Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/fs/nfs/direct.c
   4 *
   5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   6 *
   7 * High-performance uncached I/O for the Linux NFS client
   8 *
   9 * There are important applications whose performance or correctness
  10 * depends on uncached access to file data.  Database clusters
  11 * (multiple copies of the same instance running on separate hosts)
  12 * implement their own cache coherency protocol that subsumes file
  13 * system cache protocols.  Applications that process datasets
  14 * considerably larger than the client's memory do not always benefit
  15 * from a local cache.  A streaming video server, for instance, has no
  16 * need to cache the contents of a file.
  17 *
  18 * When an application requests uncached I/O, all read and write requests
  19 * are made directly to the server; data stored or fetched via these
  20 * requests is not cached in the Linux page cache.  The client does not
  21 * correct unaligned requests from applications.  All requested bytes are
  22 * held on permanent storage before a direct write system call returns to
  23 * an application.
  24 *
  25 * Solaris implements an uncached I/O facility called directio() that
  26 * is used for backups and sequential I/O to very large files.  Solaris
  27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  28 * an undocumented mount option.
  29 *
  30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  31 * help from Andrew Morton.
  32 *
  33 * 18 Dec 2001	Initial implementation for 2.4  --cel
  34 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  35 * 08 Jun 2003	Port to 2.5 APIs  --cel
  36 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  37 * 15 Sep 2004	Parallel async reads  --cel
  38 * 04 May 2005	support O_DIRECT with aio  --cel
  39 *
  40 */
  41
  42#include <linux/errno.h>
  43#include <linux/sched.h>
  44#include <linux/kernel.h>
  45#include <linux/file.h>
  46#include <linux/pagemap.h>
  47#include <linux/kref.h>
  48#include <linux/slab.h>
  49#include <linux/task_io_accounting_ops.h>
  50#include <linux/module.h>
  51
  52#include <linux/nfs_fs.h>
  53#include <linux/nfs_page.h>
  54#include <linux/sunrpc/clnt.h>
  55
  56#include <linux/uaccess.h>
  57#include <linux/atomic.h>
  58
  59#include "internal.h"
  60#include "iostat.h"
  61#include "pnfs.h"
  62
  63#define NFSDBG_FACILITY		NFSDBG_VFS
  64
  65static struct kmem_cache *nfs_direct_cachep;
  66
 
 
 
 
 
 
 
  67struct nfs_direct_req {
  68	struct kref		kref;		/* release manager */
  69
  70	/* I/O parameters */
  71	struct nfs_open_context	*ctx;		/* file open context info */
  72	struct nfs_lock_context *l_ctx;		/* Lock context info */
  73	struct kiocb *		iocb;		/* controlling i/o request */
  74	struct inode *		inode;		/* target file of i/o */
  75
  76	/* completion state */
  77	atomic_t		io_count;	/* i/os we're waiting for */
  78	spinlock_t		lock;		/* protect completion state */
  79
  80	loff_t			io_start;	/* Start offset for I/O */
 
 
  81	ssize_t			count,		/* bytes actually processed */
  82				max_count,	/* max expected count */
  83				bytes_left,	/* bytes left to be sent */
 
  84				error;		/* any reported error */
  85	struct completion	completion;	/* wait for i/o completion */
  86
  87	/* commit state */
  88	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
  89	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
  90	struct work_struct	work;
  91	int			flags;
  92	/* for write */
  93#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
  94#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
  95	/* for read */
  96#define NFS_ODIRECT_SHOULD_DIRTY	(3)	/* dirty user-space page after read */
  97	struct nfs_writeverf	verf;		/* unstable write verifier */
  98};
  99
 100static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
 101static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
 102static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
 103static void nfs_direct_write_schedule_work(struct work_struct *work);
 104
 105static inline void get_dreq(struct nfs_direct_req *dreq)
 106{
 107	atomic_inc(&dreq->io_count);
 108}
 109
 110static inline int put_dreq(struct nfs_direct_req *dreq)
 111{
 112	return atomic_dec_and_test(&dreq->io_count);
 113}
 114
 115static void
 116nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
 117			    const struct nfs_pgio_header *hdr,
 118			    ssize_t dreq_len)
 119{
 120	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
 121	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
 122		return;
 123	if (dreq->max_count >= dreq_len) {
 124		dreq->max_count = dreq_len;
 125		if (dreq->count > dreq_len)
 126			dreq->count = dreq_len;
 127
 128		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
 129			dreq->error = hdr->error;
 130		else /* Clear outstanding error if this is EOF */
 131			dreq->error = 0;
 132	}
 133}
 134
 135static void
 136nfs_direct_count_bytes(struct nfs_direct_req *dreq,
 137		       const struct nfs_pgio_header *hdr)
 138{
 139	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
 140	ssize_t dreq_len = 0;
 141
 142	if (hdr_end > dreq->io_start)
 143		dreq_len = hdr_end - dreq->io_start;
 144
 145	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
 
 
 
 
 
 
 
 
 
 
 
 
 146
 147	if (dreq_len > dreq->max_count)
 148		dreq_len = dreq->max_count;
 149
 150	if (dreq->count < dreq_len)
 151		dreq->count = dreq_len;
 152}
 153
 154/*
 155 * nfs_direct_select_verf - select the right verifier
 156 * @dreq - direct request possibly spanning multiple servers
 157 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
 158 * @commit_idx - commit bucket index for the DS
 159 *
 160 * returns the correct verifier to use given the role of the server
 161 */
 162static struct nfs_writeverf *
 163nfs_direct_select_verf(struct nfs_direct_req *dreq,
 164		       struct nfs_client *ds_clp,
 165		       int commit_idx)
 166{
 167	struct nfs_writeverf *verfp = &dreq->verf;
 168
 169#ifdef CONFIG_NFS_V4_1
 170	/*
 171	 * pNFS is in use, use the DS verf except commit_through_mds is set
 172	 * for layout segment where nbuckets is zero.
 173	 */
 174	if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
 175		if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
 176			verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
 177		else
 178			WARN_ON_ONCE(1);
 179	}
 180#endif
 181	return verfp;
 182}
 183
 184
 185/*
 186 * nfs_direct_set_hdr_verf - set the write/commit verifier
 187 * @dreq - direct request possibly spanning multiple servers
 188 * @hdr - pageio header to validate against previously seen verfs
 189 *
 190 * Set the server's (MDS or DS) "seen" verifier
 191 */
 192static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
 193				    struct nfs_pgio_header *hdr)
 194{
 195	struct nfs_writeverf *verfp;
 196
 197	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
 198	WARN_ON_ONCE(verfp->committed >= 0);
 199	memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
 200	WARN_ON_ONCE(verfp->committed < 0);
 201}
 202
 203static int nfs_direct_cmp_verf(const struct nfs_writeverf *v1,
 204		const struct nfs_writeverf *v2)
 205{
 206	return nfs_write_verifier_cmp(&v1->verifier, &v2->verifier);
 207}
 208
 209/*
 210 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
 211 * @dreq - direct request possibly spanning multiple servers
 212 * @hdr - pageio header to validate against previously seen verf
 213 *
 214 * set the server's "seen" verf if not initialized.
 215 * returns result of comparison between @hdr->verf and the "seen"
 216 * verf of the server used by @hdr (DS or MDS)
 217 */
 218static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
 219					  struct nfs_pgio_header *hdr)
 220{
 221	struct nfs_writeverf *verfp;
 222
 223	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
 224	if (verfp->committed < 0) {
 225		nfs_direct_set_hdr_verf(dreq, hdr);
 226		return 0;
 227	}
 228	return nfs_direct_cmp_verf(verfp, &hdr->verf);
 229}
 230
 231/*
 232 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
 233 * @dreq - direct request possibly spanning multiple servers
 234 * @data - commit data to validate against previously seen verf
 235 *
 236 * returns result of comparison between @data->verf and the verf of
 237 * the server used by @data (DS or MDS)
 238 */
 239static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
 240					   struct nfs_commit_data *data)
 241{
 242	struct nfs_writeverf *verfp;
 243
 244	verfp = nfs_direct_select_verf(dreq, data->ds_clp,
 245					 data->ds_commit_index);
 246
 247	/* verifier not set so always fail */
 248	if (verfp->committed < 0)
 249		return 1;
 250
 251	return nfs_direct_cmp_verf(verfp, &data->verf);
 252}
 253
 254/**
 255 * nfs_direct_IO - NFS address space operation for direct I/O
 256 * @iocb: target I/O control block
 257 * @iter: I/O buffer
 
 
 258 *
 259 * The presence of this routine in the address space ops vector means
 260 * the NFS client supports direct I/O. However, for most direct IO, we
 261 * shunt off direct read and write requests before the VFS gets them,
 262 * so this method is only ever called for swap.
 263 */
 264ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 265{
 266	struct inode *inode = iocb->ki_filp->f_mapping->host;
 267
 268	/* we only support swap file calling nfs_direct_IO */
 269	if (!IS_SWAPFILE(inode))
 270		return 0;
 271
 272	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
 273
 274	if (iov_iter_rw(iter) == READ)
 275		return nfs_file_direct_read(iocb, iter);
 276	return nfs_file_direct_write(iocb, iter);
 277}
 278
 279static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 280{
 281	unsigned int i;
 282	for (i = 0; i < npages; i++)
 283		put_page(pages[i]);
 284}
 285
 286void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
 287			      struct nfs_direct_req *dreq)
 288{
 289	cinfo->inode = dreq->inode;
 290	cinfo->mds = &dreq->mds_cinfo;
 291	cinfo->ds = &dreq->ds_cinfo;
 292	cinfo->dreq = dreq;
 293	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
 294}
 295
 
 
 
 
 
 
 
 
 
 
 
 
 296static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 297{
 298	struct nfs_direct_req *dreq;
 299
 300	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
 301	if (!dreq)
 302		return NULL;
 303
 304	kref_init(&dreq->kref);
 305	kref_get(&dreq->kref);
 306	init_completion(&dreq->completion);
 307	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 308	dreq->verf.committed = NFS_INVALID_STABLE_HOW;	/* not set yet */
 309	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
 
 310	spin_lock_init(&dreq->lock);
 311
 312	return dreq;
 313}
 314
 315static void nfs_direct_req_free(struct kref *kref)
 316{
 317	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 318
 319	nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
 320	if (dreq->l_ctx != NULL)
 321		nfs_put_lock_context(dreq->l_ctx);
 322	if (dreq->ctx != NULL)
 323		put_nfs_open_context(dreq->ctx);
 324	kmem_cache_free(nfs_direct_cachep, dreq);
 325}
 326
 327static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 328{
 329	kref_put(&dreq->kref, nfs_direct_req_free);
 330}
 331
 332ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
 333{
 334	return dreq->bytes_left;
 335}
 336EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
 337
 338/*
 339 * Collects and returns the final error value/byte-count.
 340 */
 341static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 342{
 343	ssize_t result = -EIOCBQUEUED;
 344
 345	/* Async requests don't wait here */
 346	if (dreq->iocb)
 347		goto out;
 348
 349	result = wait_for_completion_killable(&dreq->completion);
 350
 351	if (!result) {
 352		result = dreq->count;
 353		WARN_ON_ONCE(dreq->count < 0);
 354	}
 355	if (!result)
 356		result = dreq->error;
 
 
 357
 358out:
 359	return (ssize_t) result;
 360}
 361
 362/*
 363 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 364 * the iocb is still valid here if this is a synchronous request.
 365 */
 366static void nfs_direct_complete(struct nfs_direct_req *dreq)
 367{
 368	struct inode *inode = dreq->inode;
 369
 
 
 
 
 
 
 
 
 
 
 
 
 370	inode_dio_end(inode);
 371
 372	if (dreq->iocb) {
 373		long res = (long) dreq->error;
 374		if (dreq->count != 0) {
 375			res = (long) dreq->count;
 376			WARN_ON_ONCE(dreq->count < 0);
 377		}
 378		dreq->iocb->ki_complete(dreq->iocb, res, 0);
 379	}
 380
 381	complete(&dreq->completion);
 382
 383	nfs_direct_req_release(dreq);
 384}
 385
 
 
 
 
 
 
 
 
 
 
 386static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
 387{
 388	unsigned long bytes = 0;
 389	struct nfs_direct_req *dreq = hdr->dreq;
 390
 391	spin_lock(&dreq->lock);
 392	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
 393		spin_unlock(&dreq->lock);
 394		goto out_put;
 395	}
 396
 397	nfs_direct_count_bytes(dreq, hdr);
 
 
 
 
 
 398	spin_unlock(&dreq->lock);
 399
 400	while (!list_empty(&hdr->pages)) {
 401		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 402		struct page *page = req->wb_page;
 403
 404		if (!PageCompound(page) && bytes < hdr->good_bytes &&
 405		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
 406			set_page_dirty(page);
 407		bytes += req->wb_bytes;
 408		nfs_list_remove_request(req);
 409		nfs_release_request(req);
 410	}
 411out_put:
 412	if (put_dreq(dreq))
 413		nfs_direct_complete(dreq);
 414	hdr->release(hdr);
 415}
 416
 417static void nfs_read_sync_pgio_error(struct list_head *head, int error)
 418{
 419	struct nfs_page *req;
 420
 421	while (!list_empty(head)) {
 422		req = nfs_list_entry(head->next);
 423		nfs_list_remove_request(req);
 424		nfs_release_request(req);
 425	}
 426}
 427
 428static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
 429{
 430	get_dreq(hdr->dreq);
 431}
 432
 433static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
 434	.error_cleanup = nfs_read_sync_pgio_error,
 435	.init_hdr = nfs_direct_pgio_init,
 436	.completion = nfs_direct_read_completion,
 437};
 438
 439/*
 440 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 441 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 442 * bail and stop sending more reads.  Read length accounting is
 443 * handled automatically by nfs_direct_read_result().  Otherwise, if
 444 * no requests have been sent, just return an error.
 445 */
 446
 447static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 448					      struct iov_iter *iter,
 449					      loff_t pos)
 450{
 451	struct nfs_pageio_descriptor desc;
 452	struct inode *inode = dreq->inode;
 453	ssize_t result = -EINVAL;
 454	size_t requested_bytes = 0;
 455	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
 456
 457	nfs_pageio_init_read(&desc, dreq->inode, false,
 458			     &nfs_direct_read_completion_ops);
 459	get_dreq(dreq);
 460	desc.pg_dreq = dreq;
 461	inode_dio_begin(inode);
 462
 463	while (iov_iter_count(iter)) {
 464		struct page **pagevec;
 465		size_t bytes;
 466		size_t pgbase;
 467		unsigned npages, i;
 468
 469		result = iov_iter_get_pages_alloc(iter, &pagevec, 
 470						  rsize, &pgbase);
 471		if (result < 0)
 472			break;
 473	
 474		bytes = result;
 475		iov_iter_advance(iter, bytes);
 476		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 477		for (i = 0; i < npages; i++) {
 478			struct nfs_page *req;
 479			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 480			/* XXX do we need to do the eof zeroing found in async_filler? */
 481			req = nfs_create_request(dreq->ctx, pagevec[i],
 482						 pgbase, req_len);
 483			if (IS_ERR(req)) {
 484				result = PTR_ERR(req);
 485				break;
 486			}
 487			req->wb_index = pos >> PAGE_SHIFT;
 488			req->wb_offset = pos & ~PAGE_MASK;
 489			if (!nfs_pageio_add_request(&desc, req)) {
 490				result = desc.pg_error;
 491				nfs_release_request(req);
 492				break;
 493			}
 494			pgbase = 0;
 495			bytes -= req_len;
 496			requested_bytes += req_len;
 497			pos += req_len;
 498			dreq->bytes_left -= req_len;
 499		}
 500		nfs_direct_release_pages(pagevec, npages);
 501		kvfree(pagevec);
 502		if (result < 0)
 503			break;
 504	}
 505
 506	nfs_pageio_complete(&desc);
 507
 508	/*
 509	 * If no bytes were started, return the error, and let the
 510	 * generic layer handle the completion.
 511	 */
 512	if (requested_bytes == 0) {
 513		inode_dio_end(inode);
 514		nfs_direct_req_release(dreq);
 515		return result < 0 ? result : -EIO;
 516	}
 517
 518	if (put_dreq(dreq))
 519		nfs_direct_complete(dreq);
 520	return requested_bytes;
 521}
 522
 523/**
 524 * nfs_file_direct_read - file direct read operation for NFS files
 525 * @iocb: target I/O control block
 526 * @iter: vector of user buffers into which to read data
 
 527 *
 528 * We use this function for direct reads instead of calling
 529 * generic_file_aio_read() in order to avoid gfar's check to see if
 530 * the request starts before the end of the file.  For that check
 531 * to work, we must generate a GETATTR before each direct read, and
 532 * even then there is a window between the GETATTR and the subsequent
 533 * READ where the file size could change.  Our preference is simply
 534 * to do all reads the application wants, and the server will take
 535 * care of managing the end of file boundary.
 536 *
 537 * This function also eliminates unnecessarily updating the file's
 538 * atime locally, as the NFS server sets the file's atime, and this
 539 * client must read the updated atime from the server back into its
 540 * cache.
 541 */
 542ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter)
 
 543{
 544	struct file *file = iocb->ki_filp;
 545	struct address_space *mapping = file->f_mapping;
 546	struct inode *inode = mapping->host;
 547	struct nfs_direct_req *dreq;
 548	struct nfs_lock_context *l_ctx;
 549	ssize_t result = -EINVAL, requested;
 550	size_t count = iov_iter_count(iter);
 551	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 552
 553	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
 554		file, count, (long long) iocb->ki_pos);
 555
 556	result = 0;
 557	if (!count)
 558		goto out;
 559
 
 
 
 
 
 560	task_io_account_read(count);
 561
 562	result = -ENOMEM;
 563	dreq = nfs_direct_req_alloc();
 564	if (dreq == NULL)
 565		goto out;
 566
 567	dreq->inode = inode;
 568	dreq->bytes_left = dreq->max_count = count;
 569	dreq->io_start = iocb->ki_pos;
 570	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 571	l_ctx = nfs_get_lock_context(dreq->ctx);
 572	if (IS_ERR(l_ctx)) {
 573		result = PTR_ERR(l_ctx);
 574		goto out_release;
 575	}
 576	dreq->l_ctx = l_ctx;
 577	if (!is_sync_kiocb(iocb))
 578		dreq->iocb = iocb;
 579
 580	if (iter_is_iovec(iter))
 581		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
 582
 583	nfs_start_io_direct(inode);
 584
 585	NFS_I(inode)->read_io += count;
 586	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
 587
 588	nfs_end_io_direct(inode);
 589
 590	if (requested > 0) {
 591		result = nfs_direct_wait(dreq);
 592		if (result > 0) {
 593			requested -= result;
 594			iocb->ki_pos += result;
 595		}
 596		iov_iter_revert(iter, requested);
 597	} else {
 598		result = requested;
 599	}
 600
 
 
 
 601out_release:
 602	nfs_direct_req_release(dreq);
 
 
 603out:
 604	return result;
 605}
 606
 607static void
 608nfs_direct_write_scan_commit_list(struct inode *inode,
 609				  struct list_head *list,
 610				  struct nfs_commit_info *cinfo)
 611{
 612	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
 613#ifdef CONFIG_NFS_V4_1
 614	if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
 615		NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
 616#endif
 617	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
 618	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
 619}
 620
 621static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 622{
 623	struct nfs_pageio_descriptor desc;
 624	struct nfs_page *req, *tmp;
 625	LIST_HEAD(reqs);
 626	struct nfs_commit_info cinfo;
 627	LIST_HEAD(failed);
 
 628
 629	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 630	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
 631
 632	dreq->count = 0;
 633	dreq->max_count = 0;
 634	list_for_each_entry(req, &reqs, wb_list)
 635		dreq->max_count += req->wb_bytes;
 636	dreq->verf.committed = NFS_INVALID_STABLE_HOW;
 637	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
 638	get_dreq(dreq);
 639
 640	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
 641			      &nfs_direct_write_completion_ops);
 642	desc.pg_dreq = dreq;
 643
 
 
 
 
 
 
 
 644	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
 645		/* Bump the transmission count */
 646		req->wb_nio++;
 647		if (!nfs_pageio_add_request(&desc, req)) {
 648			nfs_list_move_request(req, &failed);
 649			spin_lock(&cinfo.inode->i_lock);
 
 650			dreq->flags = 0;
 651			if (desc.pg_error < 0)
 652				dreq->error = desc.pg_error;
 653			else
 654				dreq->error = -EIO;
 655			spin_unlock(&cinfo.inode->i_lock);
 656		}
 657		nfs_release_request(req);
 658	}
 659	nfs_pageio_complete(&desc);
 660
 
 661	while (!list_empty(&failed)) {
 662		req = nfs_list_entry(failed.next);
 663		nfs_list_remove_request(req);
 664		nfs_unlock_and_release_request(req);
 665	}
 666
 667	if (put_dreq(dreq))
 668		nfs_direct_write_complete(dreq);
 669}
 670
 671static void nfs_direct_commit_complete(struct nfs_commit_data *data)
 672{
 673	struct nfs_direct_req *dreq = data->dreq;
 674	struct nfs_commit_info cinfo;
 675	struct nfs_page *req;
 676	int status = data->task.tk_status;
 677
 678	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 679	if (status < 0 || nfs_direct_cmp_commit_data_verf(dreq, data))
 
 
 
 
 
 680		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 
 681
 
 682	while (!list_empty(&data->pages)) {
 683		req = nfs_list_entry(data->pages.next);
 684		nfs_list_remove_request(req);
 685		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
 686			/*
 687			 * Despite the reboot, the write was successful,
 688			 * so reset wb_nio.
 689			 */
 690			req->wb_nio = 0;
 691			/* Note the rewrite will go through mds */
 692			nfs_mark_request_commit(req, NULL, &cinfo, 0);
 693		} else
 694			nfs_release_request(req);
 695		nfs_unlock_and_release_request(req);
 696	}
 697
 698	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
 699		nfs_direct_write_complete(dreq);
 700}
 701
 702static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
 703		struct nfs_page *req)
 704{
 705	struct nfs_direct_req *dreq = cinfo->dreq;
 706
 707	spin_lock(&dreq->lock);
 708	dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 709	spin_unlock(&dreq->lock);
 710	nfs_mark_request_commit(req, NULL, cinfo, 0);
 711}
 712
 713static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
 714	.completion = nfs_direct_commit_complete,
 715	.resched_write = nfs_direct_resched_write,
 716};
 717
 718static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 719{
 720	int res;
 721	struct nfs_commit_info cinfo;
 722	LIST_HEAD(mds_list);
 723
 724	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 725	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
 726	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
 727	if (res < 0) /* res == -ENOMEM */
 728		nfs_direct_write_reschedule(dreq);
 729}
 730
 731static void nfs_direct_write_schedule_work(struct work_struct *work)
 732{
 733	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
 734	int flags = dreq->flags;
 735
 736	dreq->flags = 0;
 737	switch (flags) {
 738		case NFS_ODIRECT_DO_COMMIT:
 739			nfs_direct_commit_schedule(dreq);
 740			break;
 741		case NFS_ODIRECT_RESCHED_WRITES:
 742			nfs_direct_write_reschedule(dreq);
 743			break;
 744		default:
 745			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
 746			nfs_direct_complete(dreq);
 747	}
 748}
 749
 750static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
 751{
 752	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
 753}
 754
 755static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
 756{
 757	struct nfs_direct_req *dreq = hdr->dreq;
 758	struct nfs_commit_info cinfo;
 759	bool request_commit = false;
 760	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 761
 
 
 
 762	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 763
 764	spin_lock(&dreq->lock);
 765	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
 766		spin_unlock(&dreq->lock);
 767		goto out_put;
 768	}
 769
 770	nfs_direct_count_bytes(dreq, hdr);
 771	if (hdr->good_bytes != 0) {
 
 
 
 
 772		if (nfs_write_need_commit(hdr)) {
 773			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
 774				request_commit = true;
 775			else if (dreq->flags == 0) {
 776				nfs_direct_set_hdr_verf(dreq, hdr);
 777				request_commit = true;
 778				dreq->flags = NFS_ODIRECT_DO_COMMIT;
 779			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
 780				request_commit = true;
 781				if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
 782					dreq->flags =
 783						NFS_ODIRECT_RESCHED_WRITES;
 784			}
 785		}
 786	}
 787	spin_unlock(&dreq->lock);
 788
 789	while (!list_empty(&hdr->pages)) {
 790
 791		req = nfs_list_entry(hdr->pages.next);
 792		nfs_list_remove_request(req);
 793		if (request_commit) {
 794			kref_get(&req->wb_kref);
 795			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
 796				hdr->ds_commit_idx);
 797		}
 798		nfs_unlock_and_release_request(req);
 799	}
 800
 801out_put:
 802	if (put_dreq(dreq))
 803		nfs_direct_write_complete(dreq);
 804	hdr->release(hdr);
 805}
 806
 807static void nfs_write_sync_pgio_error(struct list_head *head, int error)
 808{
 809	struct nfs_page *req;
 810
 811	while (!list_empty(head)) {
 812		req = nfs_list_entry(head->next);
 813		nfs_list_remove_request(req);
 814		nfs_unlock_and_release_request(req);
 815	}
 816}
 817
 818static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
 819{
 820	struct nfs_direct_req *dreq = hdr->dreq;
 821
 822	spin_lock(&dreq->lock);
 823	if (dreq->error == 0) {
 824		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 825		/* fake unstable write to let common nfs resend pages */
 826		hdr->verf.committed = NFS_UNSTABLE;
 827		hdr->good_bytes = hdr->args.count;
 828	}
 829	spin_unlock(&dreq->lock);
 830}
 831
 832static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
 833	.error_cleanup = nfs_write_sync_pgio_error,
 834	.init_hdr = nfs_direct_pgio_init,
 835	.completion = nfs_direct_write_completion,
 836	.reschedule_io = nfs_direct_write_reschedule_io,
 837};
 838
 839
 840/*
 841 * NB: Return the value of the first error return code.  Subsequent
 842 *     errors after the first one are ignored.
 843 */
 844/*
 845 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 846 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 847 * bail and stop sending more writes.  Write length accounting is
 848 * handled automatically by nfs_direct_write_result().  Otherwise, if
 849 * no requests have been sent, just return an error.
 850 */
 851static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 852					       struct iov_iter *iter,
 853					       loff_t pos)
 854{
 855	struct nfs_pageio_descriptor desc;
 856	struct inode *inode = dreq->inode;
 857	ssize_t result = 0;
 858	size_t requested_bytes = 0;
 859	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
 860
 861	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
 862			      &nfs_direct_write_completion_ops);
 863	desc.pg_dreq = dreq;
 864	get_dreq(dreq);
 865	inode_dio_begin(inode);
 866
 867	NFS_I(inode)->write_io += iov_iter_count(iter);
 868	while (iov_iter_count(iter)) {
 869		struct page **pagevec;
 870		size_t bytes;
 871		size_t pgbase;
 872		unsigned npages, i;
 873
 874		result = iov_iter_get_pages_alloc(iter, &pagevec, 
 875						  wsize, &pgbase);
 876		if (result < 0)
 877			break;
 878
 879		bytes = result;
 880		iov_iter_advance(iter, bytes);
 881		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 882		for (i = 0; i < npages; i++) {
 883			struct nfs_page *req;
 884			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 885
 886			req = nfs_create_request(dreq->ctx, pagevec[i],
 887						 pgbase, req_len);
 888			if (IS_ERR(req)) {
 889				result = PTR_ERR(req);
 890				break;
 891			}
 892
 
 893			if (desc.pg_error < 0) {
 894				nfs_free_request(req);
 895				result = desc.pg_error;
 896				break;
 897			}
 898
 899			nfs_lock_request(req);
 900			req->wb_index = pos >> PAGE_SHIFT;
 901			req->wb_offset = pos & ~PAGE_MASK;
 902			if (!nfs_pageio_add_request(&desc, req)) {
 903				result = desc.pg_error;
 904				nfs_unlock_and_release_request(req);
 905				break;
 906			}
 907			pgbase = 0;
 908			bytes -= req_len;
 909			requested_bytes += req_len;
 910			pos += req_len;
 911			dreq->bytes_left -= req_len;
 912		}
 913		nfs_direct_release_pages(pagevec, npages);
 914		kvfree(pagevec);
 915		if (result < 0)
 916			break;
 917	}
 918	nfs_pageio_complete(&desc);
 919
 920	/*
 921	 * If no bytes were started, return the error, and let the
 922	 * generic layer handle the completion.
 923	 */
 924	if (requested_bytes == 0) {
 925		inode_dio_end(inode);
 926		nfs_direct_req_release(dreq);
 927		return result < 0 ? result : -EIO;
 928	}
 929
 930	if (put_dreq(dreq))
 931		nfs_direct_write_complete(dreq);
 932	return requested_bytes;
 933}
 934
 935/**
 936 * nfs_file_direct_write - file direct write operation for NFS files
 937 * @iocb: target I/O control block
 938 * @iter: vector of user buffers from which to write data
 
 939 *
 940 * We use this function for direct writes instead of calling
 941 * generic_file_aio_write() in order to avoid taking the inode
 942 * semaphore and updating the i_size.  The NFS server will set
 943 * the new i_size and this client must read the updated size
 944 * back into its cache.  We let the server do generic write
 945 * parameter checking and report problems.
 946 *
 947 * We eliminate local atime updates, see direct read above.
 948 *
 949 * We avoid unnecessary page cache invalidations for normal cached
 950 * readers of this file.
 951 *
 952 * Note that O_APPEND is not supported for NFS direct writes, as there
 953 * is no atomic O_APPEND write facility in the NFS protocol.
 954 */
 955ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
 956{
 957	ssize_t result = -EINVAL, requested;
 958	size_t count;
 959	struct file *file = iocb->ki_filp;
 960	struct address_space *mapping = file->f_mapping;
 961	struct inode *inode = mapping->host;
 962	struct nfs_direct_req *dreq;
 963	struct nfs_lock_context *l_ctx;
 964	loff_t pos, end;
 965
 966	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
 967		file, iov_iter_count(iter), (long long) iocb->ki_pos);
 968
 969	result = generic_write_checks(iocb, iter);
 970	if (result <= 0)
 971		return result;
 972	count = result;
 973	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
 974
 975	pos = iocb->ki_pos;
 976	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
 977
 978	task_io_account_write(count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 979
 980	result = -ENOMEM;
 981	dreq = nfs_direct_req_alloc();
 982	if (!dreq)
 983		goto out;
 984
 985	dreq->inode = inode;
 986	dreq->bytes_left = dreq->max_count = count;
 987	dreq->io_start = pos;
 988	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 989	l_ctx = nfs_get_lock_context(dreq->ctx);
 990	if (IS_ERR(l_ctx)) {
 991		result = PTR_ERR(l_ctx);
 992		goto out_release;
 993	}
 994	dreq->l_ctx = l_ctx;
 995	if (!is_sync_kiocb(iocb))
 996		dreq->iocb = iocb;
 997
 998	nfs_start_io_direct(inode);
 999
1000	requested = nfs_direct_write_schedule_iovec(dreq, iter, pos);
1001
1002	if (mapping->nrpages) {
1003		invalidate_inode_pages2_range(mapping,
1004					      pos >> PAGE_SHIFT, end);
1005	}
1006
1007	nfs_end_io_direct(inode);
1008
1009	if (requested > 0) {
1010		result = nfs_direct_wait(dreq);
1011		if (result > 0) {
1012			requested -= result;
 
1013			iocb->ki_pos = pos + result;
1014			/* XXX: should check the generic_write_sync retval */
1015			generic_write_sync(iocb, result);
 
 
 
1016		}
1017		iov_iter_revert(iter, requested);
1018	} else {
1019		result = requested;
1020	}
 
 
 
1021out_release:
1022	nfs_direct_req_release(dreq);
1023out:
 
1024	return result;
1025}
1026
1027/**
1028 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1029 *
1030 */
1031int __init nfs_init_directcache(void)
1032{
1033	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1034						sizeof(struct nfs_direct_req),
1035						0, (SLAB_RECLAIM_ACCOUNT|
1036							SLAB_MEM_SPREAD),
1037						NULL);
1038	if (nfs_direct_cachep == NULL)
1039		return -ENOMEM;
1040
1041	return 0;
1042}
1043
1044/**
1045 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1046 *
1047 */
1048void nfs_destroy_directcache(void)
1049{
1050	kmem_cache_destroy(nfs_direct_cachep);
1051}
v4.6
 
   1/*
   2 * linux/fs/nfs/direct.c
   3 *
   4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   5 *
   6 * High-performance uncached I/O for the Linux NFS client
   7 *
   8 * There are important applications whose performance or correctness
   9 * depends on uncached access to file data.  Database clusters
  10 * (multiple copies of the same instance running on separate hosts)
  11 * implement their own cache coherency protocol that subsumes file
  12 * system cache protocols.  Applications that process datasets
  13 * considerably larger than the client's memory do not always benefit
  14 * from a local cache.  A streaming video server, for instance, has no
  15 * need to cache the contents of a file.
  16 *
  17 * When an application requests uncached I/O, all read and write requests
  18 * are made directly to the server; data stored or fetched via these
  19 * requests is not cached in the Linux page cache.  The client does not
  20 * correct unaligned requests from applications.  All requested bytes are
  21 * held on permanent storage before a direct write system call returns to
  22 * an application.
  23 *
  24 * Solaris implements an uncached I/O facility called directio() that
  25 * is used for backups and sequential I/O to very large files.  Solaris
  26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27 * an undocumented mount option.
  28 *
  29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30 * help from Andrew Morton.
  31 *
  32 * 18 Dec 2001	Initial implementation for 2.4  --cel
  33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  34 * 08 Jun 2003	Port to 2.5 APIs  --cel
  35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  36 * 15 Sep 2004	Parallel async reads  --cel
  37 * 04 May 2005	support O_DIRECT with aio  --cel
  38 *
  39 */
  40
  41#include <linux/errno.h>
  42#include <linux/sched.h>
  43#include <linux/kernel.h>
  44#include <linux/file.h>
  45#include <linux/pagemap.h>
  46#include <linux/kref.h>
  47#include <linux/slab.h>
  48#include <linux/task_io_accounting_ops.h>
  49#include <linux/module.h>
  50
  51#include <linux/nfs_fs.h>
  52#include <linux/nfs_page.h>
  53#include <linux/sunrpc/clnt.h>
  54
  55#include <asm/uaccess.h>
  56#include <linux/atomic.h>
  57
  58#include "internal.h"
  59#include "iostat.h"
  60#include "pnfs.h"
  61
  62#define NFSDBG_FACILITY		NFSDBG_VFS
  63
  64static struct kmem_cache *nfs_direct_cachep;
  65
  66/*
  67 * This represents a set of asynchronous requests that we're waiting on
  68 */
  69struct nfs_direct_mirror {
  70	ssize_t count;
  71};
  72
  73struct nfs_direct_req {
  74	struct kref		kref;		/* release manager */
  75
  76	/* I/O parameters */
  77	struct nfs_open_context	*ctx;		/* file open context info */
  78	struct nfs_lock_context *l_ctx;		/* Lock context info */
  79	struct kiocb *		iocb;		/* controlling i/o request */
  80	struct inode *		inode;		/* target file of i/o */
  81
  82	/* completion state */
  83	atomic_t		io_count;	/* i/os we're waiting for */
  84	spinlock_t		lock;		/* protect completion state */
  85
  86	struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
  87	int			mirror_count;
  88
  89	ssize_t			count,		/* bytes actually processed */
 
  90				bytes_left,	/* bytes left to be sent */
  91				io_start,	/* start of IO */
  92				error;		/* any reported error */
  93	struct completion	completion;	/* wait for i/o completion */
  94
  95	/* commit state */
  96	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
  97	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
  98	struct work_struct	work;
  99	int			flags;
 
 100#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
 101#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
 
 
 102	struct nfs_writeverf	verf;		/* unstable write verifier */
 103};
 104
 105static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
 106static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
 107static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
 108static void nfs_direct_write_schedule_work(struct work_struct *work);
 109
 110static inline void get_dreq(struct nfs_direct_req *dreq)
 111{
 112	atomic_inc(&dreq->io_count);
 113}
 114
 115static inline int put_dreq(struct nfs_direct_req *dreq)
 116{
 117	return atomic_dec_and_test(&dreq->io_count);
 118}
 119
 120static void
 121nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122{
 123	int i;
 124	ssize_t count;
 
 
 
 125
 126	if (dreq->mirror_count == 1) {
 127		dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
 128		dreq->count += hdr->good_bytes;
 129	} else {
 130		/* mirrored writes */
 131		count = dreq->mirrors[hdr->pgio_mirror_idx].count;
 132		if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
 133			count = hdr->io_start + hdr->good_bytes - dreq->io_start;
 134			dreq->mirrors[hdr->pgio_mirror_idx].count = count;
 135		}
 136		/* update the dreq->count by finding the minimum agreed count from all
 137		 * mirrors */
 138		count = dreq->mirrors[0].count;
 139
 140		for (i = 1; i < dreq->mirror_count; i++)
 141			count = min(count, dreq->mirrors[i].count);
 142
 143		dreq->count = count;
 144	}
 145}
 146
 147/*
 148 * nfs_direct_select_verf - select the right verifier
 149 * @dreq - direct request possibly spanning multiple servers
 150 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
 151 * @commit_idx - commit bucket index for the DS
 152 *
 153 * returns the correct verifier to use given the role of the server
 154 */
 155static struct nfs_writeverf *
 156nfs_direct_select_verf(struct nfs_direct_req *dreq,
 157		       struct nfs_client *ds_clp,
 158		       int commit_idx)
 159{
 160	struct nfs_writeverf *verfp = &dreq->verf;
 161
 162#ifdef CONFIG_NFS_V4_1
 163	/*
 164	 * pNFS is in use, use the DS verf except commit_through_mds is set
 165	 * for layout segment where nbuckets is zero.
 166	 */
 167	if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
 168		if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
 169			verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
 170		else
 171			WARN_ON_ONCE(1);
 172	}
 173#endif
 174	return verfp;
 175}
 176
 177
 178/*
 179 * nfs_direct_set_hdr_verf - set the write/commit verifier
 180 * @dreq - direct request possibly spanning multiple servers
 181 * @hdr - pageio header to validate against previously seen verfs
 182 *
 183 * Set the server's (MDS or DS) "seen" verifier
 184 */
 185static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
 186				    struct nfs_pgio_header *hdr)
 187{
 188	struct nfs_writeverf *verfp;
 189
 190	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
 191	WARN_ON_ONCE(verfp->committed >= 0);
 192	memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
 193	WARN_ON_ONCE(verfp->committed < 0);
 194}
 195
 
 
 
 
 
 
 196/*
 197 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
 198 * @dreq - direct request possibly spanning multiple servers
 199 * @hdr - pageio header to validate against previously seen verf
 200 *
 201 * set the server's "seen" verf if not initialized.
 202 * returns result of comparison between @hdr->verf and the "seen"
 203 * verf of the server used by @hdr (DS or MDS)
 204 */
 205static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
 206					  struct nfs_pgio_header *hdr)
 207{
 208	struct nfs_writeverf *verfp;
 209
 210	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
 211	if (verfp->committed < 0) {
 212		nfs_direct_set_hdr_verf(dreq, hdr);
 213		return 0;
 214	}
 215	return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
 216}
 217
 218/*
 219 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
 220 * @dreq - direct request possibly spanning multiple servers
 221 * @data - commit data to validate against previously seen verf
 222 *
 223 * returns result of comparison between @data->verf and the verf of
 224 * the server used by @data (DS or MDS)
 225 */
 226static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
 227					   struct nfs_commit_data *data)
 228{
 229	struct nfs_writeverf *verfp;
 230
 231	verfp = nfs_direct_select_verf(dreq, data->ds_clp,
 232					 data->ds_commit_index);
 233
 234	/* verifier not set so always fail */
 235	if (verfp->committed < 0)
 236		return 1;
 237
 238	return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
 239}
 240
 241/**
 242 * nfs_direct_IO - NFS address space operation for direct I/O
 243 * @iocb: target I/O control block
 244 * @iov: array of vectors that define I/O buffer
 245 * @pos: offset in file to begin the operation
 246 * @nr_segs: size of iovec array
 247 *
 248 * The presence of this routine in the address space ops vector means
 249 * the NFS client supports direct I/O. However, for most direct IO, we
 250 * shunt off direct read and write requests before the VFS gets them,
 251 * so this method is only ever called for swap.
 252 */
 253ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
 254{
 255	struct inode *inode = iocb->ki_filp->f_mapping->host;
 256
 257	/* we only support swap file calling nfs_direct_IO */
 258	if (!IS_SWAPFILE(inode))
 259		return 0;
 260
 261	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
 262
 263	if (iov_iter_rw(iter) == READ)
 264		return nfs_file_direct_read(iocb, iter, pos);
 265	return nfs_file_direct_write(iocb, iter);
 266}
 267
 268static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 269{
 270	unsigned int i;
 271	for (i = 0; i < npages; i++)
 272		put_page(pages[i]);
 273}
 274
 275void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
 276			      struct nfs_direct_req *dreq)
 277{
 278	cinfo->lock = &dreq->inode->i_lock;
 279	cinfo->mds = &dreq->mds_cinfo;
 280	cinfo->ds = &dreq->ds_cinfo;
 281	cinfo->dreq = dreq;
 282	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
 283}
 284
 285static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
 286					     struct nfs_pageio_descriptor *pgio,
 287					     struct nfs_page *req)
 288{
 289	int mirror_count = 1;
 290
 291	if (pgio->pg_ops->pg_get_mirror_count)
 292		mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
 293
 294	dreq->mirror_count = mirror_count;
 295}
 296
 297static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 298{
 299	struct nfs_direct_req *dreq;
 300
 301	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
 302	if (!dreq)
 303		return NULL;
 304
 305	kref_init(&dreq->kref);
 306	kref_get(&dreq->kref);
 307	init_completion(&dreq->completion);
 308	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 309	dreq->verf.committed = NFS_INVALID_STABLE_HOW;	/* not set yet */
 310	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
 311	dreq->mirror_count = 1;
 312	spin_lock_init(&dreq->lock);
 313
 314	return dreq;
 315}
 316
 317static void nfs_direct_req_free(struct kref *kref)
 318{
 319	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 320
 321	nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
 322	if (dreq->l_ctx != NULL)
 323		nfs_put_lock_context(dreq->l_ctx);
 324	if (dreq->ctx != NULL)
 325		put_nfs_open_context(dreq->ctx);
 326	kmem_cache_free(nfs_direct_cachep, dreq);
 327}
 328
 329static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 330{
 331	kref_put(&dreq->kref, nfs_direct_req_free);
 332}
 333
 334ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
 335{
 336	return dreq->bytes_left;
 337}
 338EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
 339
 340/*
 341 * Collects and returns the final error value/byte-count.
 342 */
 343static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 344{
 345	ssize_t result = -EIOCBQUEUED;
 346
 347	/* Async requests don't wait here */
 348	if (dreq->iocb)
 349		goto out;
 350
 351	result = wait_for_completion_killable(&dreq->completion);
 352
 
 
 
 
 353	if (!result)
 354		result = dreq->error;
 355	if (!result)
 356		result = dreq->count;
 357
 358out:
 359	return (ssize_t) result;
 360}
 361
 362/*
 363 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 364 * the iocb is still valid here if this is a synchronous request.
 365 */
 366static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
 367{
 368	struct inode *inode = dreq->inode;
 369
 370	if (dreq->iocb && write) {
 371		loff_t pos = dreq->iocb->ki_pos + dreq->count;
 372
 373		spin_lock(&inode->i_lock);
 374		if (i_size_read(inode) < pos)
 375			i_size_write(inode, pos);
 376		spin_unlock(&inode->i_lock);
 377	}
 378
 379	if (write)
 380		nfs_zap_mapping(inode, inode->i_mapping);
 381
 382	inode_dio_end(inode);
 383
 384	if (dreq->iocb) {
 385		long res = (long) dreq->error;
 386		if (!res)
 387			res = (long) dreq->count;
 
 
 388		dreq->iocb->ki_complete(dreq->iocb, res, 0);
 389	}
 390
 391	complete_all(&dreq->completion);
 392
 393	nfs_direct_req_release(dreq);
 394}
 395
 396static void nfs_direct_readpage_release(struct nfs_page *req)
 397{
 398	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
 399		d_inode(req->wb_context->dentry)->i_sb->s_id,
 400		(unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
 401		req->wb_bytes,
 402		(long long)req_offset(req));
 403	nfs_release_request(req);
 404}
 405
 406static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
 407{
 408	unsigned long bytes = 0;
 409	struct nfs_direct_req *dreq = hdr->dreq;
 410
 411	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 
 
 412		goto out_put;
 
 413
 414	spin_lock(&dreq->lock);
 415	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
 416		dreq->error = hdr->error;
 417	else
 418		nfs_direct_good_bytes(dreq, hdr);
 419
 420	spin_unlock(&dreq->lock);
 421
 422	while (!list_empty(&hdr->pages)) {
 423		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 424		struct page *page = req->wb_page;
 425
 426		if (!PageCompound(page) && bytes < hdr->good_bytes)
 
 427			set_page_dirty(page);
 428		bytes += req->wb_bytes;
 429		nfs_list_remove_request(req);
 430		nfs_direct_readpage_release(req);
 431	}
 432out_put:
 433	if (put_dreq(dreq))
 434		nfs_direct_complete(dreq, false);
 435	hdr->release(hdr);
 436}
 437
 438static void nfs_read_sync_pgio_error(struct list_head *head)
 439{
 440	struct nfs_page *req;
 441
 442	while (!list_empty(head)) {
 443		req = nfs_list_entry(head->next);
 444		nfs_list_remove_request(req);
 445		nfs_release_request(req);
 446	}
 447}
 448
 449static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
 450{
 451	get_dreq(hdr->dreq);
 452}
 453
 454static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
 455	.error_cleanup = nfs_read_sync_pgio_error,
 456	.init_hdr = nfs_direct_pgio_init,
 457	.completion = nfs_direct_read_completion,
 458};
 459
 460/*
 461 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 462 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 463 * bail and stop sending more reads.  Read length accounting is
 464 * handled automatically by nfs_direct_read_result().  Otherwise, if
 465 * no requests have been sent, just return an error.
 466 */
 467
 468static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 469					      struct iov_iter *iter,
 470					      loff_t pos)
 471{
 472	struct nfs_pageio_descriptor desc;
 473	struct inode *inode = dreq->inode;
 474	ssize_t result = -EINVAL;
 475	size_t requested_bytes = 0;
 476	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
 477
 478	nfs_pageio_init_read(&desc, dreq->inode, false,
 479			     &nfs_direct_read_completion_ops);
 480	get_dreq(dreq);
 481	desc.pg_dreq = dreq;
 482	inode_dio_begin(inode);
 483
 484	while (iov_iter_count(iter)) {
 485		struct page **pagevec;
 486		size_t bytes;
 487		size_t pgbase;
 488		unsigned npages, i;
 489
 490		result = iov_iter_get_pages_alloc(iter, &pagevec, 
 491						  rsize, &pgbase);
 492		if (result < 0)
 493			break;
 494	
 495		bytes = result;
 496		iov_iter_advance(iter, bytes);
 497		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 498		for (i = 0; i < npages; i++) {
 499			struct nfs_page *req;
 500			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 501			/* XXX do we need to do the eof zeroing found in async_filler? */
 502			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
 503						 pgbase, req_len);
 504			if (IS_ERR(req)) {
 505				result = PTR_ERR(req);
 506				break;
 507			}
 508			req->wb_index = pos >> PAGE_SHIFT;
 509			req->wb_offset = pos & ~PAGE_MASK;
 510			if (!nfs_pageio_add_request(&desc, req)) {
 511				result = desc.pg_error;
 512				nfs_release_request(req);
 513				break;
 514			}
 515			pgbase = 0;
 516			bytes -= req_len;
 517			requested_bytes += req_len;
 518			pos += req_len;
 519			dreq->bytes_left -= req_len;
 520		}
 521		nfs_direct_release_pages(pagevec, npages);
 522		kvfree(pagevec);
 523		if (result < 0)
 524			break;
 525	}
 526
 527	nfs_pageio_complete(&desc);
 528
 529	/*
 530	 * If no bytes were started, return the error, and let the
 531	 * generic layer handle the completion.
 532	 */
 533	if (requested_bytes == 0) {
 534		inode_dio_end(inode);
 535		nfs_direct_req_release(dreq);
 536		return result < 0 ? result : -EIO;
 537	}
 538
 539	if (put_dreq(dreq))
 540		nfs_direct_complete(dreq, false);
 541	return 0;
 542}
 543
 544/**
 545 * nfs_file_direct_read - file direct read operation for NFS files
 546 * @iocb: target I/O control block
 547 * @iter: vector of user buffers into which to read data
 548 * @pos: byte offset in file where reading starts
 549 *
 550 * We use this function for direct reads instead of calling
 551 * generic_file_aio_read() in order to avoid gfar's check to see if
 552 * the request starts before the end of the file.  For that check
 553 * to work, we must generate a GETATTR before each direct read, and
 554 * even then there is a window between the GETATTR and the subsequent
 555 * READ where the file size could change.  Our preference is simply
 556 * to do all reads the application wants, and the server will take
 557 * care of managing the end of file boundary.
 558 *
 559 * This function also eliminates unnecessarily updating the file's
 560 * atime locally, as the NFS server sets the file's atime, and this
 561 * client must read the updated atime from the server back into its
 562 * cache.
 563 */
 564ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
 565				loff_t pos)
 566{
 567	struct file *file = iocb->ki_filp;
 568	struct address_space *mapping = file->f_mapping;
 569	struct inode *inode = mapping->host;
 570	struct nfs_direct_req *dreq;
 571	struct nfs_lock_context *l_ctx;
 572	ssize_t result = -EINVAL;
 573	size_t count = iov_iter_count(iter);
 574	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 575
 576	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
 577		file, count, (long long) pos);
 578
 579	result = 0;
 580	if (!count)
 581		goto out;
 582
 583	inode_lock(inode);
 584	result = nfs_sync_mapping(mapping);
 585	if (result)
 586		goto out_unlock;
 587
 588	task_io_account_read(count);
 589
 590	result = -ENOMEM;
 591	dreq = nfs_direct_req_alloc();
 592	if (dreq == NULL)
 593		goto out_unlock;
 594
 595	dreq->inode = inode;
 596	dreq->bytes_left = count;
 597	dreq->io_start = pos;
 598	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 599	l_ctx = nfs_get_lock_context(dreq->ctx);
 600	if (IS_ERR(l_ctx)) {
 601		result = PTR_ERR(l_ctx);
 602		goto out_release;
 603	}
 604	dreq->l_ctx = l_ctx;
 605	if (!is_sync_kiocb(iocb))
 606		dreq->iocb = iocb;
 607
 
 
 
 
 
 608	NFS_I(inode)->read_io += count;
 609	result = nfs_direct_read_schedule_iovec(dreq, iter, pos);
 610
 611	inode_unlock(inode);
 612
 613	if (!result) {
 614		result = nfs_direct_wait(dreq);
 615		if (result > 0)
 616			iocb->ki_pos = pos + result;
 
 
 
 
 
 617	}
 618
 619	nfs_direct_req_release(dreq);
 620	return result;
 621
 622out_release:
 623	nfs_direct_req_release(dreq);
 624out_unlock:
 625	inode_unlock(inode);
 626out:
 627	return result;
 628}
 629
 630static void
 631nfs_direct_write_scan_commit_list(struct inode *inode,
 632				  struct list_head *list,
 633				  struct nfs_commit_info *cinfo)
 634{
 635	spin_lock(cinfo->lock);
 636#ifdef CONFIG_NFS_V4_1
 637	if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
 638		NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
 639#endif
 640	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
 641	spin_unlock(cinfo->lock);
 642}
 643
 644static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 645{
 646	struct nfs_pageio_descriptor desc;
 647	struct nfs_page *req, *tmp;
 648	LIST_HEAD(reqs);
 649	struct nfs_commit_info cinfo;
 650	LIST_HEAD(failed);
 651	int i;
 652
 653	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 654	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
 655
 656	dreq->count = 0;
 657	for (i = 0; i < dreq->mirror_count; i++)
 658		dreq->mirrors[i].count = 0;
 
 
 
 659	get_dreq(dreq);
 660
 661	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
 662			      &nfs_direct_write_completion_ops);
 663	desc.pg_dreq = dreq;
 664
 665	req = nfs_list_entry(reqs.next);
 666	nfs_direct_setup_mirroring(dreq, &desc, req);
 667	if (desc.pg_error < 0) {
 668		list_splice_init(&reqs, &failed);
 669		goto out_failed;
 670	}
 671
 672	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
 
 
 673		if (!nfs_pageio_add_request(&desc, req)) {
 674			nfs_list_remove_request(req);
 675			nfs_list_add_request(req, &failed);
 676			spin_lock(cinfo.lock);
 677			dreq->flags = 0;
 678			if (desc.pg_error < 0)
 679				dreq->error = desc.pg_error;
 680			else
 681				dreq->error = -EIO;
 682			spin_unlock(cinfo.lock);
 683		}
 684		nfs_release_request(req);
 685	}
 686	nfs_pageio_complete(&desc);
 687
 688out_failed:
 689	while (!list_empty(&failed)) {
 690		req = nfs_list_entry(failed.next);
 691		nfs_list_remove_request(req);
 692		nfs_unlock_and_release_request(req);
 693	}
 694
 695	if (put_dreq(dreq))
 696		nfs_direct_write_complete(dreq, dreq->inode);
 697}
 698
 699static void nfs_direct_commit_complete(struct nfs_commit_data *data)
 700{
 701	struct nfs_direct_req *dreq = data->dreq;
 702	struct nfs_commit_info cinfo;
 703	struct nfs_page *req;
 704	int status = data->task.tk_status;
 705
 706	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 707	if (status < 0) {
 708		dprintk("NFS: %5u commit failed with error %d.\n",
 709			data->task.tk_pid, status);
 710		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 711	} else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
 712		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
 713		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 714	}
 715
 716	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
 717	while (!list_empty(&data->pages)) {
 718		req = nfs_list_entry(data->pages.next);
 719		nfs_list_remove_request(req);
 720		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
 
 
 
 
 
 721			/* Note the rewrite will go through mds */
 722			nfs_mark_request_commit(req, NULL, &cinfo, 0);
 723		} else
 724			nfs_release_request(req);
 725		nfs_unlock_and_release_request(req);
 726	}
 727
 728	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
 729		nfs_direct_write_complete(dreq, data->inode);
 730}
 731
 732static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
 733		struct nfs_page *req)
 734{
 735	struct nfs_direct_req *dreq = cinfo->dreq;
 736
 737	spin_lock(&dreq->lock);
 738	dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 739	spin_unlock(&dreq->lock);
 740	nfs_mark_request_commit(req, NULL, cinfo, 0);
 741}
 742
 743static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
 744	.completion = nfs_direct_commit_complete,
 745	.resched_write = nfs_direct_resched_write,
 746};
 747
 748static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 749{
 750	int res;
 751	struct nfs_commit_info cinfo;
 752	LIST_HEAD(mds_list);
 753
 754	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 755	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
 756	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
 757	if (res < 0) /* res == -ENOMEM */
 758		nfs_direct_write_reschedule(dreq);
 759}
 760
 761static void nfs_direct_write_schedule_work(struct work_struct *work)
 762{
 763	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
 764	int flags = dreq->flags;
 765
 766	dreq->flags = 0;
 767	switch (flags) {
 768		case NFS_ODIRECT_DO_COMMIT:
 769			nfs_direct_commit_schedule(dreq);
 770			break;
 771		case NFS_ODIRECT_RESCHED_WRITES:
 772			nfs_direct_write_reschedule(dreq);
 773			break;
 774		default:
 775			nfs_direct_complete(dreq, true);
 
 776	}
 777}
 778
 779static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 780{
 781	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
 782}
 783
 784static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
 785{
 786	struct nfs_direct_req *dreq = hdr->dreq;
 787	struct nfs_commit_info cinfo;
 788	bool request_commit = false;
 789	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 790
 791	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 792		goto out_put;
 793
 794	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 795
 796	spin_lock(&dreq->lock);
 
 
 
 
 797
 798	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
 799		dreq->flags = 0;
 800		dreq->error = hdr->error;
 801	}
 802	if (dreq->error == 0) {
 803		nfs_direct_good_bytes(dreq, hdr);
 804		if (nfs_write_need_commit(hdr)) {
 805			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
 806				request_commit = true;
 807			else if (dreq->flags == 0) {
 808				nfs_direct_set_hdr_verf(dreq, hdr);
 809				request_commit = true;
 810				dreq->flags = NFS_ODIRECT_DO_COMMIT;
 811			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
 812				request_commit = true;
 813				if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
 814					dreq->flags =
 815						NFS_ODIRECT_RESCHED_WRITES;
 816			}
 817		}
 818	}
 819	spin_unlock(&dreq->lock);
 820
 821	while (!list_empty(&hdr->pages)) {
 822
 823		req = nfs_list_entry(hdr->pages.next);
 824		nfs_list_remove_request(req);
 825		if (request_commit) {
 826			kref_get(&req->wb_kref);
 827			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
 828				hdr->ds_commit_idx);
 829		}
 830		nfs_unlock_and_release_request(req);
 831	}
 832
 833out_put:
 834	if (put_dreq(dreq))
 835		nfs_direct_write_complete(dreq, hdr->inode);
 836	hdr->release(hdr);
 837}
 838
 839static void nfs_write_sync_pgio_error(struct list_head *head)
 840{
 841	struct nfs_page *req;
 842
 843	while (!list_empty(head)) {
 844		req = nfs_list_entry(head->next);
 845		nfs_list_remove_request(req);
 846		nfs_unlock_and_release_request(req);
 847	}
 848}
 849
 850static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
 851{
 852	struct nfs_direct_req *dreq = hdr->dreq;
 853
 854	spin_lock(&dreq->lock);
 855	if (dreq->error == 0) {
 856		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 857		/* fake unstable write to let common nfs resend pages */
 858		hdr->verf.committed = NFS_UNSTABLE;
 859		hdr->good_bytes = hdr->args.count;
 860	}
 861	spin_unlock(&dreq->lock);
 862}
 863
 864static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
 865	.error_cleanup = nfs_write_sync_pgio_error,
 866	.init_hdr = nfs_direct_pgio_init,
 867	.completion = nfs_direct_write_completion,
 868	.reschedule_io = nfs_direct_write_reschedule_io,
 869};
 870
 871
 872/*
 873 * NB: Return the value of the first error return code.  Subsequent
 874 *     errors after the first one are ignored.
 875 */
 876/*
 877 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 878 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 879 * bail and stop sending more writes.  Write length accounting is
 880 * handled automatically by nfs_direct_write_result().  Otherwise, if
 881 * no requests have been sent, just return an error.
 882 */
 883static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 884					       struct iov_iter *iter,
 885					       loff_t pos)
 886{
 887	struct nfs_pageio_descriptor desc;
 888	struct inode *inode = dreq->inode;
 889	ssize_t result = 0;
 890	size_t requested_bytes = 0;
 891	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
 892
 893	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
 894			      &nfs_direct_write_completion_ops);
 895	desc.pg_dreq = dreq;
 896	get_dreq(dreq);
 897	inode_dio_begin(inode);
 898
 899	NFS_I(inode)->write_io += iov_iter_count(iter);
 900	while (iov_iter_count(iter)) {
 901		struct page **pagevec;
 902		size_t bytes;
 903		size_t pgbase;
 904		unsigned npages, i;
 905
 906		result = iov_iter_get_pages_alloc(iter, &pagevec, 
 907						  wsize, &pgbase);
 908		if (result < 0)
 909			break;
 910
 911		bytes = result;
 912		iov_iter_advance(iter, bytes);
 913		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 914		for (i = 0; i < npages; i++) {
 915			struct nfs_page *req;
 916			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 917
 918			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
 919						 pgbase, req_len);
 920			if (IS_ERR(req)) {
 921				result = PTR_ERR(req);
 922				break;
 923			}
 924
 925			nfs_direct_setup_mirroring(dreq, &desc, req);
 926			if (desc.pg_error < 0) {
 927				nfs_free_request(req);
 928				result = desc.pg_error;
 929				break;
 930			}
 931
 932			nfs_lock_request(req);
 933			req->wb_index = pos >> PAGE_SHIFT;
 934			req->wb_offset = pos & ~PAGE_MASK;
 935			if (!nfs_pageio_add_request(&desc, req)) {
 936				result = desc.pg_error;
 937				nfs_unlock_and_release_request(req);
 938				break;
 939			}
 940			pgbase = 0;
 941			bytes -= req_len;
 942			requested_bytes += req_len;
 943			pos += req_len;
 944			dreq->bytes_left -= req_len;
 945		}
 946		nfs_direct_release_pages(pagevec, npages);
 947		kvfree(pagevec);
 948		if (result < 0)
 949			break;
 950	}
 951	nfs_pageio_complete(&desc);
 952
 953	/*
 954	 * If no bytes were started, return the error, and let the
 955	 * generic layer handle the completion.
 956	 */
 957	if (requested_bytes == 0) {
 958		inode_dio_end(inode);
 959		nfs_direct_req_release(dreq);
 960		return result < 0 ? result : -EIO;
 961	}
 962
 963	if (put_dreq(dreq))
 964		nfs_direct_write_complete(dreq, dreq->inode);
 965	return 0;
 966}
 967
 968/**
 969 * nfs_file_direct_write - file direct write operation for NFS files
 970 * @iocb: target I/O control block
 971 * @iter: vector of user buffers from which to write data
 972 * @pos: byte offset in file where writing starts
 973 *
 974 * We use this function for direct writes instead of calling
 975 * generic_file_aio_write() in order to avoid taking the inode
 976 * semaphore and updating the i_size.  The NFS server will set
 977 * the new i_size and this client must read the updated size
 978 * back into its cache.  We let the server do generic write
 979 * parameter checking and report problems.
 980 *
 981 * We eliminate local atime updates, see direct read above.
 982 *
 983 * We avoid unnecessary page cache invalidations for normal cached
 984 * readers of this file.
 985 *
 986 * Note that O_APPEND is not supported for NFS direct writes, as there
 987 * is no atomic O_APPEND write facility in the NFS protocol.
 988 */
 989ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
 990{
 991	ssize_t result = -EINVAL;
 
 992	struct file *file = iocb->ki_filp;
 993	struct address_space *mapping = file->f_mapping;
 994	struct inode *inode = mapping->host;
 995	struct nfs_direct_req *dreq;
 996	struct nfs_lock_context *l_ctx;
 997	loff_t pos, end;
 998
 999	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
1000		file, iov_iter_count(iter), (long long) iocb->ki_pos);
1001
1002	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES,
1003		      iov_iter_count(iter));
 
 
 
1004
1005	pos = iocb->ki_pos;
1006	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
1007
1008	inode_lock(inode);
1009
1010	result = nfs_sync_mapping(mapping);
1011	if (result)
1012		goto out_unlock;
1013
1014	if (mapping->nrpages) {
1015		result = invalidate_inode_pages2_range(mapping,
1016					pos >> PAGE_SHIFT, end);
1017		if (result)
1018			goto out_unlock;
1019	}
1020
1021	task_io_account_write(iov_iter_count(iter));
1022
1023	result = -ENOMEM;
1024	dreq = nfs_direct_req_alloc();
1025	if (!dreq)
1026		goto out_unlock;
1027
1028	dreq->inode = inode;
1029	dreq->bytes_left = iov_iter_count(iter);
1030	dreq->io_start = pos;
1031	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1032	l_ctx = nfs_get_lock_context(dreq->ctx);
1033	if (IS_ERR(l_ctx)) {
1034		result = PTR_ERR(l_ctx);
1035		goto out_release;
1036	}
1037	dreq->l_ctx = l_ctx;
1038	if (!is_sync_kiocb(iocb))
1039		dreq->iocb = iocb;
1040
1041	result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
 
 
1042
1043	if (mapping->nrpages) {
1044		invalidate_inode_pages2_range(mapping,
1045					      pos >> PAGE_SHIFT, end);
1046	}
1047
1048	inode_unlock(inode);
1049
1050	if (!result) {
1051		result = nfs_direct_wait(dreq);
1052		if (result > 0) {
1053			struct inode *inode = mapping->host;
1054
1055			iocb->ki_pos = pos + result;
1056			spin_lock(&inode->i_lock);
1057			if (i_size_read(inode) < iocb->ki_pos)
1058				i_size_write(inode, iocb->ki_pos);
1059			spin_unlock(&inode->i_lock);
1060			generic_write_sync(file, pos, result);
1061		}
 
 
 
1062	}
1063	nfs_direct_req_release(dreq);
1064	return result;
1065
1066out_release:
1067	nfs_direct_req_release(dreq);
1068out_unlock:
1069	inode_unlock(inode);
1070	return result;
1071}
1072
1073/**
1074 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1075 *
1076 */
1077int __init nfs_init_directcache(void)
1078{
1079	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1080						sizeof(struct nfs_direct_req),
1081						0, (SLAB_RECLAIM_ACCOUNT|
1082							SLAB_MEM_SPREAD),
1083						NULL);
1084	if (nfs_direct_cachep == NULL)
1085		return -ENOMEM;
1086
1087	return 0;
1088}
1089
1090/**
1091 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1092 *
1093 */
1094void nfs_destroy_directcache(void)
1095{
1096	kmem_cache_destroy(nfs_direct_cachep);
1097}