davemloft.net>
  34 *		Stephen Hemminger <shemminger@osdl.org>
  35 *		Paul E. McKenney <paulmck@us.ibm.com>
  36 *		Patrick McHardy <kaber@trash.net>
  37 */
  38
  39#define VERSION "0.409"
  40
  41#include <linux/cache.h>
  42#include <linux/uaccess.h>
  43#include <linux/bitops.h>
  44#include <linux/types.h>
  45#include <linux/kernel.h>
  46#include <linux/mm.h>
  47#include <linux/string.h>
  48#include <linux/socket.h>
  49#include <linux/sockios.h>
  50#include <linux/errno.h>
  51#include <linux/in.h>
  52#include <linux/inet.h>
  53#include <linux/inetdevice.h>
  54#include <linux/netdevice.h>
  55#include <linux/if_arp.h>
  56#include <linux/proc_fs.h>
  57#include <linux/rcupdate.h>
  58#include <linux/skbuff.h>
  59#include <linux/netlink.h>
  60#include <linux/init.h>
  61#include <linux/list.h>
  62#include <linux/slab.h>
  63#include <linux/export.h>
  64#include <linux/vmalloc.h>
  65#include <linux/notifier.h>
  66#include <net/net_namespace.h>
  67#include <net/ip.h>
  68#include <net/protocol.h>
  69#include <net/route.h>
  70#include <net/tcp.h>
  71#include <net/sock.h>
  72#include <net/ip_fib.h>
  73#include <net/fib_notifier.h>
  74#include <trace/events/fib.h>
  75#include "fib_lookup.h"
  76
  77static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
  78				   enum fib_event_type event_type, u32 dst,
  79				   int dst_len, struct fib_alias *fa)
  80{
  81	struct fib_entry_notifier_info info = {
  82		.dst = dst,
  83		.dst_len = dst_len,
  84		.fi = fa->fa_info,
  85		.tos = fa->fa_tos,
  86		.type = fa->fa_type,
  87		.tb_id = fa->tb_id,
  88	};
  89	return call_fib4_notifier(nb, net, event_type, &info.info);
  90}
  91
  92static int call_fib_entry_notifiers(struct net *net,
  93				    enum fib_event_type event_type, u32 dst,
  94				    int dst_len, struct fib_alias *fa,
  95				    struct netlink_ext_ack *extack)
  96{
  97	struct fib_entry_notifier_info info = {
  98		.info.extack = extack,
  99		.dst = dst,
 100		.dst_len = dst_len,
 101		.fi = fa->fa_info,
 102		.tos = fa->fa_tos,
 103		.type = fa->fa_type,
 104		.tb_id = fa->tb_id,
 105	};
 106	return call_fib4_notifiers(net, event_type, &info.info);
 107}
 108
 109#define MAX_STAT_DEPTH 32
 110
 111#define KEYLENGTH	(8*sizeof(t_key))
 112#define KEY_MAX		((t_key)~0)
 113
 114typedef unsigned int t_key;
 115
 116#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
 117#define IS_TNODE(n)	((n)->bits)
 118#define IS_LEAF(n)	(!(n)->bits)
 119
 120struct key_vector {
 121	t_key key;
 122	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 123	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 124	unsigned char slen;
 125	union {
 126		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 127		struct hlist_head leaf;
 128		/* This array is valid if (pos | bits) > 0 (TNODE) */
 129		struct key_vector __rcu *tnode[0];
 130	};
 131};
 132
 133struct tnode {
 134	struct rcu_head rcu;
 135	t_key empty_children;		/* KEYLENGTH bits needed */
 136	t_key full_children;		/* KEYLENGTH bits needed */
 137	struct key_vector __rcu *parent;
 138	struct key_vector kv[1];
 139#define tn_bits kv[0].bits
 140};
 141
 142#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 143#define LEAF_SIZE	TNODE_SIZE(1)
 144
 145#ifdef CONFIG_IP_FIB_TRIE_STATS
 146struct trie_use_stats {
 147	unsigned int gets;
 148	unsigned int backtrack;
 149	unsigned int semantic_match_passed;
 150	unsigned int semantic_match_miss;
 151	unsigned int null_node_hit;
 152	unsigned int resize_node_skipped;
 153};
 154#endif
 155
 156struct trie_stat {
 157	unsigned int totdepth;
 158	unsigned int maxdepth;
 159	unsigned int tnodes;
 160	unsigned int leaves;
 161	unsigned int nullpointers;
 162	unsigned int prefixes;
 163	unsigned int nodesizes[MAX_STAT_DEPTH];
 164};
 165
 166struct trie {
 167	struct key_vector kv[1];
 168#ifdef CONFIG_IP_FIB_TRIE_STATS
 169	struct trie_use_stats __percpu *stats;
 170#endif
 171};
 172
 173static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 174static unsigned int tnode_free_size;
 175
 176/*
 177 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
 178 * especially useful before resizing the root node with PREEMPT_NONE configs;
 179 * the value was obtained experimentally, aiming to avoid visible slowdown.
 180 */
 181unsigned int sysctl_fib_sync_mem = 512 * 1024;
 182unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
 183unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
 184
 185static struct kmem_cache *fn_alias_kmem __ro_after_init;
 186static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 187
 188static inline struct tnode *tn_info(struct key_vector *kv)
 189{
 190	return container_of(kv, struct tnode, kv[0]);
 191}
 192
 193/* caller must hold RTNL */
 194#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 195#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 196
 197/* caller must hold RCU read lock or RTNL */
 198#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 199#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 200
 201/* wrapper for rcu_assign_pointer */
 202static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 203{
 204	if (n)
 205		rcu_assign_pointer(tn_info(n)->parent, tp);
 206}
 207
 208#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 209
 210/* This provides us with the number of children in this node, in the case of a
 211 * leaf this will return 0 meaning none of the children are accessible.
 212 */
 213static inline unsigned long child_length(const struct key_vector *tn)
 214{
 215	return (1ul << tn->bits) & ~(1ul);
 216}
 217
 218#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 219
 220static inline unsigned long get_index(t_key key, struct key_vector *kv)
 221{
 222	unsigned long index = key ^ kv->key;
 223
 224	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 225		return 0;
 226
 227	return index >> kv->pos;
 228}
 229
 230/* To understand this stuff, an understanding of keys and all their bits is
 231 * necessary. Every node in the trie has a key associated with it, but not
 232 * all of the bits in that key are significant.
 233 *
 234 * Consider a node 'n' and its parent 'tp'.
 235 *
 236 * If n is a leaf, every bit in its key is significant. Its presence is
 237 * necessitated by path compression, since during a tree traversal (when
 238 * searching for a leaf - unless we are doing an insertion) we will completely
 239 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 240 * a potentially successful search, that we have indeed been walking the
 241 * correct key path.
 242 *
 243 * Note that we can never "miss" the correct key in the tree if present by
 244 * following the wrong path. Path compression ensures that segments of the key
 245 * that are the same for all keys with a given prefix are skipped, but the
 246 * skipped part *is* identical for each node in the subtrie below the skipped
 247 * bit! trie_insert() in this implementation takes care of that.
 248 *
 249 * if n is an internal node - a 'tnode' here, the various parts of its key
 250 * have many different meanings.
 251 *
 252 * Example:
 253 * _________________________________________________________________
 254 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 255 * -----------------------------------------------------------------
 256 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 257 *
 258 * _________________________________________________________________
 259 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 260 * -----------------------------------------------------------------
 261 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 262 *
 263 * tp->pos = 22
 264 * tp->bits = 3
 265 * n->pos = 13
 266 * n->bits = 4
 267 *
 268 * First, let's just ignore the bits that come before the parent tp, that is
 269 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 270 * point we do not use them for anything.
 271 *
 272 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 273 * index into the parent's child array. That is, they will be used to find
 274 * 'n' among tp's children.
 275 *
 276 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 277 * for the node n.
 278 *
 279 * All the bits we have seen so far are significant to the node n. The rest
 280 * of the bits are really not needed or indeed known in n->key.
 281 *
 282 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 283 * n's child array, and will of course be different for each child.
 284 *
 285 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 286 * at this point.
 287 */
 288
 289static const int halve_threshold = 25;
 290static const int inflate_threshold = 50;
 291static const int halve_threshold_root = 15;
 292static const int inflate_threshold_root = 30;
 293
 294static void __alias_free_mem(struct rcu_head *head)
 295{
 296	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 297	kmem_cache_free(fn_alias_kmem, fa);
 298}
 299
 300static inline void alias_free_mem_rcu(struct fib_alias *fa)
 301{
 302	call_rcu(&fa->rcu, __alias_free_mem);
 303}
 304
 305#define TNODE_KMALLOC_MAX \
 306	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 307#define TNODE_VMALLOC_MAX \
 308	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 309
 310static void __node_free_rcu(struct rcu_head *head)
 311{
 312	struct tnode *n = container_of(head, struct tnode, rcu);
 313
 314	if (!n->tn_bits)
 315		kmem_cache_free(trie_leaf_kmem, n);
 316	else
 317		kvfree(n);
 318}
 319
 320#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 321
 322static struct tnode *tnode_alloc(int bits)
 323{
 324	size_t size;
 325
 326	/* verify bits is within bounds */
 327	if (bits > TNODE_VMALLOC_MAX)
 328		return NULL;
 329
 330	/* determine size and verify it is non-zero and didn't overflow */
 331	size = TNODE_SIZE(1ul << bits);
 332
 333	if (size <= PAGE_SIZE)
 334		return kzalloc(size, GFP_KERNEL);
 335	else
 336		return vzalloc(size);
 337}
 338
 339static inline void empty_child_inc(struct key_vector *n)
 340{
 341	tn_info(n)->empty_children++;
 342
 343	if (!tn_info(n)->empty_children)
 344		tn_info(n)->full_children++;
 345}
 346
 347static inline void empty_child_dec(struct key_vector *n)
 348{
 349	if (!tn_info(n)->empty_children)
 350		tn_info(n)->full_children--;
 351
 352	tn_info(n)->empty_children--;
 353}
 354
 355static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 356{
 357	struct key_vector *l;
 358	struct tnode *kv;
 359
 360	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 361	if (!kv)
 362		return NULL;
 363
 364	/* initialize key vector */
 365	l = kv->kv;
 366	l->key = key;
 367	l->pos = 0;
 368	l->bits = 0;
 369	l->slen = fa->fa_slen;
 370
 371	/* link leaf to fib alias */
 372	INIT_HLIST_HEAD(&l->leaf);
 373	hlist_add_head(&fa->fa_list, &l->leaf);
 374
 375	return l;
 376}
 377
 378static struct key_vector *tnode_new(t_key key, int pos, int bits)
 379{
 380	unsigned int shift = pos + bits;
 381	struct key_vector *tn;
 382	struct tnode *tnode;
 383
 384	/* verify bits and pos their msb bits clear and values are valid */
 385	BUG_ON(!bits || (shift > KEYLENGTH));
 386
 387	tnode = tnode_alloc(bits);
 388	if (!tnode)
 389		return NULL;
 390
 391	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 392		 sizeof(struct key_vector *) << bits);
 393
 394	if (bits == KEYLENGTH)
 395		tnode->full_children = 1;
 396	else
 397		tnode->empty_children = 1ul << bits;
 398
 399	tn = tnode->kv;
 400	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 401	tn->pos = pos;
 402	tn->bits = bits;
 403	tn->slen = pos;
 404
 405	return tn;
 406}
 407
 408/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 409 * and no bits are skipped. See discussion in dyntree paper p. 6
 410 */
 411static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 412{
 413	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 414}
 415
 416/* Add a child at position i overwriting the old value.
 417 * Update the value of full_children and empty_children.
 418 */
 419static void put_child(struct key_vector *tn, unsigned long i,
 420		      struct key_vector *n)
 421{
 422	struct key_vector *chi = get_child(tn, i);
 423	int isfull, wasfull;
 424
 425	BUG_ON(i >= child_length(tn));
 426
 427	/* update emptyChildren, overflow into fullChildren */
 428	if (!n && chi)
 429		empty_child_inc(tn);
 430	if (n && !chi)
 431		empty_child_dec(tn);
 432
 433	/* update fullChildren */
 434	wasfull = tnode_full(tn, chi);
 435	isfull = tnode_full(tn, n);
 436
 437	if (wasfull && !isfull)
 438		tn_info(tn)->full_children--;
 439	else if (!wasfull && isfull)
 440		tn_info(tn)->full_children++;
 441
 442	if (n && (tn->slen < n->slen))
 443		tn->slen = n->slen;
 444
 445	rcu_assign_pointer(tn->tnode[i], n);
 446}
 447
 448static void update_children(struct key_vector *tn)
 449{
 450	unsigned long i;
 451
 452	/* update all of the child parent pointers */
 453	for (i = child_length(tn); i;) {
 454		struct key_vector *inode = get_child(tn, --i);
 455
 456		if (!inode)
 457			continue;
 458
 459		/* Either update the children of a tnode that
 460		 * already belongs to us or update the child
 461		 * to point to ourselves.
 462		 */
 463		if (node_parent(inode) == tn)
 464			update_children(inode);
 465		else
 466			node_set_parent(inode, tn);
 467	}
 468}
 469
 470static inline void put_child_root(struct key_vector *tp, t_key key,
 471				  struct key_vector *n)
 472{
 473	if (IS_TRIE(tp))
 474		rcu_assign_pointer(tp->tnode[0], n);
 475	else
 476		put_child(tp, get_index(key, tp), n);
 477}
 478
 479static inline void tnode_free_init(struct key_vector *tn)
 480{
 481	tn_info(tn)->rcu.next = NULL;
 482}
 483
 484static inline void tnode_free_append(struct key_vector *tn,
 485				     struct key_vector *n)
 486{
 487	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 488	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 489}
 490
 491static void tnode_free(struct key_vector *tn)
 492{
 493	struct callback_head *head = &tn_info(tn)->rcu;
 494
 495	while (head) {
 496		head = head->next;
 497		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 498		node_free(tn);
 499
 500		tn = container_of(head, struct tnode, rcu)->kv;
 501	}
 502
 503	if (tnode_free_size >= sysctl_fib_sync_mem) {
 504		tnode_free_size = 0;
 505		synchronize_rcu();
 506	}
 507}
 508
 509static struct key_vector *replace(struct trie *t,
 510				  struct key_vector *oldtnode,
 511				  struct key_vector *tn)
 512{
 513	struct key_vector *tp = node_parent(oldtnode);
 514	unsigned long i;
 515
 516	/* setup the parent pointer out of and back into this node */
 517	NODE_INIT_PARENT(tn, tp);
 518	put_child_root(tp, tn->key, tn);
 519
 520	/* update all of the child parent pointers */
 521	update_children(tn);
 522
 523	/* all pointers should be clean so we are done */
 524	tnode_free(oldtnode);
 525
 526	/* resize children now that oldtnode is freed */
 527	for (i = child_length(tn); i;) {
 528		struct key_vector *inode = get_child(tn, --i);
 529
 530		/* resize child node */
 531		if (tnode_full(tn, inode))
 532			tn = resize(t, inode);
 533	}
 534
 535	return tp;
 536}
 537
 538static struct key_vector *inflate(struct trie *t,
 539				  struct key_vector *oldtnode)
 540{
 541	struct key_vector *tn;
 542	unsigned long i;
 543	t_key m;
 544
 545	pr_debug("In inflate\n");
 546
 547	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 548	if (!tn)
 549		goto notnode;
 550
 551	/* prepare oldtnode to be freed */
 552	tnode_free_init(oldtnode);
 553
 554	/* Assemble all of the pointers in our cluster, in this case that
 555	 * represents all of the pointers out of our allocated nodes that
 556	 * point to existing tnodes and the links between our allocated
 557	 * nodes.
 558	 */
 559	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 560		struct key_vector *inode = get_child(oldtnode, --i);
 561		struct key_vector *node0, *node1;
 562		unsigned long j, k;
 563
 564		/* An empty child */
 565		if (!inode)
 566			continue;
 567
 568		/* A leaf or an internal node with skipped bits */
 569		if (!tnode_full(oldtnode, inode)) {
 570			put_child(tn, get_index(inode->key, tn), inode);
 571			continue;
 572		}
 573
 574		/* drop the node in the old tnode free list */
 575		tnode_free_append(oldtnode, inode);
 576
 577		/* An internal node with two children */
 578		if (inode->bits == 1) {
 579			put_child(tn, 2 * i + 1, get_child(inode, 1));
 580			put_child(tn, 2 * i, get_child(inode, 0));
 581			continue;
 582		}
 583
 584		/* We will replace this node 'inode' with two new
 585		 * ones, 'node0' and 'node1', each with half of the
 586		 * original children. The two new nodes will have
 587		 * a position one bit further down the key and this
 588		 * means that the "significant" part of their keys
 589		 * (see the discussion near the top of this file)
 590		 * will differ by one bit, which will be "0" in
 591		 * node0's key and "1" in node1's key. Since we are
 592		 * moving the key position by one step, the bit that
 593		 * we are moving away from - the bit at position
 594		 * (tn->pos) - is the one that will differ between
 595		 * node0 and node1. So... we synthesize that bit in the
 596		 * two new keys.
 597		 */
 598		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 599		if (!node1)
 600			goto nomem;
 601		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 602
 603		tnode_free_append(tn, node1);
 604		if (!node0)
 605			goto nomem;
 606		tnode_free_append(tn, node0);
 607
 608		/* populate child pointers in new nodes */
 609		for (k = child_length(inode), j = k / 2; j;) {
 610			put_child(node1, --j, get_child(inode, --k));
 611			put_child(node0, j, get_child(inode, j));
 612			put_child(node1, --j, get_child(inode, --k));
 613			put_child(node0, j, get_child(inode, j));
 614		}
 615
 616		/* link new nodes to parent */
 617		NODE_INIT_PARENT(node1, tn);
 618		NODE_INIT_PARENT(node0, tn);
 619
 620		/* link parent to nodes */
 621		put_child(tn, 2 * i + 1, node1);
 622		put_child(tn, 2 * i, node0);
 623	}
 624
 625	/* setup the parent pointers into and out of this node */
 626	return replace(t, oldtnode, tn);
 627nomem:
 628	/* all pointers should be clean so we are done */
 629	tnode_free(tn);
 630notnode:
 631	return NULL;
 632}
 633
 634static struct key_vector *halve(struct trie *t,
 635				struct key_vector *oldtnode)
 636{
 637	struct key_vector *tn;
 638	unsigned long i;
 639
 640	pr_debug("In halve\n");
 641
 642	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 643	if (!tn)
 644		goto notnode;
 645
 646	/* prepare oldtnode to be freed */
 647	tnode_free_init(oldtnode);
 648
 649	/* Assemble all of the pointers in our cluster, in this case that
 650	 * represents all of the pointers out of our allocated nodes that
 651	 * point to existing tnodes and the links between our allocated
 652	 * nodes.
 653	 */
 654	for (i = child_length(oldtnode); i;) {
 655		struct key_vector *node1 = get_child(oldtnode, --i);
 656		struct key_vector *node0 = get_child(oldtnode, --i);
 657		struct key_vector *inode;
 658
 659		/* At least one of the children is empty */
 660		if (!node1 || !node0) {
 661			put_child(tn, i / 2, node1 ? : node0);
 662			continue;
 663		}
 664
 665		/* Two nonempty children */
 666		inode = tnode_new(node0->key, oldtnode->pos, 1);
 667		if (!inode)
 668			goto nomem;
 669		tnode_free_append(tn, inode);
 670
 671		/* initialize pointers out of node */
 672		put_child(inode, 1, node1);
 673		put_child(inode, 0, node0);
 674		NODE_INIT_PARENT(inode, tn);
 675
 676		/* link parent to node */
 677		put_child(tn, i / 2, inode);
 678	}
 679
 680	/* setup the parent pointers into and out of this node */
 681	return replace(t, oldtnode, tn);
 682nomem:
 683	/* all pointers should be clean so we are done */
 684	tnode_free(tn);
 685notnode:
 686	return NULL;
 687}
 688
 689static struct key_vector *collapse(struct trie *t,
 690				   struct key_vector *oldtnode)
 691{
 692	struct key_vector *n, *tp;
 693	unsigned long i;
 694
 695	/* scan the tnode looking for that one child that might still exist */
 696	for (n = NULL, i = child_length(oldtnode); !n && i;)
 697		n = get_child(oldtnode, --i);
 698
 699	/* compress one level */
 700	tp = node_parent(oldtnode);
 701	put_child_root(tp, oldtnode->key, n);
 702	node_set_parent(n, tp);
 703
 704	/* drop dead node */
 705	node_free(oldtnode);
 706
 707	return tp;
 708}
 709
 710static unsigned char update_suffix(struct key_vector *tn)
 711{
 712	unsigned char slen = tn->pos;
 713	unsigned long stride, i;
 714	unsigned char slen_max;
 715
 716	/* only vector 0 can have a suffix length greater than or equal to
 717	 * tn->pos + tn->bits, the second highest node will have a suffix
 718	 * length at most of tn->pos + tn->bits - 1
 719	 */
 720	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 721
 722	/* search though the list of children looking for nodes that might
 723	 * have a suffix greater than the one we currently have.  This is
 724	 * why we start with a stride of 2 since a stride of 1 would
 725	 * represent the nodes with suffix length equal to tn->pos
 726	 */
 727	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 728		struct key_vector *n = get_child(tn, i);
 729
 730		if (!n || (n->slen <= slen))
 731			continue;
 732
 733		/* update stride and slen based on new value */
 734		stride <<= (n->slen - slen);
 735		slen = n->slen;
 736		i &= ~(stride - 1);
 737
 738		/* stop searching if we have hit the maximum possible value */
 739		if (slen >= slen_max)
 
 
 
 
 740			break;
 741	}
 742
 743	tn->slen = slen;
 744
 745	return slen;
 746}
 747
 748/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 749 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 750 * Telecommunications, page 6:
 751 * "A node is doubled if the ratio of non-empty children to all
 752 * children in the *doubled* node is at least 'high'."
 753 *
 754 * 'high' in this instance is the variable 'inflate_threshold'. It
 755 * is expressed as a percentage, so we multiply it with
 756 * child_length() and instead of multiplying by 2 (since the
 757 * child array will be doubled by inflate()) and multiplying
 758 * the left-hand side by 100 (to handle the percentage thing) we
 759 * multiply the left-hand side by 50.
 760 *
 761 * The left-hand side may look a bit weird: child_length(tn)
 762 * - tn->empty_children is of course the number of non-null children
 763 * in the current node. tn->full_children is the number of "full"
 764 * children, that is non-null tnodes with a skip value of 0.
 765 * All of those will be doubled in the resulting inflated tnode, so
 766 * we just count them one extra time here.
 767 *
 768 * A clearer way to write this would be:
 769 *
 770 * to_be_doubled = tn->full_children;
 771 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 772 *     tn->full_children;
 773 *
 774 * new_child_length = child_length(tn) * 2;
 775 *
 776 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 777 *      new_child_length;
 778 * if (new_fill_factor >= inflate_threshold)
 779 *
 780 * ...and so on, tho it would mess up the while () loop.
 781 *
 782 * anyway,
 783 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 784 *      inflate_threshold
 785 *
 786 * avoid a division:
 787 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 788 *      inflate_threshold * new_child_length
 789 *
 790 * expand not_to_be_doubled and to_be_doubled, and shorten:
 791 * 100 * (child_length(tn) - tn->empty_children +
 792 *    tn->full_children) >= inflate_threshold * new_child_length
 793 *
 794 * expand new_child_length:
 795 * 100 * (child_length(tn) - tn->empty_children +
 796 *    tn->full_children) >=
 797 *      inflate_threshold * child_length(tn) * 2
 798 *
 799 * shorten again:
 800 * 50 * (tn->full_children + child_length(tn) -
 801 *    tn->empty_children) >= inflate_threshold *
 802 *    child_length(tn)
 803 *
 804 */
 805static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 806{
 807	unsigned long used = child_length(tn);
 808	unsigned long threshold = used;
 809
 810	/* Keep root node larger */
 811	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 812	used -= tn_info(tn)->empty_children;
 813	used += tn_info(tn)->full_children;
 814
 815	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 816
 817	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 818}
 819
 820static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 821{
 822	unsigned long used = child_length(tn);
 823	unsigned long threshold = used;
 824
 825	/* Keep root node larger */
 826	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 827	used -= tn_info(tn)->empty_children;
 828
 829	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 830
 831	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 832}
 833
 834static inline bool should_collapse(struct key_vector *tn)
 835{
 836	unsigned long used = child_length(tn);
 837
 838	used -= tn_info(tn)->empty_children;
 839
 840	/* account for bits == KEYLENGTH case */
 841	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 842		used -= KEY_MAX;
 843
 844	/* One child or none, time to drop us from the trie */
 845	return used < 2;
 846}
 847
 848#define MAX_WORK 10
 849static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 850{
 851#ifdef CONFIG_IP_FIB_TRIE_STATS
 852	struct trie_use_stats __percpu *stats = t->stats;
 853#endif
 854	struct key_vector *tp = node_parent(tn);
 855	unsigned long cindex = get_index(tn->key, tp);
 856	int max_work = MAX_WORK;
 857
 858	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 859		 tn, inflate_threshold, halve_threshold);
 860
 861	/* track the tnode via the pointer from the parent instead of
 862	 * doing it ourselves.  This way we can let RCU fully do its
 863	 * thing without us interfering
 864	 */
 865	BUG_ON(tn != get_child(tp, cindex));
 866
 867	/* Double as long as the resulting node has a number of
 868	 * nonempty nodes that are above the threshold.
 869	 */
 870	while (should_inflate(tp, tn) && max_work) {
 871		tp = inflate(t, tn);
 872		if (!tp) {
 873#ifdef CONFIG_IP_FIB_TRIE_STATS
 874			this_cpu_inc(stats->resize_node_skipped);
 875#endif
 876			break;
 877		}
 878
 879		max_work--;
 880		tn = get_child(tp, cindex);
 881	}
 882
 883	/* update parent in case inflate failed */
 884	tp = node_parent(tn);
 885
 886	/* Return if at least one inflate is run */
 887	if (max_work != MAX_WORK)
 888		return tp;
 889
 890	/* Halve as long as the number of empty children in this
 891	 * node is above threshold.
 892	 */
 893	while (should_halve(tp, tn) && max_work) {
 894		tp = halve(t, tn);
 895		if (!tp) {
 896#ifdef CONFIG_IP_FIB_TRIE_STATS
 897			this_cpu_inc(stats->resize_node_skipped);
 898#endif
 899			break;
 900		}
 901
 902		max_work--;
 903		tn = get_child(tp, cindex);
 904	}
 905
 906	/* Only one child remains */
 907	if (should_collapse(tn))
 908		return collapse(t, tn);
 909
 910	/* update parent in case halve failed */
 911	return node_parent(tn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912}
 913
 914static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 915{
 916	unsigned char node_slen = tn->slen;
 917
 918	while ((node_slen > tn->pos) && (node_slen > slen)) {
 919		slen = update_suffix(tn);
 920		if (node_slen == slen)
 921			break;
 922
 923		tn = node_parent(tn);
 924		node_slen = tn->slen;
 925	}
 926}
 927
 928static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 929{
 930	while (tn->slen < slen) {
 931		tn->slen = slen;
 
 
 
 932		tn = node_parent(tn);
 933	}
 934}
 935
 936/* rcu_read_lock needs to be hold by caller from readside */
 937static struct key_vector *fib_find_node(struct trie *t,
 938					struct key_vector **tp, u32 key)
 939{
 940	struct key_vector *pn, *n = t->kv;
 941	unsigned long index = 0;
 942
 943	do {
 944		pn = n;
 945		n = get_child_rcu(n, index);
 946
 947		if (!n)
 948			break;
 949
 950		index = get_cindex(key, n);
 951
 952		/* This bit of code is a bit tricky but it combines multiple
 953		 * checks into a single check.  The prefix consists of the
 954		 * prefix plus zeros for the bits in the cindex. The index
 955		 * is the difference between the key and this value.  From
 956		 * this we can actually derive several pieces of data.
 957		 *   if (index >= (1ul << bits))
 958		 *     we have a mismatch in skip bits and failed
 959		 *   else
 960		 *     we know the value is cindex
 961		 *
 962		 * This check is safe even if bits == KEYLENGTH due to the
 963		 * fact that we can only allocate a node with 32 bits if a
 964		 * long is greater than 32 bits.
 965		 */
 966		if (index >= (1ul << n->bits)) {
 967			n = NULL;
 968			break;
 969		}
 970
 971		/* keep searching until we find a perfect match leaf or NULL */
 972	} while (IS_TNODE(n));
 973
 974	*tp = pn;
 975
 976	return n;
 977}
 978
 979/* Return the first fib alias matching TOS with
 980 * priority less than or equal to PRIO.
 981 */
 982static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 983					u8 tos, u32 prio, u32 tb_id)
 984{
 985	struct fib_alias *fa;
 986
 987	if (!fah)
 988		return NULL;
 989
 990	hlist_for_each_entry(fa, fah, fa_list) {
 991		if (fa->fa_slen < slen)
 992			continue;
 993		if (fa->fa_slen != slen)
 994			break;
 995		if (fa->tb_id > tb_id)
 996			continue;
 997		if (fa->tb_id != tb_id)
 998			break;
 999		if (fa->fa_tos > tos)
1000			continue;
1001		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1002			return fa;
1003	}
1004
1005	return NULL;
1006}
1007
1008static void trie_rebalance(struct trie *t, struct key_vector *tn)
1009{
1010	while (!IS_TRIE(tn))
1011		tn = resize(t, tn);
1012}
1013
1014static int fib_insert_node(struct trie *t, struct key_vector *tp,
1015			   struct fib_alias *new, t_key key)
1016{
1017	struct key_vector *n, *l;
1018
1019	l = leaf_new(key, new);
1020	if (!l)
1021		goto noleaf;
1022
1023	/* retrieve child from parent node */
1024	n = get_child(tp, get_index(key, tp));
1025
1026	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1027	 *
1028	 *  Add a new tnode here
1029	 *  first tnode need some special handling
1030	 *  leaves us in position for handling as case 3
1031	 */
1032	if (n) {
1033		struct key_vector *tn;
1034
1035		tn = tnode_new(key, __fls(key ^ n->key), 1);
1036		if (!tn)
1037			goto notnode;
1038
1039		/* initialize routes out of node */
1040		NODE_INIT_PARENT(tn, tp);
1041		put_child(tn, get_index(key, tn) ^ 1, n);
1042
1043		/* start adding routes into the node */
1044		put_child_root(tp, key, tn);
1045		node_set_parent(n, tn);
1046
1047		/* parent now has a NULL spot where the leaf can go */
1048		tp = tn;
1049	}
1050
1051	/* Case 3: n is NULL, and will just insert a new leaf */
1052	node_push_suffix(tp, new->fa_slen);
1053	NODE_INIT_PARENT(l, tp);
1054	put_child_root(tp, key, l);
1055	trie_rebalance(t, tp);
1056
1057	return 0;
1058notnode:
1059	node_free(l);
1060noleaf:
1061	return -ENOMEM;
1062}
1063
1064/* fib notifier for ADD is sent before calling fib_insert_alias with
1065 * the expectation that the only possible failure ENOMEM
1066 */
1067static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1068			    struct key_vector *l, struct fib_alias *new,
1069			    struct fib_alias *fa, t_key key)
1070{
1071	if (!l)
1072		return fib_insert_node(t, tp, new, key);
1073
1074	if (fa) {
1075		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1076	} else {
1077		struct fib_alias *last;
1078
1079		hlist_for_each_entry(last, &l->leaf, fa_list) {
1080			if (new->fa_slen < last->fa_slen)
1081				break;
1082			if ((new->fa_slen == last->fa_slen) &&
1083			    (new->tb_id > last->tb_id))
1084				break;
1085			fa = last;
1086		}
1087
1088		if (fa)
1089			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1090		else
1091			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1092	}
1093
1094	/* if we added to the tail node then we need to update slen */
1095	if (l->slen < new->fa_slen) {
1096		l->slen = new->fa_slen;
1097		node_push_suffix(tp, new->fa_slen);
1098	}
1099
1100	return 0;
1101}
1102
1103static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1104{
1105	if (plen > KEYLENGTH) {
1106		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1107		return false;
1108	}
1109
1110	if ((plen < KEYLENGTH) && (key << plen)) {
1111		NL_SET_ERR_MSG(extack,
1112			       "Invalid prefix for given prefix length");
1113		return false;
1114	}
1115
1116	return true;
1117}
1118
1119/* Caller must hold RTNL. */
1120int fib_table_insert(struct net *net, struct fib_table *tb,
1121		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1122{
1123	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1124	struct trie *t = (struct trie *)tb->tb_data;
1125	struct fib_alias *fa, *new_fa;
1126	struct key_vector *l, *tp;
1127	u16 nlflags = NLM_F_EXCL;
1128	struct fib_info *fi;
1129	u8 plen = cfg->fc_dst_len;
1130	u8 slen = KEYLENGTH - plen;
1131	u8 tos = cfg->fc_tos;
1132	u32 key;
1133	int err;
1134
1135	key = ntohl(cfg->fc_dst);
1136
1137	if (!fib_valid_key_len(key, plen, extack))
1138		return -EINVAL;
1139
 
 
1140	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1141
1142	fi = fib_create_info(cfg, extack);
 
 
 
1143	if (IS_ERR(fi)) {
1144		err = PTR_ERR(fi);
1145		goto err;
1146	}
1147
1148	l = fib_find_node(t, &tp, key);
1149	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1150				tb->tb_id) : NULL;
1151
1152	/* Now fa, if non-NULL, points to the first fib alias
1153	 * with the same keys [prefix,tos,priority], if such key already
1154	 * exists or to the node before which we will insert new one.
1155	 *
1156	 * If fa is NULL, we will need to allocate a new one and
1157	 * insert to the tail of the section matching the suffix length
1158	 * of the new alias.
1159	 */
1160
1161	if (fa && fa->fa_tos == tos &&
1162	    fa->fa_info->fib_priority == fi->fib_priority) {
1163		struct fib_alias *fa_first, *fa_match;
1164
1165		err = -EEXIST;
1166		if (cfg->fc_nlflags & NLM_F_EXCL)
1167			goto out;
1168
1169		nlflags &= ~NLM_F_EXCL;
1170
1171		/* We have 2 goals:
1172		 * 1. Find exact match for type, scope, fib_info to avoid
1173		 * duplicate routes
1174		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1175		 */
1176		fa_match = NULL;
1177		fa_first = fa;
1178		hlist_for_each_entry_from(fa, fa_list) {
1179			if ((fa->fa_slen != slen) ||
1180			    (fa->tb_id != tb->tb_id) ||
1181			    (fa->fa_tos != tos))
1182				break;
1183			if (fa->fa_info->fib_priority != fi->fib_priority)
1184				break;
1185			if (fa->fa_type == cfg->fc_type &&
1186			    fa->fa_info == fi) {
1187				fa_match = fa;
1188				break;
1189			}
1190		}
1191
1192		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1193			struct fib_info *fi_drop;
1194			u8 state;
1195
1196			nlflags |= NLM_F_REPLACE;
1197			fa = fa_first;
1198			if (fa_match) {
1199				if (fa == fa_match)
1200					err = 0;
1201				goto out;
1202			}
1203			err = -ENOBUFS;
1204			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1205			if (!new_fa)
1206				goto out;
1207
1208			fi_drop = fa->fa_info;
1209			new_fa->fa_tos = fa->fa_tos;
1210			new_fa->fa_info = fi;
1211			new_fa->fa_type = cfg->fc_type;
1212			state = fa->fa_state;
1213			new_fa->fa_state = state & ~FA_S_ACCESSED;
1214			new_fa->fa_slen = fa->fa_slen;
1215			new_fa->tb_id = tb->tb_id;
1216			new_fa->fa_default = -1;
1217
1218			err = call_fib_entry_notifiers(net,
1219						       FIB_EVENT_ENTRY_REPLACE,
1220						       key, plen, new_fa,
1221						       extack);
1222			if (err)
1223				goto out_free_new_fa;
1224
1225			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1226				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
 
1227
1228			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1229
1230			alias_free_mem_rcu(fa);
1231
1232			fib_release_info(fi_drop);
1233			if (state & FA_S_ACCESSED)
1234				rt_cache_flush(cfg->fc_nlinfo.nl_net);
 
 
1235
1236			goto succeeded;
1237		}
1238		/* Error if we find a perfect match which
1239		 * uses the same scope, type, and nexthop
1240		 * information.
1241		 */
1242		if (fa_match)
1243			goto out;
1244
1245		if (cfg->fc_nlflags & NLM_F_APPEND) {
1246			event = FIB_EVENT_ENTRY_APPEND;
1247			nlflags |= NLM_F_APPEND;
1248		} else {
1249			fa = fa_first;
1250		}
1251	}
1252	err = -ENOENT;
1253	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1254		goto out;
1255
1256	nlflags |= NLM_F_CREATE;
1257	err = -ENOBUFS;
1258	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1259	if (!new_fa)
1260		goto out;
1261
1262	new_fa->fa_info = fi;
1263	new_fa->fa_tos = tos;
1264	new_fa->fa_type = cfg->fc_type;
1265	new_fa->fa_state = 0;
1266	new_fa->fa_slen = slen;
1267	new_fa->tb_id = tb->tb_id;
1268	new_fa->fa_default = -1;
1269
1270	err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1271	if (err)
 
 
 
1272		goto out_free_new_fa;
 
1273
1274	/* Insert new entry to the list. */
1275	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1276	if (err)
1277		goto out_fib_notif;
1278
1279	if (!plen)
1280		tb->tb_num_default++;
1281
1282	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1283	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1284		  &cfg->fc_nlinfo, nlflags);
1285succeeded:
1286	return 0;
1287
1288out_fib_notif:
1289	/* notifier was sent that entry would be added to trie, but
1290	 * the add failed and need to recover. Only failure for
1291	 * fib_insert_alias is ENOMEM.
1292	 */
1293	NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1294	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1295				 plen, new_fa, NULL);
1296out_free_new_fa:
1297	kmem_cache_free(fn_alias_kmem, new_fa);
1298out:
1299	fib_release_info(fi);
1300err:
1301	return err;
1302}
1303
1304static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1305{
1306	t_key prefix = n->key;
1307
1308	return (key ^ prefix) & (prefix | -prefix);
1309}
1310
1311/* should be called with rcu_read_lock */
1312int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1313		     struct fib_result *res, int fib_flags)
1314{
1315	struct trie *t = (struct trie *) tb->tb_data;
1316#ifdef CONFIG_IP_FIB_TRIE_STATS
1317	struct trie_use_stats __percpu *stats = t->stats;
1318#endif
1319	const t_key key = ntohl(flp->daddr);
1320	struct key_vector *n, *pn;
1321	struct fib_alias *fa;
1322	unsigned long index;
1323	t_key cindex;
1324
 
 
1325	pn = t->kv;
1326	cindex = 0;
1327
1328	n = get_child_rcu(pn, cindex);
1329	if (!n) {
1330		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1331		return -EAGAIN;
1332	}
1333
1334#ifdef CONFIG_IP_FIB_TRIE_STATS
1335	this_cpu_inc(stats->gets);
1336#endif
1337
1338	/* Step 1: Travel to the longest prefix match in the trie */
1339	for (;;) {
1340		index = get_cindex(key, n);
1341
1342		/* This bit of code is a bit tricky but it combines multiple
1343		 * checks into a single check.  The prefix consists of the
1344		 * prefix plus zeros for the "bits" in the prefix. The index
1345		 * is the difference between the key and this value.  From
1346		 * this we can actually derive several pieces of data.
1347		 *   if (index >= (1ul << bits))
1348		 *     we have a mismatch in skip bits and failed
1349		 *   else
1350		 *     we know the value is cindex
1351		 *
1352		 * This check is safe even if bits == KEYLENGTH due to the
1353		 * fact that we can only allocate a node with 32 bits if a
1354		 * long is greater than 32 bits.
1355		 */
1356		if (index >= (1ul << n->bits))
1357			break;
1358
1359		/* we have found a leaf. Prefixes have already been compared */
1360		if (IS_LEAF(n))
1361			goto found;
1362
1363		/* only record pn and cindex if we are going to be chopping
1364		 * bits later.  Otherwise we are just wasting cycles.
1365		 */
1366		if (n->slen > n->pos) {
1367			pn = n;
1368			cindex = index;
1369		}
1370
1371		n = get_child_rcu(n, index);
1372		if (unlikely(!n))
1373			goto backtrace;
1374	}
1375
1376	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1377	for (;;) {
1378		/* record the pointer where our next node pointer is stored */
1379		struct key_vector __rcu **cptr = n->tnode;
1380
1381		/* This test verifies that none of the bits that differ
1382		 * between the key and the prefix exist in the region of
1383		 * the lsb and higher in the prefix.
1384		 */
1385		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1386			goto backtrace;
1387
1388		/* exit out and process leaf */
1389		if (unlikely(IS_LEAF(n)))
1390			break;
1391
1392		/* Don't bother recording parent info.  Since we are in
1393		 * prefix match mode we will have to come back to wherever
1394		 * we started this traversal anyway
1395		 */
1396
1397		while ((n = rcu_dereference(*cptr)) == NULL) {
1398backtrace:
1399#ifdef CONFIG_IP_FIB_TRIE_STATS
1400			if (!n)
1401				this_cpu_inc(stats->null_node_hit);
1402#endif
1403			/* If we are at cindex 0 there are no more bits for
1404			 * us to strip at this level so we must ascend back
1405			 * up one level to see if there are any more bits to
1406			 * be stripped there.
1407			 */
1408			while (!cindex) {
1409				t_key pkey = pn->key;
1410
1411				/* If we don't have a parent then there is
1412				 * nothing for us to do as we do not have any
1413				 * further nodes to parse.
1414				 */
1415				if (IS_TRIE(pn)) {
1416					trace_fib_table_lookup(tb->tb_id, flp,
1417							       NULL, -EAGAIN);
1418					return -EAGAIN;
1419				}
1420#ifdef CONFIG_IP_FIB_TRIE_STATS
1421				this_cpu_inc(stats->backtrack);
1422#endif
1423				/* Get Child's index */
1424				pn = node_parent_rcu(pn);
1425				cindex = get_index(pkey, pn);
1426			}
1427
1428			/* strip the least significant bit from the cindex */
1429			cindex &= cindex - 1;
1430
1431			/* grab pointer for next child node */
1432			cptr = &pn->tnode[cindex];
1433		}
1434	}
1435
1436found:
1437	/* this line carries forward the xor from earlier in the function */
1438	index = key ^ n->key;
1439
1440	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1441	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1442		struct fib_info *fi = fa->fa_info;
1443		int nhsel, err;
1444
1445		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1446			if (index >= (1ul << fa->fa_slen))
1447				continue;
1448		}
1449		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1450			continue;
1451		if (fi->fib_dead)
1452			continue;
1453		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1454			continue;
1455		fib_alias_accessed(fa);
1456		err = fib_props[fa->fa_type].error;
1457		if (unlikely(err < 0)) {
1458out_reject:
1459#ifdef CONFIG_IP_FIB_TRIE_STATS
1460			this_cpu_inc(stats->semantic_match_passed);
1461#endif
1462			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1463			return err;
1464		}
1465		if (fi->fib_flags & RTNH_F_DEAD)
1466			continue;
 
 
 
1467
1468		if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) {
1469			err = fib_props[RTN_BLACKHOLE].error;
1470			goto out_reject;
1471		}
1472
1473		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1474			struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel);
1475
1476			if (nhc->nhc_flags & RTNH_F_DEAD)
1477				continue;
1478			if (ip_ignore_linkdown(nhc->nhc_dev) &&
1479			    nhc->nhc_flags & RTNH_F_LINKDOWN &&
 
1480			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1481				continue;
1482			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1483				if (flp->flowi4_oif &&
1484				    flp->flowi4_oif != nhc->nhc_oif)
1485					continue;
1486			}
1487
1488			if (!(fib_flags & FIB_LOOKUP_NOREF))
1489				refcount_inc(&fi->fib_clntref);
1490
1491			res->prefix = htonl(n->key);
1492			res->prefixlen = KEYLENGTH - fa->fa_slen;
1493			res->nh_sel = nhsel;
1494			res->nhc = nhc;
1495			res->type = fa->fa_type;
1496			res->scope = fi->fib_scope;
1497			res->fi = fi;
1498			res->table = tb;
1499			res->fa_head = &n->leaf;
1500#ifdef CONFIG_IP_FIB_TRIE_STATS
1501			this_cpu_inc(stats->semantic_match_passed);
1502#endif
1503			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1504
1505			return err;
1506		}
1507	}
1508#ifdef CONFIG_IP_FIB_TRIE_STATS
1509	this_cpu_inc(stats->semantic_match_miss);
1510#endif
1511	goto backtrace;
1512}
1513EXPORT_SYMBOL_GPL(fib_table_lookup);
1514
1515static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1516			     struct key_vector *l, struct fib_alias *old)
1517{
1518	/* record the location of the previous list_info entry */
1519	struct hlist_node **pprev = old->fa_list.pprev;
1520	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1521
1522	/* remove the fib_alias from the list */
1523	hlist_del_rcu(&old->fa_list);
1524
1525	/* if we emptied the list this leaf will be freed and we can sort
1526	 * out parent suffix lengths as a part of trie_rebalance
1527	 */
1528	if (hlist_empty(&l->leaf)) {
1529		if (tp->slen == l->slen)
1530			node_pull_suffix(tp, tp->pos);
1531		put_child_root(tp, l->key, NULL);
1532		node_free(l);
1533		trie_rebalance(t, tp);
1534		return;
1535	}
1536
1537	/* only access fa if it is pointing at the last valid hlist_node */
1538	if (*pprev)
1539		return;
1540
1541	/* update the trie with the latest suffix length */
1542	l->slen = fa->fa_slen;
1543	node_pull_suffix(tp, fa->fa_slen);
1544}
1545
1546/* Caller must hold RTNL. */
1547int fib_table_delete(struct net *net, struct fib_table *tb,
1548		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1549{
1550	struct trie *t = (struct trie *) tb->tb_data;
1551	struct fib_alias *fa, *fa_to_delete;
1552	struct key_vector *l, *tp;
1553	u8 plen = cfg->fc_dst_len;
1554	u8 slen = KEYLENGTH - plen;
1555	u8 tos = cfg->fc_tos;
1556	u32 key;
1557
 
 
 
1558	key = ntohl(cfg->fc_dst);
1559
1560	if (!fib_valid_key_len(key, plen, extack))
1561		return -EINVAL;
1562
1563	l = fib_find_node(t, &tp, key);
1564	if (!l)
1565		return -ESRCH;
1566
1567	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1568	if (!fa)
1569		return -ESRCH;
1570
1571	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1572
1573	fa_to_delete = NULL;
1574	hlist_for_each_entry_from(fa, fa_list) {
1575		struct fib_info *fi = fa->fa_info;
1576
1577		if ((fa->fa_slen != slen) ||
1578		    (fa->tb_id != tb->tb_id) ||
1579		    (fa->fa_tos != tos))
1580			break;
1581
1582		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1583		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1584		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1585		    (!cfg->fc_prefsrc ||
1586		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1587		    (!cfg->fc_protocol ||
1588		     fi->fib_protocol == cfg->fc_protocol) &&
1589		    fib_nh_match(cfg, fi, extack) == 0 &&
1590		    fib_metrics_match(cfg, fi)) {
1591			fa_to_delete = fa;
1592			break;
1593		}
1594	}
1595
1596	if (!fa_to_delete)
1597		return -ESRCH;
1598
1599	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1600				 fa_to_delete, extack);
 
1601	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1602		  &cfg->fc_nlinfo, 0);
1603
1604	if (!plen)
1605		tb->tb_num_default--;
1606
1607	fib_remove_alias(t, tp, l, fa_to_delete);
1608
1609	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1610		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1611
1612	fib_release_info(fa_to_delete->fa_info);
1613	alias_free_mem_rcu(fa_to_delete);
1614	return 0;
1615}
1616
1617/* Scan for the next leaf starting at the provided key value */
1618static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1619{
1620	struct key_vector *pn, *n = *tn;
1621	unsigned long cindex;
1622
1623	/* this loop is meant to try and find the key in the trie */
1624	do {
1625		/* record parent and next child index */
1626		pn = n;
1627		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1628
1629		if (cindex >> pn->bits)
1630			break;
1631
1632		/* descend into the next child */
1633		n = get_child_rcu(pn, cindex++);
1634		if (!n)
1635			break;
1636
1637		/* guarantee forward progress on the keys */
1638		if (IS_LEAF(n) && (n->key >= key))
1639			goto found;
1640	} while (IS_TNODE(n));
1641
1642	/* this loop will search for the next leaf with a greater key */
1643	while (!IS_TRIE(pn)) {
1644		/* if we exhausted the parent node we will need to climb */
1645		if (cindex >= (1ul << pn->bits)) {
1646			t_key pkey = pn->key;
1647
1648			pn = node_parent_rcu(pn);
1649			cindex = get_index(pkey, pn) + 1;
1650			continue;
1651		}
1652
1653		/* grab the next available node */
1654		n = get_child_rcu(pn, cindex++);
1655		if (!n)
1656			continue;
1657
1658		/* no need to compare keys since we bumped the index */
1659		if (IS_LEAF(n))
1660			goto found;
1661
1662		/* Rescan start scanning in new node */
1663		pn = n;
1664		cindex = 0;
1665	}
1666
1667	*tn = pn;
1668	return NULL; /* Root of trie */
1669found:
1670	/* if we are at the limit for keys just return NULL for the tnode */
1671	*tn = pn;
1672	return n;
1673}
1674
1675static void fib_trie_free(struct fib_table *tb)
1676{
1677	struct trie *t = (struct trie *)tb->tb_data;
1678	struct key_vector *pn = t->kv;
1679	unsigned long cindex = 1;
1680	struct hlist_node *tmp;
1681	struct fib_alias *fa;
1682
1683	/* walk trie in reverse order and free everything */
1684	for (;;) {
1685		struct key_vector *n;
1686
1687		if (!(cindex--)) {
1688			t_key pkey = pn->key;
1689
1690			if (IS_TRIE(pn))
1691				break;
1692
1693			n = pn;
1694			pn = node_parent(pn);
1695
1696			/* drop emptied tnode */
1697			put_child_root(pn, n->key, NULL);
1698			node_free(n);
1699
1700			cindex = get_index(pkey, pn);
1701
1702			continue;
1703		}
1704
1705		/* grab the next available node */
1706		n = get_child(pn, cindex);
1707		if (!n)
1708			continue;
1709
1710		if (IS_TNODE(n)) {
1711			/* record pn and cindex for leaf walking */
1712			pn = n;
1713			cindex = 1ul << n->bits;
1714
1715			continue;
1716		}
1717
1718		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1719			hlist_del_rcu(&fa->fa_list);
1720			alias_free_mem_rcu(fa);
1721		}
1722
1723		put_child_root(pn, n->key, NULL);
1724		node_free(n);
1725	}
1726
1727#ifdef CONFIG_IP_FIB_TRIE_STATS
1728	free_percpu(t->stats);
1729#endif
1730	kfree(tb);
1731}
1732
1733struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1734{
1735	struct trie *ot = (struct trie *)oldtb->tb_data;
1736	struct key_vector *l, *tp = ot->kv;
1737	struct fib_table *local_tb;
1738	struct fib_alias *fa;
1739	struct trie *lt;
1740	t_key key = 0;
1741
1742	if (oldtb->tb_data == oldtb->__data)
1743		return oldtb;
1744
1745	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1746	if (!local_tb)
1747		return NULL;
1748
1749	lt = (struct trie *)local_tb->tb_data;
1750
1751	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1752		struct key_vector *local_l = NULL, *local_tp;
1753
1754		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1755			struct fib_alias *new_fa;
1756
1757			if (local_tb->tb_id != fa->tb_id)
1758				continue;
1759
1760			/* clone fa for new local table */
1761			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1762			if (!new_fa)
1763				goto out;
1764
1765			memcpy(new_fa, fa, sizeof(*fa));
1766
1767			/* insert clone into table */
1768			if (!local_l)
1769				local_l = fib_find_node(lt, &local_tp, l->key);
1770
1771			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1772					     NULL, l->key)) {
1773				kmem_cache_free(fn_alias_kmem, new_fa);
1774				goto out;
1775			}
1776		}
1777
1778		/* stop loop if key wrapped back to 0 */
1779		key = l->key + 1;
1780		if (key < l->key)
1781			break;
1782	}
1783
1784	return local_tb;
1785out:
1786	fib_trie_free(local_tb);
1787
1788	return NULL;
1789}
1790
1791/* Caller must hold RTNL */
1792void fib_table_flush_external(struct fib_table *tb)
1793{
1794	struct trie *t = (struct trie *)tb->tb_data;
1795	struct key_vector *pn = t->kv;
1796	unsigned long cindex = 1;
1797	struct hlist_node *tmp;
1798	struct fib_alias *fa;
1799
1800	/* walk trie in reverse order */
1801	for (;;) {
1802		unsigned char slen = 0;
1803		struct key_vector *n;
1804
1805		if (!(cindex--)) {
1806			t_key pkey = pn->key;
1807
1808			/* cannot resize the trie vector */
1809			if (IS_TRIE(pn))
1810				break;
1811
1812			/* update the suffix to address pulled leaves */
1813			if (pn->slen > pn->pos)
1814				update_suffix(pn);
1815
1816			/* resize completed node */
1817			pn = resize(t, pn);
1818			cindex = get_index(pkey, pn);
1819
1820			continue;
1821		}
1822
1823		/* grab the next available node */
1824		n = get_child(pn, cindex);
1825		if (!n)
1826			continue;
1827
1828		if (IS_TNODE(n)) {
1829			/* record pn and cindex for leaf walking */
1830			pn = n;
1831			cindex = 1ul << n->bits;
1832
1833			continue;
1834		}
1835
1836		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
 
 
1837			/* if alias was cloned to local then we just
1838			 * need to remove the local copy from main
1839			 */
1840			if (tb->tb_id != fa->tb_id) {
1841				hlist_del_rcu(&fa->fa_list);
1842				alias_free_mem_rcu(fa);
1843				continue;
1844			}
1845
1846			/* record local slen */
1847			slen = fa->fa_slen;
 
 
 
 
 
 
 
1848		}
1849
1850		/* update leaf slen */
1851		n->slen = slen;
1852
1853		if (hlist_empty(&n->leaf)) {
1854			put_child_root(pn, n->key, NULL);
1855			node_free(n);
1856		}
1857	}
1858}
1859
1860/* Caller must hold RTNL. */
1861int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1862{
1863	struct trie *t = (struct trie *)tb->tb_data;
1864	struct key_vector *pn = t->kv;
1865	unsigned long cindex = 1;
1866	struct hlist_node *tmp;
1867	struct fib_alias *fa;
1868	int found = 0;
1869
1870	/* walk trie in reverse order */
1871	for (;;) {
1872		unsigned char slen = 0;
1873		struct key_vector *n;
1874
1875		if (!(cindex--)) {
1876			t_key pkey = pn->key;
1877
1878			/* cannot resize the trie vector */
1879			if (IS_TRIE(pn))
1880				break;
1881
1882			/* update the suffix to address pulled leaves */
1883			if (pn->slen > pn->pos)
1884				update_suffix(pn);
1885
1886			/* resize completed node */
1887			pn = resize(t, pn);
1888			cindex = get_index(pkey, pn);
1889
1890			continue;
1891		}
1892
1893		/* grab the next available node */
1894		n = get_child(pn, cindex);
1895		if (!n)
1896			continue;
1897
1898		if (IS_TNODE(n)) {
1899			/* record pn and cindex for leaf walking */
1900			pn = n;
1901			cindex = 1ul << n->bits;
1902
1903			continue;
1904		}
1905
1906		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1907			struct fib_info *fi = fa->fa_info;
1908
1909			if (!fi || tb->tb_id != fa->tb_id ||
1910			    (!(fi->fib_flags & RTNH_F_DEAD) &&
1911			     !fib_props[fa->fa_type].error)) {
1912				slen = fa->fa_slen;
1913				continue;
1914			}
1915
1916			/* Do not flush error routes if network namespace is
1917			 * not being dismantled
1918			 */
1919			if (!flush_all && fib_props[fa->fa_type].error) {
1920				slen = fa->fa_slen;
1921				continue;
1922			}
1923
1924			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1925						 n->key,
1926						 KEYLENGTH - fa->fa_slen, fa,
1927						 NULL);
1928			hlist_del_rcu(&fa->fa_list);
1929			fib_release_info(fa->fa_info);
1930			alias_free_mem_rcu(fa);
1931			found++;
1932		}
1933
1934		/* update leaf slen */
1935		n->slen = slen;
1936
1937		if (hlist_empty(&n->leaf)) {
1938			put_child_root(pn, n->key, NULL);
1939			node_free(n);
1940		}
1941	}
1942
1943	pr_debug("trie_flush found=%d\n", found);
1944	return found;
1945}
1946
1947/* derived from fib_trie_free */
1948static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
1949				     struct nl_info *info)
1950{
1951	struct trie *t = (struct trie *)tb->tb_data;
1952	struct key_vector *pn = t->kv;
1953	unsigned long cindex = 1;
1954	struct fib_alias *fa;
1955
1956	for (;;) {
1957		struct key_vector *n;
1958
1959		if (!(cindex--)) {
1960			t_key pkey = pn->key;
1961
1962			if (IS_TRIE(pn))
1963				break;
1964
1965			pn = node_parent(pn);
1966			cindex = get_index(pkey, pn);
1967			continue;
1968		}
1969
1970		/* grab the next available node */
1971		n = get_child(pn, cindex);
1972		if (!n)
1973			continue;
1974
1975		if (IS_TNODE(n)) {
1976			/* record pn and cindex for leaf walking */
1977			pn = n;
1978			cindex = 1ul << n->bits;
1979
1980			continue;
1981		}
1982
1983		hlist_for_each_entry(fa, &n->leaf, fa_list) {
1984			struct fib_info *fi = fa->fa_info;
1985
1986			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
1987				continue;
1988
1989			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
1990				  KEYLENGTH - fa->fa_slen, tb->tb_id,
1991				  info, NLM_F_REPLACE);
1992
1993			/* call_fib_entry_notifiers will be removed when
1994			 * in-kernel notifier is implemented and supported
1995			 * for nexthop objects
1996			 */
1997			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1998						 n->key,
1999						 KEYLENGTH - fa->fa_slen, fa,
2000						 NULL);
2001		}
2002	}
2003}
2004
2005void fib_info_notify_update(struct net *net, struct nl_info *info)
2006{
2007	unsigned int h;
2008
2009	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2010		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2011		struct fib_table *tb;
2012
2013		hlist_for_each_entry_rcu(tb, head, tb_hlist)
2014			__fib_info_notify_update(net, tb, info);
2015	}
2016}
2017
2018static void fib_leaf_notify(struct net *net, struct key_vector *l,
2019			    struct fib_table *tb, struct notifier_block *nb)
2020{
2021	struct fib_alias *fa;
2022
2023	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2024		struct fib_info *fi = fa->fa_info;
2025
2026		if (!fi)
2027			continue;
2028
2029		/* local and main table can share the same trie,
2030		 * so don't notify twice for the same entry.
2031		 */
2032		if (tb->tb_id != fa->tb_id)
2033			continue;
2034
2035		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
2036					KEYLENGTH - fa->fa_slen, fa);
2037	}
2038}
2039
2040static void fib_table_notify(struct net *net, struct fib_table *tb,
2041			     struct notifier_block *nb)
2042{
2043	struct trie *t = (struct trie *)tb->tb_data;
2044	struct key_vector *l, *tp = t->kv;
2045	t_key key = 0;
2046
2047	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2048		fib_leaf_notify(net, l, tb, nb);
2049
2050		key = l->key + 1;
2051		/* stop in case of wrap around */
2052		if (key < l->key)
2053			break;
2054	}
2055}
2056
2057void fib_notify(struct net *net, struct notifier_block *nb)
2058{
2059	unsigned int h;
2060
2061	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2062		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2063		struct fib_table *tb;
2064
2065		hlist_for_each_entry_rcu(tb, head, tb_hlist)
2066			fib_table_notify(net, tb, nb);
2067	}
2068}
2069
2070static void __trie_free_rcu(struct rcu_head *head)
2071{
2072	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2073#ifdef CONFIG_IP_FIB_TRIE_STATS
2074	struct trie *t = (struct trie *)tb->tb_data;
2075
2076	if (tb->tb_data == tb->__data)
2077		free_percpu(t->stats);
2078#endif /* CONFIG_IP_FIB_TRIE_STATS */
2079	kfree(tb);
2080}
2081
2082void fib_free_table(struct fib_table *tb)
2083{
2084	call_rcu(&tb->rcu, __trie_free_rcu);
2085}
2086
2087static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2088			     struct sk_buff *skb, struct netlink_callback *cb,
2089			     struct fib_dump_filter *filter)
2090{
2091	unsigned int flags = NLM_F_MULTI;
2092	__be32 xkey = htonl(l->key);
2093	int i, s_i, i_fa, s_fa, err;
2094	struct fib_alias *fa;
2095
2096	if (filter->filter_set ||
2097	    !filter->dump_exceptions || !filter->dump_routes)
2098		flags |= NLM_F_DUMP_FILTERED;
2099
2100	s_i = cb->args[4];
2101	s_fa = cb->args[5];
2102	i = 0;
2103
2104	/* rcu_read_lock is hold by caller */
2105	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2106		struct fib_info *fi = fa->fa_info;
2107
2108		if (i < s_i)
2109			goto next;
2110
2111		i_fa = 0;
2112
2113		if (tb->tb_id != fa->tb_id)
2114			goto next;
2115
2116		if (filter->filter_set) {
2117			if (filter->rt_type && fa->fa_type != filter->rt_type)
2118				goto next;
2119
2120			if ((filter->protocol &&
2121			     fi->fib_protocol != filter->protocol))
2122				goto next;
2123
2124			if (filter->dev &&
2125			    !fib_info_nh_uses_dev(fi, filter->dev))
2126				goto next;
2127		}
2128
2129		if (filter->dump_routes) {
2130			if (!s_fa) {
2131				err = fib_dump_info(skb,
2132						    NETLINK_CB(cb->skb).portid,
2133						    cb->nlh->nlmsg_seq,
2134						    RTM_NEWROUTE,
2135						    tb->tb_id, fa->fa_type,
2136						    xkey,
2137						    KEYLENGTH - fa->fa_slen,
2138						    fa->fa_tos, fi, flags);
2139				if (err < 0)
2140					goto stop;
2141			}
2142
2143			i_fa++;
2144		}
2145
2146		if (filter->dump_exceptions) {
2147			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2148						 &i_fa, s_fa, flags);
2149			if (err < 0)
2150				goto stop;
2151		}
2152
2153next:
 
 
 
 
 
 
 
 
 
 
 
2154		i++;
2155	}
2156
2157	cb->args[4] = i;
2158	return skb->len;
2159
2160stop:
2161	cb->args[4] = i;
2162	cb->args[5] = i_fa;
2163	return err;
2164}
2165
2166/* rcu_read_lock needs to be hold by caller from readside */
2167int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2168		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2169{
2170	struct trie *t = (struct trie *)tb->tb_data;
2171	struct key_vector *l, *tp = t->kv;
2172	/* Dump starting at last key.
2173	 * Note: 0.0.0.0/0 (ie default) is first key.
2174	 */
2175	int count = cb->args[2];
2176	t_key key = cb->args[3];
2177
2178	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2179		int err;
2180
2181		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2182		if (err < 0) {
2183			cb->args[3] = key;
2184			cb->args[2] = count;
2185			return err;
2186		}
2187
2188		++count;
2189		key = l->key + 1;
2190
2191		memset(&cb->args[4], 0,
2192		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2193
2194		/* stop loop if key wrapped back to 0 */
2195		if (key < l->key)
2196			break;
2197	}
2198
2199	cb->args[3] = key;
2200	cb->args[2] = count;
2201
2202	return skb->len;
2203}
2204
2205void __init fib_trie_init(void)
2206{
2207	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2208					  sizeof(struct fib_alias),
2209					  0, SLAB_PANIC, NULL);
2210
2211	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2212					   LEAF_SIZE,
2213					   0, SLAB_PANIC, NULL);
2214}
2215
2216struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2217{
2218	struct fib_table *tb;
2219	struct trie *t;
2220	size_t sz = sizeof(*tb);
2221
2222	if (!alias)
2223		sz += sizeof(struct trie);
2224
2225	tb = kzalloc(sz, GFP_KERNEL);
2226	if (!tb)
2227		return NULL;
2228
2229	tb->tb_id = id;
2230	tb->tb_num_default = 0;
2231	tb->tb_data = (alias ? alias->__data : tb->__data);
2232
2233	if (alias)
2234		return tb;
2235
2236	t = (struct trie *) tb->tb_data;
2237	t->kv[0].pos = KEYLENGTH;
2238	t->kv[0].slen = KEYLENGTH;
2239#ifdef CONFIG_IP_FIB_TRIE_STATS
2240	t->stats = alloc_percpu(struct trie_use_stats);
2241	if (!t->stats) {
2242		kfree(tb);
2243		tb = NULL;
2244	}
2245#endif
2246
2247	return tb;
2248}
2249
2250#ifdef CONFIG_PROC_FS
2251/* Depth first Trie walk iterator */
2252struct fib_trie_iter {
2253	struct seq_net_private p;
2254	struct fib_table *tb;
2255	struct key_vector *tnode;
2256	unsigned int index;
2257	unsigned int depth;
2258};
2259
2260static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2261{
2262	unsigned long cindex = iter->index;
2263	struct key_vector *pn = iter->tnode;
2264	t_key pkey;
2265
2266	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2267		 iter->tnode, iter->index, iter->depth);
2268
2269	while (!IS_TRIE(pn)) {
2270		while (cindex < child_length(pn)) {
2271			struct key_vector *n = get_child_rcu(pn, cindex++);
2272
2273			if (!n)
2274				continue;
2275
2276			if (IS_LEAF(n)) {
2277				iter->tnode = pn;
2278				iter->index = cindex;
2279			} else {
2280				/* push down one level */
2281				iter->tnode = n;
2282				iter->index = 0;
2283				++iter->depth;
2284			}
2285
2286			return n;
2287		}
2288
2289		/* Current node exhausted, pop back up */
2290		pkey = pn->key;
2291		pn = node_parent_rcu(pn);
2292		cindex = get_index(pkey, pn) + 1;
2293		--iter->depth;
2294	}
2295
2296	/* record root node so further searches know we are done */
2297	iter->tnode = pn;
2298	iter->index = 0;
2299
2300	return NULL;
2301}
2302
2303static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2304					     struct trie *t)
2305{
2306	struct key_vector *n, *pn;
2307
2308	if (!t)
2309		return NULL;
2310
2311	pn = t->kv;
2312	n = rcu_dereference(pn->tnode[0]);
2313	if (!n)
2314		return NULL;
2315
2316	if (IS_TNODE(n)) {
2317		iter->tnode = n;
2318		iter->index = 0;
2319		iter->depth = 1;
2320	} else {
2321		iter->tnode = pn;
2322		iter->index = 0;
2323		iter->depth = 0;
2324	}
2325
2326	return n;
2327}
2328
2329static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2330{
2331	struct key_vector *n;
2332	struct fib_trie_iter iter;
2333
2334	memset(s, 0, sizeof(*s));
2335
2336	rcu_read_lock();
2337	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2338		if (IS_LEAF(n)) {
2339			struct fib_alias *fa;
2340
2341			s->leaves++;
2342			s->totdepth += iter.depth;
2343			if (iter.depth > s->maxdepth)
2344				s->maxdepth = iter.depth;
2345
2346			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2347				++s->prefixes;
2348		} else {
2349			s->tnodes++;
2350			if (n->bits < MAX_STAT_DEPTH)
2351				s->nodesizes[n->bits]++;
2352			s->nullpointers += tn_info(n)->empty_children;
2353		}
2354	}
2355	rcu_read_unlock();
2356}
2357
2358/*
2359 *	This outputs /proc/net/fib_triestats
2360 */
2361static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2362{
2363	unsigned int i, max, pointers, bytes, avdepth;
2364
2365	if (stat->leaves)
2366		avdepth = stat->totdepth*100 / stat->leaves;
2367	else
2368		avdepth = 0;
2369
2370	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2371		   avdepth / 100, avdepth % 100);
2372	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2373
2374	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2375	bytes = LEAF_SIZE * stat->leaves;
2376
2377	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2378	bytes += sizeof(struct fib_alias) * stat->prefixes;
2379
2380	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2381	bytes += TNODE_SIZE(0) * stat->tnodes;
2382
2383	max = MAX_STAT_DEPTH;
2384	while (max > 0 && stat->nodesizes[max-1] == 0)
2385		max--;
2386
2387	pointers = 0;
2388	for (i = 1; i < max; i++)
2389		if (stat->nodesizes[i] != 0) {
2390			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2391			pointers += (1<<i) * stat->nodesizes[i];
2392		}
2393	seq_putc(seq, '\n');
2394	seq_printf(seq, "\tPointers: %u\n", pointers);
2395
2396	bytes += sizeof(struct key_vector *) * pointers;
2397	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2398	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2399}
2400
2401#ifdef CONFIG_IP_FIB_TRIE_STATS
2402static void trie_show_usage(struct seq_file *seq,
2403			    const struct trie_use_stats __percpu *stats)
2404{
2405	struct trie_use_stats s = { 0 };
2406	int cpu;
2407
2408	/* loop through all of the CPUs and gather up the stats */
2409	for_each_possible_cpu(cpu) {
2410		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2411
2412		s.gets += pcpu->gets;
2413		s.backtrack += pcpu->backtrack;
2414		s.semantic_match_passed += pcpu->semantic_match_passed;
2415		s.semantic_match_miss += pcpu->semantic_match_miss;
2416		s.null_node_hit += pcpu->null_node_hit;
2417		s.resize_node_skipped += pcpu->resize_node_skipped;
2418	}
2419
2420	seq_printf(seq, "\nCounters:\n---------\n");
2421	seq_printf(seq, "gets = %u\n", s.gets);
2422	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2423	seq_printf(seq, "semantic match passed = %u\n",
2424		   s.semantic_match_passed);
2425	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2426	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2427	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2428}
2429#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2430
2431static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2432{
2433	if (tb->tb_id == RT_TABLE_LOCAL)
2434		seq_puts(seq, "Local:\n");
2435	else if (tb->tb_id == RT_TABLE_MAIN)
2436		seq_puts(seq, "Main:\n");
2437	else
2438		seq_printf(seq, "Id %d:\n", tb->tb_id);
2439}
2440
2441
2442static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2443{
2444	struct net *net = (struct net *)seq->private;
2445	unsigned int h;
2446
2447	seq_printf(seq,
2448		   "Basic info: size of leaf:"
2449		   " %zd bytes, size of tnode: %zd bytes.\n",
2450		   LEAF_SIZE, TNODE_SIZE(0));
2451
2452	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2453		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2454		struct fib_table *tb;
2455
2456		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2457			struct trie *t = (struct trie *) tb->tb_data;
2458			struct trie_stat stat;
2459
2460			if (!t)
2461				continue;
2462
2463			fib_table_print(seq, tb);
2464
2465			trie_collect_stats(t, &stat);
2466			trie_show_stats(seq, &stat);
2467#ifdef CONFIG_IP_FIB_TRIE_STATS
2468			trie_show_usage(seq, t->stats);
2469#endif
2470		}
2471	}
2472
2473	return 0;
2474}
2475
 
 
 
 
 
 
 
 
 
 
 
 
 
2476static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2477{
2478	struct fib_trie_iter *iter = seq->private;
2479	struct net *net = seq_file_net(seq);
2480	loff_t idx = 0;
2481	unsigned int h;
2482
2483	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2484		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2485		struct fib_table *tb;
2486
2487		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2488			struct key_vector *n;
2489
2490			for (n = fib_trie_get_first(iter,
2491						    (struct trie *) tb->tb_data);
2492			     n; n = fib_trie_get_next(iter))
2493				if (pos == idx++) {
2494					iter->tb = tb;
2495					return n;
2496				}
2497		}
2498	}
2499
2500	return NULL;
2501}
2502
2503static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2504	__acquires(RCU)
2505{
2506	rcu_read_lock();
2507	return fib_trie_get_idx(seq, *pos);
2508}
2509
2510static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2511{
2512	struct fib_trie_iter *iter = seq->private;
2513	struct net *net = seq_file_net(seq);
2514	struct fib_table *tb = iter->tb;
2515	struct hlist_node *tb_node;
2516	unsigned int h;
2517	struct key_vector *n;
2518
2519	++*pos;
2520	/* next node in same table */
2521	n = fib_trie_get_next(iter);
2522	if (n)
2523		return n;
2524
2525	/* walk rest of this hash chain */
2526	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2527	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2528		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2529		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2530		if (n)
2531			goto found;
2532	}
2533
2534	/* new hash chain */
2535	while (++h < FIB_TABLE_HASHSZ) {
2536		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2537		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2538			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2539			if (n)
2540				goto found;
2541		}
2542	}
2543	return NULL;
2544
2545found:
2546	iter->tb = tb;
2547	return n;
2548}
2549
2550static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2551	__releases(RCU)
2552{
2553	rcu_read_unlock();
2554}
2555
2556static void seq_indent(struct seq_file *seq, int n)
2557{
2558	while (n-- > 0)
2559		seq_puts(seq, "   ");
2560}
2561
2562static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2563{
2564	switch (s) {
2565	case RT_SCOPE_UNIVERSE: return "universe";
2566	case RT_SCOPE_SITE:	return "site";
2567	case RT_SCOPE_LINK:	return "link";
2568	case RT_SCOPE_HOST:	return "host";
2569	case RT_SCOPE_NOWHERE:	return "nowhere";
2570	default:
2571		snprintf(buf, len, "scope=%d", s);
2572		return buf;
2573	}
2574}
2575
2576static const char *const rtn_type_names[__RTN_MAX] = {
2577	[RTN_UNSPEC] = "UNSPEC",
2578	[RTN_UNICAST] = "UNICAST",
2579	[RTN_LOCAL] = "LOCAL",
2580	[RTN_BROADCAST] = "BROADCAST",
2581	[RTN_ANYCAST] = "ANYCAST",
2582	[RTN_MULTICAST] = "MULTICAST",
2583	[RTN_BLACKHOLE] = "BLACKHOLE",
2584	[RTN_UNREACHABLE] = "UNREACHABLE",
2585	[RTN_PROHIBIT] = "PROHIBIT",
2586	[RTN_THROW] = "THROW",
2587	[RTN_NAT] = "NAT",
2588	[RTN_XRESOLVE] = "XRESOLVE",
2589};
2590
2591static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2592{
2593	if (t < __RTN_MAX && rtn_type_names[t])
2594		return rtn_type_names[t];
2595	snprintf(buf, len, "type %u", t);
2596	return buf;
2597}
2598
2599/* Pretty print the trie */
2600static int fib_trie_seq_show(struct seq_file *seq, void *v)
2601{
2602	const struct fib_trie_iter *iter = seq->private;
2603	struct key_vector *n = v;
2604
2605	if (IS_TRIE(node_parent_rcu(n)))
2606		fib_table_print(seq, iter->tb);
2607
2608	if (IS_TNODE(n)) {
2609		__be32 prf = htonl(n->key);
2610
2611		seq_indent(seq, iter->depth-1);
2612		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2613			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2614			   tn_info(n)->full_children,
2615			   tn_info(n)->empty_children);
2616	} else {
2617		__be32 val = htonl(n->key);
2618		struct fib_alias *fa;
2619
2620		seq_indent(seq, iter->depth);
2621		seq_printf(seq, "  |-- %pI4\n", &val);
2622
2623		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2624			char buf1[32], buf2[32];
2625
2626			seq_indent(seq, iter->depth + 1);
2627			seq_printf(seq, "  /%zu %s %s",
2628				   KEYLENGTH - fa->fa_slen,
2629				   rtn_scope(buf1, sizeof(buf1),
2630					     fa->fa_info->fib_scope),
2631				   rtn_type(buf2, sizeof(buf2),
2632					    fa->fa_type));
2633			if (fa->fa_tos)
2634				seq_printf(seq, " tos=%d", fa->fa_tos);
2635			seq_putc(seq, '\n');
2636		}
2637	}
2638
2639	return 0;
2640}
2641
2642static const struct seq_operations fib_trie_seq_ops = {
2643	.start  = fib_trie_seq_start,
2644	.next   = fib_trie_seq_next,
2645	.stop   = fib_trie_seq_stop,
2646	.show   = fib_trie_seq_show,
2647};
2648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2649struct fib_route_iter {
2650	struct seq_net_private p;
2651	struct fib_table *main_tb;
2652	struct key_vector *tnode;
2653	loff_t	pos;
2654	t_key	key;
2655};
2656
2657static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2658					    loff_t pos)
2659{
 
2660	struct key_vector *l, **tp = &iter->tnode;
 
2661	t_key key;
2662
2663	/* use cached location of previously found key */
2664	if (iter->pos > 0 && pos >= iter->pos) {
 
2665		key = iter->key;
2666	} else {
2667		iter->pos = 1;
 
 
2668		key = 0;
2669	}
2670
2671	pos -= iter->pos;
2672
2673	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2674		key = l->key + 1;
2675		iter->pos++;
 
 
 
 
2676		l = NULL;
2677
2678		/* handle unlikely case of a key wrap */
2679		if (!key)
2680			break;
2681	}
2682
2683	if (l)
2684		iter->key = l->key;	/* remember it */
2685	else
2686		iter->pos = 0;		/* forget it */
2687
2688	return l;
2689}
2690
2691static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2692	__acquires(RCU)
2693{
2694	struct fib_route_iter *iter = seq->private;
2695	struct fib_table *tb;
2696	struct trie *t;
2697
2698	rcu_read_lock();
2699
2700	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2701	if (!tb)
2702		return NULL;
2703
2704	iter->main_tb = tb;
2705	t = (struct trie *)tb->tb_data;
2706	iter->tnode = t->kv;
2707
2708	if (*pos != 0)
2709		return fib_route_get_idx(iter, *pos);
2710
 
 
2711	iter->pos = 0;
2712	iter->key = KEY_MAX;
2713
2714	return SEQ_START_TOKEN;
2715}
2716
2717static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2718{
2719	struct fib_route_iter *iter = seq->private;
2720	struct key_vector *l = NULL;
2721	t_key key = iter->key + 1;
2722
2723	++*pos;
2724
2725	/* only allow key of 0 for start of sequence */
2726	if ((v == SEQ_START_TOKEN) || key)
2727		l = leaf_walk_rcu(&iter->tnode, key);
2728
2729	if (l) {
2730		iter->key = l->key;
2731		iter->pos++;
2732	} else {
2733		iter->pos = 0;
2734	}
2735
2736	return l;
2737}
2738
2739static void fib_route_seq_stop(struct seq_file *seq, void *v)
2740	__releases(RCU)
2741{
2742	rcu_read_unlock();
2743}
2744
2745static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2746{
2747	unsigned int flags = 0;
2748
2749	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2750		flags = RTF_REJECT;
2751	if (fi) {
2752		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2753
2754		if (nhc->nhc_gw.ipv4)
2755			flags |= RTF_GATEWAY;
2756	}
2757	if (mask == htonl(0xFFFFFFFF))
2758		flags |= RTF_HOST;
2759	flags |= RTF_UP;
2760	return flags;
2761}
2762
2763/*
2764 *	This outputs /proc/net/route.
2765 *	The format of the file is not supposed to be changed
2766 *	and needs to be same as fib_hash output to avoid breaking
2767 *	legacy utilities
2768 */
2769static int fib_route_seq_show(struct seq_file *seq, void *v)
2770{
2771	struct fib_route_iter *iter = seq->private;
2772	struct fib_table *tb = iter->main_tb;
2773	struct fib_alias *fa;
2774	struct key_vector *l = v;
2775	__be32 prefix;
2776
2777	if (v == SEQ_START_TOKEN) {
2778		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2779			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2780			   "\tWindow\tIRTT");
2781		return 0;
2782	}
2783
2784	prefix = htonl(l->key);
2785
2786	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2787		struct fib_info *fi = fa->fa_info;
2788		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2789		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2790
2791		if ((fa->fa_type == RTN_BROADCAST) ||
2792		    (fa->fa_type == RTN_MULTICAST))
2793			continue;
2794
2795		if (fa->tb_id != tb->tb_id)
2796			continue;
2797
2798		seq_setwidth(seq, 127);
2799
2800		if (fi) {
2801			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2802			__be32 gw = 0;
2803
2804			if (nhc->nhc_gw_family == AF_INET)
2805				gw = nhc->nhc_gw.ipv4;
2806
2807			seq_printf(seq,
2808				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2809				   "%d\t%08X\t%d\t%u\t%u",
2810				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2811				   prefix, gw, flags, 0, 0,
 
2812				   fi->fib_priority,
2813				   mask,
2814				   (fi->fib_advmss ?
2815				    fi->fib_advmss + 40 : 0),
2816				   fi->fib_window,
2817				   fi->fib_rtt >> 3);
2818		} else {
2819			seq_printf(seq,
2820				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2821				   "%d\t%08X\t%d\t%u\t%u",
2822				   prefix, 0, flags, 0, 0, 0,
2823				   mask, 0, 0, 0);
2824		}
2825		seq_pad(seq, '\n');
2826	}
2827
2828	return 0;
2829}
2830
2831static const struct seq_operations fib_route_seq_ops = {
2832	.start  = fib_route_seq_start,
2833	.next   = fib_route_seq_next,
2834	.stop   = fib_route_seq_stop,
2835	.show   = fib_route_seq_show,
2836};
2837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2838int __net_init fib_proc_init(struct net *net)
2839{
2840	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2841			sizeof(struct fib_trie_iter)))
2842		goto out1;
2843
2844	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2845			fib_triestat_seq_show, NULL))
2846		goto out2;
2847
2848	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2849			sizeof(struct fib_route_iter)))
2850		goto out3;
2851
2852	return 0;
2853
2854out3:
2855	remove_proc_entry("fib_triestat", net->proc_net);
2856out2:
2857	remove_proc_entry("fib_trie", net->proc_net);
2858out1:
2859	return -ENOMEM;
2860}
2861
2862void __net_exit fib_proc_exit(struct net *net)
2863{
2864	remove_proc_entry("fib_trie", net->proc_net);
2865	remove_proc_entry("fib_triestat", net->proc_net);
2866	remove_proc_entry("route", net->proc_net);
2867}
2868
2869#endif /* CONFIG_PROC_FS */
v4.6
 
   1/*
   2 *   This program is free software; you can redistribute it and/or
   3 *   modify it under the terms of the GNU General Public License
   4 *   as published by the Free Software Foundation; either version
   5 *   2 of the License, or (at your option) any later version.
   6 *
   7 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   8 *     & Swedish University of Agricultural Sciences.
   9 *
  10 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
  11 *     Agricultural Sciences.
  12 *
  13 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  14 *
  15 * This work is based on the LPC-trie which is originally described in:
  16 *
  17 * An experimental study of compression methods for dynamic tries
  18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20 *
  21 *
  22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24 *
  25 *
  26 * Code from fib_hash has been reused which includes the following header:
  27 *
  28 *
  29 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  30 *		operating system.  INET is implemented using the  BSD Socket
  31 *		interface as the means of communication with the user level.
  32 *
  33 *		IPv4 FIB: lookup engine and maintenance routines.
  34 *
  35 *
  36 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37 *
  38 *		This program is free software; you can redistribute it and/or
  39 *		modify it under the terms of the GNU General Public License
  40 *		as published by the Free Software Foundation; either version
  41 *		2 of the License, or (at your option) any later version.
  42 *
  43 * Substantial contributions to this work comes from:
  44 *
  45 *		David S. Miller, <davem@davemloft.net>
  46 *		Stephen Hemminger <shemminger@osdl.org>
  47 *		Paul E. McKenney <paulmck@us.ibm.com>
  48 *		Patrick McHardy <kaber@trash.net>
  49 */
  50
  51#define VERSION "0.409"
  52
  53#include <asm/uaccess.h>
 
  54#include <linux/bitops.h>
  55#include <linux/types.h>
  56#include <linux/kernel.h>
  57#include <linux/mm.h>
  58#include <linux/string.h>
  59#include <linux/socket.h>
  60#include <linux/sockios.h>
  61#include <linux/errno.h>
  62#include <linux/in.h>
  63#include <linux/inet.h>
  64#include <linux/inetdevice.h>
  65#include <linux/netdevice.h>
  66#include <linux/if_arp.h>
  67#include <linux/proc_fs.h>
  68#include <linux/rcupdate.h>
  69#include <linux/skbuff.h>
  70#include <linux/netlink.h>
  71#include <linux/init.h>
  72#include <linux/list.h>
  73#include <linux/slab.h>
  74#include <linux/export.h>
  75#include <linux/vmalloc.h>
 
  76#include <net/net_namespace.h>
  77#include <net/ip.h>
  78#include <net/protocol.h>
  79#include <net/route.h>
  80#include <net/tcp.h>
  81#include <net/sock.h>
  82#include <net/ip_fib.h>
  83#include <net/switchdev.h>
  84#include <trace/events/fib.h>
  85#include "fib_lookup.h"
  86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87#define MAX_STAT_DEPTH 32
  88
  89#define KEYLENGTH	(8*sizeof(t_key))
  90#define KEY_MAX		((t_key)~0)
  91
  92typedef unsigned int t_key;
  93
  94#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
  95#define IS_TNODE(n)	((n)->bits)
  96#define IS_LEAF(n)	(!(n)->bits)
  97
  98struct key_vector {
  99	t_key key;
 100	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 101	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 102	unsigned char slen;
 103	union {
 104		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 105		struct hlist_head leaf;
 106		/* This array is valid if (pos | bits) > 0 (TNODE) */
 107		struct key_vector __rcu *tnode[0];
 108	};
 109};
 110
 111struct tnode {
 112	struct rcu_head rcu;
 113	t_key empty_children;		/* KEYLENGTH bits needed */
 114	t_key full_children;		/* KEYLENGTH bits needed */
 115	struct key_vector __rcu *parent;
 116	struct key_vector kv[1];
 117#define tn_bits kv[0].bits
 118};
 119
 120#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 121#define LEAF_SIZE	TNODE_SIZE(1)
 122
 123#ifdef CONFIG_IP_FIB_TRIE_STATS
 124struct trie_use_stats {
 125	unsigned int gets;
 126	unsigned int backtrack;
 127	unsigned int semantic_match_passed;
 128	unsigned int semantic_match_miss;
 129	unsigned int null_node_hit;
 130	unsigned int resize_node_skipped;
 131};
 132#endif
 133
 134struct trie_stat {
 135	unsigned int totdepth;
 136	unsigned int maxdepth;
 137	unsigned int tnodes;
 138	unsigned int leaves;
 139	unsigned int nullpointers;
 140	unsigned int prefixes;
 141	unsigned int nodesizes[MAX_STAT_DEPTH];
 142};
 143
 144struct trie {
 145	struct key_vector kv[1];
 146#ifdef CONFIG_IP_FIB_TRIE_STATS
 147	struct trie_use_stats __percpu *stats;
 148#endif
 149};
 150
 151static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 152static size_t tnode_free_size;
 153
 154/*
 155 * synchronize_rcu after call_rcu for that many pages; it should be especially
 156 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 157 * obtained experimentally, aiming to avoid visible slowdown.
 158 */
 159static const int sync_pages = 128;
 
 
 160
 161static struct kmem_cache *fn_alias_kmem __read_mostly;
 162static struct kmem_cache *trie_leaf_kmem __read_mostly;
 163
 164static inline struct tnode *tn_info(struct key_vector *kv)
 165{
 166	return container_of(kv, struct tnode, kv[0]);
 167}
 168
 169/* caller must hold RTNL */
 170#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 171#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 172
 173/* caller must hold RCU read lock or RTNL */
 174#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 175#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 176
 177/* wrapper for rcu_assign_pointer */
 178static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 179{
 180	if (n)
 181		rcu_assign_pointer(tn_info(n)->parent, tp);
 182}
 183
 184#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 185
 186/* This provides us with the number of children in this node, in the case of a
 187 * leaf this will return 0 meaning none of the children are accessible.
 188 */
 189static inline unsigned long child_length(const struct key_vector *tn)
 190{
 191	return (1ul << tn->bits) & ~(1ul);
 192}
 193
 194#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 195
 196static inline unsigned long get_index(t_key key, struct key_vector *kv)
 197{
 198	unsigned long index = key ^ kv->key;
 199
 200	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 201		return 0;
 202
 203	return index >> kv->pos;
 204}
 205
 206/* To understand this stuff, an understanding of keys and all their bits is
 207 * necessary. Every node in the trie has a key associated with it, but not
 208 * all of the bits in that key are significant.
 209 *
 210 * Consider a node 'n' and its parent 'tp'.
 211 *
 212 * If n is a leaf, every bit in its key is significant. Its presence is
 213 * necessitated by path compression, since during a tree traversal (when
 214 * searching for a leaf - unless we are doing an insertion) we will completely
 215 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 216 * a potentially successful search, that we have indeed been walking the
 217 * correct key path.
 218 *
 219 * Note that we can never "miss" the correct key in the tree if present by
 220 * following the wrong path. Path compression ensures that segments of the key
 221 * that are the same for all keys with a given prefix are skipped, but the
 222 * skipped part *is* identical for each node in the subtrie below the skipped
 223 * bit! trie_insert() in this implementation takes care of that.
 224 *
 225 * if n is an internal node - a 'tnode' here, the various parts of its key
 226 * have many different meanings.
 227 *
 228 * Example:
 229 * _________________________________________________________________
 230 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 231 * -----------------------------------------------------------------
 232 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 233 *
 234 * _________________________________________________________________
 235 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 236 * -----------------------------------------------------------------
 237 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 238 *
 239 * tp->pos = 22
 240 * tp->bits = 3
 241 * n->pos = 13
 242 * n->bits = 4
 243 *
 244 * First, let's just ignore the bits that come before the parent tp, that is
 245 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 246 * point we do not use them for anything.
 247 *
 248 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 249 * index into the parent's child array. That is, they will be used to find
 250 * 'n' among tp's children.
 251 *
 252 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 253 * for the node n.
 254 *
 255 * All the bits we have seen so far are significant to the node n. The rest
 256 * of the bits are really not needed or indeed known in n->key.
 257 *
 258 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 259 * n's child array, and will of course be different for each child.
 260 *
 261 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 262 * at this point.
 263 */
 264
 265static const int halve_threshold = 25;
 266static const int inflate_threshold = 50;
 267static const int halve_threshold_root = 15;
 268static const int inflate_threshold_root = 30;
 269
 270static void __alias_free_mem(struct rcu_head *head)
 271{
 272	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 273	kmem_cache_free(fn_alias_kmem, fa);
 274}
 275
 276static inline void alias_free_mem_rcu(struct fib_alias *fa)
 277{
 278	call_rcu(&fa->rcu, __alias_free_mem);
 279}
 280
 281#define TNODE_KMALLOC_MAX \
 282	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 283#define TNODE_VMALLOC_MAX \
 284	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 285
 286static void __node_free_rcu(struct rcu_head *head)
 287{
 288	struct tnode *n = container_of(head, struct tnode, rcu);
 289
 290	if (!n->tn_bits)
 291		kmem_cache_free(trie_leaf_kmem, n);
 292	else
 293		kvfree(n);
 294}
 295
 296#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 297
 298static struct tnode *tnode_alloc(int bits)
 299{
 300	size_t size;
 301
 302	/* verify bits is within bounds */
 303	if (bits > TNODE_VMALLOC_MAX)
 304		return NULL;
 305
 306	/* determine size and verify it is non-zero and didn't overflow */
 307	size = TNODE_SIZE(1ul << bits);
 308
 309	if (size <= PAGE_SIZE)
 310		return kzalloc(size, GFP_KERNEL);
 311	else
 312		return vzalloc(size);
 313}
 314
 315static inline void empty_child_inc(struct key_vector *n)
 316{
 317	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
 
 
 
 318}
 319
 320static inline void empty_child_dec(struct key_vector *n)
 321{
 322	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
 
 
 
 323}
 324
 325static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 326{
 327	struct key_vector *l;
 328	struct tnode *kv;
 329
 330	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 331	if (!kv)
 332		return NULL;
 333
 334	/* initialize key vector */
 335	l = kv->kv;
 336	l->key = key;
 337	l->pos = 0;
 338	l->bits = 0;
 339	l->slen = fa->fa_slen;
 340
 341	/* link leaf to fib alias */
 342	INIT_HLIST_HEAD(&l->leaf);
 343	hlist_add_head(&fa->fa_list, &l->leaf);
 344
 345	return l;
 346}
 347
 348static struct key_vector *tnode_new(t_key key, int pos, int bits)
 349{
 350	unsigned int shift = pos + bits;
 351	struct key_vector *tn;
 352	struct tnode *tnode;
 353
 354	/* verify bits and pos their msb bits clear and values are valid */
 355	BUG_ON(!bits || (shift > KEYLENGTH));
 356
 357	tnode = tnode_alloc(bits);
 358	if (!tnode)
 359		return NULL;
 360
 361	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 362		 sizeof(struct key_vector *) << bits);
 363
 364	if (bits == KEYLENGTH)
 365		tnode->full_children = 1;
 366	else
 367		tnode->empty_children = 1ul << bits;
 368
 369	tn = tnode->kv;
 370	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 371	tn->pos = pos;
 372	tn->bits = bits;
 373	tn->slen = pos;
 374
 375	return tn;
 376}
 377
 378/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 379 * and no bits are skipped. See discussion in dyntree paper p. 6
 380 */
 381static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 382{
 383	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 384}
 385
 386/* Add a child at position i overwriting the old value.
 387 * Update the value of full_children and empty_children.
 388 */
 389static void put_child(struct key_vector *tn, unsigned long i,
 390		      struct key_vector *n)
 391{
 392	struct key_vector *chi = get_child(tn, i);
 393	int isfull, wasfull;
 394
 395	BUG_ON(i >= child_length(tn));
 396
 397	/* update emptyChildren, overflow into fullChildren */
 398	if (!n && chi)
 399		empty_child_inc(tn);
 400	if (n && !chi)
 401		empty_child_dec(tn);
 402
 403	/* update fullChildren */
 404	wasfull = tnode_full(tn, chi);
 405	isfull = tnode_full(tn, n);
 406
 407	if (wasfull && !isfull)
 408		tn_info(tn)->full_children--;
 409	else if (!wasfull && isfull)
 410		tn_info(tn)->full_children++;
 411
 412	if (n && (tn->slen < n->slen))
 413		tn->slen = n->slen;
 414
 415	rcu_assign_pointer(tn->tnode[i], n);
 416}
 417
 418static void update_children(struct key_vector *tn)
 419{
 420	unsigned long i;
 421
 422	/* update all of the child parent pointers */
 423	for (i = child_length(tn); i;) {
 424		struct key_vector *inode = get_child(tn, --i);
 425
 426		if (!inode)
 427			continue;
 428
 429		/* Either update the children of a tnode that
 430		 * already belongs to us or update the child
 431		 * to point to ourselves.
 432		 */
 433		if (node_parent(inode) == tn)
 434			update_children(inode);
 435		else
 436			node_set_parent(inode, tn);
 437	}
 438}
 439
 440static inline void put_child_root(struct key_vector *tp, t_key key,
 441				  struct key_vector *n)
 442{
 443	if (IS_TRIE(tp))
 444		rcu_assign_pointer(tp->tnode[0], n);
 445	else
 446		put_child(tp, get_index(key, tp), n);
 447}
 448
 449static inline void tnode_free_init(struct key_vector *tn)
 450{
 451	tn_info(tn)->rcu.next = NULL;
 452}
 453
 454static inline void tnode_free_append(struct key_vector *tn,
 455				     struct key_vector *n)
 456{
 457	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 458	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 459}
 460
 461static void tnode_free(struct key_vector *tn)
 462{
 463	struct callback_head *head = &tn_info(tn)->rcu;
 464
 465	while (head) {
 466		head = head->next;
 467		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 468		node_free(tn);
 469
 470		tn = container_of(head, struct tnode, rcu)->kv;
 471	}
 472
 473	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
 474		tnode_free_size = 0;
 475		synchronize_rcu();
 476	}
 477}
 478
 479static struct key_vector *replace(struct trie *t,
 480				  struct key_vector *oldtnode,
 481				  struct key_vector *tn)
 482{
 483	struct key_vector *tp = node_parent(oldtnode);
 484	unsigned long i;
 485
 486	/* setup the parent pointer out of and back into this node */
 487	NODE_INIT_PARENT(tn, tp);
 488	put_child_root(tp, tn->key, tn);
 489
 490	/* update all of the child parent pointers */
 491	update_children(tn);
 492
 493	/* all pointers should be clean so we are done */
 494	tnode_free(oldtnode);
 495
 496	/* resize children now that oldtnode is freed */
 497	for (i = child_length(tn); i;) {
 498		struct key_vector *inode = get_child(tn, --i);
 499
 500		/* resize child node */
 501		if (tnode_full(tn, inode))
 502			tn = resize(t, inode);
 503	}
 504
 505	return tp;
 506}
 507
 508static struct key_vector *inflate(struct trie *t,
 509				  struct key_vector *oldtnode)
 510{
 511	struct key_vector *tn;
 512	unsigned long i;
 513	t_key m;
 514
 515	pr_debug("In inflate\n");
 516
 517	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 518	if (!tn)
 519		goto notnode;
 520
 521	/* prepare oldtnode to be freed */
 522	tnode_free_init(oldtnode);
 523
 524	/* Assemble all of the pointers in our cluster, in this case that
 525	 * represents all of the pointers out of our allocated nodes that
 526	 * point to existing tnodes and the links between our allocated
 527	 * nodes.
 528	 */
 529	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 530		struct key_vector *inode = get_child(oldtnode, --i);
 531		struct key_vector *node0, *node1;
 532		unsigned long j, k;
 533
 534		/* An empty child */
 535		if (!inode)
 536			continue;
 537
 538		/* A leaf or an internal node with skipped bits */
 539		if (!tnode_full(oldtnode, inode)) {
 540			put_child(tn, get_index(inode->key, tn), inode);
 541			continue;
 542		}
 543
 544		/* drop the node in the old tnode free list */
 545		tnode_free_append(oldtnode, inode);
 546
 547		/* An internal node with two children */
 548		if (inode->bits == 1) {
 549			put_child(tn, 2 * i + 1, get_child(inode, 1));
 550			put_child(tn, 2 * i, get_child(inode, 0));
 551			continue;
 552		}
 553
 554		/* We will replace this node 'inode' with two new
 555		 * ones, 'node0' and 'node1', each with half of the
 556		 * original children. The two new nodes will have
 557		 * a position one bit further down the key and this
 558		 * means that the "significant" part of their keys
 559		 * (see the discussion near the top of this file)
 560		 * will differ by one bit, which will be "0" in
 561		 * node0's key and "1" in node1's key. Since we are
 562		 * moving the key position by one step, the bit that
 563		 * we are moving away from - the bit at position
 564		 * (tn->pos) - is the one that will differ between
 565		 * node0 and node1. So... we synthesize that bit in the
 566		 * two new keys.
 567		 */
 568		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 569		if (!node1)
 570			goto nomem;
 571		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 572
 573		tnode_free_append(tn, node1);
 574		if (!node0)
 575			goto nomem;
 576		tnode_free_append(tn, node0);
 577
 578		/* populate child pointers in new nodes */
 579		for (k = child_length(inode), j = k / 2; j;) {
 580			put_child(node1, --j, get_child(inode, --k));
 581			put_child(node0, j, get_child(inode, j));
 582			put_child(node1, --j, get_child(inode, --k));
 583			put_child(node0, j, get_child(inode, j));
 584		}
 585
 586		/* link new nodes to parent */
 587		NODE_INIT_PARENT(node1, tn);
 588		NODE_INIT_PARENT(node0, tn);
 589
 590		/* link parent to nodes */
 591		put_child(tn, 2 * i + 1, node1);
 592		put_child(tn, 2 * i, node0);
 593	}
 594
 595	/* setup the parent pointers into and out of this node */
 596	return replace(t, oldtnode, tn);
 597nomem:
 598	/* all pointers should be clean so we are done */
 599	tnode_free(tn);
 600notnode:
 601	return NULL;
 602}
 603
 604static struct key_vector *halve(struct trie *t,
 605				struct key_vector *oldtnode)
 606{
 607	struct key_vector *tn;
 608	unsigned long i;
 609
 610	pr_debug("In halve\n");
 611
 612	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 613	if (!tn)
 614		goto notnode;
 615
 616	/* prepare oldtnode to be freed */
 617	tnode_free_init(oldtnode);
 618
 619	/* Assemble all of the pointers in our cluster, in this case that
 620	 * represents all of the pointers out of our allocated nodes that
 621	 * point to existing tnodes and the links between our allocated
 622	 * nodes.
 623	 */
 624	for (i = child_length(oldtnode); i;) {
 625		struct key_vector *node1 = get_child(oldtnode, --i);
 626		struct key_vector *node0 = get_child(oldtnode, --i);
 627		struct key_vector *inode;
 628
 629		/* At least one of the children is empty */
 630		if (!node1 || !node0) {
 631			put_child(tn, i / 2, node1 ? : node0);
 632			continue;
 633		}
 634
 635		/* Two nonempty children */
 636		inode = tnode_new(node0->key, oldtnode->pos, 1);
 637		if (!inode)
 638			goto nomem;
 639		tnode_free_append(tn, inode);
 640
 641		/* initialize pointers out of node */
 642		put_child(inode, 1, node1);
 643		put_child(inode, 0, node0);
 644		NODE_INIT_PARENT(inode, tn);
 645
 646		/* link parent to node */
 647		put_child(tn, i / 2, inode);
 648	}
 649
 650	/* setup the parent pointers into and out of this node */
 651	return replace(t, oldtnode, tn);
 652nomem:
 653	/* all pointers should be clean so we are done */
 654	tnode_free(tn);
 655notnode:
 656	return NULL;
 657}
 658
 659static struct key_vector *collapse(struct trie *t,
 660				   struct key_vector *oldtnode)
 661{
 662	struct key_vector *n, *tp;
 663	unsigned long i;
 664
 665	/* scan the tnode looking for that one child that might still exist */
 666	for (n = NULL, i = child_length(oldtnode); !n && i;)
 667		n = get_child(oldtnode, --i);
 668
 669	/* compress one level */
 670	tp = node_parent(oldtnode);
 671	put_child_root(tp, oldtnode->key, n);
 672	node_set_parent(n, tp);
 673
 674	/* drop dead node */
 675	node_free(oldtnode);
 676
 677	return tp;
 678}
 679
 680static unsigned char update_suffix(struct key_vector *tn)
 681{
 682	unsigned char slen = tn->pos;
 683	unsigned long stride, i;
 
 
 
 
 
 
 
 684
 685	/* search though the list of children looking for nodes that might
 686	 * have a suffix greater than the one we currently have.  This is
 687	 * why we start with a stride of 2 since a stride of 1 would
 688	 * represent the nodes with suffix length equal to tn->pos
 689	 */
 690	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 691		struct key_vector *n = get_child(tn, i);
 692
 693		if (!n || (n->slen <= slen))
 694			continue;
 695
 696		/* update stride and slen based on new value */
 697		stride <<= (n->slen - slen);
 698		slen = n->slen;
 699		i &= ~(stride - 1);
 700
 701		/* if slen covers all but the last bit we can stop here
 702		 * there will be nothing longer than that since only node
 703		 * 0 and 1 << (bits - 1) could have that as their suffix
 704		 * length.
 705		 */
 706		if ((slen + 1) >= (tn->pos + tn->bits))
 707			break;
 708	}
 709
 710	tn->slen = slen;
 711
 712	return slen;
 713}
 714
 715/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 716 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 717 * Telecommunications, page 6:
 718 * "A node is doubled if the ratio of non-empty children to all
 719 * children in the *doubled* node is at least 'high'."
 720 *
 721 * 'high' in this instance is the variable 'inflate_threshold'. It
 722 * is expressed as a percentage, so we multiply it with
 723 * child_length() and instead of multiplying by 2 (since the
 724 * child array will be doubled by inflate()) and multiplying
 725 * the left-hand side by 100 (to handle the percentage thing) we
 726 * multiply the left-hand side by 50.
 727 *
 728 * The left-hand side may look a bit weird: child_length(tn)
 729 * - tn->empty_children is of course the number of non-null children
 730 * in the current node. tn->full_children is the number of "full"
 731 * children, that is non-null tnodes with a skip value of 0.
 732 * All of those will be doubled in the resulting inflated tnode, so
 733 * we just count them one extra time here.
 734 *
 735 * A clearer way to write this would be:
 736 *
 737 * to_be_doubled = tn->full_children;
 738 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 739 *     tn->full_children;
 740 *
 741 * new_child_length = child_length(tn) * 2;
 742 *
 743 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 744 *      new_child_length;
 745 * if (new_fill_factor >= inflate_threshold)
 746 *
 747 * ...and so on, tho it would mess up the while () loop.
 748 *
 749 * anyway,
 750 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 751 *      inflate_threshold
 752 *
 753 * avoid a division:
 754 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 755 *      inflate_threshold * new_child_length
 756 *
 757 * expand not_to_be_doubled and to_be_doubled, and shorten:
 758 * 100 * (child_length(tn) - tn->empty_children +
 759 *    tn->full_children) >= inflate_threshold * new_child_length
 760 *
 761 * expand new_child_length:
 762 * 100 * (child_length(tn) - tn->empty_children +
 763 *    tn->full_children) >=
 764 *      inflate_threshold * child_length(tn) * 2
 765 *
 766 * shorten again:
 767 * 50 * (tn->full_children + child_length(tn) -
 768 *    tn->empty_children) >= inflate_threshold *
 769 *    child_length(tn)
 770 *
 771 */
 772static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 773{
 774	unsigned long used = child_length(tn);
 775	unsigned long threshold = used;
 776
 777	/* Keep root node larger */
 778	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 779	used -= tn_info(tn)->empty_children;
 780	used += tn_info(tn)->full_children;
 781
 782	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 783
 784	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 785}
 786
 787static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 788{
 789	unsigned long used = child_length(tn);
 790	unsigned long threshold = used;
 791
 792	/* Keep root node larger */
 793	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 794	used -= tn_info(tn)->empty_children;
 795
 796	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 797
 798	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 799}
 800
 801static inline bool should_collapse(struct key_vector *tn)
 802{
 803	unsigned long used = child_length(tn);
 804
 805	used -= tn_info(tn)->empty_children;
 806
 807	/* account for bits == KEYLENGTH case */
 808	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 809		used -= KEY_MAX;
 810
 811	/* One child or none, time to drop us from the trie */
 812	return used < 2;
 813}
 814
 815#define MAX_WORK 10
 816static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 817{
 818#ifdef CONFIG_IP_FIB_TRIE_STATS
 819	struct trie_use_stats __percpu *stats = t->stats;
 820#endif
 821	struct key_vector *tp = node_parent(tn);
 822	unsigned long cindex = get_index(tn->key, tp);
 823	int max_work = MAX_WORK;
 824
 825	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 826		 tn, inflate_threshold, halve_threshold);
 827
 828	/* track the tnode via the pointer from the parent instead of
 829	 * doing it ourselves.  This way we can let RCU fully do its
 830	 * thing without us interfering
 831	 */
 832	BUG_ON(tn != get_child(tp, cindex));
 833
 834	/* Double as long as the resulting node has a number of
 835	 * nonempty nodes that are above the threshold.
 836	 */
 837	while (should_inflate(tp, tn) && max_work) {
 838		tp = inflate(t, tn);
 839		if (!tp) {
 840#ifdef CONFIG_IP_FIB_TRIE_STATS
 841			this_cpu_inc(stats->resize_node_skipped);
 842#endif
 843			break;
 844		}
 845
 846		max_work--;
 847		tn = get_child(tp, cindex);
 848	}
 849
 850	/* update parent in case inflate failed */
 851	tp = node_parent(tn);
 852
 853	/* Return if at least one inflate is run */
 854	if (max_work != MAX_WORK)
 855		return tp;
 856
 857	/* Halve as long as the number of empty children in this
 858	 * node is above threshold.
 859	 */
 860	while (should_halve(tp, tn) && max_work) {
 861		tp = halve(t, tn);
 862		if (!tp) {
 863#ifdef CONFIG_IP_FIB_TRIE_STATS
 864			this_cpu_inc(stats->resize_node_skipped);
 865#endif
 866			break;
 867		}
 868
 869		max_work--;
 870		tn = get_child(tp, cindex);
 871	}
 872
 873	/* Only one child remains */
 874	if (should_collapse(tn))
 875		return collapse(t, tn);
 876
 877	/* update parent in case halve failed */
 878	tp = node_parent(tn);
 879
 880	/* Return if at least one deflate was run */
 881	if (max_work != MAX_WORK)
 882		return tp;
 883
 884	/* push the suffix length to the parent node */
 885	if (tn->slen > tn->pos) {
 886		unsigned char slen = update_suffix(tn);
 887
 888		if (slen > tp->slen)
 889			tp->slen = slen;
 890	}
 891
 892	return tp;
 893}
 894
 895static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
 896{
 897	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
 898		if (update_suffix(tp) > l->slen)
 
 
 
 899			break;
 900		tp = node_parent(tp);
 
 
 901	}
 902}
 903
 904static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
 905{
 906	/* if this is a new leaf then tn will be NULL and we can sort
 907	 * out parent suffix lengths as a part of trie_rebalance
 908	 */
 909	while (tn->slen < l->slen) {
 910		tn->slen = l->slen;
 911		tn = node_parent(tn);
 912	}
 913}
 914
 915/* rcu_read_lock needs to be hold by caller from readside */
 916static struct key_vector *fib_find_node(struct trie *t,
 917					struct key_vector **tp, u32 key)
 918{
 919	struct key_vector *pn, *n = t->kv;
 920	unsigned long index = 0;
 921
 922	do {
 923		pn = n;
 924		n = get_child_rcu(n, index);
 925
 926		if (!n)
 927			break;
 928
 929		index = get_cindex(key, n);
 930
 931		/* This bit of code is a bit tricky but it combines multiple
 932		 * checks into a single check.  The prefix consists of the
 933		 * prefix plus zeros for the bits in the cindex. The index
 934		 * is the difference between the key and this value.  From
 935		 * this we can actually derive several pieces of data.
 936		 *   if (index >= (1ul << bits))
 937		 *     we have a mismatch in skip bits and failed
 938		 *   else
 939		 *     we know the value is cindex
 940		 *
 941		 * This check is safe even if bits == KEYLENGTH due to the
 942		 * fact that we can only allocate a node with 32 bits if a
 943		 * long is greater than 32 bits.
 944		 */
 945		if (index >= (1ul << n->bits)) {
 946			n = NULL;
 947			break;
 948		}
 949
 950		/* keep searching until we find a perfect match leaf or NULL */
 951	} while (IS_TNODE(n));
 952
 953	*tp = pn;
 954
 955	return n;
 956}
 957
 958/* Return the first fib alias matching TOS with
 959 * priority less than or equal to PRIO.
 960 */
 961static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 962					u8 tos, u32 prio, u32 tb_id)
 963{
 964	struct fib_alias *fa;
 965
 966	if (!fah)
 967		return NULL;
 968
 969	hlist_for_each_entry(fa, fah, fa_list) {
 970		if (fa->fa_slen < slen)
 971			continue;
 972		if (fa->fa_slen != slen)
 973			break;
 974		if (fa->tb_id > tb_id)
 975			continue;
 976		if (fa->tb_id != tb_id)
 977			break;
 978		if (fa->fa_tos > tos)
 979			continue;
 980		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
 981			return fa;
 982	}
 983
 984	return NULL;
 985}
 986
 987static void trie_rebalance(struct trie *t, struct key_vector *tn)
 988{
 989	while (!IS_TRIE(tn))
 990		tn = resize(t, tn);
 991}
 992
 993static int fib_insert_node(struct trie *t, struct key_vector *tp,
 994			   struct fib_alias *new, t_key key)
 995{
 996	struct key_vector *n, *l;
 997
 998	l = leaf_new(key, new);
 999	if (!l)
1000		goto noleaf;
1001
1002	/* retrieve child from parent node */
1003	n = get_child(tp, get_index(key, tp));
1004
1005	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1006	 *
1007	 *  Add a new tnode here
1008	 *  first tnode need some special handling
1009	 *  leaves us in position for handling as case 3
1010	 */
1011	if (n) {
1012		struct key_vector *tn;
1013
1014		tn = tnode_new(key, __fls(key ^ n->key), 1);
1015		if (!tn)
1016			goto notnode;
1017
1018		/* initialize routes out of node */
1019		NODE_INIT_PARENT(tn, tp);
1020		put_child(tn, get_index(key, tn) ^ 1, n);
1021
1022		/* start adding routes into the node */
1023		put_child_root(tp, key, tn);
1024		node_set_parent(n, tn);
1025
1026		/* parent now has a NULL spot where the leaf can go */
1027		tp = tn;
1028	}
1029
1030	/* Case 3: n is NULL, and will just insert a new leaf */
 
1031	NODE_INIT_PARENT(l, tp);
1032	put_child_root(tp, key, l);
1033	trie_rebalance(t, tp);
1034
1035	return 0;
1036notnode:
1037	node_free(l);
1038noleaf:
1039	return -ENOMEM;
1040}
1041
 
 
 
1042static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1043			    struct key_vector *l, struct fib_alias *new,
1044			    struct fib_alias *fa, t_key key)
1045{
1046	if (!l)
1047		return fib_insert_node(t, tp, new, key);
1048
1049	if (fa) {
1050		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1051	} else {
1052		struct fib_alias *last;
1053
1054		hlist_for_each_entry(last, &l->leaf, fa_list) {
1055			if (new->fa_slen < last->fa_slen)
1056				break;
1057			if ((new->fa_slen == last->fa_slen) &&
1058			    (new->tb_id > last->tb_id))
1059				break;
1060			fa = last;
1061		}
1062
1063		if (fa)
1064			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1065		else
1066			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1067	}
1068
1069	/* if we added to the tail node then we need to update slen */
1070	if (l->slen < new->fa_slen) {
1071		l->slen = new->fa_slen;
1072		leaf_push_suffix(tp, l);
1073	}
1074
1075	return 0;
1076}
1077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078/* Caller must hold RTNL. */
1079int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
 
1080{
 
1081	struct trie *t = (struct trie *)tb->tb_data;
1082	struct fib_alias *fa, *new_fa;
1083	struct key_vector *l, *tp;
1084	unsigned int nlflags = 0;
1085	struct fib_info *fi;
1086	u8 plen = cfg->fc_dst_len;
1087	u8 slen = KEYLENGTH - plen;
1088	u8 tos = cfg->fc_tos;
1089	u32 key;
1090	int err;
1091
1092	if (plen > KEYLENGTH)
 
 
1093		return -EINVAL;
1094
1095	key = ntohl(cfg->fc_dst);
1096
1097	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1098
1099	if ((plen < KEYLENGTH) && (key << plen))
1100		return -EINVAL;
1101
1102	fi = fib_create_info(cfg);
1103	if (IS_ERR(fi)) {
1104		err = PTR_ERR(fi);
1105		goto err;
1106	}
1107
1108	l = fib_find_node(t, &tp, key);
1109	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1110				tb->tb_id) : NULL;
1111
1112	/* Now fa, if non-NULL, points to the first fib alias
1113	 * with the same keys [prefix,tos,priority], if such key already
1114	 * exists or to the node before which we will insert new one.
1115	 *
1116	 * If fa is NULL, we will need to allocate a new one and
1117	 * insert to the tail of the section matching the suffix length
1118	 * of the new alias.
1119	 */
1120
1121	if (fa && fa->fa_tos == tos &&
1122	    fa->fa_info->fib_priority == fi->fib_priority) {
1123		struct fib_alias *fa_first, *fa_match;
1124
1125		err = -EEXIST;
1126		if (cfg->fc_nlflags & NLM_F_EXCL)
1127			goto out;
1128
 
 
1129		/* We have 2 goals:
1130		 * 1. Find exact match for type, scope, fib_info to avoid
1131		 * duplicate routes
1132		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1133		 */
1134		fa_match = NULL;
1135		fa_first = fa;
1136		hlist_for_each_entry_from(fa, fa_list) {
1137			if ((fa->fa_slen != slen) ||
1138			    (fa->tb_id != tb->tb_id) ||
1139			    (fa->fa_tos != tos))
1140				break;
1141			if (fa->fa_info->fib_priority != fi->fib_priority)
1142				break;
1143			if (fa->fa_type == cfg->fc_type &&
1144			    fa->fa_info == fi) {
1145				fa_match = fa;
1146				break;
1147			}
1148		}
1149
1150		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1151			struct fib_info *fi_drop;
1152			u8 state;
1153
 
1154			fa = fa_first;
1155			if (fa_match) {
1156				if (fa == fa_match)
1157					err = 0;
1158				goto out;
1159			}
1160			err = -ENOBUFS;
1161			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1162			if (!new_fa)
1163				goto out;
1164
1165			fi_drop = fa->fa_info;
1166			new_fa->fa_tos = fa->fa_tos;
1167			new_fa->fa_info = fi;
1168			new_fa->fa_type = cfg->fc_type;
1169			state = fa->fa_state;
1170			new_fa->fa_state = state & ~FA_S_ACCESSED;
1171			new_fa->fa_slen = fa->fa_slen;
1172			new_fa->tb_id = tb->tb_id;
1173			new_fa->fa_default = -1;
1174
1175			err = switchdev_fib_ipv4_add(key, plen, fi,
1176						     new_fa->fa_tos,
1177						     cfg->fc_type,
1178						     cfg->fc_nlflags,
1179						     tb->tb_id);
1180			if (err) {
1181				switchdev_fib_ipv4_abort(fi);
1182				kmem_cache_free(fn_alias_kmem, new_fa);
1183				goto out;
1184			}
1185
1186			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1187
1188			alias_free_mem_rcu(fa);
1189
1190			fib_release_info(fi_drop);
1191			if (state & FA_S_ACCESSED)
1192				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1193			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1194				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1195
1196			goto succeeded;
1197		}
1198		/* Error if we find a perfect match which
1199		 * uses the same scope, type, and nexthop
1200		 * information.
1201		 */
1202		if (fa_match)
1203			goto out;
1204
1205		if (cfg->fc_nlflags & NLM_F_APPEND)
1206			nlflags = NLM_F_APPEND;
1207		else
 
1208			fa = fa_first;
 
1209	}
1210	err = -ENOENT;
1211	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1212		goto out;
1213
 
1214	err = -ENOBUFS;
1215	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1216	if (!new_fa)
1217		goto out;
1218
1219	new_fa->fa_info = fi;
1220	new_fa->fa_tos = tos;
1221	new_fa->fa_type = cfg->fc_type;
1222	new_fa->fa_state = 0;
1223	new_fa->fa_slen = slen;
1224	new_fa->tb_id = tb->tb_id;
1225	new_fa->fa_default = -1;
1226
1227	/* (Optionally) offload fib entry to switch hardware. */
1228	err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
1229				     cfg->fc_nlflags, tb->tb_id);
1230	if (err) {
1231		switchdev_fib_ipv4_abort(fi);
1232		goto out_free_new_fa;
1233	}
1234
1235	/* Insert new entry to the list. */
1236	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1237	if (err)
1238		goto out_sw_fib_del;
1239
1240	if (!plen)
1241		tb->tb_num_default++;
1242
1243	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1244	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1245		  &cfg->fc_nlinfo, nlflags);
1246succeeded:
1247	return 0;
1248
1249out_sw_fib_del:
1250	switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
 
 
 
 
 
 
1251out_free_new_fa:
1252	kmem_cache_free(fn_alias_kmem, new_fa);
1253out:
1254	fib_release_info(fi);
1255err:
1256	return err;
1257}
1258
1259static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1260{
1261	t_key prefix = n->key;
1262
1263	return (key ^ prefix) & (prefix | -prefix);
1264}
1265
1266/* should be called with rcu_read_lock */
1267int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1268		     struct fib_result *res, int fib_flags)
1269{
1270	struct trie *t = (struct trie *) tb->tb_data;
1271#ifdef CONFIG_IP_FIB_TRIE_STATS
1272	struct trie_use_stats __percpu *stats = t->stats;
1273#endif
1274	const t_key key = ntohl(flp->daddr);
1275	struct key_vector *n, *pn;
1276	struct fib_alias *fa;
1277	unsigned long index;
1278	t_key cindex;
1279
1280	trace_fib_table_lookup(tb->tb_id, flp);
1281
1282	pn = t->kv;
1283	cindex = 0;
1284
1285	n = get_child_rcu(pn, cindex);
1286	if (!n)
 
1287		return -EAGAIN;
 
1288
1289#ifdef CONFIG_IP_FIB_TRIE_STATS
1290	this_cpu_inc(stats->gets);
1291#endif
1292
1293	/* Step 1: Travel to the longest prefix match in the trie */
1294	for (;;) {
1295		index = get_cindex(key, n);
1296
1297		/* This bit of code is a bit tricky but it combines multiple
1298		 * checks into a single check.  The prefix consists of the
1299		 * prefix plus zeros for the "bits" in the prefix. The index
1300		 * is the difference between the key and this value.  From
1301		 * this we can actually derive several pieces of data.
1302		 *   if (index >= (1ul << bits))
1303		 *     we have a mismatch in skip bits and failed
1304		 *   else
1305		 *     we know the value is cindex
1306		 *
1307		 * This check is safe even if bits == KEYLENGTH due to the
1308		 * fact that we can only allocate a node with 32 bits if a
1309		 * long is greater than 32 bits.
1310		 */
1311		if (index >= (1ul << n->bits))
1312			break;
1313
1314		/* we have found a leaf. Prefixes have already been compared */
1315		if (IS_LEAF(n))
1316			goto found;
1317
1318		/* only record pn and cindex if we are going to be chopping
1319		 * bits later.  Otherwise we are just wasting cycles.
1320		 */
1321		if (n->slen > n->pos) {
1322			pn = n;
1323			cindex = index;
1324		}
1325
1326		n = get_child_rcu(n, index);
1327		if (unlikely(!n))
1328			goto backtrace;
1329	}
1330
1331	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1332	for (;;) {
1333		/* record the pointer where our next node pointer is stored */
1334		struct key_vector __rcu **cptr = n->tnode;
1335
1336		/* This test verifies that none of the bits that differ
1337		 * between the key and the prefix exist in the region of
1338		 * the lsb and higher in the prefix.
1339		 */
1340		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1341			goto backtrace;
1342
1343		/* exit out and process leaf */
1344		if (unlikely(IS_LEAF(n)))
1345			break;
1346
1347		/* Don't bother recording parent info.  Since we are in
1348		 * prefix match mode we will have to come back to wherever
1349		 * we started this traversal anyway
1350		 */
1351
1352		while ((n = rcu_dereference(*cptr)) == NULL) {
1353backtrace:
1354#ifdef CONFIG_IP_FIB_TRIE_STATS
1355			if (!n)
1356				this_cpu_inc(stats->null_node_hit);
1357#endif
1358			/* If we are at cindex 0 there are no more bits for
1359			 * us to strip at this level so we must ascend back
1360			 * up one level to see if there are any more bits to
1361			 * be stripped there.
1362			 */
1363			while (!cindex) {
1364				t_key pkey = pn->key;
1365
1366				/* If we don't have a parent then there is
1367				 * nothing for us to do as we do not have any
1368				 * further nodes to parse.
1369				 */
1370				if (IS_TRIE(pn))
 
 
1371					return -EAGAIN;
 
1372#ifdef CONFIG_IP_FIB_TRIE_STATS
1373				this_cpu_inc(stats->backtrack);
1374#endif
1375				/* Get Child's index */
1376				pn = node_parent_rcu(pn);
1377				cindex = get_index(pkey, pn);
1378			}
1379
1380			/* strip the least significant bit from the cindex */
1381			cindex &= cindex - 1;
1382
1383			/* grab pointer for next child node */
1384			cptr = &pn->tnode[cindex];
1385		}
1386	}
1387
1388found:
1389	/* this line carries forward the xor from earlier in the function */
1390	index = key ^ n->key;
1391
1392	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1393	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1394		struct fib_info *fi = fa->fa_info;
1395		int nhsel, err;
1396
1397		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1398			if (index >= (1ul << fa->fa_slen))
1399				continue;
1400		}
1401		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1402			continue;
1403		if (fi->fib_dead)
1404			continue;
1405		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1406			continue;
1407		fib_alias_accessed(fa);
1408		err = fib_props[fa->fa_type].error;
1409		if (unlikely(err < 0)) {
 
1410#ifdef CONFIG_IP_FIB_TRIE_STATS
1411			this_cpu_inc(stats->semantic_match_passed);
1412#endif
 
1413			return err;
1414		}
1415		if (fi->fib_flags & RTNH_F_DEAD)
1416			continue;
1417		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1418			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1419			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1420
1421			if (nh->nh_flags & RTNH_F_DEAD)
 
 
 
 
 
 
 
 
1422				continue;
1423			if (in_dev &&
1424			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1425			    nh->nh_flags & RTNH_F_LINKDOWN &&
1426			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1427				continue;
1428			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1429				if (flp->flowi4_oif &&
1430				    flp->flowi4_oif != nh->nh_oif)
1431					continue;
1432			}
1433
1434			if (!(fib_flags & FIB_LOOKUP_NOREF))
1435				atomic_inc(&fi->fib_clntref);
1436
 
1437			res->prefixlen = KEYLENGTH - fa->fa_slen;
1438			res->nh_sel = nhsel;
 
1439			res->type = fa->fa_type;
1440			res->scope = fi->fib_scope;
1441			res->fi = fi;
1442			res->table = tb;
1443			res->fa_head = &n->leaf;
1444#ifdef CONFIG_IP_FIB_TRIE_STATS
1445			this_cpu_inc(stats->semantic_match_passed);
1446#endif
1447			trace_fib_table_lookup_nh(nh);
1448
1449			return err;
1450		}
1451	}
1452#ifdef CONFIG_IP_FIB_TRIE_STATS
1453	this_cpu_inc(stats->semantic_match_miss);
1454#endif
1455	goto backtrace;
1456}
1457EXPORT_SYMBOL_GPL(fib_table_lookup);
1458
1459static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1460			     struct key_vector *l, struct fib_alias *old)
1461{
1462	/* record the location of the previous list_info entry */
1463	struct hlist_node **pprev = old->fa_list.pprev;
1464	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1465
1466	/* remove the fib_alias from the list */
1467	hlist_del_rcu(&old->fa_list);
1468
1469	/* if we emptied the list this leaf will be freed and we can sort
1470	 * out parent suffix lengths as a part of trie_rebalance
1471	 */
1472	if (hlist_empty(&l->leaf)) {
 
 
1473		put_child_root(tp, l->key, NULL);
1474		node_free(l);
1475		trie_rebalance(t, tp);
1476		return;
1477	}
1478
1479	/* only access fa if it is pointing at the last valid hlist_node */
1480	if (*pprev)
1481		return;
1482
1483	/* update the trie with the latest suffix length */
1484	l->slen = fa->fa_slen;
1485	leaf_pull_suffix(tp, l);
1486}
1487
1488/* Caller must hold RTNL. */
1489int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
 
1490{
1491	struct trie *t = (struct trie *) tb->tb_data;
1492	struct fib_alias *fa, *fa_to_delete;
1493	struct key_vector *l, *tp;
1494	u8 plen = cfg->fc_dst_len;
1495	u8 slen = KEYLENGTH - plen;
1496	u8 tos = cfg->fc_tos;
1497	u32 key;
1498
1499	if (plen > KEYLENGTH)
1500		return -EINVAL;
1501
1502	key = ntohl(cfg->fc_dst);
1503
1504	if ((plen < KEYLENGTH) && (key << plen))
1505		return -EINVAL;
1506
1507	l = fib_find_node(t, &tp, key);
1508	if (!l)
1509		return -ESRCH;
1510
1511	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1512	if (!fa)
1513		return -ESRCH;
1514
1515	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1516
1517	fa_to_delete = NULL;
1518	hlist_for_each_entry_from(fa, fa_list) {
1519		struct fib_info *fi = fa->fa_info;
1520
1521		if ((fa->fa_slen != slen) ||
1522		    (fa->tb_id != tb->tb_id) ||
1523		    (fa->fa_tos != tos))
1524			break;
1525
1526		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1527		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1528		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1529		    (!cfg->fc_prefsrc ||
1530		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1531		    (!cfg->fc_protocol ||
1532		     fi->fib_protocol == cfg->fc_protocol) &&
1533		    fib_nh_match(cfg, fi) == 0) {
 
1534			fa_to_delete = fa;
1535			break;
1536		}
1537	}
1538
1539	if (!fa_to_delete)
1540		return -ESRCH;
1541
1542	switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1543			       cfg->fc_type, tb->tb_id);
1544
1545	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1546		  &cfg->fc_nlinfo, 0);
1547
1548	if (!plen)
1549		tb->tb_num_default--;
1550
1551	fib_remove_alias(t, tp, l, fa_to_delete);
1552
1553	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1554		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1555
1556	fib_release_info(fa_to_delete->fa_info);
1557	alias_free_mem_rcu(fa_to_delete);
1558	return 0;
1559}
1560
1561/* Scan for the next leaf starting at the provided key value */
1562static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1563{
1564	struct key_vector *pn, *n = *tn;
1565	unsigned long cindex;
1566
1567	/* this loop is meant to try and find the key in the trie */
1568	do {
1569		/* record parent and next child index */
1570		pn = n;
1571		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1572
1573		if (cindex >> pn->bits)
1574			break;
1575
1576		/* descend into the next child */
1577		n = get_child_rcu(pn, cindex++);
1578		if (!n)
1579			break;
1580
1581		/* guarantee forward progress on the keys */
1582		if (IS_LEAF(n) && (n->key >= key))
1583			goto found;
1584	} while (IS_TNODE(n));
1585
1586	/* this loop will search for the next leaf with a greater key */
1587	while (!IS_TRIE(pn)) {
1588		/* if we exhausted the parent node we will need to climb */
1589		if (cindex >= (1ul << pn->bits)) {
1590			t_key pkey = pn->key;
1591
1592			pn = node_parent_rcu(pn);
1593			cindex = get_index(pkey, pn) + 1;
1594			continue;
1595		}
1596
1597		/* grab the next available node */
1598		n = get_child_rcu(pn, cindex++);
1599		if (!n)
1600			continue;
1601
1602		/* no need to compare keys since we bumped the index */
1603		if (IS_LEAF(n))
1604			goto found;
1605
1606		/* Rescan start scanning in new node */
1607		pn = n;
1608		cindex = 0;
1609	}
1610
1611	*tn = pn;
1612	return NULL; /* Root of trie */
1613found:
1614	/* if we are at the limit for keys just return NULL for the tnode */
1615	*tn = pn;
1616	return n;
1617}
1618
1619static void fib_trie_free(struct fib_table *tb)
1620{
1621	struct trie *t = (struct trie *)tb->tb_data;
1622	struct key_vector *pn = t->kv;
1623	unsigned long cindex = 1;
1624	struct hlist_node *tmp;
1625	struct fib_alias *fa;
1626
1627	/* walk trie in reverse order and free everything */
1628	for (;;) {
1629		struct key_vector *n;
1630
1631		if (!(cindex--)) {
1632			t_key pkey = pn->key;
1633
1634			if (IS_TRIE(pn))
1635				break;
1636
1637			n = pn;
1638			pn = node_parent(pn);
1639
1640			/* drop emptied tnode */
1641			put_child_root(pn, n->key, NULL);
1642			node_free(n);
1643
1644			cindex = get_index(pkey, pn);
1645
1646			continue;
1647		}
1648
1649		/* grab the next available node */
1650		n = get_child(pn, cindex);
1651		if (!n)
1652			continue;
1653
1654		if (IS_TNODE(n)) {
1655			/* record pn and cindex for leaf walking */
1656			pn = n;
1657			cindex = 1ul << n->bits;
1658
1659			continue;
1660		}
1661
1662		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1663			hlist_del_rcu(&fa->fa_list);
1664			alias_free_mem_rcu(fa);
1665		}
1666
1667		put_child_root(pn, n->key, NULL);
1668		node_free(n);
1669	}
1670
1671#ifdef CONFIG_IP_FIB_TRIE_STATS
1672	free_percpu(t->stats);
1673#endif
1674	kfree(tb);
1675}
1676
1677struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1678{
1679	struct trie *ot = (struct trie *)oldtb->tb_data;
1680	struct key_vector *l, *tp = ot->kv;
1681	struct fib_table *local_tb;
1682	struct fib_alias *fa;
1683	struct trie *lt;
1684	t_key key = 0;
1685
1686	if (oldtb->tb_data == oldtb->__data)
1687		return oldtb;
1688
1689	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1690	if (!local_tb)
1691		return NULL;
1692
1693	lt = (struct trie *)local_tb->tb_data;
1694
1695	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1696		struct key_vector *local_l = NULL, *local_tp;
1697
1698		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1699			struct fib_alias *new_fa;
1700
1701			if (local_tb->tb_id != fa->tb_id)
1702				continue;
1703
1704			/* clone fa for new local table */
1705			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1706			if (!new_fa)
1707				goto out;
1708
1709			memcpy(new_fa, fa, sizeof(*fa));
1710
1711			/* insert clone into table */
1712			if (!local_l)
1713				local_l = fib_find_node(lt, &local_tp, l->key);
1714
1715			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1716					     NULL, l->key))
 
1717				goto out;
 
1718		}
1719
1720		/* stop loop if key wrapped back to 0 */
1721		key = l->key + 1;
1722		if (key < l->key)
1723			break;
1724	}
1725
1726	return local_tb;
1727out:
1728	fib_trie_free(local_tb);
1729
1730	return NULL;
1731}
1732
1733/* Caller must hold RTNL */
1734void fib_table_flush_external(struct fib_table *tb)
1735{
1736	struct trie *t = (struct trie *)tb->tb_data;
1737	struct key_vector *pn = t->kv;
1738	unsigned long cindex = 1;
1739	struct hlist_node *tmp;
1740	struct fib_alias *fa;
1741
1742	/* walk trie in reverse order */
1743	for (;;) {
1744		unsigned char slen = 0;
1745		struct key_vector *n;
1746
1747		if (!(cindex--)) {
1748			t_key pkey = pn->key;
1749
1750			/* cannot resize the trie vector */
1751			if (IS_TRIE(pn))
1752				break;
1753
 
 
 
 
1754			/* resize completed node */
1755			pn = resize(t, pn);
1756			cindex = get_index(pkey, pn);
1757
1758			continue;
1759		}
1760
1761		/* grab the next available node */
1762		n = get_child(pn, cindex);
1763		if (!n)
1764			continue;
1765
1766		if (IS_TNODE(n)) {
1767			/* record pn and cindex for leaf walking */
1768			pn = n;
1769			cindex = 1ul << n->bits;
1770
1771			continue;
1772		}
1773
1774		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1775			struct fib_info *fi = fa->fa_info;
1776
1777			/* if alias was cloned to local then we just
1778			 * need to remove the local copy from main
1779			 */
1780			if (tb->tb_id != fa->tb_id) {
1781				hlist_del_rcu(&fa->fa_list);
1782				alias_free_mem_rcu(fa);
1783				continue;
1784			}
1785
1786			/* record local slen */
1787			slen = fa->fa_slen;
1788
1789			if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1790				continue;
1791
1792			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1793					       fi, fa->fa_tos, fa->fa_type,
1794					       tb->tb_id);
1795		}
1796
1797		/* update leaf slen */
1798		n->slen = slen;
1799
1800		if (hlist_empty(&n->leaf)) {
1801			put_child_root(pn, n->key, NULL);
1802			node_free(n);
1803		}
1804	}
1805}
1806
1807/* Caller must hold RTNL. */
1808int fib_table_flush(struct fib_table *tb)
1809{
1810	struct trie *t = (struct trie *)tb->tb_data;
1811	struct key_vector *pn = t->kv;
1812	unsigned long cindex = 1;
1813	struct hlist_node *tmp;
1814	struct fib_alias *fa;
1815	int found = 0;
1816
1817	/* walk trie in reverse order */
1818	for (;;) {
1819		unsigned char slen = 0;
1820		struct key_vector *n;
1821
1822		if (!(cindex--)) {
1823			t_key pkey = pn->key;
1824
1825			/* cannot resize the trie vector */
1826			if (IS_TRIE(pn))
1827				break;
1828
 
 
 
 
1829			/* resize completed node */
1830			pn = resize(t, pn);
1831			cindex = get_index(pkey, pn);
1832
1833			continue;
1834		}
1835
1836		/* grab the next available node */
1837		n = get_child(pn, cindex);
1838		if (!n)
1839			continue;
1840
1841		if (IS_TNODE(n)) {
1842			/* record pn and cindex for leaf walking */
1843			pn = n;
1844			cindex = 1ul << n->bits;
1845
1846			continue;
1847		}
1848
1849		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1850			struct fib_info *fi = fa->fa_info;
1851
1852			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
 
 
 
 
 
 
 
 
 
 
1853				slen = fa->fa_slen;
1854				continue;
1855			}
1856
1857			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1858					       fi, fa->fa_tos, fa->fa_type,
1859					       tb->tb_id);
 
1860			hlist_del_rcu(&fa->fa_list);
1861			fib_release_info(fa->fa_info);
1862			alias_free_mem_rcu(fa);
1863			found++;
1864		}
1865
1866		/* update leaf slen */
1867		n->slen = slen;
1868
1869		if (hlist_empty(&n->leaf)) {
1870			put_child_root(pn, n->key, NULL);
1871			node_free(n);
1872		}
1873	}
1874
1875	pr_debug("trie_flush found=%d\n", found);
1876	return found;
1877}
1878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1879static void __trie_free_rcu(struct rcu_head *head)
1880{
1881	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1882#ifdef CONFIG_IP_FIB_TRIE_STATS
1883	struct trie *t = (struct trie *)tb->tb_data;
1884
1885	if (tb->tb_data == tb->__data)
1886		free_percpu(t->stats);
1887#endif /* CONFIG_IP_FIB_TRIE_STATS */
1888	kfree(tb);
1889}
1890
1891void fib_free_table(struct fib_table *tb)
1892{
1893	call_rcu(&tb->rcu, __trie_free_rcu);
1894}
1895
1896static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1897			     struct sk_buff *skb, struct netlink_callback *cb)
 
1898{
 
1899	__be32 xkey = htonl(l->key);
 
1900	struct fib_alias *fa;
1901	int i, s_i;
 
 
 
1902
1903	s_i = cb->args[4];
 
1904	i = 0;
1905
1906	/* rcu_read_lock is hold by caller */
1907	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1908		if (i < s_i) {
1909			i++;
1910			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1911		}
1912
1913		if (tb->tb_id != fa->tb_id) {
1914			i++;
1915			continue;
 
 
1916		}
1917
1918		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1919				  cb->nlh->nlmsg_seq,
1920				  RTM_NEWROUTE,
1921				  tb->tb_id,
1922				  fa->fa_type,
1923				  xkey,
1924				  KEYLENGTH - fa->fa_slen,
1925				  fa->fa_tos,
1926				  fa->fa_info, NLM_F_MULTI) < 0) {
1927			cb->args[4] = i;
1928			return -1;
1929		}
1930		i++;
1931	}
1932
1933	cb->args[4] = i;
1934	return skb->len;
 
 
 
 
 
1935}
1936
1937/* rcu_read_lock needs to be hold by caller from readside */
1938int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1939		   struct netlink_callback *cb)
1940{
1941	struct trie *t = (struct trie *)tb->tb_data;
1942	struct key_vector *l, *tp = t->kv;
1943	/* Dump starting at last key.
1944	 * Note: 0.0.0.0/0 (ie default) is first key.
1945	 */
1946	int count = cb->args[2];
1947	t_key key = cb->args[3];
1948
1949	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1950		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
 
 
 
1951			cb->args[3] = key;
1952			cb->args[2] = count;
1953			return -1;
1954		}
1955
1956		++count;
1957		key = l->key + 1;
1958
1959		memset(&cb->args[4], 0,
1960		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1961
1962		/* stop loop if key wrapped back to 0 */
1963		if (key < l->key)
1964			break;
1965	}
1966
1967	cb->args[3] = key;
1968	cb->args[2] = count;
1969
1970	return skb->len;
1971}
1972
1973void __init fib_trie_init(void)
1974{
1975	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1976					  sizeof(struct fib_alias),
1977					  0, SLAB_PANIC, NULL);
1978
1979	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1980					   LEAF_SIZE,
1981					   0, SLAB_PANIC, NULL);
1982}
1983
1984struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1985{
1986	struct fib_table *tb;
1987	struct trie *t;
1988	size_t sz = sizeof(*tb);
1989
1990	if (!alias)
1991		sz += sizeof(struct trie);
1992
1993	tb = kzalloc(sz, GFP_KERNEL);
1994	if (!tb)
1995		return NULL;
1996
1997	tb->tb_id = id;
1998	tb->tb_num_default = 0;
1999	tb->tb_data = (alias ? alias->__data : tb->__data);
2000
2001	if (alias)
2002		return tb;
2003
2004	t = (struct trie *) tb->tb_data;
2005	t->kv[0].pos = KEYLENGTH;
2006	t->kv[0].slen = KEYLENGTH;
2007#ifdef CONFIG_IP_FIB_TRIE_STATS
2008	t->stats = alloc_percpu(struct trie_use_stats);
2009	if (!t->stats) {
2010		kfree(tb);
2011		tb = NULL;
2012	}
2013#endif
2014
2015	return tb;
2016}
2017
2018#ifdef CONFIG_PROC_FS
2019/* Depth first Trie walk iterator */
2020struct fib_trie_iter {
2021	struct seq_net_private p;
2022	struct fib_table *tb;
2023	struct key_vector *tnode;
2024	unsigned int index;
2025	unsigned int depth;
2026};
2027
2028static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2029{
2030	unsigned long cindex = iter->index;
2031	struct key_vector *pn = iter->tnode;
2032	t_key pkey;
2033
2034	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2035		 iter->tnode, iter->index, iter->depth);
2036
2037	while (!IS_TRIE(pn)) {
2038		while (cindex < child_length(pn)) {
2039			struct key_vector *n = get_child_rcu(pn, cindex++);
2040
2041			if (!n)
2042				continue;
2043
2044			if (IS_LEAF(n)) {
2045				iter->tnode = pn;
2046				iter->index = cindex;
2047			} else {
2048				/* push down one level */
2049				iter->tnode = n;
2050				iter->index = 0;
2051				++iter->depth;
2052			}
2053
2054			return n;
2055		}
2056
2057		/* Current node exhausted, pop back up */
2058		pkey = pn->key;
2059		pn = node_parent_rcu(pn);
2060		cindex = get_index(pkey, pn) + 1;
2061		--iter->depth;
2062	}
2063
2064	/* record root node so further searches know we are done */
2065	iter->tnode = pn;
2066	iter->index = 0;
2067
2068	return NULL;
2069}
2070
2071static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2072					     struct trie *t)
2073{
2074	struct key_vector *n, *pn;
2075
2076	if (!t)
2077		return NULL;
2078
2079	pn = t->kv;
2080	n = rcu_dereference(pn->tnode[0]);
2081	if (!n)
2082		return NULL;
2083
2084	if (IS_TNODE(n)) {
2085		iter->tnode = n;
2086		iter->index = 0;
2087		iter->depth = 1;
2088	} else {
2089		iter->tnode = pn;
2090		iter->index = 0;
2091		iter->depth = 0;
2092	}
2093
2094	return n;
2095}
2096
2097static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2098{
2099	struct key_vector *n;
2100	struct fib_trie_iter iter;
2101
2102	memset(s, 0, sizeof(*s));
2103
2104	rcu_read_lock();
2105	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2106		if (IS_LEAF(n)) {
2107			struct fib_alias *fa;
2108
2109			s->leaves++;
2110			s->totdepth += iter.depth;
2111			if (iter.depth > s->maxdepth)
2112				s->maxdepth = iter.depth;
2113
2114			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2115				++s->prefixes;
2116		} else {
2117			s->tnodes++;
2118			if (n->bits < MAX_STAT_DEPTH)
2119				s->nodesizes[n->bits]++;
2120			s->nullpointers += tn_info(n)->empty_children;
2121		}
2122	}
2123	rcu_read_unlock();
2124}
2125
2126/*
2127 *	This outputs /proc/net/fib_triestats
2128 */
2129static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2130{
2131	unsigned int i, max, pointers, bytes, avdepth;
2132
2133	if (stat->leaves)
2134		avdepth = stat->totdepth*100 / stat->leaves;
2135	else
2136		avdepth = 0;
2137
2138	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2139		   avdepth / 100, avdepth % 100);
2140	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2141
2142	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2143	bytes = LEAF_SIZE * stat->leaves;
2144
2145	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2146	bytes += sizeof(struct fib_alias) * stat->prefixes;
2147
2148	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2149	bytes += TNODE_SIZE(0) * stat->tnodes;
2150
2151	max = MAX_STAT_DEPTH;
2152	while (max > 0 && stat->nodesizes[max-1] == 0)
2153		max--;
2154
2155	pointers = 0;
2156	for (i = 1; i < max; i++)
2157		if (stat->nodesizes[i] != 0) {
2158			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2159			pointers += (1<<i) * stat->nodesizes[i];
2160		}
2161	seq_putc(seq, '\n');
2162	seq_printf(seq, "\tPointers: %u\n", pointers);
2163
2164	bytes += sizeof(struct key_vector *) * pointers;
2165	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2166	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2167}
2168
2169#ifdef CONFIG_IP_FIB_TRIE_STATS
2170static void trie_show_usage(struct seq_file *seq,
2171			    const struct trie_use_stats __percpu *stats)
2172{
2173	struct trie_use_stats s = { 0 };
2174	int cpu;
2175
2176	/* loop through all of the CPUs and gather up the stats */
2177	for_each_possible_cpu(cpu) {
2178		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2179
2180		s.gets += pcpu->gets;
2181		s.backtrack += pcpu->backtrack;
2182		s.semantic_match_passed += pcpu->semantic_match_passed;
2183		s.semantic_match_miss += pcpu->semantic_match_miss;
2184		s.null_node_hit += pcpu->null_node_hit;
2185		s.resize_node_skipped += pcpu->resize_node_skipped;
2186	}
2187
2188	seq_printf(seq, "\nCounters:\n---------\n");
2189	seq_printf(seq, "gets = %u\n", s.gets);
2190	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2191	seq_printf(seq, "semantic match passed = %u\n",
2192		   s.semantic_match_passed);
2193	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2194	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2195	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2196}
2197#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2198
2199static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2200{
2201	if (tb->tb_id == RT_TABLE_LOCAL)
2202		seq_puts(seq, "Local:\n");
2203	else if (tb->tb_id == RT_TABLE_MAIN)
2204		seq_puts(seq, "Main:\n");
2205	else
2206		seq_printf(seq, "Id %d:\n", tb->tb_id);
2207}
2208
2209
2210static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2211{
2212	struct net *net = (struct net *)seq->private;
2213	unsigned int h;
2214
2215	seq_printf(seq,
2216		   "Basic info: size of leaf:"
2217		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2218		   LEAF_SIZE, TNODE_SIZE(0));
2219
2220	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2221		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2222		struct fib_table *tb;
2223
2224		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2225			struct trie *t = (struct trie *) tb->tb_data;
2226			struct trie_stat stat;
2227
2228			if (!t)
2229				continue;
2230
2231			fib_table_print(seq, tb);
2232
2233			trie_collect_stats(t, &stat);
2234			trie_show_stats(seq, &stat);
2235#ifdef CONFIG_IP_FIB_TRIE_STATS
2236			trie_show_usage(seq, t->stats);
2237#endif
2238		}
2239	}
2240
2241	return 0;
2242}
2243
2244static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2245{
2246	return single_open_net(inode, file, fib_triestat_seq_show);
2247}
2248
2249static const struct file_operations fib_triestat_fops = {
2250	.owner	= THIS_MODULE,
2251	.open	= fib_triestat_seq_open,
2252	.read	= seq_read,
2253	.llseek	= seq_lseek,
2254	.release = single_release_net,
2255};
2256
2257static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2258{
2259	struct fib_trie_iter *iter = seq->private;
2260	struct net *net = seq_file_net(seq);
2261	loff_t idx = 0;
2262	unsigned int h;
2263
2264	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2265		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2266		struct fib_table *tb;
2267
2268		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2269			struct key_vector *n;
2270
2271			for (n = fib_trie_get_first(iter,
2272						    (struct trie *) tb->tb_data);
2273			     n; n = fib_trie_get_next(iter))
2274				if (pos == idx++) {
2275					iter->tb = tb;
2276					return n;
2277				}
2278		}
2279	}
2280
2281	return NULL;
2282}
2283
2284static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2285	__acquires(RCU)
2286{
2287	rcu_read_lock();
2288	return fib_trie_get_idx(seq, *pos);
2289}
2290
2291static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2292{
2293	struct fib_trie_iter *iter = seq->private;
2294	struct net *net = seq_file_net(seq);
2295	struct fib_table *tb = iter->tb;
2296	struct hlist_node *tb_node;
2297	unsigned int h;
2298	struct key_vector *n;
2299
2300	++*pos;
2301	/* next node in same table */
2302	n = fib_trie_get_next(iter);
2303	if (n)
2304		return n;
2305
2306	/* walk rest of this hash chain */
2307	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2308	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2309		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2310		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2311		if (n)
2312			goto found;
2313	}
2314
2315	/* new hash chain */
2316	while (++h < FIB_TABLE_HASHSZ) {
2317		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2318		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2319			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2320			if (n)
2321				goto found;
2322		}
2323	}
2324	return NULL;
2325
2326found:
2327	iter->tb = tb;
2328	return n;
2329}
2330
2331static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2332	__releases(RCU)
2333{
2334	rcu_read_unlock();
2335}
2336
2337static void seq_indent(struct seq_file *seq, int n)
2338{
2339	while (n-- > 0)
2340		seq_puts(seq, "   ");
2341}
2342
2343static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2344{
2345	switch (s) {
2346	case RT_SCOPE_UNIVERSE: return "universe";
2347	case RT_SCOPE_SITE:	return "site";
2348	case RT_SCOPE_LINK:	return "link";
2349	case RT_SCOPE_HOST:	return "host";
2350	case RT_SCOPE_NOWHERE:	return "nowhere";
2351	default:
2352		snprintf(buf, len, "scope=%d", s);
2353		return buf;
2354	}
2355}
2356
2357static const char *const rtn_type_names[__RTN_MAX] = {
2358	[RTN_UNSPEC] = "UNSPEC",
2359	[RTN_UNICAST] = "UNICAST",
2360	[RTN_LOCAL] = "LOCAL",
2361	[RTN_BROADCAST] = "BROADCAST",
2362	[RTN_ANYCAST] = "ANYCAST",
2363	[RTN_MULTICAST] = "MULTICAST",
2364	[RTN_BLACKHOLE] = "BLACKHOLE",
2365	[RTN_UNREACHABLE] = "UNREACHABLE",
2366	[RTN_PROHIBIT] = "PROHIBIT",
2367	[RTN_THROW] = "THROW",
2368	[RTN_NAT] = "NAT",
2369	[RTN_XRESOLVE] = "XRESOLVE",
2370};
2371
2372static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2373{
2374	if (t < __RTN_MAX && rtn_type_names[t])
2375		return rtn_type_names[t];
2376	snprintf(buf, len, "type %u", t);
2377	return buf;
2378}
2379
2380/* Pretty print the trie */
2381static int fib_trie_seq_show(struct seq_file *seq, void *v)
2382{
2383	const struct fib_trie_iter *iter = seq->private;
2384	struct key_vector *n = v;
2385
2386	if (IS_TRIE(node_parent_rcu(n)))
2387		fib_table_print(seq, iter->tb);
2388
2389	if (IS_TNODE(n)) {
2390		__be32 prf = htonl(n->key);
2391
2392		seq_indent(seq, iter->depth-1);
2393		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2394			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2395			   tn_info(n)->full_children,
2396			   tn_info(n)->empty_children);
2397	} else {
2398		__be32 val = htonl(n->key);
2399		struct fib_alias *fa;
2400
2401		seq_indent(seq, iter->depth);
2402		seq_printf(seq, "  |-- %pI4\n", &val);
2403
2404		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2405			char buf1[32], buf2[32];
2406
2407			seq_indent(seq, iter->depth + 1);
2408			seq_printf(seq, "  /%zu %s %s",
2409				   KEYLENGTH - fa->fa_slen,
2410				   rtn_scope(buf1, sizeof(buf1),
2411					     fa->fa_info->fib_scope),
2412				   rtn_type(buf2, sizeof(buf2),
2413					    fa->fa_type));
2414			if (fa->fa_tos)
2415				seq_printf(seq, " tos=%d", fa->fa_tos);
2416			seq_putc(seq, '\n');
2417		}
2418	}
2419
2420	return 0;
2421}
2422
2423static const struct seq_operations fib_trie_seq_ops = {
2424	.start  = fib_trie_seq_start,
2425	.next   = fib_trie_seq_next,
2426	.stop   = fib_trie_seq_stop,
2427	.show   = fib_trie_seq_show,
2428};
2429
2430static int fib_trie_seq_open(struct inode *inode, struct file *file)
2431{
2432	return seq_open_net(inode, file, &fib_trie_seq_ops,
2433			    sizeof(struct fib_trie_iter));
2434}
2435
2436static const struct file_operations fib_trie_fops = {
2437	.owner  = THIS_MODULE,
2438	.open   = fib_trie_seq_open,
2439	.read   = seq_read,
2440	.llseek = seq_lseek,
2441	.release = seq_release_net,
2442};
2443
2444struct fib_route_iter {
2445	struct seq_net_private p;
2446	struct fib_table *main_tb;
2447	struct key_vector *tnode;
2448	loff_t	pos;
2449	t_key	key;
2450};
2451
2452static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2453					    loff_t pos)
2454{
2455	struct fib_table *tb = iter->main_tb;
2456	struct key_vector *l, **tp = &iter->tnode;
2457	struct trie *t;
2458	t_key key;
2459
2460	/* use cache location of next-to-find key */
2461	if (iter->pos > 0 && pos >= iter->pos) {
2462		pos -= iter->pos;
2463		key = iter->key;
2464	} else {
2465		t = (struct trie *)tb->tb_data;
2466		iter->tnode = t->kv;
2467		iter->pos = 0;
2468		key = 0;
2469	}
2470
2471	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
 
 
2472		key = l->key + 1;
2473		iter->pos++;
2474
2475		if (--pos <= 0)
2476			break;
2477
2478		l = NULL;
2479
2480		/* handle unlikely case of a key wrap */
2481		if (!key)
2482			break;
2483	}
2484
2485	if (l)
2486		iter->key = key;	/* remember it */
2487	else
2488		iter->pos = 0;		/* forget it */
2489
2490	return l;
2491}
2492
2493static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2494	__acquires(RCU)
2495{
2496	struct fib_route_iter *iter = seq->private;
2497	struct fib_table *tb;
2498	struct trie *t;
2499
2500	rcu_read_lock();
2501
2502	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2503	if (!tb)
2504		return NULL;
2505
2506	iter->main_tb = tb;
 
 
2507
2508	if (*pos != 0)
2509		return fib_route_get_idx(iter, *pos);
2510
2511	t = (struct trie *)tb->tb_data;
2512	iter->tnode = t->kv;
2513	iter->pos = 0;
2514	iter->key = 0;
2515
2516	return SEQ_START_TOKEN;
2517}
2518
2519static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2520{
2521	struct fib_route_iter *iter = seq->private;
2522	struct key_vector *l = NULL;
2523	t_key key = iter->key;
2524
2525	++*pos;
2526
2527	/* only allow key of 0 for start of sequence */
2528	if ((v == SEQ_START_TOKEN) || key)
2529		l = leaf_walk_rcu(&iter->tnode, key);
2530
2531	if (l) {
2532		iter->key = l->key + 1;
2533		iter->pos++;
2534	} else {
2535		iter->pos = 0;
2536	}
2537
2538	return l;
2539}
2540
2541static void fib_route_seq_stop(struct seq_file *seq, void *v)
2542	__releases(RCU)
2543{
2544	rcu_read_unlock();
2545}
2546
2547static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2548{
2549	unsigned int flags = 0;
2550
2551	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2552		flags = RTF_REJECT;
2553	if (fi && fi->fib_nh->nh_gw)
2554		flags |= RTF_GATEWAY;
 
 
 
 
2555	if (mask == htonl(0xFFFFFFFF))
2556		flags |= RTF_HOST;
2557	flags |= RTF_UP;
2558	return flags;
2559}
2560
2561/*
2562 *	This outputs /proc/net/route.
2563 *	The format of the file is not supposed to be changed
2564 *	and needs to be same as fib_hash output to avoid breaking
2565 *	legacy utilities
2566 */
2567static int fib_route_seq_show(struct seq_file *seq, void *v)
2568{
2569	struct fib_route_iter *iter = seq->private;
2570	struct fib_table *tb = iter->main_tb;
2571	struct fib_alias *fa;
2572	struct key_vector *l = v;
2573	__be32 prefix;
2574
2575	if (v == SEQ_START_TOKEN) {
2576		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2577			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2578			   "\tWindow\tIRTT");
2579		return 0;
2580	}
2581
2582	prefix = htonl(l->key);
2583
2584	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2585		const struct fib_info *fi = fa->fa_info;
2586		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2587		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2588
2589		if ((fa->fa_type == RTN_BROADCAST) ||
2590		    (fa->fa_type == RTN_MULTICAST))
2591			continue;
2592
2593		if (fa->tb_id != tb->tb_id)
2594			continue;
2595
2596		seq_setwidth(seq, 127);
2597
2598		if (fi)
 
 
 
 
 
 
2599			seq_printf(seq,
2600				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2601				   "%d\t%08X\t%d\t%u\t%u",
2602				   fi->fib_dev ? fi->fib_dev->name : "*",
2603				   prefix,
2604				   fi->fib_nh->nh_gw, flags, 0, 0,
2605				   fi->fib_priority,
2606				   mask,
2607				   (fi->fib_advmss ?
2608				    fi->fib_advmss + 40 : 0),
2609				   fi->fib_window,
2610				   fi->fib_rtt >> 3);
2611		else
2612			seq_printf(seq,
2613				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2614				   "%d\t%08X\t%d\t%u\t%u",
2615				   prefix, 0, flags, 0, 0, 0,
2616				   mask, 0, 0, 0);
2617
2618		seq_pad(seq, '\n');
2619	}
2620
2621	return 0;
2622}
2623
2624static const struct seq_operations fib_route_seq_ops = {
2625	.start  = fib_route_seq_start,
2626	.next   = fib_route_seq_next,
2627	.stop   = fib_route_seq_stop,
2628	.show   = fib_route_seq_show,
2629};
2630
2631static int fib_route_seq_open(struct inode *inode, struct file *file)
2632{
2633	return seq_open_net(inode, file, &fib_route_seq_ops,
2634			    sizeof(struct fib_route_iter));
2635}
2636
2637static const struct file_operations fib_route_fops = {
2638	.owner  = THIS_MODULE,
2639	.open   = fib_route_seq_open,
2640	.read   = seq_read,
2641	.llseek = seq_lseek,
2642	.release = seq_release_net,
2643};
2644
2645int __net_init fib_proc_init(struct net *net)
2646{
2647	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
 
2648		goto out1;
2649
2650	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2651			 &fib_triestat_fops))
2652		goto out2;
2653
2654	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
 
2655		goto out3;
2656
2657	return 0;
2658
2659out3:
2660	remove_proc_entry("fib_triestat", net->proc_net);
2661out2:
2662	remove_proc_entry("fib_trie", net->proc_net);
2663out1:
2664	return -ENOMEM;
2665}
2666
2667void __net_exit fib_proc_exit(struct net *net)
2668{
2669	remove_proc_entry("fib_trie", net->proc_net);
2670	remove_proc_entry("fib_triestat", net->proc_net);
2671	remove_proc_entry("route", net->proc_net);
2672}
2673
2674#endif /* CONFIG_PROC_FS */