Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 STRATO.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
 
  10#include <linux/slab.h>
  11#include <linux/workqueue.h>
  12#include "ctree.h"
  13#include "volumes.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "dev-replace.h"
  17#include "block-group.h"
  18
  19#undef DEBUG
  20
  21/*
  22 * This is the implementation for the generic read ahead framework.
  23 *
  24 * To trigger a readahead, btrfs_reada_add must be called. It will start
  25 * a read ahead for the given range [start, end) on tree root. The returned
  26 * handle can either be used to wait on the readahead to finish
  27 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
  28 *
  29 * The read ahead works as follows:
  30 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
  31 * reada_start_machine will then search for extents to prefetch and trigger
  32 * some reads. When a read finishes for a node, all contained node/leaf
  33 * pointers that lie in the given range will also be enqueued. The reads will
  34 * be triggered in sequential order, thus giving a big win over a naive
  35 * enumeration. It will also make use of multi-device layouts. Each disk
  36 * will have its on read pointer and all disks will by utilized in parallel.
  37 * Also will no two disks read both sides of a mirror simultaneously, as this
  38 * would waste seeking capacity. Instead both disks will read different parts
  39 * of the filesystem.
  40 * Any number of readaheads can be started in parallel. The read order will be
  41 * determined globally, i.e. 2 parallel readaheads will normally finish faster
  42 * than the 2 started one after another.
  43 */
  44
  45#define MAX_IN_FLIGHT 6
  46
  47struct reada_extctl {
  48	struct list_head	list;
  49	struct reada_control	*rc;
  50	u64			generation;
  51};
  52
  53struct reada_extent {
  54	u64			logical;
  55	struct btrfs_key	top;
 
  56	struct list_head	extctl;
  57	int 			refcnt;
  58	spinlock_t		lock;
  59	struct reada_zone	*zones[BTRFS_MAX_MIRRORS];
  60	int			nzones;
  61	int			scheduled;
  62};
  63
  64struct reada_zone {
  65	u64			start;
  66	u64			end;
  67	u64			elems;
  68	struct list_head	list;
  69	spinlock_t		lock;
  70	int			locked;
  71	struct btrfs_device	*device;
  72	struct btrfs_device	*devs[BTRFS_MAX_MIRRORS]; /* full list, incl
  73							   * self */
  74	int			ndevs;
  75	struct kref		refcnt;
  76};
  77
  78struct reada_machine_work {
  79	struct btrfs_work	work;
  80	struct btrfs_fs_info	*fs_info;
  81};
  82
  83static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
  84static void reada_control_release(struct kref *kref);
  85static void reada_zone_release(struct kref *kref);
  86static void reada_start_machine(struct btrfs_fs_info *fs_info);
  87static void __reada_start_machine(struct btrfs_fs_info *fs_info);
  88
  89static int reada_add_block(struct reada_control *rc, u64 logical,
  90			   struct btrfs_key *top, u64 generation);
  91
  92/* recurses */
  93/* in case of err, eb might be NULL */
  94static void __readahead_hook(struct btrfs_fs_info *fs_info,
  95			     struct reada_extent *re, struct extent_buffer *eb,
  96			     int err)
  97{
 
  98	int nritems;
  99	int i;
 100	u64 bytenr;
 101	u64 generation;
 102	struct list_head list;
 103
 
 
 
 104	spin_lock(&re->lock);
 105	/*
 106	 * just take the full list from the extent. afterwards we
 107	 * don't need the lock anymore
 108	 */
 109	list_replace_init(&re->extctl, &list);
 110	re->scheduled = 0;
 111	spin_unlock(&re->lock);
 112
 113	/*
 114	 * this is the error case, the extent buffer has not been
 115	 * read correctly. We won't access anything from it and
 116	 * just cleanup our data structures. Effectively this will
 117	 * cut the branch below this node from read ahead.
 118	 */
 119	if (err)
 120		goto cleanup;
 121
 122	/*
 123	 * FIXME: currently we just set nritems to 0 if this is a leaf,
 124	 * effectively ignoring the content. In a next step we could
 125	 * trigger more readahead depending from the content, e.g.
 126	 * fetch the checksums for the extents in the leaf.
 127	 */
 128	if (!btrfs_header_level(eb))
 129		goto cleanup;
 130
 131	nritems = btrfs_header_nritems(eb);
 132	generation = btrfs_header_generation(eb);
 133	for (i = 0; i < nritems; i++) {
 134		struct reada_extctl *rec;
 135		u64 n_gen;
 136		struct btrfs_key key;
 137		struct btrfs_key next_key;
 138
 139		btrfs_node_key_to_cpu(eb, &key, i);
 140		if (i + 1 < nritems)
 141			btrfs_node_key_to_cpu(eb, &next_key, i + 1);
 142		else
 143			next_key = re->top;
 144		bytenr = btrfs_node_blockptr(eb, i);
 145		n_gen = btrfs_node_ptr_generation(eb, i);
 146
 147		list_for_each_entry(rec, &list, list) {
 148			struct reada_control *rc = rec->rc;
 149
 150			/*
 151			 * if the generation doesn't match, just ignore this
 152			 * extctl. This will probably cut off a branch from
 153			 * prefetch. Alternatively one could start a new (sub-)
 154			 * prefetch for this branch, starting again from root.
 155			 * FIXME: move the generation check out of this loop
 156			 */
 157#ifdef DEBUG
 158			if (rec->generation != generation) {
 159				btrfs_debug(fs_info,
 160					    "generation mismatch for (%llu,%d,%llu) %llu != %llu",
 161					    key.objectid, key.type, key.offset,
 162					    rec->generation, generation);
 163			}
 164#endif
 165			if (rec->generation == generation &&
 166			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
 167			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
 168				reada_add_block(rc, bytenr, &next_key, n_gen);
 169		}
 170	}
 171
 172cleanup:
 173	/*
 174	 * free extctl records
 175	 */
 176	while (!list_empty(&list)) {
 177		struct reada_control *rc;
 178		struct reada_extctl *rec;
 179
 180		rec = list_first_entry(&list, struct reada_extctl, list);
 181		list_del(&rec->list);
 182		rc = rec->rc;
 183		kfree(rec);
 184
 185		kref_get(&rc->refcnt);
 186		if (atomic_dec_and_test(&rc->elems)) {
 187			kref_put(&rc->refcnt, reada_control_release);
 188			wake_up(&rc->wait);
 189		}
 190		kref_put(&rc->refcnt, reada_control_release);
 191
 192		reada_extent_put(fs_info, re);	/* one ref for each entry */
 193	}
 194
 195	return;
 196}
 197
 198int btree_readahead_hook(struct extent_buffer *eb, int err)
 
 
 
 
 
 199{
 200	struct btrfs_fs_info *fs_info = eb->fs_info;
 201	int ret = 0;
 202	struct reada_extent *re;
 203
 204	/* find extent */
 205	spin_lock(&fs_info->reada_lock);
 206	re = radix_tree_lookup(&fs_info->reada_tree,
 207			       eb->start >> PAGE_SHIFT);
 208	if (re)
 209		re->refcnt++;
 210	spin_unlock(&fs_info->reada_lock);
 211	if (!re) {
 212		ret = -1;
 213		goto start_machine;
 214	}
 215
 216	__readahead_hook(fs_info, re, eb, err);
 217	reada_extent_put(fs_info, re);	/* our ref */
 218
 219start_machine:
 220	reada_start_machine(fs_info);
 221	return ret;
 222}
 223
 224static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
 
 225					  struct btrfs_bio *bbio)
 226{
 227	struct btrfs_fs_info *fs_info = dev->fs_info;
 228	int ret;
 229	struct reada_zone *zone;
 230	struct btrfs_block_group_cache *cache = NULL;
 231	u64 start;
 232	u64 end;
 233	int i;
 234
 235	zone = NULL;
 236	spin_lock(&fs_info->reada_lock);
 237	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 238				     logical >> PAGE_SHIFT, 1);
 239	if (ret == 1 && logical >= zone->start && logical <= zone->end) {
 240		kref_get(&zone->refcnt);
 241		spin_unlock(&fs_info->reada_lock);
 242		return zone;
 243	}
 244
 245	spin_unlock(&fs_info->reada_lock);
 246
 247	cache = btrfs_lookup_block_group(fs_info, logical);
 248	if (!cache)
 249		return NULL;
 250
 251	start = cache->key.objectid;
 252	end = start + cache->key.offset - 1;
 253	btrfs_put_block_group(cache);
 254
 255	zone = kzalloc(sizeof(*zone), GFP_KERNEL);
 256	if (!zone)
 257		return NULL;
 258
 259	ret = radix_tree_preload(GFP_KERNEL);
 260	if (ret) {
 261		kfree(zone);
 262		return NULL;
 263	}
 264
 265	zone->start = start;
 266	zone->end = end;
 267	INIT_LIST_HEAD(&zone->list);
 268	spin_lock_init(&zone->lock);
 269	zone->locked = 0;
 270	kref_init(&zone->refcnt);
 271	zone->elems = 0;
 272	zone->device = dev; /* our device always sits at index 0 */
 273	for (i = 0; i < bbio->num_stripes; ++i) {
 274		/* bounds have already been checked */
 275		zone->devs[i] = bbio->stripes[i].dev;
 276	}
 277	zone->ndevs = bbio->num_stripes;
 278
 279	spin_lock(&fs_info->reada_lock);
 280	ret = radix_tree_insert(&dev->reada_zones,
 281				(unsigned long)(zone->end >> PAGE_SHIFT),
 282				zone);
 283
 284	if (ret == -EEXIST) {
 285		kfree(zone);
 286		ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 287					     logical >> PAGE_SHIFT, 1);
 288		if (ret == 1 && logical >= zone->start && logical <= zone->end)
 289			kref_get(&zone->refcnt);
 290		else
 291			zone = NULL;
 292	}
 293	spin_unlock(&fs_info->reada_lock);
 294	radix_tree_preload_end();
 295
 296	return zone;
 297}
 298
 299static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
 300					      u64 logical,
 301					      struct btrfs_key *top)
 302{
 303	int ret;
 304	struct reada_extent *re = NULL;
 305	struct reada_extent *re_exist = NULL;
 
 306	struct btrfs_bio *bbio = NULL;
 307	struct btrfs_device *dev;
 308	struct btrfs_device *prev_dev;
 
 309	u64 length;
 310	int real_stripes;
 311	int nzones = 0;
 312	unsigned long index = logical >> PAGE_SHIFT;
 313	int dev_replace_is_ongoing;
 314	int have_zone = 0;
 315
 316	spin_lock(&fs_info->reada_lock);
 317	re = radix_tree_lookup(&fs_info->reada_tree, index);
 318	if (re)
 319		re->refcnt++;
 320	spin_unlock(&fs_info->reada_lock);
 321
 322	if (re)
 323		return re;
 324
 325	re = kzalloc(sizeof(*re), GFP_KERNEL);
 326	if (!re)
 327		return NULL;
 328
 
 329	re->logical = logical;
 330	re->top = *top;
 331	INIT_LIST_HEAD(&re->extctl);
 332	spin_lock_init(&re->lock);
 333	re->refcnt = 1;
 334
 335	/*
 336	 * map block
 337	 */
 338	length = fs_info->nodesize;
 339	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
 340			&length, &bbio, 0);
 341	if (ret || !bbio || length < fs_info->nodesize)
 342		goto error;
 343
 344	if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
 345		btrfs_err(fs_info,
 346			   "readahead: more than %d copies not supported",
 347			   BTRFS_MAX_MIRRORS);
 348		goto error;
 349	}
 350
 351	real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 352	for (nzones = 0; nzones < real_stripes; ++nzones) {
 353		struct reada_zone *zone;
 354
 355		dev = bbio->stripes[nzones].dev;
 356
 357		/* cannot read ahead on missing device. */
 358		if (!dev->bdev)
 359			continue;
 360
 361		zone = reada_find_zone(dev, logical, bbio);
 362		if (!zone)
 363			continue;
 364
 365		re->zones[re->nzones++] = zone;
 366		spin_lock(&zone->lock);
 367		if (!zone->elems)
 368			kref_get(&zone->refcnt);
 369		++zone->elems;
 370		spin_unlock(&zone->lock);
 371		spin_lock(&fs_info->reada_lock);
 372		kref_put(&zone->refcnt, reada_zone_release);
 373		spin_unlock(&fs_info->reada_lock);
 374	}
 375	if (re->nzones == 0) {
 376		/* not a single zone found, error and out */
 377		goto error;
 378	}
 379
 380	/* Insert extent in reada tree + all per-device trees, all or nothing */
 381	down_read(&fs_info->dev_replace.rwsem);
 382	ret = radix_tree_preload(GFP_KERNEL);
 383	if (ret) {
 384		up_read(&fs_info->dev_replace.rwsem);
 385		goto error;
 386	}
 387
 388	spin_lock(&fs_info->reada_lock);
 389	ret = radix_tree_insert(&fs_info->reada_tree, index, re);
 390	if (ret == -EEXIST) {
 391		re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
 
 392		re_exist->refcnt++;
 393		spin_unlock(&fs_info->reada_lock);
 394		radix_tree_preload_end();
 395		up_read(&fs_info->dev_replace.rwsem);
 396		goto error;
 397	}
 398	if (ret) {
 399		spin_unlock(&fs_info->reada_lock);
 400		radix_tree_preload_end();
 401		up_read(&fs_info->dev_replace.rwsem);
 402		goto error;
 403	}
 404	radix_tree_preload_end();
 405	prev_dev = NULL;
 406	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
 407			&fs_info->dev_replace);
 408	for (nzones = 0; nzones < re->nzones; ++nzones) {
 409		dev = re->zones[nzones]->device;
 410
 411		if (dev == prev_dev) {
 412			/*
 413			 * in case of DUP, just add the first zone. As both
 414			 * are on the same device, there's nothing to gain
 415			 * from adding both.
 416			 * Also, it wouldn't work, as the tree is per device
 417			 * and adding would fail with EEXIST
 418			 */
 419			continue;
 420		}
 421		if (!dev->bdev)
 422			continue;
 423
 424		if (dev_replace_is_ongoing &&
 425		    dev == fs_info->dev_replace.tgtdev) {
 426			/*
 427			 * as this device is selected for reading only as
 428			 * a last resort, skip it for read ahead.
 429			 */
 430			continue;
 431		}
 432		prev_dev = dev;
 433		ret = radix_tree_insert(&dev->reada_extents, index, re);
 434		if (ret) {
 435			while (--nzones >= 0) {
 436				dev = re->zones[nzones]->device;
 437				BUG_ON(dev == NULL);
 438				/* ignore whether the entry was inserted */
 439				radix_tree_delete(&dev->reada_extents, index);
 440			}
 
 441			radix_tree_delete(&fs_info->reada_tree, index);
 442			spin_unlock(&fs_info->reada_lock);
 443			up_read(&fs_info->dev_replace.rwsem);
 444			goto error;
 445		}
 446		have_zone = 1;
 447	}
 448	spin_unlock(&fs_info->reada_lock);
 449	up_read(&fs_info->dev_replace.rwsem);
 450
 451	if (!have_zone)
 452		goto error;
 453
 454	btrfs_put_bbio(bbio);
 455	return re;
 456
 457error:
 458	for (nzones = 0; nzones < re->nzones; ++nzones) {
 459		struct reada_zone *zone;
 460
 461		zone = re->zones[nzones];
 462		kref_get(&zone->refcnt);
 463		spin_lock(&zone->lock);
 464		--zone->elems;
 465		if (zone->elems == 0) {
 466			/*
 467			 * no fs_info->reada_lock needed, as this can't be
 468			 * the last ref
 469			 */
 470			kref_put(&zone->refcnt, reada_zone_release);
 471		}
 472		spin_unlock(&zone->lock);
 473
 474		spin_lock(&fs_info->reada_lock);
 475		kref_put(&zone->refcnt, reada_zone_release);
 476		spin_unlock(&fs_info->reada_lock);
 477	}
 478	btrfs_put_bbio(bbio);
 479	kfree(re);
 480	return re_exist;
 481}
 482
 483static void reada_extent_put(struct btrfs_fs_info *fs_info,
 484			     struct reada_extent *re)
 485{
 486	int i;
 487	unsigned long index = re->logical >> PAGE_SHIFT;
 488
 489	spin_lock(&fs_info->reada_lock);
 490	if (--re->refcnt) {
 491		spin_unlock(&fs_info->reada_lock);
 492		return;
 493	}
 494
 495	radix_tree_delete(&fs_info->reada_tree, index);
 496	for (i = 0; i < re->nzones; ++i) {
 497		struct reada_zone *zone = re->zones[i];
 498
 499		radix_tree_delete(&zone->device->reada_extents, index);
 500	}
 501
 502	spin_unlock(&fs_info->reada_lock);
 503
 504	for (i = 0; i < re->nzones; ++i) {
 505		struct reada_zone *zone = re->zones[i];
 506
 507		kref_get(&zone->refcnt);
 508		spin_lock(&zone->lock);
 509		--zone->elems;
 510		if (zone->elems == 0) {
 511			/* no fs_info->reada_lock needed, as this can't be
 512			 * the last ref */
 513			kref_put(&zone->refcnt, reada_zone_release);
 514		}
 515		spin_unlock(&zone->lock);
 516
 517		spin_lock(&fs_info->reada_lock);
 518		kref_put(&zone->refcnt, reada_zone_release);
 519		spin_unlock(&fs_info->reada_lock);
 520	}
 521
 522	kfree(re);
 523}
 524
 525static void reada_zone_release(struct kref *kref)
 526{
 527	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
 528
 529	radix_tree_delete(&zone->device->reada_zones,
 530			  zone->end >> PAGE_SHIFT);
 531
 532	kfree(zone);
 533}
 534
 535static void reada_control_release(struct kref *kref)
 536{
 537	struct reada_control *rc = container_of(kref, struct reada_control,
 538						refcnt);
 539
 540	kfree(rc);
 541}
 542
 543static int reada_add_block(struct reada_control *rc, u64 logical,
 544			   struct btrfs_key *top, u64 generation)
 545{
 546	struct btrfs_fs_info *fs_info = rc->fs_info;
 547	struct reada_extent *re;
 548	struct reada_extctl *rec;
 549
 550	/* takes one ref */
 551	re = reada_find_extent(fs_info, logical, top);
 552	if (!re)
 553		return -1;
 554
 555	rec = kzalloc(sizeof(*rec), GFP_KERNEL);
 556	if (!rec) {
 557		reada_extent_put(fs_info, re);
 558		return -ENOMEM;
 559	}
 560
 561	rec->rc = rc;
 562	rec->generation = generation;
 563	atomic_inc(&rc->elems);
 564
 565	spin_lock(&re->lock);
 566	list_add_tail(&rec->list, &re->extctl);
 567	spin_unlock(&re->lock);
 568
 569	/* leave the ref on the extent */
 570
 571	return 0;
 572}
 573
 574/*
 575 * called with fs_info->reada_lock held
 576 */
 577static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
 578{
 579	int i;
 580	unsigned long index = zone->end >> PAGE_SHIFT;
 581
 582	for (i = 0; i < zone->ndevs; ++i) {
 583		struct reada_zone *peer;
 584		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
 585		if (peer && peer->device != zone->device)
 586			peer->locked = lock;
 587	}
 588}
 589
 590/*
 591 * called with fs_info->reada_lock held
 592 */
 593static int reada_pick_zone(struct btrfs_device *dev)
 594{
 595	struct reada_zone *top_zone = NULL;
 596	struct reada_zone *top_locked_zone = NULL;
 597	u64 top_elems = 0;
 598	u64 top_locked_elems = 0;
 599	unsigned long index = 0;
 600	int ret;
 601
 602	if (dev->reada_curr_zone) {
 603		reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
 604		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
 605		dev->reada_curr_zone = NULL;
 606	}
 607	/* pick the zone with the most elements */
 608	while (1) {
 609		struct reada_zone *zone;
 610
 611		ret = radix_tree_gang_lookup(&dev->reada_zones,
 612					     (void **)&zone, index, 1);
 613		if (ret == 0)
 614			break;
 615		index = (zone->end >> PAGE_SHIFT) + 1;
 616		if (zone->locked) {
 617			if (zone->elems > top_locked_elems) {
 618				top_locked_elems = zone->elems;
 619				top_locked_zone = zone;
 620			}
 621		} else {
 622			if (zone->elems > top_elems) {
 623				top_elems = zone->elems;
 624				top_zone = zone;
 625			}
 626		}
 627	}
 628	if (top_zone)
 629		dev->reada_curr_zone = top_zone;
 630	else if (top_locked_zone)
 631		dev->reada_curr_zone = top_locked_zone;
 632	else
 633		return 0;
 634
 635	dev->reada_next = dev->reada_curr_zone->start;
 636	kref_get(&dev->reada_curr_zone->refcnt);
 637	reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
 638
 639	return 1;
 640}
 641
 642static int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
 643				    int mirror_num, struct extent_buffer **eb)
 644{
 645	struct extent_buffer *buf = NULL;
 646	int ret;
 647
 648	buf = btrfs_find_create_tree_block(fs_info, bytenr);
 649	if (IS_ERR(buf))
 650		return 0;
 651
 652	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
 653
 654	ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
 655	if (ret) {
 656		free_extent_buffer_stale(buf);
 657		return ret;
 658	}
 659
 660	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
 661		free_extent_buffer_stale(buf);
 662		return -EIO;
 663	} else if (extent_buffer_uptodate(buf)) {
 664		*eb = buf;
 665	} else {
 666		free_extent_buffer(buf);
 667	}
 668	return 0;
 669}
 670
 671static int reada_start_machine_dev(struct btrfs_device *dev)
 672{
 673	struct btrfs_fs_info *fs_info = dev->fs_info;
 674	struct reada_extent *re = NULL;
 675	int mirror_num = 0;
 676	struct extent_buffer *eb = NULL;
 677	u64 logical;
 678	int ret;
 679	int i;
 680
 681	spin_lock(&fs_info->reada_lock);
 682	if (dev->reada_curr_zone == NULL) {
 683		ret = reada_pick_zone(dev);
 684		if (!ret) {
 685			spin_unlock(&fs_info->reada_lock);
 686			return 0;
 687		}
 688	}
 689	/*
 690	 * FIXME currently we issue the reads one extent at a time. If we have
 691	 * a contiguous block of extents, we could also coagulate them or use
 692	 * plugging to speed things up
 693	 */
 694	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 695				     dev->reada_next >> PAGE_SHIFT, 1);
 696	if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
 697		ret = reada_pick_zone(dev);
 698		if (!ret) {
 699			spin_unlock(&fs_info->reada_lock);
 700			return 0;
 701		}
 702		re = NULL;
 703		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 704					dev->reada_next >> PAGE_SHIFT, 1);
 705	}
 706	if (ret == 0) {
 707		spin_unlock(&fs_info->reada_lock);
 708		return 0;
 709	}
 710	dev->reada_next = re->logical + fs_info->nodesize;
 711	re->refcnt++;
 712
 713	spin_unlock(&fs_info->reada_lock);
 714
 715	spin_lock(&re->lock);
 716	if (re->scheduled || list_empty(&re->extctl)) {
 717		spin_unlock(&re->lock);
 718		reada_extent_put(fs_info, re);
 719		return 0;
 720	}
 721	re->scheduled = 1;
 722	spin_unlock(&re->lock);
 723
 724	/*
 725	 * find mirror num
 726	 */
 727	for (i = 0; i < re->nzones; ++i) {
 728		if (re->zones[i]->device == dev) {
 729			mirror_num = i + 1;
 730			break;
 731		}
 732	}
 733	logical = re->logical;
 734
 735	atomic_inc(&dev->reada_in_flight);
 736	ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
 
 737	if (ret)
 738		__readahead_hook(fs_info, re, NULL, ret);
 739	else if (eb)
 740		__readahead_hook(fs_info, re, eb, ret);
 741
 742	if (eb)
 743		free_extent_buffer(eb);
 744
 745	atomic_dec(&dev->reada_in_flight);
 746	reada_extent_put(fs_info, re);
 747
 748	return 1;
 749
 750}
 751
 752static void reada_start_machine_worker(struct btrfs_work *work)
 753{
 754	struct reada_machine_work *rmw;
 755	struct btrfs_fs_info *fs_info;
 756	int old_ioprio;
 757
 758	rmw = container_of(work, struct reada_machine_work, work);
 759	fs_info = rmw->fs_info;
 760
 761	kfree(rmw);
 762
 763	old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
 764				       task_nice_ioprio(current));
 765	set_task_ioprio(current, BTRFS_IOPRIO_READA);
 766	__reada_start_machine(fs_info);
 767	set_task_ioprio(current, old_ioprio);
 768
 769	atomic_dec(&fs_info->reada_works_cnt);
 770}
 771
 772static void __reada_start_machine(struct btrfs_fs_info *fs_info)
 773{
 774	struct btrfs_device *device;
 775	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 776	u64 enqueued;
 777	u64 total = 0;
 778	int i;
 779
 780again:
 781	do {
 782		enqueued = 0;
 783		mutex_lock(&fs_devices->device_list_mutex);
 784		list_for_each_entry(device, &fs_devices->devices, dev_list) {
 785			if (atomic_read(&device->reada_in_flight) <
 786			    MAX_IN_FLIGHT)
 787				enqueued += reada_start_machine_dev(device);
 
 788		}
 789		mutex_unlock(&fs_devices->device_list_mutex);
 790		total += enqueued;
 791	} while (enqueued && total < 10000);
 792	if (fs_devices->seed) {
 793		fs_devices = fs_devices->seed;
 794		goto again;
 795	}
 796
 797	if (enqueued == 0)
 798		return;
 799
 800	/*
 801	 * If everything is already in the cache, this is effectively single
 802	 * threaded. To a) not hold the caller for too long and b) to utilize
 803	 * more cores, we broke the loop above after 10000 iterations and now
 804	 * enqueue to workers to finish it. This will distribute the load to
 805	 * the cores.
 806	 */
 807	for (i = 0; i < 2; ++i) {
 808		reada_start_machine(fs_info);
 809		if (atomic_read(&fs_info->reada_works_cnt) >
 810		    BTRFS_MAX_MIRRORS * 2)
 811			break;
 812	}
 813}
 814
 815static void reada_start_machine(struct btrfs_fs_info *fs_info)
 816{
 817	struct reada_machine_work *rmw;
 818
 819	rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
 820	if (!rmw) {
 821		/* FIXME we cannot handle this properly right now */
 822		BUG();
 823	}
 824	btrfs_init_work(&rmw->work, btrfs_readahead_helper,
 825			reada_start_machine_worker, NULL, NULL);
 826	rmw->fs_info = fs_info;
 827
 828	btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
 829	atomic_inc(&fs_info->reada_works_cnt);
 830}
 831
 832#ifdef DEBUG
 833static void dump_devs(struct btrfs_fs_info *fs_info, int all)
 834{
 835	struct btrfs_device *device;
 836	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 837	unsigned long index;
 838	int ret;
 839	int i;
 840	int j;
 841	int cnt;
 842
 843	spin_lock(&fs_info->reada_lock);
 844	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 845		btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
 846			atomic_read(&device->reada_in_flight));
 847		index = 0;
 848		while (1) {
 849			struct reada_zone *zone;
 850			ret = radix_tree_gang_lookup(&device->reada_zones,
 851						     (void **)&zone, index, 1);
 852			if (ret == 0)
 853				break;
 854			pr_debug("  zone %llu-%llu elems %llu locked %d devs",
 855				    zone->start, zone->end, zone->elems,
 856				    zone->locked);
 857			for (j = 0; j < zone->ndevs; ++j) {
 858				pr_cont(" %lld",
 859					zone->devs[j]->devid);
 860			}
 861			if (device->reada_curr_zone == zone)
 862				pr_cont(" curr off %llu",
 863					device->reada_next - zone->start);
 864			pr_cont("\n");
 865			index = (zone->end >> PAGE_SHIFT) + 1;
 866		}
 867		cnt = 0;
 868		index = 0;
 869		while (all) {
 870			struct reada_extent *re = NULL;
 871
 872			ret = radix_tree_gang_lookup(&device->reada_extents,
 873						     (void **)&re, index, 1);
 874			if (ret == 0)
 875				break;
 876			pr_debug("  re: logical %llu size %u empty %d scheduled %d",
 877				re->logical, fs_info->nodesize,
 
 878				list_empty(&re->extctl), re->scheduled);
 879
 880			for (i = 0; i < re->nzones; ++i) {
 881				pr_cont(" zone %llu-%llu devs",
 882					re->zones[i]->start,
 883					re->zones[i]->end);
 884				for (j = 0; j < re->zones[i]->ndevs; ++j) {
 885					pr_cont(" %lld",
 886						re->zones[i]->devs[j]->devid);
 887				}
 888			}
 889			pr_cont("\n");
 890			index = (re->logical >> PAGE_SHIFT) + 1;
 891			if (++cnt > 15)
 892				break;
 893		}
 894	}
 895
 896	index = 0;
 897	cnt = 0;
 898	while (all) {
 899		struct reada_extent *re = NULL;
 900
 901		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
 902					     index, 1);
 903		if (ret == 0)
 904			break;
 905		if (!re->scheduled) {
 906			index = (re->logical >> PAGE_SHIFT) + 1;
 907			continue;
 908		}
 909		pr_debug("re: logical %llu size %u list empty %d scheduled %d",
 910			re->logical, fs_info->nodesize,
 
 911			list_empty(&re->extctl), re->scheduled);
 912		for (i = 0; i < re->nzones; ++i) {
 913			pr_cont(" zone %llu-%llu devs",
 914				re->zones[i]->start,
 915				re->zones[i]->end);
 916			for (j = 0; j < re->zones[i]->ndevs; ++j) {
 917				pr_cont(" %lld",
 918				       re->zones[i]->devs[j]->devid);
 919			}
 920		}
 921		pr_cont("\n");
 922		index = (re->logical >> PAGE_SHIFT) + 1;
 923	}
 924	spin_unlock(&fs_info->reada_lock);
 925}
 926#endif
 927
 928/*
 929 * interface
 930 */
 931struct reada_control *btrfs_reada_add(struct btrfs_root *root,
 932			struct btrfs_key *key_start, struct btrfs_key *key_end)
 933{
 934	struct reada_control *rc;
 935	u64 start;
 936	u64 generation;
 937	int ret;
 938	struct extent_buffer *node;
 939	static struct btrfs_key max_key = {
 940		.objectid = (u64)-1,
 941		.type = (u8)-1,
 942		.offset = (u64)-1
 943	};
 944
 945	rc = kzalloc(sizeof(*rc), GFP_KERNEL);
 946	if (!rc)
 947		return ERR_PTR(-ENOMEM);
 948
 949	rc->fs_info = root->fs_info;
 950	rc->key_start = *key_start;
 951	rc->key_end = *key_end;
 952	atomic_set(&rc->elems, 0);
 953	init_waitqueue_head(&rc->wait);
 954	kref_init(&rc->refcnt);
 955	kref_get(&rc->refcnt); /* one ref for having elements */
 956
 957	node = btrfs_root_node(root);
 958	start = node->start;
 959	generation = btrfs_header_generation(node);
 960	free_extent_buffer(node);
 961
 962	ret = reada_add_block(rc, start, &max_key, generation);
 963	if (ret) {
 964		kfree(rc);
 965		return ERR_PTR(ret);
 966	}
 967
 968	reada_start_machine(root->fs_info);
 969
 970	return rc;
 971}
 972
 973#ifdef DEBUG
 974int btrfs_reada_wait(void *handle)
 975{
 976	struct reada_control *rc = handle;
 977	struct btrfs_fs_info *fs_info = rc->fs_info;
 978
 979	while (atomic_read(&rc->elems)) {
 980		if (!atomic_read(&fs_info->reada_works_cnt))
 981			reada_start_machine(fs_info);
 982		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
 983				   5 * HZ);
 984		dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
 
 985	}
 986
 987	dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
 988
 989	kref_put(&rc->refcnt, reada_control_release);
 990
 991	return 0;
 992}
 993#else
 994int btrfs_reada_wait(void *handle)
 995{
 996	struct reada_control *rc = handle;
 997	struct btrfs_fs_info *fs_info = rc->fs_info;
 998
 999	while (atomic_read(&rc->elems)) {
1000		if (!atomic_read(&fs_info->reada_works_cnt))
1001			reada_start_machine(fs_info);
1002		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1003				   (HZ + 9) / 10);
1004	}
1005
1006	kref_put(&rc->refcnt, reada_control_release);
1007
1008	return 0;
1009}
1010#endif
1011
1012void btrfs_reada_detach(void *handle)
1013{
1014	struct reada_control *rc = handle;
1015
1016	kref_put(&rc->refcnt, reada_control_release);
1017}
v4.6
 
  1/*
  2 * Copyright (C) 2011 STRATO.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/sched.h>
 20#include <linux/pagemap.h>
 21#include <linux/writeback.h>
 22#include <linux/blkdev.h>
 23#include <linux/rbtree.h>
 24#include <linux/slab.h>
 25#include <linux/workqueue.h>
 26#include "ctree.h"
 27#include "volumes.h"
 28#include "disk-io.h"
 29#include "transaction.h"
 30#include "dev-replace.h"
 
 31
 32#undef DEBUG
 33
 34/*
 35 * This is the implementation for the generic read ahead framework.
 36 *
 37 * To trigger a readahead, btrfs_reada_add must be called. It will start
 38 * a read ahead for the given range [start, end) on tree root. The returned
 39 * handle can either be used to wait on the readahead to finish
 40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
 41 *
 42 * The read ahead works as follows:
 43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
 44 * reada_start_machine will then search for extents to prefetch and trigger
 45 * some reads. When a read finishes for a node, all contained node/leaf
 46 * pointers that lie in the given range will also be enqueued. The reads will
 47 * be triggered in sequential order, thus giving a big win over a naive
 48 * enumeration. It will also make use of multi-device layouts. Each disk
 49 * will have its on read pointer and all disks will by utilized in parallel.
 50 * Also will no two disks read both sides of a mirror simultaneously, as this
 51 * would waste seeking capacity. Instead both disks will read different parts
 52 * of the filesystem.
 53 * Any number of readaheads can be started in parallel. The read order will be
 54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
 55 * than the 2 started one after another.
 56 */
 57
 58#define MAX_IN_FLIGHT 6
 59
 60struct reada_extctl {
 61	struct list_head	list;
 62	struct reada_control	*rc;
 63	u64			generation;
 64};
 65
 66struct reada_extent {
 67	u64			logical;
 68	struct btrfs_key	top;
 69	int			err;
 70	struct list_head	extctl;
 71	int 			refcnt;
 72	spinlock_t		lock;
 73	struct reada_zone	*zones[BTRFS_MAX_MIRRORS];
 74	int			nzones;
 75	int			scheduled;
 76};
 77
 78struct reada_zone {
 79	u64			start;
 80	u64			end;
 81	u64			elems;
 82	struct list_head	list;
 83	spinlock_t		lock;
 84	int			locked;
 85	struct btrfs_device	*device;
 86	struct btrfs_device	*devs[BTRFS_MAX_MIRRORS]; /* full list, incl
 87							   * self */
 88	int			ndevs;
 89	struct kref		refcnt;
 90};
 91
 92struct reada_machine_work {
 93	struct btrfs_work	work;
 94	struct btrfs_fs_info	*fs_info;
 95};
 96
 97static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
 98static void reada_control_release(struct kref *kref);
 99static void reada_zone_release(struct kref *kref);
100static void reada_start_machine(struct btrfs_fs_info *fs_info);
101static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103static int reada_add_block(struct reada_control *rc, u64 logical,
104			   struct btrfs_key *top, u64 generation);
105
106/* recurses */
107/* in case of err, eb might be NULL */
108static void __readahead_hook(struct btrfs_fs_info *fs_info,
109			     struct reada_extent *re, struct extent_buffer *eb,
110			     u64 start, int err)
111{
112	int level = 0;
113	int nritems;
114	int i;
115	u64 bytenr;
116	u64 generation;
117	struct list_head list;
118
119	if (eb)
120		level = btrfs_header_level(eb);
121
122	spin_lock(&re->lock);
123	/*
124	 * just take the full list from the extent. afterwards we
125	 * don't need the lock anymore
126	 */
127	list_replace_init(&re->extctl, &list);
128	re->scheduled = 0;
129	spin_unlock(&re->lock);
130
131	/*
132	 * this is the error case, the extent buffer has not been
133	 * read correctly. We won't access anything from it and
134	 * just cleanup our data structures. Effectively this will
135	 * cut the branch below this node from read ahead.
136	 */
137	if (err)
138		goto cleanup;
139
140	/*
141	 * FIXME: currently we just set nritems to 0 if this is a leaf,
142	 * effectively ignoring the content. In a next step we could
143	 * trigger more readahead depending from the content, e.g.
144	 * fetch the checksums for the extents in the leaf.
145	 */
146	if (!level)
147		goto cleanup;
148
149	nritems = btrfs_header_nritems(eb);
150	generation = btrfs_header_generation(eb);
151	for (i = 0; i < nritems; i++) {
152		struct reada_extctl *rec;
153		u64 n_gen;
154		struct btrfs_key key;
155		struct btrfs_key next_key;
156
157		btrfs_node_key_to_cpu(eb, &key, i);
158		if (i + 1 < nritems)
159			btrfs_node_key_to_cpu(eb, &next_key, i + 1);
160		else
161			next_key = re->top;
162		bytenr = btrfs_node_blockptr(eb, i);
163		n_gen = btrfs_node_ptr_generation(eb, i);
164
165		list_for_each_entry(rec, &list, list) {
166			struct reada_control *rc = rec->rc;
167
168			/*
169			 * if the generation doesn't match, just ignore this
170			 * extctl. This will probably cut off a branch from
171			 * prefetch. Alternatively one could start a new (sub-)
172			 * prefetch for this branch, starting again from root.
173			 * FIXME: move the generation check out of this loop
174			 */
175#ifdef DEBUG
176			if (rec->generation != generation) {
177				btrfs_debug(fs_info,
178					    "generation mismatch for (%llu,%d,%llu) %llu != %llu",
179					    key.objectid, key.type, key.offset,
180					    rec->generation, generation);
181			}
182#endif
183			if (rec->generation == generation &&
184			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
185			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
186				reada_add_block(rc, bytenr, &next_key, n_gen);
187		}
188	}
189
190cleanup:
191	/*
192	 * free extctl records
193	 */
194	while (!list_empty(&list)) {
195		struct reada_control *rc;
196		struct reada_extctl *rec;
197
198		rec = list_first_entry(&list, struct reada_extctl, list);
199		list_del(&rec->list);
200		rc = rec->rc;
201		kfree(rec);
202
203		kref_get(&rc->refcnt);
204		if (atomic_dec_and_test(&rc->elems)) {
205			kref_put(&rc->refcnt, reada_control_release);
206			wake_up(&rc->wait);
207		}
208		kref_put(&rc->refcnt, reada_control_release);
209
210		reada_extent_put(fs_info, re);	/* one ref for each entry */
211	}
212
213	return;
214}
215
216/*
217 * start is passed separately in case eb in NULL, which may be the case with
218 * failed I/O
219 */
220int btree_readahead_hook(struct btrfs_fs_info *fs_info,
221			 struct extent_buffer *eb, u64 start, int err)
222{
 
223	int ret = 0;
224	struct reada_extent *re;
225
226	/* find extent */
227	spin_lock(&fs_info->reada_lock);
228	re = radix_tree_lookup(&fs_info->reada_tree,
229			       start >> PAGE_SHIFT);
230	if (re)
231		re->refcnt++;
232	spin_unlock(&fs_info->reada_lock);
233	if (!re) {
234		ret = -1;
235		goto start_machine;
236	}
237
238	__readahead_hook(fs_info, re, eb, start, err);
239	reada_extent_put(fs_info, re);	/* our ref */
240
241start_machine:
242	reada_start_machine(fs_info);
243	return ret;
244}
245
246static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
247					  struct btrfs_device *dev, u64 logical,
248					  struct btrfs_bio *bbio)
249{
 
250	int ret;
251	struct reada_zone *zone;
252	struct btrfs_block_group_cache *cache = NULL;
253	u64 start;
254	u64 end;
255	int i;
256
257	zone = NULL;
258	spin_lock(&fs_info->reada_lock);
259	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
260				     logical >> PAGE_SHIFT, 1);
261	if (ret == 1 && logical >= zone->start && logical <= zone->end) {
262		kref_get(&zone->refcnt);
263		spin_unlock(&fs_info->reada_lock);
264		return zone;
265	}
266
267	spin_unlock(&fs_info->reada_lock);
268
269	cache = btrfs_lookup_block_group(fs_info, logical);
270	if (!cache)
271		return NULL;
272
273	start = cache->key.objectid;
274	end = start + cache->key.offset - 1;
275	btrfs_put_block_group(cache);
276
277	zone = kzalloc(sizeof(*zone), GFP_KERNEL);
278	if (!zone)
279		return NULL;
280
 
 
 
 
 
 
281	zone->start = start;
282	zone->end = end;
283	INIT_LIST_HEAD(&zone->list);
284	spin_lock_init(&zone->lock);
285	zone->locked = 0;
286	kref_init(&zone->refcnt);
287	zone->elems = 0;
288	zone->device = dev; /* our device always sits at index 0 */
289	for (i = 0; i < bbio->num_stripes; ++i) {
290		/* bounds have already been checked */
291		zone->devs[i] = bbio->stripes[i].dev;
292	}
293	zone->ndevs = bbio->num_stripes;
294
295	spin_lock(&fs_info->reada_lock);
296	ret = radix_tree_insert(&dev->reada_zones,
297				(unsigned long)(zone->end >> PAGE_SHIFT),
298				zone);
299
300	if (ret == -EEXIST) {
301		kfree(zone);
302		ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
303					     logical >> PAGE_SHIFT, 1);
304		if (ret == 1 && logical >= zone->start && logical <= zone->end)
305			kref_get(&zone->refcnt);
306		else
307			zone = NULL;
308	}
309	spin_unlock(&fs_info->reada_lock);
 
310
311	return zone;
312}
313
314static struct reada_extent *reada_find_extent(struct btrfs_root *root,
315					      u64 logical,
316					      struct btrfs_key *top)
317{
318	int ret;
319	struct reada_extent *re = NULL;
320	struct reada_extent *re_exist = NULL;
321	struct btrfs_fs_info *fs_info = root->fs_info;
322	struct btrfs_bio *bbio = NULL;
323	struct btrfs_device *dev;
324	struct btrfs_device *prev_dev;
325	u32 blocksize;
326	u64 length;
327	int real_stripes;
328	int nzones = 0;
329	unsigned long index = logical >> PAGE_SHIFT;
330	int dev_replace_is_ongoing;
331	int have_zone = 0;
332
333	spin_lock(&fs_info->reada_lock);
334	re = radix_tree_lookup(&fs_info->reada_tree, index);
335	if (re)
336		re->refcnt++;
337	spin_unlock(&fs_info->reada_lock);
338
339	if (re)
340		return re;
341
342	re = kzalloc(sizeof(*re), GFP_KERNEL);
343	if (!re)
344		return NULL;
345
346	blocksize = root->nodesize;
347	re->logical = logical;
348	re->top = *top;
349	INIT_LIST_HEAD(&re->extctl);
350	spin_lock_init(&re->lock);
351	re->refcnt = 1;
352
353	/*
354	 * map block
355	 */
356	length = blocksize;
357	ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
358			      &bbio, 0);
359	if (ret || !bbio || length < blocksize)
360		goto error;
361
362	if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
363		btrfs_err(root->fs_info,
364			   "readahead: more than %d copies not supported",
365			   BTRFS_MAX_MIRRORS);
366		goto error;
367	}
368
369	real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
370	for (nzones = 0; nzones < real_stripes; ++nzones) {
371		struct reada_zone *zone;
372
373		dev = bbio->stripes[nzones].dev;
374
375		/* cannot read ahead on missing device. */
376		 if (!dev->bdev)
377			continue;
378
379		zone = reada_find_zone(fs_info, dev, logical, bbio);
380		if (!zone)
381			continue;
382
383		re->zones[re->nzones++] = zone;
384		spin_lock(&zone->lock);
385		if (!zone->elems)
386			kref_get(&zone->refcnt);
387		++zone->elems;
388		spin_unlock(&zone->lock);
389		spin_lock(&fs_info->reada_lock);
390		kref_put(&zone->refcnt, reada_zone_release);
391		spin_unlock(&fs_info->reada_lock);
392	}
393	if (re->nzones == 0) {
394		/* not a single zone found, error and out */
395		goto error;
396	}
397
398	/* insert extent in reada_tree + all per-device trees, all or nothing */
399	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
 
 
 
 
 
 
400	spin_lock(&fs_info->reada_lock);
401	ret = radix_tree_insert(&fs_info->reada_tree, index, re);
402	if (ret == -EEXIST) {
403		re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
404		BUG_ON(!re_exist);
405		re_exist->refcnt++;
406		spin_unlock(&fs_info->reada_lock);
407		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
 
408		goto error;
409	}
410	if (ret) {
411		spin_unlock(&fs_info->reada_lock);
412		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
 
413		goto error;
414	}
 
415	prev_dev = NULL;
416	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
417			&fs_info->dev_replace);
418	for (nzones = 0; nzones < re->nzones; ++nzones) {
419		dev = re->zones[nzones]->device;
420
421		if (dev == prev_dev) {
422			/*
423			 * in case of DUP, just add the first zone. As both
424			 * are on the same device, there's nothing to gain
425			 * from adding both.
426			 * Also, it wouldn't work, as the tree is per device
427			 * and adding would fail with EEXIST
428			 */
429			continue;
430		}
431		if (!dev->bdev)
432			continue;
433
434		if (dev_replace_is_ongoing &&
435		    dev == fs_info->dev_replace.tgtdev) {
436			/*
437			 * as this device is selected for reading only as
438			 * a last resort, skip it for read ahead.
439			 */
440			continue;
441		}
442		prev_dev = dev;
443		ret = radix_tree_insert(&dev->reada_extents, index, re);
444		if (ret) {
445			while (--nzones >= 0) {
446				dev = re->zones[nzones]->device;
447				BUG_ON(dev == NULL);
448				/* ignore whether the entry was inserted */
449				radix_tree_delete(&dev->reada_extents, index);
450			}
451			BUG_ON(fs_info == NULL);
452			radix_tree_delete(&fs_info->reada_tree, index);
453			spin_unlock(&fs_info->reada_lock);
454			btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
455			goto error;
456		}
457		have_zone = 1;
458	}
459	spin_unlock(&fs_info->reada_lock);
460	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
461
462	if (!have_zone)
463		goto error;
464
465	btrfs_put_bbio(bbio);
466	return re;
467
468error:
469	for (nzones = 0; nzones < re->nzones; ++nzones) {
470		struct reada_zone *zone;
471
472		zone = re->zones[nzones];
473		kref_get(&zone->refcnt);
474		spin_lock(&zone->lock);
475		--zone->elems;
476		if (zone->elems == 0) {
477			/*
478			 * no fs_info->reada_lock needed, as this can't be
479			 * the last ref
480			 */
481			kref_put(&zone->refcnt, reada_zone_release);
482		}
483		spin_unlock(&zone->lock);
484
485		spin_lock(&fs_info->reada_lock);
486		kref_put(&zone->refcnt, reada_zone_release);
487		spin_unlock(&fs_info->reada_lock);
488	}
489	btrfs_put_bbio(bbio);
490	kfree(re);
491	return re_exist;
492}
493
494static void reada_extent_put(struct btrfs_fs_info *fs_info,
495			     struct reada_extent *re)
496{
497	int i;
498	unsigned long index = re->logical >> PAGE_SHIFT;
499
500	spin_lock(&fs_info->reada_lock);
501	if (--re->refcnt) {
502		spin_unlock(&fs_info->reada_lock);
503		return;
504	}
505
506	radix_tree_delete(&fs_info->reada_tree, index);
507	for (i = 0; i < re->nzones; ++i) {
508		struct reada_zone *zone = re->zones[i];
509
510		radix_tree_delete(&zone->device->reada_extents, index);
511	}
512
513	spin_unlock(&fs_info->reada_lock);
514
515	for (i = 0; i < re->nzones; ++i) {
516		struct reada_zone *zone = re->zones[i];
517
518		kref_get(&zone->refcnt);
519		spin_lock(&zone->lock);
520		--zone->elems;
521		if (zone->elems == 0) {
522			/* no fs_info->reada_lock needed, as this can't be
523			 * the last ref */
524			kref_put(&zone->refcnt, reada_zone_release);
525		}
526		spin_unlock(&zone->lock);
527
528		spin_lock(&fs_info->reada_lock);
529		kref_put(&zone->refcnt, reada_zone_release);
530		spin_unlock(&fs_info->reada_lock);
531	}
532
533	kfree(re);
534}
535
536static void reada_zone_release(struct kref *kref)
537{
538	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
539
540	radix_tree_delete(&zone->device->reada_zones,
541			  zone->end >> PAGE_SHIFT);
542
543	kfree(zone);
544}
545
546static void reada_control_release(struct kref *kref)
547{
548	struct reada_control *rc = container_of(kref, struct reada_control,
549						refcnt);
550
551	kfree(rc);
552}
553
554static int reada_add_block(struct reada_control *rc, u64 logical,
555			   struct btrfs_key *top, u64 generation)
556{
557	struct btrfs_root *root = rc->root;
558	struct reada_extent *re;
559	struct reada_extctl *rec;
560
561	re = reada_find_extent(root, logical, top); /* takes one ref */
 
562	if (!re)
563		return -1;
564
565	rec = kzalloc(sizeof(*rec), GFP_KERNEL);
566	if (!rec) {
567		reada_extent_put(root->fs_info, re);
568		return -ENOMEM;
569	}
570
571	rec->rc = rc;
572	rec->generation = generation;
573	atomic_inc(&rc->elems);
574
575	spin_lock(&re->lock);
576	list_add_tail(&rec->list, &re->extctl);
577	spin_unlock(&re->lock);
578
579	/* leave the ref on the extent */
580
581	return 0;
582}
583
584/*
585 * called with fs_info->reada_lock held
586 */
587static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
588{
589	int i;
590	unsigned long index = zone->end >> PAGE_SHIFT;
591
592	for (i = 0; i < zone->ndevs; ++i) {
593		struct reada_zone *peer;
594		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
595		if (peer && peer->device != zone->device)
596			peer->locked = lock;
597	}
598}
599
600/*
601 * called with fs_info->reada_lock held
602 */
603static int reada_pick_zone(struct btrfs_device *dev)
604{
605	struct reada_zone *top_zone = NULL;
606	struct reada_zone *top_locked_zone = NULL;
607	u64 top_elems = 0;
608	u64 top_locked_elems = 0;
609	unsigned long index = 0;
610	int ret;
611
612	if (dev->reada_curr_zone) {
613		reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
614		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
615		dev->reada_curr_zone = NULL;
616	}
617	/* pick the zone with the most elements */
618	while (1) {
619		struct reada_zone *zone;
620
621		ret = radix_tree_gang_lookup(&dev->reada_zones,
622					     (void **)&zone, index, 1);
623		if (ret == 0)
624			break;
625		index = (zone->end >> PAGE_SHIFT) + 1;
626		if (zone->locked) {
627			if (zone->elems > top_locked_elems) {
628				top_locked_elems = zone->elems;
629				top_locked_zone = zone;
630			}
631		} else {
632			if (zone->elems > top_elems) {
633				top_elems = zone->elems;
634				top_zone = zone;
635			}
636		}
637	}
638	if (top_zone)
639		dev->reada_curr_zone = top_zone;
640	else if (top_locked_zone)
641		dev->reada_curr_zone = top_locked_zone;
642	else
643		return 0;
644
645	dev->reada_next = dev->reada_curr_zone->start;
646	kref_get(&dev->reada_curr_zone->refcnt);
647	reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
648
649	return 1;
650}
651
652static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
653				   struct btrfs_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
654{
 
655	struct reada_extent *re = NULL;
656	int mirror_num = 0;
657	struct extent_buffer *eb = NULL;
658	u64 logical;
659	int ret;
660	int i;
661
662	spin_lock(&fs_info->reada_lock);
663	if (dev->reada_curr_zone == NULL) {
664		ret = reada_pick_zone(dev);
665		if (!ret) {
666			spin_unlock(&fs_info->reada_lock);
667			return 0;
668		}
669	}
670	/*
671	 * FIXME currently we issue the reads one extent at a time. If we have
672	 * a contiguous block of extents, we could also coagulate them or use
673	 * plugging to speed things up
674	 */
675	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
676				     dev->reada_next >> PAGE_SHIFT, 1);
677	if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
678		ret = reada_pick_zone(dev);
679		if (!ret) {
680			spin_unlock(&fs_info->reada_lock);
681			return 0;
682		}
683		re = NULL;
684		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
685					dev->reada_next >> PAGE_SHIFT, 1);
686	}
687	if (ret == 0) {
688		spin_unlock(&fs_info->reada_lock);
689		return 0;
690	}
691	dev->reada_next = re->logical + fs_info->tree_root->nodesize;
692	re->refcnt++;
693
694	spin_unlock(&fs_info->reada_lock);
695
696	spin_lock(&re->lock);
697	if (re->scheduled || list_empty(&re->extctl)) {
698		spin_unlock(&re->lock);
699		reada_extent_put(fs_info, re);
700		return 0;
701	}
702	re->scheduled = 1;
703	spin_unlock(&re->lock);
704
705	/*
706	 * find mirror num
707	 */
708	for (i = 0; i < re->nzones; ++i) {
709		if (re->zones[i]->device == dev) {
710			mirror_num = i + 1;
711			break;
712		}
713	}
714	logical = re->logical;
715
716	atomic_inc(&dev->reada_in_flight);
717	ret = reada_tree_block_flagged(fs_info->extent_root, logical,
718			mirror_num, &eb);
719	if (ret)
720		__readahead_hook(fs_info, re, NULL, logical, ret);
721	else if (eb)
722		__readahead_hook(fs_info, re, eb, eb->start, ret);
723
724	if (eb)
725		free_extent_buffer(eb);
726
727	atomic_dec(&dev->reada_in_flight);
728	reada_extent_put(fs_info, re);
729
730	return 1;
731
732}
733
734static void reada_start_machine_worker(struct btrfs_work *work)
735{
736	struct reada_machine_work *rmw;
737	struct btrfs_fs_info *fs_info;
738	int old_ioprio;
739
740	rmw = container_of(work, struct reada_machine_work, work);
741	fs_info = rmw->fs_info;
742
743	kfree(rmw);
744
745	old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
746				       task_nice_ioprio(current));
747	set_task_ioprio(current, BTRFS_IOPRIO_READA);
748	__reada_start_machine(fs_info);
749	set_task_ioprio(current, old_ioprio);
750
751	atomic_dec(&fs_info->reada_works_cnt);
752}
753
754static void __reada_start_machine(struct btrfs_fs_info *fs_info)
755{
756	struct btrfs_device *device;
757	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
758	u64 enqueued;
759	u64 total = 0;
760	int i;
761
 
762	do {
763		enqueued = 0;
 
764		list_for_each_entry(device, &fs_devices->devices, dev_list) {
765			if (atomic_read(&device->reada_in_flight) <
766			    MAX_IN_FLIGHT)
767				enqueued += reada_start_machine_dev(fs_info,
768								    device);
769		}
 
770		total += enqueued;
771	} while (enqueued && total < 10000);
 
 
 
 
772
773	if (enqueued == 0)
774		return;
775
776	/*
777	 * If everything is already in the cache, this is effectively single
778	 * threaded. To a) not hold the caller for too long and b) to utilize
779	 * more cores, we broke the loop above after 10000 iterations and now
780	 * enqueue to workers to finish it. This will distribute the load to
781	 * the cores.
782	 */
783	for (i = 0; i < 2; ++i) {
784		reada_start_machine(fs_info);
785		if (atomic_read(&fs_info->reada_works_cnt) >
786		    BTRFS_MAX_MIRRORS * 2)
787			break;
788	}
789}
790
791static void reada_start_machine(struct btrfs_fs_info *fs_info)
792{
793	struct reada_machine_work *rmw;
794
795	rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
796	if (!rmw) {
797		/* FIXME we cannot handle this properly right now */
798		BUG();
799	}
800	btrfs_init_work(&rmw->work, btrfs_readahead_helper,
801			reada_start_machine_worker, NULL, NULL);
802	rmw->fs_info = fs_info;
803
804	btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
805	atomic_inc(&fs_info->reada_works_cnt);
806}
807
808#ifdef DEBUG
809static void dump_devs(struct btrfs_fs_info *fs_info, int all)
810{
811	struct btrfs_device *device;
812	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
813	unsigned long index;
814	int ret;
815	int i;
816	int j;
817	int cnt;
818
819	spin_lock(&fs_info->reada_lock);
820	list_for_each_entry(device, &fs_devices->devices, dev_list) {
821		printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
822			atomic_read(&device->reada_in_flight));
823		index = 0;
824		while (1) {
825			struct reada_zone *zone;
826			ret = radix_tree_gang_lookup(&device->reada_zones,
827						     (void **)&zone, index, 1);
828			if (ret == 0)
829				break;
830			printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
831				"%d devs", zone->start, zone->end, zone->elems,
832				zone->locked);
833			for (j = 0; j < zone->ndevs; ++j) {
834				printk(KERN_CONT " %lld",
835					zone->devs[j]->devid);
836			}
837			if (device->reada_curr_zone == zone)
838				printk(KERN_CONT " curr off %llu",
839					device->reada_next - zone->start);
840			printk(KERN_CONT "\n");
841			index = (zone->end >> PAGE_SHIFT) + 1;
842		}
843		cnt = 0;
844		index = 0;
845		while (all) {
846			struct reada_extent *re = NULL;
847
848			ret = radix_tree_gang_lookup(&device->reada_extents,
849						     (void **)&re, index, 1);
850			if (ret == 0)
851				break;
852			printk(KERN_DEBUG
853				"  re: logical %llu size %u empty %d scheduled %d",
854				re->logical, fs_info->tree_root->nodesize,
855				list_empty(&re->extctl), re->scheduled);
856
857			for (i = 0; i < re->nzones; ++i) {
858				printk(KERN_CONT " zone %llu-%llu devs",
859					re->zones[i]->start,
860					re->zones[i]->end);
861				for (j = 0; j < re->zones[i]->ndevs; ++j) {
862					printk(KERN_CONT " %lld",
863						re->zones[i]->devs[j]->devid);
864				}
865			}
866			printk(KERN_CONT "\n");
867			index = (re->logical >> PAGE_SHIFT) + 1;
868			if (++cnt > 15)
869				break;
870		}
871	}
872
873	index = 0;
874	cnt = 0;
875	while (all) {
876		struct reada_extent *re = NULL;
877
878		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
879					     index, 1);
880		if (ret == 0)
881			break;
882		if (!re->scheduled) {
883			index = (re->logical >> PAGE_SHIFT) + 1;
884			continue;
885		}
886		printk(KERN_DEBUG
887			"re: logical %llu size %u list empty %d scheduled %d",
888			re->logical, fs_info->tree_root->nodesize,
889			list_empty(&re->extctl), re->scheduled);
890		for (i = 0; i < re->nzones; ++i) {
891			printk(KERN_CONT " zone %llu-%llu devs",
892				re->zones[i]->start,
893				re->zones[i]->end);
894			for (j = 0; j < re->zones[i]->ndevs; ++j) {
895				printk(KERN_CONT " %lld",
896				       re->zones[i]->devs[j]->devid);
897			}
898		}
899		printk(KERN_CONT "\n");
900		index = (re->logical >> PAGE_SHIFT) + 1;
901	}
902	spin_unlock(&fs_info->reada_lock);
903}
904#endif
905
906/*
907 * interface
908 */
909struct reada_control *btrfs_reada_add(struct btrfs_root *root,
910			struct btrfs_key *key_start, struct btrfs_key *key_end)
911{
912	struct reada_control *rc;
913	u64 start;
914	u64 generation;
915	int ret;
916	struct extent_buffer *node;
917	static struct btrfs_key max_key = {
918		.objectid = (u64)-1,
919		.type = (u8)-1,
920		.offset = (u64)-1
921	};
922
923	rc = kzalloc(sizeof(*rc), GFP_KERNEL);
924	if (!rc)
925		return ERR_PTR(-ENOMEM);
926
927	rc->root = root;
928	rc->key_start = *key_start;
929	rc->key_end = *key_end;
930	atomic_set(&rc->elems, 0);
931	init_waitqueue_head(&rc->wait);
932	kref_init(&rc->refcnt);
933	kref_get(&rc->refcnt); /* one ref for having elements */
934
935	node = btrfs_root_node(root);
936	start = node->start;
937	generation = btrfs_header_generation(node);
938	free_extent_buffer(node);
939
940	ret = reada_add_block(rc, start, &max_key, generation);
941	if (ret) {
942		kfree(rc);
943		return ERR_PTR(ret);
944	}
945
946	reada_start_machine(root->fs_info);
947
948	return rc;
949}
950
951#ifdef DEBUG
952int btrfs_reada_wait(void *handle)
953{
954	struct reada_control *rc = handle;
955	struct btrfs_fs_info *fs_info = rc->root->fs_info;
956
957	while (atomic_read(&rc->elems)) {
958		if (!atomic_read(&fs_info->reada_works_cnt))
959			reada_start_machine(fs_info);
960		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
961				   5 * HZ);
962		dump_devs(rc->root->fs_info,
963			  atomic_read(&rc->elems) < 10 ? 1 : 0);
964	}
965
966	dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
967
968	kref_put(&rc->refcnt, reada_control_release);
969
970	return 0;
971}
972#else
973int btrfs_reada_wait(void *handle)
974{
975	struct reada_control *rc = handle;
976	struct btrfs_fs_info *fs_info = rc->root->fs_info;
977
978	while (atomic_read(&rc->elems)) {
979		if (!atomic_read(&fs_info->reada_works_cnt))
980			reada_start_machine(fs_info);
981		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
982				   (HZ + 9) / 10);
983	}
984
985	kref_put(&rc->refcnt, reada_control_release);
986
987	return 0;
988}
989#endif
990
991void btrfs_reada_detach(void *handle)
992{
993	struct reada_control *rc = handle;
994
995	kref_put(&rc->refcnt, reada_control_release);
996}