Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * kexec.c - kexec_load system call
  4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
 
 
 
  5 */
  6
  7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8
  9#include <linux/capability.h>
 10#include <linux/mm.h>
 11#include <linux/file.h>
 12#include <linux/security.h>
 13#include <linux/kexec.h>
 14#include <linux/mutex.h>
 15#include <linux/list.h>
 16#include <linux/syscalls.h>
 17#include <linux/vmalloc.h>
 18#include <linux/slab.h>
 19
 20#include "kexec_internal.h"
 21
 22static int copy_user_segment_list(struct kimage *image,
 23				  unsigned long nr_segments,
 24				  struct kexec_segment __user *segments)
 25{
 26	int ret;
 27	size_t segment_bytes;
 28
 29	/* Read in the segments */
 30	image->nr_segments = nr_segments;
 31	segment_bytes = nr_segments * sizeof(*segments);
 32	ret = copy_from_user(image->segment, segments, segment_bytes);
 33	if (ret)
 34		ret = -EFAULT;
 35
 36	return ret;
 37}
 38
 39static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
 40			     unsigned long nr_segments,
 41			     struct kexec_segment __user *segments,
 42			     unsigned long flags)
 43{
 44	int ret;
 45	struct kimage *image;
 46	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
 47
 48	if (kexec_on_panic) {
 49		/* Verify we have a valid entry point */
 50		if ((entry < phys_to_boot_phys(crashk_res.start)) ||
 51		    (entry > phys_to_boot_phys(crashk_res.end)))
 52			return -EADDRNOTAVAIL;
 53	}
 54
 55	/* Allocate and initialize a controlling structure */
 56	image = do_kimage_alloc_init();
 57	if (!image)
 58		return -ENOMEM;
 59
 60	image->start = entry;
 61
 62	ret = copy_user_segment_list(image, nr_segments, segments);
 63	if (ret)
 64		goto out_free_image;
 65
 66	if (kexec_on_panic) {
 67		/* Enable special crash kernel control page alloc policy. */
 68		image->control_page = crashk_res.start;
 69		image->type = KEXEC_TYPE_CRASH;
 70	}
 71
 72	ret = sanity_check_segment_list(image);
 73	if (ret)
 74		goto out_free_image;
 75
 76	/*
 77	 * Find a location for the control code buffer, and add it
 78	 * the vector of segments so that it's pages will also be
 79	 * counted as destination pages.
 80	 */
 81	ret = -ENOMEM;
 82	image->control_code_page = kimage_alloc_control_pages(image,
 83					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 84	if (!image->control_code_page) {
 85		pr_err("Could not allocate control_code_buffer\n");
 86		goto out_free_image;
 87	}
 88
 89	if (!kexec_on_panic) {
 90		image->swap_page = kimage_alloc_control_pages(image, 0);
 91		if (!image->swap_page) {
 92			pr_err("Could not allocate swap buffer\n");
 93			goto out_free_control_pages;
 94		}
 95	}
 96
 97	*rimage = image;
 98	return 0;
 99out_free_control_pages:
100	kimage_free_page_list(&image->control_pages);
101out_free_image:
102	kfree(image);
103	return ret;
104}
105
106static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
107		struct kexec_segment __user *segments, unsigned long flags)
108{
109	struct kimage **dest_image, *image;
110	unsigned long i;
111	int ret;
112
113	if (flags & KEXEC_ON_CRASH) {
114		dest_image = &kexec_crash_image;
115		if (kexec_crash_image)
116			arch_kexec_unprotect_crashkres();
117	} else {
118		dest_image = &kexec_image;
119	}
120
121	if (nr_segments == 0) {
122		/* Uninstall image */
123		kimage_free(xchg(dest_image, NULL));
124		return 0;
125	}
126	if (flags & KEXEC_ON_CRASH) {
127		/*
128		 * Loading another kernel to switch to if this one
129		 * crashes.  Free any current crash dump kernel before
130		 * we corrupt it.
131		 */
132		kimage_free(xchg(&kexec_crash_image, NULL));
133	}
134
135	ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
136	if (ret)
137		return ret;
138
139	if (flags & KEXEC_PRESERVE_CONTEXT)
140		image->preserve_context = 1;
141
142	ret = machine_kexec_prepare(image);
143	if (ret)
144		goto out;
145
146	/*
147	 * Some architecture(like S390) may touch the crash memory before
148	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
149	 */
150	ret = kimage_crash_copy_vmcoreinfo(image);
151	if (ret)
152		goto out;
153
154	for (i = 0; i < nr_segments; i++) {
155		ret = kimage_load_segment(image, &image->segment[i]);
156		if (ret)
157			goto out;
158	}
159
160	kimage_terminate(image);
161
162	/* Install the new kernel and uninstall the old */
163	image = xchg(dest_image, image);
164
165out:
166	if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
167		arch_kexec_protect_crashkres();
168
169	kimage_free(image);
170	return ret;
171}
172
173/*
174 * Exec Kernel system call: for obvious reasons only root may call it.
175 *
176 * This call breaks up into three pieces.
177 * - A generic part which loads the new kernel from the current
178 *   address space, and very carefully places the data in the
179 *   allocated pages.
180 *
181 * - A generic part that interacts with the kernel and tells all of
182 *   the devices to shut down.  Preventing on-going dmas, and placing
183 *   the devices in a consistent state so a later kernel can
184 *   reinitialize them.
185 *
186 * - A machine specific part that includes the syscall number
187 *   and then copies the image to it's final destination.  And
188 *   jumps into the image at entry.
189 *
190 * kexec does not sync, or unmount filesystems so if you need
191 * that to happen you need to do that yourself.
192 */
193
194static inline int kexec_load_check(unsigned long nr_segments,
195				   unsigned long flags)
196{
 
197	int result;
198
199	/* We only trust the superuser with rebooting the system. */
200	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
201		return -EPERM;
202
203	/* Permit LSMs and IMA to fail the kexec */
204	result = security_kernel_load_data(LOADING_KEXEC_IMAGE);
205	if (result < 0)
206		return result;
207
208	/*
209	 * kexec can be used to circumvent module loading restrictions, so
210	 * prevent loading in that case
211	 */
212	result = security_locked_down(LOCKDOWN_KEXEC);
213	if (result)
214		return result;
215
216	/*
217	 * Verify we have a legal set of flags
218	 * This leaves us room for future extensions.
219	 */
220	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
221		return -EINVAL;
222
 
 
 
 
 
223	/* Put an artificial cap on the number
224	 * of segments passed to kexec_load.
225	 */
226	if (nr_segments > KEXEC_SEGMENT_MAX)
227		return -EINVAL;
228
229	return 0;
230}
231
232SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
233		struct kexec_segment __user *, segments, unsigned long, flags)
234{
235	int result;
236
237	result = kexec_load_check(nr_segments, flags);
238	if (result)
239		return result;
240
241	/* Verify we are on the appropriate architecture */
242	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
243		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
244		return -EINVAL;
245
246	/* Because we write directly to the reserved memory
247	 * region when loading crash kernels we need a mutex here to
248	 * prevent multiple crash  kernels from attempting to load
249	 * simultaneously, and to prevent a crash kernel from loading
250	 * over the top of a in use crash kernel.
251	 *
252	 * KISS: always take the mutex.
253	 */
254	if (!mutex_trylock(&kexec_mutex))
255		return -EBUSY;
256
257	result = do_kexec_load(entry, nr_segments, segments, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258
 
259	mutex_unlock(&kexec_mutex);
 
260
261	return result;
262}
263
264#ifdef CONFIG_COMPAT
265COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
266		       compat_ulong_t, nr_segments,
267		       struct compat_kexec_segment __user *, segments,
268		       compat_ulong_t, flags)
269{
270	struct compat_kexec_segment in;
271	struct kexec_segment out, __user *ksegments;
272	unsigned long i, result;
273
274	result = kexec_load_check(nr_segments, flags);
275	if (result)
276		return result;
277
278	/* Don't allow clients that don't understand the native
279	 * architecture to do anything.
280	 */
281	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
282		return -EINVAL;
283
 
 
 
284	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
285	for (i = 0; i < nr_segments; i++) {
286		result = copy_from_user(&in, &segments[i], sizeof(in));
287		if (result)
288			return -EFAULT;
289
290		out.buf   = compat_ptr(in.buf);
291		out.bufsz = in.bufsz;
292		out.mem   = in.mem;
293		out.memsz = in.memsz;
294
295		result = copy_to_user(&ksegments[i], &out, sizeof(out));
296		if (result)
297			return -EFAULT;
298	}
299
300	/* Because we write directly to the reserved memory
301	 * region when loading crash kernels we need a mutex here to
302	 * prevent multiple crash  kernels from attempting to load
303	 * simultaneously, and to prevent a crash kernel from loading
304	 * over the top of a in use crash kernel.
305	 *
306	 * KISS: always take the mutex.
307	 */
308	if (!mutex_trylock(&kexec_mutex))
309		return -EBUSY;
310
311	result = do_kexec_load(entry, nr_segments, ksegments, flags);
312
313	mutex_unlock(&kexec_mutex);
314
315	return result;
316}
317#endif
v4.6
 
  1/*
  2 * kexec.c - kexec_load system call
  3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  4 *
  5 * This source code is licensed under the GNU General Public License,
  6 * Version 2.  See the file COPYING for more details.
  7 */
  8
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#include <linux/capability.h>
 12#include <linux/mm.h>
 13#include <linux/file.h>
 
 14#include <linux/kexec.h>
 15#include <linux/mutex.h>
 16#include <linux/list.h>
 17#include <linux/syscalls.h>
 18#include <linux/vmalloc.h>
 19#include <linux/slab.h>
 20
 21#include "kexec_internal.h"
 22
 23static int copy_user_segment_list(struct kimage *image,
 24				  unsigned long nr_segments,
 25				  struct kexec_segment __user *segments)
 26{
 27	int ret;
 28	size_t segment_bytes;
 29
 30	/* Read in the segments */
 31	image->nr_segments = nr_segments;
 32	segment_bytes = nr_segments * sizeof(*segments);
 33	ret = copy_from_user(image->segment, segments, segment_bytes);
 34	if (ret)
 35		ret = -EFAULT;
 36
 37	return ret;
 38}
 39
 40static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
 41			     unsigned long nr_segments,
 42			     struct kexec_segment __user *segments,
 43			     unsigned long flags)
 44{
 45	int ret;
 46	struct kimage *image;
 47	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
 48
 49	if (kexec_on_panic) {
 50		/* Verify we have a valid entry point */
 51		if ((entry < crashk_res.start) || (entry > crashk_res.end))
 
 52			return -EADDRNOTAVAIL;
 53	}
 54
 55	/* Allocate and initialize a controlling structure */
 56	image = do_kimage_alloc_init();
 57	if (!image)
 58		return -ENOMEM;
 59
 60	image->start = entry;
 61
 62	ret = copy_user_segment_list(image, nr_segments, segments);
 63	if (ret)
 64		goto out_free_image;
 65
 66	if (kexec_on_panic) {
 67		/* Enable special crash kernel control page alloc policy. */
 68		image->control_page = crashk_res.start;
 69		image->type = KEXEC_TYPE_CRASH;
 70	}
 71
 72	ret = sanity_check_segment_list(image);
 73	if (ret)
 74		goto out_free_image;
 75
 76	/*
 77	 * Find a location for the control code buffer, and add it
 78	 * the vector of segments so that it's pages will also be
 79	 * counted as destination pages.
 80	 */
 81	ret = -ENOMEM;
 82	image->control_code_page = kimage_alloc_control_pages(image,
 83					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 84	if (!image->control_code_page) {
 85		pr_err("Could not allocate control_code_buffer\n");
 86		goto out_free_image;
 87	}
 88
 89	if (!kexec_on_panic) {
 90		image->swap_page = kimage_alloc_control_pages(image, 0);
 91		if (!image->swap_page) {
 92			pr_err("Could not allocate swap buffer\n");
 93			goto out_free_control_pages;
 94		}
 95	}
 96
 97	*rimage = image;
 98	return 0;
 99out_free_control_pages:
100	kimage_free_page_list(&image->control_pages);
101out_free_image:
102	kfree(image);
103	return ret;
104}
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106/*
107 * Exec Kernel system call: for obvious reasons only root may call it.
108 *
109 * This call breaks up into three pieces.
110 * - A generic part which loads the new kernel from the current
111 *   address space, and very carefully places the data in the
112 *   allocated pages.
113 *
114 * - A generic part that interacts with the kernel and tells all of
115 *   the devices to shut down.  Preventing on-going dmas, and placing
116 *   the devices in a consistent state so a later kernel can
117 *   reinitialize them.
118 *
119 * - A machine specific part that includes the syscall number
120 *   and then copies the image to it's final destination.  And
121 *   jumps into the image at entry.
122 *
123 * kexec does not sync, or unmount filesystems so if you need
124 * that to happen you need to do that yourself.
125 */
126
127SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
128		struct kexec_segment __user *, segments, unsigned long, flags)
129{
130	struct kimage **dest_image, *image;
131	int result;
132
133	/* We only trust the superuser with rebooting the system. */
134	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
135		return -EPERM;
136
 
 
 
 
 
 
 
 
 
 
 
 
 
137	/*
138	 * Verify we have a legal set of flags
139	 * This leaves us room for future extensions.
140	 */
141	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
142		return -EINVAL;
143
144	/* Verify we are on the appropriate architecture */
145	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
146		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
147		return -EINVAL;
148
149	/* Put an artificial cap on the number
150	 * of segments passed to kexec_load.
151	 */
152	if (nr_segments > KEXEC_SEGMENT_MAX)
153		return -EINVAL;
154
155	image = NULL;
156	result = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
158	/* Because we write directly to the reserved memory
159	 * region when loading crash kernels we need a mutex here to
160	 * prevent multiple crash  kernels from attempting to load
161	 * simultaneously, and to prevent a crash kernel from loading
162	 * over the top of a in use crash kernel.
163	 *
164	 * KISS: always take the mutex.
165	 */
166	if (!mutex_trylock(&kexec_mutex))
167		return -EBUSY;
168
169	dest_image = &kexec_image;
170	if (flags & KEXEC_ON_CRASH)
171		dest_image = &kexec_crash_image;
172	if (nr_segments > 0) {
173		unsigned long i;
174
175		if (flags & KEXEC_ON_CRASH) {
176			/*
177			 * Loading another kernel to switch to if this one
178			 * crashes.  Free any current crash dump kernel before
179			 * we corrupt it.
180			 */
181
182			kimage_free(xchg(&kexec_crash_image, NULL));
183			result = kimage_alloc_init(&image, entry, nr_segments,
184						   segments, flags);
185			crash_map_reserved_pages();
186		} else {
187			/* Loading another kernel to reboot into. */
188
189			result = kimage_alloc_init(&image, entry, nr_segments,
190						   segments, flags);
191		}
192		if (result)
193			goto out;
194
195		if (flags & KEXEC_PRESERVE_CONTEXT)
196			image->preserve_context = 1;
197		result = machine_kexec_prepare(image);
198		if (result)
199			goto out;
200
201		for (i = 0; i < nr_segments; i++) {
202			result = kimage_load_segment(image, &image->segment[i]);
203			if (result)
204				goto out;
205		}
206		kimage_terminate(image);
207		if (flags & KEXEC_ON_CRASH)
208			crash_unmap_reserved_pages();
209	}
210	/* Install the new kernel, and  Uninstall the old */
211	image = xchg(dest_image, image);
212
213out:
214	mutex_unlock(&kexec_mutex);
215	kimage_free(image);
216
217	return result;
218}
219
220#ifdef CONFIG_COMPAT
221COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
222		       compat_ulong_t, nr_segments,
223		       struct compat_kexec_segment __user *, segments,
224		       compat_ulong_t, flags)
225{
226	struct compat_kexec_segment in;
227	struct kexec_segment out, __user *ksegments;
228	unsigned long i, result;
229
 
 
 
 
230	/* Don't allow clients that don't understand the native
231	 * architecture to do anything.
232	 */
233	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
234		return -EINVAL;
235
236	if (nr_segments > KEXEC_SEGMENT_MAX)
237		return -EINVAL;
238
239	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
240	for (i = 0; i < nr_segments; i++) {
241		result = copy_from_user(&in, &segments[i], sizeof(in));
242		if (result)
243			return -EFAULT;
244
245		out.buf   = compat_ptr(in.buf);
246		out.bufsz = in.bufsz;
247		out.mem   = in.mem;
248		out.memsz = in.memsz;
249
250		result = copy_to_user(&ksegments[i], &out, sizeof(out));
251		if (result)
252			return -EFAULT;
253	}
254
255	return sys_kexec_load(entry, nr_segments, ksegments, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256}
257#endif