Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * fs/kernfs/mount.c - kernfs mount implementation
  4 *
  5 * Copyright (c) 2001-3 Patrick Mochel
  6 * Copyright (c) 2007 SUSE Linux Products GmbH
  7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
 
 
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/mount.h>
 12#include <linux/init.h>
 13#include <linux/magic.h>
 14#include <linux/slab.h>
 15#include <linux/pagemap.h>
 16#include <linux/namei.h>
 17#include <linux/seq_file.h>
 18#include <linux/exportfs.h>
 19
 20#include "kernfs-internal.h"
 21
 22struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache;
 
 
 
 
 
 
 
 
 
 
 23
 24static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 25{
 26	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
 27	struct kernfs_syscall_ops *scops = root->syscall_ops;
 28
 29	if (scops && scops->show_options)
 30		return scops->show_options(sf, root);
 31	return 0;
 32}
 33
 34static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 35{
 36	struct kernfs_node *node = kernfs_dentry_node(dentry);
 37	struct kernfs_root *root = kernfs_root(node);
 38	struct kernfs_syscall_ops *scops = root->syscall_ops;
 39
 40	if (scops && scops->show_path)
 41		return scops->show_path(sf, node, root);
 42
 43	seq_dentry(sf, dentry, " \t\n\\");
 44	return 0;
 45}
 46
 47const struct super_operations kernfs_sops = {
 48	.statfs		= simple_statfs,
 49	.drop_inode	= generic_delete_inode,
 50	.evict_inode	= kernfs_evict_inode,
 51
 
 52	.show_options	= kernfs_sop_show_options,
 53	.show_path	= kernfs_sop_show_path,
 54};
 55
 56/*
 57 * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode
 58 * number and generation
 59 */
 60struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root,
 61	const union kernfs_node_id *id)
 62{
 63	struct kernfs_node *kn;
 64
 65	kn = kernfs_find_and_get_node_by_ino(root, id->ino);
 66	if (!kn)
 67		return NULL;
 68	if (kn->id.generation != id->generation) {
 69		kernfs_put(kn);
 70		return NULL;
 71	}
 72	return kn;
 73}
 74
 75static struct inode *kernfs_fh_get_inode(struct super_block *sb,
 76		u64 ino, u32 generation)
 77{
 78	struct kernfs_super_info *info = kernfs_info(sb);
 79	struct inode *inode;
 80	struct kernfs_node *kn;
 81
 82	if (ino == 0)
 83		return ERR_PTR(-ESTALE);
 84
 85	kn = kernfs_find_and_get_node_by_ino(info->root, ino);
 86	if (!kn)
 87		return ERR_PTR(-ESTALE);
 88	inode = kernfs_get_inode(sb, kn);
 89	kernfs_put(kn);
 90	if (!inode)
 91		return ERR_PTR(-ESTALE);
 92
 93	if (generation && inode->i_generation != generation) {
 94		/* we didn't find the right inode.. */
 95		iput(inode);
 96		return ERR_PTR(-ESTALE);
 97	}
 98	return inode;
 99}
100
101static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
102		int fh_len, int fh_type)
103{
104	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
105				    kernfs_fh_get_inode);
106}
107
108static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid,
109		int fh_len, int fh_type)
110{
111	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
112				    kernfs_fh_get_inode);
113}
114
115static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
116{
117	struct kernfs_node *kn = kernfs_dentry_node(child);
118
119	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
120}
121
122static const struct export_operations kernfs_export_ops = {
123	.fh_to_dentry	= kernfs_fh_to_dentry,
124	.fh_to_parent	= kernfs_fh_to_parent,
125	.get_parent	= kernfs_get_parent_dentry,
126};
127
128/**
129 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
130 * @sb: the super_block in question
131 *
132 * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
133 * %NULL is returned.
134 */
135struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
136{
137	if (sb->s_op == &kernfs_sops)
138		return kernfs_info(sb)->root;
139	return NULL;
140}
141
142/*
143 * find the next ancestor in the path down to @child, where @parent was the
144 * ancestor whose descendant we want to find.
145 *
146 * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
147 * node.  If @parent is b, then we return the node for c.
148 * Passing in d as @parent is not ok.
149 */
150static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
151					      struct kernfs_node *parent)
152{
153	if (child == parent) {
154		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
155		return NULL;
156	}
157
158	while (child->parent != parent) {
159		if (!child->parent)
160			return NULL;
161		child = child->parent;
162	}
163
164	return child;
165}
166
167/**
168 * kernfs_node_dentry - get a dentry for the given kernfs_node
169 * @kn: kernfs_node for which a dentry is needed
170 * @sb: the kernfs super_block
171 */
172struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
173				  struct super_block *sb)
174{
175	struct dentry *dentry;
176	struct kernfs_node *knparent = NULL;
177
178	BUG_ON(sb->s_op != &kernfs_sops);
179
180	dentry = dget(sb->s_root);
181
182	/* Check if this is the root kernfs_node */
183	if (!kn->parent)
184		return dentry;
185
186	knparent = find_next_ancestor(kn, NULL);
187	if (WARN_ON(!knparent)) {
188		dput(dentry);
189		return ERR_PTR(-EINVAL);
190	}
191
192	do {
193		struct dentry *dtmp;
194		struct kernfs_node *kntmp;
195
196		if (kn == knparent)
197			return dentry;
198		kntmp = find_next_ancestor(kn, knparent);
199		if (WARN_ON(!kntmp)) {
200			dput(dentry);
201			return ERR_PTR(-EINVAL);
202		}
203		dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
204					       strlen(kntmp->name));
205		dput(dentry);
206		if (IS_ERR(dtmp))
207			return dtmp;
208		knparent = kntmp;
209		dentry = dtmp;
210	} while (true);
211}
212
213static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
214{
215	struct kernfs_super_info *info = kernfs_info(sb);
216	struct inode *inode;
217	struct dentry *root;
218
219	info->sb = sb;
220	/* Userspace would break if executables or devices appear on sysfs */
221	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
222	sb->s_blocksize = PAGE_SIZE;
223	sb->s_blocksize_bits = PAGE_SHIFT;
224	sb->s_magic = kfc->magic;
225	sb->s_op = &kernfs_sops;
226	sb->s_xattr = kernfs_xattr_handlers;
227	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
228		sb->s_export_op = &kernfs_export_ops;
229	sb->s_time_gran = 1;
230
231	/* sysfs dentries and inodes don't require IO to create */
232	sb->s_shrink.seeks = 0;
233
234	/* get root inode, initialize and unlock it */
235	mutex_lock(&kernfs_mutex);
236	inode = kernfs_get_inode(sb, info->root->kn);
237	mutex_unlock(&kernfs_mutex);
238	if (!inode) {
239		pr_debug("kernfs: could not get root inode\n");
240		return -ENOMEM;
241	}
242
243	/* instantiate and link root dentry */
244	root = d_make_root(inode);
245	if (!root) {
246		pr_debug("%s: could not get root dentry!\n", __func__);
247		return -ENOMEM;
248	}
 
 
249	sb->s_root = root;
250	sb->s_d_op = &kernfs_dops;
251	return 0;
252}
253
254static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
255{
256	struct kernfs_super_info *sb_info = kernfs_info(sb);
257	struct kernfs_super_info *info = fc->s_fs_info;
258
259	return sb_info->root == info->root && sb_info->ns == info->ns;
260}
261
262static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
263{
264	struct kernfs_fs_context *kfc = fc->fs_private;
265
266	kfc->ns_tag = NULL;
267	return set_anon_super_fc(sb, fc);
 
268}
269
270/**
271 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
272 * @sb: super_block of interest
273 *
274 * Return the namespace tag associated with kernfs super_block @sb.
275 */
276const void *kernfs_super_ns(struct super_block *sb)
277{
278	struct kernfs_super_info *info = kernfs_info(sb);
279
280	return info->ns;
281}
282
283/**
284 * kernfs_get_tree - kernfs filesystem access/retrieval helper
285 * @fc: The filesystem context.
 
 
 
 
 
286 *
287 * This is to be called from each kernfs user's fs_context->ops->get_tree()
288 * implementation, which should set the specified ->@fs_type and ->@flags, and
289 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
290 * respectively.
 
 
291 */
292int kernfs_get_tree(struct fs_context *fc)
 
 
293{
294	struct kernfs_fs_context *kfc = fc->fs_private;
295	struct super_block *sb;
296	struct kernfs_super_info *info;
297	int error;
298
299	info = kzalloc(sizeof(*info), GFP_KERNEL);
300	if (!info)
301		return -ENOMEM;
302
303	info->root = kfc->root;
304	info->ns = kfc->ns_tag;
305	INIT_LIST_HEAD(&info->node);
306
307	fc->s_fs_info = info;
308	sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
 
309	if (IS_ERR(sb))
310		return PTR_ERR(sb);
 
 
 
311
312	if (!sb->s_root) {
313		struct kernfs_super_info *info = kernfs_info(sb);
314
315		kfc->new_sb_created = true;
316
317		error = kernfs_fill_super(sb, kfc);
318		if (error) {
319			deactivate_locked_super(sb);
320			return error;
321		}
322		sb->s_flags |= SB_ACTIVE;
323
324		mutex_lock(&kernfs_mutex);
325		list_add(&info->node, &info->root->supers);
326		mutex_unlock(&kernfs_mutex);
327	}
328
329	fc->root = dget(sb->s_root);
330	return 0;
331}
332
333void kernfs_free_fs_context(struct fs_context *fc)
334{
335	/* Note that we don't deal with kfc->ns_tag here. */
336	kfree(fc->s_fs_info);
337	fc->s_fs_info = NULL;
338}
339
340/**
341 * kernfs_kill_sb - kill_sb for kernfs
342 * @sb: super_block being killed
343 *
344 * This can be used directly for file_system_type->kill_sb().  If a kernfs
345 * user needs extra cleanup, it can implement its own kill_sb() and call
346 * this function at the end.
347 */
348void kernfs_kill_sb(struct super_block *sb)
349{
350	struct kernfs_super_info *info = kernfs_info(sb);
 
351
352	mutex_lock(&kernfs_mutex);
353	list_del(&info->node);
354	mutex_unlock(&kernfs_mutex);
355
356	/*
357	 * Remove the superblock from fs_supers/s_instances
358	 * so we can't find it, before freeing kernfs_super_info.
359	 */
360	kill_anon_super(sb);
361	kfree(info);
 
362}
363
364void __init kernfs_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
365{
 
 
366
367	/*
368	 * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino
369	 * can access the slab lock free. This could introduce stale nodes,
370	 * please see how kernfs_find_and_get_node_by_ino filters out stale
371	 * nodes.
372	 */
 
 
 
 
 
 
 
 
 
373	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
374					      sizeof(struct kernfs_node),
375					      0,
376					      SLAB_PANIC | SLAB_TYPESAFE_BY_RCU,
377					      NULL);
378
379	/* Creates slab cache for kernfs inode attributes */
380	kernfs_iattrs_cache  = kmem_cache_create("kernfs_iattrs_cache",
381					      sizeof(struct kernfs_iattrs),
382					      0, SLAB_PANIC, NULL);
383}
v4.6
 
  1/*
  2 * fs/kernfs/mount.c - kernfs mount implementation
  3 *
  4 * Copyright (c) 2001-3 Patrick Mochel
  5 * Copyright (c) 2007 SUSE Linux Products GmbH
  6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  7 *
  8 * This file is released under the GPLv2.
  9 */
 10
 11#include <linux/fs.h>
 12#include <linux/mount.h>
 13#include <linux/init.h>
 14#include <linux/magic.h>
 15#include <linux/slab.h>
 16#include <linux/pagemap.h>
 17#include <linux/namei.h>
 18#include <linux/seq_file.h>
 
 19
 20#include "kernfs-internal.h"
 21
 22struct kmem_cache *kernfs_node_cache;
 23
 24static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
 25{
 26	struct kernfs_root *root = kernfs_info(sb)->root;
 27	struct kernfs_syscall_ops *scops = root->syscall_ops;
 28
 29	if (scops && scops->remount_fs)
 30		return scops->remount_fs(root, flags, data);
 31	return 0;
 32}
 33
 34static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 35{
 36	struct kernfs_root *root = kernfs_root(dentry->d_fsdata);
 37	struct kernfs_syscall_ops *scops = root->syscall_ops;
 38
 39	if (scops && scops->show_options)
 40		return scops->show_options(sf, root);
 41	return 0;
 42}
 43
 44static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 45{
 46	struct kernfs_node *node = dentry->d_fsdata;
 47	struct kernfs_root *root = kernfs_root(node);
 48	struct kernfs_syscall_ops *scops = root->syscall_ops;
 49
 50	if (scops && scops->show_path)
 51		return scops->show_path(sf, node, root);
 52
 53	seq_dentry(sf, dentry, " \t\n\\");
 54	return 0;
 55}
 56
 57const struct super_operations kernfs_sops = {
 58	.statfs		= simple_statfs,
 59	.drop_inode	= generic_delete_inode,
 60	.evict_inode	= kernfs_evict_inode,
 61
 62	.remount_fs	= kernfs_sop_remount_fs,
 63	.show_options	= kernfs_sop_show_options,
 64	.show_path	= kernfs_sop_show_path,
 65};
 66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67/**
 68 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
 69 * @sb: the super_block in question
 70 *
 71 * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
 72 * %NULL is returned.
 73 */
 74struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
 75{
 76	if (sb->s_op == &kernfs_sops)
 77		return kernfs_info(sb)->root;
 78	return NULL;
 79}
 80
 81/*
 82 * find the next ancestor in the path down to @child, where @parent was the
 83 * ancestor whose descendant we want to find.
 84 *
 85 * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
 86 * node.  If @parent is b, then we return the node for c.
 87 * Passing in d as @parent is not ok.
 88 */
 89static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
 90					      struct kernfs_node *parent)
 91{
 92	if (child == parent) {
 93		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
 94		return NULL;
 95	}
 96
 97	while (child->parent != parent) {
 98		if (!child->parent)
 99			return NULL;
100		child = child->parent;
101	}
102
103	return child;
104}
105
106/**
107 * kernfs_node_dentry - get a dentry for the given kernfs_node
108 * @kn: kernfs_node for which a dentry is needed
109 * @sb: the kernfs super_block
110 */
111struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
112				  struct super_block *sb)
113{
114	struct dentry *dentry;
115	struct kernfs_node *knparent = NULL;
116
117	BUG_ON(sb->s_op != &kernfs_sops);
118
119	dentry = dget(sb->s_root);
120
121	/* Check if this is the root kernfs_node */
122	if (!kn->parent)
123		return dentry;
124
125	knparent = find_next_ancestor(kn, NULL);
126	if (WARN_ON(!knparent))
 
127		return ERR_PTR(-EINVAL);
 
128
129	do {
130		struct dentry *dtmp;
131		struct kernfs_node *kntmp;
132
133		if (kn == knparent)
134			return dentry;
135		kntmp = find_next_ancestor(kn, knparent);
136		if (WARN_ON(!kntmp))
 
137			return ERR_PTR(-EINVAL);
138		mutex_lock(&d_inode(dentry)->i_mutex);
139		dtmp = lookup_one_len(kntmp->name, dentry, strlen(kntmp->name));
140		mutex_unlock(&d_inode(dentry)->i_mutex);
141		dput(dentry);
142		if (IS_ERR(dtmp))
143			return dtmp;
144		knparent = kntmp;
145		dentry = dtmp;
146	} while (true);
147}
148
149static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
150{
151	struct kernfs_super_info *info = kernfs_info(sb);
152	struct inode *inode;
153	struct dentry *root;
154
155	info->sb = sb;
 
 
156	sb->s_blocksize = PAGE_SIZE;
157	sb->s_blocksize_bits = PAGE_SHIFT;
158	sb->s_magic = magic;
159	sb->s_op = &kernfs_sops;
 
 
 
160	sb->s_time_gran = 1;
161
 
 
 
162	/* get root inode, initialize and unlock it */
163	mutex_lock(&kernfs_mutex);
164	inode = kernfs_get_inode(sb, info->root->kn);
165	mutex_unlock(&kernfs_mutex);
166	if (!inode) {
167		pr_debug("kernfs: could not get root inode\n");
168		return -ENOMEM;
169	}
170
171	/* instantiate and link root dentry */
172	root = d_make_root(inode);
173	if (!root) {
174		pr_debug("%s: could not get root dentry!\n", __func__);
175		return -ENOMEM;
176	}
177	kernfs_get(info->root->kn);
178	root->d_fsdata = info->root->kn;
179	sb->s_root = root;
180	sb->s_d_op = &kernfs_dops;
181	return 0;
182}
183
184static int kernfs_test_super(struct super_block *sb, void *data)
185{
186	struct kernfs_super_info *sb_info = kernfs_info(sb);
187	struct kernfs_super_info *info = data;
188
189	return sb_info->root == info->root && sb_info->ns == info->ns;
190}
191
192static int kernfs_set_super(struct super_block *sb, void *data)
193{
194	int error;
195	error = set_anon_super(sb, data);
196	if (!error)
197		sb->s_fs_info = data;
198	return error;
199}
200
201/**
202 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
203 * @sb: super_block of interest
204 *
205 * Return the namespace tag associated with kernfs super_block @sb.
206 */
207const void *kernfs_super_ns(struct super_block *sb)
208{
209	struct kernfs_super_info *info = kernfs_info(sb);
210
211	return info->ns;
212}
213
214/**
215 * kernfs_mount_ns - kernfs mount helper
216 * @fs_type: file_system_type of the fs being mounted
217 * @flags: mount flags specified for the mount
218 * @root: kernfs_root of the hierarchy being mounted
219 * @magic: file system specific magic number
220 * @new_sb_created: tell the caller if we allocated a new superblock
221 * @ns: optional namespace tag of the mount
222 *
223 * This is to be called from each kernfs user's file_system_type->mount()
224 * implementation, which should pass through the specified @fs_type and
225 * @flags, and specify the hierarchy and namespace tag to mount via @root
226 * and @ns, respectively.
227 *
228 * The return value can be passed to the vfs layer verbatim.
229 */
230struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
231				struct kernfs_root *root, unsigned long magic,
232				bool *new_sb_created, const void *ns)
233{
 
234	struct super_block *sb;
235	struct kernfs_super_info *info;
236	int error;
237
238	info = kzalloc(sizeof(*info), GFP_KERNEL);
239	if (!info)
240		return ERR_PTR(-ENOMEM);
241
242	info->root = root;
243	info->ns = ns;
 
244
245	sb = sget(fs_type, kernfs_test_super, kernfs_set_super, flags, info);
246	if (IS_ERR(sb) || sb->s_fs_info != info)
247		kfree(info);
248	if (IS_ERR(sb))
249		return ERR_CAST(sb);
250
251	if (new_sb_created)
252		*new_sb_created = !sb->s_root;
253
254	if (!sb->s_root) {
255		struct kernfs_super_info *info = kernfs_info(sb);
256
257		error = kernfs_fill_super(sb, magic);
 
 
258		if (error) {
259			deactivate_locked_super(sb);
260			return ERR_PTR(error);
261		}
262		sb->s_flags |= MS_ACTIVE;
263
264		mutex_lock(&kernfs_mutex);
265		list_add(&info->node, &root->supers);
266		mutex_unlock(&kernfs_mutex);
267	}
268
269	return dget(sb->s_root);
 
 
 
 
 
 
 
 
270}
271
272/**
273 * kernfs_kill_sb - kill_sb for kernfs
274 * @sb: super_block being killed
275 *
276 * This can be used directly for file_system_type->kill_sb().  If a kernfs
277 * user needs extra cleanup, it can implement its own kill_sb() and call
278 * this function at the end.
279 */
280void kernfs_kill_sb(struct super_block *sb)
281{
282	struct kernfs_super_info *info = kernfs_info(sb);
283	struct kernfs_node *root_kn = sb->s_root->d_fsdata;
284
285	mutex_lock(&kernfs_mutex);
286	list_del(&info->node);
287	mutex_unlock(&kernfs_mutex);
288
289	/*
290	 * Remove the superblock from fs_supers/s_instances
291	 * so we can't find it, before freeing kernfs_super_info.
292	 */
293	kill_anon_super(sb);
294	kfree(info);
295	kernfs_put(root_kn);
296}
297
298/**
299 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
300 * @kernfs_root: the kernfs_root in question
301 * @ns: the namespace tag
302 *
303 * Pin the superblock so the superblock won't be destroyed in subsequent
304 * operations.  This can be used to block ->kill_sb() which may be useful
305 * for kernfs users which dynamically manage superblocks.
306 *
307 * Returns NULL if there's no superblock associated to this kernfs_root, or
308 * -EINVAL if the superblock is being freed.
309 */
310struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
311{
312	struct kernfs_super_info *info;
313	struct super_block *sb = NULL;
314
315	mutex_lock(&kernfs_mutex);
316	list_for_each_entry(info, &root->supers, node) {
317		if (info->ns == ns) {
318			sb = info->sb;
319			if (!atomic_inc_not_zero(&info->sb->s_active))
320				sb = ERR_PTR(-EINVAL);
321			break;
322		}
323	}
324	mutex_unlock(&kernfs_mutex);
325	return sb;
326}
327
328void __init kernfs_init(void)
329{
330	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
331					      sizeof(struct kernfs_node),
 
 
 
 
 
 
 
332					      0, SLAB_PANIC, NULL);
333}