Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic waiting primitives.
  4 *
  5 * (C) 2004 Nadia Yvette Chambers, Oracle
  6 */
  7#include "sched.h"
  8
  9void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
 10{
 11	spin_lock_init(&wq_head->lock);
 12	lockdep_set_class_and_name(&wq_head->lock, key, name);
 13	INIT_LIST_HEAD(&wq_head->head);
 
 
 
 
 
 
 14}
 15
 16EXPORT_SYMBOL(__init_waitqueue_head);
 17
 18void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 19{
 20	unsigned long flags;
 21
 22	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
 23	spin_lock_irqsave(&wq_head->lock, flags);
 24	__add_wait_queue(wq_head, wq_entry);
 25	spin_unlock_irqrestore(&wq_head->lock, flags);
 26}
 27EXPORT_SYMBOL(add_wait_queue);
 28
 29void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 30{
 31	unsigned long flags;
 32
 33	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
 34	spin_lock_irqsave(&wq_head->lock, flags);
 35	__add_wait_queue_entry_tail(wq_head, wq_entry);
 36	spin_unlock_irqrestore(&wq_head->lock, flags);
 37}
 38EXPORT_SYMBOL(add_wait_queue_exclusive);
 39
 40void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 41{
 42	unsigned long flags;
 43
 44	spin_lock_irqsave(&wq_head->lock, flags);
 45	__remove_wait_queue(wq_head, wq_entry);
 46	spin_unlock_irqrestore(&wq_head->lock, flags);
 47}
 48EXPORT_SYMBOL(remove_wait_queue);
 49
 50/*
 51 * Scan threshold to break wait queue walk.
 52 * This allows a waker to take a break from holding the
 53 * wait queue lock during the wait queue walk.
 54 */
 55#define WAITQUEUE_WALK_BREAK_CNT 64
 56
 57/*
 58 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 59 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
 60 * number) then we wake all the non-exclusive tasks and one exclusive task.
 61 *
 62 * There are circumstances in which we can try to wake a task which has already
 63 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
 64 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 65 */
 66static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
 67			int nr_exclusive, int wake_flags, void *key,
 68			wait_queue_entry_t *bookmark)
 69{
 70	wait_queue_entry_t *curr, *next;
 71	int cnt = 0;
 72
 73	lockdep_assert_held(&wq_head->lock);
 74
 75	if (bookmark && (bookmark->flags & WQ_FLAG_BOOKMARK)) {
 76		curr = list_next_entry(bookmark, entry);
 77
 78		list_del(&bookmark->entry);
 79		bookmark->flags = 0;
 80	} else
 81		curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry);
 82
 83	if (&curr->entry == &wq_head->head)
 84		return nr_exclusive;
 85
 86	list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) {
 87		unsigned flags = curr->flags;
 88		int ret;
 89
 90		if (flags & WQ_FLAG_BOOKMARK)
 91			continue;
 92
 93		ret = curr->func(curr, mode, wake_flags, key);
 94		if (ret < 0)
 95			break;
 96		if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
 97			break;
 98
 99		if (bookmark && (++cnt > WAITQUEUE_WALK_BREAK_CNT) &&
100				(&next->entry != &wq_head->head)) {
101			bookmark->flags = WQ_FLAG_BOOKMARK;
102			list_add_tail(&bookmark->entry, &next->entry);
103			break;
104		}
105	}
106
107	return nr_exclusive;
108}
109
110static void __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode,
111			int nr_exclusive, int wake_flags, void *key)
112{
113	unsigned long flags;
114	wait_queue_entry_t bookmark;
115
116	bookmark.flags = 0;
117	bookmark.private = NULL;
118	bookmark.func = NULL;
119	INIT_LIST_HEAD(&bookmark.entry);
120
121	do {
122		spin_lock_irqsave(&wq_head->lock, flags);
123		nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive,
124						wake_flags, key, &bookmark);
125		spin_unlock_irqrestore(&wq_head->lock, flags);
126	} while (bookmark.flags & WQ_FLAG_BOOKMARK);
127}
128
129/**
130 * __wake_up - wake up threads blocked on a waitqueue.
131 * @wq_head: the waitqueue
132 * @mode: which threads
133 * @nr_exclusive: how many wake-one or wake-many threads to wake up
134 * @key: is directly passed to the wakeup function
135 *
136 * If this function wakes up a task, it executes a full memory barrier before
137 * accessing the task state.
138 */
139void __wake_up(struct wait_queue_head *wq_head, unsigned int mode,
140			int nr_exclusive, void *key)
141{
142	__wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key);
 
 
 
 
143}
144EXPORT_SYMBOL(__wake_up);
145
146/*
147 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
148 */
149void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr)
150{
151	__wake_up_common(wq_head, mode, nr, 0, NULL, NULL);
152}
153EXPORT_SYMBOL_GPL(__wake_up_locked);
154
155void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)
156{
157	__wake_up_common(wq_head, mode, 1, 0, key, NULL);
158}
159EXPORT_SYMBOL_GPL(__wake_up_locked_key);
160
161void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head,
162		unsigned int mode, void *key, wait_queue_entry_t *bookmark)
163{
164	__wake_up_common(wq_head, mode, 1, 0, key, bookmark);
165}
166EXPORT_SYMBOL_GPL(__wake_up_locked_key_bookmark);
167
168/**
169 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
170 * @wq_head: the waitqueue
171 * @mode: which threads
172 * @nr_exclusive: how many wake-one or wake-many threads to wake up
173 * @key: opaque value to be passed to wakeup targets
174 *
175 * The sync wakeup differs that the waker knows that it will schedule
176 * away soon, so while the target thread will be woken up, it will not
177 * be migrated to another CPU - ie. the two threads are 'synchronized'
178 * with each other. This can prevent needless bouncing between CPUs.
179 *
180 * On UP it can prevent extra preemption.
181 *
182 * If this function wakes up a task, it executes a full memory barrier before
183 * accessing the task state.
184 */
185void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode,
186			int nr_exclusive, void *key)
187{
 
188	int wake_flags = 1; /* XXX WF_SYNC */
189
190	if (unlikely(!wq_head))
191		return;
192
193	if (unlikely(nr_exclusive != 1))
194		wake_flags = 0;
195
196	__wake_up_common_lock(wq_head, mode, nr_exclusive, wake_flags, key);
 
 
197}
198EXPORT_SYMBOL_GPL(__wake_up_sync_key);
199
200/*
201 * __wake_up_sync - see __wake_up_sync_key()
202 */
203void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode, int nr_exclusive)
204{
205	__wake_up_sync_key(wq_head, mode, nr_exclusive, NULL);
206}
207EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
208
209/*
210 * Note: we use "set_current_state()" _after_ the wait-queue add,
211 * because we need a memory barrier there on SMP, so that any
212 * wake-function that tests for the wait-queue being active
213 * will be guaranteed to see waitqueue addition _or_ subsequent
214 * tests in this thread will see the wakeup having taken place.
215 *
216 * The spin_unlock() itself is semi-permeable and only protects
217 * one way (it only protects stuff inside the critical region and
218 * stops them from bleeding out - it would still allow subsequent
219 * loads to move into the critical region).
220 */
221void
222prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
223{
224	unsigned long flags;
225
226	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
227	spin_lock_irqsave(&wq_head->lock, flags);
228	if (list_empty(&wq_entry->entry))
229		__add_wait_queue(wq_head, wq_entry);
230	set_current_state(state);
231	spin_unlock_irqrestore(&wq_head->lock, flags);
232}
233EXPORT_SYMBOL(prepare_to_wait);
234
235void
236prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
237{
238	unsigned long flags;
239
240	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
241	spin_lock_irqsave(&wq_head->lock, flags);
242	if (list_empty(&wq_entry->entry))
243		__add_wait_queue_entry_tail(wq_head, wq_entry);
244	set_current_state(state);
245	spin_unlock_irqrestore(&wq_head->lock, flags);
246}
247EXPORT_SYMBOL(prepare_to_wait_exclusive);
248
249void init_wait_entry(struct wait_queue_entry *wq_entry, int flags)
250{
251	wq_entry->flags = flags;
252	wq_entry->private = current;
253	wq_entry->func = autoremove_wake_function;
254	INIT_LIST_HEAD(&wq_entry->entry);
255}
256EXPORT_SYMBOL(init_wait_entry);
257
258long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
259{
260	unsigned long flags;
261	long ret = 0;
262
263	spin_lock_irqsave(&wq_head->lock, flags);
264	if (signal_pending_state(state, current)) {
265		/*
266		 * Exclusive waiter must not fail if it was selected by wakeup,
267		 * it should "consume" the condition we were waiting for.
268		 *
269		 * The caller will recheck the condition and return success if
270		 * we were already woken up, we can not miss the event because
271		 * wakeup locks/unlocks the same wq_head->lock.
272		 *
273		 * But we need to ensure that set-condition + wakeup after that
274		 * can't see us, it should wake up another exclusive waiter if
275		 * we fail.
276		 */
277		list_del_init(&wq_entry->entry);
278		ret = -ERESTARTSYS;
279	} else {
280		if (list_empty(&wq_entry->entry)) {
281			if (wq_entry->flags & WQ_FLAG_EXCLUSIVE)
282				__add_wait_queue_entry_tail(wq_head, wq_entry);
283			else
284				__add_wait_queue(wq_head, wq_entry);
285		}
286		set_current_state(state);
287	}
288	spin_unlock_irqrestore(&wq_head->lock, flags);
289
290	return ret;
291}
292EXPORT_SYMBOL(prepare_to_wait_event);
293
294/*
295 * Note! These two wait functions are entered with the
296 * wait-queue lock held (and interrupts off in the _irq
297 * case), so there is no race with testing the wakeup
298 * condition in the caller before they add the wait
299 * entry to the wake queue.
300 */
301int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
302{
303	if (likely(list_empty(&wait->entry)))
304		__add_wait_queue_entry_tail(wq, wait);
305
306	set_current_state(TASK_INTERRUPTIBLE);
307	if (signal_pending(current))
308		return -ERESTARTSYS;
309
310	spin_unlock(&wq->lock);
311	schedule();
312	spin_lock(&wq->lock);
313
314	return 0;
315}
316EXPORT_SYMBOL(do_wait_intr);
317
318int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
319{
320	if (likely(list_empty(&wait->entry)))
321		__add_wait_queue_entry_tail(wq, wait);
322
323	set_current_state(TASK_INTERRUPTIBLE);
324	if (signal_pending(current))
325		return -ERESTARTSYS;
326
327	spin_unlock_irq(&wq->lock);
328	schedule();
329	spin_lock_irq(&wq->lock);
330
331	return 0;
332}
333EXPORT_SYMBOL(do_wait_intr_irq);
334
335/**
336 * finish_wait - clean up after waiting in a queue
337 * @wq_head: waitqueue waited on
338 * @wq_entry: wait descriptor
339 *
340 * Sets current thread back to running state and removes
341 * the wait descriptor from the given waitqueue if still
342 * queued.
343 */
344void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
345{
346	unsigned long flags;
347
348	__set_current_state(TASK_RUNNING);
349	/*
350	 * We can check for list emptiness outside the lock
351	 * IFF:
352	 *  - we use the "careful" check that verifies both
353	 *    the next and prev pointers, so that there cannot
354	 *    be any half-pending updates in progress on other
355	 *    CPU's that we haven't seen yet (and that might
356	 *    still change the stack area.
357	 * and
358	 *  - all other users take the lock (ie we can only
359	 *    have _one_ other CPU that looks at or modifies
360	 *    the list).
361	 */
362	if (!list_empty_careful(&wq_entry->entry)) {
363		spin_lock_irqsave(&wq_head->lock, flags);
364		list_del_init(&wq_entry->entry);
365		spin_unlock_irqrestore(&wq_head->lock, flags);
366	}
367}
368EXPORT_SYMBOL(finish_wait);
369
370int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371{
372	int ret = default_wake_function(wq_entry, mode, sync, key);
373
374	if (ret)
375		list_del_init(&wq_entry->entry);
 
 
 
 
 
 
 
376
 
 
 
 
 
 
377	return ret;
378}
379EXPORT_SYMBOL(autoremove_wake_function);
380
381static inline bool is_kthread_should_stop(void)
382{
383	return (current->flags & PF_KTHREAD) && kthread_should_stop();
384}
385
386/*
387 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
388 *
389 * add_wait_queue(&wq_head, &wait);
390 * for (;;) {
391 *     if (condition)
392 *         break;
393 *
394 *     // in wait_woken()			// in woken_wake_function()
 
 
 
 
 
 
 
 
 
395 *
396 *     p->state = mode;				wq_entry->flags |= WQ_FLAG_WOKEN;
397 *     smp_mb(); // A				try_to_wake_up():
398 *     if (!(wq_entry->flags & WQ_FLAG_WOKEN))	   <full barrier>
399 *         schedule()				   if (p->state & mode)
400 *     p->state = TASK_RUNNING;			      p->state = TASK_RUNNING;
401 *     wq_entry->flags &= ~WQ_FLAG_WOKEN;	~~~~~~~~~~~~~~~~~~
402 *     smp_mb(); // B				condition = true;
403 * }						smp_mb(); // C
404 * remove_wait_queue(&wq_head, &wait);		wq_entry->flags |= WQ_FLAG_WOKEN;
405 */
406long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout)
407{
 
408	/*
409	 * The below executes an smp_mb(), which matches with the full barrier
410	 * executed by the try_to_wake_up() in woken_wake_function() such that
411	 * either we see the store to wq_entry->flags in woken_wake_function()
412	 * or woken_wake_function() sees our store to current->state.
413	 */
414	set_current_state(mode); /* A */
415	if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
416		timeout = schedule_timeout(timeout);
417	__set_current_state(TASK_RUNNING);
418
419	/*
420	 * The below executes an smp_mb(), which matches with the smp_mb() (C)
421	 * in woken_wake_function() such that either we see the wait condition
422	 * being true or the store to wq_entry->flags in woken_wake_function()
423	 * follows ours in the coherence order.
424	 */
425	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */
426
427	return timeout;
428}
429EXPORT_SYMBOL(wait_woken);
430
431int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
432{
433	/* Pairs with the smp_store_mb() in wait_woken(). */
434	smp_mb(); /* C */
435	wq_entry->flags |= WQ_FLAG_WOKEN;
 
 
 
 
 
 
436
437	return default_wake_function(wq_entry, mode, sync, key);
438}
439EXPORT_SYMBOL(woken_wake_function);
v4.6
 
  1/*
  2 * Generic waiting primitives.
  3 *
  4 * (C) 2004 Nadia Yvette Chambers, Oracle
  5 */
  6#include <linux/init.h>
  7#include <linux/export.h>
  8#include <linux/sched.h>
  9#include <linux/mm.h>
 10#include <linux/wait.h>
 11#include <linux/hash.h>
 12#include <linux/kthread.h>
 13
 14void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
 15{
 16	spin_lock_init(&q->lock);
 17	lockdep_set_class_and_name(&q->lock, key, name);
 18	INIT_LIST_HEAD(&q->task_list);
 19}
 20
 21EXPORT_SYMBOL(__init_waitqueue_head);
 22
 23void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
 24{
 25	unsigned long flags;
 26
 27	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
 28	spin_lock_irqsave(&q->lock, flags);
 29	__add_wait_queue(q, wait);
 30	spin_unlock_irqrestore(&q->lock, flags);
 31}
 32EXPORT_SYMBOL(add_wait_queue);
 33
 34void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
 35{
 36	unsigned long flags;
 37
 38	wait->flags |= WQ_FLAG_EXCLUSIVE;
 39	spin_lock_irqsave(&q->lock, flags);
 40	__add_wait_queue_tail(q, wait);
 41	spin_unlock_irqrestore(&q->lock, flags);
 42}
 43EXPORT_SYMBOL(add_wait_queue_exclusive);
 44
 45void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
 46{
 47	unsigned long flags;
 48
 49	spin_lock_irqsave(&q->lock, flags);
 50	__remove_wait_queue(q, wait);
 51	spin_unlock_irqrestore(&q->lock, flags);
 52}
 53EXPORT_SYMBOL(remove_wait_queue);
 54
 
 
 
 
 
 
 55
 56/*
 57 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 58 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
 59 * number) then we wake all the non-exclusive tasks and one exclusive task.
 60 *
 61 * There are circumstances in which we can try to wake a task which has already
 62 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
 63 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 64 */
 65static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
 66			int nr_exclusive, int wake_flags, void *key)
 
 67{
 68	wait_queue_t *curr, *next;
 
 
 
 69
 70	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
 
 
 
 
 
 
 
 
 
 
 
 71		unsigned flags = curr->flags;
 
 72
 73		if (curr->func(curr, mode, wake_flags, key) &&
 74				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
 
 
 
 
 
 75			break;
 
 
 
 
 
 
 
 76	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 77}
 78
 79/**
 80 * __wake_up - wake up threads blocked on a waitqueue.
 81 * @q: the waitqueue
 82 * @mode: which threads
 83 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 84 * @key: is directly passed to the wakeup function
 85 *
 86 * It may be assumed that this function implies a write memory barrier before
 87 * changing the task state if and only if any tasks are woken up.
 88 */
 89void __wake_up(wait_queue_head_t *q, unsigned int mode,
 90			int nr_exclusive, void *key)
 91{
 92	unsigned long flags;
 93
 94	spin_lock_irqsave(&q->lock, flags);
 95	__wake_up_common(q, mode, nr_exclusive, 0, key);
 96	spin_unlock_irqrestore(&q->lock, flags);
 97}
 98EXPORT_SYMBOL(__wake_up);
 99
100/*
101 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
102 */
103void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
104{
105	__wake_up_common(q, mode, nr, 0, NULL);
106}
107EXPORT_SYMBOL_GPL(__wake_up_locked);
108
109void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
110{
111	__wake_up_common(q, mode, 1, 0, key);
112}
113EXPORT_SYMBOL_GPL(__wake_up_locked_key);
114
 
 
 
 
 
 
 
115/**
116 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
117 * @q: the waitqueue
118 * @mode: which threads
119 * @nr_exclusive: how many wake-one or wake-many threads to wake up
120 * @key: opaque value to be passed to wakeup targets
121 *
122 * The sync wakeup differs that the waker knows that it will schedule
123 * away soon, so while the target thread will be woken up, it will not
124 * be migrated to another CPU - ie. the two threads are 'synchronized'
125 * with each other. This can prevent needless bouncing between CPUs.
126 *
127 * On UP it can prevent extra preemption.
128 *
129 * It may be assumed that this function implies a write memory barrier before
130 * changing the task state if and only if any tasks are woken up.
131 */
132void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
133			int nr_exclusive, void *key)
134{
135	unsigned long flags;
136	int wake_flags = 1; /* XXX WF_SYNC */
137
138	if (unlikely(!q))
139		return;
140
141	if (unlikely(nr_exclusive != 1))
142		wake_flags = 0;
143
144	spin_lock_irqsave(&q->lock, flags);
145	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
146	spin_unlock_irqrestore(&q->lock, flags);
147}
148EXPORT_SYMBOL_GPL(__wake_up_sync_key);
149
150/*
151 * __wake_up_sync - see __wake_up_sync_key()
152 */
153void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
154{
155	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
156}
157EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
158
159/*
160 * Note: we use "set_current_state()" _after_ the wait-queue add,
161 * because we need a memory barrier there on SMP, so that any
162 * wake-function that tests for the wait-queue being active
163 * will be guaranteed to see waitqueue addition _or_ subsequent
164 * tests in this thread will see the wakeup having taken place.
165 *
166 * The spin_unlock() itself is semi-permeable and only protects
167 * one way (it only protects stuff inside the critical region and
168 * stops them from bleeding out - it would still allow subsequent
169 * loads to move into the critical region).
170 */
171void
172prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
173{
174	unsigned long flags;
175
176	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
177	spin_lock_irqsave(&q->lock, flags);
178	if (list_empty(&wait->task_list))
179		__add_wait_queue(q, wait);
180	set_current_state(state);
181	spin_unlock_irqrestore(&q->lock, flags);
182}
183EXPORT_SYMBOL(prepare_to_wait);
184
185void
186prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
187{
188	unsigned long flags;
189
190	wait->flags |= WQ_FLAG_EXCLUSIVE;
191	spin_lock_irqsave(&q->lock, flags);
192	if (list_empty(&wait->task_list))
193		__add_wait_queue_tail(q, wait);
194	set_current_state(state);
195	spin_unlock_irqrestore(&q->lock, flags);
196}
197EXPORT_SYMBOL(prepare_to_wait_exclusive);
198
199long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
 
 
 
 
 
 
 
 
 
200{
201	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202
203	if (signal_pending_state(state, current))
 
204		return -ERESTARTSYS;
205
206	wait->private = current;
207	wait->func = autoremove_wake_function;
 
 
 
 
 
208
209	spin_lock_irqsave(&q->lock, flags);
210	if (list_empty(&wait->task_list)) {
211		if (wait->flags & WQ_FLAG_EXCLUSIVE)
212			__add_wait_queue_tail(q, wait);
213		else
214			__add_wait_queue(q, wait);
215	}
216	set_current_state(state);
217	spin_unlock_irqrestore(&q->lock, flags);
 
 
 
218
219	return 0;
220}
221EXPORT_SYMBOL(prepare_to_wait_event);
222
223/**
224 * finish_wait - clean up after waiting in a queue
225 * @q: waitqueue waited on
226 * @wait: wait descriptor
227 *
228 * Sets current thread back to running state and removes
229 * the wait descriptor from the given waitqueue if still
230 * queued.
231 */
232void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
233{
234	unsigned long flags;
235
236	__set_current_state(TASK_RUNNING);
237	/*
238	 * We can check for list emptiness outside the lock
239	 * IFF:
240	 *  - we use the "careful" check that verifies both
241	 *    the next and prev pointers, so that there cannot
242	 *    be any half-pending updates in progress on other
243	 *    CPU's that we haven't seen yet (and that might
244	 *    still change the stack area.
245	 * and
246	 *  - all other users take the lock (ie we can only
247	 *    have _one_ other CPU that looks at or modifies
248	 *    the list).
249	 */
250	if (!list_empty_careful(&wait->task_list)) {
251		spin_lock_irqsave(&q->lock, flags);
252		list_del_init(&wait->task_list);
253		spin_unlock_irqrestore(&q->lock, flags);
254	}
255}
256EXPORT_SYMBOL(finish_wait);
257
258/**
259 * abort_exclusive_wait - abort exclusive waiting in a queue
260 * @q: waitqueue waited on
261 * @wait: wait descriptor
262 * @mode: runstate of the waiter to be woken
263 * @key: key to identify a wait bit queue or %NULL
264 *
265 * Sets current thread back to running state and removes
266 * the wait descriptor from the given waitqueue if still
267 * queued.
268 *
269 * Wakes up the next waiter if the caller is concurrently
270 * woken up through the queue.
271 *
272 * This prevents waiter starvation where an exclusive waiter
273 * aborts and is woken up concurrently and no one wakes up
274 * the next waiter.
275 */
276void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
277			unsigned int mode, void *key)
278{
279	unsigned long flags;
280
281	__set_current_state(TASK_RUNNING);
282	spin_lock_irqsave(&q->lock, flags);
283	if (!list_empty(&wait->task_list))
284		list_del_init(&wait->task_list);
285	else if (waitqueue_active(q))
286		__wake_up_locked_key(q, mode, key);
287	spin_unlock_irqrestore(&q->lock, flags);
288}
289EXPORT_SYMBOL(abort_exclusive_wait);
290
291int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
292{
293	int ret = default_wake_function(wait, mode, sync, key);
294
295	if (ret)
296		list_del_init(&wait->task_list);
297	return ret;
298}
299EXPORT_SYMBOL(autoremove_wake_function);
300
301static inline bool is_kthread_should_stop(void)
302{
303	return (current->flags & PF_KTHREAD) && kthread_should_stop();
304}
305
306/*
307 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
308 *
309 * add_wait_queue(&wq, &wait);
310 * for (;;) {
311 *     if (condition)
312 *         break;
313 *
314 *     p->state = mode;				condition = true;
315 *     smp_mb(); // A				smp_wmb(); // C
316 *     if (!wait->flags & WQ_FLAG_WOKEN)	wait->flags |= WQ_FLAG_WOKEN;
317 *         schedule()				try_to_wake_up();
318 *     p->state = TASK_RUNNING;		    ~~~~~~~~~~~~~~~~~~
319 *     wait->flags &= ~WQ_FLAG_WOKEN;		condition = true;
320 *     smp_mb() // B				smp_wmb(); // C
321 *						wait->flags |= WQ_FLAG_WOKEN;
322 * }
323 * remove_wait_queue(&wq, &wait);
324 *
 
 
 
 
 
 
 
 
 
325 */
326long wait_woken(wait_queue_t *wait, unsigned mode, long timeout)
327{
328	set_current_state(mode); /* A */
329	/*
330	 * The above implies an smp_mb(), which matches with the smp_wmb() from
331	 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
332	 * also observe all state before the wakeup.
 
333	 */
334	if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
 
335		timeout = schedule_timeout(timeout);
336	__set_current_state(TASK_RUNNING);
337
338	/*
339	 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
340	 * woken_wake_function() such that we must either observe the wait
341	 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
342	 * an event.
343	 */
344	smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */
345
346	return timeout;
347}
348EXPORT_SYMBOL(wait_woken);
349
350int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
351{
352	/*
353	 * Although this function is called under waitqueue lock, LOCK
354	 * doesn't imply write barrier and the users expects write
355	 * barrier semantics on wakeup functions.  The following
356	 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
357	 * and is paired with smp_store_mb() in wait_woken().
358	 */
359	smp_wmb(); /* C */
360	wait->flags |= WQ_FLAG_WOKEN;
361
362	return default_wake_function(wait, mode, sync, key);
363}
364EXPORT_SYMBOL(woken_wake_function);
365
366int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
367{
368	struct wait_bit_key *key = arg;
369	struct wait_bit_queue *wait_bit
370		= container_of(wait, struct wait_bit_queue, wait);
371
372	if (wait_bit->key.flags != key->flags ||
373			wait_bit->key.bit_nr != key->bit_nr ||
374			test_bit(key->bit_nr, key->flags))
375		return 0;
376	else
377		return autoremove_wake_function(wait, mode, sync, key);
378}
379EXPORT_SYMBOL(wake_bit_function);
380
381/*
382 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
383 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
384 * permitted return codes. Nonzero return codes halt waiting and return.
385 */
386int __sched
387__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
388	      wait_bit_action_f *action, unsigned mode)
389{
390	int ret = 0;
391
392	do {
393		prepare_to_wait(wq, &q->wait, mode);
394		if (test_bit(q->key.bit_nr, q->key.flags))
395			ret = (*action)(&q->key, mode);
396	} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
397	finish_wait(wq, &q->wait);
398	return ret;
399}
400EXPORT_SYMBOL(__wait_on_bit);
401
402int __sched out_of_line_wait_on_bit(void *word, int bit,
403				    wait_bit_action_f *action, unsigned mode)
404{
405	wait_queue_head_t *wq = bit_waitqueue(word, bit);
406	DEFINE_WAIT_BIT(wait, word, bit);
407
408	return __wait_on_bit(wq, &wait, action, mode);
409}
410EXPORT_SYMBOL(out_of_line_wait_on_bit);
411
412int __sched out_of_line_wait_on_bit_timeout(
413	void *word, int bit, wait_bit_action_f *action,
414	unsigned mode, unsigned long timeout)
415{
416	wait_queue_head_t *wq = bit_waitqueue(word, bit);
417	DEFINE_WAIT_BIT(wait, word, bit);
418
419	wait.key.timeout = jiffies + timeout;
420	return __wait_on_bit(wq, &wait, action, mode);
421}
422EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
423
424int __sched
425__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
426			wait_bit_action_f *action, unsigned mode)
427{
428	do {
429		int ret;
430
431		prepare_to_wait_exclusive(wq, &q->wait, mode);
432		if (!test_bit(q->key.bit_nr, q->key.flags))
433			continue;
434		ret = action(&q->key, mode);
435		if (!ret)
436			continue;
437		abort_exclusive_wait(wq, &q->wait, mode, &q->key);
438		return ret;
439	} while (test_and_set_bit(q->key.bit_nr, q->key.flags));
440	finish_wait(wq, &q->wait);
441	return 0;
442}
443EXPORT_SYMBOL(__wait_on_bit_lock);
444
445int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
446					 wait_bit_action_f *action, unsigned mode)
447{
448	wait_queue_head_t *wq = bit_waitqueue(word, bit);
449	DEFINE_WAIT_BIT(wait, word, bit);
450
451	return __wait_on_bit_lock(wq, &wait, action, mode);
452}
453EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
454
455void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
456{
457	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
458	if (waitqueue_active(wq))
459		__wake_up(wq, TASK_NORMAL, 1, &key);
460}
461EXPORT_SYMBOL(__wake_up_bit);
462
463/**
464 * wake_up_bit - wake up a waiter on a bit
465 * @word: the word being waited on, a kernel virtual address
466 * @bit: the bit of the word being waited on
467 *
468 * There is a standard hashed waitqueue table for generic use. This
469 * is the part of the hashtable's accessor API that wakes up waiters
470 * on a bit. For instance, if one were to have waiters on a bitflag,
471 * one would call wake_up_bit() after clearing the bit.
472 *
473 * In order for this to function properly, as it uses waitqueue_active()
474 * internally, some kind of memory barrier must be done prior to calling
475 * this. Typically, this will be smp_mb__after_atomic(), but in some
476 * cases where bitflags are manipulated non-atomically under a lock, one
477 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
478 * because spin_unlock() does not guarantee a memory barrier.
479 */
480void wake_up_bit(void *word, int bit)
481{
482	__wake_up_bit(bit_waitqueue(word, bit), word, bit);
483}
484EXPORT_SYMBOL(wake_up_bit);
485
486wait_queue_head_t *bit_waitqueue(void *word, int bit)
487{
488	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
489	const struct zone *zone = page_zone(virt_to_page(word));
490	unsigned long val = (unsigned long)word << shift | bit;
491
492	return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
493}
494EXPORT_SYMBOL(bit_waitqueue);
495
496/*
497 * Manipulate the atomic_t address to produce a better bit waitqueue table hash
498 * index (we're keying off bit -1, but that would produce a horrible hash
499 * value).
500 */
501static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
502{
503	if (BITS_PER_LONG == 64) {
504		unsigned long q = (unsigned long)p;
505		return bit_waitqueue((void *)(q & ~1), q & 1);
506	}
507	return bit_waitqueue(p, 0);
508}
509
510static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
511				  void *arg)
512{
513	struct wait_bit_key *key = arg;
514	struct wait_bit_queue *wait_bit
515		= container_of(wait, struct wait_bit_queue, wait);
516	atomic_t *val = key->flags;
517
518	if (wait_bit->key.flags != key->flags ||
519	    wait_bit->key.bit_nr != key->bit_nr ||
520	    atomic_read(val) != 0)
521		return 0;
522	return autoremove_wake_function(wait, mode, sync, key);
523}
524
525/*
526 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
527 * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
528 * return codes halt waiting and return.
529 */
530static __sched
531int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
532		       int (*action)(atomic_t *), unsigned mode)
533{
534	atomic_t *val;
535	int ret = 0;
536
537	do {
538		prepare_to_wait(wq, &q->wait, mode);
539		val = q->key.flags;
540		if (atomic_read(val) == 0)
541			break;
542		ret = (*action)(val);
543	} while (!ret && atomic_read(val) != 0);
544	finish_wait(wq, &q->wait);
545	return ret;
546}
547
548#define DEFINE_WAIT_ATOMIC_T(name, p)					\
549	struct wait_bit_queue name = {					\
550		.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),		\
551		.wait	= {						\
552			.private	= current,			\
553			.func		= wake_atomic_t_function,	\
554			.task_list	=				\
555				LIST_HEAD_INIT((name).wait.task_list),	\
556		},							\
557	}
558
559__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
560					 unsigned mode)
561{
562	wait_queue_head_t *wq = atomic_t_waitqueue(p);
563	DEFINE_WAIT_ATOMIC_T(wait, p);
564
565	return __wait_on_atomic_t(wq, &wait, action, mode);
566}
567EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
568
569/**
570 * wake_up_atomic_t - Wake up a waiter on a atomic_t
571 * @p: The atomic_t being waited on, a kernel virtual address
572 *
573 * Wake up anyone waiting for the atomic_t to go to zero.
574 *
575 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
576 * check is done by the waiter's wake function, not the by the waker itself).
577 */
578void wake_up_atomic_t(atomic_t *p)
579{
580	__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
581}
582EXPORT_SYMBOL(wake_up_atomic_t);
583
584__sched int bit_wait(struct wait_bit_key *word, int mode)
585{
586	schedule();
587	if (signal_pending_state(mode, current))
588		return -EINTR;
589	return 0;
590}
591EXPORT_SYMBOL(bit_wait);
592
593__sched int bit_wait_io(struct wait_bit_key *word, int mode)
594{
595	io_schedule();
596	if (signal_pending_state(mode, current))
597		return -EINTR;
598	return 0;
599}
600EXPORT_SYMBOL(bit_wait_io);
601
602__sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
603{
604	unsigned long now = READ_ONCE(jiffies);
605	if (time_after_eq(now, word->timeout))
606		return -EAGAIN;
607	schedule_timeout(word->timeout - now);
608	if (signal_pending_state(mode, current))
609		return -EINTR;
610	return 0;
611}
612EXPORT_SYMBOL_GPL(bit_wait_timeout);
613
614__sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode)
615{
616	unsigned long now = READ_ONCE(jiffies);
617	if (time_after_eq(now, word->timeout))
618		return -EAGAIN;
619	io_schedule_timeout(word->timeout - now);
620	if (signal_pending_state(mode, current))
621		return -EINTR;
622	return 0;
623}
624EXPORT_SYMBOL_GPL(bit_wait_io_timeout);