Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Alexander Block.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/bsearch.h>
   7#include <linux/fs.h>
   8#include <linux/file.h>
   9#include <linux/sort.h>
  10#include <linux/mount.h>
  11#include <linux/xattr.h>
  12#include <linux/posix_acl_xattr.h>
  13#include <linux/radix-tree.h>
  14#include <linux/vmalloc.h>
  15#include <linux/string.h>
  16#include <linux/compat.h>
  17#include <linux/crc32c.h>
  18
  19#include "send.h"
  20#include "backref.h"
 
  21#include "locking.h"
  22#include "disk-io.h"
  23#include "btrfs_inode.h"
  24#include "transaction.h"
  25#include "compression.h"
  26
 
 
 
 
  27/*
  28 * A fs_path is a helper to dynamically build path names with unknown size.
  29 * It reallocates the internal buffer on demand.
  30 * It allows fast adding of path elements on the right side (normal path) and
  31 * fast adding to the left side (reversed path). A reversed path can also be
  32 * unreversed if needed.
  33 */
  34struct fs_path {
  35	union {
  36		struct {
  37			char *start;
  38			char *end;
  39
  40			char *buf;
  41			unsigned short buf_len:15;
  42			unsigned short reversed:1;
  43			char inline_buf[];
  44		};
  45		/*
  46		 * Average path length does not exceed 200 bytes, we'll have
  47		 * better packing in the slab and higher chance to satisfy
  48		 * a allocation later during send.
  49		 */
  50		char pad[256];
  51	};
  52};
  53#define FS_PATH_INLINE_SIZE \
  54	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
  55
  56
  57/* reused for each extent */
  58struct clone_root {
  59	struct btrfs_root *root;
  60	u64 ino;
  61	u64 offset;
  62
  63	u64 found_refs;
  64};
  65
  66#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
  67#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
  68
  69struct send_ctx {
  70	struct file *send_filp;
  71	loff_t send_off;
  72	char *send_buf;
  73	u32 send_size;
  74	u32 send_max_size;
  75	u64 total_send_size;
  76	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
  77	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
  78
  79	struct btrfs_root *send_root;
  80	struct btrfs_root *parent_root;
  81	struct clone_root *clone_roots;
  82	int clone_roots_cnt;
  83
  84	/* current state of the compare_tree call */
  85	struct btrfs_path *left_path;
  86	struct btrfs_path *right_path;
  87	struct btrfs_key *cmp_key;
  88
  89	/*
  90	 * infos of the currently processed inode. In case of deleted inodes,
  91	 * these are the values from the deleted inode.
  92	 */
  93	u64 cur_ino;
  94	u64 cur_inode_gen;
  95	int cur_inode_new;
  96	int cur_inode_new_gen;
  97	int cur_inode_deleted;
  98	u64 cur_inode_size;
  99	u64 cur_inode_mode;
 100	u64 cur_inode_rdev;
 101	u64 cur_inode_last_extent;
 102	u64 cur_inode_next_write_offset;
 103	bool ignore_cur_inode;
 104
 105	u64 send_progress;
 106
 107	struct list_head new_refs;
 108	struct list_head deleted_refs;
 109
 110	struct radix_tree_root name_cache;
 111	struct list_head name_cache_list;
 112	int name_cache_size;
 113
 114	struct file_ra_state ra;
 115
 116	char *read_buf;
 117
 118	/*
 119	 * We process inodes by their increasing order, so if before an
 120	 * incremental send we reverse the parent/child relationship of
 121	 * directories such that a directory with a lower inode number was
 122	 * the parent of a directory with a higher inode number, and the one
 123	 * becoming the new parent got renamed too, we can't rename/move the
 124	 * directory with lower inode number when we finish processing it - we
 125	 * must process the directory with higher inode number first, then
 126	 * rename/move it and then rename/move the directory with lower inode
 127	 * number. Example follows.
 128	 *
 129	 * Tree state when the first send was performed:
 130	 *
 131	 * .
 132	 * |-- a                   (ino 257)
 133	 *     |-- b               (ino 258)
 134	 *         |
 135	 *         |
 136	 *         |-- c           (ino 259)
 137	 *         |   |-- d       (ino 260)
 138	 *         |
 139	 *         |-- c2          (ino 261)
 140	 *
 141	 * Tree state when the second (incremental) send is performed:
 142	 *
 143	 * .
 144	 * |-- a                   (ino 257)
 145	 *     |-- b               (ino 258)
 146	 *         |-- c2          (ino 261)
 147	 *             |-- d2      (ino 260)
 148	 *                 |-- cc  (ino 259)
 149	 *
 150	 * The sequence of steps that lead to the second state was:
 151	 *
 152	 * mv /a/b/c/d /a/b/c2/d2
 153	 * mv /a/b/c /a/b/c2/d2/cc
 154	 *
 155	 * "c" has lower inode number, but we can't move it (2nd mv operation)
 156	 * before we move "d", which has higher inode number.
 157	 *
 158	 * So we just memorize which move/rename operations must be performed
 159	 * later when their respective parent is processed and moved/renamed.
 160	 */
 161
 162	/* Indexed by parent directory inode number. */
 163	struct rb_root pending_dir_moves;
 164
 165	/*
 166	 * Reverse index, indexed by the inode number of a directory that
 167	 * is waiting for the move/rename of its immediate parent before its
 168	 * own move/rename can be performed.
 169	 */
 170	struct rb_root waiting_dir_moves;
 171
 172	/*
 173	 * A directory that is going to be rm'ed might have a child directory
 174	 * which is in the pending directory moves index above. In this case,
 175	 * the directory can only be removed after the move/rename of its child
 176	 * is performed. Example:
 177	 *
 178	 * Parent snapshot:
 179	 *
 180	 * .                        (ino 256)
 181	 * |-- a/                   (ino 257)
 182	 *     |-- b/               (ino 258)
 183	 *         |-- c/           (ino 259)
 184	 *         |   |-- x/       (ino 260)
 185	 *         |
 186	 *         |-- y/           (ino 261)
 187	 *
 188	 * Send snapshot:
 189	 *
 190	 * .                        (ino 256)
 191	 * |-- a/                   (ino 257)
 192	 *     |-- b/               (ino 258)
 193	 *         |-- YY/          (ino 261)
 194	 *              |-- x/      (ino 260)
 195	 *
 196	 * Sequence of steps that lead to the send snapshot:
 197	 * rm -f /a/b/c/foo.txt
 198	 * mv /a/b/y /a/b/YY
 199	 * mv /a/b/c/x /a/b/YY
 200	 * rmdir /a/b/c
 201	 *
 202	 * When the child is processed, its move/rename is delayed until its
 203	 * parent is processed (as explained above), but all other operations
 204	 * like update utimes, chown, chgrp, etc, are performed and the paths
 205	 * that it uses for those operations must use the orphanized name of
 206	 * its parent (the directory we're going to rm later), so we need to
 207	 * memorize that name.
 208	 *
 209	 * Indexed by the inode number of the directory to be deleted.
 210	 */
 211	struct rb_root orphan_dirs;
 212};
 213
 214struct pending_dir_move {
 215	struct rb_node node;
 216	struct list_head list;
 217	u64 parent_ino;
 218	u64 ino;
 219	u64 gen;
 
 220	struct list_head update_refs;
 221};
 222
 223struct waiting_dir_move {
 224	struct rb_node node;
 225	u64 ino;
 226	/*
 227	 * There might be some directory that could not be removed because it
 228	 * was waiting for this directory inode to be moved first. Therefore
 229	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
 230	 */
 231	u64 rmdir_ino;
 232	bool orphanized;
 233};
 234
 235struct orphan_dir_info {
 236	struct rb_node node;
 237	u64 ino;
 238	u64 gen;
 239	u64 last_dir_index_offset;
 240};
 241
 242struct name_cache_entry {
 243	struct list_head list;
 244	/*
 245	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
 246	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
 247	 * more then one inum would fall into the same entry, we use radix_list
 248	 * to store the additional entries. radix_list is also used to store
 249	 * entries where two entries have the same inum but different
 250	 * generations.
 251	 */
 252	struct list_head radix_list;
 253	u64 ino;
 254	u64 gen;
 255	u64 parent_ino;
 256	u64 parent_gen;
 257	int ret;
 258	int need_later_update;
 259	int name_len;
 260	char name[];
 261};
 262
 263#define ADVANCE							1
 264#define ADVANCE_ONLY_NEXT					-1
 265
 266enum btrfs_compare_tree_result {
 267	BTRFS_COMPARE_TREE_NEW,
 268	BTRFS_COMPARE_TREE_DELETED,
 269	BTRFS_COMPARE_TREE_CHANGED,
 270	BTRFS_COMPARE_TREE_SAME,
 271};
 272typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path,
 273				  struct btrfs_path *right_path,
 274				  struct btrfs_key *key,
 275				  enum btrfs_compare_tree_result result,
 276				  void *ctx);
 277
 278__cold
 279static void inconsistent_snapshot_error(struct send_ctx *sctx,
 280					enum btrfs_compare_tree_result result,
 281					const char *what)
 282{
 283	const char *result_string;
 284
 285	switch (result) {
 286	case BTRFS_COMPARE_TREE_NEW:
 287		result_string = "new";
 288		break;
 289	case BTRFS_COMPARE_TREE_DELETED:
 290		result_string = "deleted";
 291		break;
 292	case BTRFS_COMPARE_TREE_CHANGED:
 293		result_string = "updated";
 294		break;
 295	case BTRFS_COMPARE_TREE_SAME:
 296		ASSERT(0);
 297		result_string = "unchanged";
 298		break;
 299	default:
 300		ASSERT(0);
 301		result_string = "unexpected";
 302	}
 303
 304	btrfs_err(sctx->send_root->fs_info,
 305		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
 306		  result_string, what, sctx->cmp_key->objectid,
 307		  sctx->send_root->root_key.objectid,
 308		  (sctx->parent_root ?
 309		   sctx->parent_root->root_key.objectid : 0));
 310}
 311
 312static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
 313
 314static struct waiting_dir_move *
 315get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
 316
 317static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
 318
 319static int need_send_hole(struct send_ctx *sctx)
 320{
 321	return (sctx->parent_root && !sctx->cur_inode_new &&
 322		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
 323		S_ISREG(sctx->cur_inode_mode));
 324}
 325
 326static void fs_path_reset(struct fs_path *p)
 327{
 328	if (p->reversed) {
 329		p->start = p->buf + p->buf_len - 1;
 330		p->end = p->start;
 331		*p->start = 0;
 332	} else {
 333		p->start = p->buf;
 334		p->end = p->start;
 335		*p->start = 0;
 336	}
 337}
 338
 339static struct fs_path *fs_path_alloc(void)
 340{
 341	struct fs_path *p;
 342
 343	p = kmalloc(sizeof(*p), GFP_KERNEL);
 344	if (!p)
 345		return NULL;
 346	p->reversed = 0;
 347	p->buf = p->inline_buf;
 348	p->buf_len = FS_PATH_INLINE_SIZE;
 349	fs_path_reset(p);
 350	return p;
 351}
 352
 353static struct fs_path *fs_path_alloc_reversed(void)
 354{
 355	struct fs_path *p;
 356
 357	p = fs_path_alloc();
 358	if (!p)
 359		return NULL;
 360	p->reversed = 1;
 361	fs_path_reset(p);
 362	return p;
 363}
 364
 365static void fs_path_free(struct fs_path *p)
 366{
 367	if (!p)
 368		return;
 369	if (p->buf != p->inline_buf)
 370		kfree(p->buf);
 371	kfree(p);
 372}
 373
 374static int fs_path_len(struct fs_path *p)
 375{
 376	return p->end - p->start;
 377}
 378
 379static int fs_path_ensure_buf(struct fs_path *p, int len)
 380{
 381	char *tmp_buf;
 382	int path_len;
 383	int old_buf_len;
 384
 385	len++;
 386
 387	if (p->buf_len >= len)
 388		return 0;
 389
 390	if (len > PATH_MAX) {
 391		WARN_ON(1);
 392		return -ENOMEM;
 393	}
 394
 395	path_len = p->end - p->start;
 396	old_buf_len = p->buf_len;
 397
 398	/*
 399	 * First time the inline_buf does not suffice
 400	 */
 401	if (p->buf == p->inline_buf) {
 402		tmp_buf = kmalloc(len, GFP_KERNEL);
 403		if (tmp_buf)
 404			memcpy(tmp_buf, p->buf, old_buf_len);
 405	} else {
 406		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
 407	}
 408	if (!tmp_buf)
 409		return -ENOMEM;
 410	p->buf = tmp_buf;
 411	/*
 412	 * The real size of the buffer is bigger, this will let the fast path
 413	 * happen most of the time
 414	 */
 415	p->buf_len = ksize(p->buf);
 416
 417	if (p->reversed) {
 418		tmp_buf = p->buf + old_buf_len - path_len - 1;
 419		p->end = p->buf + p->buf_len - 1;
 420		p->start = p->end - path_len;
 421		memmove(p->start, tmp_buf, path_len + 1);
 422	} else {
 423		p->start = p->buf;
 424		p->end = p->start + path_len;
 425	}
 426	return 0;
 427}
 428
 429static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
 430				   char **prepared)
 431{
 432	int ret;
 433	int new_len;
 434
 435	new_len = p->end - p->start + name_len;
 436	if (p->start != p->end)
 437		new_len++;
 438	ret = fs_path_ensure_buf(p, new_len);
 439	if (ret < 0)
 440		goto out;
 441
 442	if (p->reversed) {
 443		if (p->start != p->end)
 444			*--p->start = '/';
 445		p->start -= name_len;
 446		*prepared = p->start;
 447	} else {
 448		if (p->start != p->end)
 449			*p->end++ = '/';
 450		*prepared = p->end;
 451		p->end += name_len;
 452		*p->end = 0;
 453	}
 454
 455out:
 456	return ret;
 457}
 458
 459static int fs_path_add(struct fs_path *p, const char *name, int name_len)
 460{
 461	int ret;
 462	char *prepared;
 463
 464	ret = fs_path_prepare_for_add(p, name_len, &prepared);
 465	if (ret < 0)
 466		goto out;
 467	memcpy(prepared, name, name_len);
 468
 469out:
 470	return ret;
 471}
 472
 473static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
 474{
 475	int ret;
 476	char *prepared;
 477
 478	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
 479	if (ret < 0)
 480		goto out;
 481	memcpy(prepared, p2->start, p2->end - p2->start);
 482
 483out:
 484	return ret;
 485}
 486
 487static int fs_path_add_from_extent_buffer(struct fs_path *p,
 488					  struct extent_buffer *eb,
 489					  unsigned long off, int len)
 490{
 491	int ret;
 492	char *prepared;
 493
 494	ret = fs_path_prepare_for_add(p, len, &prepared);
 495	if (ret < 0)
 496		goto out;
 497
 498	read_extent_buffer(eb, prepared, off, len);
 499
 500out:
 501	return ret;
 502}
 503
 504static int fs_path_copy(struct fs_path *p, struct fs_path *from)
 505{
 506	int ret;
 507
 508	p->reversed = from->reversed;
 509	fs_path_reset(p);
 510
 511	ret = fs_path_add_path(p, from);
 512
 513	return ret;
 514}
 515
 516
 517static void fs_path_unreverse(struct fs_path *p)
 518{
 519	char *tmp;
 520	int len;
 521
 522	if (!p->reversed)
 523		return;
 524
 525	tmp = p->start;
 526	len = p->end - p->start;
 527	p->start = p->buf;
 528	p->end = p->start + len;
 529	memmove(p->start, tmp, len + 1);
 530	p->reversed = 0;
 531}
 532
 533static struct btrfs_path *alloc_path_for_send(void)
 534{
 535	struct btrfs_path *path;
 536
 537	path = btrfs_alloc_path();
 538	if (!path)
 539		return NULL;
 540	path->search_commit_root = 1;
 541	path->skip_locking = 1;
 542	path->need_commit_sem = 1;
 543	return path;
 544}
 545
 546static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
 547{
 548	int ret;
 
 549	u32 pos = 0;
 550
 
 
 
 551	while (pos < len) {
 552		ret = kernel_write(filp, buf + pos, len - pos, off);
 
 553		/* TODO handle that correctly */
 554		/*if (ret == -ERESTARTSYS) {
 555			continue;
 556		}*/
 557		if (ret < 0)
 558			return ret;
 559		if (ret == 0) {
 560			return -EIO;
 
 561		}
 562		pos += ret;
 563	}
 564
 565	return 0;
 
 
 
 
 566}
 567
 568static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
 569{
 570	struct btrfs_tlv_header *hdr;
 571	int total_len = sizeof(*hdr) + len;
 572	int left = sctx->send_max_size - sctx->send_size;
 573
 574	if (unlikely(left < total_len))
 575		return -EOVERFLOW;
 576
 577	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
 578	hdr->tlv_type = cpu_to_le16(attr);
 579	hdr->tlv_len = cpu_to_le16(len);
 580	memcpy(hdr + 1, data, len);
 581	sctx->send_size += total_len;
 582
 583	return 0;
 584}
 585
 586#define TLV_PUT_DEFINE_INT(bits) \
 587	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
 588			u##bits attr, u##bits value)			\
 589	{								\
 590		__le##bits __tmp = cpu_to_le##bits(value);		\
 591		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
 592	}
 593
 594TLV_PUT_DEFINE_INT(64)
 595
 596static int tlv_put_string(struct send_ctx *sctx, u16 attr,
 597			  const char *str, int len)
 598{
 599	if (len == -1)
 600		len = strlen(str);
 601	return tlv_put(sctx, attr, str, len);
 602}
 603
 604static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
 605			const u8 *uuid)
 606{
 607	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
 608}
 609
 610static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
 611				  struct extent_buffer *eb,
 612				  struct btrfs_timespec *ts)
 613{
 614	struct btrfs_timespec bts;
 615	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
 616	return tlv_put(sctx, attr, &bts, sizeof(bts));
 617}
 618
 619
 620#define TLV_PUT(sctx, attrtype, data, attrlen) \
 621	do { \
 622		ret = tlv_put(sctx, attrtype, data, attrlen); \
 623		if (ret < 0) \
 624			goto tlv_put_failure; \
 625	} while (0)
 626
 627#define TLV_PUT_INT(sctx, attrtype, bits, value) \
 628	do { \
 629		ret = tlv_put_u##bits(sctx, attrtype, value); \
 630		if (ret < 0) \
 631			goto tlv_put_failure; \
 632	} while (0)
 633
 634#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
 635#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
 636#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
 637#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
 638#define TLV_PUT_STRING(sctx, attrtype, str, len) \
 639	do { \
 640		ret = tlv_put_string(sctx, attrtype, str, len); \
 641		if (ret < 0) \
 642			goto tlv_put_failure; \
 643	} while (0)
 644#define TLV_PUT_PATH(sctx, attrtype, p) \
 645	do { \
 646		ret = tlv_put_string(sctx, attrtype, p->start, \
 647			p->end - p->start); \
 648		if (ret < 0) \
 649			goto tlv_put_failure; \
 650	} while(0)
 651#define TLV_PUT_UUID(sctx, attrtype, uuid) \
 652	do { \
 653		ret = tlv_put_uuid(sctx, attrtype, uuid); \
 654		if (ret < 0) \
 655			goto tlv_put_failure; \
 656	} while (0)
 657#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
 658	do { \
 659		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
 660		if (ret < 0) \
 661			goto tlv_put_failure; \
 662	} while (0)
 663
 664static int send_header(struct send_ctx *sctx)
 665{
 666	struct btrfs_stream_header hdr;
 667
 668	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
 669	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
 670
 671	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
 672					&sctx->send_off);
 673}
 674
 675/*
 676 * For each command/item we want to send to userspace, we call this function.
 677 */
 678static int begin_cmd(struct send_ctx *sctx, int cmd)
 679{
 680	struct btrfs_cmd_header *hdr;
 681
 682	if (WARN_ON(!sctx->send_buf))
 683		return -EINVAL;
 684
 685	BUG_ON(sctx->send_size);
 686
 687	sctx->send_size += sizeof(*hdr);
 688	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 689	hdr->cmd = cpu_to_le16(cmd);
 690
 691	return 0;
 692}
 693
 694static int send_cmd(struct send_ctx *sctx)
 695{
 696	int ret;
 697	struct btrfs_cmd_header *hdr;
 698	u32 crc;
 699
 700	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 701	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
 702	hdr->crc = 0;
 703
 704	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
 705	hdr->crc = cpu_to_le32(crc);
 706
 707	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
 708					&sctx->send_off);
 709
 710	sctx->total_send_size += sctx->send_size;
 711	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
 712	sctx->send_size = 0;
 713
 714	return ret;
 715}
 716
 717/*
 718 * Sends a move instruction to user space
 719 */
 720static int send_rename(struct send_ctx *sctx,
 721		     struct fs_path *from, struct fs_path *to)
 722{
 723	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 724	int ret;
 725
 726	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
 727
 728	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
 729	if (ret < 0)
 730		goto out;
 731
 732	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
 733	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
 734
 735	ret = send_cmd(sctx);
 736
 737tlv_put_failure:
 738out:
 739	return ret;
 740}
 741
 742/*
 743 * Sends a link instruction to user space
 744 */
 745static int send_link(struct send_ctx *sctx,
 746		     struct fs_path *path, struct fs_path *lnk)
 747{
 748	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 749	int ret;
 750
 751	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
 752
 753	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
 754	if (ret < 0)
 755		goto out;
 756
 757	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 758	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
 759
 760	ret = send_cmd(sctx);
 761
 762tlv_put_failure:
 763out:
 764	return ret;
 765}
 766
 767/*
 768 * Sends an unlink instruction to user space
 769 */
 770static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
 771{
 772	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 773	int ret;
 774
 775	btrfs_debug(fs_info, "send_unlink %s", path->start);
 776
 777	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
 778	if (ret < 0)
 779		goto out;
 780
 781	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 782
 783	ret = send_cmd(sctx);
 784
 785tlv_put_failure:
 786out:
 787	return ret;
 788}
 789
 790/*
 791 * Sends a rmdir instruction to user space
 792 */
 793static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
 794{
 795	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 796	int ret;
 797
 798	btrfs_debug(fs_info, "send_rmdir %s", path->start);
 799
 800	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
 801	if (ret < 0)
 802		goto out;
 803
 804	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 805
 806	ret = send_cmd(sctx);
 807
 808tlv_put_failure:
 809out:
 810	return ret;
 811}
 812
 813/*
 814 * Helper function to retrieve some fields from an inode item.
 815 */
 816static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
 817			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
 818			  u64 *gid, u64 *rdev)
 819{
 820	int ret;
 821	struct btrfs_inode_item *ii;
 822	struct btrfs_key key;
 823
 824	key.objectid = ino;
 825	key.type = BTRFS_INODE_ITEM_KEY;
 826	key.offset = 0;
 827	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 828	if (ret) {
 829		if (ret > 0)
 830			ret = -ENOENT;
 831		return ret;
 832	}
 833
 834	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
 835			struct btrfs_inode_item);
 836	if (size)
 837		*size = btrfs_inode_size(path->nodes[0], ii);
 838	if (gen)
 839		*gen = btrfs_inode_generation(path->nodes[0], ii);
 840	if (mode)
 841		*mode = btrfs_inode_mode(path->nodes[0], ii);
 842	if (uid)
 843		*uid = btrfs_inode_uid(path->nodes[0], ii);
 844	if (gid)
 845		*gid = btrfs_inode_gid(path->nodes[0], ii);
 846	if (rdev)
 847		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
 848
 849	return ret;
 850}
 851
 852static int get_inode_info(struct btrfs_root *root,
 853			  u64 ino, u64 *size, u64 *gen,
 854			  u64 *mode, u64 *uid, u64 *gid,
 855			  u64 *rdev)
 856{
 857	struct btrfs_path *path;
 858	int ret;
 859
 860	path = alloc_path_for_send();
 861	if (!path)
 862		return -ENOMEM;
 863	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
 864			       rdev);
 865	btrfs_free_path(path);
 866	return ret;
 867}
 868
 869typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
 870				   struct fs_path *p,
 871				   void *ctx);
 872
 873/*
 874 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 875 * btrfs_inode_extref.
 876 * The iterate callback may return a non zero value to stop iteration. This can
 877 * be a negative value for error codes or 1 to simply stop it.
 878 *
 879 * path must point to the INODE_REF or INODE_EXTREF when called.
 880 */
 881static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
 882			     struct btrfs_key *found_key, int resolve,
 883			     iterate_inode_ref_t iterate, void *ctx)
 884{
 885	struct extent_buffer *eb = path->nodes[0];
 886	struct btrfs_item *item;
 887	struct btrfs_inode_ref *iref;
 888	struct btrfs_inode_extref *extref;
 889	struct btrfs_path *tmp_path;
 890	struct fs_path *p;
 891	u32 cur = 0;
 892	u32 total;
 893	int slot = path->slots[0];
 894	u32 name_len;
 895	char *start;
 896	int ret = 0;
 897	int num = 0;
 898	int index;
 899	u64 dir;
 900	unsigned long name_off;
 901	unsigned long elem_size;
 902	unsigned long ptr;
 903
 904	p = fs_path_alloc_reversed();
 905	if (!p)
 906		return -ENOMEM;
 907
 908	tmp_path = alloc_path_for_send();
 909	if (!tmp_path) {
 910		fs_path_free(p);
 911		return -ENOMEM;
 912	}
 913
 914
 915	if (found_key->type == BTRFS_INODE_REF_KEY) {
 916		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
 917						    struct btrfs_inode_ref);
 918		item = btrfs_item_nr(slot);
 919		total = btrfs_item_size(eb, item);
 920		elem_size = sizeof(*iref);
 921	} else {
 922		ptr = btrfs_item_ptr_offset(eb, slot);
 923		total = btrfs_item_size_nr(eb, slot);
 924		elem_size = sizeof(*extref);
 925	}
 926
 927	while (cur < total) {
 928		fs_path_reset(p);
 929
 930		if (found_key->type == BTRFS_INODE_REF_KEY) {
 931			iref = (struct btrfs_inode_ref *)(ptr + cur);
 932			name_len = btrfs_inode_ref_name_len(eb, iref);
 933			name_off = (unsigned long)(iref + 1);
 934			index = btrfs_inode_ref_index(eb, iref);
 935			dir = found_key->offset;
 936		} else {
 937			extref = (struct btrfs_inode_extref *)(ptr + cur);
 938			name_len = btrfs_inode_extref_name_len(eb, extref);
 939			name_off = (unsigned long)&extref->name;
 940			index = btrfs_inode_extref_index(eb, extref);
 941			dir = btrfs_inode_extref_parent(eb, extref);
 942		}
 943
 944		if (resolve) {
 945			start = btrfs_ref_to_path(root, tmp_path, name_len,
 946						  name_off, eb, dir,
 947						  p->buf, p->buf_len);
 948			if (IS_ERR(start)) {
 949				ret = PTR_ERR(start);
 950				goto out;
 951			}
 952			if (start < p->buf) {
 953				/* overflow , try again with larger buffer */
 954				ret = fs_path_ensure_buf(p,
 955						p->buf_len + p->buf - start);
 956				if (ret < 0)
 957					goto out;
 958				start = btrfs_ref_to_path(root, tmp_path,
 959							  name_len, name_off,
 960							  eb, dir,
 961							  p->buf, p->buf_len);
 962				if (IS_ERR(start)) {
 963					ret = PTR_ERR(start);
 964					goto out;
 965				}
 966				BUG_ON(start < p->buf);
 967			}
 968			p->start = start;
 969		} else {
 970			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
 971							     name_len);
 972			if (ret < 0)
 973				goto out;
 974		}
 975
 976		cur += elem_size + name_len;
 977		ret = iterate(num, dir, index, p, ctx);
 978		if (ret)
 979			goto out;
 980		num++;
 981	}
 982
 983out:
 984	btrfs_free_path(tmp_path);
 985	fs_path_free(p);
 986	return ret;
 987}
 988
 989typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
 990				  const char *name, int name_len,
 991				  const char *data, int data_len,
 992				  u8 type, void *ctx);
 993
 994/*
 995 * Helper function to iterate the entries in ONE btrfs_dir_item.
 996 * The iterate callback may return a non zero value to stop iteration. This can
 997 * be a negative value for error codes or 1 to simply stop it.
 998 *
 999 * path must point to the dir item when called.
1000 */
1001static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
 
1002			    iterate_dir_item_t iterate, void *ctx)
1003{
1004	int ret = 0;
1005	struct extent_buffer *eb;
1006	struct btrfs_item *item;
1007	struct btrfs_dir_item *di;
1008	struct btrfs_key di_key;
1009	char *buf = NULL;
1010	int buf_len;
1011	u32 name_len;
1012	u32 data_len;
1013	u32 cur;
1014	u32 len;
1015	u32 total;
1016	int slot;
1017	int num;
1018	u8 type;
1019
1020	/*
1021	 * Start with a small buffer (1 page). If later we end up needing more
1022	 * space, which can happen for xattrs on a fs with a leaf size greater
1023	 * then the page size, attempt to increase the buffer. Typically xattr
1024	 * values are small.
1025	 */
1026	buf_len = PATH_MAX;
1027	buf = kmalloc(buf_len, GFP_KERNEL);
1028	if (!buf) {
1029		ret = -ENOMEM;
1030		goto out;
1031	}
1032
1033	eb = path->nodes[0];
1034	slot = path->slots[0];
1035	item = btrfs_item_nr(slot);
1036	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1037	cur = 0;
1038	len = 0;
1039	total = btrfs_item_size(eb, item);
1040
1041	num = 0;
1042	while (cur < total) {
1043		name_len = btrfs_dir_name_len(eb, di);
1044		data_len = btrfs_dir_data_len(eb, di);
1045		type = btrfs_dir_type(eb, di);
1046		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1047
1048		if (type == BTRFS_FT_XATTR) {
1049			if (name_len > XATTR_NAME_MAX) {
1050				ret = -ENAMETOOLONG;
1051				goto out;
1052			}
1053			if (name_len + data_len >
1054					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1055				ret = -E2BIG;
1056				goto out;
1057			}
1058		} else {
1059			/*
1060			 * Path too long
1061			 */
1062			if (name_len + data_len > PATH_MAX) {
1063				ret = -ENAMETOOLONG;
1064				goto out;
1065			}
1066		}
1067
1068		if (name_len + data_len > buf_len) {
1069			buf_len = name_len + data_len;
1070			if (is_vmalloc_addr(buf)) {
1071				vfree(buf);
1072				buf = NULL;
1073			} else {
1074				char *tmp = krealloc(buf, buf_len,
1075						GFP_KERNEL | __GFP_NOWARN);
1076
1077				if (!tmp)
1078					kfree(buf);
1079				buf = tmp;
1080			}
1081			if (!buf) {
1082				buf = kvmalloc(buf_len, GFP_KERNEL);
1083				if (!buf) {
1084					ret = -ENOMEM;
1085					goto out;
1086				}
1087			}
1088		}
1089
1090		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1091				name_len + data_len);
1092
1093		len = sizeof(*di) + name_len + data_len;
1094		di = (struct btrfs_dir_item *)((char *)di + len);
1095		cur += len;
1096
1097		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1098				data_len, type, ctx);
1099		if (ret < 0)
1100			goto out;
1101		if (ret) {
1102			ret = 0;
1103			goto out;
1104		}
1105
1106		num++;
1107	}
1108
1109out:
1110	kvfree(buf);
1111	return ret;
1112}
1113
1114static int __copy_first_ref(int num, u64 dir, int index,
1115			    struct fs_path *p, void *ctx)
1116{
1117	int ret;
1118	struct fs_path *pt = ctx;
1119
1120	ret = fs_path_copy(pt, p);
1121	if (ret < 0)
1122		return ret;
1123
1124	/* we want the first only */
1125	return 1;
1126}
1127
1128/*
1129 * Retrieve the first path of an inode. If an inode has more then one
1130 * ref/hardlink, this is ignored.
1131 */
1132static int get_inode_path(struct btrfs_root *root,
1133			  u64 ino, struct fs_path *path)
1134{
1135	int ret;
1136	struct btrfs_key key, found_key;
1137	struct btrfs_path *p;
1138
1139	p = alloc_path_for_send();
1140	if (!p)
1141		return -ENOMEM;
1142
1143	fs_path_reset(path);
1144
1145	key.objectid = ino;
1146	key.type = BTRFS_INODE_REF_KEY;
1147	key.offset = 0;
1148
1149	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1150	if (ret < 0)
1151		goto out;
1152	if (ret) {
1153		ret = 1;
1154		goto out;
1155	}
1156	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1157	if (found_key.objectid != ino ||
1158	    (found_key.type != BTRFS_INODE_REF_KEY &&
1159	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1160		ret = -ENOENT;
1161		goto out;
1162	}
1163
1164	ret = iterate_inode_ref(root, p, &found_key, 1,
1165				__copy_first_ref, path);
1166	if (ret < 0)
1167		goto out;
1168	ret = 0;
1169
1170out:
1171	btrfs_free_path(p);
1172	return ret;
1173}
1174
1175struct backref_ctx {
1176	struct send_ctx *sctx;
1177
 
1178	/* number of total found references */
1179	u64 found;
1180
1181	/*
1182	 * used for clones found in send_root. clones found behind cur_objectid
1183	 * and cur_offset are not considered as allowed clones.
1184	 */
1185	u64 cur_objectid;
1186	u64 cur_offset;
1187
1188	/* may be truncated in case it's the last extent in a file */
1189	u64 extent_len;
1190
1191	/* data offset in the file extent item */
1192	u64 data_offset;
1193
1194	/* Just to check for bugs in backref resolving */
1195	int found_itself;
1196};
1197
1198static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1199{
1200	u64 root = (u64)(uintptr_t)key;
1201	struct clone_root *cr = (struct clone_root *)elt;
1202
1203	if (root < cr->root->root_key.objectid)
1204		return -1;
1205	if (root > cr->root->root_key.objectid)
1206		return 1;
1207	return 0;
1208}
1209
1210static int __clone_root_cmp_sort(const void *e1, const void *e2)
1211{
1212	struct clone_root *cr1 = (struct clone_root *)e1;
1213	struct clone_root *cr2 = (struct clone_root *)e2;
1214
1215	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1216		return -1;
1217	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1218		return 1;
1219	return 0;
1220}
1221
1222/*
1223 * Called for every backref that is found for the current extent.
1224 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1225 */
1226static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1227{
1228	struct backref_ctx *bctx = ctx_;
1229	struct clone_root *found;
 
 
1230
1231	/* First check if the root is in the list of accepted clone sources */
1232	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1233			bctx->sctx->clone_roots_cnt,
1234			sizeof(struct clone_root),
1235			__clone_root_cmp_bsearch);
1236	if (!found)
1237		return 0;
1238
1239	if (found->root == bctx->sctx->send_root &&
1240	    ino == bctx->cur_objectid &&
1241	    offset == bctx->cur_offset) {
1242		bctx->found_itself = 1;
1243	}
1244
1245	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
1246	 * Make sure we don't consider clones from send_root that are
1247	 * behind the current inode/offset.
1248	 */
1249	if (found->root == bctx->sctx->send_root) {
1250		/*
1251		 * TODO for the moment we don't accept clones from the inode
1252		 * that is currently send. We may change this when
1253		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1254		 * file.
1255		 */
1256		if (ino >= bctx->cur_objectid)
1257			return 0;
 
 
 
 
 
 
1258	}
1259
1260	bctx->found++;
1261	found->found_refs++;
1262	if (ino < found->ino) {
1263		found->ino = ino;
1264		found->offset = offset;
1265	} else if (found->ino == ino) {
1266		/*
1267		 * same extent found more then once in the same file.
1268		 */
1269		if (found->offset > offset + bctx->extent_len)
1270			found->offset = offset;
1271	}
1272
1273	return 0;
1274}
1275
1276/*
1277 * Given an inode, offset and extent item, it finds a good clone for a clone
1278 * instruction. Returns -ENOENT when none could be found. The function makes
1279 * sure that the returned clone is usable at the point where sending is at the
1280 * moment. This means, that no clones are accepted which lie behind the current
1281 * inode+offset.
1282 *
1283 * path must point to the extent item when called.
1284 */
1285static int find_extent_clone(struct send_ctx *sctx,
1286			     struct btrfs_path *path,
1287			     u64 ino, u64 data_offset,
1288			     u64 ino_size,
1289			     struct clone_root **found)
1290{
1291	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1292	int ret;
1293	int extent_type;
1294	u64 logical;
1295	u64 disk_byte;
1296	u64 num_bytes;
1297	u64 extent_item_pos;
1298	u64 flags = 0;
1299	struct btrfs_file_extent_item *fi;
1300	struct extent_buffer *eb = path->nodes[0];
1301	struct backref_ctx *backref_ctx = NULL;
1302	struct clone_root *cur_clone_root;
1303	struct btrfs_key found_key;
1304	struct btrfs_path *tmp_path;
1305	int compressed;
1306	u32 i;
1307
1308	tmp_path = alloc_path_for_send();
1309	if (!tmp_path)
1310		return -ENOMEM;
1311
1312	/* We only use this path under the commit sem */
1313	tmp_path->need_commit_sem = 0;
1314
1315	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1316	if (!backref_ctx) {
1317		ret = -ENOMEM;
1318		goto out;
1319	}
1320
 
 
1321	if (data_offset >= ino_size) {
1322		/*
1323		 * There may be extents that lie behind the file's size.
1324		 * I at least had this in combination with snapshotting while
1325		 * writing large files.
1326		 */
1327		ret = 0;
1328		goto out;
1329	}
1330
1331	fi = btrfs_item_ptr(eb, path->slots[0],
1332			struct btrfs_file_extent_item);
1333	extent_type = btrfs_file_extent_type(eb, fi);
1334	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1335		ret = -ENOENT;
1336		goto out;
1337	}
1338	compressed = btrfs_file_extent_compression(eb, fi);
1339
1340	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1341	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1342	if (disk_byte == 0) {
1343		ret = -ENOENT;
1344		goto out;
1345	}
1346	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1347
1348	down_read(&fs_info->commit_root_sem);
1349	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1350				  &found_key, &flags);
1351	up_read(&fs_info->commit_root_sem);
1352	btrfs_release_path(tmp_path);
1353
1354	if (ret < 0)
1355		goto out;
1356	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1357		ret = -EIO;
1358		goto out;
1359	}
1360
1361	/*
1362	 * Setup the clone roots.
1363	 */
1364	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1365		cur_clone_root = sctx->clone_roots + i;
1366		cur_clone_root->ino = (u64)-1;
1367		cur_clone_root->offset = 0;
1368		cur_clone_root->found_refs = 0;
1369	}
1370
1371	backref_ctx->sctx = sctx;
1372	backref_ctx->found = 0;
1373	backref_ctx->cur_objectid = ino;
1374	backref_ctx->cur_offset = data_offset;
1375	backref_ctx->found_itself = 0;
1376	backref_ctx->extent_len = num_bytes;
1377	/*
1378	 * For non-compressed extents iterate_extent_inodes() gives us extent
1379	 * offsets that already take into account the data offset, but not for
1380	 * compressed extents, since the offset is logical and not relative to
1381	 * the physical extent locations. We must take this into account to
1382	 * avoid sending clone offsets that go beyond the source file's size,
1383	 * which would result in the clone ioctl failing with -EINVAL on the
1384	 * receiving end.
1385	 */
1386	if (compressed == BTRFS_COMPRESS_NONE)
1387		backref_ctx->data_offset = 0;
1388	else
1389		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1390
1391	/*
1392	 * The last extent of a file may be too large due to page alignment.
1393	 * We need to adjust extent_len in this case so that the checks in
1394	 * __iterate_backrefs work.
1395	 */
1396	if (data_offset + num_bytes >= ino_size)
1397		backref_ctx->extent_len = ino_size - data_offset;
1398
1399	/*
1400	 * Now collect all backrefs.
1401	 */
1402	if (compressed == BTRFS_COMPRESS_NONE)
1403		extent_item_pos = logical - found_key.objectid;
1404	else
1405		extent_item_pos = 0;
1406	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1407				    extent_item_pos, 1, __iterate_backrefs,
1408				    backref_ctx, false);
1409
1410	if (ret < 0)
1411		goto out;
1412
1413	if (!backref_ctx->found_itself) {
1414		/* found a bug in backref code? */
1415		ret = -EIO;
1416		btrfs_err(fs_info,
1417			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1418			  ino, data_offset, disk_byte, found_key.objectid);
 
1419		goto out;
1420	}
1421
1422	btrfs_debug(fs_info,
1423		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1424		    data_offset, ino, num_bytes, logical);
 
1425
1426	if (!backref_ctx->found)
1427		btrfs_debug(fs_info, "no clones found");
1428
1429	cur_clone_root = NULL;
1430	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1431		if (sctx->clone_roots[i].found_refs) {
1432			if (!cur_clone_root)
1433				cur_clone_root = sctx->clone_roots + i;
1434			else if (sctx->clone_roots[i].root == sctx->send_root)
1435				/* prefer clones from send_root over others */
1436				cur_clone_root = sctx->clone_roots + i;
1437		}
1438
1439	}
1440
1441	if (cur_clone_root) {
1442		*found = cur_clone_root;
1443		ret = 0;
1444	} else {
1445		ret = -ENOENT;
1446	}
1447
1448out:
1449	btrfs_free_path(tmp_path);
1450	kfree(backref_ctx);
1451	return ret;
1452}
1453
1454static int read_symlink(struct btrfs_root *root,
1455			u64 ino,
1456			struct fs_path *dest)
1457{
1458	int ret;
1459	struct btrfs_path *path;
1460	struct btrfs_key key;
1461	struct btrfs_file_extent_item *ei;
1462	u8 type;
1463	u8 compression;
1464	unsigned long off;
1465	int len;
1466
1467	path = alloc_path_for_send();
1468	if (!path)
1469		return -ENOMEM;
1470
1471	key.objectid = ino;
1472	key.type = BTRFS_EXTENT_DATA_KEY;
1473	key.offset = 0;
1474	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1475	if (ret < 0)
1476		goto out;
1477	if (ret) {
1478		/*
1479		 * An empty symlink inode. Can happen in rare error paths when
1480		 * creating a symlink (transaction committed before the inode
1481		 * eviction handler removed the symlink inode items and a crash
1482		 * happened in between or the subvol was snapshoted in between).
1483		 * Print an informative message to dmesg/syslog so that the user
1484		 * can delete the symlink.
1485		 */
1486		btrfs_err(root->fs_info,
1487			  "Found empty symlink inode %llu at root %llu",
1488			  ino, root->root_key.objectid);
1489		ret = -EIO;
1490		goto out;
1491	}
1492
1493	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1494			struct btrfs_file_extent_item);
1495	type = btrfs_file_extent_type(path->nodes[0], ei);
1496	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1497	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1498	BUG_ON(compression);
1499
1500	off = btrfs_file_extent_inline_start(ei);
1501	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1502
1503	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1504
1505out:
1506	btrfs_free_path(path);
1507	return ret;
1508}
1509
1510/*
1511 * Helper function to generate a file name that is unique in the root of
1512 * send_root and parent_root. This is used to generate names for orphan inodes.
1513 */
1514static int gen_unique_name(struct send_ctx *sctx,
1515			   u64 ino, u64 gen,
1516			   struct fs_path *dest)
1517{
1518	int ret = 0;
1519	struct btrfs_path *path;
1520	struct btrfs_dir_item *di;
1521	char tmp[64];
1522	int len;
1523	u64 idx = 0;
1524
1525	path = alloc_path_for_send();
1526	if (!path)
1527		return -ENOMEM;
1528
1529	while (1) {
1530		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1531				ino, gen, idx);
1532		ASSERT(len < sizeof(tmp));
1533
1534		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1535				path, BTRFS_FIRST_FREE_OBJECTID,
1536				tmp, strlen(tmp), 0);
1537		btrfs_release_path(path);
1538		if (IS_ERR(di)) {
1539			ret = PTR_ERR(di);
1540			goto out;
1541		}
1542		if (di) {
1543			/* not unique, try again */
1544			idx++;
1545			continue;
1546		}
1547
1548		if (!sctx->parent_root) {
1549			/* unique */
1550			ret = 0;
1551			break;
1552		}
1553
1554		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1555				path, BTRFS_FIRST_FREE_OBJECTID,
1556				tmp, strlen(tmp), 0);
1557		btrfs_release_path(path);
1558		if (IS_ERR(di)) {
1559			ret = PTR_ERR(di);
1560			goto out;
1561		}
1562		if (di) {
1563			/* not unique, try again */
1564			idx++;
1565			continue;
1566		}
1567		/* unique */
1568		break;
1569	}
1570
1571	ret = fs_path_add(dest, tmp, strlen(tmp));
1572
1573out:
1574	btrfs_free_path(path);
1575	return ret;
1576}
1577
1578enum inode_state {
1579	inode_state_no_change,
1580	inode_state_will_create,
1581	inode_state_did_create,
1582	inode_state_will_delete,
1583	inode_state_did_delete,
1584};
1585
1586static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1587{
1588	int ret;
1589	int left_ret;
1590	int right_ret;
1591	u64 left_gen;
1592	u64 right_gen;
1593
1594	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1595			NULL, NULL);
1596	if (ret < 0 && ret != -ENOENT)
1597		goto out;
1598	left_ret = ret;
1599
1600	if (!sctx->parent_root) {
1601		right_ret = -ENOENT;
1602	} else {
1603		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1604				NULL, NULL, NULL, NULL);
1605		if (ret < 0 && ret != -ENOENT)
1606			goto out;
1607		right_ret = ret;
1608	}
1609
1610	if (!left_ret && !right_ret) {
1611		if (left_gen == gen && right_gen == gen) {
1612			ret = inode_state_no_change;
1613		} else if (left_gen == gen) {
1614			if (ino < sctx->send_progress)
1615				ret = inode_state_did_create;
1616			else
1617				ret = inode_state_will_create;
1618		} else if (right_gen == gen) {
1619			if (ino < sctx->send_progress)
1620				ret = inode_state_did_delete;
1621			else
1622				ret = inode_state_will_delete;
1623		} else  {
1624			ret = -ENOENT;
1625		}
1626	} else if (!left_ret) {
1627		if (left_gen == gen) {
1628			if (ino < sctx->send_progress)
1629				ret = inode_state_did_create;
1630			else
1631				ret = inode_state_will_create;
1632		} else {
1633			ret = -ENOENT;
1634		}
1635	} else if (!right_ret) {
1636		if (right_gen == gen) {
1637			if (ino < sctx->send_progress)
1638				ret = inode_state_did_delete;
1639			else
1640				ret = inode_state_will_delete;
1641		} else {
1642			ret = -ENOENT;
1643		}
1644	} else {
1645		ret = -ENOENT;
1646	}
1647
1648out:
1649	return ret;
1650}
1651
1652static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1653{
1654	int ret;
1655
1656	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1657		return 1;
1658
1659	ret = get_cur_inode_state(sctx, ino, gen);
1660	if (ret < 0)
1661		goto out;
1662
1663	if (ret == inode_state_no_change ||
1664	    ret == inode_state_did_create ||
1665	    ret == inode_state_will_delete)
1666		ret = 1;
1667	else
1668		ret = 0;
1669
1670out:
1671	return ret;
1672}
1673
1674/*
1675 * Helper function to lookup a dir item in a dir.
1676 */
1677static int lookup_dir_item_inode(struct btrfs_root *root,
1678				 u64 dir, const char *name, int name_len,
1679				 u64 *found_inode,
1680				 u8 *found_type)
1681{
1682	int ret = 0;
1683	struct btrfs_dir_item *di;
1684	struct btrfs_key key;
1685	struct btrfs_path *path;
1686
1687	path = alloc_path_for_send();
1688	if (!path)
1689		return -ENOMEM;
1690
1691	di = btrfs_lookup_dir_item(NULL, root, path,
1692			dir, name, name_len, 0);
1693	if (IS_ERR_OR_NULL(di)) {
1694		ret = di ? PTR_ERR(di) : -ENOENT;
 
 
 
 
1695		goto out;
1696	}
1697	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1698	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1699		ret = -ENOENT;
1700		goto out;
1701	}
1702	*found_inode = key.objectid;
1703	*found_type = btrfs_dir_type(path->nodes[0], di);
1704
1705out:
1706	btrfs_free_path(path);
1707	return ret;
1708}
1709
1710/*
1711 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1712 * generation of the parent dir and the name of the dir entry.
1713 */
1714static int get_first_ref(struct btrfs_root *root, u64 ino,
1715			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1716{
1717	int ret;
1718	struct btrfs_key key;
1719	struct btrfs_key found_key;
1720	struct btrfs_path *path;
1721	int len;
1722	u64 parent_dir;
1723
1724	path = alloc_path_for_send();
1725	if (!path)
1726		return -ENOMEM;
1727
1728	key.objectid = ino;
1729	key.type = BTRFS_INODE_REF_KEY;
1730	key.offset = 0;
1731
1732	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1733	if (ret < 0)
1734		goto out;
1735	if (!ret)
1736		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1737				path->slots[0]);
1738	if (ret || found_key.objectid != ino ||
1739	    (found_key.type != BTRFS_INODE_REF_KEY &&
1740	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1741		ret = -ENOENT;
1742		goto out;
1743	}
1744
1745	if (found_key.type == BTRFS_INODE_REF_KEY) {
1746		struct btrfs_inode_ref *iref;
1747		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1748				      struct btrfs_inode_ref);
1749		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1750		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1751						     (unsigned long)(iref + 1),
1752						     len);
1753		parent_dir = found_key.offset;
1754	} else {
1755		struct btrfs_inode_extref *extref;
1756		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1757					struct btrfs_inode_extref);
1758		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1759		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1760					(unsigned long)&extref->name, len);
1761		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1762	}
1763	if (ret < 0)
1764		goto out;
1765	btrfs_release_path(path);
1766
1767	if (dir_gen) {
1768		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1769				     NULL, NULL, NULL);
1770		if (ret < 0)
1771			goto out;
1772	}
1773
1774	*dir = parent_dir;
1775
1776out:
1777	btrfs_free_path(path);
1778	return ret;
1779}
1780
1781static int is_first_ref(struct btrfs_root *root,
1782			u64 ino, u64 dir,
1783			const char *name, int name_len)
1784{
1785	int ret;
1786	struct fs_path *tmp_name;
1787	u64 tmp_dir;
1788
1789	tmp_name = fs_path_alloc();
1790	if (!tmp_name)
1791		return -ENOMEM;
1792
1793	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1794	if (ret < 0)
1795		goto out;
1796
1797	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1798		ret = 0;
1799		goto out;
1800	}
1801
1802	ret = !memcmp(tmp_name->start, name, name_len);
1803
1804out:
1805	fs_path_free(tmp_name);
1806	return ret;
1807}
1808
1809/*
1810 * Used by process_recorded_refs to determine if a new ref would overwrite an
1811 * already existing ref. In case it detects an overwrite, it returns the
1812 * inode/gen in who_ino/who_gen.
1813 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1814 * to make sure later references to the overwritten inode are possible.
1815 * Orphanizing is however only required for the first ref of an inode.
1816 * process_recorded_refs does an additional is_first_ref check to see if
1817 * orphanizing is really required.
1818 */
1819static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1820			      const char *name, int name_len,
1821			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1822{
1823	int ret = 0;
1824	u64 gen;
1825	u64 other_inode = 0;
1826	u8 other_type = 0;
1827
1828	if (!sctx->parent_root)
1829		goto out;
1830
1831	ret = is_inode_existent(sctx, dir, dir_gen);
1832	if (ret <= 0)
1833		goto out;
1834
1835	/*
1836	 * If we have a parent root we need to verify that the parent dir was
1837	 * not deleted and then re-created, if it was then we have no overwrite
1838	 * and we can just unlink this entry.
1839	 */
1840	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1841		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1842				     NULL, NULL, NULL);
1843		if (ret < 0 && ret != -ENOENT)
1844			goto out;
1845		if (ret) {
1846			ret = 0;
1847			goto out;
1848		}
1849		if (gen != dir_gen)
1850			goto out;
1851	}
1852
1853	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1854			&other_inode, &other_type);
1855	if (ret < 0 && ret != -ENOENT)
1856		goto out;
1857	if (ret) {
1858		ret = 0;
1859		goto out;
1860	}
1861
1862	/*
1863	 * Check if the overwritten ref was already processed. If yes, the ref
1864	 * was already unlinked/moved, so we can safely assume that we will not
1865	 * overwrite anything at this point in time.
1866	 */
1867	if (other_inode > sctx->send_progress ||
1868	    is_waiting_for_move(sctx, other_inode)) {
1869		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1870				who_gen, who_mode, NULL, NULL, NULL);
1871		if (ret < 0)
1872			goto out;
1873
1874		ret = 1;
1875		*who_ino = other_inode;
1876	} else {
1877		ret = 0;
1878	}
1879
1880out:
1881	return ret;
1882}
1883
1884/*
1885 * Checks if the ref was overwritten by an already processed inode. This is
1886 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1887 * thus the orphan name needs be used.
1888 * process_recorded_refs also uses it to avoid unlinking of refs that were
1889 * overwritten.
1890 */
1891static int did_overwrite_ref(struct send_ctx *sctx,
1892			    u64 dir, u64 dir_gen,
1893			    u64 ino, u64 ino_gen,
1894			    const char *name, int name_len)
1895{
1896	int ret = 0;
1897	u64 gen;
1898	u64 ow_inode;
1899	u8 other_type;
1900
1901	if (!sctx->parent_root)
1902		goto out;
1903
1904	ret = is_inode_existent(sctx, dir, dir_gen);
1905	if (ret <= 0)
1906		goto out;
1907
1908	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1909		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1910				     NULL, NULL, NULL);
1911		if (ret < 0 && ret != -ENOENT)
1912			goto out;
1913		if (ret) {
1914			ret = 0;
1915			goto out;
1916		}
1917		if (gen != dir_gen)
1918			goto out;
1919	}
1920
1921	/* check if the ref was overwritten by another ref */
1922	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1923			&ow_inode, &other_type);
1924	if (ret < 0 && ret != -ENOENT)
1925		goto out;
1926	if (ret) {
1927		/* was never and will never be overwritten */
1928		ret = 0;
1929		goto out;
1930	}
1931
1932	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1933			NULL, NULL);
1934	if (ret < 0)
1935		goto out;
1936
1937	if (ow_inode == ino && gen == ino_gen) {
1938		ret = 0;
1939		goto out;
1940	}
1941
1942	/*
1943	 * We know that it is or will be overwritten. Check this now.
1944	 * The current inode being processed might have been the one that caused
1945	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1946	 * the current inode being processed.
1947	 */
1948	if ((ow_inode < sctx->send_progress) ||
1949	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1950	     gen == sctx->cur_inode_gen))
1951		ret = 1;
1952	else
1953		ret = 0;
1954
1955out:
1956	return ret;
1957}
1958
1959/*
1960 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1961 * that got overwritten. This is used by process_recorded_refs to determine
1962 * if it has to use the path as returned by get_cur_path or the orphan name.
1963 */
1964static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1965{
1966	int ret = 0;
1967	struct fs_path *name = NULL;
1968	u64 dir;
1969	u64 dir_gen;
1970
1971	if (!sctx->parent_root)
1972		goto out;
1973
1974	name = fs_path_alloc();
1975	if (!name)
1976		return -ENOMEM;
1977
1978	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1979	if (ret < 0)
1980		goto out;
1981
1982	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1983			name->start, fs_path_len(name));
1984
1985out:
1986	fs_path_free(name);
1987	return ret;
1988}
1989
1990/*
1991 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1992 * so we need to do some special handling in case we have clashes. This function
1993 * takes care of this with the help of name_cache_entry::radix_list.
1994 * In case of error, nce is kfreed.
1995 */
1996static int name_cache_insert(struct send_ctx *sctx,
1997			     struct name_cache_entry *nce)
1998{
1999	int ret = 0;
2000	struct list_head *nce_head;
2001
2002	nce_head = radix_tree_lookup(&sctx->name_cache,
2003			(unsigned long)nce->ino);
2004	if (!nce_head) {
2005		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2006		if (!nce_head) {
2007			kfree(nce);
2008			return -ENOMEM;
2009		}
2010		INIT_LIST_HEAD(nce_head);
2011
2012		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2013		if (ret < 0) {
2014			kfree(nce_head);
2015			kfree(nce);
2016			return ret;
2017		}
2018	}
2019	list_add_tail(&nce->radix_list, nce_head);
2020	list_add_tail(&nce->list, &sctx->name_cache_list);
2021	sctx->name_cache_size++;
2022
2023	return ret;
2024}
2025
2026static void name_cache_delete(struct send_ctx *sctx,
2027			      struct name_cache_entry *nce)
2028{
2029	struct list_head *nce_head;
2030
2031	nce_head = radix_tree_lookup(&sctx->name_cache,
2032			(unsigned long)nce->ino);
2033	if (!nce_head) {
2034		btrfs_err(sctx->send_root->fs_info,
2035	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2036			nce->ino, sctx->name_cache_size);
2037	}
2038
2039	list_del(&nce->radix_list);
2040	list_del(&nce->list);
2041	sctx->name_cache_size--;
2042
2043	/*
2044	 * We may not get to the final release of nce_head if the lookup fails
2045	 */
2046	if (nce_head && list_empty(nce_head)) {
2047		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2048		kfree(nce_head);
2049	}
2050}
2051
2052static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2053						    u64 ino, u64 gen)
2054{
2055	struct list_head *nce_head;
2056	struct name_cache_entry *cur;
2057
2058	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2059	if (!nce_head)
2060		return NULL;
2061
2062	list_for_each_entry(cur, nce_head, radix_list) {
2063		if (cur->ino == ino && cur->gen == gen)
2064			return cur;
2065	}
2066	return NULL;
2067}
2068
2069/*
2070 * Removes the entry from the list and adds it back to the end. This marks the
2071 * entry as recently used so that name_cache_clean_unused does not remove it.
2072 */
2073static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2074{
2075	list_del(&nce->list);
2076	list_add_tail(&nce->list, &sctx->name_cache_list);
2077}
2078
2079/*
2080 * Remove some entries from the beginning of name_cache_list.
2081 */
2082static void name_cache_clean_unused(struct send_ctx *sctx)
2083{
2084	struct name_cache_entry *nce;
2085
2086	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2087		return;
2088
2089	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2090		nce = list_entry(sctx->name_cache_list.next,
2091				struct name_cache_entry, list);
2092		name_cache_delete(sctx, nce);
2093		kfree(nce);
2094	}
2095}
2096
2097static void name_cache_free(struct send_ctx *sctx)
2098{
2099	struct name_cache_entry *nce;
2100
2101	while (!list_empty(&sctx->name_cache_list)) {
2102		nce = list_entry(sctx->name_cache_list.next,
2103				struct name_cache_entry, list);
2104		name_cache_delete(sctx, nce);
2105		kfree(nce);
2106	}
2107}
2108
2109/*
2110 * Used by get_cur_path for each ref up to the root.
2111 * Returns 0 if it succeeded.
2112 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2113 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2114 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2115 * Returns <0 in case of error.
2116 */
2117static int __get_cur_name_and_parent(struct send_ctx *sctx,
2118				     u64 ino, u64 gen,
2119				     u64 *parent_ino,
2120				     u64 *parent_gen,
2121				     struct fs_path *dest)
2122{
2123	int ret;
2124	int nce_ret;
2125	struct name_cache_entry *nce = NULL;
2126
2127	/*
2128	 * First check if we already did a call to this function with the same
2129	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2130	 * return the cached result.
2131	 */
2132	nce = name_cache_search(sctx, ino, gen);
2133	if (nce) {
2134		if (ino < sctx->send_progress && nce->need_later_update) {
2135			name_cache_delete(sctx, nce);
2136			kfree(nce);
2137			nce = NULL;
2138		} else {
2139			name_cache_used(sctx, nce);
2140			*parent_ino = nce->parent_ino;
2141			*parent_gen = nce->parent_gen;
2142			ret = fs_path_add(dest, nce->name, nce->name_len);
2143			if (ret < 0)
2144				goto out;
2145			ret = nce->ret;
2146			goto out;
2147		}
2148	}
2149
2150	/*
2151	 * If the inode is not existent yet, add the orphan name and return 1.
2152	 * This should only happen for the parent dir that we determine in
2153	 * __record_new_ref
2154	 */
2155	ret = is_inode_existent(sctx, ino, gen);
2156	if (ret < 0)
2157		goto out;
2158
2159	if (!ret) {
2160		ret = gen_unique_name(sctx, ino, gen, dest);
2161		if (ret < 0)
2162			goto out;
2163		ret = 1;
2164		goto out_cache;
2165	}
2166
2167	/*
2168	 * Depending on whether the inode was already processed or not, use
2169	 * send_root or parent_root for ref lookup.
2170	 */
2171	if (ino < sctx->send_progress)
2172		ret = get_first_ref(sctx->send_root, ino,
2173				    parent_ino, parent_gen, dest);
2174	else
2175		ret = get_first_ref(sctx->parent_root, ino,
2176				    parent_ino, parent_gen, dest);
2177	if (ret < 0)
2178		goto out;
2179
2180	/*
2181	 * Check if the ref was overwritten by an inode's ref that was processed
2182	 * earlier. If yes, treat as orphan and return 1.
2183	 */
2184	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2185			dest->start, dest->end - dest->start);
2186	if (ret < 0)
2187		goto out;
2188	if (ret) {
2189		fs_path_reset(dest);
2190		ret = gen_unique_name(sctx, ino, gen, dest);
2191		if (ret < 0)
2192			goto out;
2193		ret = 1;
2194	}
2195
2196out_cache:
2197	/*
2198	 * Store the result of the lookup in the name cache.
2199	 */
2200	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2201	if (!nce) {
2202		ret = -ENOMEM;
2203		goto out;
2204	}
2205
2206	nce->ino = ino;
2207	nce->gen = gen;
2208	nce->parent_ino = *parent_ino;
2209	nce->parent_gen = *parent_gen;
2210	nce->name_len = fs_path_len(dest);
2211	nce->ret = ret;
2212	strcpy(nce->name, dest->start);
2213
2214	if (ino < sctx->send_progress)
2215		nce->need_later_update = 0;
2216	else
2217		nce->need_later_update = 1;
2218
2219	nce_ret = name_cache_insert(sctx, nce);
2220	if (nce_ret < 0)
2221		ret = nce_ret;
2222	name_cache_clean_unused(sctx);
2223
2224out:
2225	return ret;
2226}
2227
2228/*
2229 * Magic happens here. This function returns the first ref to an inode as it
2230 * would look like while receiving the stream at this point in time.
2231 * We walk the path up to the root. For every inode in between, we check if it
2232 * was already processed/sent. If yes, we continue with the parent as found
2233 * in send_root. If not, we continue with the parent as found in parent_root.
2234 * If we encounter an inode that was deleted at this point in time, we use the
2235 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2236 * that were not created yet and overwritten inodes/refs.
2237 *
2238 * When do we have orphan inodes:
2239 * 1. When an inode is freshly created and thus no valid refs are available yet
2240 * 2. When a directory lost all it's refs (deleted) but still has dir items
2241 *    inside which were not processed yet (pending for move/delete). If anyone
2242 *    tried to get the path to the dir items, it would get a path inside that
2243 *    orphan directory.
2244 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2245 *    of an unprocessed inode. If in that case the first ref would be
2246 *    overwritten, the overwritten inode gets "orphanized". Later when we
2247 *    process this overwritten inode, it is restored at a new place by moving
2248 *    the orphan inode.
2249 *
2250 * sctx->send_progress tells this function at which point in time receiving
2251 * would be.
2252 */
2253static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2254			struct fs_path *dest)
2255{
2256	int ret = 0;
2257	struct fs_path *name = NULL;
2258	u64 parent_inode = 0;
2259	u64 parent_gen = 0;
2260	int stop = 0;
2261
2262	name = fs_path_alloc();
2263	if (!name) {
2264		ret = -ENOMEM;
2265		goto out;
2266	}
2267
2268	dest->reversed = 1;
2269	fs_path_reset(dest);
2270
2271	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2272		struct waiting_dir_move *wdm;
2273
2274		fs_path_reset(name);
2275
2276		if (is_waiting_for_rm(sctx, ino)) {
2277			ret = gen_unique_name(sctx, ino, gen, name);
2278			if (ret < 0)
2279				goto out;
2280			ret = fs_path_add_path(dest, name);
2281			break;
2282		}
2283
2284		wdm = get_waiting_dir_move(sctx, ino);
2285		if (wdm && wdm->orphanized) {
2286			ret = gen_unique_name(sctx, ino, gen, name);
2287			stop = 1;
2288		} else if (wdm) {
2289			ret = get_first_ref(sctx->parent_root, ino,
2290					    &parent_inode, &parent_gen, name);
2291		} else {
2292			ret = __get_cur_name_and_parent(sctx, ino, gen,
2293							&parent_inode,
2294							&parent_gen, name);
2295			if (ret)
2296				stop = 1;
2297		}
2298
2299		if (ret < 0)
2300			goto out;
2301
2302		ret = fs_path_add_path(dest, name);
2303		if (ret < 0)
2304			goto out;
2305
2306		ino = parent_inode;
2307		gen = parent_gen;
2308	}
2309
2310out:
2311	fs_path_free(name);
2312	if (!ret)
2313		fs_path_unreverse(dest);
2314	return ret;
2315}
2316
2317/*
2318 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2319 */
2320static int send_subvol_begin(struct send_ctx *sctx)
2321{
2322	int ret;
2323	struct btrfs_root *send_root = sctx->send_root;
2324	struct btrfs_root *parent_root = sctx->parent_root;
2325	struct btrfs_path *path;
2326	struct btrfs_key key;
2327	struct btrfs_root_ref *ref;
2328	struct extent_buffer *leaf;
2329	char *name = NULL;
2330	int namelen;
2331
2332	path = btrfs_alloc_path();
2333	if (!path)
2334		return -ENOMEM;
2335
2336	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2337	if (!name) {
2338		btrfs_free_path(path);
2339		return -ENOMEM;
2340	}
2341
2342	key.objectid = send_root->root_key.objectid;
2343	key.type = BTRFS_ROOT_BACKREF_KEY;
2344	key.offset = 0;
2345
2346	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2347				&key, path, 1, 0);
2348	if (ret < 0)
2349		goto out;
2350	if (ret) {
2351		ret = -ENOENT;
2352		goto out;
2353	}
2354
2355	leaf = path->nodes[0];
2356	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2357	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2358	    key.objectid != send_root->root_key.objectid) {
2359		ret = -ENOENT;
2360		goto out;
2361	}
2362	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2363	namelen = btrfs_root_ref_name_len(leaf, ref);
2364	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2365	btrfs_release_path(path);
2366
2367	if (parent_root) {
2368		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2369		if (ret < 0)
2370			goto out;
2371	} else {
2372		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2373		if (ret < 0)
2374			goto out;
2375	}
2376
2377	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2378
2379	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2380		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2381			    sctx->send_root->root_item.received_uuid);
2382	else
2383		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2384			    sctx->send_root->root_item.uuid);
2385
2386	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2387		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2388	if (parent_root) {
2389		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2390			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2391				     parent_root->root_item.received_uuid);
2392		else
2393			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2394				     parent_root->root_item.uuid);
2395		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2396			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2397	}
2398
2399	ret = send_cmd(sctx);
2400
2401tlv_put_failure:
2402out:
2403	btrfs_free_path(path);
2404	kfree(name);
2405	return ret;
2406}
2407
2408static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2409{
2410	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2411	int ret = 0;
2412	struct fs_path *p;
2413
2414	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2415
2416	p = fs_path_alloc();
2417	if (!p)
2418		return -ENOMEM;
2419
2420	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2421	if (ret < 0)
2422		goto out;
2423
2424	ret = get_cur_path(sctx, ino, gen, p);
2425	if (ret < 0)
2426		goto out;
2427	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2428	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2429
2430	ret = send_cmd(sctx);
2431
2432tlv_put_failure:
2433out:
2434	fs_path_free(p);
2435	return ret;
2436}
2437
2438static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2439{
2440	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2441	int ret = 0;
2442	struct fs_path *p;
2443
2444	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2445
2446	p = fs_path_alloc();
2447	if (!p)
2448		return -ENOMEM;
2449
2450	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2451	if (ret < 0)
2452		goto out;
2453
2454	ret = get_cur_path(sctx, ino, gen, p);
2455	if (ret < 0)
2456		goto out;
2457	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2458	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2459
2460	ret = send_cmd(sctx);
2461
2462tlv_put_failure:
2463out:
2464	fs_path_free(p);
2465	return ret;
2466}
2467
2468static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2469{
2470	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2471	int ret = 0;
2472	struct fs_path *p;
2473
2474	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2475		    ino, uid, gid);
2476
2477	p = fs_path_alloc();
2478	if (!p)
2479		return -ENOMEM;
2480
2481	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2482	if (ret < 0)
2483		goto out;
2484
2485	ret = get_cur_path(sctx, ino, gen, p);
2486	if (ret < 0)
2487		goto out;
2488	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2489	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2490	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2491
2492	ret = send_cmd(sctx);
2493
2494tlv_put_failure:
2495out:
2496	fs_path_free(p);
2497	return ret;
2498}
2499
2500static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2501{
2502	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2503	int ret = 0;
2504	struct fs_path *p = NULL;
2505	struct btrfs_inode_item *ii;
2506	struct btrfs_path *path = NULL;
2507	struct extent_buffer *eb;
2508	struct btrfs_key key;
2509	int slot;
2510
2511	btrfs_debug(fs_info, "send_utimes %llu", ino);
2512
2513	p = fs_path_alloc();
2514	if (!p)
2515		return -ENOMEM;
2516
2517	path = alloc_path_for_send();
2518	if (!path) {
2519		ret = -ENOMEM;
2520		goto out;
2521	}
2522
2523	key.objectid = ino;
2524	key.type = BTRFS_INODE_ITEM_KEY;
2525	key.offset = 0;
2526	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2527	if (ret > 0)
2528		ret = -ENOENT;
2529	if (ret < 0)
2530		goto out;
2531
2532	eb = path->nodes[0];
2533	slot = path->slots[0];
2534	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2535
2536	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2537	if (ret < 0)
2538		goto out;
2539
2540	ret = get_cur_path(sctx, ino, gen, p);
2541	if (ret < 0)
2542		goto out;
2543	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2544	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2545	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2546	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2547	/* TODO Add otime support when the otime patches get into upstream */
2548
2549	ret = send_cmd(sctx);
2550
2551tlv_put_failure:
2552out:
2553	fs_path_free(p);
2554	btrfs_free_path(path);
2555	return ret;
2556}
2557
2558/*
2559 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2560 * a valid path yet because we did not process the refs yet. So, the inode
2561 * is created as orphan.
2562 */
2563static int send_create_inode(struct send_ctx *sctx, u64 ino)
2564{
2565	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2566	int ret = 0;
2567	struct fs_path *p;
2568	int cmd;
2569	u64 gen;
2570	u64 mode;
2571	u64 rdev;
2572
2573	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2574
2575	p = fs_path_alloc();
2576	if (!p)
2577		return -ENOMEM;
2578
2579	if (ino != sctx->cur_ino) {
2580		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2581				     NULL, NULL, &rdev);
2582		if (ret < 0)
2583			goto out;
2584	} else {
2585		gen = sctx->cur_inode_gen;
2586		mode = sctx->cur_inode_mode;
2587		rdev = sctx->cur_inode_rdev;
2588	}
2589
2590	if (S_ISREG(mode)) {
2591		cmd = BTRFS_SEND_C_MKFILE;
2592	} else if (S_ISDIR(mode)) {
2593		cmd = BTRFS_SEND_C_MKDIR;
2594	} else if (S_ISLNK(mode)) {
2595		cmd = BTRFS_SEND_C_SYMLINK;
2596	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2597		cmd = BTRFS_SEND_C_MKNOD;
2598	} else if (S_ISFIFO(mode)) {
2599		cmd = BTRFS_SEND_C_MKFIFO;
2600	} else if (S_ISSOCK(mode)) {
2601		cmd = BTRFS_SEND_C_MKSOCK;
2602	} else {
2603		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2604				(int)(mode & S_IFMT));
2605		ret = -EOPNOTSUPP;
2606		goto out;
2607	}
2608
2609	ret = begin_cmd(sctx, cmd);
2610	if (ret < 0)
2611		goto out;
2612
2613	ret = gen_unique_name(sctx, ino, gen, p);
2614	if (ret < 0)
2615		goto out;
2616
2617	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2618	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2619
2620	if (S_ISLNK(mode)) {
2621		fs_path_reset(p);
2622		ret = read_symlink(sctx->send_root, ino, p);
2623		if (ret < 0)
2624			goto out;
2625		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2626	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2627		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2628		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2629		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2630	}
2631
2632	ret = send_cmd(sctx);
2633	if (ret < 0)
2634		goto out;
2635
2636
2637tlv_put_failure:
2638out:
2639	fs_path_free(p);
2640	return ret;
2641}
2642
2643/*
2644 * We need some special handling for inodes that get processed before the parent
2645 * directory got created. See process_recorded_refs for details.
2646 * This function does the check if we already created the dir out of order.
2647 */
2648static int did_create_dir(struct send_ctx *sctx, u64 dir)
2649{
2650	int ret = 0;
2651	struct btrfs_path *path = NULL;
2652	struct btrfs_key key;
2653	struct btrfs_key found_key;
2654	struct btrfs_key di_key;
2655	struct extent_buffer *eb;
2656	struct btrfs_dir_item *di;
2657	int slot;
2658
2659	path = alloc_path_for_send();
2660	if (!path) {
2661		ret = -ENOMEM;
2662		goto out;
2663	}
2664
2665	key.objectid = dir;
2666	key.type = BTRFS_DIR_INDEX_KEY;
2667	key.offset = 0;
2668	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2669	if (ret < 0)
2670		goto out;
2671
2672	while (1) {
2673		eb = path->nodes[0];
2674		slot = path->slots[0];
2675		if (slot >= btrfs_header_nritems(eb)) {
2676			ret = btrfs_next_leaf(sctx->send_root, path);
2677			if (ret < 0) {
2678				goto out;
2679			} else if (ret > 0) {
2680				ret = 0;
2681				break;
2682			}
2683			continue;
2684		}
2685
2686		btrfs_item_key_to_cpu(eb, &found_key, slot);
2687		if (found_key.objectid != key.objectid ||
2688		    found_key.type != key.type) {
2689			ret = 0;
2690			goto out;
2691		}
2692
2693		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2694		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2695
2696		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2697		    di_key.objectid < sctx->send_progress) {
2698			ret = 1;
2699			goto out;
2700		}
2701
2702		path->slots[0]++;
2703	}
2704
2705out:
2706	btrfs_free_path(path);
2707	return ret;
2708}
2709
2710/*
2711 * Only creates the inode if it is:
2712 * 1. Not a directory
2713 * 2. Or a directory which was not created already due to out of order
2714 *    directories. See did_create_dir and process_recorded_refs for details.
2715 */
2716static int send_create_inode_if_needed(struct send_ctx *sctx)
2717{
2718	int ret;
2719
2720	if (S_ISDIR(sctx->cur_inode_mode)) {
2721		ret = did_create_dir(sctx, sctx->cur_ino);
2722		if (ret < 0)
2723			goto out;
2724		if (ret) {
2725			ret = 0;
2726			goto out;
2727		}
2728	}
2729
2730	ret = send_create_inode(sctx, sctx->cur_ino);
2731	if (ret < 0)
2732		goto out;
2733
2734out:
2735	return ret;
2736}
2737
2738struct recorded_ref {
2739	struct list_head list;
 
2740	char *name;
2741	struct fs_path *full_path;
2742	u64 dir;
2743	u64 dir_gen;
 
2744	int name_len;
2745};
2746
2747static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2748{
2749	ref->full_path = path;
2750	ref->name = (char *)kbasename(ref->full_path->start);
2751	ref->name_len = ref->full_path->end - ref->name;
2752}
2753
2754/*
2755 * We need to process new refs before deleted refs, but compare_tree gives us
2756 * everything mixed. So we first record all refs and later process them.
2757 * This function is a helper to record one ref.
2758 */
2759static int __record_ref(struct list_head *head, u64 dir,
2760		      u64 dir_gen, struct fs_path *path)
2761{
2762	struct recorded_ref *ref;
2763
2764	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2765	if (!ref)
2766		return -ENOMEM;
2767
2768	ref->dir = dir;
2769	ref->dir_gen = dir_gen;
2770	set_ref_path(ref, path);
 
 
 
 
 
 
 
 
 
 
2771	list_add_tail(&ref->list, head);
2772	return 0;
2773}
2774
2775static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2776{
2777	struct recorded_ref *new;
2778
2779	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2780	if (!new)
2781		return -ENOMEM;
2782
2783	new->dir = ref->dir;
2784	new->dir_gen = ref->dir_gen;
2785	new->full_path = NULL;
2786	INIT_LIST_HEAD(&new->list);
2787	list_add_tail(&new->list, list);
2788	return 0;
2789}
2790
2791static void __free_recorded_refs(struct list_head *head)
2792{
2793	struct recorded_ref *cur;
2794
2795	while (!list_empty(head)) {
2796		cur = list_entry(head->next, struct recorded_ref, list);
2797		fs_path_free(cur->full_path);
2798		list_del(&cur->list);
2799		kfree(cur);
2800	}
2801}
2802
2803static void free_recorded_refs(struct send_ctx *sctx)
2804{
2805	__free_recorded_refs(&sctx->new_refs);
2806	__free_recorded_refs(&sctx->deleted_refs);
2807}
2808
2809/*
2810 * Renames/moves a file/dir to its orphan name. Used when the first
2811 * ref of an unprocessed inode gets overwritten and for all non empty
2812 * directories.
2813 */
2814static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2815			  struct fs_path *path)
2816{
2817	int ret;
2818	struct fs_path *orphan;
2819
2820	orphan = fs_path_alloc();
2821	if (!orphan)
2822		return -ENOMEM;
2823
2824	ret = gen_unique_name(sctx, ino, gen, orphan);
2825	if (ret < 0)
2826		goto out;
2827
2828	ret = send_rename(sctx, path, orphan);
2829
2830out:
2831	fs_path_free(orphan);
2832	return ret;
2833}
2834
2835static struct orphan_dir_info *
2836add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2837{
2838	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2839	struct rb_node *parent = NULL;
2840	struct orphan_dir_info *entry, *odi;
2841
 
 
 
 
 
 
2842	while (*p) {
2843		parent = *p;
2844		entry = rb_entry(parent, struct orphan_dir_info, node);
2845		if (dir_ino < entry->ino) {
2846			p = &(*p)->rb_left;
2847		} else if (dir_ino > entry->ino) {
2848			p = &(*p)->rb_right;
2849		} else {
 
2850			return entry;
2851		}
2852	}
2853
2854	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2855	if (!odi)
2856		return ERR_PTR(-ENOMEM);
2857	odi->ino = dir_ino;
2858	odi->gen = 0;
2859	odi->last_dir_index_offset = 0;
2860
2861	rb_link_node(&odi->node, parent, p);
2862	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2863	return odi;
2864}
2865
2866static struct orphan_dir_info *
2867get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2868{
2869	struct rb_node *n = sctx->orphan_dirs.rb_node;
2870	struct orphan_dir_info *entry;
2871
2872	while (n) {
2873		entry = rb_entry(n, struct orphan_dir_info, node);
2874		if (dir_ino < entry->ino)
2875			n = n->rb_left;
2876		else if (dir_ino > entry->ino)
2877			n = n->rb_right;
2878		else
2879			return entry;
2880	}
2881	return NULL;
2882}
2883
2884static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2885{
2886	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2887
2888	return odi != NULL;
2889}
2890
2891static void free_orphan_dir_info(struct send_ctx *sctx,
2892				 struct orphan_dir_info *odi)
2893{
2894	if (!odi)
2895		return;
2896	rb_erase(&odi->node, &sctx->orphan_dirs);
2897	kfree(odi);
2898}
2899
2900/*
2901 * Returns 1 if a directory can be removed at this point in time.
2902 * We check this by iterating all dir items and checking if the inode behind
2903 * the dir item was already processed.
2904 */
2905static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2906		     u64 send_progress)
2907{
2908	int ret = 0;
2909	struct btrfs_root *root = sctx->parent_root;
2910	struct btrfs_path *path;
2911	struct btrfs_key key;
2912	struct btrfs_key found_key;
2913	struct btrfs_key loc;
2914	struct btrfs_dir_item *di;
2915	struct orphan_dir_info *odi = NULL;
2916
2917	/*
2918	 * Don't try to rmdir the top/root subvolume dir.
2919	 */
2920	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2921		return 0;
2922
2923	path = alloc_path_for_send();
2924	if (!path)
2925		return -ENOMEM;
2926
2927	key.objectid = dir;
2928	key.type = BTRFS_DIR_INDEX_KEY;
2929	key.offset = 0;
2930
2931	odi = get_orphan_dir_info(sctx, dir);
2932	if (odi)
2933		key.offset = odi->last_dir_index_offset;
2934
2935	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2936	if (ret < 0)
2937		goto out;
2938
2939	while (1) {
2940		struct waiting_dir_move *dm;
2941
2942		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2943			ret = btrfs_next_leaf(root, path);
2944			if (ret < 0)
2945				goto out;
2946			else if (ret > 0)
2947				break;
2948			continue;
2949		}
2950		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2951				      path->slots[0]);
2952		if (found_key.objectid != key.objectid ||
2953		    found_key.type != key.type)
2954			break;
2955
2956		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2957				struct btrfs_dir_item);
2958		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2959
2960		dm = get_waiting_dir_move(sctx, loc.objectid);
2961		if (dm) {
 
 
2962			odi = add_orphan_dir_info(sctx, dir);
2963			if (IS_ERR(odi)) {
2964				ret = PTR_ERR(odi);
2965				goto out;
2966			}
2967			odi->gen = dir_gen;
2968			odi->last_dir_index_offset = found_key.offset;
2969			dm->rmdir_ino = dir;
2970			ret = 0;
2971			goto out;
2972		}
2973
2974		if (loc.objectid > send_progress) {
2975			odi = add_orphan_dir_info(sctx, dir);
2976			if (IS_ERR(odi)) {
2977				ret = PTR_ERR(odi);
2978				goto out;
2979			}
2980			odi->gen = dir_gen;
2981			odi->last_dir_index_offset = found_key.offset;
2982			ret = 0;
2983			goto out;
2984		}
2985
2986		path->slots[0]++;
2987	}
2988	free_orphan_dir_info(sctx, odi);
2989
2990	ret = 1;
2991
2992out:
2993	btrfs_free_path(path);
2994	return ret;
2995}
2996
2997static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2998{
2999	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3000
3001	return entry != NULL;
3002}
3003
3004static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3005{
3006	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3007	struct rb_node *parent = NULL;
3008	struct waiting_dir_move *entry, *dm;
3009
3010	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3011	if (!dm)
3012		return -ENOMEM;
3013	dm->ino = ino;
3014	dm->rmdir_ino = 0;
3015	dm->orphanized = orphanized;
3016
3017	while (*p) {
3018		parent = *p;
3019		entry = rb_entry(parent, struct waiting_dir_move, node);
3020		if (ino < entry->ino) {
3021			p = &(*p)->rb_left;
3022		} else if (ino > entry->ino) {
3023			p = &(*p)->rb_right;
3024		} else {
3025			kfree(dm);
3026			return -EEXIST;
3027		}
3028	}
3029
3030	rb_link_node(&dm->node, parent, p);
3031	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3032	return 0;
3033}
3034
3035static struct waiting_dir_move *
3036get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3037{
3038	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3039	struct waiting_dir_move *entry;
3040
3041	while (n) {
3042		entry = rb_entry(n, struct waiting_dir_move, node);
3043		if (ino < entry->ino)
3044			n = n->rb_left;
3045		else if (ino > entry->ino)
3046			n = n->rb_right;
3047		else
3048			return entry;
3049	}
3050	return NULL;
3051}
3052
3053static void free_waiting_dir_move(struct send_ctx *sctx,
3054				  struct waiting_dir_move *dm)
3055{
3056	if (!dm)
3057		return;
3058	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3059	kfree(dm);
3060}
3061
3062static int add_pending_dir_move(struct send_ctx *sctx,
3063				u64 ino,
3064				u64 ino_gen,
3065				u64 parent_ino,
3066				struct list_head *new_refs,
3067				struct list_head *deleted_refs,
3068				const bool is_orphan)
3069{
3070	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3071	struct rb_node *parent = NULL;
3072	struct pending_dir_move *entry = NULL, *pm;
3073	struct recorded_ref *cur;
3074	int exists = 0;
3075	int ret;
3076
3077	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3078	if (!pm)
3079		return -ENOMEM;
3080	pm->parent_ino = parent_ino;
3081	pm->ino = ino;
3082	pm->gen = ino_gen;
 
3083	INIT_LIST_HEAD(&pm->list);
3084	INIT_LIST_HEAD(&pm->update_refs);
3085	RB_CLEAR_NODE(&pm->node);
3086
3087	while (*p) {
3088		parent = *p;
3089		entry = rb_entry(parent, struct pending_dir_move, node);
3090		if (parent_ino < entry->parent_ino) {
3091			p = &(*p)->rb_left;
3092		} else if (parent_ino > entry->parent_ino) {
3093			p = &(*p)->rb_right;
3094		} else {
3095			exists = 1;
3096			break;
3097		}
3098	}
3099
3100	list_for_each_entry(cur, deleted_refs, list) {
3101		ret = dup_ref(cur, &pm->update_refs);
3102		if (ret < 0)
3103			goto out;
3104	}
3105	list_for_each_entry(cur, new_refs, list) {
3106		ret = dup_ref(cur, &pm->update_refs);
3107		if (ret < 0)
3108			goto out;
3109	}
3110
3111	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3112	if (ret)
3113		goto out;
3114
3115	if (exists) {
3116		list_add_tail(&pm->list, &entry->list);
3117	} else {
3118		rb_link_node(&pm->node, parent, p);
3119		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3120	}
3121	ret = 0;
3122out:
3123	if (ret) {
3124		__free_recorded_refs(&pm->update_refs);
3125		kfree(pm);
3126	}
3127	return ret;
3128}
3129
3130static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3131						      u64 parent_ino)
3132{
3133	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3134	struct pending_dir_move *entry;
3135
3136	while (n) {
3137		entry = rb_entry(n, struct pending_dir_move, node);
3138		if (parent_ino < entry->parent_ino)
3139			n = n->rb_left;
3140		else if (parent_ino > entry->parent_ino)
3141			n = n->rb_right;
3142		else
3143			return entry;
3144	}
3145	return NULL;
3146}
3147
3148static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3149		     u64 ino, u64 gen, u64 *ancestor_ino)
3150{
3151	int ret = 0;
3152	u64 parent_inode = 0;
3153	u64 parent_gen = 0;
3154	u64 start_ino = ino;
3155
3156	*ancestor_ino = 0;
3157	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3158		fs_path_reset(name);
3159
3160		if (is_waiting_for_rm(sctx, ino))
3161			break;
3162		if (is_waiting_for_move(sctx, ino)) {
3163			if (*ancestor_ino == 0)
3164				*ancestor_ino = ino;
3165			ret = get_first_ref(sctx->parent_root, ino,
3166					    &parent_inode, &parent_gen, name);
3167		} else {
3168			ret = __get_cur_name_and_parent(sctx, ino, gen,
3169							&parent_inode,
3170							&parent_gen, name);
3171			if (ret > 0) {
3172				ret = 0;
3173				break;
3174			}
3175		}
3176		if (ret < 0)
3177			break;
3178		if (parent_inode == start_ino) {
3179			ret = 1;
3180			if (*ancestor_ino == 0)
3181				*ancestor_ino = ino;
3182			break;
3183		}
3184		ino = parent_inode;
3185		gen = parent_gen;
3186	}
3187	return ret;
3188}
3189
3190static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3191{
3192	struct fs_path *from_path = NULL;
3193	struct fs_path *to_path = NULL;
3194	struct fs_path *name = NULL;
3195	u64 orig_progress = sctx->send_progress;
3196	struct recorded_ref *cur;
3197	u64 parent_ino, parent_gen;
3198	struct waiting_dir_move *dm = NULL;
3199	u64 rmdir_ino = 0;
3200	u64 ancestor;
3201	bool is_orphan;
3202	int ret;
3203
3204	name = fs_path_alloc();
3205	from_path = fs_path_alloc();
3206	if (!name || !from_path) {
3207		ret = -ENOMEM;
3208		goto out;
3209	}
3210
3211	dm = get_waiting_dir_move(sctx, pm->ino);
3212	ASSERT(dm);
3213	rmdir_ino = dm->rmdir_ino;
3214	is_orphan = dm->orphanized;
3215	free_waiting_dir_move(sctx, dm);
3216
3217	if (is_orphan) {
3218		ret = gen_unique_name(sctx, pm->ino,
3219				      pm->gen, from_path);
3220	} else {
3221		ret = get_first_ref(sctx->parent_root, pm->ino,
3222				    &parent_ino, &parent_gen, name);
3223		if (ret < 0)
3224			goto out;
3225		ret = get_cur_path(sctx, parent_ino, parent_gen,
3226				   from_path);
3227		if (ret < 0)
3228			goto out;
3229		ret = fs_path_add_path(from_path, name);
3230	}
3231	if (ret < 0)
3232		goto out;
3233
3234	sctx->send_progress = sctx->cur_ino + 1;
3235	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3236	if (ret < 0)
3237		goto out;
3238	if (ret) {
3239		LIST_HEAD(deleted_refs);
3240		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3241		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3242					   &pm->update_refs, &deleted_refs,
3243					   is_orphan);
3244		if (ret < 0)
3245			goto out;
3246		if (rmdir_ino) {
3247			dm = get_waiting_dir_move(sctx, pm->ino);
3248			ASSERT(dm);
3249			dm->rmdir_ino = rmdir_ino;
3250		}
3251		goto out;
3252	}
3253	fs_path_reset(name);
3254	to_path = name;
3255	name = NULL;
3256	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3257	if (ret < 0)
3258		goto out;
3259
3260	ret = send_rename(sctx, from_path, to_path);
3261	if (ret < 0)
3262		goto out;
3263
3264	if (rmdir_ino) {
3265		struct orphan_dir_info *odi;
3266		u64 gen;
3267
3268		odi = get_orphan_dir_info(sctx, rmdir_ino);
3269		if (!odi) {
3270			/* already deleted */
3271			goto finish;
3272		}
3273		gen = odi->gen;
3274
3275		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3276		if (ret < 0)
3277			goto out;
3278		if (!ret)
3279			goto finish;
3280
3281		name = fs_path_alloc();
3282		if (!name) {
3283			ret = -ENOMEM;
3284			goto out;
3285		}
3286		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3287		if (ret < 0)
3288			goto out;
3289		ret = send_rmdir(sctx, name);
3290		if (ret < 0)
3291			goto out;
 
3292	}
3293
3294finish:
3295	ret = send_utimes(sctx, pm->ino, pm->gen);
3296	if (ret < 0)
3297		goto out;
3298
3299	/*
3300	 * After rename/move, need to update the utimes of both new parent(s)
3301	 * and old parent(s).
3302	 */
3303	list_for_each_entry(cur, &pm->update_refs, list) {
3304		/*
3305		 * The parent inode might have been deleted in the send snapshot
3306		 */
3307		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3308				     NULL, NULL, NULL, NULL, NULL);
3309		if (ret == -ENOENT) {
3310			ret = 0;
3311			continue;
3312		}
3313		if (ret < 0)
3314			goto out;
3315
3316		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3317		if (ret < 0)
3318			goto out;
3319	}
3320
3321out:
3322	fs_path_free(name);
3323	fs_path_free(from_path);
3324	fs_path_free(to_path);
3325	sctx->send_progress = orig_progress;
3326
3327	return ret;
3328}
3329
3330static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3331{
3332	if (!list_empty(&m->list))
3333		list_del(&m->list);
3334	if (!RB_EMPTY_NODE(&m->node))
3335		rb_erase(&m->node, &sctx->pending_dir_moves);
3336	__free_recorded_refs(&m->update_refs);
3337	kfree(m);
3338}
3339
3340static void tail_append_pending_moves(struct send_ctx *sctx,
3341				      struct pending_dir_move *moves,
3342				      struct list_head *stack)
3343{
3344	if (list_empty(&moves->list)) {
3345		list_add_tail(&moves->list, stack);
3346	} else {
3347		LIST_HEAD(list);
3348		list_splice_init(&moves->list, &list);
3349		list_add_tail(&moves->list, stack);
3350		list_splice_tail(&list, stack);
3351	}
3352	if (!RB_EMPTY_NODE(&moves->node)) {
3353		rb_erase(&moves->node, &sctx->pending_dir_moves);
3354		RB_CLEAR_NODE(&moves->node);
3355	}
3356}
3357
3358static int apply_children_dir_moves(struct send_ctx *sctx)
3359{
3360	struct pending_dir_move *pm;
3361	struct list_head stack;
3362	u64 parent_ino = sctx->cur_ino;
3363	int ret = 0;
3364
3365	pm = get_pending_dir_moves(sctx, parent_ino);
3366	if (!pm)
3367		return 0;
3368
3369	INIT_LIST_HEAD(&stack);
3370	tail_append_pending_moves(sctx, pm, &stack);
3371
3372	while (!list_empty(&stack)) {
3373		pm = list_first_entry(&stack, struct pending_dir_move, list);
3374		parent_ino = pm->ino;
3375		ret = apply_dir_move(sctx, pm);
3376		free_pending_move(sctx, pm);
3377		if (ret)
3378			goto out;
3379		pm = get_pending_dir_moves(sctx, parent_ino);
3380		if (pm)
3381			tail_append_pending_moves(sctx, pm, &stack);
3382	}
3383	return 0;
3384
3385out:
3386	while (!list_empty(&stack)) {
3387		pm = list_first_entry(&stack, struct pending_dir_move, list);
3388		free_pending_move(sctx, pm);
3389	}
3390	return ret;
3391}
3392
3393/*
3394 * We might need to delay a directory rename even when no ancestor directory
3395 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3396 * renamed. This happens when we rename a directory to the old name (the name
3397 * in the parent root) of some other unrelated directory that got its rename
3398 * delayed due to some ancestor with higher number that got renamed.
3399 *
3400 * Example:
3401 *
3402 * Parent snapshot:
3403 * .                                       (ino 256)
3404 * |---- a/                                (ino 257)
3405 * |     |---- file                        (ino 260)
3406 * |
3407 * |---- b/                                (ino 258)
3408 * |---- c/                                (ino 259)
3409 *
3410 * Send snapshot:
3411 * .                                       (ino 256)
3412 * |---- a/                                (ino 258)
3413 * |---- x/                                (ino 259)
3414 *       |---- y/                          (ino 257)
3415 *             |----- file                 (ino 260)
3416 *
3417 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3418 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3419 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3420 * must issue is:
3421 *
3422 * 1 - rename 259 from 'c' to 'x'
3423 * 2 - rename 257 from 'a' to 'x/y'
3424 * 3 - rename 258 from 'b' to 'a'
3425 *
3426 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3427 * be done right away and < 0 on error.
3428 */
3429static int wait_for_dest_dir_move(struct send_ctx *sctx,
3430				  struct recorded_ref *parent_ref,
3431				  const bool is_orphan)
3432{
3433	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3434	struct btrfs_path *path;
3435	struct btrfs_key key;
3436	struct btrfs_key di_key;
3437	struct btrfs_dir_item *di;
3438	u64 left_gen;
3439	u64 right_gen;
3440	int ret = 0;
3441	struct waiting_dir_move *wdm;
3442
3443	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3444		return 0;
3445
3446	path = alloc_path_for_send();
3447	if (!path)
3448		return -ENOMEM;
3449
3450	key.objectid = parent_ref->dir;
3451	key.type = BTRFS_DIR_ITEM_KEY;
3452	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3453
3454	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3455	if (ret < 0) {
3456		goto out;
3457	} else if (ret > 0) {
3458		ret = 0;
3459		goto out;
3460	}
3461
3462	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3463				       parent_ref->name_len);
3464	if (!di) {
3465		ret = 0;
3466		goto out;
3467	}
3468	/*
3469	 * di_key.objectid has the number of the inode that has a dentry in the
3470	 * parent directory with the same name that sctx->cur_ino is being
3471	 * renamed to. We need to check if that inode is in the send root as
3472	 * well and if it is currently marked as an inode with a pending rename,
3473	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3474	 * that it happens after that other inode is renamed.
3475	 */
3476	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3477	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3478		ret = 0;
3479		goto out;
3480	}
3481
3482	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3483			     &left_gen, NULL, NULL, NULL, NULL);
3484	if (ret < 0)
3485		goto out;
3486	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3487			     &right_gen, NULL, NULL, NULL, NULL);
3488	if (ret < 0) {
3489		if (ret == -ENOENT)
3490			ret = 0;
3491		goto out;
3492	}
3493
3494	/* Different inode, no need to delay the rename of sctx->cur_ino */
3495	if (right_gen != left_gen) {
3496		ret = 0;
3497		goto out;
3498	}
3499
3500	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3501	if (wdm && !wdm->orphanized) {
3502		ret = add_pending_dir_move(sctx,
3503					   sctx->cur_ino,
3504					   sctx->cur_inode_gen,
3505					   di_key.objectid,
3506					   &sctx->new_refs,
3507					   &sctx->deleted_refs,
3508					   is_orphan);
3509		if (!ret)
3510			ret = 1;
3511	}
3512out:
3513	btrfs_free_path(path);
3514	return ret;
3515}
3516
3517/*
3518 * Check if inode ino2, or any of its ancestors, is inode ino1.
3519 * Return 1 if true, 0 if false and < 0 on error.
3520 */
3521static int check_ino_in_path(struct btrfs_root *root,
3522			     const u64 ino1,
3523			     const u64 ino1_gen,
3524			     const u64 ino2,
3525			     const u64 ino2_gen,
3526			     struct fs_path *fs_path)
3527{
3528	u64 ino = ino2;
3529
3530	if (ino1 == ino2)
3531		return ino1_gen == ino2_gen;
3532
3533	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
 
3534		u64 parent;
3535		u64 parent_gen;
3536		int ret;
3537
3538		fs_path_reset(fs_path);
3539		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3540		if (ret < 0)
 
 
3541			return ret;
 
3542		if (parent == ino1)
3543			return parent_gen == ino1_gen;
3544		ino = parent;
3545	}
3546	return 0;
3547}
3548
3549/*
3550 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3551 * possible path (in case ino2 is not a directory and has multiple hard links).
3552 * Return 1 if true, 0 if false and < 0 on error.
3553 */
3554static int is_ancestor(struct btrfs_root *root,
3555		       const u64 ino1,
3556		       const u64 ino1_gen,
3557		       const u64 ino2,
3558		       struct fs_path *fs_path)
3559{
3560	bool free_fs_path = false;
3561	int ret = 0;
3562	struct btrfs_path *path = NULL;
3563	struct btrfs_key key;
3564
3565	if (!fs_path) {
3566		fs_path = fs_path_alloc();
3567		if (!fs_path)
3568			return -ENOMEM;
3569		free_fs_path = true;
3570	}
3571
3572	path = alloc_path_for_send();
3573	if (!path) {
3574		ret = -ENOMEM;
3575		goto out;
3576	}
3577
3578	key.objectid = ino2;
3579	key.type = BTRFS_INODE_REF_KEY;
3580	key.offset = 0;
3581
3582	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3583	if (ret < 0)
3584		goto out;
3585
3586	while (true) {
3587		struct extent_buffer *leaf = path->nodes[0];
3588		int slot = path->slots[0];
3589		u32 cur_offset = 0;
3590		u32 item_size;
3591
3592		if (slot >= btrfs_header_nritems(leaf)) {
3593			ret = btrfs_next_leaf(root, path);
3594			if (ret < 0)
3595				goto out;
3596			if (ret > 0)
3597				break;
3598			continue;
3599		}
3600
3601		btrfs_item_key_to_cpu(leaf, &key, slot);
3602		if (key.objectid != ino2)
3603			break;
3604		if (key.type != BTRFS_INODE_REF_KEY &&
3605		    key.type != BTRFS_INODE_EXTREF_KEY)
3606			break;
3607
3608		item_size = btrfs_item_size_nr(leaf, slot);
3609		while (cur_offset < item_size) {
3610			u64 parent;
3611			u64 parent_gen;
3612
3613			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3614				unsigned long ptr;
3615				struct btrfs_inode_extref *extref;
3616
3617				ptr = btrfs_item_ptr_offset(leaf, slot);
3618				extref = (struct btrfs_inode_extref *)
3619					(ptr + cur_offset);
3620				parent = btrfs_inode_extref_parent(leaf,
3621								   extref);
3622				cur_offset += sizeof(*extref);
3623				cur_offset += btrfs_inode_extref_name_len(leaf,
3624								  extref);
3625			} else {
3626				parent = key.offset;
3627				cur_offset = item_size;
3628			}
3629
3630			ret = get_inode_info(root, parent, NULL, &parent_gen,
3631					     NULL, NULL, NULL, NULL);
3632			if (ret < 0)
3633				goto out;
3634			ret = check_ino_in_path(root, ino1, ino1_gen,
3635						parent, parent_gen, fs_path);
3636			if (ret)
3637				goto out;
3638		}
3639		path->slots[0]++;
3640	}
3641	ret = 0;
3642 out:
3643	btrfs_free_path(path);
3644	if (free_fs_path)
3645		fs_path_free(fs_path);
3646	return ret;
3647}
3648
3649static int wait_for_parent_move(struct send_ctx *sctx,
3650				struct recorded_ref *parent_ref,
3651				const bool is_orphan)
3652{
3653	int ret = 0;
3654	u64 ino = parent_ref->dir;
3655	u64 ino_gen = parent_ref->dir_gen;
3656	u64 parent_ino_before, parent_ino_after;
3657	struct fs_path *path_before = NULL;
3658	struct fs_path *path_after = NULL;
3659	int len1, len2;
3660
3661	path_after = fs_path_alloc();
3662	path_before = fs_path_alloc();
3663	if (!path_after || !path_before) {
3664		ret = -ENOMEM;
3665		goto out;
3666	}
3667
3668	/*
3669	 * Our current directory inode may not yet be renamed/moved because some
3670	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3671	 * such ancestor exists and make sure our own rename/move happens after
3672	 * that ancestor is processed to avoid path build infinite loops (done
3673	 * at get_cur_path()).
3674	 */
3675	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3676		u64 parent_ino_after_gen;
3677
3678		if (is_waiting_for_move(sctx, ino)) {
3679			/*
3680			 * If the current inode is an ancestor of ino in the
3681			 * parent root, we need to delay the rename of the
3682			 * current inode, otherwise don't delayed the rename
3683			 * because we can end up with a circular dependency
3684			 * of renames, resulting in some directories never
3685			 * getting the respective rename operations issued in
3686			 * the send stream or getting into infinite path build
3687			 * loops.
3688			 */
3689			ret = is_ancestor(sctx->parent_root,
3690					  sctx->cur_ino, sctx->cur_inode_gen,
3691					  ino, path_before);
3692			if (ret)
3693				break;
3694		}
3695
3696		fs_path_reset(path_before);
3697		fs_path_reset(path_after);
3698
3699		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3700				    &parent_ino_after_gen, path_after);
3701		if (ret < 0)
3702			goto out;
3703		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3704				    NULL, path_before);
3705		if (ret < 0 && ret != -ENOENT) {
3706			goto out;
3707		} else if (ret == -ENOENT) {
3708			ret = 0;
3709			break;
3710		}
3711
3712		len1 = fs_path_len(path_before);
3713		len2 = fs_path_len(path_after);
3714		if (ino > sctx->cur_ino &&
3715		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3716		     memcmp(path_before->start, path_after->start, len1))) {
3717			u64 parent_ino_gen;
3718
3719			ret = get_inode_info(sctx->parent_root, ino, NULL,
3720					     &parent_ino_gen, NULL, NULL, NULL,
3721					     NULL);
3722			if (ret < 0)
3723				goto out;
3724			if (ino_gen == parent_ino_gen) {
3725				ret = 1;
3726				break;
3727			}
3728		}
3729		ino = parent_ino_after;
3730		ino_gen = parent_ino_after_gen;
3731	}
3732
3733out:
3734	fs_path_free(path_before);
3735	fs_path_free(path_after);
3736
3737	if (ret == 1) {
3738		ret = add_pending_dir_move(sctx,
3739					   sctx->cur_ino,
3740					   sctx->cur_inode_gen,
3741					   ino,
3742					   &sctx->new_refs,
3743					   &sctx->deleted_refs,
3744					   is_orphan);
3745		if (!ret)
3746			ret = 1;
3747	}
3748
3749	return ret;
3750}
3751
3752static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3753{
3754	int ret;
3755	struct fs_path *new_path;
3756
3757	/*
3758	 * Our reference's name member points to its full_path member string, so
3759	 * we use here a new path.
3760	 */
3761	new_path = fs_path_alloc();
3762	if (!new_path)
3763		return -ENOMEM;
3764
3765	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3766	if (ret < 0) {
3767		fs_path_free(new_path);
3768		return ret;
3769	}
3770	ret = fs_path_add(new_path, ref->name, ref->name_len);
3771	if (ret < 0) {
3772		fs_path_free(new_path);
3773		return ret;
3774	}
3775
3776	fs_path_free(ref->full_path);
3777	set_ref_path(ref, new_path);
3778
3779	return 0;
3780}
3781
3782/*
3783 * This does all the move/link/unlink/rmdir magic.
3784 */
3785static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3786{
3787	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3788	int ret = 0;
3789	struct recorded_ref *cur;
3790	struct recorded_ref *cur2;
3791	struct list_head check_dirs;
3792	struct fs_path *valid_path = NULL;
3793	u64 ow_inode = 0;
3794	u64 ow_gen;
3795	u64 ow_mode;
3796	int did_overwrite = 0;
3797	int is_orphan = 0;
3798	u64 last_dir_ino_rm = 0;
3799	bool can_rename = true;
3800	bool orphanized_dir = false;
3801	bool orphanized_ancestor = false;
3802
3803	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3804
3805	/*
3806	 * This should never happen as the root dir always has the same ref
3807	 * which is always '..'
3808	 */
3809	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3810	INIT_LIST_HEAD(&check_dirs);
3811
3812	valid_path = fs_path_alloc();
3813	if (!valid_path) {
3814		ret = -ENOMEM;
3815		goto out;
3816	}
3817
3818	/*
3819	 * First, check if the first ref of the current inode was overwritten
3820	 * before. If yes, we know that the current inode was already orphanized
3821	 * and thus use the orphan name. If not, we can use get_cur_path to
3822	 * get the path of the first ref as it would like while receiving at
3823	 * this point in time.
3824	 * New inodes are always orphan at the beginning, so force to use the
3825	 * orphan name in this case.
3826	 * The first ref is stored in valid_path and will be updated if it
3827	 * gets moved around.
3828	 */
3829	if (!sctx->cur_inode_new) {
3830		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3831				sctx->cur_inode_gen);
3832		if (ret < 0)
3833			goto out;
3834		if (ret)
3835			did_overwrite = 1;
3836	}
3837	if (sctx->cur_inode_new || did_overwrite) {
3838		ret = gen_unique_name(sctx, sctx->cur_ino,
3839				sctx->cur_inode_gen, valid_path);
3840		if (ret < 0)
3841			goto out;
3842		is_orphan = 1;
3843	} else {
3844		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3845				valid_path);
3846		if (ret < 0)
3847			goto out;
3848	}
3849
3850	list_for_each_entry(cur, &sctx->new_refs, list) {
3851		/*
3852		 * We may have refs where the parent directory does not exist
3853		 * yet. This happens if the parent directories inum is higher
3854		 * than the current inum. To handle this case, we create the
3855		 * parent directory out of order. But we need to check if this
3856		 * did already happen before due to other refs in the same dir.
3857		 */
3858		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3859		if (ret < 0)
3860			goto out;
3861		if (ret == inode_state_will_create) {
3862			ret = 0;
3863			/*
3864			 * First check if any of the current inodes refs did
3865			 * already create the dir.
3866			 */
3867			list_for_each_entry(cur2, &sctx->new_refs, list) {
3868				if (cur == cur2)
3869					break;
3870				if (cur2->dir == cur->dir) {
3871					ret = 1;
3872					break;
3873				}
3874			}
3875
3876			/*
3877			 * If that did not happen, check if a previous inode
3878			 * did already create the dir.
3879			 */
3880			if (!ret)
3881				ret = did_create_dir(sctx, cur->dir);
3882			if (ret < 0)
3883				goto out;
3884			if (!ret) {
3885				ret = send_create_inode(sctx, cur->dir);
3886				if (ret < 0)
3887					goto out;
3888			}
3889		}
3890
3891		/*
3892		 * Check if this new ref would overwrite the first ref of
3893		 * another unprocessed inode. If yes, orphanize the
3894		 * overwritten inode. If we find an overwritten ref that is
3895		 * not the first ref, simply unlink it.
3896		 */
3897		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3898				cur->name, cur->name_len,
3899				&ow_inode, &ow_gen, &ow_mode);
3900		if (ret < 0)
3901			goto out;
3902		if (ret) {
3903			ret = is_first_ref(sctx->parent_root,
3904					   ow_inode, cur->dir, cur->name,
3905					   cur->name_len);
3906			if (ret < 0)
3907				goto out;
3908			if (ret) {
3909				struct name_cache_entry *nce;
3910				struct waiting_dir_move *wdm;
3911
3912				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3913						cur->full_path);
3914				if (ret < 0)
3915					goto out;
3916				if (S_ISDIR(ow_mode))
3917					orphanized_dir = true;
3918
3919				/*
3920				 * If ow_inode has its rename operation delayed
3921				 * make sure that its orphanized name is used in
3922				 * the source path when performing its rename
3923				 * operation.
3924				 */
3925				if (is_waiting_for_move(sctx, ow_inode)) {
3926					wdm = get_waiting_dir_move(sctx,
3927								   ow_inode);
3928					ASSERT(wdm);
3929					wdm->orphanized = true;
3930				}
3931
3932				/*
3933				 * Make sure we clear our orphanized inode's
3934				 * name from the name cache. This is because the
3935				 * inode ow_inode might be an ancestor of some
3936				 * other inode that will be orphanized as well
3937				 * later and has an inode number greater than
3938				 * sctx->send_progress. We need to prevent
3939				 * future name lookups from using the old name
3940				 * and get instead the orphan name.
3941				 */
3942				nce = name_cache_search(sctx, ow_inode, ow_gen);
3943				if (nce) {
3944					name_cache_delete(sctx, nce);
3945					kfree(nce);
3946				}
3947
3948				/*
3949				 * ow_inode might currently be an ancestor of
3950				 * cur_ino, therefore compute valid_path (the
3951				 * current path of cur_ino) again because it
3952				 * might contain the pre-orphanization name of
3953				 * ow_inode, which is no longer valid.
3954				 */
3955				ret = is_ancestor(sctx->parent_root,
3956						  ow_inode, ow_gen,
3957						  sctx->cur_ino, NULL);
3958				if (ret > 0) {
3959					orphanized_ancestor = true;
3960					fs_path_reset(valid_path);
3961					ret = get_cur_path(sctx, sctx->cur_ino,
3962							   sctx->cur_inode_gen,
3963							   valid_path);
3964				}
3965				if (ret < 0)
3966					goto out;
3967			} else {
3968				ret = send_unlink(sctx, cur->full_path);
3969				if (ret < 0)
3970					goto out;
3971			}
3972		}
3973
3974		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3975			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3976			if (ret < 0)
3977				goto out;
3978			if (ret == 1) {
3979				can_rename = false;
3980				*pending_move = 1;
3981			}
3982		}
3983
3984		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3985		    can_rename) {
3986			ret = wait_for_parent_move(sctx, cur, is_orphan);
3987			if (ret < 0)
3988				goto out;
3989			if (ret == 1) {
3990				can_rename = false;
3991				*pending_move = 1;
3992			}
3993		}
3994
3995		/*
3996		 * link/move the ref to the new place. If we have an orphan
3997		 * inode, move it and update valid_path. If not, link or move
3998		 * it depending on the inode mode.
3999		 */
4000		if (is_orphan && can_rename) {
4001			ret = send_rename(sctx, valid_path, cur->full_path);
4002			if (ret < 0)
4003				goto out;
4004			is_orphan = 0;
4005			ret = fs_path_copy(valid_path, cur->full_path);
4006			if (ret < 0)
4007				goto out;
4008		} else if (can_rename) {
4009			if (S_ISDIR(sctx->cur_inode_mode)) {
4010				/*
4011				 * Dirs can't be linked, so move it. For moved
4012				 * dirs, we always have one new and one deleted
4013				 * ref. The deleted ref is ignored later.
4014				 */
4015				ret = send_rename(sctx, valid_path,
4016						  cur->full_path);
4017				if (!ret)
4018					ret = fs_path_copy(valid_path,
4019							   cur->full_path);
4020				if (ret < 0)
4021					goto out;
4022			} else {
4023				/*
4024				 * We might have previously orphanized an inode
4025				 * which is an ancestor of our current inode,
4026				 * so our reference's full path, which was
4027				 * computed before any such orphanizations, must
4028				 * be updated.
4029				 */
4030				if (orphanized_dir) {
4031					ret = update_ref_path(sctx, cur);
4032					if (ret < 0)
4033						goto out;
4034				}
4035				ret = send_link(sctx, cur->full_path,
4036						valid_path);
4037				if (ret < 0)
4038					goto out;
4039			}
4040		}
4041		ret = dup_ref(cur, &check_dirs);
4042		if (ret < 0)
4043			goto out;
4044	}
4045
4046	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4047		/*
4048		 * Check if we can already rmdir the directory. If not,
4049		 * orphanize it. For every dir item inside that gets deleted
4050		 * later, we do this check again and rmdir it then if possible.
4051		 * See the use of check_dirs for more details.
4052		 */
4053		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4054				sctx->cur_ino);
4055		if (ret < 0)
4056			goto out;
4057		if (ret) {
4058			ret = send_rmdir(sctx, valid_path);
4059			if (ret < 0)
4060				goto out;
4061		} else if (!is_orphan) {
4062			ret = orphanize_inode(sctx, sctx->cur_ino,
4063					sctx->cur_inode_gen, valid_path);
4064			if (ret < 0)
4065				goto out;
4066			is_orphan = 1;
4067		}
4068
4069		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4070			ret = dup_ref(cur, &check_dirs);
4071			if (ret < 0)
4072				goto out;
4073		}
4074	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4075		   !list_empty(&sctx->deleted_refs)) {
4076		/*
4077		 * We have a moved dir. Add the old parent to check_dirs
4078		 */
4079		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4080				list);
4081		ret = dup_ref(cur, &check_dirs);
4082		if (ret < 0)
4083			goto out;
4084	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4085		/*
4086		 * We have a non dir inode. Go through all deleted refs and
4087		 * unlink them if they were not already overwritten by other
4088		 * inodes.
4089		 */
4090		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4091			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4092					sctx->cur_ino, sctx->cur_inode_gen,
4093					cur->name, cur->name_len);
4094			if (ret < 0)
4095				goto out;
4096			if (!ret) {
4097				/*
4098				 * If we orphanized any ancestor before, we need
4099				 * to recompute the full path for deleted names,
4100				 * since any such path was computed before we
4101				 * processed any references and orphanized any
4102				 * ancestor inode.
4103				 */
4104				if (orphanized_ancestor) {
4105					ret = update_ref_path(sctx, cur);
4106					if (ret < 0)
4107						goto out;
4108				}
4109				ret = send_unlink(sctx, cur->full_path);
4110				if (ret < 0)
4111					goto out;
4112			}
4113			ret = dup_ref(cur, &check_dirs);
4114			if (ret < 0)
4115				goto out;
4116		}
4117		/*
4118		 * If the inode is still orphan, unlink the orphan. This may
4119		 * happen when a previous inode did overwrite the first ref
4120		 * of this inode and no new refs were added for the current
4121		 * inode. Unlinking does not mean that the inode is deleted in
4122		 * all cases. There may still be links to this inode in other
4123		 * places.
4124		 */
4125		if (is_orphan) {
4126			ret = send_unlink(sctx, valid_path);
4127			if (ret < 0)
4128				goto out;
4129		}
4130	}
4131
4132	/*
4133	 * We did collect all parent dirs where cur_inode was once located. We
4134	 * now go through all these dirs and check if they are pending for
4135	 * deletion and if it's finally possible to perform the rmdir now.
4136	 * We also update the inode stats of the parent dirs here.
4137	 */
4138	list_for_each_entry(cur, &check_dirs, list) {
4139		/*
4140		 * In case we had refs into dirs that were not processed yet,
4141		 * we don't need to do the utime and rmdir logic for these dirs.
4142		 * The dir will be processed later.
4143		 */
4144		if (cur->dir > sctx->cur_ino)
4145			continue;
4146
4147		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4148		if (ret < 0)
4149			goto out;
4150
4151		if (ret == inode_state_did_create ||
4152		    ret == inode_state_no_change) {
4153			/* TODO delayed utimes */
4154			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4155			if (ret < 0)
4156				goto out;
4157		} else if (ret == inode_state_did_delete &&
4158			   cur->dir != last_dir_ino_rm) {
4159			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4160					sctx->cur_ino);
4161			if (ret < 0)
4162				goto out;
4163			if (ret) {
4164				ret = get_cur_path(sctx, cur->dir,
4165						   cur->dir_gen, valid_path);
4166				if (ret < 0)
4167					goto out;
4168				ret = send_rmdir(sctx, valid_path);
4169				if (ret < 0)
4170					goto out;
4171				last_dir_ino_rm = cur->dir;
4172			}
4173		}
4174	}
4175
4176	ret = 0;
4177
4178out:
4179	__free_recorded_refs(&check_dirs);
4180	free_recorded_refs(sctx);
4181	fs_path_free(valid_path);
4182	return ret;
4183}
4184
4185static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4186		      void *ctx, struct list_head *refs)
4187{
4188	int ret = 0;
4189	struct send_ctx *sctx = ctx;
4190	struct fs_path *p;
4191	u64 gen;
4192
4193	p = fs_path_alloc();
4194	if (!p)
4195		return -ENOMEM;
4196
4197	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4198			NULL, NULL);
4199	if (ret < 0)
4200		goto out;
4201
4202	ret = get_cur_path(sctx, dir, gen, p);
4203	if (ret < 0)
4204		goto out;
4205	ret = fs_path_add_path(p, name);
4206	if (ret < 0)
4207		goto out;
4208
4209	ret = __record_ref(refs, dir, gen, p);
4210
4211out:
4212	if (ret)
4213		fs_path_free(p);
4214	return ret;
4215}
4216
4217static int __record_new_ref(int num, u64 dir, int index,
4218			    struct fs_path *name,
4219			    void *ctx)
4220{
4221	struct send_ctx *sctx = ctx;
4222	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
 
4223}
4224
4225
4226static int __record_deleted_ref(int num, u64 dir, int index,
4227				struct fs_path *name,
4228				void *ctx)
4229{
4230	struct send_ctx *sctx = ctx;
4231	return record_ref(sctx->parent_root, dir, name, ctx,
4232			  &sctx->deleted_refs);
4233}
4234
4235static int record_new_ref(struct send_ctx *sctx)
4236{
4237	int ret;
4238
4239	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4240				sctx->cmp_key, 0, __record_new_ref, sctx);
4241	if (ret < 0)
4242		goto out;
4243	ret = 0;
4244
4245out:
4246	return ret;
4247}
4248
4249static int record_deleted_ref(struct send_ctx *sctx)
4250{
4251	int ret;
4252
4253	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4254				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4255	if (ret < 0)
4256		goto out;
4257	ret = 0;
4258
4259out:
4260	return ret;
4261}
4262
4263struct find_ref_ctx {
4264	u64 dir;
4265	u64 dir_gen;
4266	struct btrfs_root *root;
4267	struct fs_path *name;
4268	int found_idx;
4269};
4270
4271static int __find_iref(int num, u64 dir, int index,
4272		       struct fs_path *name,
4273		       void *ctx_)
4274{
4275	struct find_ref_ctx *ctx = ctx_;
4276	u64 dir_gen;
4277	int ret;
4278
4279	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4280	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4281		/*
4282		 * To avoid doing extra lookups we'll only do this if everything
4283		 * else matches.
4284		 */
4285		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4286				     NULL, NULL, NULL);
4287		if (ret)
4288			return ret;
4289		if (dir_gen != ctx->dir_gen)
4290			return 0;
4291		ctx->found_idx = num;
4292		return 1;
4293	}
4294	return 0;
4295}
4296
4297static int find_iref(struct btrfs_root *root,
4298		     struct btrfs_path *path,
4299		     struct btrfs_key *key,
4300		     u64 dir, u64 dir_gen, struct fs_path *name)
4301{
4302	int ret;
4303	struct find_ref_ctx ctx;
4304
4305	ctx.dir = dir;
4306	ctx.name = name;
4307	ctx.dir_gen = dir_gen;
4308	ctx.found_idx = -1;
4309	ctx.root = root;
4310
4311	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4312	if (ret < 0)
4313		return ret;
4314
4315	if (ctx.found_idx == -1)
4316		return -ENOENT;
4317
4318	return ctx.found_idx;
4319}
4320
4321static int __record_changed_new_ref(int num, u64 dir, int index,
4322				    struct fs_path *name,
4323				    void *ctx)
4324{
4325	u64 dir_gen;
4326	int ret;
4327	struct send_ctx *sctx = ctx;
4328
4329	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4330			     NULL, NULL, NULL);
4331	if (ret)
4332		return ret;
4333
4334	ret = find_iref(sctx->parent_root, sctx->right_path,
4335			sctx->cmp_key, dir, dir_gen, name);
4336	if (ret == -ENOENT)
4337		ret = __record_new_ref(num, dir, index, name, sctx);
4338	else if (ret > 0)
4339		ret = 0;
4340
4341	return ret;
4342}
4343
4344static int __record_changed_deleted_ref(int num, u64 dir, int index,
4345					struct fs_path *name,
4346					void *ctx)
4347{
4348	u64 dir_gen;
4349	int ret;
4350	struct send_ctx *sctx = ctx;
4351
4352	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4353			     NULL, NULL, NULL);
4354	if (ret)
4355		return ret;
4356
4357	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4358			dir, dir_gen, name);
4359	if (ret == -ENOENT)
4360		ret = __record_deleted_ref(num, dir, index, name, sctx);
4361	else if (ret > 0)
4362		ret = 0;
4363
4364	return ret;
4365}
4366
4367static int record_changed_ref(struct send_ctx *sctx)
4368{
4369	int ret = 0;
4370
4371	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4372			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4373	if (ret < 0)
4374		goto out;
4375	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4376			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4377	if (ret < 0)
4378		goto out;
4379	ret = 0;
4380
4381out:
4382	return ret;
4383}
4384
4385/*
4386 * Record and process all refs at once. Needed when an inode changes the
4387 * generation number, which means that it was deleted and recreated.
4388 */
4389static int process_all_refs(struct send_ctx *sctx,
4390			    enum btrfs_compare_tree_result cmd)
4391{
4392	int ret;
4393	struct btrfs_root *root;
4394	struct btrfs_path *path;
4395	struct btrfs_key key;
4396	struct btrfs_key found_key;
4397	struct extent_buffer *eb;
4398	int slot;
4399	iterate_inode_ref_t cb;
4400	int pending_move = 0;
4401
4402	path = alloc_path_for_send();
4403	if (!path)
4404		return -ENOMEM;
4405
4406	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4407		root = sctx->send_root;
4408		cb = __record_new_ref;
4409	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4410		root = sctx->parent_root;
4411		cb = __record_deleted_ref;
4412	} else {
4413		btrfs_err(sctx->send_root->fs_info,
4414				"Wrong command %d in process_all_refs", cmd);
4415		ret = -EINVAL;
4416		goto out;
4417	}
4418
4419	key.objectid = sctx->cmp_key->objectid;
4420	key.type = BTRFS_INODE_REF_KEY;
4421	key.offset = 0;
4422	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4423	if (ret < 0)
4424		goto out;
4425
4426	while (1) {
4427		eb = path->nodes[0];
4428		slot = path->slots[0];
4429		if (slot >= btrfs_header_nritems(eb)) {
4430			ret = btrfs_next_leaf(root, path);
4431			if (ret < 0)
4432				goto out;
4433			else if (ret > 0)
4434				break;
4435			continue;
4436		}
4437
4438		btrfs_item_key_to_cpu(eb, &found_key, slot);
4439
4440		if (found_key.objectid != key.objectid ||
4441		    (found_key.type != BTRFS_INODE_REF_KEY &&
4442		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4443			break;
4444
4445		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4446		if (ret < 0)
4447			goto out;
4448
4449		path->slots[0]++;
4450	}
4451	btrfs_release_path(path);
4452
4453	/*
4454	 * We don't actually care about pending_move as we are simply
4455	 * re-creating this inode and will be rename'ing it into place once we
4456	 * rename the parent directory.
4457	 */
4458	ret = process_recorded_refs(sctx, &pending_move);
 
 
 
4459out:
4460	btrfs_free_path(path);
4461	return ret;
4462}
4463
4464static int send_set_xattr(struct send_ctx *sctx,
4465			  struct fs_path *path,
4466			  const char *name, int name_len,
4467			  const char *data, int data_len)
4468{
4469	int ret = 0;
4470
4471	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4472	if (ret < 0)
4473		goto out;
4474
4475	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4476	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4477	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4478
4479	ret = send_cmd(sctx);
4480
4481tlv_put_failure:
4482out:
4483	return ret;
4484}
4485
4486static int send_remove_xattr(struct send_ctx *sctx,
4487			  struct fs_path *path,
4488			  const char *name, int name_len)
4489{
4490	int ret = 0;
4491
4492	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4493	if (ret < 0)
4494		goto out;
4495
4496	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4497	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4498
4499	ret = send_cmd(sctx);
4500
4501tlv_put_failure:
4502out:
4503	return ret;
4504}
4505
4506static int __process_new_xattr(int num, struct btrfs_key *di_key,
4507			       const char *name, int name_len,
4508			       const char *data, int data_len,
4509			       u8 type, void *ctx)
4510{
4511	int ret;
4512	struct send_ctx *sctx = ctx;
4513	struct fs_path *p;
4514	struct posix_acl_xattr_header dummy_acl;
4515
4516	p = fs_path_alloc();
4517	if (!p)
4518		return -ENOMEM;
4519
4520	/*
4521	 * This hack is needed because empty acls are stored as zero byte
4522	 * data in xattrs. Problem with that is, that receiving these zero byte
4523	 * acls will fail later. To fix this, we send a dummy acl list that
4524	 * only contains the version number and no entries.
4525	 */
4526	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4527	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4528		if (data_len == 0) {
4529			dummy_acl.a_version =
4530					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4531			data = (char *)&dummy_acl;
4532			data_len = sizeof(dummy_acl);
4533		}
4534	}
4535
4536	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4537	if (ret < 0)
4538		goto out;
4539
4540	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4541
4542out:
4543	fs_path_free(p);
4544	return ret;
4545}
4546
4547static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4548				   const char *name, int name_len,
4549				   const char *data, int data_len,
4550				   u8 type, void *ctx)
4551{
4552	int ret;
4553	struct send_ctx *sctx = ctx;
4554	struct fs_path *p;
4555
4556	p = fs_path_alloc();
4557	if (!p)
4558		return -ENOMEM;
4559
4560	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4561	if (ret < 0)
4562		goto out;
4563
4564	ret = send_remove_xattr(sctx, p, name, name_len);
4565
4566out:
4567	fs_path_free(p);
4568	return ret;
4569}
4570
4571static int process_new_xattr(struct send_ctx *sctx)
4572{
4573	int ret = 0;
4574
4575	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4576			       __process_new_xattr, sctx);
4577
4578	return ret;
4579}
4580
4581static int process_deleted_xattr(struct send_ctx *sctx)
4582{
4583	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4584				__process_deleted_xattr, sctx);
 
 
 
 
4585}
4586
4587struct find_xattr_ctx {
4588	const char *name;
4589	int name_len;
4590	int found_idx;
4591	char *found_data;
4592	int found_data_len;
4593};
4594
4595static int __find_xattr(int num, struct btrfs_key *di_key,
4596			const char *name, int name_len,
4597			const char *data, int data_len,
4598			u8 type, void *vctx)
4599{
4600	struct find_xattr_ctx *ctx = vctx;
4601
4602	if (name_len == ctx->name_len &&
4603	    strncmp(name, ctx->name, name_len) == 0) {
4604		ctx->found_idx = num;
4605		ctx->found_data_len = data_len;
4606		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4607		if (!ctx->found_data)
4608			return -ENOMEM;
4609		return 1;
4610	}
4611	return 0;
4612}
4613
4614static int find_xattr(struct btrfs_root *root,
4615		      struct btrfs_path *path,
4616		      struct btrfs_key *key,
4617		      const char *name, int name_len,
4618		      char **data, int *data_len)
4619{
4620	int ret;
4621	struct find_xattr_ctx ctx;
4622
4623	ctx.name = name;
4624	ctx.name_len = name_len;
4625	ctx.found_idx = -1;
4626	ctx.found_data = NULL;
4627	ctx.found_data_len = 0;
4628
4629	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4630	if (ret < 0)
4631		return ret;
4632
4633	if (ctx.found_idx == -1)
4634		return -ENOENT;
4635	if (data) {
4636		*data = ctx.found_data;
4637		*data_len = ctx.found_data_len;
4638	} else {
4639		kfree(ctx.found_data);
4640	}
4641	return ctx.found_idx;
4642}
4643
4644
4645static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4646				       const char *name, int name_len,
4647				       const char *data, int data_len,
4648				       u8 type, void *ctx)
4649{
4650	int ret;
4651	struct send_ctx *sctx = ctx;
4652	char *found_data = NULL;
4653	int found_data_len  = 0;
4654
4655	ret = find_xattr(sctx->parent_root, sctx->right_path,
4656			 sctx->cmp_key, name, name_len, &found_data,
4657			 &found_data_len);
4658	if (ret == -ENOENT) {
4659		ret = __process_new_xattr(num, di_key, name, name_len, data,
4660				data_len, type, ctx);
4661	} else if (ret >= 0) {
4662		if (data_len != found_data_len ||
4663		    memcmp(data, found_data, data_len)) {
4664			ret = __process_new_xattr(num, di_key, name, name_len,
4665					data, data_len, type, ctx);
4666		} else {
4667			ret = 0;
4668		}
4669	}
4670
4671	kfree(found_data);
4672	return ret;
4673}
4674
4675static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4676					   const char *name, int name_len,
4677					   const char *data, int data_len,
4678					   u8 type, void *ctx)
4679{
4680	int ret;
4681	struct send_ctx *sctx = ctx;
4682
4683	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4684			 name, name_len, NULL, NULL);
4685	if (ret == -ENOENT)
4686		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4687				data_len, type, ctx);
4688	else if (ret >= 0)
4689		ret = 0;
4690
4691	return ret;
4692}
4693
4694static int process_changed_xattr(struct send_ctx *sctx)
4695{
4696	int ret = 0;
4697
4698	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4699			__process_changed_new_xattr, sctx);
4700	if (ret < 0)
4701		goto out;
4702	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4703			__process_changed_deleted_xattr, sctx);
4704
4705out:
4706	return ret;
4707}
4708
4709static int process_all_new_xattrs(struct send_ctx *sctx)
4710{
4711	int ret;
4712	struct btrfs_root *root;
4713	struct btrfs_path *path;
4714	struct btrfs_key key;
4715	struct btrfs_key found_key;
4716	struct extent_buffer *eb;
4717	int slot;
4718
4719	path = alloc_path_for_send();
4720	if (!path)
4721		return -ENOMEM;
4722
4723	root = sctx->send_root;
4724
4725	key.objectid = sctx->cmp_key->objectid;
4726	key.type = BTRFS_XATTR_ITEM_KEY;
4727	key.offset = 0;
4728	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4729	if (ret < 0)
4730		goto out;
4731
4732	while (1) {
4733		eb = path->nodes[0];
4734		slot = path->slots[0];
4735		if (slot >= btrfs_header_nritems(eb)) {
4736			ret = btrfs_next_leaf(root, path);
4737			if (ret < 0) {
4738				goto out;
4739			} else if (ret > 0) {
4740				ret = 0;
4741				break;
4742			}
4743			continue;
4744		}
4745
4746		btrfs_item_key_to_cpu(eb, &found_key, slot);
4747		if (found_key.objectid != key.objectid ||
4748		    found_key.type != key.type) {
4749			ret = 0;
4750			goto out;
4751		}
4752
4753		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
 
4754		if (ret < 0)
4755			goto out;
4756
4757		path->slots[0]++;
4758	}
4759
4760out:
4761	btrfs_free_path(path);
4762	return ret;
4763}
4764
4765static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4766{
4767	struct btrfs_root *root = sctx->send_root;
4768	struct btrfs_fs_info *fs_info = root->fs_info;
4769	struct inode *inode;
4770	struct page *page;
4771	char *addr;
4772	struct btrfs_key key;
4773	pgoff_t index = offset >> PAGE_SHIFT;
4774	pgoff_t last_index;
4775	unsigned pg_offset = offset_in_page(offset);
4776	ssize_t ret = 0;
4777
4778	key.objectid = sctx->cur_ino;
4779	key.type = BTRFS_INODE_ITEM_KEY;
4780	key.offset = 0;
4781
4782	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4783	if (IS_ERR(inode))
4784		return PTR_ERR(inode);
4785
4786	if (offset + len > i_size_read(inode)) {
4787		if (offset > i_size_read(inode))
4788			len = 0;
4789		else
4790			len = offset - i_size_read(inode);
4791	}
4792	if (len == 0)
4793		goto out;
4794
4795	last_index = (offset + len - 1) >> PAGE_SHIFT;
4796
4797	/* initial readahead */
4798	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4799	file_ra_state_init(&sctx->ra, inode->i_mapping);
 
 
4800
4801	while (index <= last_index) {
4802		unsigned cur_len = min_t(unsigned, len,
4803					 PAGE_SIZE - pg_offset);
4804
4805		page = find_lock_page(inode->i_mapping, index);
4806		if (!page) {
4807			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4808				NULL, index, last_index + 1 - index);
4809
4810			page = find_or_create_page(inode->i_mapping, index,
4811					GFP_KERNEL);
4812			if (!page) {
4813				ret = -ENOMEM;
4814				break;
4815			}
4816		}
4817
4818		if (PageReadahead(page)) {
4819			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4820				NULL, page, index, last_index + 1 - index);
4821		}
4822
4823		if (!PageUptodate(page)) {
4824			btrfs_readpage(NULL, page);
4825			lock_page(page);
4826			if (!PageUptodate(page)) {
4827				unlock_page(page);
4828				put_page(page);
4829				ret = -EIO;
4830				break;
4831			}
4832		}
4833
4834		addr = kmap(page);
4835		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4836		kunmap(page);
4837		unlock_page(page);
4838		put_page(page);
4839		index++;
4840		pg_offset = 0;
4841		len -= cur_len;
4842		ret += cur_len;
4843	}
4844out:
4845	iput(inode);
4846	return ret;
4847}
4848
4849/*
4850 * Read some bytes from the current inode/file and send a write command to
4851 * user space.
4852 */
4853static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4854{
4855	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4856	int ret = 0;
4857	struct fs_path *p;
4858	ssize_t num_read = 0;
4859
4860	p = fs_path_alloc();
4861	if (!p)
4862		return -ENOMEM;
4863
4864	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4865
4866	num_read = fill_read_buf(sctx, offset, len);
4867	if (num_read <= 0) {
4868		if (num_read < 0)
4869			ret = num_read;
4870		goto out;
4871	}
4872
4873	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4874	if (ret < 0)
4875		goto out;
4876
4877	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4878	if (ret < 0)
4879		goto out;
4880
4881	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4882	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4883	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4884
4885	ret = send_cmd(sctx);
4886
4887tlv_put_failure:
4888out:
4889	fs_path_free(p);
4890	if (ret < 0)
4891		return ret;
4892	return num_read;
4893}
4894
4895/*
4896 * Send a clone command to user space.
4897 */
4898static int send_clone(struct send_ctx *sctx,
4899		      u64 offset, u32 len,
4900		      struct clone_root *clone_root)
4901{
4902	int ret = 0;
4903	struct fs_path *p;
4904	u64 gen;
4905
4906	btrfs_debug(sctx->send_root->fs_info,
4907		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4908		    offset, len, clone_root->root->root_key.objectid,
4909		    clone_root->ino, clone_root->offset);
4910
4911	p = fs_path_alloc();
4912	if (!p)
4913		return -ENOMEM;
4914
4915	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4916	if (ret < 0)
4917		goto out;
4918
4919	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4920	if (ret < 0)
4921		goto out;
4922
4923	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4924	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4925	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4926
4927	if (clone_root->root == sctx->send_root) {
4928		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4929				&gen, NULL, NULL, NULL, NULL);
4930		if (ret < 0)
4931			goto out;
4932		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4933	} else {
4934		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4935	}
4936	if (ret < 0)
4937		goto out;
4938
4939	/*
4940	 * If the parent we're using has a received_uuid set then use that as
4941	 * our clone source as that is what we will look for when doing a
4942	 * receive.
4943	 *
4944	 * This covers the case that we create a snapshot off of a received
4945	 * subvolume and then use that as the parent and try to receive on a
4946	 * different host.
4947	 */
4948	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4949		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4950			     clone_root->root->root_item.received_uuid);
4951	else
4952		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4953			     clone_root->root->root_item.uuid);
4954	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4955		    le64_to_cpu(clone_root->root->root_item.ctransid));
4956	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4957	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4958			clone_root->offset);
4959
4960	ret = send_cmd(sctx);
4961
4962tlv_put_failure:
4963out:
4964	fs_path_free(p);
4965	return ret;
4966}
4967
4968/*
4969 * Send an update extent command to user space.
4970 */
4971static int send_update_extent(struct send_ctx *sctx,
4972			      u64 offset, u32 len)
4973{
4974	int ret = 0;
4975	struct fs_path *p;
4976
4977	p = fs_path_alloc();
4978	if (!p)
4979		return -ENOMEM;
4980
4981	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4982	if (ret < 0)
4983		goto out;
4984
4985	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4986	if (ret < 0)
4987		goto out;
4988
4989	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4990	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4991	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4992
4993	ret = send_cmd(sctx);
4994
4995tlv_put_failure:
4996out:
4997	fs_path_free(p);
4998	return ret;
4999}
5000
5001static int send_hole(struct send_ctx *sctx, u64 end)
5002{
5003	struct fs_path *p = NULL;
5004	u64 offset = sctx->cur_inode_last_extent;
5005	u64 len;
5006	int ret = 0;
5007
5008	/*
5009	 * A hole that starts at EOF or beyond it. Since we do not yet support
5010	 * fallocate (for extent preallocation and hole punching), sending a
5011	 * write of zeroes starting at EOF or beyond would later require issuing
5012	 * a truncate operation which would undo the write and achieve nothing.
5013	 */
5014	if (offset >= sctx->cur_inode_size)
5015		return 0;
5016
5017	/*
5018	 * Don't go beyond the inode's i_size due to prealloc extents that start
5019	 * after the i_size.
5020	 */
5021	end = min_t(u64, end, sctx->cur_inode_size);
5022
5023	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5024		return send_update_extent(sctx, offset, end - offset);
5025
5026	p = fs_path_alloc();
5027	if (!p)
5028		return -ENOMEM;
5029	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5030	if (ret < 0)
5031		goto tlv_put_failure;
5032	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5033	while (offset < end) {
5034		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5035
5036		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5037		if (ret < 0)
5038			break;
5039		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5040		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5041		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5042		ret = send_cmd(sctx);
5043		if (ret < 0)
5044			break;
5045		offset += len;
5046	}
5047	sctx->cur_inode_next_write_offset = offset;
5048tlv_put_failure:
5049	fs_path_free(p);
5050	return ret;
5051}
5052
5053static int send_extent_data(struct send_ctx *sctx,
5054			    const u64 offset,
5055			    const u64 len)
5056{
5057	u64 sent = 0;
5058
5059	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5060		return send_update_extent(sctx, offset, len);
5061
5062	while (sent < len) {
5063		u64 size = len - sent;
5064		int ret;
5065
5066		if (size > BTRFS_SEND_READ_SIZE)
5067			size = BTRFS_SEND_READ_SIZE;
5068		ret = send_write(sctx, offset + sent, size);
5069		if (ret < 0)
5070			return ret;
5071		if (!ret)
5072			break;
5073		sent += ret;
5074	}
5075	return 0;
5076}
5077
5078static int clone_range(struct send_ctx *sctx,
5079		       struct clone_root *clone_root,
5080		       const u64 disk_byte,
5081		       u64 data_offset,
5082		       u64 offset,
5083		       u64 len)
5084{
5085	struct btrfs_path *path;
5086	struct btrfs_key key;
5087	int ret;
5088	u64 clone_src_i_size = 0;
5089
5090	/*
5091	 * Prevent cloning from a zero offset with a length matching the sector
5092	 * size because in some scenarios this will make the receiver fail.
5093	 *
5094	 * For example, if in the source filesystem the extent at offset 0
5095	 * has a length of sectorsize and it was written using direct IO, then
5096	 * it can never be an inline extent (even if compression is enabled).
5097	 * Then this extent can be cloned in the original filesystem to a non
5098	 * zero file offset, but it may not be possible to clone in the
5099	 * destination filesystem because it can be inlined due to compression
5100	 * on the destination filesystem (as the receiver's write operations are
5101	 * always done using buffered IO). The same happens when the original
5102	 * filesystem does not have compression enabled but the destination
5103	 * filesystem has.
5104	 */
5105	if (clone_root->offset == 0 &&
5106	    len == sctx->send_root->fs_info->sectorsize)
5107		return send_extent_data(sctx, offset, len);
5108
5109	path = alloc_path_for_send();
5110	if (!path)
5111		return -ENOMEM;
5112
5113	/*
5114	 * There are inodes that have extents that lie behind its i_size. Don't
5115	 * accept clones from these extents.
5116	 */
5117	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5118			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5119	btrfs_release_path(path);
5120	if (ret < 0)
5121		goto out;
5122
5123	/*
5124	 * We can't send a clone operation for the entire range if we find
5125	 * extent items in the respective range in the source file that
5126	 * refer to different extents or if we find holes.
5127	 * So check for that and do a mix of clone and regular write/copy
5128	 * operations if needed.
5129	 *
5130	 * Example:
5131	 *
5132	 * mkfs.btrfs -f /dev/sda
5133	 * mount /dev/sda /mnt
5134	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5135	 * cp --reflink=always /mnt/foo /mnt/bar
5136	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5137	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5138	 *
5139	 * If when we send the snapshot and we are processing file bar (which
5140	 * has a higher inode number than foo) we blindly send a clone operation
5141	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5142	 * a file bar that matches the content of file foo - iow, doesn't match
5143	 * the content from bar in the original filesystem.
5144	 */
5145	key.objectid = clone_root->ino;
5146	key.type = BTRFS_EXTENT_DATA_KEY;
5147	key.offset = clone_root->offset;
5148	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5149	if (ret < 0)
5150		goto out;
5151	if (ret > 0 && path->slots[0] > 0) {
5152		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5153		if (key.objectid == clone_root->ino &&
5154		    key.type == BTRFS_EXTENT_DATA_KEY)
5155			path->slots[0]--;
5156	}
5157
5158	while (true) {
5159		struct extent_buffer *leaf = path->nodes[0];
5160		int slot = path->slots[0];
5161		struct btrfs_file_extent_item *ei;
5162		u8 type;
5163		u64 ext_len;
5164		u64 clone_len;
5165		u64 clone_data_offset;
5166
5167		if (slot >= btrfs_header_nritems(leaf)) {
5168			ret = btrfs_next_leaf(clone_root->root, path);
5169			if (ret < 0)
5170				goto out;
5171			else if (ret > 0)
5172				break;
5173			continue;
5174		}
5175
5176		btrfs_item_key_to_cpu(leaf, &key, slot);
5177
5178		/*
5179		 * We might have an implicit trailing hole (NO_HOLES feature
5180		 * enabled). We deal with it after leaving this loop.
5181		 */
5182		if (key.objectid != clone_root->ino ||
5183		    key.type != BTRFS_EXTENT_DATA_KEY)
5184			break;
5185
5186		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5187		type = btrfs_file_extent_type(leaf, ei);
5188		if (type == BTRFS_FILE_EXTENT_INLINE) {
5189			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5190			ext_len = PAGE_ALIGN(ext_len);
5191		} else {
5192			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5193		}
5194
5195		if (key.offset + ext_len <= clone_root->offset)
5196			goto next;
5197
5198		if (key.offset > clone_root->offset) {
5199			/* Implicit hole, NO_HOLES feature enabled. */
5200			u64 hole_len = key.offset - clone_root->offset;
5201
5202			if (hole_len > len)
5203				hole_len = len;
5204			ret = send_extent_data(sctx, offset, hole_len);
5205			if (ret < 0)
5206				goto out;
5207
5208			len -= hole_len;
5209			if (len == 0)
5210				break;
5211			offset += hole_len;
5212			clone_root->offset += hole_len;
5213			data_offset += hole_len;
5214		}
5215
5216		if (key.offset >= clone_root->offset + len)
5217			break;
5218
5219		if (key.offset >= clone_src_i_size)
5220			break;
5221
5222		if (key.offset + ext_len > clone_src_i_size)
5223			ext_len = clone_src_i_size - key.offset;
5224
5225		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5226		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5227			clone_root->offset = key.offset;
5228			if (clone_data_offset < data_offset &&
5229				clone_data_offset + ext_len > data_offset) {
5230				u64 extent_offset;
5231
5232				extent_offset = data_offset - clone_data_offset;
5233				ext_len -= extent_offset;
5234				clone_data_offset += extent_offset;
5235				clone_root->offset += extent_offset;
5236			}
5237		}
5238
5239		clone_len = min_t(u64, ext_len, len);
5240
5241		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5242		    clone_data_offset == data_offset) {
5243			const u64 src_end = clone_root->offset + clone_len;
5244			const u64 sectorsize = SZ_64K;
5245
5246			/*
5247			 * We can't clone the last block, when its size is not
5248			 * sector size aligned, into the middle of a file. If we
5249			 * do so, the receiver will get a failure (-EINVAL) when
5250			 * trying to clone or will silently corrupt the data in
5251			 * the destination file if it's on a kernel without the
5252			 * fix introduced by commit ac765f83f1397646
5253			 * ("Btrfs: fix data corruption due to cloning of eof
5254			 * block).
5255			 *
5256			 * So issue a clone of the aligned down range plus a
5257			 * regular write for the eof block, if we hit that case.
5258			 *
5259			 * Also, we use the maximum possible sector size, 64K,
5260			 * because we don't know what's the sector size of the
5261			 * filesystem that receives the stream, so we have to
5262			 * assume the largest possible sector size.
5263			 */
5264			if (src_end == clone_src_i_size &&
5265			    !IS_ALIGNED(src_end, sectorsize) &&
5266			    offset + clone_len < sctx->cur_inode_size) {
5267				u64 slen;
5268
5269				slen = ALIGN_DOWN(src_end - clone_root->offset,
5270						  sectorsize);
5271				if (slen > 0) {
5272					ret = send_clone(sctx, offset, slen,
5273							 clone_root);
5274					if (ret < 0)
5275						goto out;
5276				}
5277				ret = send_extent_data(sctx, offset + slen,
5278						       clone_len - slen);
5279			} else {
5280				ret = send_clone(sctx, offset, clone_len,
5281						 clone_root);
5282			}
5283		} else {
5284			ret = send_extent_data(sctx, offset, clone_len);
5285		}
5286
5287		if (ret < 0)
5288			goto out;
5289
5290		len -= clone_len;
5291		if (len == 0)
5292			break;
5293		offset += clone_len;
5294		clone_root->offset += clone_len;
5295		data_offset += clone_len;
5296next:
5297		path->slots[0]++;
5298	}
5299
5300	if (len > 0)
5301		ret = send_extent_data(sctx, offset, len);
5302	else
5303		ret = 0;
5304out:
5305	btrfs_free_path(path);
5306	return ret;
5307}
5308
5309static int send_write_or_clone(struct send_ctx *sctx,
5310			       struct btrfs_path *path,
5311			       struct btrfs_key *key,
5312			       struct clone_root *clone_root)
5313{
5314	int ret = 0;
5315	struct btrfs_file_extent_item *ei;
5316	u64 offset = key->offset;
5317	u64 len;
5318	u8 type;
5319	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5320
5321	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5322			struct btrfs_file_extent_item);
5323	type = btrfs_file_extent_type(path->nodes[0], ei);
5324	if (type == BTRFS_FILE_EXTENT_INLINE) {
5325		len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
 
5326		/*
5327		 * it is possible the inline item won't cover the whole page,
5328		 * but there may be items after this page.  Make
5329		 * sure to send the whole thing
5330		 */
5331		len = PAGE_ALIGN(len);
5332	} else {
5333		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5334	}
5335
5336	if (offset >= sctx->cur_inode_size) {
5337		ret = 0;
5338		goto out;
5339	}
5340	if (offset + len > sctx->cur_inode_size)
5341		len = sctx->cur_inode_size - offset;
5342	if (len == 0) {
5343		ret = 0;
5344		goto out;
5345	}
5346
5347	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5348		u64 disk_byte;
5349		u64 data_offset;
5350
5351		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5352		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5353		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5354				  offset, len);
5355	} else {
5356		ret = send_extent_data(sctx, offset, len);
5357	}
5358	sctx->cur_inode_next_write_offset = offset + len;
5359out:
5360	return ret;
5361}
5362
5363static int is_extent_unchanged(struct send_ctx *sctx,
5364			       struct btrfs_path *left_path,
5365			       struct btrfs_key *ekey)
5366{
5367	int ret = 0;
5368	struct btrfs_key key;
5369	struct btrfs_path *path = NULL;
5370	struct extent_buffer *eb;
5371	int slot;
5372	struct btrfs_key found_key;
5373	struct btrfs_file_extent_item *ei;
5374	u64 left_disknr;
5375	u64 right_disknr;
5376	u64 left_offset;
5377	u64 right_offset;
5378	u64 left_offset_fixed;
5379	u64 left_len;
5380	u64 right_len;
5381	u64 left_gen;
5382	u64 right_gen;
5383	u8 left_type;
5384	u8 right_type;
5385
5386	path = alloc_path_for_send();
5387	if (!path)
5388		return -ENOMEM;
5389
5390	eb = left_path->nodes[0];
5391	slot = left_path->slots[0];
5392	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5393	left_type = btrfs_file_extent_type(eb, ei);
5394
5395	if (left_type != BTRFS_FILE_EXTENT_REG) {
5396		ret = 0;
5397		goto out;
5398	}
5399	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5400	left_len = btrfs_file_extent_num_bytes(eb, ei);
5401	left_offset = btrfs_file_extent_offset(eb, ei);
5402	left_gen = btrfs_file_extent_generation(eb, ei);
5403
5404	/*
5405	 * Following comments will refer to these graphics. L is the left
5406	 * extents which we are checking at the moment. 1-8 are the right
5407	 * extents that we iterate.
5408	 *
5409	 *       |-----L-----|
5410	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5411	 *
5412	 *       |-----L-----|
5413	 * |--1--|-2b-|...(same as above)
5414	 *
5415	 * Alternative situation. Happens on files where extents got split.
5416	 *       |-----L-----|
5417	 * |-----------7-----------|-6-|
5418	 *
5419	 * Alternative situation. Happens on files which got larger.
5420	 *       |-----L-----|
5421	 * |-8-|
5422	 * Nothing follows after 8.
5423	 */
5424
5425	key.objectid = ekey->objectid;
5426	key.type = BTRFS_EXTENT_DATA_KEY;
5427	key.offset = ekey->offset;
5428	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5429	if (ret < 0)
5430		goto out;
5431	if (ret) {
5432		ret = 0;
5433		goto out;
5434	}
5435
5436	/*
5437	 * Handle special case where the right side has no extents at all.
5438	 */
5439	eb = path->nodes[0];
5440	slot = path->slots[0];
5441	btrfs_item_key_to_cpu(eb, &found_key, slot);
5442	if (found_key.objectid != key.objectid ||
5443	    found_key.type != key.type) {
5444		/* If we're a hole then just pretend nothing changed */
5445		ret = (left_disknr) ? 0 : 1;
5446		goto out;
5447	}
5448
5449	/*
5450	 * We're now on 2a, 2b or 7.
5451	 */
5452	key = found_key;
5453	while (key.offset < ekey->offset + left_len) {
5454		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5455		right_type = btrfs_file_extent_type(eb, ei);
5456		if (right_type != BTRFS_FILE_EXTENT_REG &&
5457		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5458			ret = 0;
5459			goto out;
5460		}
5461
5462		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5463			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5464			right_len = PAGE_ALIGN(right_len);
5465		} else {
5466			right_len = btrfs_file_extent_num_bytes(eb, ei);
5467		}
5468
5469		/*
5470		 * Are we at extent 8? If yes, we know the extent is changed.
5471		 * This may only happen on the first iteration.
5472		 */
5473		if (found_key.offset + right_len <= ekey->offset) {
5474			/* If we're a hole just pretend nothing changed */
5475			ret = (left_disknr) ? 0 : 1;
5476			goto out;
5477		}
5478
5479		/*
5480		 * We just wanted to see if when we have an inline extent, what
5481		 * follows it is a regular extent (wanted to check the above
5482		 * condition for inline extents too). This should normally not
5483		 * happen but it's possible for example when we have an inline
5484		 * compressed extent representing data with a size matching
5485		 * the page size (currently the same as sector size).
5486		 */
5487		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5488			ret = 0;
5489			goto out;
5490		}
5491
5492		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5493		right_offset = btrfs_file_extent_offset(eb, ei);
5494		right_gen = btrfs_file_extent_generation(eb, ei);
5495
5496		left_offset_fixed = left_offset;
5497		if (key.offset < ekey->offset) {
5498			/* Fix the right offset for 2a and 7. */
5499			right_offset += ekey->offset - key.offset;
5500		} else {
5501			/* Fix the left offset for all behind 2a and 2b */
5502			left_offset_fixed += key.offset - ekey->offset;
5503		}
5504
5505		/*
5506		 * Check if we have the same extent.
5507		 */
5508		if (left_disknr != right_disknr ||
5509		    left_offset_fixed != right_offset ||
5510		    left_gen != right_gen) {
5511			ret = 0;
5512			goto out;
5513		}
5514
5515		/*
5516		 * Go to the next extent.
5517		 */
5518		ret = btrfs_next_item(sctx->parent_root, path);
5519		if (ret < 0)
5520			goto out;
5521		if (!ret) {
5522			eb = path->nodes[0];
5523			slot = path->slots[0];
5524			btrfs_item_key_to_cpu(eb, &found_key, slot);
5525		}
5526		if (ret || found_key.objectid != key.objectid ||
5527		    found_key.type != key.type) {
5528			key.offset += right_len;
5529			break;
5530		}
5531		if (found_key.offset != key.offset + right_len) {
5532			ret = 0;
5533			goto out;
5534		}
5535		key = found_key;
5536	}
5537
5538	/*
5539	 * We're now behind the left extent (treat as unchanged) or at the end
5540	 * of the right side (treat as changed).
5541	 */
5542	if (key.offset >= ekey->offset + left_len)
5543		ret = 1;
5544	else
5545		ret = 0;
5546
5547
5548out:
5549	btrfs_free_path(path);
5550	return ret;
5551}
5552
5553static int get_last_extent(struct send_ctx *sctx, u64 offset)
5554{
5555	struct btrfs_path *path;
5556	struct btrfs_root *root = sctx->send_root;
5557	struct btrfs_file_extent_item *fi;
5558	struct btrfs_key key;
5559	u64 extent_end;
5560	u8 type;
5561	int ret;
5562
5563	path = alloc_path_for_send();
5564	if (!path)
5565		return -ENOMEM;
5566
5567	sctx->cur_inode_last_extent = 0;
5568
5569	key.objectid = sctx->cur_ino;
5570	key.type = BTRFS_EXTENT_DATA_KEY;
5571	key.offset = offset;
5572	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5573	if (ret < 0)
5574		goto out;
5575	ret = 0;
5576	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5577	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5578		goto out;
5579
5580	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5581			    struct btrfs_file_extent_item);
5582	type = btrfs_file_extent_type(path->nodes[0], fi);
5583	if (type == BTRFS_FILE_EXTENT_INLINE) {
5584		u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
 
5585		extent_end = ALIGN(key.offset + size,
5586				   sctx->send_root->fs_info->sectorsize);
5587	} else {
5588		extent_end = key.offset +
5589			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5590	}
5591	sctx->cur_inode_last_extent = extent_end;
5592out:
5593	btrfs_free_path(path);
5594	return ret;
5595}
5596
5597static int range_is_hole_in_parent(struct send_ctx *sctx,
5598				   const u64 start,
5599				   const u64 end)
5600{
5601	struct btrfs_path *path;
5602	struct btrfs_key key;
5603	struct btrfs_root *root = sctx->parent_root;
5604	u64 search_start = start;
5605	int ret;
5606
5607	path = alloc_path_for_send();
5608	if (!path)
5609		return -ENOMEM;
5610
5611	key.objectid = sctx->cur_ino;
5612	key.type = BTRFS_EXTENT_DATA_KEY;
5613	key.offset = search_start;
5614	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5615	if (ret < 0)
5616		goto out;
5617	if (ret > 0 && path->slots[0] > 0)
5618		path->slots[0]--;
5619
5620	while (search_start < end) {
5621		struct extent_buffer *leaf = path->nodes[0];
5622		int slot = path->slots[0];
5623		struct btrfs_file_extent_item *fi;
5624		u64 extent_end;
5625
5626		if (slot >= btrfs_header_nritems(leaf)) {
5627			ret = btrfs_next_leaf(root, path);
5628			if (ret < 0)
5629				goto out;
5630			else if (ret > 0)
5631				break;
5632			continue;
5633		}
5634
5635		btrfs_item_key_to_cpu(leaf, &key, slot);
5636		if (key.objectid < sctx->cur_ino ||
5637		    key.type < BTRFS_EXTENT_DATA_KEY)
5638			goto next;
5639		if (key.objectid > sctx->cur_ino ||
5640		    key.type > BTRFS_EXTENT_DATA_KEY ||
5641		    key.offset >= end)
5642			break;
5643
5644		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5645		if (btrfs_file_extent_type(leaf, fi) ==
5646		    BTRFS_FILE_EXTENT_INLINE) {
5647			u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
5648
5649			extent_end = ALIGN(key.offset + size,
5650					   root->fs_info->sectorsize);
5651		} else {
5652			extent_end = key.offset +
5653				btrfs_file_extent_num_bytes(leaf, fi);
5654		}
5655		if (extent_end <= start)
5656			goto next;
5657		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5658			search_start = extent_end;
5659			goto next;
5660		}
5661		ret = 0;
5662		goto out;
5663next:
5664		path->slots[0]++;
5665	}
5666	ret = 1;
5667out:
5668	btrfs_free_path(path);
5669	return ret;
5670}
5671
5672static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5673			   struct btrfs_key *key)
5674{
5675	struct btrfs_file_extent_item *fi;
5676	u64 extent_end;
5677	u8 type;
5678	int ret = 0;
5679
5680	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5681		return 0;
5682
5683	if (sctx->cur_inode_last_extent == (u64)-1) {
5684		ret = get_last_extent(sctx, key->offset - 1);
5685		if (ret)
5686			return ret;
5687	}
5688
5689	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5690			    struct btrfs_file_extent_item);
5691	type = btrfs_file_extent_type(path->nodes[0], fi);
5692	if (type == BTRFS_FILE_EXTENT_INLINE) {
5693		u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
 
5694		extent_end = ALIGN(key->offset + size,
5695				   sctx->send_root->fs_info->sectorsize);
5696	} else {
5697		extent_end = key->offset +
5698			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5699	}
5700
5701	if (path->slots[0] == 0 &&
5702	    sctx->cur_inode_last_extent < key->offset) {
5703		/*
5704		 * We might have skipped entire leafs that contained only
5705		 * file extent items for our current inode. These leafs have
5706		 * a generation number smaller (older) than the one in the
5707		 * current leaf and the leaf our last extent came from, and
5708		 * are located between these 2 leafs.
5709		 */
5710		ret = get_last_extent(sctx, key->offset - 1);
5711		if (ret)
5712			return ret;
5713	}
5714
5715	if (sctx->cur_inode_last_extent < key->offset) {
5716		ret = range_is_hole_in_parent(sctx,
5717					      sctx->cur_inode_last_extent,
5718					      key->offset);
5719		if (ret < 0)
5720			return ret;
5721		else if (ret == 0)
5722			ret = send_hole(sctx, key->offset);
5723		else
5724			ret = 0;
5725	}
5726	sctx->cur_inode_last_extent = extent_end;
5727	return ret;
5728}
5729
5730static int process_extent(struct send_ctx *sctx,
5731			  struct btrfs_path *path,
5732			  struct btrfs_key *key)
5733{
5734	struct clone_root *found_clone = NULL;
5735	int ret = 0;
5736
5737	if (S_ISLNK(sctx->cur_inode_mode))
5738		return 0;
5739
5740	if (sctx->parent_root && !sctx->cur_inode_new) {
5741		ret = is_extent_unchanged(sctx, path, key);
5742		if (ret < 0)
5743			goto out;
5744		if (ret) {
5745			ret = 0;
5746			goto out_hole;
5747		}
5748	} else {
5749		struct btrfs_file_extent_item *ei;
5750		u8 type;
5751
5752		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5753				    struct btrfs_file_extent_item);
5754		type = btrfs_file_extent_type(path->nodes[0], ei);
5755		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5756		    type == BTRFS_FILE_EXTENT_REG) {
5757			/*
5758			 * The send spec does not have a prealloc command yet,
5759			 * so just leave a hole for prealloc'ed extents until
5760			 * we have enough commands queued up to justify rev'ing
5761			 * the send spec.
5762			 */
5763			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5764				ret = 0;
5765				goto out;
5766			}
5767
5768			/* Have a hole, just skip it. */
5769			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5770				ret = 0;
5771				goto out;
5772			}
5773		}
5774	}
5775
5776	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5777			sctx->cur_inode_size, &found_clone);
5778	if (ret != -ENOENT && ret < 0)
5779		goto out;
5780
5781	ret = send_write_or_clone(sctx, path, key, found_clone);
5782	if (ret)
5783		goto out;
5784out_hole:
5785	ret = maybe_send_hole(sctx, path, key);
5786out:
5787	return ret;
5788}
5789
5790static int process_all_extents(struct send_ctx *sctx)
5791{
5792	int ret;
5793	struct btrfs_root *root;
5794	struct btrfs_path *path;
5795	struct btrfs_key key;
5796	struct btrfs_key found_key;
5797	struct extent_buffer *eb;
5798	int slot;
5799
5800	root = sctx->send_root;
5801	path = alloc_path_for_send();
5802	if (!path)
5803		return -ENOMEM;
5804
5805	key.objectid = sctx->cmp_key->objectid;
5806	key.type = BTRFS_EXTENT_DATA_KEY;
5807	key.offset = 0;
5808	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5809	if (ret < 0)
5810		goto out;
5811
5812	while (1) {
5813		eb = path->nodes[0];
5814		slot = path->slots[0];
5815
5816		if (slot >= btrfs_header_nritems(eb)) {
5817			ret = btrfs_next_leaf(root, path);
5818			if (ret < 0) {
5819				goto out;
5820			} else if (ret > 0) {
5821				ret = 0;
5822				break;
5823			}
5824			continue;
5825		}
5826
5827		btrfs_item_key_to_cpu(eb, &found_key, slot);
5828
5829		if (found_key.objectid != key.objectid ||
5830		    found_key.type != key.type) {
5831			ret = 0;
5832			goto out;
5833		}
5834
5835		ret = process_extent(sctx, path, &found_key);
5836		if (ret < 0)
5837			goto out;
5838
5839		path->slots[0]++;
5840	}
5841
5842out:
5843	btrfs_free_path(path);
5844	return ret;
5845}
5846
5847static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5848					   int *pending_move,
5849					   int *refs_processed)
5850{
5851	int ret = 0;
5852
5853	if (sctx->cur_ino == 0)
5854		goto out;
5855	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5856	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5857		goto out;
5858	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5859		goto out;
5860
5861	ret = process_recorded_refs(sctx, pending_move);
5862	if (ret < 0)
5863		goto out;
5864
5865	*refs_processed = 1;
5866out:
5867	return ret;
5868}
5869
5870static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5871{
5872	int ret = 0;
5873	u64 left_mode;
5874	u64 left_uid;
5875	u64 left_gid;
5876	u64 right_mode;
5877	u64 right_uid;
5878	u64 right_gid;
5879	int need_chmod = 0;
5880	int need_chown = 0;
5881	int need_truncate = 1;
5882	int pending_move = 0;
5883	int refs_processed = 0;
5884
5885	if (sctx->ignore_cur_inode)
5886		return 0;
5887
5888	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5889					      &refs_processed);
5890	if (ret < 0)
5891		goto out;
5892
5893	/*
5894	 * We have processed the refs and thus need to advance send_progress.
5895	 * Now, calls to get_cur_xxx will take the updated refs of the current
5896	 * inode into account.
5897	 *
5898	 * On the other hand, if our current inode is a directory and couldn't
5899	 * be moved/renamed because its parent was renamed/moved too and it has
5900	 * a higher inode number, we can only move/rename our current inode
5901	 * after we moved/renamed its parent. Therefore in this case operate on
5902	 * the old path (pre move/rename) of our current inode, and the
5903	 * move/rename will be performed later.
5904	 */
5905	if (refs_processed && !pending_move)
5906		sctx->send_progress = sctx->cur_ino + 1;
5907
5908	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5909		goto out;
5910	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5911		goto out;
5912
5913	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5914			&left_mode, &left_uid, &left_gid, NULL);
5915	if (ret < 0)
5916		goto out;
5917
5918	if (!sctx->parent_root || sctx->cur_inode_new) {
5919		need_chown = 1;
5920		if (!S_ISLNK(sctx->cur_inode_mode))
5921			need_chmod = 1;
5922		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5923			need_truncate = 0;
5924	} else {
5925		u64 old_size;
5926
5927		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5928				&old_size, NULL, &right_mode, &right_uid,
5929				&right_gid, NULL);
5930		if (ret < 0)
5931			goto out;
5932
5933		if (left_uid != right_uid || left_gid != right_gid)
5934			need_chown = 1;
5935		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5936			need_chmod = 1;
5937		if ((old_size == sctx->cur_inode_size) ||
5938		    (sctx->cur_inode_size > old_size &&
5939		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5940			need_truncate = 0;
5941	}
5942
5943	if (S_ISREG(sctx->cur_inode_mode)) {
5944		if (need_send_hole(sctx)) {
5945			if (sctx->cur_inode_last_extent == (u64)-1 ||
5946			    sctx->cur_inode_last_extent <
5947			    sctx->cur_inode_size) {
5948				ret = get_last_extent(sctx, (u64)-1);
5949				if (ret)
5950					goto out;
5951			}
5952			if (sctx->cur_inode_last_extent <
5953			    sctx->cur_inode_size) {
5954				ret = send_hole(sctx, sctx->cur_inode_size);
5955				if (ret)
5956					goto out;
5957			}
5958		}
5959		if (need_truncate) {
5960			ret = send_truncate(sctx, sctx->cur_ino,
5961					    sctx->cur_inode_gen,
5962					    sctx->cur_inode_size);
5963			if (ret < 0)
5964				goto out;
5965		}
5966	}
5967
5968	if (need_chown) {
5969		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5970				left_uid, left_gid);
5971		if (ret < 0)
5972			goto out;
5973	}
5974	if (need_chmod) {
5975		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5976				left_mode);
5977		if (ret < 0)
5978			goto out;
5979	}
5980
5981	/*
5982	 * If other directory inodes depended on our current directory
5983	 * inode's move/rename, now do their move/rename operations.
5984	 */
5985	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5986		ret = apply_children_dir_moves(sctx);
5987		if (ret)
5988			goto out;
5989		/*
5990		 * Need to send that every time, no matter if it actually
5991		 * changed between the two trees as we have done changes to
5992		 * the inode before. If our inode is a directory and it's
5993		 * waiting to be moved/renamed, we will send its utimes when
5994		 * it's moved/renamed, therefore we don't need to do it here.
5995		 */
5996		sctx->send_progress = sctx->cur_ino + 1;
5997		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5998		if (ret < 0)
5999			goto out;
6000	}
6001
6002out:
6003	return ret;
6004}
6005
6006struct parent_paths_ctx {
6007	struct list_head *refs;
6008	struct send_ctx *sctx;
6009};
6010
6011static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6012			     void *ctx)
6013{
6014	struct parent_paths_ctx *ppctx = ctx;
6015
6016	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6017			  ppctx->refs);
6018}
6019
6020/*
6021 * Issue unlink operations for all paths of the current inode found in the
6022 * parent snapshot.
6023 */
6024static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6025{
6026	LIST_HEAD(deleted_refs);
6027	struct btrfs_path *path;
6028	struct btrfs_key key;
6029	struct parent_paths_ctx ctx;
6030	int ret;
6031
6032	path = alloc_path_for_send();
6033	if (!path)
6034		return -ENOMEM;
6035
6036	key.objectid = sctx->cur_ino;
6037	key.type = BTRFS_INODE_REF_KEY;
6038	key.offset = 0;
6039	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6040	if (ret < 0)
6041		goto out;
6042
6043	ctx.refs = &deleted_refs;
6044	ctx.sctx = sctx;
6045
6046	while (true) {
6047		struct extent_buffer *eb = path->nodes[0];
6048		int slot = path->slots[0];
6049
6050		if (slot >= btrfs_header_nritems(eb)) {
6051			ret = btrfs_next_leaf(sctx->parent_root, path);
6052			if (ret < 0)
6053				goto out;
6054			else if (ret > 0)
6055				break;
6056			continue;
6057		}
6058
6059		btrfs_item_key_to_cpu(eb, &key, slot);
6060		if (key.objectid != sctx->cur_ino)
6061			break;
6062		if (key.type != BTRFS_INODE_REF_KEY &&
6063		    key.type != BTRFS_INODE_EXTREF_KEY)
6064			break;
6065
6066		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6067					record_parent_ref, &ctx);
6068		if (ret < 0)
6069			goto out;
6070
6071		path->slots[0]++;
6072	}
6073
6074	while (!list_empty(&deleted_refs)) {
6075		struct recorded_ref *ref;
6076
6077		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6078		ret = send_unlink(sctx, ref->full_path);
6079		if (ret < 0)
6080			goto out;
6081		fs_path_free(ref->full_path);
6082		list_del(&ref->list);
6083		kfree(ref);
6084	}
6085	ret = 0;
6086out:
6087	btrfs_free_path(path);
6088	if (ret)
6089		__free_recorded_refs(&deleted_refs);
6090	return ret;
6091}
6092
6093static int changed_inode(struct send_ctx *sctx,
6094			 enum btrfs_compare_tree_result result)
6095{
6096	int ret = 0;
6097	struct btrfs_key *key = sctx->cmp_key;
6098	struct btrfs_inode_item *left_ii = NULL;
6099	struct btrfs_inode_item *right_ii = NULL;
6100	u64 left_gen = 0;
6101	u64 right_gen = 0;
6102
6103	sctx->cur_ino = key->objectid;
6104	sctx->cur_inode_new_gen = 0;
6105	sctx->cur_inode_last_extent = (u64)-1;
6106	sctx->cur_inode_next_write_offset = 0;
6107	sctx->ignore_cur_inode = false;
6108
6109	/*
6110	 * Set send_progress to current inode. This will tell all get_cur_xxx
6111	 * functions that the current inode's refs are not updated yet. Later,
6112	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6113	 */
6114	sctx->send_progress = sctx->cur_ino;
6115
6116	if (result == BTRFS_COMPARE_TREE_NEW ||
6117	    result == BTRFS_COMPARE_TREE_CHANGED) {
6118		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6119				sctx->left_path->slots[0],
6120				struct btrfs_inode_item);
6121		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6122				left_ii);
6123	} else {
6124		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6125				sctx->right_path->slots[0],
6126				struct btrfs_inode_item);
6127		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6128				right_ii);
6129	}
6130	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6131		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6132				sctx->right_path->slots[0],
6133				struct btrfs_inode_item);
6134
6135		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6136				right_ii);
6137
6138		/*
6139		 * The cur_ino = root dir case is special here. We can't treat
6140		 * the inode as deleted+reused because it would generate a
6141		 * stream that tries to delete/mkdir the root dir.
6142		 */
6143		if (left_gen != right_gen &&
6144		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6145			sctx->cur_inode_new_gen = 1;
6146	}
6147
6148	/*
6149	 * Normally we do not find inodes with a link count of zero (orphans)
6150	 * because the most common case is to create a snapshot and use it
6151	 * for a send operation. However other less common use cases involve
6152	 * using a subvolume and send it after turning it to RO mode just
6153	 * after deleting all hard links of a file while holding an open
6154	 * file descriptor against it or turning a RO snapshot into RW mode,
6155	 * keep an open file descriptor against a file, delete it and then
6156	 * turn the snapshot back to RO mode before using it for a send
6157	 * operation. So if we find such cases, ignore the inode and all its
6158	 * items completely if it's a new inode, or if it's a changed inode
6159	 * make sure all its previous paths (from the parent snapshot) are all
6160	 * unlinked and all other the inode items are ignored.
6161	 */
6162	if (result == BTRFS_COMPARE_TREE_NEW ||
6163	    result == BTRFS_COMPARE_TREE_CHANGED) {
6164		u32 nlinks;
6165
6166		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6167		if (nlinks == 0) {
6168			sctx->ignore_cur_inode = true;
6169			if (result == BTRFS_COMPARE_TREE_CHANGED)
6170				ret = btrfs_unlink_all_paths(sctx);
6171			goto out;
6172		}
6173	}
6174
6175	if (result == BTRFS_COMPARE_TREE_NEW) {
6176		sctx->cur_inode_gen = left_gen;
6177		sctx->cur_inode_new = 1;
6178		sctx->cur_inode_deleted = 0;
6179		sctx->cur_inode_size = btrfs_inode_size(
6180				sctx->left_path->nodes[0], left_ii);
6181		sctx->cur_inode_mode = btrfs_inode_mode(
6182				sctx->left_path->nodes[0], left_ii);
6183		sctx->cur_inode_rdev = btrfs_inode_rdev(
6184				sctx->left_path->nodes[0], left_ii);
6185		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6186			ret = send_create_inode_if_needed(sctx);
6187	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6188		sctx->cur_inode_gen = right_gen;
6189		sctx->cur_inode_new = 0;
6190		sctx->cur_inode_deleted = 1;
6191		sctx->cur_inode_size = btrfs_inode_size(
6192				sctx->right_path->nodes[0], right_ii);
6193		sctx->cur_inode_mode = btrfs_inode_mode(
6194				sctx->right_path->nodes[0], right_ii);
6195	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6196		/*
6197		 * We need to do some special handling in case the inode was
6198		 * reported as changed with a changed generation number. This
6199		 * means that the original inode was deleted and new inode
6200		 * reused the same inum. So we have to treat the old inode as
6201		 * deleted and the new one as new.
6202		 */
6203		if (sctx->cur_inode_new_gen) {
6204			/*
6205			 * First, process the inode as if it was deleted.
6206			 */
6207			sctx->cur_inode_gen = right_gen;
6208			sctx->cur_inode_new = 0;
6209			sctx->cur_inode_deleted = 1;
6210			sctx->cur_inode_size = btrfs_inode_size(
6211					sctx->right_path->nodes[0], right_ii);
6212			sctx->cur_inode_mode = btrfs_inode_mode(
6213					sctx->right_path->nodes[0], right_ii);
6214			ret = process_all_refs(sctx,
6215					BTRFS_COMPARE_TREE_DELETED);
6216			if (ret < 0)
6217				goto out;
6218
6219			/*
6220			 * Now process the inode as if it was new.
6221			 */
6222			sctx->cur_inode_gen = left_gen;
6223			sctx->cur_inode_new = 1;
6224			sctx->cur_inode_deleted = 0;
6225			sctx->cur_inode_size = btrfs_inode_size(
6226					sctx->left_path->nodes[0], left_ii);
6227			sctx->cur_inode_mode = btrfs_inode_mode(
6228					sctx->left_path->nodes[0], left_ii);
6229			sctx->cur_inode_rdev = btrfs_inode_rdev(
6230					sctx->left_path->nodes[0], left_ii);
6231			ret = send_create_inode_if_needed(sctx);
6232			if (ret < 0)
6233				goto out;
6234
6235			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6236			if (ret < 0)
6237				goto out;
6238			/*
6239			 * Advance send_progress now as we did not get into
6240			 * process_recorded_refs_if_needed in the new_gen case.
6241			 */
6242			sctx->send_progress = sctx->cur_ino + 1;
6243
6244			/*
6245			 * Now process all extents and xattrs of the inode as if
6246			 * they were all new.
6247			 */
6248			ret = process_all_extents(sctx);
6249			if (ret < 0)
6250				goto out;
6251			ret = process_all_new_xattrs(sctx);
6252			if (ret < 0)
6253				goto out;
6254		} else {
6255			sctx->cur_inode_gen = left_gen;
6256			sctx->cur_inode_new = 0;
6257			sctx->cur_inode_new_gen = 0;
6258			sctx->cur_inode_deleted = 0;
6259			sctx->cur_inode_size = btrfs_inode_size(
6260					sctx->left_path->nodes[0], left_ii);
6261			sctx->cur_inode_mode = btrfs_inode_mode(
6262					sctx->left_path->nodes[0], left_ii);
6263		}
6264	}
6265
6266out:
6267	return ret;
6268}
6269
6270/*
6271 * We have to process new refs before deleted refs, but compare_trees gives us
6272 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6273 * first and later process them in process_recorded_refs.
6274 * For the cur_inode_new_gen case, we skip recording completely because
6275 * changed_inode did already initiate processing of refs. The reason for this is
6276 * that in this case, compare_tree actually compares the refs of 2 different
6277 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6278 * refs of the right tree as deleted and all refs of the left tree as new.
6279 */
6280static int changed_ref(struct send_ctx *sctx,
6281		       enum btrfs_compare_tree_result result)
6282{
6283	int ret = 0;
6284
6285	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6286		inconsistent_snapshot_error(sctx, result, "reference");
6287		return -EIO;
6288	}
6289
6290	if (!sctx->cur_inode_new_gen &&
6291	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6292		if (result == BTRFS_COMPARE_TREE_NEW)
6293			ret = record_new_ref(sctx);
6294		else if (result == BTRFS_COMPARE_TREE_DELETED)
6295			ret = record_deleted_ref(sctx);
6296		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6297			ret = record_changed_ref(sctx);
6298	}
6299
6300	return ret;
6301}
6302
6303/*
6304 * Process new/deleted/changed xattrs. We skip processing in the
6305 * cur_inode_new_gen case because changed_inode did already initiate processing
6306 * of xattrs. The reason is the same as in changed_ref
6307 */
6308static int changed_xattr(struct send_ctx *sctx,
6309			 enum btrfs_compare_tree_result result)
6310{
6311	int ret = 0;
6312
6313	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6314		inconsistent_snapshot_error(sctx, result, "xattr");
6315		return -EIO;
6316	}
6317
6318	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6319		if (result == BTRFS_COMPARE_TREE_NEW)
6320			ret = process_new_xattr(sctx);
6321		else if (result == BTRFS_COMPARE_TREE_DELETED)
6322			ret = process_deleted_xattr(sctx);
6323		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6324			ret = process_changed_xattr(sctx);
6325	}
6326
6327	return ret;
6328}
6329
6330/*
6331 * Process new/deleted/changed extents. We skip processing in the
6332 * cur_inode_new_gen case because changed_inode did already initiate processing
6333 * of extents. The reason is the same as in changed_ref
6334 */
6335static int changed_extent(struct send_ctx *sctx,
6336			  enum btrfs_compare_tree_result result)
6337{
6338	int ret = 0;
6339
6340	/*
6341	 * We have found an extent item that changed without the inode item
6342	 * having changed. This can happen either after relocation (where the
6343	 * disk_bytenr of an extent item is replaced at
6344	 * relocation.c:replace_file_extents()) or after deduplication into a
6345	 * file in both the parent and send snapshots (where an extent item can
6346	 * get modified or replaced with a new one). Note that deduplication
6347	 * updates the inode item, but it only changes the iversion (sequence
6348	 * field in the inode item) of the inode, so if a file is deduplicated
6349	 * the same amount of times in both the parent and send snapshots, its
6350	 * iversion becames the same in both snapshots, whence the inode item is
6351	 * the same on both snapshots.
6352	 */
6353	if (sctx->cur_ino != sctx->cmp_key->objectid)
6354		return 0;
6355
6356	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6357		if (result != BTRFS_COMPARE_TREE_DELETED)
6358			ret = process_extent(sctx, sctx->left_path,
6359					sctx->cmp_key);
6360	}
6361
6362	return ret;
6363}
6364
6365static int dir_changed(struct send_ctx *sctx, u64 dir)
6366{
6367	u64 orig_gen, new_gen;
6368	int ret;
6369
6370	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6371			     NULL, NULL);
6372	if (ret)
6373		return ret;
6374
6375	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6376			     NULL, NULL, NULL);
6377	if (ret)
6378		return ret;
6379
6380	return (orig_gen != new_gen) ? 1 : 0;
6381}
6382
6383static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6384			struct btrfs_key *key)
6385{
6386	struct btrfs_inode_extref *extref;
6387	struct extent_buffer *leaf;
6388	u64 dirid = 0, last_dirid = 0;
6389	unsigned long ptr;
6390	u32 item_size;
6391	u32 cur_offset = 0;
6392	int ref_name_len;
6393	int ret = 0;
6394
6395	/* Easy case, just check this one dirid */
6396	if (key->type == BTRFS_INODE_REF_KEY) {
6397		dirid = key->offset;
6398
6399		ret = dir_changed(sctx, dirid);
6400		goto out;
6401	}
6402
6403	leaf = path->nodes[0];
6404	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6405	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6406	while (cur_offset < item_size) {
6407		extref = (struct btrfs_inode_extref *)(ptr +
6408						       cur_offset);
6409		dirid = btrfs_inode_extref_parent(leaf, extref);
6410		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6411		cur_offset += ref_name_len + sizeof(*extref);
6412		if (dirid == last_dirid)
6413			continue;
6414		ret = dir_changed(sctx, dirid);
6415		if (ret)
6416			break;
6417		last_dirid = dirid;
6418	}
6419out:
6420	return ret;
6421}
6422
6423/*
6424 * Updates compare related fields in sctx and simply forwards to the actual
6425 * changed_xxx functions.
6426 */
6427static int changed_cb(struct btrfs_path *left_path,
 
 
6428		      struct btrfs_path *right_path,
6429		      struct btrfs_key *key,
6430		      enum btrfs_compare_tree_result result,
6431		      void *ctx)
6432{
6433	int ret = 0;
6434	struct send_ctx *sctx = ctx;
6435
6436	if (result == BTRFS_COMPARE_TREE_SAME) {
6437		if (key->type == BTRFS_INODE_REF_KEY ||
6438		    key->type == BTRFS_INODE_EXTREF_KEY) {
6439			ret = compare_refs(sctx, left_path, key);
6440			if (!ret)
6441				return 0;
6442			if (ret < 0)
6443				return ret;
6444		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6445			return maybe_send_hole(sctx, left_path, key);
6446		} else {
6447			return 0;
6448		}
6449		result = BTRFS_COMPARE_TREE_CHANGED;
6450		ret = 0;
6451	}
6452
6453	sctx->left_path = left_path;
6454	sctx->right_path = right_path;
6455	sctx->cmp_key = key;
6456
6457	ret = finish_inode_if_needed(sctx, 0);
6458	if (ret < 0)
6459		goto out;
6460
6461	/* Ignore non-FS objects */
6462	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6463	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6464		goto out;
6465
6466	if (key->type == BTRFS_INODE_ITEM_KEY) {
6467		ret = changed_inode(sctx, result);
6468	} else if (!sctx->ignore_cur_inode) {
6469		if (key->type == BTRFS_INODE_REF_KEY ||
6470		    key->type == BTRFS_INODE_EXTREF_KEY)
6471			ret = changed_ref(sctx, result);
6472		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6473			ret = changed_xattr(sctx, result);
6474		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6475			ret = changed_extent(sctx, result);
6476	}
6477
6478out:
6479	return ret;
6480}
6481
6482static int full_send_tree(struct send_ctx *sctx)
6483{
6484	int ret;
6485	struct btrfs_root *send_root = sctx->send_root;
6486	struct btrfs_key key;
 
6487	struct btrfs_path *path;
6488	struct extent_buffer *eb;
6489	int slot;
6490
6491	path = alloc_path_for_send();
6492	if (!path)
6493		return -ENOMEM;
6494
6495	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6496	key.type = BTRFS_INODE_ITEM_KEY;
6497	key.offset = 0;
6498
6499	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6500	if (ret < 0)
6501		goto out;
6502	if (ret)
6503		goto out_finish;
6504
6505	while (1) {
6506		eb = path->nodes[0];
6507		slot = path->slots[0];
6508		btrfs_item_key_to_cpu(eb, &key, slot);
6509
6510		ret = changed_cb(path, NULL, &key,
6511				 BTRFS_COMPARE_TREE_NEW, sctx);
6512		if (ret < 0)
6513			goto out;
6514
 
 
 
 
6515		ret = btrfs_next_item(send_root, path);
6516		if (ret < 0)
6517			goto out;
6518		if (ret) {
6519			ret  = 0;
6520			break;
6521		}
6522	}
6523
6524out_finish:
6525	ret = finish_inode_if_needed(sctx, 1);
6526
6527out:
6528	btrfs_free_path(path);
6529	return ret;
6530}
6531
6532static int tree_move_down(struct btrfs_path *path, int *level)
6533{
6534	struct extent_buffer *eb;
6535
6536	BUG_ON(*level == 0);
6537	eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6538	if (IS_ERR(eb))
6539		return PTR_ERR(eb);
6540
6541	path->nodes[*level - 1] = eb;
6542	path->slots[*level - 1] = 0;
6543	(*level)--;
6544	return 0;
6545}
6546
6547static int tree_move_next_or_upnext(struct btrfs_path *path,
6548				    int *level, int root_level)
6549{
6550	int ret = 0;
6551	int nritems;
6552	nritems = btrfs_header_nritems(path->nodes[*level]);
6553
6554	path->slots[*level]++;
6555
6556	while (path->slots[*level] >= nritems) {
6557		if (*level == root_level)
6558			return -1;
6559
6560		/* move upnext */
6561		path->slots[*level] = 0;
6562		free_extent_buffer(path->nodes[*level]);
6563		path->nodes[*level] = NULL;
6564		(*level)++;
6565		path->slots[*level]++;
6566
6567		nritems = btrfs_header_nritems(path->nodes[*level]);
6568		ret = 1;
6569	}
6570	return ret;
6571}
6572
6573/*
6574 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6575 * or down.
6576 */
6577static int tree_advance(struct btrfs_path *path,
6578			int *level, int root_level,
6579			int allow_down,
6580			struct btrfs_key *key)
6581{
6582	int ret;
6583
6584	if (*level == 0 || !allow_down) {
6585		ret = tree_move_next_or_upnext(path, level, root_level);
6586	} else {
6587		ret = tree_move_down(path, level);
6588	}
6589	if (ret >= 0) {
6590		if (*level == 0)
6591			btrfs_item_key_to_cpu(path->nodes[*level], key,
6592					path->slots[*level]);
6593		else
6594			btrfs_node_key_to_cpu(path->nodes[*level], key,
6595					path->slots[*level]);
6596	}
6597	return ret;
6598}
6599
6600static int tree_compare_item(struct btrfs_path *left_path,
6601			     struct btrfs_path *right_path,
6602			     char *tmp_buf)
6603{
6604	int cmp;
6605	int len1, len2;
6606	unsigned long off1, off2;
6607
6608	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6609	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6610	if (len1 != len2)
6611		return 1;
6612
6613	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6614	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6615				right_path->slots[0]);
6616
6617	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6618
6619	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6620	if (cmp)
6621		return 1;
6622	return 0;
6623}
6624
6625/*
6626 * This function compares two trees and calls the provided callback for
6627 * every changed/new/deleted item it finds.
6628 * If shared tree blocks are encountered, whole subtrees are skipped, making
6629 * the compare pretty fast on snapshotted subvolumes.
6630 *
6631 * This currently works on commit roots only. As commit roots are read only,
6632 * we don't do any locking. The commit roots are protected with transactions.
6633 * Transactions are ended and rejoined when a commit is tried in between.
6634 *
6635 * This function checks for modifications done to the trees while comparing.
6636 * If it detects a change, it aborts immediately.
6637 */
6638static int btrfs_compare_trees(struct btrfs_root *left_root,
6639			struct btrfs_root *right_root,
6640			btrfs_changed_cb_t changed_cb, void *ctx)
6641{
6642	struct btrfs_fs_info *fs_info = left_root->fs_info;
6643	int ret;
6644	int cmp;
6645	struct btrfs_path *left_path = NULL;
6646	struct btrfs_path *right_path = NULL;
6647	struct btrfs_key left_key;
6648	struct btrfs_key right_key;
6649	char *tmp_buf = NULL;
6650	int left_root_level;
6651	int right_root_level;
6652	int left_level;
6653	int right_level;
6654	int left_end_reached;
6655	int right_end_reached;
6656	int advance_left;
6657	int advance_right;
6658	u64 left_blockptr;
6659	u64 right_blockptr;
6660	u64 left_gen;
6661	u64 right_gen;
6662
6663	left_path = btrfs_alloc_path();
6664	if (!left_path) {
6665		ret = -ENOMEM;
6666		goto out;
6667	}
6668	right_path = btrfs_alloc_path();
6669	if (!right_path) {
6670		ret = -ENOMEM;
6671		goto out;
6672	}
6673
6674	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6675	if (!tmp_buf) {
6676		ret = -ENOMEM;
6677		goto out;
6678	}
6679
6680	left_path->search_commit_root = 1;
6681	left_path->skip_locking = 1;
6682	right_path->search_commit_root = 1;
6683	right_path->skip_locking = 1;
6684
6685	/*
6686	 * Strategy: Go to the first items of both trees. Then do
6687	 *
6688	 * If both trees are at level 0
6689	 *   Compare keys of current items
6690	 *     If left < right treat left item as new, advance left tree
6691	 *       and repeat
6692	 *     If left > right treat right item as deleted, advance right tree
6693	 *       and repeat
6694	 *     If left == right do deep compare of items, treat as changed if
6695	 *       needed, advance both trees and repeat
6696	 * If both trees are at the same level but not at level 0
6697	 *   Compare keys of current nodes/leafs
6698	 *     If left < right advance left tree and repeat
6699	 *     If left > right advance right tree and repeat
6700	 *     If left == right compare blockptrs of the next nodes/leafs
6701	 *       If they match advance both trees but stay at the same level
6702	 *         and repeat
6703	 *       If they don't match advance both trees while allowing to go
6704	 *         deeper and repeat
6705	 * If tree levels are different
6706	 *   Advance the tree that needs it and repeat
6707	 *
6708	 * Advancing a tree means:
6709	 *   If we are at level 0, try to go to the next slot. If that's not
6710	 *   possible, go one level up and repeat. Stop when we found a level
6711	 *   where we could go to the next slot. We may at this point be on a
6712	 *   node or a leaf.
6713	 *
6714	 *   If we are not at level 0 and not on shared tree blocks, go one
6715	 *   level deeper.
6716	 *
6717	 *   If we are not at level 0 and on shared tree blocks, go one slot to
6718	 *   the right if possible or go up and right.
6719	 */
6720
6721	down_read(&fs_info->commit_root_sem);
6722	left_level = btrfs_header_level(left_root->commit_root);
6723	left_root_level = left_level;
6724	left_path->nodes[left_level] =
6725			btrfs_clone_extent_buffer(left_root->commit_root);
6726	if (!left_path->nodes[left_level]) {
6727		up_read(&fs_info->commit_root_sem);
6728		ret = -ENOMEM;
6729		goto out;
6730	}
6731
6732	right_level = btrfs_header_level(right_root->commit_root);
6733	right_root_level = right_level;
6734	right_path->nodes[right_level] =
6735			btrfs_clone_extent_buffer(right_root->commit_root);
6736	if (!right_path->nodes[right_level]) {
6737		up_read(&fs_info->commit_root_sem);
6738		ret = -ENOMEM;
6739		goto out;
6740	}
6741	up_read(&fs_info->commit_root_sem);
6742
6743	if (left_level == 0)
6744		btrfs_item_key_to_cpu(left_path->nodes[left_level],
6745				&left_key, left_path->slots[left_level]);
6746	else
6747		btrfs_node_key_to_cpu(left_path->nodes[left_level],
6748				&left_key, left_path->slots[left_level]);
6749	if (right_level == 0)
6750		btrfs_item_key_to_cpu(right_path->nodes[right_level],
6751				&right_key, right_path->slots[right_level]);
6752	else
6753		btrfs_node_key_to_cpu(right_path->nodes[right_level],
6754				&right_key, right_path->slots[right_level]);
6755
6756	left_end_reached = right_end_reached = 0;
6757	advance_left = advance_right = 0;
6758
6759	while (1) {
6760		cond_resched();
6761		if (advance_left && !left_end_reached) {
6762			ret = tree_advance(left_path, &left_level,
6763					left_root_level,
6764					advance_left != ADVANCE_ONLY_NEXT,
6765					&left_key);
6766			if (ret == -1)
6767				left_end_reached = ADVANCE;
6768			else if (ret < 0)
6769				goto out;
6770			advance_left = 0;
6771		}
6772		if (advance_right && !right_end_reached) {
6773			ret = tree_advance(right_path, &right_level,
6774					right_root_level,
6775					advance_right != ADVANCE_ONLY_NEXT,
6776					&right_key);
6777			if (ret == -1)
6778				right_end_reached = ADVANCE;
6779			else if (ret < 0)
6780				goto out;
6781			advance_right = 0;
6782		}
6783
6784		if (left_end_reached && right_end_reached) {
6785			ret = 0;
6786			goto out;
6787		} else if (left_end_reached) {
6788			if (right_level == 0) {
6789				ret = changed_cb(left_path, right_path,
6790						&right_key,
6791						BTRFS_COMPARE_TREE_DELETED,
6792						ctx);
6793				if (ret < 0)
6794					goto out;
6795			}
6796			advance_right = ADVANCE;
6797			continue;
6798		} else if (right_end_reached) {
6799			if (left_level == 0) {
6800				ret = changed_cb(left_path, right_path,
6801						&left_key,
6802						BTRFS_COMPARE_TREE_NEW,
6803						ctx);
6804				if (ret < 0)
6805					goto out;
6806			}
6807			advance_left = ADVANCE;
6808			continue;
6809		}
6810
6811		if (left_level == 0 && right_level == 0) {
6812			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6813			if (cmp < 0) {
6814				ret = changed_cb(left_path, right_path,
6815						&left_key,
6816						BTRFS_COMPARE_TREE_NEW,
6817						ctx);
6818				if (ret < 0)
6819					goto out;
6820				advance_left = ADVANCE;
6821			} else if (cmp > 0) {
6822				ret = changed_cb(left_path, right_path,
6823						&right_key,
6824						BTRFS_COMPARE_TREE_DELETED,
6825						ctx);
6826				if (ret < 0)
6827					goto out;
6828				advance_right = ADVANCE;
6829			} else {
6830				enum btrfs_compare_tree_result result;
6831
6832				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
6833				ret = tree_compare_item(left_path, right_path,
6834							tmp_buf);
6835				if (ret)
6836					result = BTRFS_COMPARE_TREE_CHANGED;
6837				else
6838					result = BTRFS_COMPARE_TREE_SAME;
6839				ret = changed_cb(left_path, right_path,
6840						 &left_key, result, ctx);
6841				if (ret < 0)
6842					goto out;
6843				advance_left = ADVANCE;
6844				advance_right = ADVANCE;
6845			}
6846		} else if (left_level == right_level) {
6847			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6848			if (cmp < 0) {
6849				advance_left = ADVANCE;
6850			} else if (cmp > 0) {
6851				advance_right = ADVANCE;
6852			} else {
6853				left_blockptr = btrfs_node_blockptr(
6854						left_path->nodes[left_level],
6855						left_path->slots[left_level]);
6856				right_blockptr = btrfs_node_blockptr(
6857						right_path->nodes[right_level],
6858						right_path->slots[right_level]);
6859				left_gen = btrfs_node_ptr_generation(
6860						left_path->nodes[left_level],
6861						left_path->slots[left_level]);
6862				right_gen = btrfs_node_ptr_generation(
6863						right_path->nodes[right_level],
6864						right_path->slots[right_level]);
6865				if (left_blockptr == right_blockptr &&
6866				    left_gen == right_gen) {
6867					/*
6868					 * As we're on a shared block, don't
6869					 * allow to go deeper.
6870					 */
6871					advance_left = ADVANCE_ONLY_NEXT;
6872					advance_right = ADVANCE_ONLY_NEXT;
6873				} else {
6874					advance_left = ADVANCE;
6875					advance_right = ADVANCE;
6876				}
6877			}
6878		} else if (left_level < right_level) {
6879			advance_right = ADVANCE;
6880		} else {
6881			advance_left = ADVANCE;
6882		}
6883	}
6884
6885out:
6886	btrfs_free_path(left_path);
6887	btrfs_free_path(right_path);
6888	kvfree(tmp_buf);
6889	return ret;
6890}
6891
6892static int send_subvol(struct send_ctx *sctx)
6893{
6894	int ret;
6895
6896	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6897		ret = send_header(sctx);
6898		if (ret < 0)
6899			goto out;
6900	}
6901
6902	ret = send_subvol_begin(sctx);
6903	if (ret < 0)
6904		goto out;
6905
6906	if (sctx->parent_root) {
6907		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6908				changed_cb, sctx);
6909		if (ret < 0)
6910			goto out;
6911		ret = finish_inode_if_needed(sctx, 1);
6912		if (ret < 0)
6913			goto out;
6914	} else {
6915		ret = full_send_tree(sctx);
6916		if (ret < 0)
6917			goto out;
6918	}
6919
6920out:
6921	free_recorded_refs(sctx);
6922	return ret;
6923}
6924
6925/*
6926 * If orphan cleanup did remove any orphans from a root, it means the tree
6927 * was modified and therefore the commit root is not the same as the current
6928 * root anymore. This is a problem, because send uses the commit root and
6929 * therefore can see inode items that don't exist in the current root anymore,
6930 * and for example make calls to btrfs_iget, which will do tree lookups based
6931 * on the current root and not on the commit root. Those lookups will fail,
6932 * returning a -ESTALE error, and making send fail with that error. So make
6933 * sure a send does not see any orphans we have just removed, and that it will
6934 * see the same inodes regardless of whether a transaction commit happened
6935 * before it started (meaning that the commit root will be the same as the
6936 * current root) or not.
6937 */
6938static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6939{
6940	int i;
6941	struct btrfs_trans_handle *trans = NULL;
6942
6943again:
6944	if (sctx->parent_root &&
6945	    sctx->parent_root->node != sctx->parent_root->commit_root)
6946		goto commit_trans;
6947
6948	for (i = 0; i < sctx->clone_roots_cnt; i++)
6949		if (sctx->clone_roots[i].root->node !=
6950		    sctx->clone_roots[i].root->commit_root)
6951			goto commit_trans;
6952
6953	if (trans)
6954		return btrfs_end_transaction(trans);
6955
6956	return 0;
6957
6958commit_trans:
6959	/* Use any root, all fs roots will get their commit roots updated. */
6960	if (!trans) {
6961		trans = btrfs_join_transaction(sctx->send_root);
6962		if (IS_ERR(trans))
6963			return PTR_ERR(trans);
6964		goto again;
6965	}
6966
6967	return btrfs_commit_transaction(trans);
6968}
6969
6970/*
6971 * Make sure any existing dellaloc is flushed for any root used by a send
6972 * operation so that we do not miss any data and we do not race with writeback
6973 * finishing and changing a tree while send is using the tree. This could
6974 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
6975 * a send operation then uses the subvolume.
6976 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
6977 */
6978static int flush_delalloc_roots(struct send_ctx *sctx)
6979{
6980	struct btrfs_root *root = sctx->parent_root;
6981	int ret;
6982	int i;
6983
6984	if (root) {
6985		ret = btrfs_start_delalloc_snapshot(root);
6986		if (ret)
6987			return ret;
6988		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
6989	}
6990
6991	for (i = 0; i < sctx->clone_roots_cnt; i++) {
6992		root = sctx->clone_roots[i].root;
6993		ret = btrfs_start_delalloc_snapshot(root);
6994		if (ret)
6995			return ret;
6996		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
6997	}
6998
6999	return 0;
7000}
7001
7002static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7003{
7004	spin_lock(&root->root_item_lock);
7005	root->send_in_progress--;
7006	/*
7007	 * Not much left to do, we don't know why it's unbalanced and
7008	 * can't blindly reset it to 0.
7009	 */
7010	if (root->send_in_progress < 0)
7011		btrfs_err(root->fs_info,
7012			  "send_in_progress unbalanced %d root %llu",
7013			  root->send_in_progress, root->root_key.objectid);
7014	spin_unlock(&root->root_item_lock);
7015}
7016
7017static void dedupe_in_progress_warn(const struct btrfs_root *root)
7018{
7019	btrfs_warn_rl(root->fs_info,
7020"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7021		      root->root_key.objectid, root->dedupe_in_progress);
7022}
7023
7024long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7025{
7026	int ret = 0;
7027	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7028	struct btrfs_fs_info *fs_info = send_root->fs_info;
7029	struct btrfs_root *clone_root;
 
 
7030	struct btrfs_key key;
7031	struct send_ctx *sctx = NULL;
7032	u32 i;
7033	u64 *clone_sources_tmp = NULL;
7034	int clone_sources_to_rollback = 0;
7035	unsigned alloc_size;
7036	int sort_clone_roots = 0;
7037	int index;
7038
7039	if (!capable(CAP_SYS_ADMIN))
7040		return -EPERM;
7041
 
 
 
7042	/*
7043	 * The subvolume must remain read-only during send, protect against
7044	 * making it RW. This also protects against deletion.
7045	 */
7046	spin_lock(&send_root->root_item_lock);
7047	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7048		dedupe_in_progress_warn(send_root);
7049		spin_unlock(&send_root->root_item_lock);
7050		return -EAGAIN;
7051	}
7052	send_root->send_in_progress++;
7053	spin_unlock(&send_root->root_item_lock);
7054
7055	/*
7056	 * This is done when we lookup the root, it should already be complete
7057	 * by the time we get here.
7058	 */
7059	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
7060
7061	/*
7062	 * Userspace tools do the checks and warn the user if it's
7063	 * not RO.
7064	 */
7065	if (!btrfs_root_readonly(send_root)) {
7066		ret = -EPERM;
7067		goto out;
7068	}
7069
7070	/*
7071	 * Check that we don't overflow at later allocations, we request
7072	 * clone_sources_count + 1 items, and compare to unsigned long inside
7073	 * access_ok.
7074	 */
7075	if (arg->clone_sources_count >
7076	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7077		ret = -EINVAL;
7078		goto out;
7079	}
7080
7081	if (!access_ok(arg->clone_sources,
7082			sizeof(*arg->clone_sources) *
7083			arg->clone_sources_count)) {
7084		ret = -EFAULT;
7085		goto out;
7086	}
7087
7088	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7089		ret = -EINVAL;
7090		goto out;
7091	}
7092
7093	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7094	if (!sctx) {
7095		ret = -ENOMEM;
7096		goto out;
7097	}
7098
7099	INIT_LIST_HEAD(&sctx->new_refs);
7100	INIT_LIST_HEAD(&sctx->deleted_refs);
7101	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7102	INIT_LIST_HEAD(&sctx->name_cache_list);
7103
7104	sctx->flags = arg->flags;
7105
7106	sctx->send_filp = fget(arg->send_fd);
7107	if (!sctx->send_filp) {
7108		ret = -EBADF;
7109		goto out;
7110	}
7111
7112	sctx->send_root = send_root;
7113	/*
7114	 * Unlikely but possible, if the subvolume is marked for deletion but
7115	 * is slow to remove the directory entry, send can still be started
7116	 */
7117	if (btrfs_root_dead(sctx->send_root)) {
7118		ret = -EPERM;
7119		goto out;
7120	}
7121
7122	sctx->clone_roots_cnt = arg->clone_sources_count;
7123
7124	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7125	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7126	if (!sctx->send_buf) {
7127		ret = -ENOMEM;
7128		goto out;
7129	}
7130
7131	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
7132	if (!sctx->read_buf) {
7133		ret = -ENOMEM;
7134		goto out;
7135	}
7136
7137	sctx->pending_dir_moves = RB_ROOT;
7138	sctx->waiting_dir_moves = RB_ROOT;
7139	sctx->orphan_dirs = RB_ROOT;
7140
7141	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
7142
7143	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
7144	if (!sctx->clone_roots) {
7145		ret = -ENOMEM;
7146		goto out;
7147	}
7148
7149	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
7150
7151	if (arg->clone_sources_count) {
7152		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
 
7153		if (!clone_sources_tmp) {
7154			ret = -ENOMEM;
7155			goto out;
7156		}
7157
7158		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7159				alloc_size);
 
7160		if (ret) {
7161			ret = -EFAULT;
7162			goto out;
7163		}
7164
7165		for (i = 0; i < arg->clone_sources_count; i++) {
7166			key.objectid = clone_sources_tmp[i];
7167			key.type = BTRFS_ROOT_ITEM_KEY;
7168			key.offset = (u64)-1;
7169
7170			index = srcu_read_lock(&fs_info->subvol_srcu);
7171
7172			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
7173			if (IS_ERR(clone_root)) {
7174				srcu_read_unlock(&fs_info->subvol_srcu, index);
7175				ret = PTR_ERR(clone_root);
7176				goto out;
7177			}
7178			spin_lock(&clone_root->root_item_lock);
7179			if (!btrfs_root_readonly(clone_root) ||
7180			    btrfs_root_dead(clone_root)) {
7181				spin_unlock(&clone_root->root_item_lock);
7182				srcu_read_unlock(&fs_info->subvol_srcu, index);
7183				ret = -EPERM;
7184				goto out;
7185			}
7186			if (clone_root->dedupe_in_progress) {
7187				dedupe_in_progress_warn(clone_root);
7188				spin_unlock(&clone_root->root_item_lock);
7189				srcu_read_unlock(&fs_info->subvol_srcu, index);
7190				ret = -EAGAIN;
7191				goto out;
7192			}
7193			clone_root->send_in_progress++;
7194			spin_unlock(&clone_root->root_item_lock);
7195			srcu_read_unlock(&fs_info->subvol_srcu, index);
7196
7197			sctx->clone_roots[i].root = clone_root;
7198			clone_sources_to_rollback = i + 1;
7199		}
7200		kvfree(clone_sources_tmp);
7201		clone_sources_tmp = NULL;
7202	}
7203
7204	if (arg->parent_root) {
7205		key.objectid = arg->parent_root;
7206		key.type = BTRFS_ROOT_ITEM_KEY;
7207		key.offset = (u64)-1;
7208
7209		index = srcu_read_lock(&fs_info->subvol_srcu);
7210
7211		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
7212		if (IS_ERR(sctx->parent_root)) {
7213			srcu_read_unlock(&fs_info->subvol_srcu, index);
7214			ret = PTR_ERR(sctx->parent_root);
7215			goto out;
7216		}
7217
7218		spin_lock(&sctx->parent_root->root_item_lock);
7219		sctx->parent_root->send_in_progress++;
7220		if (!btrfs_root_readonly(sctx->parent_root) ||
7221				btrfs_root_dead(sctx->parent_root)) {
7222			spin_unlock(&sctx->parent_root->root_item_lock);
7223			srcu_read_unlock(&fs_info->subvol_srcu, index);
7224			ret = -EPERM;
7225			goto out;
7226		}
7227		if (sctx->parent_root->dedupe_in_progress) {
7228			dedupe_in_progress_warn(sctx->parent_root);
7229			spin_unlock(&sctx->parent_root->root_item_lock);
7230			srcu_read_unlock(&fs_info->subvol_srcu, index);
7231			ret = -EAGAIN;
7232			goto out;
7233		}
7234		spin_unlock(&sctx->parent_root->root_item_lock);
7235
7236		srcu_read_unlock(&fs_info->subvol_srcu, index);
7237	}
7238
7239	/*
7240	 * Clones from send_root are allowed, but only if the clone source
7241	 * is behind the current send position. This is checked while searching
7242	 * for possible clone sources.
7243	 */
7244	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
7245
7246	/* We do a bsearch later */
7247	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7248			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7249			NULL);
7250	sort_clone_roots = 1;
7251
7252	ret = flush_delalloc_roots(sctx);
7253	if (ret)
7254		goto out;
7255
7256	ret = ensure_commit_roots_uptodate(sctx);
7257	if (ret)
7258		goto out;
7259
7260	mutex_lock(&fs_info->balance_mutex);
7261	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7262		mutex_unlock(&fs_info->balance_mutex);
7263		btrfs_warn_rl(fs_info,
7264		"cannot run send because a balance operation is in progress");
7265		ret = -EAGAIN;
7266		goto out;
7267	}
7268	fs_info->send_in_progress++;
7269	mutex_unlock(&fs_info->balance_mutex);
7270
7271	current->journal_info = BTRFS_SEND_TRANS_STUB;
7272	ret = send_subvol(sctx);
7273	current->journal_info = NULL;
7274	mutex_lock(&fs_info->balance_mutex);
7275	fs_info->send_in_progress--;
7276	mutex_unlock(&fs_info->balance_mutex);
7277	if (ret < 0)
7278		goto out;
7279
7280	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7281		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7282		if (ret < 0)
7283			goto out;
7284		ret = send_cmd(sctx);
7285		if (ret < 0)
7286			goto out;
7287	}
7288
7289out:
7290	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7291	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7292		struct rb_node *n;
7293		struct pending_dir_move *pm;
7294
7295		n = rb_first(&sctx->pending_dir_moves);
7296		pm = rb_entry(n, struct pending_dir_move, node);
7297		while (!list_empty(&pm->list)) {
7298			struct pending_dir_move *pm2;
7299
7300			pm2 = list_first_entry(&pm->list,
7301					       struct pending_dir_move, list);
7302			free_pending_move(sctx, pm2);
7303		}
7304		free_pending_move(sctx, pm);
7305	}
7306
7307	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7308	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7309		struct rb_node *n;
7310		struct waiting_dir_move *dm;
7311
7312		n = rb_first(&sctx->waiting_dir_moves);
7313		dm = rb_entry(n, struct waiting_dir_move, node);
7314		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7315		kfree(dm);
7316	}
7317
7318	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7319	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7320		struct rb_node *n;
7321		struct orphan_dir_info *odi;
7322
7323		n = rb_first(&sctx->orphan_dirs);
7324		odi = rb_entry(n, struct orphan_dir_info, node);
7325		free_orphan_dir_info(sctx, odi);
7326	}
7327
7328	if (sort_clone_roots) {
7329		for (i = 0; i < sctx->clone_roots_cnt; i++)
7330			btrfs_root_dec_send_in_progress(
7331					sctx->clone_roots[i].root);
7332	} else {
7333		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
7334			btrfs_root_dec_send_in_progress(
7335					sctx->clone_roots[i].root);
7336
7337		btrfs_root_dec_send_in_progress(send_root);
7338	}
7339	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
7340		btrfs_root_dec_send_in_progress(sctx->parent_root);
7341
7342	kvfree(clone_sources_tmp);
 
7343
7344	if (sctx) {
7345		if (sctx->send_filp)
7346			fput(sctx->send_filp);
7347
7348		kvfree(sctx->clone_roots);
7349		kvfree(sctx->send_buf);
7350		kvfree(sctx->read_buf);
7351
7352		name_cache_free(sctx);
7353
7354		kfree(sctx);
7355	}
7356
7357	return ret;
7358}
v4.6
 
   1/*
   2 * Copyright (C) 2012 Alexander Block.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/bsearch.h>
  20#include <linux/fs.h>
  21#include <linux/file.h>
  22#include <linux/sort.h>
  23#include <linux/mount.h>
  24#include <linux/xattr.h>
  25#include <linux/posix_acl_xattr.h>
  26#include <linux/radix-tree.h>
  27#include <linux/vmalloc.h>
  28#include <linux/string.h>
 
 
  29
  30#include "send.h"
  31#include "backref.h"
  32#include "hash.h"
  33#include "locking.h"
  34#include "disk-io.h"
  35#include "btrfs_inode.h"
  36#include "transaction.h"
  37#include "compression.h"
  38
  39static int g_verbose = 0;
  40
  41#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
  42
  43/*
  44 * A fs_path is a helper to dynamically build path names with unknown size.
  45 * It reallocates the internal buffer on demand.
  46 * It allows fast adding of path elements on the right side (normal path) and
  47 * fast adding to the left side (reversed path). A reversed path can also be
  48 * unreversed if needed.
  49 */
  50struct fs_path {
  51	union {
  52		struct {
  53			char *start;
  54			char *end;
  55
  56			char *buf;
  57			unsigned short buf_len:15;
  58			unsigned short reversed:1;
  59			char inline_buf[];
  60		};
  61		/*
  62		 * Average path length does not exceed 200 bytes, we'll have
  63		 * better packing in the slab and higher chance to satisfy
  64		 * a allocation later during send.
  65		 */
  66		char pad[256];
  67	};
  68};
  69#define FS_PATH_INLINE_SIZE \
  70	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
  71
  72
  73/* reused for each extent */
  74struct clone_root {
  75	struct btrfs_root *root;
  76	u64 ino;
  77	u64 offset;
  78
  79	u64 found_refs;
  80};
  81
  82#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
  83#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
  84
  85struct send_ctx {
  86	struct file *send_filp;
  87	loff_t send_off;
  88	char *send_buf;
  89	u32 send_size;
  90	u32 send_max_size;
  91	u64 total_send_size;
  92	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
  93	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
  94
  95	struct btrfs_root *send_root;
  96	struct btrfs_root *parent_root;
  97	struct clone_root *clone_roots;
  98	int clone_roots_cnt;
  99
 100	/* current state of the compare_tree call */
 101	struct btrfs_path *left_path;
 102	struct btrfs_path *right_path;
 103	struct btrfs_key *cmp_key;
 104
 105	/*
 106	 * infos of the currently processed inode. In case of deleted inodes,
 107	 * these are the values from the deleted inode.
 108	 */
 109	u64 cur_ino;
 110	u64 cur_inode_gen;
 111	int cur_inode_new;
 112	int cur_inode_new_gen;
 113	int cur_inode_deleted;
 114	u64 cur_inode_size;
 115	u64 cur_inode_mode;
 116	u64 cur_inode_rdev;
 117	u64 cur_inode_last_extent;
 
 
 118
 119	u64 send_progress;
 120
 121	struct list_head new_refs;
 122	struct list_head deleted_refs;
 123
 124	struct radix_tree_root name_cache;
 125	struct list_head name_cache_list;
 126	int name_cache_size;
 127
 128	struct file_ra_state ra;
 129
 130	char *read_buf;
 131
 132	/*
 133	 * We process inodes by their increasing order, so if before an
 134	 * incremental send we reverse the parent/child relationship of
 135	 * directories such that a directory with a lower inode number was
 136	 * the parent of a directory with a higher inode number, and the one
 137	 * becoming the new parent got renamed too, we can't rename/move the
 138	 * directory with lower inode number when we finish processing it - we
 139	 * must process the directory with higher inode number first, then
 140	 * rename/move it and then rename/move the directory with lower inode
 141	 * number. Example follows.
 142	 *
 143	 * Tree state when the first send was performed:
 144	 *
 145	 * .
 146	 * |-- a                   (ino 257)
 147	 *     |-- b               (ino 258)
 148	 *         |
 149	 *         |
 150	 *         |-- c           (ino 259)
 151	 *         |   |-- d       (ino 260)
 152	 *         |
 153	 *         |-- c2          (ino 261)
 154	 *
 155	 * Tree state when the second (incremental) send is performed:
 156	 *
 157	 * .
 158	 * |-- a                   (ino 257)
 159	 *     |-- b               (ino 258)
 160	 *         |-- c2          (ino 261)
 161	 *             |-- d2      (ino 260)
 162	 *                 |-- cc  (ino 259)
 163	 *
 164	 * The sequence of steps that lead to the second state was:
 165	 *
 166	 * mv /a/b/c/d /a/b/c2/d2
 167	 * mv /a/b/c /a/b/c2/d2/cc
 168	 *
 169	 * "c" has lower inode number, but we can't move it (2nd mv operation)
 170	 * before we move "d", which has higher inode number.
 171	 *
 172	 * So we just memorize which move/rename operations must be performed
 173	 * later when their respective parent is processed and moved/renamed.
 174	 */
 175
 176	/* Indexed by parent directory inode number. */
 177	struct rb_root pending_dir_moves;
 178
 179	/*
 180	 * Reverse index, indexed by the inode number of a directory that
 181	 * is waiting for the move/rename of its immediate parent before its
 182	 * own move/rename can be performed.
 183	 */
 184	struct rb_root waiting_dir_moves;
 185
 186	/*
 187	 * A directory that is going to be rm'ed might have a child directory
 188	 * which is in the pending directory moves index above. In this case,
 189	 * the directory can only be removed after the move/rename of its child
 190	 * is performed. Example:
 191	 *
 192	 * Parent snapshot:
 193	 *
 194	 * .                        (ino 256)
 195	 * |-- a/                   (ino 257)
 196	 *     |-- b/               (ino 258)
 197	 *         |-- c/           (ino 259)
 198	 *         |   |-- x/       (ino 260)
 199	 *         |
 200	 *         |-- y/           (ino 261)
 201	 *
 202	 * Send snapshot:
 203	 *
 204	 * .                        (ino 256)
 205	 * |-- a/                   (ino 257)
 206	 *     |-- b/               (ino 258)
 207	 *         |-- YY/          (ino 261)
 208	 *              |-- x/      (ino 260)
 209	 *
 210	 * Sequence of steps that lead to the send snapshot:
 211	 * rm -f /a/b/c/foo.txt
 212	 * mv /a/b/y /a/b/YY
 213	 * mv /a/b/c/x /a/b/YY
 214	 * rmdir /a/b/c
 215	 *
 216	 * When the child is processed, its move/rename is delayed until its
 217	 * parent is processed (as explained above), but all other operations
 218	 * like update utimes, chown, chgrp, etc, are performed and the paths
 219	 * that it uses for those operations must use the orphanized name of
 220	 * its parent (the directory we're going to rm later), so we need to
 221	 * memorize that name.
 222	 *
 223	 * Indexed by the inode number of the directory to be deleted.
 224	 */
 225	struct rb_root orphan_dirs;
 226};
 227
 228struct pending_dir_move {
 229	struct rb_node node;
 230	struct list_head list;
 231	u64 parent_ino;
 232	u64 ino;
 233	u64 gen;
 234	bool is_orphan;
 235	struct list_head update_refs;
 236};
 237
 238struct waiting_dir_move {
 239	struct rb_node node;
 240	u64 ino;
 241	/*
 242	 * There might be some directory that could not be removed because it
 243	 * was waiting for this directory inode to be moved first. Therefore
 244	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
 245	 */
 246	u64 rmdir_ino;
 247	bool orphanized;
 248};
 249
 250struct orphan_dir_info {
 251	struct rb_node node;
 252	u64 ino;
 253	u64 gen;
 
 254};
 255
 256struct name_cache_entry {
 257	struct list_head list;
 258	/*
 259	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
 260	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
 261	 * more then one inum would fall into the same entry, we use radix_list
 262	 * to store the additional entries. radix_list is also used to store
 263	 * entries where two entries have the same inum but different
 264	 * generations.
 265	 */
 266	struct list_head radix_list;
 267	u64 ino;
 268	u64 gen;
 269	u64 parent_ino;
 270	u64 parent_gen;
 271	int ret;
 272	int need_later_update;
 273	int name_len;
 274	char name[];
 275};
 276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
 278
 279static struct waiting_dir_move *
 280get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
 281
 282static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
 283
 284static int need_send_hole(struct send_ctx *sctx)
 285{
 286	return (sctx->parent_root && !sctx->cur_inode_new &&
 287		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
 288		S_ISREG(sctx->cur_inode_mode));
 289}
 290
 291static void fs_path_reset(struct fs_path *p)
 292{
 293	if (p->reversed) {
 294		p->start = p->buf + p->buf_len - 1;
 295		p->end = p->start;
 296		*p->start = 0;
 297	} else {
 298		p->start = p->buf;
 299		p->end = p->start;
 300		*p->start = 0;
 301	}
 302}
 303
 304static struct fs_path *fs_path_alloc(void)
 305{
 306	struct fs_path *p;
 307
 308	p = kmalloc(sizeof(*p), GFP_KERNEL);
 309	if (!p)
 310		return NULL;
 311	p->reversed = 0;
 312	p->buf = p->inline_buf;
 313	p->buf_len = FS_PATH_INLINE_SIZE;
 314	fs_path_reset(p);
 315	return p;
 316}
 317
 318static struct fs_path *fs_path_alloc_reversed(void)
 319{
 320	struct fs_path *p;
 321
 322	p = fs_path_alloc();
 323	if (!p)
 324		return NULL;
 325	p->reversed = 1;
 326	fs_path_reset(p);
 327	return p;
 328}
 329
 330static void fs_path_free(struct fs_path *p)
 331{
 332	if (!p)
 333		return;
 334	if (p->buf != p->inline_buf)
 335		kfree(p->buf);
 336	kfree(p);
 337}
 338
 339static int fs_path_len(struct fs_path *p)
 340{
 341	return p->end - p->start;
 342}
 343
 344static int fs_path_ensure_buf(struct fs_path *p, int len)
 345{
 346	char *tmp_buf;
 347	int path_len;
 348	int old_buf_len;
 349
 350	len++;
 351
 352	if (p->buf_len >= len)
 353		return 0;
 354
 355	if (len > PATH_MAX) {
 356		WARN_ON(1);
 357		return -ENOMEM;
 358	}
 359
 360	path_len = p->end - p->start;
 361	old_buf_len = p->buf_len;
 362
 363	/*
 364	 * First time the inline_buf does not suffice
 365	 */
 366	if (p->buf == p->inline_buf) {
 367		tmp_buf = kmalloc(len, GFP_KERNEL);
 368		if (tmp_buf)
 369			memcpy(tmp_buf, p->buf, old_buf_len);
 370	} else {
 371		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
 372	}
 373	if (!tmp_buf)
 374		return -ENOMEM;
 375	p->buf = tmp_buf;
 376	/*
 377	 * The real size of the buffer is bigger, this will let the fast path
 378	 * happen most of the time
 379	 */
 380	p->buf_len = ksize(p->buf);
 381
 382	if (p->reversed) {
 383		tmp_buf = p->buf + old_buf_len - path_len - 1;
 384		p->end = p->buf + p->buf_len - 1;
 385		p->start = p->end - path_len;
 386		memmove(p->start, tmp_buf, path_len + 1);
 387	} else {
 388		p->start = p->buf;
 389		p->end = p->start + path_len;
 390	}
 391	return 0;
 392}
 393
 394static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
 395				   char **prepared)
 396{
 397	int ret;
 398	int new_len;
 399
 400	new_len = p->end - p->start + name_len;
 401	if (p->start != p->end)
 402		new_len++;
 403	ret = fs_path_ensure_buf(p, new_len);
 404	if (ret < 0)
 405		goto out;
 406
 407	if (p->reversed) {
 408		if (p->start != p->end)
 409			*--p->start = '/';
 410		p->start -= name_len;
 411		*prepared = p->start;
 412	} else {
 413		if (p->start != p->end)
 414			*p->end++ = '/';
 415		*prepared = p->end;
 416		p->end += name_len;
 417		*p->end = 0;
 418	}
 419
 420out:
 421	return ret;
 422}
 423
 424static int fs_path_add(struct fs_path *p, const char *name, int name_len)
 425{
 426	int ret;
 427	char *prepared;
 428
 429	ret = fs_path_prepare_for_add(p, name_len, &prepared);
 430	if (ret < 0)
 431		goto out;
 432	memcpy(prepared, name, name_len);
 433
 434out:
 435	return ret;
 436}
 437
 438static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
 439{
 440	int ret;
 441	char *prepared;
 442
 443	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
 444	if (ret < 0)
 445		goto out;
 446	memcpy(prepared, p2->start, p2->end - p2->start);
 447
 448out:
 449	return ret;
 450}
 451
 452static int fs_path_add_from_extent_buffer(struct fs_path *p,
 453					  struct extent_buffer *eb,
 454					  unsigned long off, int len)
 455{
 456	int ret;
 457	char *prepared;
 458
 459	ret = fs_path_prepare_for_add(p, len, &prepared);
 460	if (ret < 0)
 461		goto out;
 462
 463	read_extent_buffer(eb, prepared, off, len);
 464
 465out:
 466	return ret;
 467}
 468
 469static int fs_path_copy(struct fs_path *p, struct fs_path *from)
 470{
 471	int ret;
 472
 473	p->reversed = from->reversed;
 474	fs_path_reset(p);
 475
 476	ret = fs_path_add_path(p, from);
 477
 478	return ret;
 479}
 480
 481
 482static void fs_path_unreverse(struct fs_path *p)
 483{
 484	char *tmp;
 485	int len;
 486
 487	if (!p->reversed)
 488		return;
 489
 490	tmp = p->start;
 491	len = p->end - p->start;
 492	p->start = p->buf;
 493	p->end = p->start + len;
 494	memmove(p->start, tmp, len + 1);
 495	p->reversed = 0;
 496}
 497
 498static struct btrfs_path *alloc_path_for_send(void)
 499{
 500	struct btrfs_path *path;
 501
 502	path = btrfs_alloc_path();
 503	if (!path)
 504		return NULL;
 505	path->search_commit_root = 1;
 506	path->skip_locking = 1;
 507	path->need_commit_sem = 1;
 508	return path;
 509}
 510
 511static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
 512{
 513	int ret;
 514	mm_segment_t old_fs;
 515	u32 pos = 0;
 516
 517	old_fs = get_fs();
 518	set_fs(KERNEL_DS);
 519
 520	while (pos < len) {
 521		ret = vfs_write(filp, (__force const char __user *)buf + pos,
 522				len - pos, off);
 523		/* TODO handle that correctly */
 524		/*if (ret == -ERESTARTSYS) {
 525			continue;
 526		}*/
 527		if (ret < 0)
 528			goto out;
 529		if (ret == 0) {
 530			ret = -EIO;
 531			goto out;
 532		}
 533		pos += ret;
 534	}
 535
 536	ret = 0;
 537
 538out:
 539	set_fs(old_fs);
 540	return ret;
 541}
 542
 543static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
 544{
 545	struct btrfs_tlv_header *hdr;
 546	int total_len = sizeof(*hdr) + len;
 547	int left = sctx->send_max_size - sctx->send_size;
 548
 549	if (unlikely(left < total_len))
 550		return -EOVERFLOW;
 551
 552	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
 553	hdr->tlv_type = cpu_to_le16(attr);
 554	hdr->tlv_len = cpu_to_le16(len);
 555	memcpy(hdr + 1, data, len);
 556	sctx->send_size += total_len;
 557
 558	return 0;
 559}
 560
 561#define TLV_PUT_DEFINE_INT(bits) \
 562	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
 563			u##bits attr, u##bits value)			\
 564	{								\
 565		__le##bits __tmp = cpu_to_le##bits(value);		\
 566		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
 567	}
 568
 569TLV_PUT_DEFINE_INT(64)
 570
 571static int tlv_put_string(struct send_ctx *sctx, u16 attr,
 572			  const char *str, int len)
 573{
 574	if (len == -1)
 575		len = strlen(str);
 576	return tlv_put(sctx, attr, str, len);
 577}
 578
 579static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
 580			const u8 *uuid)
 581{
 582	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
 583}
 584
 585static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
 586				  struct extent_buffer *eb,
 587				  struct btrfs_timespec *ts)
 588{
 589	struct btrfs_timespec bts;
 590	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
 591	return tlv_put(sctx, attr, &bts, sizeof(bts));
 592}
 593
 594
 595#define TLV_PUT(sctx, attrtype, attrlen, data) \
 596	do { \
 597		ret = tlv_put(sctx, attrtype, attrlen, data); \
 598		if (ret < 0) \
 599			goto tlv_put_failure; \
 600	} while (0)
 601
 602#define TLV_PUT_INT(sctx, attrtype, bits, value) \
 603	do { \
 604		ret = tlv_put_u##bits(sctx, attrtype, value); \
 605		if (ret < 0) \
 606			goto tlv_put_failure; \
 607	} while (0)
 608
 609#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
 610#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
 611#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
 612#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
 613#define TLV_PUT_STRING(sctx, attrtype, str, len) \
 614	do { \
 615		ret = tlv_put_string(sctx, attrtype, str, len); \
 616		if (ret < 0) \
 617			goto tlv_put_failure; \
 618	} while (0)
 619#define TLV_PUT_PATH(sctx, attrtype, p) \
 620	do { \
 621		ret = tlv_put_string(sctx, attrtype, p->start, \
 622			p->end - p->start); \
 623		if (ret < 0) \
 624			goto tlv_put_failure; \
 625	} while(0)
 626#define TLV_PUT_UUID(sctx, attrtype, uuid) \
 627	do { \
 628		ret = tlv_put_uuid(sctx, attrtype, uuid); \
 629		if (ret < 0) \
 630			goto tlv_put_failure; \
 631	} while (0)
 632#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
 633	do { \
 634		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
 635		if (ret < 0) \
 636			goto tlv_put_failure; \
 637	} while (0)
 638
 639static int send_header(struct send_ctx *sctx)
 640{
 641	struct btrfs_stream_header hdr;
 642
 643	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
 644	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
 645
 646	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
 647					&sctx->send_off);
 648}
 649
 650/*
 651 * For each command/item we want to send to userspace, we call this function.
 652 */
 653static int begin_cmd(struct send_ctx *sctx, int cmd)
 654{
 655	struct btrfs_cmd_header *hdr;
 656
 657	if (WARN_ON(!sctx->send_buf))
 658		return -EINVAL;
 659
 660	BUG_ON(sctx->send_size);
 661
 662	sctx->send_size += sizeof(*hdr);
 663	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 664	hdr->cmd = cpu_to_le16(cmd);
 665
 666	return 0;
 667}
 668
 669static int send_cmd(struct send_ctx *sctx)
 670{
 671	int ret;
 672	struct btrfs_cmd_header *hdr;
 673	u32 crc;
 674
 675	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 676	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
 677	hdr->crc = 0;
 678
 679	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
 680	hdr->crc = cpu_to_le32(crc);
 681
 682	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
 683					&sctx->send_off);
 684
 685	sctx->total_send_size += sctx->send_size;
 686	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
 687	sctx->send_size = 0;
 688
 689	return ret;
 690}
 691
 692/*
 693 * Sends a move instruction to user space
 694 */
 695static int send_rename(struct send_ctx *sctx,
 696		     struct fs_path *from, struct fs_path *to)
 697{
 
 698	int ret;
 699
 700verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
 701
 702	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
 703	if (ret < 0)
 704		goto out;
 705
 706	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
 707	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
 708
 709	ret = send_cmd(sctx);
 710
 711tlv_put_failure:
 712out:
 713	return ret;
 714}
 715
 716/*
 717 * Sends a link instruction to user space
 718 */
 719static int send_link(struct send_ctx *sctx,
 720		     struct fs_path *path, struct fs_path *lnk)
 721{
 
 722	int ret;
 723
 724verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
 725
 726	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
 727	if (ret < 0)
 728		goto out;
 729
 730	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 731	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
 732
 733	ret = send_cmd(sctx);
 734
 735tlv_put_failure:
 736out:
 737	return ret;
 738}
 739
 740/*
 741 * Sends an unlink instruction to user space
 742 */
 743static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
 744{
 
 745	int ret;
 746
 747verbose_printk("btrfs: send_unlink %s\n", path->start);
 748
 749	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
 750	if (ret < 0)
 751		goto out;
 752
 753	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 754
 755	ret = send_cmd(sctx);
 756
 757tlv_put_failure:
 758out:
 759	return ret;
 760}
 761
 762/*
 763 * Sends a rmdir instruction to user space
 764 */
 765static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
 766{
 
 767	int ret;
 768
 769verbose_printk("btrfs: send_rmdir %s\n", path->start);
 770
 771	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
 772	if (ret < 0)
 773		goto out;
 774
 775	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 776
 777	ret = send_cmd(sctx);
 778
 779tlv_put_failure:
 780out:
 781	return ret;
 782}
 783
 784/*
 785 * Helper function to retrieve some fields from an inode item.
 786 */
 787static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
 788			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
 789			  u64 *gid, u64 *rdev)
 790{
 791	int ret;
 792	struct btrfs_inode_item *ii;
 793	struct btrfs_key key;
 794
 795	key.objectid = ino;
 796	key.type = BTRFS_INODE_ITEM_KEY;
 797	key.offset = 0;
 798	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 799	if (ret) {
 800		if (ret > 0)
 801			ret = -ENOENT;
 802		return ret;
 803	}
 804
 805	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
 806			struct btrfs_inode_item);
 807	if (size)
 808		*size = btrfs_inode_size(path->nodes[0], ii);
 809	if (gen)
 810		*gen = btrfs_inode_generation(path->nodes[0], ii);
 811	if (mode)
 812		*mode = btrfs_inode_mode(path->nodes[0], ii);
 813	if (uid)
 814		*uid = btrfs_inode_uid(path->nodes[0], ii);
 815	if (gid)
 816		*gid = btrfs_inode_gid(path->nodes[0], ii);
 817	if (rdev)
 818		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
 819
 820	return ret;
 821}
 822
 823static int get_inode_info(struct btrfs_root *root,
 824			  u64 ino, u64 *size, u64 *gen,
 825			  u64 *mode, u64 *uid, u64 *gid,
 826			  u64 *rdev)
 827{
 828	struct btrfs_path *path;
 829	int ret;
 830
 831	path = alloc_path_for_send();
 832	if (!path)
 833		return -ENOMEM;
 834	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
 835			       rdev);
 836	btrfs_free_path(path);
 837	return ret;
 838}
 839
 840typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
 841				   struct fs_path *p,
 842				   void *ctx);
 843
 844/*
 845 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 846 * btrfs_inode_extref.
 847 * The iterate callback may return a non zero value to stop iteration. This can
 848 * be a negative value for error codes or 1 to simply stop it.
 849 *
 850 * path must point to the INODE_REF or INODE_EXTREF when called.
 851 */
 852static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
 853			     struct btrfs_key *found_key, int resolve,
 854			     iterate_inode_ref_t iterate, void *ctx)
 855{
 856	struct extent_buffer *eb = path->nodes[0];
 857	struct btrfs_item *item;
 858	struct btrfs_inode_ref *iref;
 859	struct btrfs_inode_extref *extref;
 860	struct btrfs_path *tmp_path;
 861	struct fs_path *p;
 862	u32 cur = 0;
 863	u32 total;
 864	int slot = path->slots[0];
 865	u32 name_len;
 866	char *start;
 867	int ret = 0;
 868	int num = 0;
 869	int index;
 870	u64 dir;
 871	unsigned long name_off;
 872	unsigned long elem_size;
 873	unsigned long ptr;
 874
 875	p = fs_path_alloc_reversed();
 876	if (!p)
 877		return -ENOMEM;
 878
 879	tmp_path = alloc_path_for_send();
 880	if (!tmp_path) {
 881		fs_path_free(p);
 882		return -ENOMEM;
 883	}
 884
 885
 886	if (found_key->type == BTRFS_INODE_REF_KEY) {
 887		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
 888						    struct btrfs_inode_ref);
 889		item = btrfs_item_nr(slot);
 890		total = btrfs_item_size(eb, item);
 891		elem_size = sizeof(*iref);
 892	} else {
 893		ptr = btrfs_item_ptr_offset(eb, slot);
 894		total = btrfs_item_size_nr(eb, slot);
 895		elem_size = sizeof(*extref);
 896	}
 897
 898	while (cur < total) {
 899		fs_path_reset(p);
 900
 901		if (found_key->type == BTRFS_INODE_REF_KEY) {
 902			iref = (struct btrfs_inode_ref *)(ptr + cur);
 903			name_len = btrfs_inode_ref_name_len(eb, iref);
 904			name_off = (unsigned long)(iref + 1);
 905			index = btrfs_inode_ref_index(eb, iref);
 906			dir = found_key->offset;
 907		} else {
 908			extref = (struct btrfs_inode_extref *)(ptr + cur);
 909			name_len = btrfs_inode_extref_name_len(eb, extref);
 910			name_off = (unsigned long)&extref->name;
 911			index = btrfs_inode_extref_index(eb, extref);
 912			dir = btrfs_inode_extref_parent(eb, extref);
 913		}
 914
 915		if (resolve) {
 916			start = btrfs_ref_to_path(root, tmp_path, name_len,
 917						  name_off, eb, dir,
 918						  p->buf, p->buf_len);
 919			if (IS_ERR(start)) {
 920				ret = PTR_ERR(start);
 921				goto out;
 922			}
 923			if (start < p->buf) {
 924				/* overflow , try again with larger buffer */
 925				ret = fs_path_ensure_buf(p,
 926						p->buf_len + p->buf - start);
 927				if (ret < 0)
 928					goto out;
 929				start = btrfs_ref_to_path(root, tmp_path,
 930							  name_len, name_off,
 931							  eb, dir,
 932							  p->buf, p->buf_len);
 933				if (IS_ERR(start)) {
 934					ret = PTR_ERR(start);
 935					goto out;
 936				}
 937				BUG_ON(start < p->buf);
 938			}
 939			p->start = start;
 940		} else {
 941			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
 942							     name_len);
 943			if (ret < 0)
 944				goto out;
 945		}
 946
 947		cur += elem_size + name_len;
 948		ret = iterate(num, dir, index, p, ctx);
 949		if (ret)
 950			goto out;
 951		num++;
 952	}
 953
 954out:
 955	btrfs_free_path(tmp_path);
 956	fs_path_free(p);
 957	return ret;
 958}
 959
 960typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
 961				  const char *name, int name_len,
 962				  const char *data, int data_len,
 963				  u8 type, void *ctx);
 964
 965/*
 966 * Helper function to iterate the entries in ONE btrfs_dir_item.
 967 * The iterate callback may return a non zero value to stop iteration. This can
 968 * be a negative value for error codes or 1 to simply stop it.
 969 *
 970 * path must point to the dir item when called.
 971 */
 972static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
 973			    struct btrfs_key *found_key,
 974			    iterate_dir_item_t iterate, void *ctx)
 975{
 976	int ret = 0;
 977	struct extent_buffer *eb;
 978	struct btrfs_item *item;
 979	struct btrfs_dir_item *di;
 980	struct btrfs_key di_key;
 981	char *buf = NULL;
 982	int buf_len;
 983	u32 name_len;
 984	u32 data_len;
 985	u32 cur;
 986	u32 len;
 987	u32 total;
 988	int slot;
 989	int num;
 990	u8 type;
 991
 992	/*
 993	 * Start with a small buffer (1 page). If later we end up needing more
 994	 * space, which can happen for xattrs on a fs with a leaf size greater
 995	 * then the page size, attempt to increase the buffer. Typically xattr
 996	 * values are small.
 997	 */
 998	buf_len = PATH_MAX;
 999	buf = kmalloc(buf_len, GFP_KERNEL);
1000	if (!buf) {
1001		ret = -ENOMEM;
1002		goto out;
1003	}
1004
1005	eb = path->nodes[0];
1006	slot = path->slots[0];
1007	item = btrfs_item_nr(slot);
1008	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1009	cur = 0;
1010	len = 0;
1011	total = btrfs_item_size(eb, item);
1012
1013	num = 0;
1014	while (cur < total) {
1015		name_len = btrfs_dir_name_len(eb, di);
1016		data_len = btrfs_dir_data_len(eb, di);
1017		type = btrfs_dir_type(eb, di);
1018		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1019
1020		if (type == BTRFS_FT_XATTR) {
1021			if (name_len > XATTR_NAME_MAX) {
1022				ret = -ENAMETOOLONG;
1023				goto out;
1024			}
1025			if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
 
1026				ret = -E2BIG;
1027				goto out;
1028			}
1029		} else {
1030			/*
1031			 * Path too long
1032			 */
1033			if (name_len + data_len > PATH_MAX) {
1034				ret = -ENAMETOOLONG;
1035				goto out;
1036			}
1037		}
1038
1039		if (name_len + data_len > buf_len) {
1040			buf_len = name_len + data_len;
1041			if (is_vmalloc_addr(buf)) {
1042				vfree(buf);
1043				buf = NULL;
1044			} else {
1045				char *tmp = krealloc(buf, buf_len,
1046						GFP_KERNEL | __GFP_NOWARN);
1047
1048				if (!tmp)
1049					kfree(buf);
1050				buf = tmp;
1051			}
1052			if (!buf) {
1053				buf = vmalloc(buf_len);
1054				if (!buf) {
1055					ret = -ENOMEM;
1056					goto out;
1057				}
1058			}
1059		}
1060
1061		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1062				name_len + data_len);
1063
1064		len = sizeof(*di) + name_len + data_len;
1065		di = (struct btrfs_dir_item *)((char *)di + len);
1066		cur += len;
1067
1068		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1069				data_len, type, ctx);
1070		if (ret < 0)
1071			goto out;
1072		if (ret) {
1073			ret = 0;
1074			goto out;
1075		}
1076
1077		num++;
1078	}
1079
1080out:
1081	kvfree(buf);
1082	return ret;
1083}
1084
1085static int __copy_first_ref(int num, u64 dir, int index,
1086			    struct fs_path *p, void *ctx)
1087{
1088	int ret;
1089	struct fs_path *pt = ctx;
1090
1091	ret = fs_path_copy(pt, p);
1092	if (ret < 0)
1093		return ret;
1094
1095	/* we want the first only */
1096	return 1;
1097}
1098
1099/*
1100 * Retrieve the first path of an inode. If an inode has more then one
1101 * ref/hardlink, this is ignored.
1102 */
1103static int get_inode_path(struct btrfs_root *root,
1104			  u64 ino, struct fs_path *path)
1105{
1106	int ret;
1107	struct btrfs_key key, found_key;
1108	struct btrfs_path *p;
1109
1110	p = alloc_path_for_send();
1111	if (!p)
1112		return -ENOMEM;
1113
1114	fs_path_reset(path);
1115
1116	key.objectid = ino;
1117	key.type = BTRFS_INODE_REF_KEY;
1118	key.offset = 0;
1119
1120	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1121	if (ret < 0)
1122		goto out;
1123	if (ret) {
1124		ret = 1;
1125		goto out;
1126	}
1127	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1128	if (found_key.objectid != ino ||
1129	    (found_key.type != BTRFS_INODE_REF_KEY &&
1130	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1131		ret = -ENOENT;
1132		goto out;
1133	}
1134
1135	ret = iterate_inode_ref(root, p, &found_key, 1,
1136				__copy_first_ref, path);
1137	if (ret < 0)
1138		goto out;
1139	ret = 0;
1140
1141out:
1142	btrfs_free_path(p);
1143	return ret;
1144}
1145
1146struct backref_ctx {
1147	struct send_ctx *sctx;
1148
1149	struct btrfs_path *path;
1150	/* number of total found references */
1151	u64 found;
1152
1153	/*
1154	 * used for clones found in send_root. clones found behind cur_objectid
1155	 * and cur_offset are not considered as allowed clones.
1156	 */
1157	u64 cur_objectid;
1158	u64 cur_offset;
1159
1160	/* may be truncated in case it's the last extent in a file */
1161	u64 extent_len;
1162
1163	/* data offset in the file extent item */
1164	u64 data_offset;
1165
1166	/* Just to check for bugs in backref resolving */
1167	int found_itself;
1168};
1169
1170static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1171{
1172	u64 root = (u64)(uintptr_t)key;
1173	struct clone_root *cr = (struct clone_root *)elt;
1174
1175	if (root < cr->root->objectid)
1176		return -1;
1177	if (root > cr->root->objectid)
1178		return 1;
1179	return 0;
1180}
1181
1182static int __clone_root_cmp_sort(const void *e1, const void *e2)
1183{
1184	struct clone_root *cr1 = (struct clone_root *)e1;
1185	struct clone_root *cr2 = (struct clone_root *)e2;
1186
1187	if (cr1->root->objectid < cr2->root->objectid)
1188		return -1;
1189	if (cr1->root->objectid > cr2->root->objectid)
1190		return 1;
1191	return 0;
1192}
1193
1194/*
1195 * Called for every backref that is found for the current extent.
1196 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1197 */
1198static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1199{
1200	struct backref_ctx *bctx = ctx_;
1201	struct clone_root *found;
1202	int ret;
1203	u64 i_size;
1204
1205	/* First check if the root is in the list of accepted clone sources */
1206	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1207			bctx->sctx->clone_roots_cnt,
1208			sizeof(struct clone_root),
1209			__clone_root_cmp_bsearch);
1210	if (!found)
1211		return 0;
1212
1213	if (found->root == bctx->sctx->send_root &&
1214	    ino == bctx->cur_objectid &&
1215	    offset == bctx->cur_offset) {
1216		bctx->found_itself = 1;
1217	}
1218
1219	/*
1220	 * There are inodes that have extents that lie behind its i_size. Don't
1221	 * accept clones from these extents.
1222	 */
1223	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1224			       NULL, NULL, NULL);
1225	btrfs_release_path(bctx->path);
1226	if (ret < 0)
1227		return ret;
1228
1229	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1230		return 0;
1231
1232	/*
1233	 * Make sure we don't consider clones from send_root that are
1234	 * behind the current inode/offset.
1235	 */
1236	if (found->root == bctx->sctx->send_root) {
1237		/*
1238		 * TODO for the moment we don't accept clones from the inode
1239		 * that is currently send. We may change this when
1240		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1241		 * file.
1242		 */
1243		if (ino >= bctx->cur_objectid)
1244			return 0;
1245#if 0
1246		if (ino > bctx->cur_objectid)
1247			return 0;
1248		if (offset + bctx->extent_len > bctx->cur_offset)
1249			return 0;
1250#endif
1251	}
1252
1253	bctx->found++;
1254	found->found_refs++;
1255	if (ino < found->ino) {
1256		found->ino = ino;
1257		found->offset = offset;
1258	} else if (found->ino == ino) {
1259		/*
1260		 * same extent found more then once in the same file.
1261		 */
1262		if (found->offset > offset + bctx->extent_len)
1263			found->offset = offset;
1264	}
1265
1266	return 0;
1267}
1268
1269/*
1270 * Given an inode, offset and extent item, it finds a good clone for a clone
1271 * instruction. Returns -ENOENT when none could be found. The function makes
1272 * sure that the returned clone is usable at the point where sending is at the
1273 * moment. This means, that no clones are accepted which lie behind the current
1274 * inode+offset.
1275 *
1276 * path must point to the extent item when called.
1277 */
1278static int find_extent_clone(struct send_ctx *sctx,
1279			     struct btrfs_path *path,
1280			     u64 ino, u64 data_offset,
1281			     u64 ino_size,
1282			     struct clone_root **found)
1283{
 
1284	int ret;
1285	int extent_type;
1286	u64 logical;
1287	u64 disk_byte;
1288	u64 num_bytes;
1289	u64 extent_item_pos;
1290	u64 flags = 0;
1291	struct btrfs_file_extent_item *fi;
1292	struct extent_buffer *eb = path->nodes[0];
1293	struct backref_ctx *backref_ctx = NULL;
1294	struct clone_root *cur_clone_root;
1295	struct btrfs_key found_key;
1296	struct btrfs_path *tmp_path;
1297	int compressed;
1298	u32 i;
1299
1300	tmp_path = alloc_path_for_send();
1301	if (!tmp_path)
1302		return -ENOMEM;
1303
1304	/* We only use this path under the commit sem */
1305	tmp_path->need_commit_sem = 0;
1306
1307	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1308	if (!backref_ctx) {
1309		ret = -ENOMEM;
1310		goto out;
1311	}
1312
1313	backref_ctx->path = tmp_path;
1314
1315	if (data_offset >= ino_size) {
1316		/*
1317		 * There may be extents that lie behind the file's size.
1318		 * I at least had this in combination with snapshotting while
1319		 * writing large files.
1320		 */
1321		ret = 0;
1322		goto out;
1323	}
1324
1325	fi = btrfs_item_ptr(eb, path->slots[0],
1326			struct btrfs_file_extent_item);
1327	extent_type = btrfs_file_extent_type(eb, fi);
1328	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1329		ret = -ENOENT;
1330		goto out;
1331	}
1332	compressed = btrfs_file_extent_compression(eb, fi);
1333
1334	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1335	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1336	if (disk_byte == 0) {
1337		ret = -ENOENT;
1338		goto out;
1339	}
1340	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1341
1342	down_read(&sctx->send_root->fs_info->commit_root_sem);
1343	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1344				  &found_key, &flags);
1345	up_read(&sctx->send_root->fs_info->commit_root_sem);
1346	btrfs_release_path(tmp_path);
1347
1348	if (ret < 0)
1349		goto out;
1350	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1351		ret = -EIO;
1352		goto out;
1353	}
1354
1355	/*
1356	 * Setup the clone roots.
1357	 */
1358	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1359		cur_clone_root = sctx->clone_roots + i;
1360		cur_clone_root->ino = (u64)-1;
1361		cur_clone_root->offset = 0;
1362		cur_clone_root->found_refs = 0;
1363	}
1364
1365	backref_ctx->sctx = sctx;
1366	backref_ctx->found = 0;
1367	backref_ctx->cur_objectid = ino;
1368	backref_ctx->cur_offset = data_offset;
1369	backref_ctx->found_itself = 0;
1370	backref_ctx->extent_len = num_bytes;
1371	/*
1372	 * For non-compressed extents iterate_extent_inodes() gives us extent
1373	 * offsets that already take into account the data offset, but not for
1374	 * compressed extents, since the offset is logical and not relative to
1375	 * the physical extent locations. We must take this into account to
1376	 * avoid sending clone offsets that go beyond the source file's size,
1377	 * which would result in the clone ioctl failing with -EINVAL on the
1378	 * receiving end.
1379	 */
1380	if (compressed == BTRFS_COMPRESS_NONE)
1381		backref_ctx->data_offset = 0;
1382	else
1383		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1384
1385	/*
1386	 * The last extent of a file may be too large due to page alignment.
1387	 * We need to adjust extent_len in this case so that the checks in
1388	 * __iterate_backrefs work.
1389	 */
1390	if (data_offset + num_bytes >= ino_size)
1391		backref_ctx->extent_len = ino_size - data_offset;
1392
1393	/*
1394	 * Now collect all backrefs.
1395	 */
1396	if (compressed == BTRFS_COMPRESS_NONE)
1397		extent_item_pos = logical - found_key.objectid;
1398	else
1399		extent_item_pos = 0;
1400	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1401					found_key.objectid, extent_item_pos, 1,
1402					__iterate_backrefs, backref_ctx);
1403
1404	if (ret < 0)
1405		goto out;
1406
1407	if (!backref_ctx->found_itself) {
1408		/* found a bug in backref code? */
1409		ret = -EIO;
1410		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1411				"send_root. inode=%llu, offset=%llu, "
1412				"disk_byte=%llu found extent=%llu",
1413				ino, data_offset, disk_byte, found_key.objectid);
1414		goto out;
1415	}
1416
1417verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1418		"ino=%llu, "
1419		"num_bytes=%llu, logical=%llu\n",
1420		data_offset, ino, num_bytes, logical);
1421
1422	if (!backref_ctx->found)
1423		verbose_printk("btrfs:    no clones found\n");
1424
1425	cur_clone_root = NULL;
1426	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1427		if (sctx->clone_roots[i].found_refs) {
1428			if (!cur_clone_root)
1429				cur_clone_root = sctx->clone_roots + i;
1430			else if (sctx->clone_roots[i].root == sctx->send_root)
1431				/* prefer clones from send_root over others */
1432				cur_clone_root = sctx->clone_roots + i;
1433		}
1434
1435	}
1436
1437	if (cur_clone_root) {
1438		*found = cur_clone_root;
1439		ret = 0;
1440	} else {
1441		ret = -ENOENT;
1442	}
1443
1444out:
1445	btrfs_free_path(tmp_path);
1446	kfree(backref_ctx);
1447	return ret;
1448}
1449
1450static int read_symlink(struct btrfs_root *root,
1451			u64 ino,
1452			struct fs_path *dest)
1453{
1454	int ret;
1455	struct btrfs_path *path;
1456	struct btrfs_key key;
1457	struct btrfs_file_extent_item *ei;
1458	u8 type;
1459	u8 compression;
1460	unsigned long off;
1461	int len;
1462
1463	path = alloc_path_for_send();
1464	if (!path)
1465		return -ENOMEM;
1466
1467	key.objectid = ino;
1468	key.type = BTRFS_EXTENT_DATA_KEY;
1469	key.offset = 0;
1470	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1471	if (ret < 0)
1472		goto out;
1473	if (ret) {
1474		/*
1475		 * An empty symlink inode. Can happen in rare error paths when
1476		 * creating a symlink (transaction committed before the inode
1477		 * eviction handler removed the symlink inode items and a crash
1478		 * happened in between or the subvol was snapshoted in between).
1479		 * Print an informative message to dmesg/syslog so that the user
1480		 * can delete the symlink.
1481		 */
1482		btrfs_err(root->fs_info,
1483			  "Found empty symlink inode %llu at root %llu",
1484			  ino, root->root_key.objectid);
1485		ret = -EIO;
1486		goto out;
1487	}
1488
1489	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1490			struct btrfs_file_extent_item);
1491	type = btrfs_file_extent_type(path->nodes[0], ei);
1492	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1493	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1494	BUG_ON(compression);
1495
1496	off = btrfs_file_extent_inline_start(ei);
1497	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1498
1499	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1500
1501out:
1502	btrfs_free_path(path);
1503	return ret;
1504}
1505
1506/*
1507 * Helper function to generate a file name that is unique in the root of
1508 * send_root and parent_root. This is used to generate names for orphan inodes.
1509 */
1510static int gen_unique_name(struct send_ctx *sctx,
1511			   u64 ino, u64 gen,
1512			   struct fs_path *dest)
1513{
1514	int ret = 0;
1515	struct btrfs_path *path;
1516	struct btrfs_dir_item *di;
1517	char tmp[64];
1518	int len;
1519	u64 idx = 0;
1520
1521	path = alloc_path_for_send();
1522	if (!path)
1523		return -ENOMEM;
1524
1525	while (1) {
1526		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1527				ino, gen, idx);
1528		ASSERT(len < sizeof(tmp));
1529
1530		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1531				path, BTRFS_FIRST_FREE_OBJECTID,
1532				tmp, strlen(tmp), 0);
1533		btrfs_release_path(path);
1534		if (IS_ERR(di)) {
1535			ret = PTR_ERR(di);
1536			goto out;
1537		}
1538		if (di) {
1539			/* not unique, try again */
1540			idx++;
1541			continue;
1542		}
1543
1544		if (!sctx->parent_root) {
1545			/* unique */
1546			ret = 0;
1547			break;
1548		}
1549
1550		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1551				path, BTRFS_FIRST_FREE_OBJECTID,
1552				tmp, strlen(tmp), 0);
1553		btrfs_release_path(path);
1554		if (IS_ERR(di)) {
1555			ret = PTR_ERR(di);
1556			goto out;
1557		}
1558		if (di) {
1559			/* not unique, try again */
1560			idx++;
1561			continue;
1562		}
1563		/* unique */
1564		break;
1565	}
1566
1567	ret = fs_path_add(dest, tmp, strlen(tmp));
1568
1569out:
1570	btrfs_free_path(path);
1571	return ret;
1572}
1573
1574enum inode_state {
1575	inode_state_no_change,
1576	inode_state_will_create,
1577	inode_state_did_create,
1578	inode_state_will_delete,
1579	inode_state_did_delete,
1580};
1581
1582static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1583{
1584	int ret;
1585	int left_ret;
1586	int right_ret;
1587	u64 left_gen;
1588	u64 right_gen;
1589
1590	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1591			NULL, NULL);
1592	if (ret < 0 && ret != -ENOENT)
1593		goto out;
1594	left_ret = ret;
1595
1596	if (!sctx->parent_root) {
1597		right_ret = -ENOENT;
1598	} else {
1599		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1600				NULL, NULL, NULL, NULL);
1601		if (ret < 0 && ret != -ENOENT)
1602			goto out;
1603		right_ret = ret;
1604	}
1605
1606	if (!left_ret && !right_ret) {
1607		if (left_gen == gen && right_gen == gen) {
1608			ret = inode_state_no_change;
1609		} else if (left_gen == gen) {
1610			if (ino < sctx->send_progress)
1611				ret = inode_state_did_create;
1612			else
1613				ret = inode_state_will_create;
1614		} else if (right_gen == gen) {
1615			if (ino < sctx->send_progress)
1616				ret = inode_state_did_delete;
1617			else
1618				ret = inode_state_will_delete;
1619		} else  {
1620			ret = -ENOENT;
1621		}
1622	} else if (!left_ret) {
1623		if (left_gen == gen) {
1624			if (ino < sctx->send_progress)
1625				ret = inode_state_did_create;
1626			else
1627				ret = inode_state_will_create;
1628		} else {
1629			ret = -ENOENT;
1630		}
1631	} else if (!right_ret) {
1632		if (right_gen == gen) {
1633			if (ino < sctx->send_progress)
1634				ret = inode_state_did_delete;
1635			else
1636				ret = inode_state_will_delete;
1637		} else {
1638			ret = -ENOENT;
1639		}
1640	} else {
1641		ret = -ENOENT;
1642	}
1643
1644out:
1645	return ret;
1646}
1647
1648static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1649{
1650	int ret;
1651
 
 
 
1652	ret = get_cur_inode_state(sctx, ino, gen);
1653	if (ret < 0)
1654		goto out;
1655
1656	if (ret == inode_state_no_change ||
1657	    ret == inode_state_did_create ||
1658	    ret == inode_state_will_delete)
1659		ret = 1;
1660	else
1661		ret = 0;
1662
1663out:
1664	return ret;
1665}
1666
1667/*
1668 * Helper function to lookup a dir item in a dir.
1669 */
1670static int lookup_dir_item_inode(struct btrfs_root *root,
1671				 u64 dir, const char *name, int name_len,
1672				 u64 *found_inode,
1673				 u8 *found_type)
1674{
1675	int ret = 0;
1676	struct btrfs_dir_item *di;
1677	struct btrfs_key key;
1678	struct btrfs_path *path;
1679
1680	path = alloc_path_for_send();
1681	if (!path)
1682		return -ENOMEM;
1683
1684	di = btrfs_lookup_dir_item(NULL, root, path,
1685			dir, name, name_len, 0);
1686	if (!di) {
1687		ret = -ENOENT;
1688		goto out;
1689	}
1690	if (IS_ERR(di)) {
1691		ret = PTR_ERR(di);
1692		goto out;
1693	}
1694	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1695	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1696		ret = -ENOENT;
1697		goto out;
1698	}
1699	*found_inode = key.objectid;
1700	*found_type = btrfs_dir_type(path->nodes[0], di);
1701
1702out:
1703	btrfs_free_path(path);
1704	return ret;
1705}
1706
1707/*
1708 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1709 * generation of the parent dir and the name of the dir entry.
1710 */
1711static int get_first_ref(struct btrfs_root *root, u64 ino,
1712			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1713{
1714	int ret;
1715	struct btrfs_key key;
1716	struct btrfs_key found_key;
1717	struct btrfs_path *path;
1718	int len;
1719	u64 parent_dir;
1720
1721	path = alloc_path_for_send();
1722	if (!path)
1723		return -ENOMEM;
1724
1725	key.objectid = ino;
1726	key.type = BTRFS_INODE_REF_KEY;
1727	key.offset = 0;
1728
1729	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1730	if (ret < 0)
1731		goto out;
1732	if (!ret)
1733		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1734				path->slots[0]);
1735	if (ret || found_key.objectid != ino ||
1736	    (found_key.type != BTRFS_INODE_REF_KEY &&
1737	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1738		ret = -ENOENT;
1739		goto out;
1740	}
1741
1742	if (found_key.type == BTRFS_INODE_REF_KEY) {
1743		struct btrfs_inode_ref *iref;
1744		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1745				      struct btrfs_inode_ref);
1746		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1747		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1748						     (unsigned long)(iref + 1),
1749						     len);
1750		parent_dir = found_key.offset;
1751	} else {
1752		struct btrfs_inode_extref *extref;
1753		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1754					struct btrfs_inode_extref);
1755		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1756		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1757					(unsigned long)&extref->name, len);
1758		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1759	}
1760	if (ret < 0)
1761		goto out;
1762	btrfs_release_path(path);
1763
1764	if (dir_gen) {
1765		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1766				     NULL, NULL, NULL);
1767		if (ret < 0)
1768			goto out;
1769	}
1770
1771	*dir = parent_dir;
1772
1773out:
1774	btrfs_free_path(path);
1775	return ret;
1776}
1777
1778static int is_first_ref(struct btrfs_root *root,
1779			u64 ino, u64 dir,
1780			const char *name, int name_len)
1781{
1782	int ret;
1783	struct fs_path *tmp_name;
1784	u64 tmp_dir;
1785
1786	tmp_name = fs_path_alloc();
1787	if (!tmp_name)
1788		return -ENOMEM;
1789
1790	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1791	if (ret < 0)
1792		goto out;
1793
1794	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1795		ret = 0;
1796		goto out;
1797	}
1798
1799	ret = !memcmp(tmp_name->start, name, name_len);
1800
1801out:
1802	fs_path_free(tmp_name);
1803	return ret;
1804}
1805
1806/*
1807 * Used by process_recorded_refs to determine if a new ref would overwrite an
1808 * already existing ref. In case it detects an overwrite, it returns the
1809 * inode/gen in who_ino/who_gen.
1810 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1811 * to make sure later references to the overwritten inode are possible.
1812 * Orphanizing is however only required for the first ref of an inode.
1813 * process_recorded_refs does an additional is_first_ref check to see if
1814 * orphanizing is really required.
1815 */
1816static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1817			      const char *name, int name_len,
1818			      u64 *who_ino, u64 *who_gen)
1819{
1820	int ret = 0;
1821	u64 gen;
1822	u64 other_inode = 0;
1823	u8 other_type = 0;
1824
1825	if (!sctx->parent_root)
1826		goto out;
1827
1828	ret = is_inode_existent(sctx, dir, dir_gen);
1829	if (ret <= 0)
1830		goto out;
1831
1832	/*
1833	 * If we have a parent root we need to verify that the parent dir was
1834	 * not delted and then re-created, if it was then we have no overwrite
1835	 * and we can just unlink this entry.
1836	 */
1837	if (sctx->parent_root) {
1838		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1839				     NULL, NULL, NULL);
1840		if (ret < 0 && ret != -ENOENT)
1841			goto out;
1842		if (ret) {
1843			ret = 0;
1844			goto out;
1845		}
1846		if (gen != dir_gen)
1847			goto out;
1848	}
1849
1850	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1851			&other_inode, &other_type);
1852	if (ret < 0 && ret != -ENOENT)
1853		goto out;
1854	if (ret) {
1855		ret = 0;
1856		goto out;
1857	}
1858
1859	/*
1860	 * Check if the overwritten ref was already processed. If yes, the ref
1861	 * was already unlinked/moved, so we can safely assume that we will not
1862	 * overwrite anything at this point in time.
1863	 */
1864	if (other_inode > sctx->send_progress) {
 
1865		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1866				who_gen, NULL, NULL, NULL, NULL);
1867		if (ret < 0)
1868			goto out;
1869
1870		ret = 1;
1871		*who_ino = other_inode;
1872	} else {
1873		ret = 0;
1874	}
1875
1876out:
1877	return ret;
1878}
1879
1880/*
1881 * Checks if the ref was overwritten by an already processed inode. This is
1882 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1883 * thus the orphan name needs be used.
1884 * process_recorded_refs also uses it to avoid unlinking of refs that were
1885 * overwritten.
1886 */
1887static int did_overwrite_ref(struct send_ctx *sctx,
1888			    u64 dir, u64 dir_gen,
1889			    u64 ino, u64 ino_gen,
1890			    const char *name, int name_len)
1891{
1892	int ret = 0;
1893	u64 gen;
1894	u64 ow_inode;
1895	u8 other_type;
1896
1897	if (!sctx->parent_root)
1898		goto out;
1899
1900	ret = is_inode_existent(sctx, dir, dir_gen);
1901	if (ret <= 0)
1902		goto out;
1903
 
 
 
 
 
 
 
 
 
 
 
 
 
1904	/* check if the ref was overwritten by another ref */
1905	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1906			&ow_inode, &other_type);
1907	if (ret < 0 && ret != -ENOENT)
1908		goto out;
1909	if (ret) {
1910		/* was never and will never be overwritten */
1911		ret = 0;
1912		goto out;
1913	}
1914
1915	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1916			NULL, NULL);
1917	if (ret < 0)
1918		goto out;
1919
1920	if (ow_inode == ino && gen == ino_gen) {
1921		ret = 0;
1922		goto out;
1923	}
1924
1925	/*
1926	 * We know that it is or will be overwritten. Check this now.
1927	 * The current inode being processed might have been the one that caused
1928	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1929	 * the current inode being processed.
1930	 */
1931	if ((ow_inode < sctx->send_progress) ||
1932	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1933	     gen == sctx->cur_inode_gen))
1934		ret = 1;
1935	else
1936		ret = 0;
1937
1938out:
1939	return ret;
1940}
1941
1942/*
1943 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1944 * that got overwritten. This is used by process_recorded_refs to determine
1945 * if it has to use the path as returned by get_cur_path or the orphan name.
1946 */
1947static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1948{
1949	int ret = 0;
1950	struct fs_path *name = NULL;
1951	u64 dir;
1952	u64 dir_gen;
1953
1954	if (!sctx->parent_root)
1955		goto out;
1956
1957	name = fs_path_alloc();
1958	if (!name)
1959		return -ENOMEM;
1960
1961	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1962	if (ret < 0)
1963		goto out;
1964
1965	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1966			name->start, fs_path_len(name));
1967
1968out:
1969	fs_path_free(name);
1970	return ret;
1971}
1972
1973/*
1974 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1975 * so we need to do some special handling in case we have clashes. This function
1976 * takes care of this with the help of name_cache_entry::radix_list.
1977 * In case of error, nce is kfreed.
1978 */
1979static int name_cache_insert(struct send_ctx *sctx,
1980			     struct name_cache_entry *nce)
1981{
1982	int ret = 0;
1983	struct list_head *nce_head;
1984
1985	nce_head = radix_tree_lookup(&sctx->name_cache,
1986			(unsigned long)nce->ino);
1987	if (!nce_head) {
1988		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
1989		if (!nce_head) {
1990			kfree(nce);
1991			return -ENOMEM;
1992		}
1993		INIT_LIST_HEAD(nce_head);
1994
1995		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1996		if (ret < 0) {
1997			kfree(nce_head);
1998			kfree(nce);
1999			return ret;
2000		}
2001	}
2002	list_add_tail(&nce->radix_list, nce_head);
2003	list_add_tail(&nce->list, &sctx->name_cache_list);
2004	sctx->name_cache_size++;
2005
2006	return ret;
2007}
2008
2009static void name_cache_delete(struct send_ctx *sctx,
2010			      struct name_cache_entry *nce)
2011{
2012	struct list_head *nce_head;
2013
2014	nce_head = radix_tree_lookup(&sctx->name_cache,
2015			(unsigned long)nce->ino);
2016	if (!nce_head) {
2017		btrfs_err(sctx->send_root->fs_info,
2018	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2019			nce->ino, sctx->name_cache_size);
2020	}
2021
2022	list_del(&nce->radix_list);
2023	list_del(&nce->list);
2024	sctx->name_cache_size--;
2025
2026	/*
2027	 * We may not get to the final release of nce_head if the lookup fails
2028	 */
2029	if (nce_head && list_empty(nce_head)) {
2030		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2031		kfree(nce_head);
2032	}
2033}
2034
2035static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2036						    u64 ino, u64 gen)
2037{
2038	struct list_head *nce_head;
2039	struct name_cache_entry *cur;
2040
2041	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2042	if (!nce_head)
2043		return NULL;
2044
2045	list_for_each_entry(cur, nce_head, radix_list) {
2046		if (cur->ino == ino && cur->gen == gen)
2047			return cur;
2048	}
2049	return NULL;
2050}
2051
2052/*
2053 * Removes the entry from the list and adds it back to the end. This marks the
2054 * entry as recently used so that name_cache_clean_unused does not remove it.
2055 */
2056static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2057{
2058	list_del(&nce->list);
2059	list_add_tail(&nce->list, &sctx->name_cache_list);
2060}
2061
2062/*
2063 * Remove some entries from the beginning of name_cache_list.
2064 */
2065static void name_cache_clean_unused(struct send_ctx *sctx)
2066{
2067	struct name_cache_entry *nce;
2068
2069	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2070		return;
2071
2072	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2073		nce = list_entry(sctx->name_cache_list.next,
2074				struct name_cache_entry, list);
2075		name_cache_delete(sctx, nce);
2076		kfree(nce);
2077	}
2078}
2079
2080static void name_cache_free(struct send_ctx *sctx)
2081{
2082	struct name_cache_entry *nce;
2083
2084	while (!list_empty(&sctx->name_cache_list)) {
2085		nce = list_entry(sctx->name_cache_list.next,
2086				struct name_cache_entry, list);
2087		name_cache_delete(sctx, nce);
2088		kfree(nce);
2089	}
2090}
2091
2092/*
2093 * Used by get_cur_path for each ref up to the root.
2094 * Returns 0 if it succeeded.
2095 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2096 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2097 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2098 * Returns <0 in case of error.
2099 */
2100static int __get_cur_name_and_parent(struct send_ctx *sctx,
2101				     u64 ino, u64 gen,
2102				     u64 *parent_ino,
2103				     u64 *parent_gen,
2104				     struct fs_path *dest)
2105{
2106	int ret;
2107	int nce_ret;
2108	struct name_cache_entry *nce = NULL;
2109
2110	/*
2111	 * First check if we already did a call to this function with the same
2112	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2113	 * return the cached result.
2114	 */
2115	nce = name_cache_search(sctx, ino, gen);
2116	if (nce) {
2117		if (ino < sctx->send_progress && nce->need_later_update) {
2118			name_cache_delete(sctx, nce);
2119			kfree(nce);
2120			nce = NULL;
2121		} else {
2122			name_cache_used(sctx, nce);
2123			*parent_ino = nce->parent_ino;
2124			*parent_gen = nce->parent_gen;
2125			ret = fs_path_add(dest, nce->name, nce->name_len);
2126			if (ret < 0)
2127				goto out;
2128			ret = nce->ret;
2129			goto out;
2130		}
2131	}
2132
2133	/*
2134	 * If the inode is not existent yet, add the orphan name and return 1.
2135	 * This should only happen for the parent dir that we determine in
2136	 * __record_new_ref
2137	 */
2138	ret = is_inode_existent(sctx, ino, gen);
2139	if (ret < 0)
2140		goto out;
2141
2142	if (!ret) {
2143		ret = gen_unique_name(sctx, ino, gen, dest);
2144		if (ret < 0)
2145			goto out;
2146		ret = 1;
2147		goto out_cache;
2148	}
2149
2150	/*
2151	 * Depending on whether the inode was already processed or not, use
2152	 * send_root or parent_root for ref lookup.
2153	 */
2154	if (ino < sctx->send_progress)
2155		ret = get_first_ref(sctx->send_root, ino,
2156				    parent_ino, parent_gen, dest);
2157	else
2158		ret = get_first_ref(sctx->parent_root, ino,
2159				    parent_ino, parent_gen, dest);
2160	if (ret < 0)
2161		goto out;
2162
2163	/*
2164	 * Check if the ref was overwritten by an inode's ref that was processed
2165	 * earlier. If yes, treat as orphan and return 1.
2166	 */
2167	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2168			dest->start, dest->end - dest->start);
2169	if (ret < 0)
2170		goto out;
2171	if (ret) {
2172		fs_path_reset(dest);
2173		ret = gen_unique_name(sctx, ino, gen, dest);
2174		if (ret < 0)
2175			goto out;
2176		ret = 1;
2177	}
2178
2179out_cache:
2180	/*
2181	 * Store the result of the lookup in the name cache.
2182	 */
2183	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2184	if (!nce) {
2185		ret = -ENOMEM;
2186		goto out;
2187	}
2188
2189	nce->ino = ino;
2190	nce->gen = gen;
2191	nce->parent_ino = *parent_ino;
2192	nce->parent_gen = *parent_gen;
2193	nce->name_len = fs_path_len(dest);
2194	nce->ret = ret;
2195	strcpy(nce->name, dest->start);
2196
2197	if (ino < sctx->send_progress)
2198		nce->need_later_update = 0;
2199	else
2200		nce->need_later_update = 1;
2201
2202	nce_ret = name_cache_insert(sctx, nce);
2203	if (nce_ret < 0)
2204		ret = nce_ret;
2205	name_cache_clean_unused(sctx);
2206
2207out:
2208	return ret;
2209}
2210
2211/*
2212 * Magic happens here. This function returns the first ref to an inode as it
2213 * would look like while receiving the stream at this point in time.
2214 * We walk the path up to the root. For every inode in between, we check if it
2215 * was already processed/sent. If yes, we continue with the parent as found
2216 * in send_root. If not, we continue with the parent as found in parent_root.
2217 * If we encounter an inode that was deleted at this point in time, we use the
2218 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2219 * that were not created yet and overwritten inodes/refs.
2220 *
2221 * When do we have have orphan inodes:
2222 * 1. When an inode is freshly created and thus no valid refs are available yet
2223 * 2. When a directory lost all it's refs (deleted) but still has dir items
2224 *    inside which were not processed yet (pending for move/delete). If anyone
2225 *    tried to get the path to the dir items, it would get a path inside that
2226 *    orphan directory.
2227 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2228 *    of an unprocessed inode. If in that case the first ref would be
2229 *    overwritten, the overwritten inode gets "orphanized". Later when we
2230 *    process this overwritten inode, it is restored at a new place by moving
2231 *    the orphan inode.
2232 *
2233 * sctx->send_progress tells this function at which point in time receiving
2234 * would be.
2235 */
2236static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2237			struct fs_path *dest)
2238{
2239	int ret = 0;
2240	struct fs_path *name = NULL;
2241	u64 parent_inode = 0;
2242	u64 parent_gen = 0;
2243	int stop = 0;
2244
2245	name = fs_path_alloc();
2246	if (!name) {
2247		ret = -ENOMEM;
2248		goto out;
2249	}
2250
2251	dest->reversed = 1;
2252	fs_path_reset(dest);
2253
2254	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2255		struct waiting_dir_move *wdm;
2256
2257		fs_path_reset(name);
2258
2259		if (is_waiting_for_rm(sctx, ino)) {
2260			ret = gen_unique_name(sctx, ino, gen, name);
2261			if (ret < 0)
2262				goto out;
2263			ret = fs_path_add_path(dest, name);
2264			break;
2265		}
2266
2267		wdm = get_waiting_dir_move(sctx, ino);
2268		if (wdm && wdm->orphanized) {
2269			ret = gen_unique_name(sctx, ino, gen, name);
2270			stop = 1;
2271		} else if (wdm) {
2272			ret = get_first_ref(sctx->parent_root, ino,
2273					    &parent_inode, &parent_gen, name);
2274		} else {
2275			ret = __get_cur_name_and_parent(sctx, ino, gen,
2276							&parent_inode,
2277							&parent_gen, name);
2278			if (ret)
2279				stop = 1;
2280		}
2281
2282		if (ret < 0)
2283			goto out;
2284
2285		ret = fs_path_add_path(dest, name);
2286		if (ret < 0)
2287			goto out;
2288
2289		ino = parent_inode;
2290		gen = parent_gen;
2291	}
2292
2293out:
2294	fs_path_free(name);
2295	if (!ret)
2296		fs_path_unreverse(dest);
2297	return ret;
2298}
2299
2300/*
2301 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2302 */
2303static int send_subvol_begin(struct send_ctx *sctx)
2304{
2305	int ret;
2306	struct btrfs_root *send_root = sctx->send_root;
2307	struct btrfs_root *parent_root = sctx->parent_root;
2308	struct btrfs_path *path;
2309	struct btrfs_key key;
2310	struct btrfs_root_ref *ref;
2311	struct extent_buffer *leaf;
2312	char *name = NULL;
2313	int namelen;
2314
2315	path = btrfs_alloc_path();
2316	if (!path)
2317		return -ENOMEM;
2318
2319	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2320	if (!name) {
2321		btrfs_free_path(path);
2322		return -ENOMEM;
2323	}
2324
2325	key.objectid = send_root->objectid;
2326	key.type = BTRFS_ROOT_BACKREF_KEY;
2327	key.offset = 0;
2328
2329	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2330				&key, path, 1, 0);
2331	if (ret < 0)
2332		goto out;
2333	if (ret) {
2334		ret = -ENOENT;
2335		goto out;
2336	}
2337
2338	leaf = path->nodes[0];
2339	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2340	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2341	    key.objectid != send_root->objectid) {
2342		ret = -ENOENT;
2343		goto out;
2344	}
2345	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2346	namelen = btrfs_root_ref_name_len(leaf, ref);
2347	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2348	btrfs_release_path(path);
2349
2350	if (parent_root) {
2351		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2352		if (ret < 0)
2353			goto out;
2354	} else {
2355		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2356		if (ret < 0)
2357			goto out;
2358	}
2359
2360	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2361
2362	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2363		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2364			    sctx->send_root->root_item.received_uuid);
2365	else
2366		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2367			    sctx->send_root->root_item.uuid);
2368
2369	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2370		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2371	if (parent_root) {
2372		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2373			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2374				     parent_root->root_item.received_uuid);
2375		else
2376			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2377				     parent_root->root_item.uuid);
2378		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2379			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2380	}
2381
2382	ret = send_cmd(sctx);
2383
2384tlv_put_failure:
2385out:
2386	btrfs_free_path(path);
2387	kfree(name);
2388	return ret;
2389}
2390
2391static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2392{
 
2393	int ret = 0;
2394	struct fs_path *p;
2395
2396verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2397
2398	p = fs_path_alloc();
2399	if (!p)
2400		return -ENOMEM;
2401
2402	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2403	if (ret < 0)
2404		goto out;
2405
2406	ret = get_cur_path(sctx, ino, gen, p);
2407	if (ret < 0)
2408		goto out;
2409	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2410	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2411
2412	ret = send_cmd(sctx);
2413
2414tlv_put_failure:
2415out:
2416	fs_path_free(p);
2417	return ret;
2418}
2419
2420static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2421{
 
2422	int ret = 0;
2423	struct fs_path *p;
2424
2425verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2426
2427	p = fs_path_alloc();
2428	if (!p)
2429		return -ENOMEM;
2430
2431	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2432	if (ret < 0)
2433		goto out;
2434
2435	ret = get_cur_path(sctx, ino, gen, p);
2436	if (ret < 0)
2437		goto out;
2438	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2439	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2440
2441	ret = send_cmd(sctx);
2442
2443tlv_put_failure:
2444out:
2445	fs_path_free(p);
2446	return ret;
2447}
2448
2449static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2450{
 
2451	int ret = 0;
2452	struct fs_path *p;
2453
2454verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
 
2455
2456	p = fs_path_alloc();
2457	if (!p)
2458		return -ENOMEM;
2459
2460	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2461	if (ret < 0)
2462		goto out;
2463
2464	ret = get_cur_path(sctx, ino, gen, p);
2465	if (ret < 0)
2466		goto out;
2467	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2468	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2469	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2470
2471	ret = send_cmd(sctx);
2472
2473tlv_put_failure:
2474out:
2475	fs_path_free(p);
2476	return ret;
2477}
2478
2479static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2480{
 
2481	int ret = 0;
2482	struct fs_path *p = NULL;
2483	struct btrfs_inode_item *ii;
2484	struct btrfs_path *path = NULL;
2485	struct extent_buffer *eb;
2486	struct btrfs_key key;
2487	int slot;
2488
2489verbose_printk("btrfs: send_utimes %llu\n", ino);
2490
2491	p = fs_path_alloc();
2492	if (!p)
2493		return -ENOMEM;
2494
2495	path = alloc_path_for_send();
2496	if (!path) {
2497		ret = -ENOMEM;
2498		goto out;
2499	}
2500
2501	key.objectid = ino;
2502	key.type = BTRFS_INODE_ITEM_KEY;
2503	key.offset = 0;
2504	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
 
 
2505	if (ret < 0)
2506		goto out;
2507
2508	eb = path->nodes[0];
2509	slot = path->slots[0];
2510	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2511
2512	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2513	if (ret < 0)
2514		goto out;
2515
2516	ret = get_cur_path(sctx, ino, gen, p);
2517	if (ret < 0)
2518		goto out;
2519	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2520	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2521	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2522	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2523	/* TODO Add otime support when the otime patches get into upstream */
2524
2525	ret = send_cmd(sctx);
2526
2527tlv_put_failure:
2528out:
2529	fs_path_free(p);
2530	btrfs_free_path(path);
2531	return ret;
2532}
2533
2534/*
2535 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2536 * a valid path yet because we did not process the refs yet. So, the inode
2537 * is created as orphan.
2538 */
2539static int send_create_inode(struct send_ctx *sctx, u64 ino)
2540{
 
2541	int ret = 0;
2542	struct fs_path *p;
2543	int cmd;
2544	u64 gen;
2545	u64 mode;
2546	u64 rdev;
2547
2548verbose_printk("btrfs: send_create_inode %llu\n", ino);
2549
2550	p = fs_path_alloc();
2551	if (!p)
2552		return -ENOMEM;
2553
2554	if (ino != sctx->cur_ino) {
2555		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2556				     NULL, NULL, &rdev);
2557		if (ret < 0)
2558			goto out;
2559	} else {
2560		gen = sctx->cur_inode_gen;
2561		mode = sctx->cur_inode_mode;
2562		rdev = sctx->cur_inode_rdev;
2563	}
2564
2565	if (S_ISREG(mode)) {
2566		cmd = BTRFS_SEND_C_MKFILE;
2567	} else if (S_ISDIR(mode)) {
2568		cmd = BTRFS_SEND_C_MKDIR;
2569	} else if (S_ISLNK(mode)) {
2570		cmd = BTRFS_SEND_C_SYMLINK;
2571	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2572		cmd = BTRFS_SEND_C_MKNOD;
2573	} else if (S_ISFIFO(mode)) {
2574		cmd = BTRFS_SEND_C_MKFIFO;
2575	} else if (S_ISSOCK(mode)) {
2576		cmd = BTRFS_SEND_C_MKSOCK;
2577	} else {
2578		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2579				(int)(mode & S_IFMT));
2580		ret = -ENOTSUPP;
2581		goto out;
2582	}
2583
2584	ret = begin_cmd(sctx, cmd);
2585	if (ret < 0)
2586		goto out;
2587
2588	ret = gen_unique_name(sctx, ino, gen, p);
2589	if (ret < 0)
2590		goto out;
2591
2592	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2593	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2594
2595	if (S_ISLNK(mode)) {
2596		fs_path_reset(p);
2597		ret = read_symlink(sctx->send_root, ino, p);
2598		if (ret < 0)
2599			goto out;
2600		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2601	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2602		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2603		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2604		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2605	}
2606
2607	ret = send_cmd(sctx);
2608	if (ret < 0)
2609		goto out;
2610
2611
2612tlv_put_failure:
2613out:
2614	fs_path_free(p);
2615	return ret;
2616}
2617
2618/*
2619 * We need some special handling for inodes that get processed before the parent
2620 * directory got created. See process_recorded_refs for details.
2621 * This function does the check if we already created the dir out of order.
2622 */
2623static int did_create_dir(struct send_ctx *sctx, u64 dir)
2624{
2625	int ret = 0;
2626	struct btrfs_path *path = NULL;
2627	struct btrfs_key key;
2628	struct btrfs_key found_key;
2629	struct btrfs_key di_key;
2630	struct extent_buffer *eb;
2631	struct btrfs_dir_item *di;
2632	int slot;
2633
2634	path = alloc_path_for_send();
2635	if (!path) {
2636		ret = -ENOMEM;
2637		goto out;
2638	}
2639
2640	key.objectid = dir;
2641	key.type = BTRFS_DIR_INDEX_KEY;
2642	key.offset = 0;
2643	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2644	if (ret < 0)
2645		goto out;
2646
2647	while (1) {
2648		eb = path->nodes[0];
2649		slot = path->slots[0];
2650		if (slot >= btrfs_header_nritems(eb)) {
2651			ret = btrfs_next_leaf(sctx->send_root, path);
2652			if (ret < 0) {
2653				goto out;
2654			} else if (ret > 0) {
2655				ret = 0;
2656				break;
2657			}
2658			continue;
2659		}
2660
2661		btrfs_item_key_to_cpu(eb, &found_key, slot);
2662		if (found_key.objectid != key.objectid ||
2663		    found_key.type != key.type) {
2664			ret = 0;
2665			goto out;
2666		}
2667
2668		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2669		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2670
2671		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2672		    di_key.objectid < sctx->send_progress) {
2673			ret = 1;
2674			goto out;
2675		}
2676
2677		path->slots[0]++;
2678	}
2679
2680out:
2681	btrfs_free_path(path);
2682	return ret;
2683}
2684
2685/*
2686 * Only creates the inode if it is:
2687 * 1. Not a directory
2688 * 2. Or a directory which was not created already due to out of order
2689 *    directories. See did_create_dir and process_recorded_refs for details.
2690 */
2691static int send_create_inode_if_needed(struct send_ctx *sctx)
2692{
2693	int ret;
2694
2695	if (S_ISDIR(sctx->cur_inode_mode)) {
2696		ret = did_create_dir(sctx, sctx->cur_ino);
2697		if (ret < 0)
2698			goto out;
2699		if (ret) {
2700			ret = 0;
2701			goto out;
2702		}
2703	}
2704
2705	ret = send_create_inode(sctx, sctx->cur_ino);
2706	if (ret < 0)
2707		goto out;
2708
2709out:
2710	return ret;
2711}
2712
2713struct recorded_ref {
2714	struct list_head list;
2715	char *dir_path;
2716	char *name;
2717	struct fs_path *full_path;
2718	u64 dir;
2719	u64 dir_gen;
2720	int dir_path_len;
2721	int name_len;
2722};
2723
 
 
 
 
 
 
 
2724/*
2725 * We need to process new refs before deleted refs, but compare_tree gives us
2726 * everything mixed. So we first record all refs and later process them.
2727 * This function is a helper to record one ref.
2728 */
2729static int __record_ref(struct list_head *head, u64 dir,
2730		      u64 dir_gen, struct fs_path *path)
2731{
2732	struct recorded_ref *ref;
2733
2734	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2735	if (!ref)
2736		return -ENOMEM;
2737
2738	ref->dir = dir;
2739	ref->dir_gen = dir_gen;
2740	ref->full_path = path;
2741
2742	ref->name = (char *)kbasename(ref->full_path->start);
2743	ref->name_len = ref->full_path->end - ref->name;
2744	ref->dir_path = ref->full_path->start;
2745	if (ref->name == ref->full_path->start)
2746		ref->dir_path_len = 0;
2747	else
2748		ref->dir_path_len = ref->full_path->end -
2749				ref->full_path->start - 1 - ref->name_len;
2750
2751	list_add_tail(&ref->list, head);
2752	return 0;
2753}
2754
2755static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2756{
2757	struct recorded_ref *new;
2758
2759	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2760	if (!new)
2761		return -ENOMEM;
2762
2763	new->dir = ref->dir;
2764	new->dir_gen = ref->dir_gen;
2765	new->full_path = NULL;
2766	INIT_LIST_HEAD(&new->list);
2767	list_add_tail(&new->list, list);
2768	return 0;
2769}
2770
2771static void __free_recorded_refs(struct list_head *head)
2772{
2773	struct recorded_ref *cur;
2774
2775	while (!list_empty(head)) {
2776		cur = list_entry(head->next, struct recorded_ref, list);
2777		fs_path_free(cur->full_path);
2778		list_del(&cur->list);
2779		kfree(cur);
2780	}
2781}
2782
2783static void free_recorded_refs(struct send_ctx *sctx)
2784{
2785	__free_recorded_refs(&sctx->new_refs);
2786	__free_recorded_refs(&sctx->deleted_refs);
2787}
2788
2789/*
2790 * Renames/moves a file/dir to its orphan name. Used when the first
2791 * ref of an unprocessed inode gets overwritten and for all non empty
2792 * directories.
2793 */
2794static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2795			  struct fs_path *path)
2796{
2797	int ret;
2798	struct fs_path *orphan;
2799
2800	orphan = fs_path_alloc();
2801	if (!orphan)
2802		return -ENOMEM;
2803
2804	ret = gen_unique_name(sctx, ino, gen, orphan);
2805	if (ret < 0)
2806		goto out;
2807
2808	ret = send_rename(sctx, path, orphan);
2809
2810out:
2811	fs_path_free(orphan);
2812	return ret;
2813}
2814
2815static struct orphan_dir_info *
2816add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2817{
2818	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2819	struct rb_node *parent = NULL;
2820	struct orphan_dir_info *entry, *odi;
2821
2822	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2823	if (!odi)
2824		return ERR_PTR(-ENOMEM);
2825	odi->ino = dir_ino;
2826	odi->gen = 0;
2827
2828	while (*p) {
2829		parent = *p;
2830		entry = rb_entry(parent, struct orphan_dir_info, node);
2831		if (dir_ino < entry->ino) {
2832			p = &(*p)->rb_left;
2833		} else if (dir_ino > entry->ino) {
2834			p = &(*p)->rb_right;
2835		} else {
2836			kfree(odi);
2837			return entry;
2838		}
2839	}
2840
 
 
 
 
 
 
 
2841	rb_link_node(&odi->node, parent, p);
2842	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2843	return odi;
2844}
2845
2846static struct orphan_dir_info *
2847get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2848{
2849	struct rb_node *n = sctx->orphan_dirs.rb_node;
2850	struct orphan_dir_info *entry;
2851
2852	while (n) {
2853		entry = rb_entry(n, struct orphan_dir_info, node);
2854		if (dir_ino < entry->ino)
2855			n = n->rb_left;
2856		else if (dir_ino > entry->ino)
2857			n = n->rb_right;
2858		else
2859			return entry;
2860	}
2861	return NULL;
2862}
2863
2864static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2865{
2866	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2867
2868	return odi != NULL;
2869}
2870
2871static void free_orphan_dir_info(struct send_ctx *sctx,
2872				 struct orphan_dir_info *odi)
2873{
2874	if (!odi)
2875		return;
2876	rb_erase(&odi->node, &sctx->orphan_dirs);
2877	kfree(odi);
2878}
2879
2880/*
2881 * Returns 1 if a directory can be removed at this point in time.
2882 * We check this by iterating all dir items and checking if the inode behind
2883 * the dir item was already processed.
2884 */
2885static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2886		     u64 send_progress)
2887{
2888	int ret = 0;
2889	struct btrfs_root *root = sctx->parent_root;
2890	struct btrfs_path *path;
2891	struct btrfs_key key;
2892	struct btrfs_key found_key;
2893	struct btrfs_key loc;
2894	struct btrfs_dir_item *di;
 
2895
2896	/*
2897	 * Don't try to rmdir the top/root subvolume dir.
2898	 */
2899	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2900		return 0;
2901
2902	path = alloc_path_for_send();
2903	if (!path)
2904		return -ENOMEM;
2905
2906	key.objectid = dir;
2907	key.type = BTRFS_DIR_INDEX_KEY;
2908	key.offset = 0;
 
 
 
 
 
2909	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2910	if (ret < 0)
2911		goto out;
2912
2913	while (1) {
2914		struct waiting_dir_move *dm;
2915
2916		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2917			ret = btrfs_next_leaf(root, path);
2918			if (ret < 0)
2919				goto out;
2920			else if (ret > 0)
2921				break;
2922			continue;
2923		}
2924		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2925				      path->slots[0]);
2926		if (found_key.objectid != key.objectid ||
2927		    found_key.type != key.type)
2928			break;
2929
2930		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2931				struct btrfs_dir_item);
2932		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2933
2934		dm = get_waiting_dir_move(sctx, loc.objectid);
2935		if (dm) {
2936			struct orphan_dir_info *odi;
2937
2938			odi = add_orphan_dir_info(sctx, dir);
2939			if (IS_ERR(odi)) {
2940				ret = PTR_ERR(odi);
2941				goto out;
2942			}
2943			odi->gen = dir_gen;
 
2944			dm->rmdir_ino = dir;
2945			ret = 0;
2946			goto out;
2947		}
2948
2949		if (loc.objectid > send_progress) {
 
 
 
 
 
 
 
2950			ret = 0;
2951			goto out;
2952		}
2953
2954		path->slots[0]++;
2955	}
 
2956
2957	ret = 1;
2958
2959out:
2960	btrfs_free_path(path);
2961	return ret;
2962}
2963
2964static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2965{
2966	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2967
2968	return entry != NULL;
2969}
2970
2971static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2972{
2973	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2974	struct rb_node *parent = NULL;
2975	struct waiting_dir_move *entry, *dm;
2976
2977	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
2978	if (!dm)
2979		return -ENOMEM;
2980	dm->ino = ino;
2981	dm->rmdir_ino = 0;
2982	dm->orphanized = orphanized;
2983
2984	while (*p) {
2985		parent = *p;
2986		entry = rb_entry(parent, struct waiting_dir_move, node);
2987		if (ino < entry->ino) {
2988			p = &(*p)->rb_left;
2989		} else if (ino > entry->ino) {
2990			p = &(*p)->rb_right;
2991		} else {
2992			kfree(dm);
2993			return -EEXIST;
2994		}
2995	}
2996
2997	rb_link_node(&dm->node, parent, p);
2998	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2999	return 0;
3000}
3001
3002static struct waiting_dir_move *
3003get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3004{
3005	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3006	struct waiting_dir_move *entry;
3007
3008	while (n) {
3009		entry = rb_entry(n, struct waiting_dir_move, node);
3010		if (ino < entry->ino)
3011			n = n->rb_left;
3012		else if (ino > entry->ino)
3013			n = n->rb_right;
3014		else
3015			return entry;
3016	}
3017	return NULL;
3018}
3019
3020static void free_waiting_dir_move(struct send_ctx *sctx,
3021				  struct waiting_dir_move *dm)
3022{
3023	if (!dm)
3024		return;
3025	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3026	kfree(dm);
3027}
3028
3029static int add_pending_dir_move(struct send_ctx *sctx,
3030				u64 ino,
3031				u64 ino_gen,
3032				u64 parent_ino,
3033				struct list_head *new_refs,
3034				struct list_head *deleted_refs,
3035				const bool is_orphan)
3036{
3037	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3038	struct rb_node *parent = NULL;
3039	struct pending_dir_move *entry = NULL, *pm;
3040	struct recorded_ref *cur;
3041	int exists = 0;
3042	int ret;
3043
3044	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3045	if (!pm)
3046		return -ENOMEM;
3047	pm->parent_ino = parent_ino;
3048	pm->ino = ino;
3049	pm->gen = ino_gen;
3050	pm->is_orphan = is_orphan;
3051	INIT_LIST_HEAD(&pm->list);
3052	INIT_LIST_HEAD(&pm->update_refs);
3053	RB_CLEAR_NODE(&pm->node);
3054
3055	while (*p) {
3056		parent = *p;
3057		entry = rb_entry(parent, struct pending_dir_move, node);
3058		if (parent_ino < entry->parent_ino) {
3059			p = &(*p)->rb_left;
3060		} else if (parent_ino > entry->parent_ino) {
3061			p = &(*p)->rb_right;
3062		} else {
3063			exists = 1;
3064			break;
3065		}
3066	}
3067
3068	list_for_each_entry(cur, deleted_refs, list) {
3069		ret = dup_ref(cur, &pm->update_refs);
3070		if (ret < 0)
3071			goto out;
3072	}
3073	list_for_each_entry(cur, new_refs, list) {
3074		ret = dup_ref(cur, &pm->update_refs);
3075		if (ret < 0)
3076			goto out;
3077	}
3078
3079	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3080	if (ret)
3081		goto out;
3082
3083	if (exists) {
3084		list_add_tail(&pm->list, &entry->list);
3085	} else {
3086		rb_link_node(&pm->node, parent, p);
3087		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3088	}
3089	ret = 0;
3090out:
3091	if (ret) {
3092		__free_recorded_refs(&pm->update_refs);
3093		kfree(pm);
3094	}
3095	return ret;
3096}
3097
3098static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3099						      u64 parent_ino)
3100{
3101	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3102	struct pending_dir_move *entry;
3103
3104	while (n) {
3105		entry = rb_entry(n, struct pending_dir_move, node);
3106		if (parent_ino < entry->parent_ino)
3107			n = n->rb_left;
3108		else if (parent_ino > entry->parent_ino)
3109			n = n->rb_right;
3110		else
3111			return entry;
3112	}
3113	return NULL;
3114}
3115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3116static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3117{
3118	struct fs_path *from_path = NULL;
3119	struct fs_path *to_path = NULL;
3120	struct fs_path *name = NULL;
3121	u64 orig_progress = sctx->send_progress;
3122	struct recorded_ref *cur;
3123	u64 parent_ino, parent_gen;
3124	struct waiting_dir_move *dm = NULL;
3125	u64 rmdir_ino = 0;
 
 
3126	int ret;
3127
3128	name = fs_path_alloc();
3129	from_path = fs_path_alloc();
3130	if (!name || !from_path) {
3131		ret = -ENOMEM;
3132		goto out;
3133	}
3134
3135	dm = get_waiting_dir_move(sctx, pm->ino);
3136	ASSERT(dm);
3137	rmdir_ino = dm->rmdir_ino;
 
3138	free_waiting_dir_move(sctx, dm);
3139
3140	if (pm->is_orphan) {
3141		ret = gen_unique_name(sctx, pm->ino,
3142				      pm->gen, from_path);
3143	} else {
3144		ret = get_first_ref(sctx->parent_root, pm->ino,
3145				    &parent_ino, &parent_gen, name);
3146		if (ret < 0)
3147			goto out;
3148		ret = get_cur_path(sctx, parent_ino, parent_gen,
3149				   from_path);
3150		if (ret < 0)
3151			goto out;
3152		ret = fs_path_add_path(from_path, name);
3153	}
3154	if (ret < 0)
3155		goto out;
3156
3157	sctx->send_progress = sctx->cur_ino + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3158	fs_path_reset(name);
3159	to_path = name;
3160	name = NULL;
3161	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3162	if (ret < 0)
3163		goto out;
3164
3165	ret = send_rename(sctx, from_path, to_path);
3166	if (ret < 0)
3167		goto out;
3168
3169	if (rmdir_ino) {
3170		struct orphan_dir_info *odi;
 
3171
3172		odi = get_orphan_dir_info(sctx, rmdir_ino);
3173		if (!odi) {
3174			/* already deleted */
3175			goto finish;
3176		}
3177		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
 
 
3178		if (ret < 0)
3179			goto out;
3180		if (!ret)
3181			goto finish;
3182
3183		name = fs_path_alloc();
3184		if (!name) {
3185			ret = -ENOMEM;
3186			goto out;
3187		}
3188		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3189		if (ret < 0)
3190			goto out;
3191		ret = send_rmdir(sctx, name);
3192		if (ret < 0)
3193			goto out;
3194		free_orphan_dir_info(sctx, odi);
3195	}
3196
3197finish:
3198	ret = send_utimes(sctx, pm->ino, pm->gen);
3199	if (ret < 0)
3200		goto out;
3201
3202	/*
3203	 * After rename/move, need to update the utimes of both new parent(s)
3204	 * and old parent(s).
3205	 */
3206	list_for_each_entry(cur, &pm->update_refs, list) {
3207		if (cur->dir == rmdir_ino)
 
 
 
 
 
 
3208			continue;
 
 
 
 
3209		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3210		if (ret < 0)
3211			goto out;
3212	}
3213
3214out:
3215	fs_path_free(name);
3216	fs_path_free(from_path);
3217	fs_path_free(to_path);
3218	sctx->send_progress = orig_progress;
3219
3220	return ret;
3221}
3222
3223static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3224{
3225	if (!list_empty(&m->list))
3226		list_del(&m->list);
3227	if (!RB_EMPTY_NODE(&m->node))
3228		rb_erase(&m->node, &sctx->pending_dir_moves);
3229	__free_recorded_refs(&m->update_refs);
3230	kfree(m);
3231}
3232
3233static void tail_append_pending_moves(struct pending_dir_move *moves,
 
3234				      struct list_head *stack)
3235{
3236	if (list_empty(&moves->list)) {
3237		list_add_tail(&moves->list, stack);
3238	} else {
3239		LIST_HEAD(list);
3240		list_splice_init(&moves->list, &list);
3241		list_add_tail(&moves->list, stack);
3242		list_splice_tail(&list, stack);
3243	}
 
 
 
 
3244}
3245
3246static int apply_children_dir_moves(struct send_ctx *sctx)
3247{
3248	struct pending_dir_move *pm;
3249	struct list_head stack;
3250	u64 parent_ino = sctx->cur_ino;
3251	int ret = 0;
3252
3253	pm = get_pending_dir_moves(sctx, parent_ino);
3254	if (!pm)
3255		return 0;
3256
3257	INIT_LIST_HEAD(&stack);
3258	tail_append_pending_moves(pm, &stack);
3259
3260	while (!list_empty(&stack)) {
3261		pm = list_first_entry(&stack, struct pending_dir_move, list);
3262		parent_ino = pm->ino;
3263		ret = apply_dir_move(sctx, pm);
3264		free_pending_move(sctx, pm);
3265		if (ret)
3266			goto out;
3267		pm = get_pending_dir_moves(sctx, parent_ino);
3268		if (pm)
3269			tail_append_pending_moves(pm, &stack);
3270	}
3271	return 0;
3272
3273out:
3274	while (!list_empty(&stack)) {
3275		pm = list_first_entry(&stack, struct pending_dir_move, list);
3276		free_pending_move(sctx, pm);
3277	}
3278	return ret;
3279}
3280
3281/*
3282 * We might need to delay a directory rename even when no ancestor directory
3283 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3284 * renamed. This happens when we rename a directory to the old name (the name
3285 * in the parent root) of some other unrelated directory that got its rename
3286 * delayed due to some ancestor with higher number that got renamed.
3287 *
3288 * Example:
3289 *
3290 * Parent snapshot:
3291 * .                                       (ino 256)
3292 * |---- a/                                (ino 257)
3293 * |     |---- file                        (ino 260)
3294 * |
3295 * |---- b/                                (ino 258)
3296 * |---- c/                                (ino 259)
3297 *
3298 * Send snapshot:
3299 * .                                       (ino 256)
3300 * |---- a/                                (ino 258)
3301 * |---- x/                                (ino 259)
3302 *       |---- y/                          (ino 257)
3303 *             |----- file                 (ino 260)
3304 *
3305 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3306 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3307 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3308 * must issue is:
3309 *
3310 * 1 - rename 259 from 'c' to 'x'
3311 * 2 - rename 257 from 'a' to 'x/y'
3312 * 3 - rename 258 from 'b' to 'a'
3313 *
3314 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3315 * be done right away and < 0 on error.
3316 */
3317static int wait_for_dest_dir_move(struct send_ctx *sctx,
3318				  struct recorded_ref *parent_ref,
3319				  const bool is_orphan)
3320{
 
3321	struct btrfs_path *path;
3322	struct btrfs_key key;
3323	struct btrfs_key di_key;
3324	struct btrfs_dir_item *di;
3325	u64 left_gen;
3326	u64 right_gen;
3327	int ret = 0;
 
3328
3329	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3330		return 0;
3331
3332	path = alloc_path_for_send();
3333	if (!path)
3334		return -ENOMEM;
3335
3336	key.objectid = parent_ref->dir;
3337	key.type = BTRFS_DIR_ITEM_KEY;
3338	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3339
3340	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3341	if (ret < 0) {
3342		goto out;
3343	} else if (ret > 0) {
3344		ret = 0;
3345		goto out;
3346	}
3347
3348	di = btrfs_match_dir_item_name(sctx->parent_root, path,
3349				       parent_ref->name, parent_ref->name_len);
3350	if (!di) {
3351		ret = 0;
3352		goto out;
3353	}
3354	/*
3355	 * di_key.objectid has the number of the inode that has a dentry in the
3356	 * parent directory with the same name that sctx->cur_ino is being
3357	 * renamed to. We need to check if that inode is in the send root as
3358	 * well and if it is currently marked as an inode with a pending rename,
3359	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3360	 * that it happens after that other inode is renamed.
3361	 */
3362	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3363	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3364		ret = 0;
3365		goto out;
3366	}
3367
3368	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3369			     &left_gen, NULL, NULL, NULL, NULL);
3370	if (ret < 0)
3371		goto out;
3372	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3373			     &right_gen, NULL, NULL, NULL, NULL);
3374	if (ret < 0) {
3375		if (ret == -ENOENT)
3376			ret = 0;
3377		goto out;
3378	}
3379
3380	/* Different inode, no need to delay the rename of sctx->cur_ino */
3381	if (right_gen != left_gen) {
3382		ret = 0;
3383		goto out;
3384	}
3385
3386	if (is_waiting_for_move(sctx, di_key.objectid)) {
 
3387		ret = add_pending_dir_move(sctx,
3388					   sctx->cur_ino,
3389					   sctx->cur_inode_gen,
3390					   di_key.objectid,
3391					   &sctx->new_refs,
3392					   &sctx->deleted_refs,
3393					   is_orphan);
3394		if (!ret)
3395			ret = 1;
3396	}
3397out:
3398	btrfs_free_path(path);
3399	return ret;
3400}
3401
3402/*
3403 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3404 * Return 1 if true, 0 if false and < 0 on error.
3405 */
3406static int is_ancestor(struct btrfs_root *root,
3407		       const u64 ino1,
3408		       const u64 ino1_gen,
3409		       const u64 ino2,
3410		       struct fs_path *fs_path)
 
3411{
3412	u64 ino = ino2;
3413
 
 
 
3414	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3415		int ret;
3416		u64 parent;
3417		u64 parent_gen;
 
3418
3419		fs_path_reset(fs_path);
3420		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3421		if (ret < 0) {
3422			if (ret == -ENOENT && ino == ino2)
3423				ret = 0;
3424			return ret;
3425		}
3426		if (parent == ino1)
3427			return parent_gen == ino1_gen ? 1 : 0;
3428		ino = parent;
3429	}
3430	return 0;
3431}
3432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3433static int wait_for_parent_move(struct send_ctx *sctx,
3434				struct recorded_ref *parent_ref,
3435				const bool is_orphan)
3436{
3437	int ret = 0;
3438	u64 ino = parent_ref->dir;
 
3439	u64 parent_ino_before, parent_ino_after;
3440	struct fs_path *path_before = NULL;
3441	struct fs_path *path_after = NULL;
3442	int len1, len2;
3443
3444	path_after = fs_path_alloc();
3445	path_before = fs_path_alloc();
3446	if (!path_after || !path_before) {
3447		ret = -ENOMEM;
3448		goto out;
3449	}
3450
3451	/*
3452	 * Our current directory inode may not yet be renamed/moved because some
3453	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3454	 * such ancestor exists and make sure our own rename/move happens after
3455	 * that ancestor is processed to avoid path build infinite loops (done
3456	 * at get_cur_path()).
3457	 */
3458	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
 
 
3459		if (is_waiting_for_move(sctx, ino)) {
3460			/*
3461			 * If the current inode is an ancestor of ino in the
3462			 * parent root, we need to delay the rename of the
3463			 * current inode, otherwise don't delayed the rename
3464			 * because we can end up with a circular dependency
3465			 * of renames, resulting in some directories never
3466			 * getting the respective rename operations issued in
3467			 * the send stream or getting into infinite path build
3468			 * loops.
3469			 */
3470			ret = is_ancestor(sctx->parent_root,
3471					  sctx->cur_ino, sctx->cur_inode_gen,
3472					  ino, path_before);
3473			break;
 
3474		}
3475
3476		fs_path_reset(path_before);
3477		fs_path_reset(path_after);
3478
3479		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3480				    NULL, path_after);
3481		if (ret < 0)
3482			goto out;
3483		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3484				    NULL, path_before);
3485		if (ret < 0 && ret != -ENOENT) {
3486			goto out;
3487		} else if (ret == -ENOENT) {
3488			ret = 0;
3489			break;
3490		}
3491
3492		len1 = fs_path_len(path_before);
3493		len2 = fs_path_len(path_after);
3494		if (ino > sctx->cur_ino &&
3495		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3496		     memcmp(path_before->start, path_after->start, len1))) {
3497			ret = 1;
3498			break;
 
 
 
 
 
 
 
 
 
3499		}
3500		ino = parent_ino_after;
 
3501	}
3502
3503out:
3504	fs_path_free(path_before);
3505	fs_path_free(path_after);
3506
3507	if (ret == 1) {
3508		ret = add_pending_dir_move(sctx,
3509					   sctx->cur_ino,
3510					   sctx->cur_inode_gen,
3511					   ino,
3512					   &sctx->new_refs,
3513					   &sctx->deleted_refs,
3514					   is_orphan);
3515		if (!ret)
3516			ret = 1;
3517	}
3518
3519	return ret;
3520}
3521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3522/*
3523 * This does all the move/link/unlink/rmdir magic.
3524 */
3525static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3526{
 
3527	int ret = 0;
3528	struct recorded_ref *cur;
3529	struct recorded_ref *cur2;
3530	struct list_head check_dirs;
3531	struct fs_path *valid_path = NULL;
3532	u64 ow_inode = 0;
3533	u64 ow_gen;
 
3534	int did_overwrite = 0;
3535	int is_orphan = 0;
3536	u64 last_dir_ino_rm = 0;
3537	bool can_rename = true;
 
 
3538
3539verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3540
3541	/*
3542	 * This should never happen as the root dir always has the same ref
3543	 * which is always '..'
3544	 */
3545	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3546	INIT_LIST_HEAD(&check_dirs);
3547
3548	valid_path = fs_path_alloc();
3549	if (!valid_path) {
3550		ret = -ENOMEM;
3551		goto out;
3552	}
3553
3554	/*
3555	 * First, check if the first ref of the current inode was overwritten
3556	 * before. If yes, we know that the current inode was already orphanized
3557	 * and thus use the orphan name. If not, we can use get_cur_path to
3558	 * get the path of the first ref as it would like while receiving at
3559	 * this point in time.
3560	 * New inodes are always orphan at the beginning, so force to use the
3561	 * orphan name in this case.
3562	 * The first ref is stored in valid_path and will be updated if it
3563	 * gets moved around.
3564	 */
3565	if (!sctx->cur_inode_new) {
3566		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3567				sctx->cur_inode_gen);
3568		if (ret < 0)
3569			goto out;
3570		if (ret)
3571			did_overwrite = 1;
3572	}
3573	if (sctx->cur_inode_new || did_overwrite) {
3574		ret = gen_unique_name(sctx, sctx->cur_ino,
3575				sctx->cur_inode_gen, valid_path);
3576		if (ret < 0)
3577			goto out;
3578		is_orphan = 1;
3579	} else {
3580		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3581				valid_path);
3582		if (ret < 0)
3583			goto out;
3584	}
3585
3586	list_for_each_entry(cur, &sctx->new_refs, list) {
3587		/*
3588		 * We may have refs where the parent directory does not exist
3589		 * yet. This happens if the parent directories inum is higher
3590		 * the the current inum. To handle this case, we create the
3591		 * parent directory out of order. But we need to check if this
3592		 * did already happen before due to other refs in the same dir.
3593		 */
3594		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3595		if (ret < 0)
3596			goto out;
3597		if (ret == inode_state_will_create) {
3598			ret = 0;
3599			/*
3600			 * First check if any of the current inodes refs did
3601			 * already create the dir.
3602			 */
3603			list_for_each_entry(cur2, &sctx->new_refs, list) {
3604				if (cur == cur2)
3605					break;
3606				if (cur2->dir == cur->dir) {
3607					ret = 1;
3608					break;
3609				}
3610			}
3611
3612			/*
3613			 * If that did not happen, check if a previous inode
3614			 * did already create the dir.
3615			 */
3616			if (!ret)
3617				ret = did_create_dir(sctx, cur->dir);
3618			if (ret < 0)
3619				goto out;
3620			if (!ret) {
3621				ret = send_create_inode(sctx, cur->dir);
3622				if (ret < 0)
3623					goto out;
3624			}
3625		}
3626
3627		/*
3628		 * Check if this new ref would overwrite the first ref of
3629		 * another unprocessed inode. If yes, orphanize the
3630		 * overwritten inode. If we find an overwritten ref that is
3631		 * not the first ref, simply unlink it.
3632		 */
3633		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3634				cur->name, cur->name_len,
3635				&ow_inode, &ow_gen);
3636		if (ret < 0)
3637			goto out;
3638		if (ret) {
3639			ret = is_first_ref(sctx->parent_root,
3640					   ow_inode, cur->dir, cur->name,
3641					   cur->name_len);
3642			if (ret < 0)
3643				goto out;
3644			if (ret) {
3645				struct name_cache_entry *nce;
 
3646
3647				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3648						cur->full_path);
3649				if (ret < 0)
3650					goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3651				/*
3652				 * Make sure we clear our orphanized inode's
3653				 * name from the name cache. This is because the
3654				 * inode ow_inode might be an ancestor of some
3655				 * other inode that will be orphanized as well
3656				 * later and has an inode number greater than
3657				 * sctx->send_progress. We need to prevent
3658				 * future name lookups from using the old name
3659				 * and get instead the orphan name.
3660				 */
3661				nce = name_cache_search(sctx, ow_inode, ow_gen);
3662				if (nce) {
3663					name_cache_delete(sctx, nce);
3664					kfree(nce);
3665				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3666			} else {
3667				ret = send_unlink(sctx, cur->full_path);
3668				if (ret < 0)
3669					goto out;
3670			}
3671		}
3672
3673		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3674			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3675			if (ret < 0)
3676				goto out;
3677			if (ret == 1) {
3678				can_rename = false;
3679				*pending_move = 1;
3680			}
3681		}
3682
3683		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3684		    can_rename) {
3685			ret = wait_for_parent_move(sctx, cur, is_orphan);
3686			if (ret < 0)
3687				goto out;
3688			if (ret == 1) {
3689				can_rename = false;
3690				*pending_move = 1;
3691			}
3692		}
3693
3694		/*
3695		 * link/move the ref to the new place. If we have an orphan
3696		 * inode, move it and update valid_path. If not, link or move
3697		 * it depending on the inode mode.
3698		 */
3699		if (is_orphan && can_rename) {
3700			ret = send_rename(sctx, valid_path, cur->full_path);
3701			if (ret < 0)
3702				goto out;
3703			is_orphan = 0;
3704			ret = fs_path_copy(valid_path, cur->full_path);
3705			if (ret < 0)
3706				goto out;
3707		} else if (can_rename) {
3708			if (S_ISDIR(sctx->cur_inode_mode)) {
3709				/*
3710				 * Dirs can't be linked, so move it. For moved
3711				 * dirs, we always have one new and one deleted
3712				 * ref. The deleted ref is ignored later.
3713				 */
3714				ret = send_rename(sctx, valid_path,
3715						  cur->full_path);
3716				if (!ret)
3717					ret = fs_path_copy(valid_path,
3718							   cur->full_path);
3719				if (ret < 0)
3720					goto out;
3721			} else {
 
 
 
 
 
 
 
 
 
 
 
 
3722				ret = send_link(sctx, cur->full_path,
3723						valid_path);
3724				if (ret < 0)
3725					goto out;
3726			}
3727		}
3728		ret = dup_ref(cur, &check_dirs);
3729		if (ret < 0)
3730			goto out;
3731	}
3732
3733	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3734		/*
3735		 * Check if we can already rmdir the directory. If not,
3736		 * orphanize it. For every dir item inside that gets deleted
3737		 * later, we do this check again and rmdir it then if possible.
3738		 * See the use of check_dirs for more details.
3739		 */
3740		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3741				sctx->cur_ino);
3742		if (ret < 0)
3743			goto out;
3744		if (ret) {
3745			ret = send_rmdir(sctx, valid_path);
3746			if (ret < 0)
3747				goto out;
3748		} else if (!is_orphan) {
3749			ret = orphanize_inode(sctx, sctx->cur_ino,
3750					sctx->cur_inode_gen, valid_path);
3751			if (ret < 0)
3752				goto out;
3753			is_orphan = 1;
3754		}
3755
3756		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3757			ret = dup_ref(cur, &check_dirs);
3758			if (ret < 0)
3759				goto out;
3760		}
3761	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3762		   !list_empty(&sctx->deleted_refs)) {
3763		/*
3764		 * We have a moved dir. Add the old parent to check_dirs
3765		 */
3766		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3767				list);
3768		ret = dup_ref(cur, &check_dirs);
3769		if (ret < 0)
3770			goto out;
3771	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3772		/*
3773		 * We have a non dir inode. Go through all deleted refs and
3774		 * unlink them if they were not already overwritten by other
3775		 * inodes.
3776		 */
3777		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3778			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3779					sctx->cur_ino, sctx->cur_inode_gen,
3780					cur->name, cur->name_len);
3781			if (ret < 0)
3782				goto out;
3783			if (!ret) {
 
 
 
 
 
 
 
 
 
 
 
 
3784				ret = send_unlink(sctx, cur->full_path);
3785				if (ret < 0)
3786					goto out;
3787			}
3788			ret = dup_ref(cur, &check_dirs);
3789			if (ret < 0)
3790				goto out;
3791		}
3792		/*
3793		 * If the inode is still orphan, unlink the orphan. This may
3794		 * happen when a previous inode did overwrite the first ref
3795		 * of this inode and no new refs were added for the current
3796		 * inode. Unlinking does not mean that the inode is deleted in
3797		 * all cases. There may still be links to this inode in other
3798		 * places.
3799		 */
3800		if (is_orphan) {
3801			ret = send_unlink(sctx, valid_path);
3802			if (ret < 0)
3803				goto out;
3804		}
3805	}
3806
3807	/*
3808	 * We did collect all parent dirs where cur_inode was once located. We
3809	 * now go through all these dirs and check if they are pending for
3810	 * deletion and if it's finally possible to perform the rmdir now.
3811	 * We also update the inode stats of the parent dirs here.
3812	 */
3813	list_for_each_entry(cur, &check_dirs, list) {
3814		/*
3815		 * In case we had refs into dirs that were not processed yet,
3816		 * we don't need to do the utime and rmdir logic for these dirs.
3817		 * The dir will be processed later.
3818		 */
3819		if (cur->dir > sctx->cur_ino)
3820			continue;
3821
3822		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3823		if (ret < 0)
3824			goto out;
3825
3826		if (ret == inode_state_did_create ||
3827		    ret == inode_state_no_change) {
3828			/* TODO delayed utimes */
3829			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3830			if (ret < 0)
3831				goto out;
3832		} else if (ret == inode_state_did_delete &&
3833			   cur->dir != last_dir_ino_rm) {
3834			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3835					sctx->cur_ino);
3836			if (ret < 0)
3837				goto out;
3838			if (ret) {
3839				ret = get_cur_path(sctx, cur->dir,
3840						   cur->dir_gen, valid_path);
3841				if (ret < 0)
3842					goto out;
3843				ret = send_rmdir(sctx, valid_path);
3844				if (ret < 0)
3845					goto out;
3846				last_dir_ino_rm = cur->dir;
3847			}
3848		}
3849	}
3850
3851	ret = 0;
3852
3853out:
3854	__free_recorded_refs(&check_dirs);
3855	free_recorded_refs(sctx);
3856	fs_path_free(valid_path);
3857	return ret;
3858}
3859
3860static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3861		      struct fs_path *name, void *ctx, struct list_head *refs)
3862{
3863	int ret = 0;
3864	struct send_ctx *sctx = ctx;
3865	struct fs_path *p;
3866	u64 gen;
3867
3868	p = fs_path_alloc();
3869	if (!p)
3870		return -ENOMEM;
3871
3872	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3873			NULL, NULL);
3874	if (ret < 0)
3875		goto out;
3876
3877	ret = get_cur_path(sctx, dir, gen, p);
3878	if (ret < 0)
3879		goto out;
3880	ret = fs_path_add_path(p, name);
3881	if (ret < 0)
3882		goto out;
3883
3884	ret = __record_ref(refs, dir, gen, p);
3885
3886out:
3887	if (ret)
3888		fs_path_free(p);
3889	return ret;
3890}
3891
3892static int __record_new_ref(int num, u64 dir, int index,
3893			    struct fs_path *name,
3894			    void *ctx)
3895{
3896	struct send_ctx *sctx = ctx;
3897	return record_ref(sctx->send_root, num, dir, index, name,
3898			  ctx, &sctx->new_refs);
3899}
3900
3901
3902static int __record_deleted_ref(int num, u64 dir, int index,
3903				struct fs_path *name,
3904				void *ctx)
3905{
3906	struct send_ctx *sctx = ctx;
3907	return record_ref(sctx->parent_root, num, dir, index, name,
3908			  ctx, &sctx->deleted_refs);
3909}
3910
3911static int record_new_ref(struct send_ctx *sctx)
3912{
3913	int ret;
3914
3915	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3916				sctx->cmp_key, 0, __record_new_ref, sctx);
3917	if (ret < 0)
3918		goto out;
3919	ret = 0;
3920
3921out:
3922	return ret;
3923}
3924
3925static int record_deleted_ref(struct send_ctx *sctx)
3926{
3927	int ret;
3928
3929	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3930				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3931	if (ret < 0)
3932		goto out;
3933	ret = 0;
3934
3935out:
3936	return ret;
3937}
3938
3939struct find_ref_ctx {
3940	u64 dir;
3941	u64 dir_gen;
3942	struct btrfs_root *root;
3943	struct fs_path *name;
3944	int found_idx;
3945};
3946
3947static int __find_iref(int num, u64 dir, int index,
3948		       struct fs_path *name,
3949		       void *ctx_)
3950{
3951	struct find_ref_ctx *ctx = ctx_;
3952	u64 dir_gen;
3953	int ret;
3954
3955	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3956	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3957		/*
3958		 * To avoid doing extra lookups we'll only do this if everything
3959		 * else matches.
3960		 */
3961		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3962				     NULL, NULL, NULL);
3963		if (ret)
3964			return ret;
3965		if (dir_gen != ctx->dir_gen)
3966			return 0;
3967		ctx->found_idx = num;
3968		return 1;
3969	}
3970	return 0;
3971}
3972
3973static int find_iref(struct btrfs_root *root,
3974		     struct btrfs_path *path,
3975		     struct btrfs_key *key,
3976		     u64 dir, u64 dir_gen, struct fs_path *name)
3977{
3978	int ret;
3979	struct find_ref_ctx ctx;
3980
3981	ctx.dir = dir;
3982	ctx.name = name;
3983	ctx.dir_gen = dir_gen;
3984	ctx.found_idx = -1;
3985	ctx.root = root;
3986
3987	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3988	if (ret < 0)
3989		return ret;
3990
3991	if (ctx.found_idx == -1)
3992		return -ENOENT;
3993
3994	return ctx.found_idx;
3995}
3996
3997static int __record_changed_new_ref(int num, u64 dir, int index,
3998				    struct fs_path *name,
3999				    void *ctx)
4000{
4001	u64 dir_gen;
4002	int ret;
4003	struct send_ctx *sctx = ctx;
4004
4005	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4006			     NULL, NULL, NULL);
4007	if (ret)
4008		return ret;
4009
4010	ret = find_iref(sctx->parent_root, sctx->right_path,
4011			sctx->cmp_key, dir, dir_gen, name);
4012	if (ret == -ENOENT)
4013		ret = __record_new_ref(num, dir, index, name, sctx);
4014	else if (ret > 0)
4015		ret = 0;
4016
4017	return ret;
4018}
4019
4020static int __record_changed_deleted_ref(int num, u64 dir, int index,
4021					struct fs_path *name,
4022					void *ctx)
4023{
4024	u64 dir_gen;
4025	int ret;
4026	struct send_ctx *sctx = ctx;
4027
4028	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4029			     NULL, NULL, NULL);
4030	if (ret)
4031		return ret;
4032
4033	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4034			dir, dir_gen, name);
4035	if (ret == -ENOENT)
4036		ret = __record_deleted_ref(num, dir, index, name, sctx);
4037	else if (ret > 0)
4038		ret = 0;
4039
4040	return ret;
4041}
4042
4043static int record_changed_ref(struct send_ctx *sctx)
4044{
4045	int ret = 0;
4046
4047	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4048			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4049	if (ret < 0)
4050		goto out;
4051	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4052			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4053	if (ret < 0)
4054		goto out;
4055	ret = 0;
4056
4057out:
4058	return ret;
4059}
4060
4061/*
4062 * Record and process all refs at once. Needed when an inode changes the
4063 * generation number, which means that it was deleted and recreated.
4064 */
4065static int process_all_refs(struct send_ctx *sctx,
4066			    enum btrfs_compare_tree_result cmd)
4067{
4068	int ret;
4069	struct btrfs_root *root;
4070	struct btrfs_path *path;
4071	struct btrfs_key key;
4072	struct btrfs_key found_key;
4073	struct extent_buffer *eb;
4074	int slot;
4075	iterate_inode_ref_t cb;
4076	int pending_move = 0;
4077
4078	path = alloc_path_for_send();
4079	if (!path)
4080		return -ENOMEM;
4081
4082	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4083		root = sctx->send_root;
4084		cb = __record_new_ref;
4085	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4086		root = sctx->parent_root;
4087		cb = __record_deleted_ref;
4088	} else {
4089		btrfs_err(sctx->send_root->fs_info,
4090				"Wrong command %d in process_all_refs", cmd);
4091		ret = -EINVAL;
4092		goto out;
4093	}
4094
4095	key.objectid = sctx->cmp_key->objectid;
4096	key.type = BTRFS_INODE_REF_KEY;
4097	key.offset = 0;
4098	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4099	if (ret < 0)
4100		goto out;
4101
4102	while (1) {
4103		eb = path->nodes[0];
4104		slot = path->slots[0];
4105		if (slot >= btrfs_header_nritems(eb)) {
4106			ret = btrfs_next_leaf(root, path);
4107			if (ret < 0)
4108				goto out;
4109			else if (ret > 0)
4110				break;
4111			continue;
4112		}
4113
4114		btrfs_item_key_to_cpu(eb, &found_key, slot);
4115
4116		if (found_key.objectid != key.objectid ||
4117		    (found_key.type != BTRFS_INODE_REF_KEY &&
4118		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4119			break;
4120
4121		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4122		if (ret < 0)
4123			goto out;
4124
4125		path->slots[0]++;
4126	}
4127	btrfs_release_path(path);
4128
 
 
 
 
 
4129	ret = process_recorded_refs(sctx, &pending_move);
4130	/* Only applicable to an incremental send. */
4131	ASSERT(pending_move == 0);
4132
4133out:
4134	btrfs_free_path(path);
4135	return ret;
4136}
4137
4138static int send_set_xattr(struct send_ctx *sctx,
4139			  struct fs_path *path,
4140			  const char *name, int name_len,
4141			  const char *data, int data_len)
4142{
4143	int ret = 0;
4144
4145	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4146	if (ret < 0)
4147		goto out;
4148
4149	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4150	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4151	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4152
4153	ret = send_cmd(sctx);
4154
4155tlv_put_failure:
4156out:
4157	return ret;
4158}
4159
4160static int send_remove_xattr(struct send_ctx *sctx,
4161			  struct fs_path *path,
4162			  const char *name, int name_len)
4163{
4164	int ret = 0;
4165
4166	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4167	if (ret < 0)
4168		goto out;
4169
4170	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4171	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4172
4173	ret = send_cmd(sctx);
4174
4175tlv_put_failure:
4176out:
4177	return ret;
4178}
4179
4180static int __process_new_xattr(int num, struct btrfs_key *di_key,
4181			       const char *name, int name_len,
4182			       const char *data, int data_len,
4183			       u8 type, void *ctx)
4184{
4185	int ret;
4186	struct send_ctx *sctx = ctx;
4187	struct fs_path *p;
4188	posix_acl_xattr_header dummy_acl;
4189
4190	p = fs_path_alloc();
4191	if (!p)
4192		return -ENOMEM;
4193
4194	/*
4195	 * This hack is needed because empty acl's are stored as zero byte
4196	 * data in xattrs. Problem with that is, that receiving these zero byte
4197	 * acl's will fail later. To fix this, we send a dummy acl list that
4198	 * only contains the version number and no entries.
4199	 */
4200	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4201	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4202		if (data_len == 0) {
4203			dummy_acl.a_version =
4204					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4205			data = (char *)&dummy_acl;
4206			data_len = sizeof(dummy_acl);
4207		}
4208	}
4209
4210	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4211	if (ret < 0)
4212		goto out;
4213
4214	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4215
4216out:
4217	fs_path_free(p);
4218	return ret;
4219}
4220
4221static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4222				   const char *name, int name_len,
4223				   const char *data, int data_len,
4224				   u8 type, void *ctx)
4225{
4226	int ret;
4227	struct send_ctx *sctx = ctx;
4228	struct fs_path *p;
4229
4230	p = fs_path_alloc();
4231	if (!p)
4232		return -ENOMEM;
4233
4234	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4235	if (ret < 0)
4236		goto out;
4237
4238	ret = send_remove_xattr(sctx, p, name, name_len);
4239
4240out:
4241	fs_path_free(p);
4242	return ret;
4243}
4244
4245static int process_new_xattr(struct send_ctx *sctx)
4246{
4247	int ret = 0;
4248
4249	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4250			       sctx->cmp_key, __process_new_xattr, sctx);
4251
4252	return ret;
4253}
4254
4255static int process_deleted_xattr(struct send_ctx *sctx)
4256{
4257	int ret;
4258
4259	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4260			       sctx->cmp_key, __process_deleted_xattr, sctx);
4261
4262	return ret;
4263}
4264
4265struct find_xattr_ctx {
4266	const char *name;
4267	int name_len;
4268	int found_idx;
4269	char *found_data;
4270	int found_data_len;
4271};
4272
4273static int __find_xattr(int num, struct btrfs_key *di_key,
4274			const char *name, int name_len,
4275			const char *data, int data_len,
4276			u8 type, void *vctx)
4277{
4278	struct find_xattr_ctx *ctx = vctx;
4279
4280	if (name_len == ctx->name_len &&
4281	    strncmp(name, ctx->name, name_len) == 0) {
4282		ctx->found_idx = num;
4283		ctx->found_data_len = data_len;
4284		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4285		if (!ctx->found_data)
4286			return -ENOMEM;
4287		return 1;
4288	}
4289	return 0;
4290}
4291
4292static int find_xattr(struct btrfs_root *root,
4293		      struct btrfs_path *path,
4294		      struct btrfs_key *key,
4295		      const char *name, int name_len,
4296		      char **data, int *data_len)
4297{
4298	int ret;
4299	struct find_xattr_ctx ctx;
4300
4301	ctx.name = name;
4302	ctx.name_len = name_len;
4303	ctx.found_idx = -1;
4304	ctx.found_data = NULL;
4305	ctx.found_data_len = 0;
4306
4307	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4308	if (ret < 0)
4309		return ret;
4310
4311	if (ctx.found_idx == -1)
4312		return -ENOENT;
4313	if (data) {
4314		*data = ctx.found_data;
4315		*data_len = ctx.found_data_len;
4316	} else {
4317		kfree(ctx.found_data);
4318	}
4319	return ctx.found_idx;
4320}
4321
4322
4323static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4324				       const char *name, int name_len,
4325				       const char *data, int data_len,
4326				       u8 type, void *ctx)
4327{
4328	int ret;
4329	struct send_ctx *sctx = ctx;
4330	char *found_data = NULL;
4331	int found_data_len  = 0;
4332
4333	ret = find_xattr(sctx->parent_root, sctx->right_path,
4334			 sctx->cmp_key, name, name_len, &found_data,
4335			 &found_data_len);
4336	if (ret == -ENOENT) {
4337		ret = __process_new_xattr(num, di_key, name, name_len, data,
4338				data_len, type, ctx);
4339	} else if (ret >= 0) {
4340		if (data_len != found_data_len ||
4341		    memcmp(data, found_data, data_len)) {
4342			ret = __process_new_xattr(num, di_key, name, name_len,
4343					data, data_len, type, ctx);
4344		} else {
4345			ret = 0;
4346		}
4347	}
4348
4349	kfree(found_data);
4350	return ret;
4351}
4352
4353static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4354					   const char *name, int name_len,
4355					   const char *data, int data_len,
4356					   u8 type, void *ctx)
4357{
4358	int ret;
4359	struct send_ctx *sctx = ctx;
4360
4361	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4362			 name, name_len, NULL, NULL);
4363	if (ret == -ENOENT)
4364		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4365				data_len, type, ctx);
4366	else if (ret >= 0)
4367		ret = 0;
4368
4369	return ret;
4370}
4371
4372static int process_changed_xattr(struct send_ctx *sctx)
4373{
4374	int ret = 0;
4375
4376	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4377			sctx->cmp_key, __process_changed_new_xattr, sctx);
4378	if (ret < 0)
4379		goto out;
4380	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4381			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4382
4383out:
4384	return ret;
4385}
4386
4387static int process_all_new_xattrs(struct send_ctx *sctx)
4388{
4389	int ret;
4390	struct btrfs_root *root;
4391	struct btrfs_path *path;
4392	struct btrfs_key key;
4393	struct btrfs_key found_key;
4394	struct extent_buffer *eb;
4395	int slot;
4396
4397	path = alloc_path_for_send();
4398	if (!path)
4399		return -ENOMEM;
4400
4401	root = sctx->send_root;
4402
4403	key.objectid = sctx->cmp_key->objectid;
4404	key.type = BTRFS_XATTR_ITEM_KEY;
4405	key.offset = 0;
4406	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4407	if (ret < 0)
4408		goto out;
4409
4410	while (1) {
4411		eb = path->nodes[0];
4412		slot = path->slots[0];
4413		if (slot >= btrfs_header_nritems(eb)) {
4414			ret = btrfs_next_leaf(root, path);
4415			if (ret < 0) {
4416				goto out;
4417			} else if (ret > 0) {
4418				ret = 0;
4419				break;
4420			}
4421			continue;
4422		}
4423
4424		btrfs_item_key_to_cpu(eb, &found_key, slot);
4425		if (found_key.objectid != key.objectid ||
4426		    found_key.type != key.type) {
4427			ret = 0;
4428			goto out;
4429		}
4430
4431		ret = iterate_dir_item(root, path, &found_key,
4432				       __process_new_xattr, sctx);
4433		if (ret < 0)
4434			goto out;
4435
4436		path->slots[0]++;
4437	}
4438
4439out:
4440	btrfs_free_path(path);
4441	return ret;
4442}
4443
4444static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4445{
4446	struct btrfs_root *root = sctx->send_root;
4447	struct btrfs_fs_info *fs_info = root->fs_info;
4448	struct inode *inode;
4449	struct page *page;
4450	char *addr;
4451	struct btrfs_key key;
4452	pgoff_t index = offset >> PAGE_SHIFT;
4453	pgoff_t last_index;
4454	unsigned pg_offset = offset & ~PAGE_MASK;
4455	ssize_t ret = 0;
4456
4457	key.objectid = sctx->cur_ino;
4458	key.type = BTRFS_INODE_ITEM_KEY;
4459	key.offset = 0;
4460
4461	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4462	if (IS_ERR(inode))
4463		return PTR_ERR(inode);
4464
4465	if (offset + len > i_size_read(inode)) {
4466		if (offset > i_size_read(inode))
4467			len = 0;
4468		else
4469			len = offset - i_size_read(inode);
4470	}
4471	if (len == 0)
4472		goto out;
4473
4474	last_index = (offset + len - 1) >> PAGE_SHIFT;
4475
4476	/* initial readahead */
4477	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4478	file_ra_state_init(&sctx->ra, inode->i_mapping);
4479	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4480		       last_index - index + 1);
4481
4482	while (index <= last_index) {
4483		unsigned cur_len = min_t(unsigned, len,
4484					 PAGE_SIZE - pg_offset);
4485		page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
 
4486		if (!page) {
4487			ret = -ENOMEM;
4488			break;
 
 
 
 
 
 
 
 
 
 
 
 
4489		}
4490
4491		if (!PageUptodate(page)) {
4492			btrfs_readpage(NULL, page);
4493			lock_page(page);
4494			if (!PageUptodate(page)) {
4495				unlock_page(page);
4496				put_page(page);
4497				ret = -EIO;
4498				break;
4499			}
4500		}
4501
4502		addr = kmap(page);
4503		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4504		kunmap(page);
4505		unlock_page(page);
4506		put_page(page);
4507		index++;
4508		pg_offset = 0;
4509		len -= cur_len;
4510		ret += cur_len;
4511	}
4512out:
4513	iput(inode);
4514	return ret;
4515}
4516
4517/*
4518 * Read some bytes from the current inode/file and send a write command to
4519 * user space.
4520 */
4521static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4522{
 
4523	int ret = 0;
4524	struct fs_path *p;
4525	ssize_t num_read = 0;
4526
4527	p = fs_path_alloc();
4528	if (!p)
4529		return -ENOMEM;
4530
4531verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4532
4533	num_read = fill_read_buf(sctx, offset, len);
4534	if (num_read <= 0) {
4535		if (num_read < 0)
4536			ret = num_read;
4537		goto out;
4538	}
4539
4540	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4541	if (ret < 0)
4542		goto out;
4543
4544	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4545	if (ret < 0)
4546		goto out;
4547
4548	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4549	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4550	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4551
4552	ret = send_cmd(sctx);
4553
4554tlv_put_failure:
4555out:
4556	fs_path_free(p);
4557	if (ret < 0)
4558		return ret;
4559	return num_read;
4560}
4561
4562/*
4563 * Send a clone command to user space.
4564 */
4565static int send_clone(struct send_ctx *sctx,
4566		      u64 offset, u32 len,
4567		      struct clone_root *clone_root)
4568{
4569	int ret = 0;
4570	struct fs_path *p;
4571	u64 gen;
4572
4573verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4574	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4575		clone_root->root->objectid, clone_root->ino,
4576		clone_root->offset);
4577
4578	p = fs_path_alloc();
4579	if (!p)
4580		return -ENOMEM;
4581
4582	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4583	if (ret < 0)
4584		goto out;
4585
4586	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4587	if (ret < 0)
4588		goto out;
4589
4590	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4591	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4592	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4593
4594	if (clone_root->root == sctx->send_root) {
4595		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4596				&gen, NULL, NULL, NULL, NULL);
4597		if (ret < 0)
4598			goto out;
4599		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4600	} else {
4601		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4602	}
4603	if (ret < 0)
4604		goto out;
4605
4606	/*
4607	 * If the parent we're using has a received_uuid set then use that as
4608	 * our clone source as that is what we will look for when doing a
4609	 * receive.
4610	 *
4611	 * This covers the case that we create a snapshot off of a received
4612	 * subvolume and then use that as the parent and try to receive on a
4613	 * different host.
4614	 */
4615	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4616		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4617			     clone_root->root->root_item.received_uuid);
4618	else
4619		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4620			     clone_root->root->root_item.uuid);
4621	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4622		    le64_to_cpu(clone_root->root->root_item.ctransid));
4623	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4624	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4625			clone_root->offset);
4626
4627	ret = send_cmd(sctx);
4628
4629tlv_put_failure:
4630out:
4631	fs_path_free(p);
4632	return ret;
4633}
4634
4635/*
4636 * Send an update extent command to user space.
4637 */
4638static int send_update_extent(struct send_ctx *sctx,
4639			      u64 offset, u32 len)
4640{
4641	int ret = 0;
4642	struct fs_path *p;
4643
4644	p = fs_path_alloc();
4645	if (!p)
4646		return -ENOMEM;
4647
4648	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4649	if (ret < 0)
4650		goto out;
4651
4652	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4653	if (ret < 0)
4654		goto out;
4655
4656	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4657	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4658	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4659
4660	ret = send_cmd(sctx);
4661
4662tlv_put_failure:
4663out:
4664	fs_path_free(p);
4665	return ret;
4666}
4667
4668static int send_hole(struct send_ctx *sctx, u64 end)
4669{
4670	struct fs_path *p = NULL;
4671	u64 offset = sctx->cur_inode_last_extent;
4672	u64 len;
4673	int ret = 0;
4674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4675	p = fs_path_alloc();
4676	if (!p)
4677		return -ENOMEM;
4678	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4679	if (ret < 0)
4680		goto tlv_put_failure;
4681	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4682	while (offset < end) {
4683		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4684
4685		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4686		if (ret < 0)
4687			break;
4688		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4689		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4690		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4691		ret = send_cmd(sctx);
4692		if (ret < 0)
4693			break;
4694		offset += len;
4695	}
 
4696tlv_put_failure:
4697	fs_path_free(p);
4698	return ret;
4699}
4700
4701static int send_extent_data(struct send_ctx *sctx,
4702			    const u64 offset,
4703			    const u64 len)
4704{
4705	u64 sent = 0;
4706
4707	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4708		return send_update_extent(sctx, offset, len);
4709
4710	while (sent < len) {
4711		u64 size = len - sent;
4712		int ret;
4713
4714		if (size > BTRFS_SEND_READ_SIZE)
4715			size = BTRFS_SEND_READ_SIZE;
4716		ret = send_write(sctx, offset + sent, size);
4717		if (ret < 0)
4718			return ret;
4719		if (!ret)
4720			break;
4721		sent += ret;
4722	}
4723	return 0;
4724}
4725
4726static int clone_range(struct send_ctx *sctx,
4727		       struct clone_root *clone_root,
4728		       const u64 disk_byte,
4729		       u64 data_offset,
4730		       u64 offset,
4731		       u64 len)
4732{
4733	struct btrfs_path *path;
4734	struct btrfs_key key;
4735	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4736
4737	path = alloc_path_for_send();
4738	if (!path)
4739		return -ENOMEM;
4740
4741	/*
 
 
 
 
 
 
 
 
 
 
4742	 * We can't send a clone operation for the entire range if we find
4743	 * extent items in the respective range in the source file that
4744	 * refer to different extents or if we find holes.
4745	 * So check for that and do a mix of clone and regular write/copy
4746	 * operations if needed.
4747	 *
4748	 * Example:
4749	 *
4750	 * mkfs.btrfs -f /dev/sda
4751	 * mount /dev/sda /mnt
4752	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4753	 * cp --reflink=always /mnt/foo /mnt/bar
4754	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4755	 * btrfs subvolume snapshot -r /mnt /mnt/snap
4756	 *
4757	 * If when we send the snapshot and we are processing file bar (which
4758	 * has a higher inode number than foo) we blindly send a clone operation
4759	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4760	 * a file bar that matches the content of file foo - iow, doesn't match
4761	 * the content from bar in the original filesystem.
4762	 */
4763	key.objectid = clone_root->ino;
4764	key.type = BTRFS_EXTENT_DATA_KEY;
4765	key.offset = clone_root->offset;
4766	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4767	if (ret < 0)
4768		goto out;
4769	if (ret > 0 && path->slots[0] > 0) {
4770		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4771		if (key.objectid == clone_root->ino &&
4772		    key.type == BTRFS_EXTENT_DATA_KEY)
4773			path->slots[0]--;
4774	}
4775
4776	while (true) {
4777		struct extent_buffer *leaf = path->nodes[0];
4778		int slot = path->slots[0];
4779		struct btrfs_file_extent_item *ei;
4780		u8 type;
4781		u64 ext_len;
4782		u64 clone_len;
 
4783
4784		if (slot >= btrfs_header_nritems(leaf)) {
4785			ret = btrfs_next_leaf(clone_root->root, path);
4786			if (ret < 0)
4787				goto out;
4788			else if (ret > 0)
4789				break;
4790			continue;
4791		}
4792
4793		btrfs_item_key_to_cpu(leaf, &key, slot);
4794
4795		/*
4796		 * We might have an implicit trailing hole (NO_HOLES feature
4797		 * enabled). We deal with it after leaving this loop.
4798		 */
4799		if (key.objectid != clone_root->ino ||
4800		    key.type != BTRFS_EXTENT_DATA_KEY)
4801			break;
4802
4803		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4804		type = btrfs_file_extent_type(leaf, ei);
4805		if (type == BTRFS_FILE_EXTENT_INLINE) {
4806			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4807			ext_len = PAGE_ALIGN(ext_len);
4808		} else {
4809			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4810		}
4811
4812		if (key.offset + ext_len <= clone_root->offset)
4813			goto next;
4814
4815		if (key.offset > clone_root->offset) {
4816			/* Implicit hole, NO_HOLES feature enabled. */
4817			u64 hole_len = key.offset - clone_root->offset;
4818
4819			if (hole_len > len)
4820				hole_len = len;
4821			ret = send_extent_data(sctx, offset, hole_len);
4822			if (ret < 0)
4823				goto out;
4824
4825			len -= hole_len;
4826			if (len == 0)
4827				break;
4828			offset += hole_len;
4829			clone_root->offset += hole_len;
4830			data_offset += hole_len;
4831		}
4832
4833		if (key.offset >= clone_root->offset + len)
4834			break;
4835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4836		clone_len = min_t(u64, ext_len, len);
4837
4838		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4839		    btrfs_file_extent_offset(leaf, ei) == data_offset)
4840			ret = send_clone(sctx, offset, clone_len, clone_root);
4841		else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4842			ret = send_extent_data(sctx, offset, clone_len);
 
4843
4844		if (ret < 0)
4845			goto out;
4846
4847		len -= clone_len;
4848		if (len == 0)
4849			break;
4850		offset += clone_len;
4851		clone_root->offset += clone_len;
4852		data_offset += clone_len;
4853next:
4854		path->slots[0]++;
4855	}
4856
4857	if (len > 0)
4858		ret = send_extent_data(sctx, offset, len);
4859	else
4860		ret = 0;
4861out:
4862	btrfs_free_path(path);
4863	return ret;
4864}
4865
4866static int send_write_or_clone(struct send_ctx *sctx,
4867			       struct btrfs_path *path,
4868			       struct btrfs_key *key,
4869			       struct clone_root *clone_root)
4870{
4871	int ret = 0;
4872	struct btrfs_file_extent_item *ei;
4873	u64 offset = key->offset;
4874	u64 len;
4875	u8 type;
4876	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4877
4878	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4879			struct btrfs_file_extent_item);
4880	type = btrfs_file_extent_type(path->nodes[0], ei);
4881	if (type == BTRFS_FILE_EXTENT_INLINE) {
4882		len = btrfs_file_extent_inline_len(path->nodes[0],
4883						   path->slots[0], ei);
4884		/*
4885		 * it is possible the inline item won't cover the whole page,
4886		 * but there may be items after this page.  Make
4887		 * sure to send the whole thing
4888		 */
4889		len = PAGE_ALIGN(len);
4890	} else {
4891		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4892	}
4893
 
 
 
 
4894	if (offset + len > sctx->cur_inode_size)
4895		len = sctx->cur_inode_size - offset;
4896	if (len == 0) {
4897		ret = 0;
4898		goto out;
4899	}
4900
4901	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4902		u64 disk_byte;
4903		u64 data_offset;
4904
4905		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
4906		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
4907		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
4908				  offset, len);
4909	} else {
4910		ret = send_extent_data(sctx, offset, len);
4911	}
 
4912out:
4913	return ret;
4914}
4915
4916static int is_extent_unchanged(struct send_ctx *sctx,
4917			       struct btrfs_path *left_path,
4918			       struct btrfs_key *ekey)
4919{
4920	int ret = 0;
4921	struct btrfs_key key;
4922	struct btrfs_path *path = NULL;
4923	struct extent_buffer *eb;
4924	int slot;
4925	struct btrfs_key found_key;
4926	struct btrfs_file_extent_item *ei;
4927	u64 left_disknr;
4928	u64 right_disknr;
4929	u64 left_offset;
4930	u64 right_offset;
4931	u64 left_offset_fixed;
4932	u64 left_len;
4933	u64 right_len;
4934	u64 left_gen;
4935	u64 right_gen;
4936	u8 left_type;
4937	u8 right_type;
4938
4939	path = alloc_path_for_send();
4940	if (!path)
4941		return -ENOMEM;
4942
4943	eb = left_path->nodes[0];
4944	slot = left_path->slots[0];
4945	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4946	left_type = btrfs_file_extent_type(eb, ei);
4947
4948	if (left_type != BTRFS_FILE_EXTENT_REG) {
4949		ret = 0;
4950		goto out;
4951	}
4952	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4953	left_len = btrfs_file_extent_num_bytes(eb, ei);
4954	left_offset = btrfs_file_extent_offset(eb, ei);
4955	left_gen = btrfs_file_extent_generation(eb, ei);
4956
4957	/*
4958	 * Following comments will refer to these graphics. L is the left
4959	 * extents which we are checking at the moment. 1-8 are the right
4960	 * extents that we iterate.
4961	 *
4962	 *       |-----L-----|
4963	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4964	 *
4965	 *       |-----L-----|
4966	 * |--1--|-2b-|...(same as above)
4967	 *
4968	 * Alternative situation. Happens on files where extents got split.
4969	 *       |-----L-----|
4970	 * |-----------7-----------|-6-|
4971	 *
4972	 * Alternative situation. Happens on files which got larger.
4973	 *       |-----L-----|
4974	 * |-8-|
4975	 * Nothing follows after 8.
4976	 */
4977
4978	key.objectid = ekey->objectid;
4979	key.type = BTRFS_EXTENT_DATA_KEY;
4980	key.offset = ekey->offset;
4981	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4982	if (ret < 0)
4983		goto out;
4984	if (ret) {
4985		ret = 0;
4986		goto out;
4987	}
4988
4989	/*
4990	 * Handle special case where the right side has no extents at all.
4991	 */
4992	eb = path->nodes[0];
4993	slot = path->slots[0];
4994	btrfs_item_key_to_cpu(eb, &found_key, slot);
4995	if (found_key.objectid != key.objectid ||
4996	    found_key.type != key.type) {
4997		/* If we're a hole then just pretend nothing changed */
4998		ret = (left_disknr) ? 0 : 1;
4999		goto out;
5000	}
5001
5002	/*
5003	 * We're now on 2a, 2b or 7.
5004	 */
5005	key = found_key;
5006	while (key.offset < ekey->offset + left_len) {
5007		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5008		right_type = btrfs_file_extent_type(eb, ei);
5009		if (right_type != BTRFS_FILE_EXTENT_REG) {
 
5010			ret = 0;
5011			goto out;
5012		}
5013
5014		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5015		right_len = btrfs_file_extent_num_bytes(eb, ei);
5016		right_offset = btrfs_file_extent_offset(eb, ei);
5017		right_gen = btrfs_file_extent_generation(eb, ei);
 
 
5018
5019		/*
5020		 * Are we at extent 8? If yes, we know the extent is changed.
5021		 * This may only happen on the first iteration.
5022		 */
5023		if (found_key.offset + right_len <= ekey->offset) {
5024			/* If we're a hole just pretend nothing changed */
5025			ret = (left_disknr) ? 0 : 1;
5026			goto out;
5027		}
5028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5029		left_offset_fixed = left_offset;
5030		if (key.offset < ekey->offset) {
5031			/* Fix the right offset for 2a and 7. */
5032			right_offset += ekey->offset - key.offset;
5033		} else {
5034			/* Fix the left offset for all behind 2a and 2b */
5035			left_offset_fixed += key.offset - ekey->offset;
5036		}
5037
5038		/*
5039		 * Check if we have the same extent.
5040		 */
5041		if (left_disknr != right_disknr ||
5042		    left_offset_fixed != right_offset ||
5043		    left_gen != right_gen) {
5044			ret = 0;
5045			goto out;
5046		}
5047
5048		/*
5049		 * Go to the next extent.
5050		 */
5051		ret = btrfs_next_item(sctx->parent_root, path);
5052		if (ret < 0)
5053			goto out;
5054		if (!ret) {
5055			eb = path->nodes[0];
5056			slot = path->slots[0];
5057			btrfs_item_key_to_cpu(eb, &found_key, slot);
5058		}
5059		if (ret || found_key.objectid != key.objectid ||
5060		    found_key.type != key.type) {
5061			key.offset += right_len;
5062			break;
5063		}
5064		if (found_key.offset != key.offset + right_len) {
5065			ret = 0;
5066			goto out;
5067		}
5068		key = found_key;
5069	}
5070
5071	/*
5072	 * We're now behind the left extent (treat as unchanged) or at the end
5073	 * of the right side (treat as changed).
5074	 */
5075	if (key.offset >= ekey->offset + left_len)
5076		ret = 1;
5077	else
5078		ret = 0;
5079
5080
5081out:
5082	btrfs_free_path(path);
5083	return ret;
5084}
5085
5086static int get_last_extent(struct send_ctx *sctx, u64 offset)
5087{
5088	struct btrfs_path *path;
5089	struct btrfs_root *root = sctx->send_root;
5090	struct btrfs_file_extent_item *fi;
5091	struct btrfs_key key;
5092	u64 extent_end;
5093	u8 type;
5094	int ret;
5095
5096	path = alloc_path_for_send();
5097	if (!path)
5098		return -ENOMEM;
5099
5100	sctx->cur_inode_last_extent = 0;
5101
5102	key.objectid = sctx->cur_ino;
5103	key.type = BTRFS_EXTENT_DATA_KEY;
5104	key.offset = offset;
5105	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5106	if (ret < 0)
5107		goto out;
5108	ret = 0;
5109	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5110	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5111		goto out;
5112
5113	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5114			    struct btrfs_file_extent_item);
5115	type = btrfs_file_extent_type(path->nodes[0], fi);
5116	if (type == BTRFS_FILE_EXTENT_INLINE) {
5117		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5118							path->slots[0], fi);
5119		extent_end = ALIGN(key.offset + size,
5120				   sctx->send_root->sectorsize);
5121	} else {
5122		extent_end = key.offset +
5123			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5124	}
5125	sctx->cur_inode_last_extent = extent_end;
5126out:
5127	btrfs_free_path(path);
5128	return ret;
5129}
5130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5131static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5132			   struct btrfs_key *key)
5133{
5134	struct btrfs_file_extent_item *fi;
5135	u64 extent_end;
5136	u8 type;
5137	int ret = 0;
5138
5139	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5140		return 0;
5141
5142	if (sctx->cur_inode_last_extent == (u64)-1) {
5143		ret = get_last_extent(sctx, key->offset - 1);
5144		if (ret)
5145			return ret;
5146	}
5147
5148	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5149			    struct btrfs_file_extent_item);
5150	type = btrfs_file_extent_type(path->nodes[0], fi);
5151	if (type == BTRFS_FILE_EXTENT_INLINE) {
5152		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5153							path->slots[0], fi);
5154		extent_end = ALIGN(key->offset + size,
5155				   sctx->send_root->sectorsize);
5156	} else {
5157		extent_end = key->offset +
5158			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5159	}
5160
5161	if (path->slots[0] == 0 &&
5162	    sctx->cur_inode_last_extent < key->offset) {
5163		/*
5164		 * We might have skipped entire leafs that contained only
5165		 * file extent items for our current inode. These leafs have
5166		 * a generation number smaller (older) than the one in the
5167		 * current leaf and the leaf our last extent came from, and
5168		 * are located between these 2 leafs.
5169		 */
5170		ret = get_last_extent(sctx, key->offset - 1);
5171		if (ret)
5172			return ret;
5173	}
5174
5175	if (sctx->cur_inode_last_extent < key->offset)
5176		ret = send_hole(sctx, key->offset);
 
 
 
 
 
 
 
 
 
5177	sctx->cur_inode_last_extent = extent_end;
5178	return ret;
5179}
5180
5181static int process_extent(struct send_ctx *sctx,
5182			  struct btrfs_path *path,
5183			  struct btrfs_key *key)
5184{
5185	struct clone_root *found_clone = NULL;
5186	int ret = 0;
5187
5188	if (S_ISLNK(sctx->cur_inode_mode))
5189		return 0;
5190
5191	if (sctx->parent_root && !sctx->cur_inode_new) {
5192		ret = is_extent_unchanged(sctx, path, key);
5193		if (ret < 0)
5194			goto out;
5195		if (ret) {
5196			ret = 0;
5197			goto out_hole;
5198		}
5199	} else {
5200		struct btrfs_file_extent_item *ei;
5201		u8 type;
5202
5203		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5204				    struct btrfs_file_extent_item);
5205		type = btrfs_file_extent_type(path->nodes[0], ei);
5206		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5207		    type == BTRFS_FILE_EXTENT_REG) {
5208			/*
5209			 * The send spec does not have a prealloc command yet,
5210			 * so just leave a hole for prealloc'ed extents until
5211			 * we have enough commands queued up to justify rev'ing
5212			 * the send spec.
5213			 */
5214			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5215				ret = 0;
5216				goto out;
5217			}
5218
5219			/* Have a hole, just skip it. */
5220			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5221				ret = 0;
5222				goto out;
5223			}
5224		}
5225	}
5226
5227	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5228			sctx->cur_inode_size, &found_clone);
5229	if (ret != -ENOENT && ret < 0)
5230		goto out;
5231
5232	ret = send_write_or_clone(sctx, path, key, found_clone);
5233	if (ret)
5234		goto out;
5235out_hole:
5236	ret = maybe_send_hole(sctx, path, key);
5237out:
5238	return ret;
5239}
5240
5241static int process_all_extents(struct send_ctx *sctx)
5242{
5243	int ret;
5244	struct btrfs_root *root;
5245	struct btrfs_path *path;
5246	struct btrfs_key key;
5247	struct btrfs_key found_key;
5248	struct extent_buffer *eb;
5249	int slot;
5250
5251	root = sctx->send_root;
5252	path = alloc_path_for_send();
5253	if (!path)
5254		return -ENOMEM;
5255
5256	key.objectid = sctx->cmp_key->objectid;
5257	key.type = BTRFS_EXTENT_DATA_KEY;
5258	key.offset = 0;
5259	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5260	if (ret < 0)
5261		goto out;
5262
5263	while (1) {
5264		eb = path->nodes[0];
5265		slot = path->slots[0];
5266
5267		if (slot >= btrfs_header_nritems(eb)) {
5268			ret = btrfs_next_leaf(root, path);
5269			if (ret < 0) {
5270				goto out;
5271			} else if (ret > 0) {
5272				ret = 0;
5273				break;
5274			}
5275			continue;
5276		}
5277
5278		btrfs_item_key_to_cpu(eb, &found_key, slot);
5279
5280		if (found_key.objectid != key.objectid ||
5281		    found_key.type != key.type) {
5282			ret = 0;
5283			goto out;
5284		}
5285
5286		ret = process_extent(sctx, path, &found_key);
5287		if (ret < 0)
5288			goto out;
5289
5290		path->slots[0]++;
5291	}
5292
5293out:
5294	btrfs_free_path(path);
5295	return ret;
5296}
5297
5298static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5299					   int *pending_move,
5300					   int *refs_processed)
5301{
5302	int ret = 0;
5303
5304	if (sctx->cur_ino == 0)
5305		goto out;
5306	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5307	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5308		goto out;
5309	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5310		goto out;
5311
5312	ret = process_recorded_refs(sctx, pending_move);
5313	if (ret < 0)
5314		goto out;
5315
5316	*refs_processed = 1;
5317out:
5318	return ret;
5319}
5320
5321static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5322{
5323	int ret = 0;
5324	u64 left_mode;
5325	u64 left_uid;
5326	u64 left_gid;
5327	u64 right_mode;
5328	u64 right_uid;
5329	u64 right_gid;
5330	int need_chmod = 0;
5331	int need_chown = 0;
 
5332	int pending_move = 0;
5333	int refs_processed = 0;
5334
 
 
 
5335	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5336					      &refs_processed);
5337	if (ret < 0)
5338		goto out;
5339
5340	/*
5341	 * We have processed the refs and thus need to advance send_progress.
5342	 * Now, calls to get_cur_xxx will take the updated refs of the current
5343	 * inode into account.
5344	 *
5345	 * On the other hand, if our current inode is a directory and couldn't
5346	 * be moved/renamed because its parent was renamed/moved too and it has
5347	 * a higher inode number, we can only move/rename our current inode
5348	 * after we moved/renamed its parent. Therefore in this case operate on
5349	 * the old path (pre move/rename) of our current inode, and the
5350	 * move/rename will be performed later.
5351	 */
5352	if (refs_processed && !pending_move)
5353		sctx->send_progress = sctx->cur_ino + 1;
5354
5355	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5356		goto out;
5357	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5358		goto out;
5359
5360	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5361			&left_mode, &left_uid, &left_gid, NULL);
5362	if (ret < 0)
5363		goto out;
5364
5365	if (!sctx->parent_root || sctx->cur_inode_new) {
5366		need_chown = 1;
5367		if (!S_ISLNK(sctx->cur_inode_mode))
5368			need_chmod = 1;
 
 
5369	} else {
 
 
5370		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5371				NULL, NULL, &right_mode, &right_uid,
5372				&right_gid, NULL);
5373		if (ret < 0)
5374			goto out;
5375
5376		if (left_uid != right_uid || left_gid != right_gid)
5377			need_chown = 1;
5378		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5379			need_chmod = 1;
 
 
 
 
5380	}
5381
5382	if (S_ISREG(sctx->cur_inode_mode)) {
5383		if (need_send_hole(sctx)) {
5384			if (sctx->cur_inode_last_extent == (u64)-1 ||
5385			    sctx->cur_inode_last_extent <
5386			    sctx->cur_inode_size) {
5387				ret = get_last_extent(sctx, (u64)-1);
5388				if (ret)
5389					goto out;
5390			}
5391			if (sctx->cur_inode_last_extent <
5392			    sctx->cur_inode_size) {
5393				ret = send_hole(sctx, sctx->cur_inode_size);
5394				if (ret)
5395					goto out;
5396			}
5397		}
5398		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5399				sctx->cur_inode_size);
5400		if (ret < 0)
5401			goto out;
 
 
 
5402	}
5403
5404	if (need_chown) {
5405		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5406				left_uid, left_gid);
5407		if (ret < 0)
5408			goto out;
5409	}
5410	if (need_chmod) {
5411		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5412				left_mode);
5413		if (ret < 0)
5414			goto out;
5415	}
5416
5417	/*
5418	 * If other directory inodes depended on our current directory
5419	 * inode's move/rename, now do their move/rename operations.
5420	 */
5421	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5422		ret = apply_children_dir_moves(sctx);
5423		if (ret)
5424			goto out;
5425		/*
5426		 * Need to send that every time, no matter if it actually
5427		 * changed between the two trees as we have done changes to
5428		 * the inode before. If our inode is a directory and it's
5429		 * waiting to be moved/renamed, we will send its utimes when
5430		 * it's moved/renamed, therefore we don't need to do it here.
5431		 */
5432		sctx->send_progress = sctx->cur_ino + 1;
5433		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5434		if (ret < 0)
5435			goto out;
5436	}
5437
5438out:
5439	return ret;
5440}
5441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5442static int changed_inode(struct send_ctx *sctx,
5443			 enum btrfs_compare_tree_result result)
5444{
5445	int ret = 0;
5446	struct btrfs_key *key = sctx->cmp_key;
5447	struct btrfs_inode_item *left_ii = NULL;
5448	struct btrfs_inode_item *right_ii = NULL;
5449	u64 left_gen = 0;
5450	u64 right_gen = 0;
5451
5452	sctx->cur_ino = key->objectid;
5453	sctx->cur_inode_new_gen = 0;
5454	sctx->cur_inode_last_extent = (u64)-1;
 
 
5455
5456	/*
5457	 * Set send_progress to current inode. This will tell all get_cur_xxx
5458	 * functions that the current inode's refs are not updated yet. Later,
5459	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5460	 */
5461	sctx->send_progress = sctx->cur_ino;
5462
5463	if (result == BTRFS_COMPARE_TREE_NEW ||
5464	    result == BTRFS_COMPARE_TREE_CHANGED) {
5465		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5466				sctx->left_path->slots[0],
5467				struct btrfs_inode_item);
5468		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5469				left_ii);
5470	} else {
5471		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5472				sctx->right_path->slots[0],
5473				struct btrfs_inode_item);
5474		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5475				right_ii);
5476	}
5477	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5478		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5479				sctx->right_path->slots[0],
5480				struct btrfs_inode_item);
5481
5482		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5483				right_ii);
5484
5485		/*
5486		 * The cur_ino = root dir case is special here. We can't treat
5487		 * the inode as deleted+reused because it would generate a
5488		 * stream that tries to delete/mkdir the root dir.
5489		 */
5490		if (left_gen != right_gen &&
5491		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5492			sctx->cur_inode_new_gen = 1;
5493	}
5494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5495	if (result == BTRFS_COMPARE_TREE_NEW) {
5496		sctx->cur_inode_gen = left_gen;
5497		sctx->cur_inode_new = 1;
5498		sctx->cur_inode_deleted = 0;
5499		sctx->cur_inode_size = btrfs_inode_size(
5500				sctx->left_path->nodes[0], left_ii);
5501		sctx->cur_inode_mode = btrfs_inode_mode(
5502				sctx->left_path->nodes[0], left_ii);
5503		sctx->cur_inode_rdev = btrfs_inode_rdev(
5504				sctx->left_path->nodes[0], left_ii);
5505		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5506			ret = send_create_inode_if_needed(sctx);
5507	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5508		sctx->cur_inode_gen = right_gen;
5509		sctx->cur_inode_new = 0;
5510		sctx->cur_inode_deleted = 1;
5511		sctx->cur_inode_size = btrfs_inode_size(
5512				sctx->right_path->nodes[0], right_ii);
5513		sctx->cur_inode_mode = btrfs_inode_mode(
5514				sctx->right_path->nodes[0], right_ii);
5515	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5516		/*
5517		 * We need to do some special handling in case the inode was
5518		 * reported as changed with a changed generation number. This
5519		 * means that the original inode was deleted and new inode
5520		 * reused the same inum. So we have to treat the old inode as
5521		 * deleted and the new one as new.
5522		 */
5523		if (sctx->cur_inode_new_gen) {
5524			/*
5525			 * First, process the inode as if it was deleted.
5526			 */
5527			sctx->cur_inode_gen = right_gen;
5528			sctx->cur_inode_new = 0;
5529			sctx->cur_inode_deleted = 1;
5530			sctx->cur_inode_size = btrfs_inode_size(
5531					sctx->right_path->nodes[0], right_ii);
5532			sctx->cur_inode_mode = btrfs_inode_mode(
5533					sctx->right_path->nodes[0], right_ii);
5534			ret = process_all_refs(sctx,
5535					BTRFS_COMPARE_TREE_DELETED);
5536			if (ret < 0)
5537				goto out;
5538
5539			/*
5540			 * Now process the inode as if it was new.
5541			 */
5542			sctx->cur_inode_gen = left_gen;
5543			sctx->cur_inode_new = 1;
5544			sctx->cur_inode_deleted = 0;
5545			sctx->cur_inode_size = btrfs_inode_size(
5546					sctx->left_path->nodes[0], left_ii);
5547			sctx->cur_inode_mode = btrfs_inode_mode(
5548					sctx->left_path->nodes[0], left_ii);
5549			sctx->cur_inode_rdev = btrfs_inode_rdev(
5550					sctx->left_path->nodes[0], left_ii);
5551			ret = send_create_inode_if_needed(sctx);
5552			if (ret < 0)
5553				goto out;
5554
5555			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5556			if (ret < 0)
5557				goto out;
5558			/*
5559			 * Advance send_progress now as we did not get into
5560			 * process_recorded_refs_if_needed in the new_gen case.
5561			 */
5562			sctx->send_progress = sctx->cur_ino + 1;
5563
5564			/*
5565			 * Now process all extents and xattrs of the inode as if
5566			 * they were all new.
5567			 */
5568			ret = process_all_extents(sctx);
5569			if (ret < 0)
5570				goto out;
5571			ret = process_all_new_xattrs(sctx);
5572			if (ret < 0)
5573				goto out;
5574		} else {
5575			sctx->cur_inode_gen = left_gen;
5576			sctx->cur_inode_new = 0;
5577			sctx->cur_inode_new_gen = 0;
5578			sctx->cur_inode_deleted = 0;
5579			sctx->cur_inode_size = btrfs_inode_size(
5580					sctx->left_path->nodes[0], left_ii);
5581			sctx->cur_inode_mode = btrfs_inode_mode(
5582					sctx->left_path->nodes[0], left_ii);
5583		}
5584	}
5585
5586out:
5587	return ret;
5588}
5589
5590/*
5591 * We have to process new refs before deleted refs, but compare_trees gives us
5592 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5593 * first and later process them in process_recorded_refs.
5594 * For the cur_inode_new_gen case, we skip recording completely because
5595 * changed_inode did already initiate processing of refs. The reason for this is
5596 * that in this case, compare_tree actually compares the refs of 2 different
5597 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5598 * refs of the right tree as deleted and all refs of the left tree as new.
5599 */
5600static int changed_ref(struct send_ctx *sctx,
5601		       enum btrfs_compare_tree_result result)
5602{
5603	int ret = 0;
5604
5605	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
 
 
 
5606
5607	if (!sctx->cur_inode_new_gen &&
5608	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5609		if (result == BTRFS_COMPARE_TREE_NEW)
5610			ret = record_new_ref(sctx);
5611		else if (result == BTRFS_COMPARE_TREE_DELETED)
5612			ret = record_deleted_ref(sctx);
5613		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5614			ret = record_changed_ref(sctx);
5615	}
5616
5617	return ret;
5618}
5619
5620/*
5621 * Process new/deleted/changed xattrs. We skip processing in the
5622 * cur_inode_new_gen case because changed_inode did already initiate processing
5623 * of xattrs. The reason is the same as in changed_ref
5624 */
5625static int changed_xattr(struct send_ctx *sctx,
5626			 enum btrfs_compare_tree_result result)
5627{
5628	int ret = 0;
5629
5630	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
 
 
 
5631
5632	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5633		if (result == BTRFS_COMPARE_TREE_NEW)
5634			ret = process_new_xattr(sctx);
5635		else if (result == BTRFS_COMPARE_TREE_DELETED)
5636			ret = process_deleted_xattr(sctx);
5637		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5638			ret = process_changed_xattr(sctx);
5639	}
5640
5641	return ret;
5642}
5643
5644/*
5645 * Process new/deleted/changed extents. We skip processing in the
5646 * cur_inode_new_gen case because changed_inode did already initiate processing
5647 * of extents. The reason is the same as in changed_ref
5648 */
5649static int changed_extent(struct send_ctx *sctx,
5650			  enum btrfs_compare_tree_result result)
5651{
5652	int ret = 0;
5653
5654	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5655
5656	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5657		if (result != BTRFS_COMPARE_TREE_DELETED)
5658			ret = process_extent(sctx, sctx->left_path,
5659					sctx->cmp_key);
5660	}
5661
5662	return ret;
5663}
5664
5665static int dir_changed(struct send_ctx *sctx, u64 dir)
5666{
5667	u64 orig_gen, new_gen;
5668	int ret;
5669
5670	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5671			     NULL, NULL);
5672	if (ret)
5673		return ret;
5674
5675	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5676			     NULL, NULL, NULL);
5677	if (ret)
5678		return ret;
5679
5680	return (orig_gen != new_gen) ? 1 : 0;
5681}
5682
5683static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5684			struct btrfs_key *key)
5685{
5686	struct btrfs_inode_extref *extref;
5687	struct extent_buffer *leaf;
5688	u64 dirid = 0, last_dirid = 0;
5689	unsigned long ptr;
5690	u32 item_size;
5691	u32 cur_offset = 0;
5692	int ref_name_len;
5693	int ret = 0;
5694
5695	/* Easy case, just check this one dirid */
5696	if (key->type == BTRFS_INODE_REF_KEY) {
5697		dirid = key->offset;
5698
5699		ret = dir_changed(sctx, dirid);
5700		goto out;
5701	}
5702
5703	leaf = path->nodes[0];
5704	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5705	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5706	while (cur_offset < item_size) {
5707		extref = (struct btrfs_inode_extref *)(ptr +
5708						       cur_offset);
5709		dirid = btrfs_inode_extref_parent(leaf, extref);
5710		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5711		cur_offset += ref_name_len + sizeof(*extref);
5712		if (dirid == last_dirid)
5713			continue;
5714		ret = dir_changed(sctx, dirid);
5715		if (ret)
5716			break;
5717		last_dirid = dirid;
5718	}
5719out:
5720	return ret;
5721}
5722
5723/*
5724 * Updates compare related fields in sctx and simply forwards to the actual
5725 * changed_xxx functions.
5726 */
5727static int changed_cb(struct btrfs_root *left_root,
5728		      struct btrfs_root *right_root,
5729		      struct btrfs_path *left_path,
5730		      struct btrfs_path *right_path,
5731		      struct btrfs_key *key,
5732		      enum btrfs_compare_tree_result result,
5733		      void *ctx)
5734{
5735	int ret = 0;
5736	struct send_ctx *sctx = ctx;
5737
5738	if (result == BTRFS_COMPARE_TREE_SAME) {
5739		if (key->type == BTRFS_INODE_REF_KEY ||
5740		    key->type == BTRFS_INODE_EXTREF_KEY) {
5741			ret = compare_refs(sctx, left_path, key);
5742			if (!ret)
5743				return 0;
5744			if (ret < 0)
5745				return ret;
5746		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5747			return maybe_send_hole(sctx, left_path, key);
5748		} else {
5749			return 0;
5750		}
5751		result = BTRFS_COMPARE_TREE_CHANGED;
5752		ret = 0;
5753	}
5754
5755	sctx->left_path = left_path;
5756	sctx->right_path = right_path;
5757	sctx->cmp_key = key;
5758
5759	ret = finish_inode_if_needed(sctx, 0);
5760	if (ret < 0)
5761		goto out;
5762
5763	/* Ignore non-FS objects */
5764	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5765	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5766		goto out;
5767
5768	if (key->type == BTRFS_INODE_ITEM_KEY)
5769		ret = changed_inode(sctx, result);
5770	else if (key->type == BTRFS_INODE_REF_KEY ||
5771		 key->type == BTRFS_INODE_EXTREF_KEY)
5772		ret = changed_ref(sctx, result);
5773	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5774		ret = changed_xattr(sctx, result);
5775	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5776		ret = changed_extent(sctx, result);
 
 
5777
5778out:
5779	return ret;
5780}
5781
5782static int full_send_tree(struct send_ctx *sctx)
5783{
5784	int ret;
5785	struct btrfs_root *send_root = sctx->send_root;
5786	struct btrfs_key key;
5787	struct btrfs_key found_key;
5788	struct btrfs_path *path;
5789	struct extent_buffer *eb;
5790	int slot;
5791
5792	path = alloc_path_for_send();
5793	if (!path)
5794		return -ENOMEM;
5795
5796	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5797	key.type = BTRFS_INODE_ITEM_KEY;
5798	key.offset = 0;
5799
5800	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5801	if (ret < 0)
5802		goto out;
5803	if (ret)
5804		goto out_finish;
5805
5806	while (1) {
5807		eb = path->nodes[0];
5808		slot = path->slots[0];
5809		btrfs_item_key_to_cpu(eb, &found_key, slot);
5810
5811		ret = changed_cb(send_root, NULL, path, NULL,
5812				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5813		if (ret < 0)
5814			goto out;
5815
5816		key.objectid = found_key.objectid;
5817		key.type = found_key.type;
5818		key.offset = found_key.offset + 1;
5819
5820		ret = btrfs_next_item(send_root, path);
5821		if (ret < 0)
5822			goto out;
5823		if (ret) {
5824			ret  = 0;
5825			break;
5826		}
5827	}
5828
5829out_finish:
5830	ret = finish_inode_if_needed(sctx, 1);
5831
5832out:
5833	btrfs_free_path(path);
5834	return ret;
5835}
5836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5837static int send_subvol(struct send_ctx *sctx)
5838{
5839	int ret;
5840
5841	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5842		ret = send_header(sctx);
5843		if (ret < 0)
5844			goto out;
5845	}
5846
5847	ret = send_subvol_begin(sctx);
5848	if (ret < 0)
5849		goto out;
5850
5851	if (sctx->parent_root) {
5852		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5853				changed_cb, sctx);
5854		if (ret < 0)
5855			goto out;
5856		ret = finish_inode_if_needed(sctx, 1);
5857		if (ret < 0)
5858			goto out;
5859	} else {
5860		ret = full_send_tree(sctx);
5861		if (ret < 0)
5862			goto out;
5863	}
5864
5865out:
5866	free_recorded_refs(sctx);
5867	return ret;
5868}
5869
5870/*
5871 * If orphan cleanup did remove any orphans from a root, it means the tree
5872 * was modified and therefore the commit root is not the same as the current
5873 * root anymore. This is a problem, because send uses the commit root and
5874 * therefore can see inode items that don't exist in the current root anymore,
5875 * and for example make calls to btrfs_iget, which will do tree lookups based
5876 * on the current root and not on the commit root. Those lookups will fail,
5877 * returning a -ESTALE error, and making send fail with that error. So make
5878 * sure a send does not see any orphans we have just removed, and that it will
5879 * see the same inodes regardless of whether a transaction commit happened
5880 * before it started (meaning that the commit root will be the same as the
5881 * current root) or not.
5882 */
5883static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5884{
5885	int i;
5886	struct btrfs_trans_handle *trans = NULL;
5887
5888again:
5889	if (sctx->parent_root &&
5890	    sctx->parent_root->node != sctx->parent_root->commit_root)
5891		goto commit_trans;
5892
5893	for (i = 0; i < sctx->clone_roots_cnt; i++)
5894		if (sctx->clone_roots[i].root->node !=
5895		    sctx->clone_roots[i].root->commit_root)
5896			goto commit_trans;
5897
5898	if (trans)
5899		return btrfs_end_transaction(trans, sctx->send_root);
5900
5901	return 0;
5902
5903commit_trans:
5904	/* Use any root, all fs roots will get their commit roots updated. */
5905	if (!trans) {
5906		trans = btrfs_join_transaction(sctx->send_root);
5907		if (IS_ERR(trans))
5908			return PTR_ERR(trans);
5909		goto again;
5910	}
5911
5912	return btrfs_commit_transaction(trans, sctx->send_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5913}
5914
5915static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5916{
5917	spin_lock(&root->root_item_lock);
5918	root->send_in_progress--;
5919	/*
5920	 * Not much left to do, we don't know why it's unbalanced and
5921	 * can't blindly reset it to 0.
5922	 */
5923	if (root->send_in_progress < 0)
5924		btrfs_err(root->fs_info,
5925			"send_in_progres unbalanced %d root %llu",
5926			root->send_in_progress, root->root_key.objectid);
5927	spin_unlock(&root->root_item_lock);
5928}
5929
5930long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
 
 
 
 
 
 
 
5931{
5932	int ret = 0;
5933	struct btrfs_root *send_root;
 
5934	struct btrfs_root *clone_root;
5935	struct btrfs_fs_info *fs_info;
5936	struct btrfs_ioctl_send_args *arg = NULL;
5937	struct btrfs_key key;
5938	struct send_ctx *sctx = NULL;
5939	u32 i;
5940	u64 *clone_sources_tmp = NULL;
5941	int clone_sources_to_rollback = 0;
 
5942	int sort_clone_roots = 0;
5943	int index;
5944
5945	if (!capable(CAP_SYS_ADMIN))
5946		return -EPERM;
5947
5948	send_root = BTRFS_I(file_inode(mnt_file))->root;
5949	fs_info = send_root->fs_info;
5950
5951	/*
5952	 * The subvolume must remain read-only during send, protect against
5953	 * making it RW. This also protects against deletion.
5954	 */
5955	spin_lock(&send_root->root_item_lock);
 
 
 
 
 
5956	send_root->send_in_progress++;
5957	spin_unlock(&send_root->root_item_lock);
5958
5959	/*
5960	 * This is done when we lookup the root, it should already be complete
5961	 * by the time we get here.
5962	 */
5963	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5964
5965	/*
5966	 * Userspace tools do the checks and warn the user if it's
5967	 * not RO.
5968	 */
5969	if (!btrfs_root_readonly(send_root)) {
5970		ret = -EPERM;
5971		goto out;
5972	}
5973
5974	arg = memdup_user(arg_, sizeof(*arg));
5975	if (IS_ERR(arg)) {
5976		ret = PTR_ERR(arg);
5977		arg = NULL;
 
 
 
 
5978		goto out;
5979	}
5980
5981	if (!access_ok(VERIFY_READ, arg->clone_sources,
5982			sizeof(*arg->clone_sources) *
5983			arg->clone_sources_count)) {
5984		ret = -EFAULT;
5985		goto out;
5986	}
5987
5988	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5989		ret = -EINVAL;
5990		goto out;
5991	}
5992
5993	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
5994	if (!sctx) {
5995		ret = -ENOMEM;
5996		goto out;
5997	}
5998
5999	INIT_LIST_HEAD(&sctx->new_refs);
6000	INIT_LIST_HEAD(&sctx->deleted_refs);
6001	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6002	INIT_LIST_HEAD(&sctx->name_cache_list);
6003
6004	sctx->flags = arg->flags;
6005
6006	sctx->send_filp = fget(arg->send_fd);
6007	if (!sctx->send_filp) {
6008		ret = -EBADF;
6009		goto out;
6010	}
6011
6012	sctx->send_root = send_root;
6013	/*
6014	 * Unlikely but possible, if the subvolume is marked for deletion but
6015	 * is slow to remove the directory entry, send can still be started
6016	 */
6017	if (btrfs_root_dead(sctx->send_root)) {
6018		ret = -EPERM;
6019		goto out;
6020	}
6021
6022	sctx->clone_roots_cnt = arg->clone_sources_count;
6023
6024	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6025	sctx->send_buf = vmalloc(sctx->send_max_size);
6026	if (!sctx->send_buf) {
6027		ret = -ENOMEM;
6028		goto out;
6029	}
6030
6031	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6032	if (!sctx->read_buf) {
6033		ret = -ENOMEM;
6034		goto out;
6035	}
6036
6037	sctx->pending_dir_moves = RB_ROOT;
6038	sctx->waiting_dir_moves = RB_ROOT;
6039	sctx->orphan_dirs = RB_ROOT;
6040
6041	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
6042			(arg->clone_sources_count + 1));
 
6043	if (!sctx->clone_roots) {
6044		ret = -ENOMEM;
6045		goto out;
6046	}
6047
 
 
6048	if (arg->clone_sources_count) {
6049		clone_sources_tmp = vmalloc(arg->clone_sources_count *
6050				sizeof(*arg->clone_sources));
6051		if (!clone_sources_tmp) {
6052			ret = -ENOMEM;
6053			goto out;
6054		}
6055
6056		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6057				arg->clone_sources_count *
6058				sizeof(*arg->clone_sources));
6059		if (ret) {
6060			ret = -EFAULT;
6061			goto out;
6062		}
6063
6064		for (i = 0; i < arg->clone_sources_count; i++) {
6065			key.objectid = clone_sources_tmp[i];
6066			key.type = BTRFS_ROOT_ITEM_KEY;
6067			key.offset = (u64)-1;
6068
6069			index = srcu_read_lock(&fs_info->subvol_srcu);
6070
6071			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6072			if (IS_ERR(clone_root)) {
6073				srcu_read_unlock(&fs_info->subvol_srcu, index);
6074				ret = PTR_ERR(clone_root);
6075				goto out;
6076			}
6077			spin_lock(&clone_root->root_item_lock);
6078			if (!btrfs_root_readonly(clone_root) ||
6079			    btrfs_root_dead(clone_root)) {
6080				spin_unlock(&clone_root->root_item_lock);
6081				srcu_read_unlock(&fs_info->subvol_srcu, index);
6082				ret = -EPERM;
6083				goto out;
6084			}
 
 
 
 
 
 
 
6085			clone_root->send_in_progress++;
6086			spin_unlock(&clone_root->root_item_lock);
6087			srcu_read_unlock(&fs_info->subvol_srcu, index);
6088
6089			sctx->clone_roots[i].root = clone_root;
6090			clone_sources_to_rollback = i + 1;
6091		}
6092		vfree(clone_sources_tmp);
6093		clone_sources_tmp = NULL;
6094	}
6095
6096	if (arg->parent_root) {
6097		key.objectid = arg->parent_root;
6098		key.type = BTRFS_ROOT_ITEM_KEY;
6099		key.offset = (u64)-1;
6100
6101		index = srcu_read_lock(&fs_info->subvol_srcu);
6102
6103		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6104		if (IS_ERR(sctx->parent_root)) {
6105			srcu_read_unlock(&fs_info->subvol_srcu, index);
6106			ret = PTR_ERR(sctx->parent_root);
6107			goto out;
6108		}
6109
6110		spin_lock(&sctx->parent_root->root_item_lock);
6111		sctx->parent_root->send_in_progress++;
6112		if (!btrfs_root_readonly(sctx->parent_root) ||
6113				btrfs_root_dead(sctx->parent_root)) {
6114			spin_unlock(&sctx->parent_root->root_item_lock);
6115			srcu_read_unlock(&fs_info->subvol_srcu, index);
6116			ret = -EPERM;
6117			goto out;
6118		}
 
 
 
 
 
 
 
6119		spin_unlock(&sctx->parent_root->root_item_lock);
6120
6121		srcu_read_unlock(&fs_info->subvol_srcu, index);
6122	}
6123
6124	/*
6125	 * Clones from send_root are allowed, but only if the clone source
6126	 * is behind the current send position. This is checked while searching
6127	 * for possible clone sources.
6128	 */
6129	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6130
6131	/* We do a bsearch later */
6132	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6133			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6134			NULL);
6135	sort_clone_roots = 1;
6136
 
 
 
 
6137	ret = ensure_commit_roots_uptodate(sctx);
6138	if (ret)
6139		goto out;
6140
 
 
 
 
 
 
 
 
 
 
 
6141	current->journal_info = BTRFS_SEND_TRANS_STUB;
6142	ret = send_subvol(sctx);
6143	current->journal_info = NULL;
 
 
 
6144	if (ret < 0)
6145		goto out;
6146
6147	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6148		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6149		if (ret < 0)
6150			goto out;
6151		ret = send_cmd(sctx);
6152		if (ret < 0)
6153			goto out;
6154	}
6155
6156out:
6157	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6158	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6159		struct rb_node *n;
6160		struct pending_dir_move *pm;
6161
6162		n = rb_first(&sctx->pending_dir_moves);
6163		pm = rb_entry(n, struct pending_dir_move, node);
6164		while (!list_empty(&pm->list)) {
6165			struct pending_dir_move *pm2;
6166
6167			pm2 = list_first_entry(&pm->list,
6168					       struct pending_dir_move, list);
6169			free_pending_move(sctx, pm2);
6170		}
6171		free_pending_move(sctx, pm);
6172	}
6173
6174	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6175	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6176		struct rb_node *n;
6177		struct waiting_dir_move *dm;
6178
6179		n = rb_first(&sctx->waiting_dir_moves);
6180		dm = rb_entry(n, struct waiting_dir_move, node);
6181		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6182		kfree(dm);
6183	}
6184
6185	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6186	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6187		struct rb_node *n;
6188		struct orphan_dir_info *odi;
6189
6190		n = rb_first(&sctx->orphan_dirs);
6191		odi = rb_entry(n, struct orphan_dir_info, node);
6192		free_orphan_dir_info(sctx, odi);
6193	}
6194
6195	if (sort_clone_roots) {
6196		for (i = 0; i < sctx->clone_roots_cnt; i++)
6197			btrfs_root_dec_send_in_progress(
6198					sctx->clone_roots[i].root);
6199	} else {
6200		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6201			btrfs_root_dec_send_in_progress(
6202					sctx->clone_roots[i].root);
6203
6204		btrfs_root_dec_send_in_progress(send_root);
6205	}
6206	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6207		btrfs_root_dec_send_in_progress(sctx->parent_root);
6208
6209	kfree(arg);
6210	vfree(clone_sources_tmp);
6211
6212	if (sctx) {
6213		if (sctx->send_filp)
6214			fput(sctx->send_filp);
6215
6216		vfree(sctx->clone_roots);
6217		vfree(sctx->send_buf);
6218		vfree(sctx->read_buf);
6219
6220		name_cache_free(sctx);
6221
6222		kfree(sctx);
6223	}
6224
6225	return ret;
6226}