Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kexec.c - kexec_load system call
4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/capability.h>
10#include <linux/mm.h>
11#include <linux/file.h>
12#include <linux/security.h>
13#include <linux/kexec.h>
14#include <linux/mutex.h>
15#include <linux/list.h>
16#include <linux/syscalls.h>
17#include <linux/vmalloc.h>
18#include <linux/slab.h>
19
20#include "kexec_internal.h"
21
22static int copy_user_segment_list(struct kimage *image,
23 unsigned long nr_segments,
24 struct kexec_segment __user *segments)
25{
26 int ret;
27 size_t segment_bytes;
28
29 /* Read in the segments */
30 image->nr_segments = nr_segments;
31 segment_bytes = nr_segments * sizeof(*segments);
32 ret = copy_from_user(image->segment, segments, segment_bytes);
33 if (ret)
34 ret = -EFAULT;
35
36 return ret;
37}
38
39static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
40 unsigned long nr_segments,
41 struct kexec_segment __user *segments,
42 unsigned long flags)
43{
44 int ret;
45 struct kimage *image;
46 bool kexec_on_panic = flags & KEXEC_ON_CRASH;
47
48 if (kexec_on_panic) {
49 /* Verify we have a valid entry point */
50 if ((entry < phys_to_boot_phys(crashk_res.start)) ||
51 (entry > phys_to_boot_phys(crashk_res.end)))
52 return -EADDRNOTAVAIL;
53 }
54
55 /* Allocate and initialize a controlling structure */
56 image = do_kimage_alloc_init();
57 if (!image)
58 return -ENOMEM;
59
60 image->start = entry;
61
62 ret = copy_user_segment_list(image, nr_segments, segments);
63 if (ret)
64 goto out_free_image;
65
66 if (kexec_on_panic) {
67 /* Enable special crash kernel control page alloc policy. */
68 image->control_page = crashk_res.start;
69 image->type = KEXEC_TYPE_CRASH;
70 }
71
72 ret = sanity_check_segment_list(image);
73 if (ret)
74 goto out_free_image;
75
76 /*
77 * Find a location for the control code buffer, and add it
78 * the vector of segments so that it's pages will also be
79 * counted as destination pages.
80 */
81 ret = -ENOMEM;
82 image->control_code_page = kimage_alloc_control_pages(image,
83 get_order(KEXEC_CONTROL_PAGE_SIZE));
84 if (!image->control_code_page) {
85 pr_err("Could not allocate control_code_buffer\n");
86 goto out_free_image;
87 }
88
89 if (!kexec_on_panic) {
90 image->swap_page = kimage_alloc_control_pages(image, 0);
91 if (!image->swap_page) {
92 pr_err("Could not allocate swap buffer\n");
93 goto out_free_control_pages;
94 }
95 }
96
97 *rimage = image;
98 return 0;
99out_free_control_pages:
100 kimage_free_page_list(&image->control_pages);
101out_free_image:
102 kfree(image);
103 return ret;
104}
105
106static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
107 struct kexec_segment __user *segments, unsigned long flags)
108{
109 struct kimage **dest_image, *image;
110 unsigned long i;
111 int ret;
112
113 if (flags & KEXEC_ON_CRASH) {
114 dest_image = &kexec_crash_image;
115 if (kexec_crash_image)
116 arch_kexec_unprotect_crashkres();
117 } else {
118 dest_image = &kexec_image;
119 }
120
121 if (nr_segments == 0) {
122 /* Uninstall image */
123 kimage_free(xchg(dest_image, NULL));
124 return 0;
125 }
126 if (flags & KEXEC_ON_CRASH) {
127 /*
128 * Loading another kernel to switch to if this one
129 * crashes. Free any current crash dump kernel before
130 * we corrupt it.
131 */
132 kimage_free(xchg(&kexec_crash_image, NULL));
133 }
134
135 ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
136 if (ret)
137 return ret;
138
139 if (flags & KEXEC_PRESERVE_CONTEXT)
140 image->preserve_context = 1;
141
142 ret = machine_kexec_prepare(image);
143 if (ret)
144 goto out;
145
146 /*
147 * Some architecture(like S390) may touch the crash memory before
148 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
149 */
150 ret = kimage_crash_copy_vmcoreinfo(image);
151 if (ret)
152 goto out;
153
154 for (i = 0; i < nr_segments; i++) {
155 ret = kimage_load_segment(image, &image->segment[i]);
156 if (ret)
157 goto out;
158 }
159
160 kimage_terminate(image);
161
162 /* Install the new kernel and uninstall the old */
163 image = xchg(dest_image, image);
164
165out:
166 if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
167 arch_kexec_protect_crashkres();
168
169 kimage_free(image);
170 return ret;
171}
172
173/*
174 * Exec Kernel system call: for obvious reasons only root may call it.
175 *
176 * This call breaks up into three pieces.
177 * - A generic part which loads the new kernel from the current
178 * address space, and very carefully places the data in the
179 * allocated pages.
180 *
181 * - A generic part that interacts with the kernel and tells all of
182 * the devices to shut down. Preventing on-going dmas, and placing
183 * the devices in a consistent state so a later kernel can
184 * reinitialize them.
185 *
186 * - A machine specific part that includes the syscall number
187 * and then copies the image to it's final destination. And
188 * jumps into the image at entry.
189 *
190 * kexec does not sync, or unmount filesystems so if you need
191 * that to happen you need to do that yourself.
192 */
193
194static inline int kexec_load_check(unsigned long nr_segments,
195 unsigned long flags)
196{
197 int result;
198
199 /* We only trust the superuser with rebooting the system. */
200 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
201 return -EPERM;
202
203 /* Permit LSMs and IMA to fail the kexec */
204 result = security_kernel_load_data(LOADING_KEXEC_IMAGE);
205 if (result < 0)
206 return result;
207
208 /*
209 * kexec can be used to circumvent module loading restrictions, so
210 * prevent loading in that case
211 */
212 result = security_locked_down(LOCKDOWN_KEXEC);
213 if (result)
214 return result;
215
216 /*
217 * Verify we have a legal set of flags
218 * This leaves us room for future extensions.
219 */
220 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
221 return -EINVAL;
222
223 /* Put an artificial cap on the number
224 * of segments passed to kexec_load.
225 */
226 if (nr_segments > KEXEC_SEGMENT_MAX)
227 return -EINVAL;
228
229 return 0;
230}
231
232SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
233 struct kexec_segment __user *, segments, unsigned long, flags)
234{
235 int result;
236
237 result = kexec_load_check(nr_segments, flags);
238 if (result)
239 return result;
240
241 /* Verify we are on the appropriate architecture */
242 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
243 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
244 return -EINVAL;
245
246 /* Because we write directly to the reserved memory
247 * region when loading crash kernels we need a mutex here to
248 * prevent multiple crash kernels from attempting to load
249 * simultaneously, and to prevent a crash kernel from loading
250 * over the top of a in use crash kernel.
251 *
252 * KISS: always take the mutex.
253 */
254 if (!mutex_trylock(&kexec_mutex))
255 return -EBUSY;
256
257 result = do_kexec_load(entry, nr_segments, segments, flags);
258
259 mutex_unlock(&kexec_mutex);
260
261 return result;
262}
263
264#ifdef CONFIG_COMPAT
265COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
266 compat_ulong_t, nr_segments,
267 struct compat_kexec_segment __user *, segments,
268 compat_ulong_t, flags)
269{
270 struct compat_kexec_segment in;
271 struct kexec_segment out, __user *ksegments;
272 unsigned long i, result;
273
274 result = kexec_load_check(nr_segments, flags);
275 if (result)
276 return result;
277
278 /* Don't allow clients that don't understand the native
279 * architecture to do anything.
280 */
281 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
282 return -EINVAL;
283
284 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
285 for (i = 0; i < nr_segments; i++) {
286 result = copy_from_user(&in, &segments[i], sizeof(in));
287 if (result)
288 return -EFAULT;
289
290 out.buf = compat_ptr(in.buf);
291 out.bufsz = in.bufsz;
292 out.mem = in.mem;
293 out.memsz = in.memsz;
294
295 result = copy_to_user(&ksegments[i], &out, sizeof(out));
296 if (result)
297 return -EFAULT;
298 }
299
300 /* Because we write directly to the reserved memory
301 * region when loading crash kernels we need a mutex here to
302 * prevent multiple crash kernels from attempting to load
303 * simultaneously, and to prevent a crash kernel from loading
304 * over the top of a in use crash kernel.
305 *
306 * KISS: always take the mutex.
307 */
308 if (!mutex_trylock(&kexec_mutex))
309 return -EBUSY;
310
311 result = do_kexec_load(entry, nr_segments, ksegments, flags);
312
313 mutex_unlock(&kexec_mutex);
314
315 return result;
316}
317#endif
1/*
2 * kexec.c - kexec_load system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/capability.h>
12#include <linux/mm.h>
13#include <linux/file.h>
14#include <linux/kexec.h>
15#include <linux/mutex.h>
16#include <linux/list.h>
17#include <linux/syscalls.h>
18#include <linux/vmalloc.h>
19#include <linux/slab.h>
20
21#include "kexec_internal.h"
22
23static int copy_user_segment_list(struct kimage *image,
24 unsigned long nr_segments,
25 struct kexec_segment __user *segments)
26{
27 int ret;
28 size_t segment_bytes;
29
30 /* Read in the segments */
31 image->nr_segments = nr_segments;
32 segment_bytes = nr_segments * sizeof(*segments);
33 ret = copy_from_user(image->segment, segments, segment_bytes);
34 if (ret)
35 ret = -EFAULT;
36
37 return ret;
38}
39
40static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
41 unsigned long nr_segments,
42 struct kexec_segment __user *segments,
43 unsigned long flags)
44{
45 int ret;
46 struct kimage *image;
47 bool kexec_on_panic = flags & KEXEC_ON_CRASH;
48
49 if (kexec_on_panic) {
50 /* Verify we have a valid entry point */
51 if ((entry < crashk_res.start) || (entry > crashk_res.end))
52 return -EADDRNOTAVAIL;
53 }
54
55 /* Allocate and initialize a controlling structure */
56 image = do_kimage_alloc_init();
57 if (!image)
58 return -ENOMEM;
59
60 image->start = entry;
61
62 ret = copy_user_segment_list(image, nr_segments, segments);
63 if (ret)
64 goto out_free_image;
65
66 if (kexec_on_panic) {
67 /* Enable special crash kernel control page alloc policy. */
68 image->control_page = crashk_res.start;
69 image->type = KEXEC_TYPE_CRASH;
70 }
71
72 ret = sanity_check_segment_list(image);
73 if (ret)
74 goto out_free_image;
75
76 /*
77 * Find a location for the control code buffer, and add it
78 * the vector of segments so that it's pages will also be
79 * counted as destination pages.
80 */
81 ret = -ENOMEM;
82 image->control_code_page = kimage_alloc_control_pages(image,
83 get_order(KEXEC_CONTROL_PAGE_SIZE));
84 if (!image->control_code_page) {
85 pr_err("Could not allocate control_code_buffer\n");
86 goto out_free_image;
87 }
88
89 if (!kexec_on_panic) {
90 image->swap_page = kimage_alloc_control_pages(image, 0);
91 if (!image->swap_page) {
92 pr_err("Could not allocate swap buffer\n");
93 goto out_free_control_pages;
94 }
95 }
96
97 *rimage = image;
98 return 0;
99out_free_control_pages:
100 kimage_free_page_list(&image->control_pages);
101out_free_image:
102 kfree(image);
103 return ret;
104}
105
106/*
107 * Exec Kernel system call: for obvious reasons only root may call it.
108 *
109 * This call breaks up into three pieces.
110 * - A generic part which loads the new kernel from the current
111 * address space, and very carefully places the data in the
112 * allocated pages.
113 *
114 * - A generic part that interacts with the kernel and tells all of
115 * the devices to shut down. Preventing on-going dmas, and placing
116 * the devices in a consistent state so a later kernel can
117 * reinitialize them.
118 *
119 * - A machine specific part that includes the syscall number
120 * and then copies the image to it's final destination. And
121 * jumps into the image at entry.
122 *
123 * kexec does not sync, or unmount filesystems so if you need
124 * that to happen you need to do that yourself.
125 */
126
127SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
128 struct kexec_segment __user *, segments, unsigned long, flags)
129{
130 struct kimage **dest_image, *image;
131 int result;
132
133 /* We only trust the superuser with rebooting the system. */
134 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
135 return -EPERM;
136
137 /*
138 * Verify we have a legal set of flags
139 * This leaves us room for future extensions.
140 */
141 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
142 return -EINVAL;
143
144 /* Verify we are on the appropriate architecture */
145 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
146 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
147 return -EINVAL;
148
149 /* Put an artificial cap on the number
150 * of segments passed to kexec_load.
151 */
152 if (nr_segments > KEXEC_SEGMENT_MAX)
153 return -EINVAL;
154
155 image = NULL;
156 result = 0;
157
158 /* Because we write directly to the reserved memory
159 * region when loading crash kernels we need a mutex here to
160 * prevent multiple crash kernels from attempting to load
161 * simultaneously, and to prevent a crash kernel from loading
162 * over the top of a in use crash kernel.
163 *
164 * KISS: always take the mutex.
165 */
166 if (!mutex_trylock(&kexec_mutex))
167 return -EBUSY;
168
169 dest_image = &kexec_image;
170 if (flags & KEXEC_ON_CRASH)
171 dest_image = &kexec_crash_image;
172 if (nr_segments > 0) {
173 unsigned long i;
174
175 if (flags & KEXEC_ON_CRASH) {
176 /*
177 * Loading another kernel to switch to if this one
178 * crashes. Free any current crash dump kernel before
179 * we corrupt it.
180 */
181
182 kimage_free(xchg(&kexec_crash_image, NULL));
183 result = kimage_alloc_init(&image, entry, nr_segments,
184 segments, flags);
185 crash_map_reserved_pages();
186 } else {
187 /* Loading another kernel to reboot into. */
188
189 result = kimage_alloc_init(&image, entry, nr_segments,
190 segments, flags);
191 }
192 if (result)
193 goto out;
194
195 if (flags & KEXEC_PRESERVE_CONTEXT)
196 image->preserve_context = 1;
197 result = machine_kexec_prepare(image);
198 if (result)
199 goto out;
200
201 for (i = 0; i < nr_segments; i++) {
202 result = kimage_load_segment(image, &image->segment[i]);
203 if (result)
204 goto out;
205 }
206 kimage_terminate(image);
207 if (flags & KEXEC_ON_CRASH)
208 crash_unmap_reserved_pages();
209 }
210 /* Install the new kernel, and Uninstall the old */
211 image = xchg(dest_image, image);
212
213out:
214 mutex_unlock(&kexec_mutex);
215 kimage_free(image);
216
217 return result;
218}
219
220#ifdef CONFIG_COMPAT
221COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
222 compat_ulong_t, nr_segments,
223 struct compat_kexec_segment __user *, segments,
224 compat_ulong_t, flags)
225{
226 struct compat_kexec_segment in;
227 struct kexec_segment out, __user *ksegments;
228 unsigned long i, result;
229
230 /* Don't allow clients that don't understand the native
231 * architecture to do anything.
232 */
233 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
234 return -EINVAL;
235
236 if (nr_segments > KEXEC_SEGMENT_MAX)
237 return -EINVAL;
238
239 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
240 for (i = 0; i < nr_segments; i++) {
241 result = copy_from_user(&in, &segments[i], sizeof(in));
242 if (result)
243 return -EFAULT;
244
245 out.buf = compat_ptr(in.buf);
246 out.bufsz = in.bufsz;
247 out.mem = in.mem;
248 out.memsz = in.memsz;
249
250 result = copy_to_user(&ksegments[i], &out, sizeof(out));
251 if (result)
252 return -EFAULT;
253 }
254
255 return sys_kexec_load(entry, nr_segments, ksegments, flags);
256}
257#endif