Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison-v2.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/init.h>
  16#include <linux/mempool.h>
  17#include <linux/module.h>
  18#include <linux/rwsem.h>
  19#include <linux/slab.h>
  20#include <linux/vmalloc.h>
  21
  22#define DM_MSG_PREFIX "cache"
  23
  24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  25	"A percentage of time allocated for copying to and/or from cache");
  26
  27/*----------------------------------------------------------------*/
  28
  29/*
  30 * Glossary:
  31 *
  32 * oblock: index of an origin block
  33 * cblock: index of a cache block
  34 * promotion: movement of a block from origin to cache
  35 * demotion: movement of a block from cache to origin
  36 * migration: movement of a block between the origin and cache device,
  37 *	      either direction
  38 */
  39
  40/*----------------------------------------------------------------*/
  41
  42struct io_tracker {
  43	spinlock_t lock;
  44
  45	/*
  46	 * Sectors of in-flight IO.
  47	 */
  48	sector_t in_flight;
  49
  50	/*
  51	 * The time, in jiffies, when this device became idle (if it is
  52	 * indeed idle).
  53	 */
  54	unsigned long idle_time;
  55	unsigned long last_update_time;
  56};
  57
  58static void iot_init(struct io_tracker *iot)
  59{
  60	spin_lock_init(&iot->lock);
  61	iot->in_flight = 0ul;
  62	iot->idle_time = 0ul;
  63	iot->last_update_time = jiffies;
  64}
  65
  66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  67{
  68	if (iot->in_flight)
  69		return false;
  70
  71	return time_after(jiffies, iot->idle_time + jifs);
  72}
  73
  74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  75{
  76	bool r;
  77	unsigned long flags;
  78
  79	spin_lock_irqsave(&iot->lock, flags);
  80	r = __iot_idle_for(iot, jifs);
  81	spin_unlock_irqrestore(&iot->lock, flags);
  82
  83	return r;
  84}
  85
  86static void iot_io_begin(struct io_tracker *iot, sector_t len)
  87{
  88	unsigned long flags;
  89
  90	spin_lock_irqsave(&iot->lock, flags);
  91	iot->in_flight += len;
  92	spin_unlock_irqrestore(&iot->lock, flags);
  93}
  94
  95static void __iot_io_end(struct io_tracker *iot, sector_t len)
  96{
  97	if (!len)
  98		return;
  99
 100	iot->in_flight -= len;
 101	if (!iot->in_flight)
 102		iot->idle_time = jiffies;
 103}
 104
 105static void iot_io_end(struct io_tracker *iot, sector_t len)
 106{
 107	unsigned long flags;
 108
 109	spin_lock_irqsave(&iot->lock, flags);
 110	__iot_io_end(iot, len);
 111	spin_unlock_irqrestore(&iot->lock, flags);
 112}
 113
 114/*----------------------------------------------------------------*/
 115
 116/*
 117 * Represents a chunk of future work.  'input' allows continuations to pass
 118 * values between themselves, typically error values.
 
 
 
 
 
 
 119 */
 120struct continuation {
 121	struct work_struct ws;
 122	blk_status_t input;
 123};
 124
 125static inline void init_continuation(struct continuation *k,
 126				     void (*fn)(struct work_struct *))
 127{
 128	INIT_WORK(&k->ws, fn);
 129	k->input = 0;
 130}
 131
 132static inline void queue_continuation(struct workqueue_struct *wq,
 133				      struct continuation *k)
 134{
 135	queue_work(wq, &k->ws);
 136}
 137
 138/*----------------------------------------------------------------*/
 139
 140/*
 141 * The batcher collects together pieces of work that need a particular
 142 * operation to occur before they can proceed (typically a commit).
 143 */
 144struct batcher {
 145	/*
 146	 * The operation that everyone is waiting for.
 147	 */
 148	blk_status_t (*commit_op)(void *context);
 149	void *commit_context;
 150
 151	/*
 152	 * This is how bios should be issued once the commit op is complete
 153	 * (accounted_request).
 154	 */
 155	void (*issue_op)(struct bio *bio, void *context);
 156	void *issue_context;
 157
 158	/*
 159	 * Queued work gets put on here after commit.
 160	 */
 161	struct workqueue_struct *wq;
 162
 163	spinlock_t lock;
 164	struct list_head work_items;
 165	struct bio_list bios;
 166	struct work_struct commit_work;
 167
 168	bool commit_scheduled;
 169};
 170
 171static void __commit(struct work_struct *_ws)
 172{
 173	struct batcher *b = container_of(_ws, struct batcher, commit_work);
 174	blk_status_t r;
 175	unsigned long flags;
 176	struct list_head work_items;
 177	struct work_struct *ws, *tmp;
 178	struct continuation *k;
 179	struct bio *bio;
 180	struct bio_list bios;
 181
 182	INIT_LIST_HEAD(&work_items);
 183	bio_list_init(&bios);
 184
 185	/*
 186	 * We have to grab these before the commit_op to avoid a race
 187	 * condition.
 188	 */
 189	spin_lock_irqsave(&b->lock, flags);
 190	list_splice_init(&b->work_items, &work_items);
 191	bio_list_merge(&bios, &b->bios);
 192	bio_list_init(&b->bios);
 193	b->commit_scheduled = false;
 194	spin_unlock_irqrestore(&b->lock, flags);
 195
 196	r = b->commit_op(b->commit_context);
 197
 198	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
 199		k = container_of(ws, struct continuation, ws);
 200		k->input = r;
 201		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
 202		queue_work(b->wq, ws);
 203	}
 204
 205	while ((bio = bio_list_pop(&bios))) {
 206		if (r) {
 207			bio->bi_status = r;
 208			bio_endio(bio);
 209		} else
 210			b->issue_op(bio, b->issue_context);
 211	}
 212}
 213
 214static void batcher_init(struct batcher *b,
 215			 blk_status_t (*commit_op)(void *),
 216			 void *commit_context,
 217			 void (*issue_op)(struct bio *bio, void *),
 218			 void *issue_context,
 219			 struct workqueue_struct *wq)
 220{
 221	b->commit_op = commit_op;
 222	b->commit_context = commit_context;
 223	b->issue_op = issue_op;
 224	b->issue_context = issue_context;
 225	b->wq = wq;
 226
 227	spin_lock_init(&b->lock);
 228	INIT_LIST_HEAD(&b->work_items);
 229	bio_list_init(&b->bios);
 230	INIT_WORK(&b->commit_work, __commit);
 231	b->commit_scheduled = false;
 232}
 233
 234static void async_commit(struct batcher *b)
 235{
 236	queue_work(b->wq, &b->commit_work);
 237}
 238
 239static void continue_after_commit(struct batcher *b, struct continuation *k)
 240{
 241	unsigned long flags;
 242	bool commit_scheduled;
 243
 244	spin_lock_irqsave(&b->lock, flags);
 245	commit_scheduled = b->commit_scheduled;
 246	list_add_tail(&k->ws.entry, &b->work_items);
 247	spin_unlock_irqrestore(&b->lock, flags);
 248
 249	if (commit_scheduled)
 250		async_commit(b);
 251}
 252
 253/*
 254 * Bios are errored if commit failed.
 255 */
 256static void issue_after_commit(struct batcher *b, struct bio *bio)
 257{
 258       unsigned long flags;
 259       bool commit_scheduled;
 260
 261       spin_lock_irqsave(&b->lock, flags);
 262       commit_scheduled = b->commit_scheduled;
 263       bio_list_add(&b->bios, bio);
 264       spin_unlock_irqrestore(&b->lock, flags);
 265
 266       if (commit_scheduled)
 267	       async_commit(b);
 268}
 269
 270/*
 271 * Call this if some urgent work is waiting for the commit to complete.
 272 */
 273static void schedule_commit(struct batcher *b)
 274{
 275	bool immediate;
 276	unsigned long flags;
 277
 278	spin_lock_irqsave(&b->lock, flags);
 279	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
 280	b->commit_scheduled = true;
 281	spin_unlock_irqrestore(&b->lock, flags);
 282
 283	if (immediate)
 284		async_commit(b);
 285}
 286
 287/*
 288 * There are a couple of places where we let a bio run, but want to do some
 289 * work before calling its endio function.  We do this by temporarily
 290 * changing the endio fn.
 291 */
 292struct dm_hook_info {
 293	bio_end_io_t *bi_end_io;
 294};
 295
 296static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 297			bio_end_io_t *bi_end_io, void *bi_private)
 298{
 299	h->bi_end_io = bio->bi_end_io;
 300
 301	bio->bi_end_io = bi_end_io;
 302	bio->bi_private = bi_private;
 303}
 304
 305static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 306{
 307	bio->bi_end_io = h->bi_end_io;
 308}
 309
 310/*----------------------------------------------------------------*/
 311
 312#define MIGRATION_POOL_SIZE 128
 313#define COMMIT_PERIOD HZ
 314#define MIGRATION_COUNT_WINDOW 10
 315
 316/*
 317 * The block size of the device holding cache data must be
 318 * between 32KB and 1GB.
 319 */
 320#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 321#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 322
 323enum cache_metadata_mode {
 324	CM_WRITE,		/* metadata may be changed */
 325	CM_READ_ONLY,		/* metadata may not be changed */
 326	CM_FAIL
 327};
 328
 329enum cache_io_mode {
 330	/*
 331	 * Data is written to cached blocks only.  These blocks are marked
 332	 * dirty.  If you lose the cache device you will lose data.
 333	 * Potential performance increase for both reads and writes.
 334	 */
 335	CM_IO_WRITEBACK,
 336
 337	/*
 338	 * Data is written to both cache and origin.  Blocks are never
 339	 * dirty.  Potential performance benfit for reads only.
 340	 */
 341	CM_IO_WRITETHROUGH,
 342
 343	/*
 344	 * A degraded mode useful for various cache coherency situations
 345	 * (eg, rolling back snapshots).  Reads and writes always go to the
 346	 * origin.  If a write goes to a cached oblock, then the cache
 347	 * block is invalidated.
 348	 */
 349	CM_IO_PASSTHROUGH
 350};
 351
 352struct cache_features {
 353	enum cache_metadata_mode mode;
 354	enum cache_io_mode io_mode;
 355	unsigned metadata_version;
 356	bool discard_passdown:1;
 357};
 358
 359struct cache_stats {
 360	atomic_t read_hit;
 361	atomic_t read_miss;
 362	atomic_t write_hit;
 363	atomic_t write_miss;
 364	atomic_t demotion;
 365	atomic_t promotion;
 366	atomic_t writeback;
 367	atomic_t copies_avoided;
 368	atomic_t cache_cell_clash;
 369	atomic_t commit_count;
 370	atomic_t discard_count;
 371};
 372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373struct cache {
 374	struct dm_target *ti;
 375	spinlock_t lock;
 376
 377	/*
 378	 * Fields for converting from sectors to blocks.
 379	 */
 380	int sectors_per_block_shift;
 381	sector_t sectors_per_block;
 382
 383	struct dm_cache_metadata *cmd;
 384
 385	/*
 386	 * Metadata is written to this device.
 387	 */
 388	struct dm_dev *metadata_dev;
 389
 390	/*
 391	 * The slower of the two data devices.  Typically a spindle.
 392	 */
 393	struct dm_dev *origin_dev;
 394
 395	/*
 396	 * The faster of the two data devices.  Typically an SSD.
 397	 */
 398	struct dm_dev *cache_dev;
 399
 400	/*
 401	 * Size of the origin device in _complete_ blocks and native sectors.
 402	 */
 403	dm_oblock_t origin_blocks;
 404	sector_t origin_sectors;
 405
 406	/*
 407	 * Size of the cache device in blocks.
 408	 */
 409	dm_cblock_t cache_size;
 410
 411	/*
 412	 * Invalidation fields.
 413	 */
 414	spinlock_t invalidation_lock;
 415	struct list_head invalidation_requests;
 416
 
 
 
 
 
 
 
 
 417	sector_t migration_threshold;
 418	wait_queue_head_t migration_wait;
 419	atomic_t nr_allocated_migrations;
 420
 421	/*
 422	 * The number of in flight migrations that are performing
 423	 * background io. eg, promotion, writeback.
 424	 */
 425	atomic_t nr_io_migrations;
 426
 427	struct bio_list deferred_bios;
 
 
 428
 429	struct rw_semaphore quiesce_lock;
 430
 431	struct dm_target_callbacks callbacks;
 
 
 432
 433	/*
 434	 * origin_blocks entries, discarded if set.
 435	 */
 436	dm_dblock_t discard_nr_blocks;
 437	unsigned long *discard_bitset;
 438	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 439
 440	/*
 441	 * Rather than reconstructing the table line for the status we just
 442	 * save it and regurgitate.
 443	 */
 444	unsigned nr_ctr_args;
 445	const char **ctr_args;
 446
 447	struct dm_kcopyd_client *copier;
 448	struct work_struct deferred_bio_worker;
 449	struct work_struct migration_worker;
 450	struct workqueue_struct *wq;
 451	struct delayed_work waker;
 452	struct dm_bio_prison_v2 *prison;
 453
 454	/*
 455	 * cache_size entries, dirty if set
 456	 */
 457	unsigned long *dirty_bitset;
 458	atomic_t nr_dirty;
 459
 460	unsigned policy_nr_args;
 461	struct dm_cache_policy *policy;
 462
 463	/*
 464	 * Cache features such as write-through.
 465	 */
 466	struct cache_features features;
 467
 468	struct cache_stats stats;
 
 469
 470	bool need_tick_bio:1;
 471	bool sized:1;
 472	bool invalidate:1;
 473	bool commit_requested:1;
 474	bool loaded_mappings:1;
 475	bool loaded_discards:1;
 476
 477	struct rw_semaphore background_work_lock;
 478
 479	struct batcher committer;
 480	struct work_struct commit_ws;
 481
 482	struct io_tracker tracker;
 483
 484	mempool_t migration_pool;
 
 
 
 
 485
 486	struct bio_set bs;
 487};
 488
 489struct per_bio_data {
 490	bool tick:1;
 491	unsigned req_nr:2;
 492	struct dm_bio_prison_cell_v2 *cell;
 493	struct dm_hook_info hook_info;
 494	sector_t len;
 495};
 496
 497struct dm_cache_migration {
 498	struct continuation k;
 
 
 
 499	struct cache *cache;
 500
 501	struct policy_work *op;
 502	struct bio *overwrite_bio;
 503	struct dm_bio_prison_cell_v2 *cell;
 504
 505	dm_cblock_t invalidate_cblock;
 506	dm_oblock_t invalidate_oblock;
 507};
 508
 509/*----------------------------------------------------------------*/
 
 
 510
 511static bool writethrough_mode(struct cache *cache)
 512{
 513	return cache->features.io_mode == CM_IO_WRITETHROUGH;
 514}
 515
 516static bool writeback_mode(struct cache *cache)
 517{
 518	return cache->features.io_mode == CM_IO_WRITEBACK;
 519}
 
 
 
 520
 521static inline bool passthrough_mode(struct cache *cache)
 522{
 523	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
 524}
 525
 526/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 527
 528static void wake_deferred_bio_worker(struct cache *cache)
 529{
 530	queue_work(cache->wq, &cache->deferred_bio_worker);
 531}
 532
 533static void wake_migration_worker(struct cache *cache)
 534{
 535	if (passthrough_mode(cache))
 536		return;
 537
 538	queue_work(cache->wq, &cache->migration_worker);
 539}
 540
 541/*----------------------------------------------------------------*/
 542
 543static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
 544{
 545	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
 
 546}
 547
 548static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
 549{
 550	dm_bio_prison_free_cell_v2(cache->prison, cell);
 551}
 552
 553static struct dm_cache_migration *alloc_migration(struct cache *cache)
 554{
 555	struct dm_cache_migration *mg;
 556
 557	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
 558
 559	memset(mg, 0, sizeof(*mg));
 560
 561	mg->cache = cache;
 562	atomic_inc(&cache->nr_allocated_migrations);
 563
 564	return mg;
 565}
 566
 567static void free_migration(struct dm_cache_migration *mg)
 568{
 569	struct cache *cache = mg->cache;
 570
 571	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 572		wake_up(&cache->migration_wait);
 573
 574	mempool_free(mg, &cache->migration_pool);
 575}
 576
 577/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578
 579static inline dm_oblock_t oblock_succ(dm_oblock_t b)
 580{
 581	return to_oblock(from_oblock(b) + 1ull);
 
 
 
 
 
 
 
 582}
 583
 584static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
 585{
 586	key->virtual = 0;
 587	key->dev = 0;
 588	key->block_begin = from_oblock(begin);
 589	key->block_end = from_oblock(end);
 
 
 590}
 591
 592/*
 593 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
 594 * level 1 which prevents *both* READs and WRITEs.
 595 */
 596#define WRITE_LOCK_LEVEL 0
 597#define READ_WRITE_LOCK_LEVEL 1
 598
 599static unsigned lock_level(struct bio *bio)
 600{
 601	return bio_data_dir(bio) == WRITE ?
 602		WRITE_LOCK_LEVEL :
 603		READ_WRITE_LOCK_LEVEL;
 604}
 605
 606/*----------------------------------------------------------------
 607 * Per bio data
 608 *--------------------------------------------------------------*/
 609
 610static struct per_bio_data *get_per_bio_data(struct bio *bio)
 611{
 612	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
 613	BUG_ON(!pb);
 614	return pb;
 
 
 615}
 616
 617static struct per_bio_data *init_per_bio_data(struct bio *bio)
 
 
 
 
 618{
 619	struct per_bio_data *pb = get_per_bio_data(bio);
 
 620
 621	pb->tick = false;
 622	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 623	pb->cell = NULL;
 624	pb->len = 0;
 625
 626	return pb;
 
 627}
 628
 629/*----------------------------------------------------------------*/
 630
 631static void defer_bio(struct cache *cache, struct bio *bio)
 632{
 633	unsigned long flags;
 634
 635	spin_lock_irqsave(&cache->lock, flags);
 636	bio_list_add(&cache->deferred_bios, bio);
 637	spin_unlock_irqrestore(&cache->lock, flags);
 638
 639	wake_deferred_bio_worker(cache);
 640}
 641
 642static void defer_bios(struct cache *cache, struct bio_list *bios)
 
 
 
 
 
 
 
 
 
 
 643{
 644	unsigned long flags;
 
 645
 646	spin_lock_irqsave(&cache->lock, flags);
 647	bio_list_merge(&cache->deferred_bios, bios);
 648	bio_list_init(bios);
 649	spin_unlock_irqrestore(&cache->lock, flags);
 650
 651	wake_deferred_bio_worker(cache);
 652}
 653
 654/*----------------------------------------------------------------*/
 655
 656static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
 
 657{
 658	bool r;
 659	struct per_bio_data *pb;
 660	struct dm_cell_key_v2 key;
 661	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 662	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
 663
 664	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
 665
 666	build_key(oblock, end, &key);
 667	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
 668	if (!r) {
 669		/*
 670		 * Failed to get the lock.
 671		 */
 672		free_prison_cell(cache, cell_prealloc);
 673		return r;
 674	}
 675
 676	if (cell != cell_prealloc)
 677		free_prison_cell(cache, cell_prealloc);
 678
 679	pb = get_per_bio_data(bio);
 680	pb->cell = cell;
 
 
 681
 682	return r;
 683}
 684
 685/*----------------------------------------------------------------*/
 686
 687static bool is_dirty(struct cache *cache, dm_cblock_t b)
 688{
 689	return test_bit(from_cblock(b), cache->dirty_bitset);
 690}
 691
 692static void set_dirty(struct cache *cache, dm_cblock_t cblock)
 693{
 694	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 695		atomic_inc(&cache->nr_dirty);
 696		policy_set_dirty(cache->policy, cblock);
 697	}
 698}
 699
 700/*
 701 * These two are called when setting after migrations to force the policy
 702 * and dirty bitset to be in sync.
 703 */
 704static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
 705{
 706	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
 707		atomic_inc(&cache->nr_dirty);
 708	policy_set_dirty(cache->policy, cblock);
 709}
 710
 711static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
 712{
 713	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 
 714		if (atomic_dec_return(&cache->nr_dirty) == 0)
 715			dm_table_event(cache->ti->table);
 716	}
 717
 718	policy_clear_dirty(cache->policy, cblock);
 719}
 720
 721/*----------------------------------------------------------------*/
 722
 723static bool block_size_is_power_of_two(struct cache *cache)
 724{
 725	return cache->sectors_per_block_shift >= 0;
 726}
 727
 728/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 729#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 730__always_inline
 731#endif
 732static dm_block_t block_div(dm_block_t b, uint32_t n)
 733{
 734	do_div(b, n);
 735
 736	return b;
 737}
 738
 739static dm_block_t oblocks_per_dblock(struct cache *cache)
 740{
 741	dm_block_t oblocks = cache->discard_block_size;
 742
 743	if (block_size_is_power_of_two(cache))
 744		oblocks >>= cache->sectors_per_block_shift;
 745	else
 746		oblocks = block_div(oblocks, cache->sectors_per_block);
 747
 748	return oblocks;
 749}
 750
 751static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 752{
 753	return to_dblock(block_div(from_oblock(oblock),
 754				   oblocks_per_dblock(cache)));
 755}
 756
 
 
 
 
 
 757static void set_discard(struct cache *cache, dm_dblock_t b)
 758{
 759	unsigned long flags;
 760
 761	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 762	atomic_inc(&cache->stats.discard_count);
 763
 764	spin_lock_irqsave(&cache->lock, flags);
 765	set_bit(from_dblock(b), cache->discard_bitset);
 766	spin_unlock_irqrestore(&cache->lock, flags);
 767}
 768
 769static void clear_discard(struct cache *cache, dm_dblock_t b)
 770{
 771	unsigned long flags;
 772
 773	spin_lock_irqsave(&cache->lock, flags);
 774	clear_bit(from_dblock(b), cache->discard_bitset);
 775	spin_unlock_irqrestore(&cache->lock, flags);
 776}
 777
 778static bool is_discarded(struct cache *cache, dm_dblock_t b)
 779{
 780	int r;
 781	unsigned long flags;
 782
 783	spin_lock_irqsave(&cache->lock, flags);
 784	r = test_bit(from_dblock(b), cache->discard_bitset);
 785	spin_unlock_irqrestore(&cache->lock, flags);
 786
 787	return r;
 788}
 789
 790static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 791{
 792	int r;
 793	unsigned long flags;
 794
 795	spin_lock_irqsave(&cache->lock, flags);
 796	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 797		     cache->discard_bitset);
 798	spin_unlock_irqrestore(&cache->lock, flags);
 799
 800	return r;
 801}
 802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803/*----------------------------------------------------------------
 804 * Remapping
 805 *--------------------------------------------------------------*/
 806static void remap_to_origin(struct cache *cache, struct bio *bio)
 807{
 808	bio_set_dev(bio, cache->origin_dev->bdev);
 809}
 810
 811static void remap_to_cache(struct cache *cache, struct bio *bio,
 812			   dm_cblock_t cblock)
 813{
 814	sector_t bi_sector = bio->bi_iter.bi_sector;
 815	sector_t block = from_cblock(cblock);
 816
 817	bio_set_dev(bio, cache->cache_dev->bdev);
 818	if (!block_size_is_power_of_two(cache))
 819		bio->bi_iter.bi_sector =
 820			(block * cache->sectors_per_block) +
 821			sector_div(bi_sector, cache->sectors_per_block);
 822	else
 823		bio->bi_iter.bi_sector =
 824			(block << cache->sectors_per_block_shift) |
 825			(bi_sector & (cache->sectors_per_block - 1));
 826}
 827
 828static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 829{
 830	unsigned long flags;
 831	struct per_bio_data *pb;
 
 832
 833	spin_lock_irqsave(&cache->lock, flags);
 834	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
 835	    bio_op(bio) != REQ_OP_DISCARD) {
 836		pb = get_per_bio_data(bio);
 837		pb->tick = true;
 838		cache->need_tick_bio = false;
 839	}
 840	spin_unlock_irqrestore(&cache->lock, flags);
 841}
 842
 843static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 844					    dm_oblock_t oblock, bool bio_has_pbd)
 845{
 846	if (bio_has_pbd)
 847		check_if_tick_bio_needed(cache, bio);
 848	remap_to_origin(cache, bio);
 849	if (bio_data_dir(bio) == WRITE)
 850		clear_discard(cache, oblock_to_dblock(cache, oblock));
 851}
 852
 853static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 854					  dm_oblock_t oblock)
 855{
 856	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
 857	__remap_to_origin_clear_discard(cache, bio, oblock, true);
 858}
 859
 860static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 861				 dm_oblock_t oblock, dm_cblock_t cblock)
 862{
 863	check_if_tick_bio_needed(cache, bio);
 864	remap_to_cache(cache, bio, cblock);
 865	if (bio_data_dir(bio) == WRITE) {
 866		set_dirty(cache, cblock);
 867		clear_discard(cache, oblock_to_dblock(cache, oblock));
 868	}
 869}
 870
 871static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 872{
 873	sector_t block_nr = bio->bi_iter.bi_sector;
 874
 875	if (!block_size_is_power_of_two(cache))
 876		(void) sector_div(block_nr, cache->sectors_per_block);
 877	else
 878		block_nr >>= cache->sectors_per_block_shift;
 879
 880	return to_oblock(block_nr);
 881}
 882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883static bool accountable_bio(struct cache *cache, struct bio *bio)
 884{
 885	return bio_op(bio) != REQ_OP_DISCARD;
 
 886}
 887
 888static void accounted_begin(struct cache *cache, struct bio *bio)
 889{
 890	struct per_bio_data *pb;
 
 891
 892	if (accountable_bio(cache, bio)) {
 893		pb = get_per_bio_data(bio);
 894		pb->len = bio_sectors(bio);
 895		iot_io_begin(&cache->tracker, pb->len);
 896	}
 897}
 898
 899static void accounted_complete(struct cache *cache, struct bio *bio)
 900{
 901	struct per_bio_data *pb = get_per_bio_data(bio);
 
 902
 903	iot_io_end(&cache->tracker, pb->len);
 904}
 905
 906static void accounted_request(struct cache *cache, struct bio *bio)
 907{
 908	accounted_begin(cache, bio);
 909	generic_make_request(bio);
 910}
 911
 912static void issue_op(struct bio *bio, void *context)
 913{
 914	struct cache *cache = context;
 915	accounted_request(cache, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 916}
 917
 918/*
 919 * When running in writethrough mode we need to send writes to clean blocks
 920 * to both the cache and origin devices.  Clone the bio and send them in parallel.
 921 */
 922static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
 923				      dm_oblock_t oblock, dm_cblock_t cblock)
 
 
 
 
 
 
 
 
 
 
 
 
 924{
 925	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
 926
 927	BUG_ON(!origin_bio);
 
 
 
 
 
 
 
 
 928
 929	bio_chain(origin_bio, bio);
 930	/*
 931	 * Passing false to __remap_to_origin_clear_discard() skips
 932	 * all code that might use per_bio_data (since clone doesn't have it)
 
 933	 */
 934	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
 935	submit_bio(origin_bio);
 936
 937	remap_to_cache(cache, bio, cblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 938}
 939
 940/*----------------------------------------------------------------
 941 * Failure modes
 942 *--------------------------------------------------------------*/
 943static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 944{
 945	return cache->features.mode;
 946}
 947
 948static const char *cache_device_name(struct cache *cache)
 949{
 950	return dm_device_name(dm_table_get_md(cache->ti->table));
 951}
 952
 953static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 954{
 955	const char *descs[] = {
 956		"write",
 957		"read-only",
 958		"fail"
 959	};
 960
 961	dm_table_event(cache->ti->table);
 962	DMINFO("%s: switching cache to %s mode",
 963	       cache_device_name(cache), descs[(int)mode]);
 964}
 965
 966static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 967{
 968	bool needs_check;
 969	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 970
 971	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 972		DMERR("%s: unable to read needs_check flag, setting failure mode.",
 973		      cache_device_name(cache));
 974		new_mode = CM_FAIL;
 975	}
 976
 977	if (new_mode == CM_WRITE && needs_check) {
 978		DMERR("%s: unable to switch cache to write mode until repaired.",
 979		      cache_device_name(cache));
 980		if (old_mode != new_mode)
 981			new_mode = old_mode;
 982		else
 983			new_mode = CM_READ_ONLY;
 984	}
 985
 986	/* Never move out of fail mode */
 987	if (old_mode == CM_FAIL)
 988		new_mode = CM_FAIL;
 989
 990	switch (new_mode) {
 991	case CM_FAIL:
 992	case CM_READ_ONLY:
 993		dm_cache_metadata_set_read_only(cache->cmd);
 994		break;
 995
 996	case CM_WRITE:
 997		dm_cache_metadata_set_read_write(cache->cmd);
 998		break;
 999	}
1000
1001	cache->features.mode = new_mode;
1002
1003	if (new_mode != old_mode)
1004		notify_mode_switch(cache, new_mode);
1005}
1006
1007static void abort_transaction(struct cache *cache)
1008{
1009	const char *dev_name = cache_device_name(cache);
1010
1011	if (get_cache_mode(cache) >= CM_READ_ONLY)
1012		return;
1013
1014	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1015		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1016		set_cache_mode(cache, CM_FAIL);
1017	}
1018
1019	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1020	if (dm_cache_metadata_abort(cache->cmd)) {
1021		DMERR("%s: failed to abort metadata transaction", dev_name);
1022		set_cache_mode(cache, CM_FAIL);
1023	}
1024}
1025
1026static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1027{
1028	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1029		    cache_device_name(cache), op, r);
1030	abort_transaction(cache);
1031	set_cache_mode(cache, CM_READ_ONLY);
1032}
1033
1034/*----------------------------------------------------------------*/
1035
1036static void load_stats(struct cache *cache)
1037{
1038	struct dm_cache_statistics stats;
1039
1040	dm_cache_metadata_get_stats(cache->cmd, &stats);
1041	atomic_set(&cache->stats.read_hit, stats.read_hits);
1042	atomic_set(&cache->stats.read_miss, stats.read_misses);
1043	atomic_set(&cache->stats.write_hit, stats.write_hits);
1044	atomic_set(&cache->stats.write_miss, stats.write_misses);
1045}
1046
1047static void save_stats(struct cache *cache)
1048{
1049	struct dm_cache_statistics stats;
1050
1051	if (get_cache_mode(cache) >= CM_READ_ONLY)
1052		return;
1053
1054	stats.read_hits = atomic_read(&cache->stats.read_hit);
1055	stats.read_misses = atomic_read(&cache->stats.read_miss);
1056	stats.write_hits = atomic_read(&cache->stats.write_hit);
1057	stats.write_misses = atomic_read(&cache->stats.write_miss);
1058
1059	dm_cache_metadata_set_stats(cache->cmd, &stats);
1060}
1061
1062static void update_stats(struct cache_stats *stats, enum policy_operation op)
1063{
1064	switch (op) {
1065	case POLICY_PROMOTE:
1066		atomic_inc(&stats->promotion);
1067		break;
1068
1069	case POLICY_DEMOTE:
1070		atomic_inc(&stats->demotion);
1071		break;
1072
1073	case POLICY_WRITEBACK:
1074		atomic_inc(&stats->writeback);
1075		break;
1076	}
1077}
1078
1079/*----------------------------------------------------------------
1080 * Migration processing
1081 *
1082 * Migration covers moving data from the origin device to the cache, or
1083 * vice versa.
1084 *--------------------------------------------------------------*/
1085
1086static void inc_io_migrations(struct cache *cache)
1087{
1088	atomic_inc(&cache->nr_io_migrations);
1089}
1090
1091static void dec_io_migrations(struct cache *cache)
1092{
1093	atomic_dec(&cache->nr_io_migrations);
1094}
1095
1096static bool discard_or_flush(struct bio *bio)
1097{
1098	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1099}
1100
1101static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1102				     dm_dblock_t *b, dm_dblock_t *e)
1103{
1104	sector_t sb = bio->bi_iter.bi_sector;
1105	sector_t se = bio_end_sector(bio);
 
 
 
 
 
 
 
1106
1107	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
 
 
1108
1109	if (se - sb < cache->discard_block_size)
1110		*e = *b;
1111	else
1112		*e = to_dblock(block_div(se, cache->discard_block_size));
1113}
 
 
 
1114
1115/*----------------------------------------------------------------*/
 
 
1116
1117static void prevent_background_work(struct cache *cache)
1118{
1119	lockdep_off();
1120	down_write(&cache->background_work_lock);
1121	lockdep_on();
1122}
1123
1124static void allow_background_work(struct cache *cache)
1125{
1126	lockdep_off();
1127	up_write(&cache->background_work_lock);
1128	lockdep_on();
1129}
1130
1131static bool background_work_begin(struct cache *cache)
1132{
1133	bool r;
 
1134
1135	lockdep_off();
1136	r = down_read_trylock(&cache->background_work_lock);
1137	lockdep_on();
1138
1139	return r;
 
 
1140}
1141
1142static void background_work_end(struct cache *cache)
1143{
1144	lockdep_off();
1145	up_read(&cache->background_work_lock);
1146	lockdep_on();
1147}
1148
1149/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150
1151static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1152{
1153	return (bio_data_dir(bio) == WRITE) &&
1154		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1155}
1156
1157static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1158{
1159	return writeback_mode(cache) &&
1160		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1161}
1162
1163static void quiesce(struct dm_cache_migration *mg,
1164		    void (*continuation)(struct work_struct *))
1165{
1166	init_continuation(&mg->k, continuation);
1167	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168}
1169
1170static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1171{
1172	struct continuation *k = container_of(ws, struct continuation, ws);
1173	return container_of(k, struct dm_cache_migration, k);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174}
1175
1176static void copy_complete(int read_err, unsigned long write_err, void *context)
1177{
1178	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
 
 
1179
1180	if (read_err || write_err)
1181		mg->k.input = BLK_STS_IOERR;
1182
1183	queue_continuation(mg->cache->wq, &mg->k);
 
 
 
 
1184}
1185
1186static void copy(struct dm_cache_migration *mg, bool promote)
1187{
 
1188	struct dm_io_region o_region, c_region;
1189	struct cache *cache = mg->cache;
 
1190
1191	o_region.bdev = cache->origin_dev->bdev;
1192	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1193	o_region.count = cache->sectors_per_block;
1194
1195	c_region.bdev = cache->cache_dev->bdev;
1196	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1197	c_region.count = cache->sectors_per_block;
1198
1199	if (promote)
1200		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1201	else
1202		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1203}
1204
1205static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1206{
1207	struct per_bio_data *pb = get_per_bio_data(bio);
1208
1209	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1210		free_prison_cell(cache, pb->cell);
1211	pb->cell = NULL;
 
1212}
1213
1214static void overwrite_endio(struct bio *bio)
1215{
1216	struct dm_cache_migration *mg = bio->bi_private;
1217	struct cache *cache = mg->cache;
1218	struct per_bio_data *pb = get_per_bio_data(bio);
 
 
1219
1220	dm_unhook_bio(&pb->hook_info, bio);
1221
1222	if (bio->bi_status)
1223		mg->k.input = bio->bi_status;
 
 
 
 
 
 
1224
1225	queue_continuation(cache->wq, &mg->k);
1226}
1227
1228static void overwrite(struct dm_cache_migration *mg,
1229		      void (*continuation)(struct work_struct *))
1230{
1231	struct bio *bio = mg->overwrite_bio;
1232	struct per_bio_data *pb = get_per_bio_data(bio);
1233
1234	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
 
1235
1236	/*
1237	 * The overwrite bio is part of the copy operation, as such it does
1238	 * not set/clear discard or dirty flags.
1239	 */
1240	if (mg->op->op == POLICY_PROMOTE)
1241		remap_to_cache(mg->cache, bio, mg->op->cblock);
1242	else
1243		remap_to_origin(mg->cache, bio);
1244
1245	init_continuation(&mg->k, continuation);
1246	accounted_request(mg->cache, bio);
1247}
1248
1249/*
1250 * Migration steps:
1251 *
1252 * 1) exclusive lock preventing WRITEs
1253 * 2) quiesce
1254 * 3) copy or issue overwrite bio
1255 * 4) upgrade to exclusive lock preventing READs and WRITEs
1256 * 5) quiesce
1257 * 6) update metadata and commit
1258 * 7) unlock
1259 */
1260static void mg_complete(struct dm_cache_migration *mg, bool success)
1261{
1262	struct bio_list bios;
1263	struct cache *cache = mg->cache;
1264	struct policy_work *op = mg->op;
1265	dm_cblock_t cblock = op->cblock;
1266
1267	if (success)
1268		update_stats(&cache->stats, op->op);
 
 
 
1269
1270	switch (op->op) {
1271	case POLICY_PROMOTE:
1272		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1273		policy_complete_background_work(cache->policy, op, success);
1274
1275		if (mg->overwrite_bio) {
1276			if (success)
1277				force_set_dirty(cache, cblock);
1278			else if (mg->k.input)
1279				mg->overwrite_bio->bi_status = mg->k.input;
1280			else
1281				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1282			bio_endio(mg->overwrite_bio);
1283		} else {
1284			if (success)
1285				force_clear_dirty(cache, cblock);
1286			dec_io_migrations(cache);
1287		}
1288		break;
1289
1290	case POLICY_DEMOTE:
1291		/*
1292		 * We clear dirty here to update the nr_dirty counter.
1293		 */
1294		if (success)
1295			force_clear_dirty(cache, cblock);
1296		policy_complete_background_work(cache->policy, op, success);
1297		dec_io_migrations(cache);
1298		break;
1299
1300	case POLICY_WRITEBACK:
1301		if (success)
1302			force_clear_dirty(cache, cblock);
1303		policy_complete_background_work(cache->policy, op, success);
1304		dec_io_migrations(cache);
1305		break;
1306	}
1307
1308	bio_list_init(&bios);
1309	if (mg->cell) {
1310		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1311			free_prison_cell(cache, mg->cell);
 
 
 
 
 
 
1312	}
1313
 
 
1314	free_migration(mg);
1315	defer_bios(cache, &bios);
1316	wake_migration_worker(cache);
1317
1318	background_work_end(cache);
1319}
1320
1321static void mg_success(struct work_struct *ws)
1322{
1323	struct dm_cache_migration *mg = ws_to_mg(ws);
1324	mg_complete(mg, mg->k.input == 0);
1325}
1326
1327static void mg_update_metadata(struct work_struct *ws)
1328{
1329	int r;
1330	struct dm_cache_migration *mg = ws_to_mg(ws);
1331	struct cache *cache = mg->cache;
1332	struct policy_work *op = mg->op;
1333
1334	switch (op->op) {
1335	case POLICY_PROMOTE:
1336		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1337		if (r) {
1338			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1339				    cache_device_name(cache));
1340			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1341
1342			mg_complete(mg, false);
1343			return;
1344		}
1345		mg_complete(mg, true);
1346		break;
1347
1348	case POLICY_DEMOTE:
1349		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1350		if (r) {
1351			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1352				    cache_device_name(cache));
1353			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1354
1355			mg_complete(mg, false);
 
 
1356			return;
1357		}
1358
1359		/*
1360		 * It would be nice if we only had to commit when a REQ_FLUSH
1361		 * comes through.  But there's one scenario that we have to
1362		 * look out for:
1363		 *
1364		 * - vblock x in a cache block
1365		 * - domotion occurs
1366		 * - cache block gets reallocated and over written
1367		 * - crash
1368		 *
1369		 * When we recover, because there was no commit the cache will
1370		 * rollback to having the data for vblock x in the cache block.
1371		 * But the cache block has since been overwritten, so it'll end
1372		 * up pointing to data that was never in 'x' during the history
1373		 * of the device.
1374		 *
1375		 * To avoid this issue we require a commit as part of the
1376		 * demotion operation.
1377		 */
1378		init_continuation(&mg->k, mg_success);
1379		continue_after_commit(&cache->committer, &mg->k);
1380		schedule_commit(&cache->committer);
1381		break;
1382
1383	case POLICY_WRITEBACK:
1384		mg_complete(mg, true);
1385		break;
1386	}
 
 
1387}
1388
1389static void mg_update_metadata_after_copy(struct work_struct *ws)
1390{
1391	struct dm_cache_migration *mg = ws_to_mg(ws);
1392
1393	/*
1394	 * Did the copy succeed?
1395	 */
1396	if (mg->k.input)
1397		mg_complete(mg, false);
1398	else
1399		mg_update_metadata(ws);
1400}
1401
1402static void mg_upgrade_lock(struct work_struct *ws)
 
1403{
1404	int r;
1405	struct dm_cache_migration *mg = ws_to_mg(ws);
1406
1407	/*
1408	 * Did the copy succeed?
1409	 */
1410	if (mg->k.input)
1411		mg_complete(mg, false);
1412
1413	else {
1414		/*
1415		 * Now we want the lock to prevent both reads and writes.
1416		 */
1417		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1418					    READ_WRITE_LOCK_LEVEL);
1419		if (r < 0)
1420			mg_complete(mg, false);
1421
1422		else if (r)
1423			quiesce(mg, mg_update_metadata);
 
1424
1425		else
1426			mg_update_metadata(ws);
1427	}
1428}
1429
1430static void mg_full_copy(struct work_struct *ws)
1431{
1432	struct dm_cache_migration *mg = ws_to_mg(ws);
1433	struct cache *cache = mg->cache;
1434	struct policy_work *op = mg->op;
1435	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1436
1437	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1438	    is_discarded_oblock(cache, op->oblock)) {
1439		mg_upgrade_lock(ws);
1440		return;
1441	}
1442
1443	init_continuation(&mg->k, mg_upgrade_lock);
1444	copy(mg, is_policy_promote);
1445}
1446
1447static void mg_copy(struct work_struct *ws)
1448{
1449	struct dm_cache_migration *mg = ws_to_mg(ws);
1450
1451	if (mg->overwrite_bio) {
1452		/*
1453		 * No exclusive lock was held when we last checked if the bio
1454		 * was optimisable.  So we have to check again in case things
1455		 * have changed (eg, the block may no longer be discarded).
1456		 */
1457		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1458			/*
1459			 * Fallback to a real full copy after doing some tidying up.
1460			 */
1461			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1462			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1463			mg->overwrite_bio = NULL;
1464			inc_io_migrations(mg->cache);
1465			mg_full_copy(ws);
1466			return;
1467		}
1468
1469		/*
1470		 * It's safe to do this here, even though it's new data
1471		 * because all IO has been locked out of the block.
1472		 *
1473		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1474		 * so _not_ using mg_upgrade_lock() as continutation.
1475		 */
1476		overwrite(mg, mg_update_metadata_after_copy);
1477
1478	} else
1479		mg_full_copy(ws);
1480}
1481
1482static int mg_lock_writes(struct dm_cache_migration *mg)
 
1483{
1484	int r;
1485	struct dm_cell_key_v2 key;
1486	struct cache *cache = mg->cache;
1487	struct dm_bio_prison_cell_v2 *prealloc;
1488
1489	prealloc = alloc_prison_cell(cache);
1490
1491	/*
1492	 * Prevent writes to the block, but allow reads to continue.
1493	 * Unless we're using an overwrite bio, in which case we lock
1494	 * everything.
1495	 */
1496	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1497	r = dm_cell_lock_v2(cache->prison, &key,
1498			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1499			    prealloc, &mg->cell);
1500	if (r < 0) {
1501		free_prison_cell(cache, prealloc);
1502		mg_complete(mg, false);
1503		return r;
1504	}
1505
1506	if (mg->cell != prealloc)
1507		free_prison_cell(cache, prealloc);
1508
1509	if (r == 0)
1510		mg_copy(&mg->k.ws);
1511	else
1512		quiesce(mg, mg_copy);
1513
1514	return 0;
 
1515}
1516
1517static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1518{
1519	struct dm_cache_migration *mg;
1520
1521	if (!background_work_begin(cache)) {
1522		policy_complete_background_work(cache->policy, op, false);
1523		return -EPERM;
1524	}
1525
1526	mg = alloc_migration(cache);
 
 
 
 
1527
1528	mg->op = op;
1529	mg->overwrite_bio = bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530
1531	if (!bio)
1532		inc_io_migrations(cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1533
1534	return mg_lock_writes(mg);
1535}
1536
1537/*----------------------------------------------------------------
1538 * invalidation processing
1539 *--------------------------------------------------------------*/
1540
1541static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1542{
1543	struct bio_list bios;
1544	struct cache *cache = mg->cache;
1545
1546	bio_list_init(&bios);
1547	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1548		free_prison_cell(cache, mg->cell);
1549
1550	if (!success && mg->overwrite_bio)
1551		bio_io_error(mg->overwrite_bio);
1552
1553	free_migration(mg);
1554	defer_bios(cache, &bios);
1555
1556	background_work_end(cache);
1557}
 
1558
1559static void invalidate_completed(struct work_struct *ws)
1560{
1561	struct dm_cache_migration *mg = ws_to_mg(ws);
1562	invalidate_complete(mg, !mg->k.input);
1563}
1564
1565static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1566{
1567	int r = policy_invalidate_mapping(cache->policy, cblock);
1568	if (!r) {
1569		r = dm_cache_remove_mapping(cache->cmd, cblock);
1570		if (r) {
1571			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1572				    cache_device_name(cache));
1573			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1574		}
1575
1576	} else if (r == -ENODATA) {
1577		/*
1578		 * Harmless, already unmapped.
1579		 */
1580		r = 0;
1581
1582	} else
1583		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1584
1585	return r;
 
 
 
 
 
1586}
1587
1588static void invalidate_remove(struct work_struct *ws)
 
1589{
1590	int r;
1591	struct dm_cache_migration *mg = ws_to_mg(ws);
1592	struct cache *cache = mg->cache;
1593
1594	r = invalidate_cblock(cache, mg->invalidate_cblock);
1595	if (r) {
1596		invalidate_complete(mg, false);
1597		return;
1598	}
1599
1600	init_continuation(&mg->k, invalidate_completed);
1601	continue_after_commit(&cache->committer, &mg->k);
1602	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1603	mg->overwrite_bio = NULL;
1604	schedule_commit(&cache->committer);
 
 
 
1605}
1606
1607static int invalidate_lock(struct dm_cache_migration *mg)
1608{
1609	int r;
1610	struct dm_cell_key_v2 key;
1611	struct cache *cache = mg->cache;
1612	struct dm_bio_prison_cell_v2 *prealloc;
1613
1614	prealloc = alloc_prison_cell(cache);
1615
1616	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1617	r = dm_cell_lock_v2(cache->prison, &key,
1618			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1619	if (r < 0) {
1620		free_prison_cell(cache, prealloc);
1621		invalidate_complete(mg, false);
1622		return r;
1623	}
1624
1625	if (mg->cell != prealloc)
1626		free_prison_cell(cache, prealloc);
 
 
 
1627
1628	if (r)
1629		quiesce(mg, invalidate_remove);
 
 
 
1630
1631	else {
1632		/*
1633		 * We can't call invalidate_remove() directly here because we
1634		 * might still be in request context.
1635		 */
1636		init_continuation(&mg->k, invalidate_remove);
1637		queue_work(cache->wq, &mg->k.ws);
1638	}
1639
1640	return 0;
1641}
 
 
 
 
1642
1643static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1644			    dm_oblock_t oblock, struct bio *bio)
1645{
1646	struct dm_cache_migration *mg;
 
 
1647
1648	if (!background_work_begin(cache))
1649		return -EPERM;
 
1650
1651	mg = alloc_migration(cache);
 
 
 
 
1652
1653	mg->overwrite_bio = bio;
1654	mg->invalidate_cblock = cblock;
1655	mg->invalidate_oblock = oblock;
1656
1657	return invalidate_lock(mg);
 
 
1658}
1659
1660/*----------------------------------------------------------------
1661 * bio processing
1662 *--------------------------------------------------------------*/
 
 
 
 
 
1663
1664enum busy {
1665	IDLE,
1666	BUSY
1667};
1668
1669static enum busy spare_migration_bandwidth(struct cache *cache)
1670{
1671	bool idle = iot_idle_for(&cache->tracker, HZ);
1672	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1673		cache->sectors_per_block;
1674
1675	if (idle && current_volume <= cache->migration_threshold)
1676		return IDLE;
 
1677	else
1678		return BUSY;
1679}
1680
1681static void inc_hit_counter(struct cache *cache, struct bio *bio)
1682{
1683	atomic_inc(bio_data_dir(bio) == READ ?
1684		   &cache->stats.read_hit : &cache->stats.write_hit);
 
 
 
 
 
1685}
1686
1687static void inc_miss_counter(struct cache *cache, struct bio *bio)
 
1688{
1689	atomic_inc(bio_data_dir(bio) == READ ?
1690		   &cache->stats.read_miss : &cache->stats.write_miss);
1691}
1692
1693/*----------------------------------------------------------------*/
 
 
 
1694
1695static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1696		   bool *commit_needed)
1697{
1698	int r, data_dir;
1699	bool rb, background_queued;
1700	dm_cblock_t cblock;
 
 
 
 
1701
1702	*commit_needed = false;
 
 
 
1703
1704	rb = bio_detain_shared(cache, block, bio);
1705	if (!rb) {
1706		/*
1707		 * An exclusive lock is held for this block, so we have to
1708		 * wait.  We set the commit_needed flag so the current
1709		 * transaction will be committed asap, allowing this lock
1710		 * to be dropped.
1711		 */
1712		*commit_needed = true;
1713		return DM_MAPIO_SUBMITTED;
1714	}
1715
1716	data_dir = bio_data_dir(bio);
 
1717
1718	if (optimisable_bio(cache, bio, block)) {
1719		struct policy_work *op = NULL;
1720
1721		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1722		if (unlikely(r && r != -ENOENT)) {
1723			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1724				    cache_device_name(cache), r);
1725			bio_io_error(bio);
1726			return DM_MAPIO_SUBMITTED;
1727		}
1728
1729		if (r == -ENOENT && op) {
1730			bio_drop_shared_lock(cache, bio);
1731			BUG_ON(op->op != POLICY_PROMOTE);
1732			mg_start(cache, op, bio);
1733			return DM_MAPIO_SUBMITTED;
1734		}
1735	} else {
1736		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1737		if (unlikely(r && r != -ENOENT)) {
1738			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1739				    cache_device_name(cache), r);
1740			bio_io_error(bio);
1741			return DM_MAPIO_SUBMITTED;
1742		}
1743
1744		if (background_queued)
1745			wake_migration_worker(cache);
1746	}
 
 
 
 
 
 
 
 
1747
1748	if (r == -ENOENT) {
1749		struct per_bio_data *pb = get_per_bio_data(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1750
1751		/*
1752		 * Miss.
1753		 */
1754		inc_miss_counter(cache, bio);
1755		if (pb->req_nr == 0) {
1756			accounted_begin(cache, bio);
1757			remap_to_origin_clear_discard(cache, bio, block);
1758		} else {
1759			/*
1760			 * This is a duplicate writethrough io that is no
1761			 * longer needed because the block has been demoted.
 
1762			 */
1763			bio_endio(bio);
1764			return DM_MAPIO_SUBMITTED;
1765		}
1766	} else {
1767		/*
1768		 * Hit.
1769		 */
1770		inc_hit_counter(cache, bio);
1771
1772		/*
1773		 * Passthrough always maps to the origin, invalidating any
1774		 * cache blocks that are written to.
1775		 */
1776		if (passthrough_mode(cache)) {
1777			if (bio_data_dir(bio) == WRITE) {
1778				bio_drop_shared_lock(cache, bio);
1779				atomic_inc(&cache->stats.demotion);
1780				invalidate_start(cache, cblock, block, bio);
1781			} else
 
 
 
1782				remap_to_origin_clear_discard(cache, bio, block);
 
 
1783		} else {
1784			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1785			    !is_dirty(cache, cblock)) {
1786				remap_to_origin_and_cache(cache, bio, block, cblock);
1787				accounted_begin(cache, bio);
1788			} else
1789				remap_to_cache_dirty(cache, bio, block, cblock);
 
 
 
 
 
 
1790		}
1791	}
1792
1793	/*
1794	 * dm core turns FUA requests into a separate payload and FLUSH req.
1795	 */
1796	if (bio->bi_opf & REQ_FUA) {
1797		/*
1798		 * issue_after_commit will call accounted_begin a second time.  So
1799		 * we call accounted_complete() to avoid double accounting.
1800		 */
1801		accounted_complete(cache, bio);
1802		issue_after_commit(&cache->committer, bio);
1803		*commit_needed = true;
1804		return DM_MAPIO_SUBMITTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805	}
1806
1807	return DM_MAPIO_REMAPPED;
 
1808}
1809
1810static bool process_bio(struct cache *cache, struct bio *bio)
 
1811{
1812	bool commit_needed;
 
 
 
 
 
 
 
 
 
 
 
 
1813
1814	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1815		generic_make_request(bio);
1816
1817	return commit_needed;
 
 
 
1818}
1819
1820/*
1821 * A non-zero return indicates read_only or fail_io mode.
1822 */
1823static int commit(struct cache *cache, bool clean_shutdown)
1824{
1825	int r;
1826
1827	if (get_cache_mode(cache) >= CM_READ_ONLY)
1828		return -EINVAL;
1829
1830	atomic_inc(&cache->stats.commit_count);
1831	r = dm_cache_commit(cache->cmd, clean_shutdown);
1832	if (r)
1833		metadata_operation_failed(cache, "dm_cache_commit", r);
1834
1835	return r;
1836}
1837
1838/*
1839 * Used by the batcher.
1840 */
1841static blk_status_t commit_op(void *context)
1842{
1843	struct cache *cache = context;
1844
1845	if (dm_cache_changed_this_transaction(cache->cmd))
1846		return errno_to_blk_status(commit(cache, false));
 
 
 
 
1847
1848	return 0;
1849}
1850
1851/*----------------------------------------------------------------*/
1852
1853static bool process_flush_bio(struct cache *cache, struct bio *bio)
1854{
1855	struct per_bio_data *pb = get_per_bio_data(bio);
 
 
 
 
1856
1857	if (!pb->req_nr)
1858		remap_to_origin(cache, bio);
1859	else
1860		remap_to_cache(cache, bio, 0);
1861
1862	issue_after_commit(&cache->committer, bio);
1863	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864}
1865
1866static bool process_discard_bio(struct cache *cache, struct bio *bio)
1867{
1868	dm_dblock_t b, e;
 
 
 
 
1869
1870	// FIXME: do we need to lock the region?  Or can we just assume the
1871	// user wont be so foolish as to issue discard concurrently with
1872	// other IO?
1873	calc_discard_block_range(cache, bio, &b, &e);
1874	while (b != e) {
1875		set_discard(cache, b);
1876		b = to_dblock(from_dblock(b) + 1);
1877	}
1878
1879	if (cache->features.discard_passdown) {
1880		remap_to_origin(cache, bio);
1881		generic_make_request(bio);
1882	} else
1883		bio_endio(bio);
1884
1885	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1886}
1887
1888static void process_deferred_bios(struct work_struct *ws)
1889{
1890	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891
 
 
1892	unsigned long flags;
1893	bool commit_needed = false;
1894	struct bio_list bios;
1895	struct bio *bio;
1896
1897	bio_list_init(&bios);
1898
1899	spin_lock_irqsave(&cache->lock, flags);
1900	bio_list_merge(&bios, &cache->deferred_bios);
1901	bio_list_init(&cache->deferred_bios);
1902	spin_unlock_irqrestore(&cache->lock, flags);
1903
1904	while ((bio = bio_list_pop(&bios))) {
1905		if (bio->bi_opf & REQ_PREFLUSH)
1906			commit_needed = process_flush_bio(cache, bio) || commit_needed;
 
 
 
1907
1908		else if (bio_op(bio) == REQ_OP_DISCARD)
1909			commit_needed = process_discard_bio(cache, bio) || commit_needed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910
1911		else
1912			commit_needed = process_bio(cache, bio) || commit_needed;
1913	}
1914
1915	if (commit_needed)
1916		schedule_commit(&cache->committer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1917}
1918
1919/*----------------------------------------------------------------
1920 * Main worker loop
1921 *--------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922
1923static void requeue_deferred_bios(struct cache *cache)
1924{
1925	struct bio *bio;
1926	struct bio_list bios;
1927
1928	bio_list_init(&bios);
1929	bio_list_merge(&bios, &cache->deferred_bios);
1930	bio_list_init(&cache->deferred_bios);
1931
1932	while ((bio = bio_list_pop(&bios))) {
1933		bio->bi_status = BLK_STS_DM_REQUEUE;
1934		bio_endio(bio);
1935	}
1936}
1937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1938/*
1939 * We want to commit periodically so that not too much
1940 * unwritten metadata builds up.
1941 */
1942static void do_waker(struct work_struct *ws)
1943{
1944	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1945
1946	policy_tick(cache->policy, true);
1947	wake_migration_worker(cache);
1948	schedule_commit(&cache->committer);
1949	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1950}
1951
1952static void check_migrations(struct work_struct *ws)
1953{
1954	int r;
1955	struct policy_work *op;
1956	struct cache *cache = container_of(ws, struct cache, migration_worker);
1957	enum busy b;
1958
1959	for (;;) {
1960		b = spare_migration_bandwidth(cache);
1961
1962		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1963		if (r == -ENODATA)
1964			break;
 
 
1965
1966		if (r) {
1967			DMERR_LIMIT("%s: policy_background_work failed",
1968				    cache_device_name(cache));
1969			break;
1970		}
1971
1972		r = mg_start(cache, op, NULL);
1973		if (r)
1974			break;
1975	}
1976}
1977
1978/*----------------------------------------------------------------
1979 * Target methods
1980 *--------------------------------------------------------------*/
1981
1982/*
1983 * This function gets called on the error paths of the constructor, so we
1984 * have to cope with a partially initialised struct.
1985 */
1986static void destroy(struct cache *cache)
1987{
1988	unsigned i;
1989
1990	mempool_exit(&cache->migration_pool);
 
 
 
1991
1992	if (cache->prison)
1993		dm_bio_prison_destroy_v2(cache->prison);
1994
1995	if (cache->wq)
1996		destroy_workqueue(cache->wq);
1997
1998	if (cache->dirty_bitset)
1999		free_bitset(cache->dirty_bitset);
2000
2001	if (cache->discard_bitset)
2002		free_bitset(cache->discard_bitset);
2003
2004	if (cache->copier)
2005		dm_kcopyd_client_destroy(cache->copier);
2006
2007	if (cache->cmd)
2008		dm_cache_metadata_close(cache->cmd);
2009
2010	if (cache->metadata_dev)
2011		dm_put_device(cache->ti, cache->metadata_dev);
2012
2013	if (cache->origin_dev)
2014		dm_put_device(cache->ti, cache->origin_dev);
2015
2016	if (cache->cache_dev)
2017		dm_put_device(cache->ti, cache->cache_dev);
2018
2019	if (cache->policy)
2020		dm_cache_policy_destroy(cache->policy);
2021
2022	for (i = 0; i < cache->nr_ctr_args ; i++)
2023		kfree(cache->ctr_args[i]);
2024	kfree(cache->ctr_args);
2025
2026	bioset_exit(&cache->bs);
2027
2028	kfree(cache);
2029}
2030
2031static void cache_dtr(struct dm_target *ti)
2032{
2033	struct cache *cache = ti->private;
2034
2035	destroy(cache);
2036}
2037
2038static sector_t get_dev_size(struct dm_dev *dev)
2039{
2040	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2041}
2042
2043/*----------------------------------------------------------------*/
2044
2045/*
2046 * Construct a cache device mapping.
2047 *
2048 * cache <metadata dev> <cache dev> <origin dev> <block size>
2049 *       <#feature args> [<feature arg>]*
2050 *       <policy> <#policy args> [<policy arg>]*
2051 *
2052 * metadata dev    : fast device holding the persistent metadata
2053 * cache dev	   : fast device holding cached data blocks
2054 * origin dev	   : slow device holding original data blocks
2055 * block size	   : cache unit size in sectors
2056 *
2057 * #feature args   : number of feature arguments passed
2058 * feature args    : writethrough.  (The default is writeback.)
2059 *
2060 * policy	   : the replacement policy to use
2061 * #policy args    : an even number of policy arguments corresponding
2062 *		     to key/value pairs passed to the policy
2063 * policy args	   : key/value pairs passed to the policy
2064 *		     E.g. 'sequential_threshold 1024'
2065 *		     See cache-policies.txt for details.
2066 *
2067 * Optional feature arguments are:
2068 *   writethrough  : write through caching that prohibits cache block
2069 *		     content from being different from origin block content.
2070 *		     Without this argument, the default behaviour is to write
2071 *		     back cache block contents later for performance reasons,
2072 *		     so they may differ from the corresponding origin blocks.
2073 */
2074struct cache_args {
2075	struct dm_target *ti;
2076
2077	struct dm_dev *metadata_dev;
2078
2079	struct dm_dev *cache_dev;
2080	sector_t cache_sectors;
2081
2082	struct dm_dev *origin_dev;
2083	sector_t origin_sectors;
2084
2085	uint32_t block_size;
2086
2087	const char *policy_name;
2088	int policy_argc;
2089	const char **policy_argv;
2090
2091	struct cache_features features;
2092};
2093
2094static void destroy_cache_args(struct cache_args *ca)
2095{
2096	if (ca->metadata_dev)
2097		dm_put_device(ca->ti, ca->metadata_dev);
2098
2099	if (ca->cache_dev)
2100		dm_put_device(ca->ti, ca->cache_dev);
2101
2102	if (ca->origin_dev)
2103		dm_put_device(ca->ti, ca->origin_dev);
2104
2105	kfree(ca);
2106}
2107
2108static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2109{
2110	if (!as->argc) {
2111		*error = "Insufficient args";
2112		return false;
2113	}
2114
2115	return true;
2116}
2117
2118static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2119			      char **error)
2120{
2121	int r;
2122	sector_t metadata_dev_size;
2123	char b[BDEVNAME_SIZE];
2124
2125	if (!at_least_one_arg(as, error))
2126		return -EINVAL;
2127
2128	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2129			  &ca->metadata_dev);
2130	if (r) {
2131		*error = "Error opening metadata device";
2132		return r;
2133	}
2134
2135	metadata_dev_size = get_dev_size(ca->metadata_dev);
2136	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2137		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2138		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2139
2140	return 0;
2141}
2142
2143static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2144			   char **error)
2145{
2146	int r;
2147
2148	if (!at_least_one_arg(as, error))
2149		return -EINVAL;
2150
2151	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2152			  &ca->cache_dev);
2153	if (r) {
2154		*error = "Error opening cache device";
2155		return r;
2156	}
2157	ca->cache_sectors = get_dev_size(ca->cache_dev);
2158
2159	return 0;
2160}
2161
2162static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2163			    char **error)
2164{
2165	int r;
2166
2167	if (!at_least_one_arg(as, error))
2168		return -EINVAL;
2169
2170	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2171			  &ca->origin_dev);
2172	if (r) {
2173		*error = "Error opening origin device";
2174		return r;
2175	}
2176
2177	ca->origin_sectors = get_dev_size(ca->origin_dev);
2178	if (ca->ti->len > ca->origin_sectors) {
2179		*error = "Device size larger than cached device";
2180		return -EINVAL;
2181	}
2182
2183	return 0;
2184}
2185
2186static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2187			    char **error)
2188{
2189	unsigned long block_size;
2190
2191	if (!at_least_one_arg(as, error))
2192		return -EINVAL;
2193
2194	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2195	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2196	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2197	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2198		*error = "Invalid data block size";
2199		return -EINVAL;
2200	}
2201
2202	if (block_size > ca->cache_sectors) {
2203		*error = "Data block size is larger than the cache device";
2204		return -EINVAL;
2205	}
2206
2207	ca->block_size = block_size;
2208
2209	return 0;
2210}
2211
2212static void init_features(struct cache_features *cf)
2213{
2214	cf->mode = CM_WRITE;
2215	cf->io_mode = CM_IO_WRITEBACK;
2216	cf->metadata_version = 1;
2217	cf->discard_passdown = true;
2218}
2219
2220static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2221			  char **error)
2222{
2223	static const struct dm_arg _args[] = {
2224		{0, 3, "Invalid number of cache feature arguments"},
2225	};
2226
2227	int r, mode_ctr = 0;
2228	unsigned argc;
2229	const char *arg;
2230	struct cache_features *cf = &ca->features;
2231
2232	init_features(cf);
2233
2234	r = dm_read_arg_group(_args, as, &argc, error);
2235	if (r)
2236		return -EINVAL;
2237
2238	while (argc--) {
2239		arg = dm_shift_arg(as);
2240
2241		if (!strcasecmp(arg, "writeback")) {
2242			cf->io_mode = CM_IO_WRITEBACK;
2243			mode_ctr++;
2244		}
2245
2246		else if (!strcasecmp(arg, "writethrough")) {
2247			cf->io_mode = CM_IO_WRITETHROUGH;
2248			mode_ctr++;
2249		}
2250
2251		else if (!strcasecmp(arg, "passthrough")) {
2252			cf->io_mode = CM_IO_PASSTHROUGH;
2253			mode_ctr++;
2254		}
2255
2256		else if (!strcasecmp(arg, "metadata2"))
2257			cf->metadata_version = 2;
2258
2259		else if (!strcasecmp(arg, "no_discard_passdown"))
2260			cf->discard_passdown = false;
2261
2262		else {
2263			*error = "Unrecognised cache feature requested";
2264			return -EINVAL;
2265		}
2266	}
2267
2268	if (mode_ctr > 1) {
2269		*error = "Duplicate cache io_mode features requested";
2270		return -EINVAL;
2271	}
2272
2273	return 0;
2274}
2275
2276static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2277			char **error)
2278{
2279	static const struct dm_arg _args[] = {
2280		{0, 1024, "Invalid number of policy arguments"},
2281	};
2282
2283	int r;
2284
2285	if (!at_least_one_arg(as, error))
2286		return -EINVAL;
2287
2288	ca->policy_name = dm_shift_arg(as);
2289
2290	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2291	if (r)
2292		return -EINVAL;
2293
2294	ca->policy_argv = (const char **)as->argv;
2295	dm_consume_args(as, ca->policy_argc);
2296
2297	return 0;
2298}
2299
2300static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2301			    char **error)
2302{
2303	int r;
2304	struct dm_arg_set as;
2305
2306	as.argc = argc;
2307	as.argv = argv;
2308
2309	r = parse_metadata_dev(ca, &as, error);
2310	if (r)
2311		return r;
2312
2313	r = parse_cache_dev(ca, &as, error);
2314	if (r)
2315		return r;
2316
2317	r = parse_origin_dev(ca, &as, error);
2318	if (r)
2319		return r;
2320
2321	r = parse_block_size(ca, &as, error);
2322	if (r)
2323		return r;
2324
2325	r = parse_features(ca, &as, error);
2326	if (r)
2327		return r;
2328
2329	r = parse_policy(ca, &as, error);
2330	if (r)
2331		return r;
2332
2333	return 0;
2334}
2335
2336/*----------------------------------------------------------------*/
2337
2338static struct kmem_cache *migration_cache;
2339
2340#define NOT_CORE_OPTION 1
2341
2342static int process_config_option(struct cache *cache, const char *key, const char *value)
2343{
2344	unsigned long tmp;
2345
2346	if (!strcasecmp(key, "migration_threshold")) {
2347		if (kstrtoul(value, 10, &tmp))
2348			return -EINVAL;
2349
2350		cache->migration_threshold = tmp;
2351		return 0;
2352	}
2353
2354	return NOT_CORE_OPTION;
2355}
2356
2357static int set_config_value(struct cache *cache, const char *key, const char *value)
2358{
2359	int r = process_config_option(cache, key, value);
2360
2361	if (r == NOT_CORE_OPTION)
2362		r = policy_set_config_value(cache->policy, key, value);
2363
2364	if (r)
2365		DMWARN("bad config value for %s: %s", key, value);
2366
2367	return r;
2368}
2369
2370static int set_config_values(struct cache *cache, int argc, const char **argv)
2371{
2372	int r = 0;
2373
2374	if (argc & 1) {
2375		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2376		return -EINVAL;
2377	}
2378
2379	while (argc) {
2380		r = set_config_value(cache, argv[0], argv[1]);
2381		if (r)
2382			break;
2383
2384		argc -= 2;
2385		argv += 2;
2386	}
2387
2388	return r;
2389}
2390
2391static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2392			       char **error)
2393{
2394	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2395							   cache->cache_size,
2396							   cache->origin_sectors,
2397							   cache->sectors_per_block);
2398	if (IS_ERR(p)) {
2399		*error = "Error creating cache's policy";
2400		return PTR_ERR(p);
2401	}
2402	cache->policy = p;
2403	BUG_ON(!cache->policy);
2404
2405	return 0;
2406}
2407
2408/*
2409 * We want the discard block size to be at least the size of the cache
2410 * block size and have no more than 2^14 discard blocks across the origin.
2411 */
2412#define MAX_DISCARD_BLOCKS (1 << 14)
2413
2414static bool too_many_discard_blocks(sector_t discard_block_size,
2415				    sector_t origin_size)
2416{
2417	(void) sector_div(origin_size, discard_block_size);
2418
2419	return origin_size > MAX_DISCARD_BLOCKS;
2420}
2421
2422static sector_t calculate_discard_block_size(sector_t cache_block_size,
2423					     sector_t origin_size)
2424{
2425	sector_t discard_block_size = cache_block_size;
2426
2427	if (origin_size)
2428		while (too_many_discard_blocks(discard_block_size, origin_size))
2429			discard_block_size *= 2;
2430
2431	return discard_block_size;
2432}
2433
2434static void set_cache_size(struct cache *cache, dm_cblock_t size)
2435{
2436	dm_block_t nr_blocks = from_cblock(size);
2437
2438	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2439		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2440			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2441			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2442			     (unsigned long long) nr_blocks);
2443
2444	cache->cache_size = size;
2445}
2446
2447static int is_congested(struct dm_dev *dev, int bdi_bits)
2448{
2449	struct request_queue *q = bdev_get_queue(dev->bdev);
2450	return bdi_congested(q->backing_dev_info, bdi_bits);
2451}
2452
2453static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2454{
2455	struct cache *cache = container_of(cb, struct cache, callbacks);
2456
2457	return is_congested(cache->origin_dev, bdi_bits) ||
2458		is_congested(cache->cache_dev, bdi_bits);
2459}
2460
2461#define DEFAULT_MIGRATION_THRESHOLD 2048
2462
2463static int cache_create(struct cache_args *ca, struct cache **result)
2464{
2465	int r = 0;
2466	char **error = &ca->ti->error;
2467	struct cache *cache;
2468	struct dm_target *ti = ca->ti;
2469	dm_block_t origin_blocks;
2470	struct dm_cache_metadata *cmd;
2471	bool may_format = ca->features.mode == CM_WRITE;
2472
2473	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2474	if (!cache)
2475		return -ENOMEM;
2476
2477	cache->ti = ca->ti;
2478	ti->private = cache;
2479	ti->num_flush_bios = 2;
2480	ti->flush_supported = true;
2481
2482	ti->num_discard_bios = 1;
2483	ti->discards_supported = true;
2484
2485	ti->per_io_data_size = sizeof(struct per_bio_data);
2486
2487	cache->features = ca->features;
2488	if (writethrough_mode(cache)) {
2489		/* Create bioset for writethrough bios issued to origin */
2490		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2491		if (r)
2492			goto bad;
2493	}
2494
2495	cache->callbacks.congested_fn = cache_is_congested;
2496	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2497
2498	cache->metadata_dev = ca->metadata_dev;
2499	cache->origin_dev = ca->origin_dev;
2500	cache->cache_dev = ca->cache_dev;
2501
2502	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2503
 
2504	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2505	origin_blocks = block_div(origin_blocks, ca->block_size);
2506	cache->origin_blocks = to_oblock(origin_blocks);
2507
2508	cache->sectors_per_block = ca->block_size;
2509	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2510		r = -EINVAL;
2511		goto bad;
2512	}
2513
2514	if (ca->block_size & (ca->block_size - 1)) {
2515		dm_block_t cache_size = ca->cache_sectors;
2516
2517		cache->sectors_per_block_shift = -1;
2518		cache_size = block_div(cache_size, ca->block_size);
2519		set_cache_size(cache, to_cblock(cache_size));
2520	} else {
2521		cache->sectors_per_block_shift = __ffs(ca->block_size);
2522		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2523	}
2524
2525	r = create_cache_policy(cache, ca, error);
2526	if (r)
2527		goto bad;
2528
2529	cache->policy_nr_args = ca->policy_argc;
2530	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2531
2532	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2533	if (r) {
2534		*error = "Error setting cache policy's config values";
2535		goto bad;
2536	}
2537
2538	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2539				     ca->block_size, may_format,
2540				     dm_cache_policy_get_hint_size(cache->policy),
2541				     ca->features.metadata_version);
2542	if (IS_ERR(cmd)) {
2543		*error = "Error creating metadata object";
2544		r = PTR_ERR(cmd);
2545		goto bad;
2546	}
2547	cache->cmd = cmd;
2548	set_cache_mode(cache, CM_WRITE);
2549	if (get_cache_mode(cache) != CM_WRITE) {
2550		*error = "Unable to get write access to metadata, please check/repair metadata.";
2551		r = -EINVAL;
2552		goto bad;
2553	}
2554
2555	if (passthrough_mode(cache)) {
2556		bool all_clean;
2557
2558		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2559		if (r) {
2560			*error = "dm_cache_metadata_all_clean() failed";
2561			goto bad;
2562		}
2563
2564		if (!all_clean) {
2565			*error = "Cannot enter passthrough mode unless all blocks are clean";
2566			r = -EINVAL;
2567			goto bad;
2568		}
2569
2570		policy_allow_migrations(cache->policy, false);
2571	}
2572
2573	spin_lock_init(&cache->lock);
 
2574	bio_list_init(&cache->deferred_bios);
 
 
 
 
 
2575	atomic_set(&cache->nr_allocated_migrations, 0);
2576	atomic_set(&cache->nr_io_migrations, 0);
2577	init_waitqueue_head(&cache->migration_wait);
2578
 
 
 
 
2579	r = -ENOMEM;
2580	atomic_set(&cache->nr_dirty, 0);
2581	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2582	if (!cache->dirty_bitset) {
2583		*error = "could not allocate dirty bitset";
2584		goto bad;
2585	}
2586	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2587
2588	cache->discard_block_size =
2589		calculate_discard_block_size(cache->sectors_per_block,
2590					     cache->origin_sectors);
2591	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2592							      cache->discard_block_size));
2593	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2594	if (!cache->discard_bitset) {
2595		*error = "could not allocate discard bitset";
2596		goto bad;
2597	}
2598	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2599
2600	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2601	if (IS_ERR(cache->copier)) {
2602		*error = "could not create kcopyd client";
2603		r = PTR_ERR(cache->copier);
2604		goto bad;
2605	}
2606
2607	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2608	if (!cache->wq) {
2609		*error = "could not create workqueue for metadata object";
2610		goto bad;
2611	}
2612	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2613	INIT_WORK(&cache->migration_worker, check_migrations);
2614	INIT_DELAYED_WORK(&cache->waker, do_waker);
 
2615
2616	cache->prison = dm_bio_prison_create_v2(cache->wq);
2617	if (!cache->prison) {
2618		*error = "could not create bio prison";
2619		goto bad;
2620	}
2621
2622	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2623				   migration_cache);
2624	if (r) {
 
 
 
 
 
 
2625		*error = "Error creating cache's migration mempool";
2626		goto bad;
2627	}
2628
2629	cache->need_tick_bio = true;
2630	cache->sized = false;
2631	cache->invalidate = false;
2632	cache->commit_requested = false;
2633	cache->loaded_mappings = false;
2634	cache->loaded_discards = false;
2635
2636	load_stats(cache);
2637
2638	atomic_set(&cache->stats.demotion, 0);
2639	atomic_set(&cache->stats.promotion, 0);
2640	atomic_set(&cache->stats.copies_avoided, 0);
2641	atomic_set(&cache->stats.cache_cell_clash, 0);
2642	atomic_set(&cache->stats.commit_count, 0);
2643	atomic_set(&cache->stats.discard_count, 0);
2644
2645	spin_lock_init(&cache->invalidation_lock);
2646	INIT_LIST_HEAD(&cache->invalidation_requests);
2647
2648	batcher_init(&cache->committer, commit_op, cache,
2649		     issue_op, cache, cache->wq);
2650	iot_init(&cache->tracker);
2651
2652	init_rwsem(&cache->background_work_lock);
2653	prevent_background_work(cache);
2654
2655	*result = cache;
2656	return 0;
 
2657bad:
2658	destroy(cache);
2659	return r;
2660}
2661
2662static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2663{
2664	unsigned i;
2665	const char **copy;
2666
2667	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2668	if (!copy)
2669		return -ENOMEM;
2670	for (i = 0; i < argc; i++) {
2671		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2672		if (!copy[i]) {
2673			while (i--)
2674				kfree(copy[i]);
2675			kfree(copy);
2676			return -ENOMEM;
2677		}
2678	}
2679
2680	cache->nr_ctr_args = argc;
2681	cache->ctr_args = copy;
2682
2683	return 0;
2684}
2685
2686static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2687{
2688	int r = -EINVAL;
2689	struct cache_args *ca;
2690	struct cache *cache = NULL;
2691
2692	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2693	if (!ca) {
2694		ti->error = "Error allocating memory for cache";
2695		return -ENOMEM;
2696	}
2697	ca->ti = ti;
2698
2699	r = parse_cache_args(ca, argc, argv, &ti->error);
2700	if (r)
2701		goto out;
2702
2703	r = cache_create(ca, &cache);
2704	if (r)
2705		goto out;
2706
2707	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2708	if (r) {
2709		destroy(cache);
2710		goto out;
2711	}
2712
2713	ti->private = cache;
 
2714out:
2715	destroy_cache_args(ca);
2716	return r;
2717}
2718
2719/*----------------------------------------------------------------*/
2720
2721static int cache_map(struct dm_target *ti, struct bio *bio)
2722{
2723	struct cache *cache = ti->private;
2724
2725	int r;
2726	bool commit_needed;
2727	dm_oblock_t block = get_bio_block(cache, bio);
 
 
 
 
 
 
 
 
2728
2729	init_per_bio_data(bio);
2730	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2731		/*
2732		 * This can only occur if the io goes to a partial block at
2733		 * the end of the origin device.  We don't cache these.
2734		 * Just remap to the origin and carry on.
2735		 */
2736		remap_to_origin(cache, bio);
2737		accounted_begin(cache, bio);
2738		return DM_MAPIO_REMAPPED;
2739	}
2740
2741	if (discard_or_flush(bio)) {
2742		defer_bio(cache, bio);
2743		return DM_MAPIO_SUBMITTED;
2744	}
2745
2746	r = map_bio(cache, bio, block, &commit_needed);
2747	if (commit_needed)
2748		schedule_commit(&cache->committer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2749
2750	return r;
2751}
2752
2753static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2754{
2755	struct cache *cache = ti->private;
2756	unsigned long flags;
2757	struct per_bio_data *pb = get_per_bio_data(bio);
 
2758
2759	if (pb->tick) {
2760		policy_tick(cache->policy, false);
2761
2762		spin_lock_irqsave(&cache->lock, flags);
2763		cache->need_tick_bio = true;
2764		spin_unlock_irqrestore(&cache->lock, flags);
2765	}
2766
2767	bio_drop_shared_lock(cache, bio);
2768	accounted_complete(cache, bio);
2769
2770	return DM_ENDIO_DONE;
2771}
2772
2773static int write_dirty_bitset(struct cache *cache)
2774{
2775	int r;
2776
2777	if (get_cache_mode(cache) >= CM_READ_ONLY)
2778		return -EINVAL;
2779
2780	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2781	if (r)
2782		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
 
 
 
 
 
2783
2784	return r;
2785}
2786
2787static int write_discard_bitset(struct cache *cache)
2788{
2789	unsigned i, r;
2790
2791	if (get_cache_mode(cache) >= CM_READ_ONLY)
2792		return -EINVAL;
2793
2794	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2795					   cache->discard_nr_blocks);
2796	if (r) {
2797		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2798		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2799		return r;
2800	}
2801
2802	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2803		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2804					 is_discarded(cache, to_dblock(i)));
2805		if (r) {
2806			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2807			return r;
2808		}
2809	}
2810
2811	return 0;
2812}
2813
2814static int write_hints(struct cache *cache)
2815{
2816	int r;
2817
2818	if (get_cache_mode(cache) >= CM_READ_ONLY)
2819		return -EINVAL;
2820
2821	r = dm_cache_write_hints(cache->cmd, cache->policy);
2822	if (r) {
2823		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2824		return r;
2825	}
2826
2827	return 0;
2828}
2829
2830/*
2831 * returns true on success
2832 */
2833static bool sync_metadata(struct cache *cache)
2834{
2835	int r1, r2, r3, r4;
2836
2837	r1 = write_dirty_bitset(cache);
2838	if (r1)
2839		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2840
2841	r2 = write_discard_bitset(cache);
2842	if (r2)
2843		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2844
2845	save_stats(cache);
2846
2847	r3 = write_hints(cache);
2848	if (r3)
2849		DMERR("%s: could not write hints", cache_device_name(cache));
2850
2851	/*
2852	 * If writing the above metadata failed, we still commit, but don't
2853	 * set the clean shutdown flag.  This will effectively force every
2854	 * dirty bit to be set on reload.
2855	 */
2856	r4 = commit(cache, !r1 && !r2 && !r3);
2857	if (r4)
2858		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2859
2860	return !r1 && !r2 && !r3 && !r4;
2861}
2862
2863static void cache_postsuspend(struct dm_target *ti)
2864{
2865	struct cache *cache = ti->private;
2866
2867	prevent_background_work(cache);
2868	BUG_ON(atomic_read(&cache->nr_io_migrations));
2869
2870	cancel_delayed_work(&cache->waker);
2871	flush_workqueue(cache->wq);
2872	WARN_ON(cache->tracker.in_flight);
2873
2874	/*
2875	 * If it's a flush suspend there won't be any deferred bios, so this
2876	 * call is harmless.
2877	 */
2878	requeue_deferred_bios(cache);
 
 
2879
2880	if (get_cache_mode(cache) == CM_WRITE)
2881		(void) sync_metadata(cache);
2882}
2883
2884static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2885			bool dirty, uint32_t hint, bool hint_valid)
2886{
2887	int r;
2888	struct cache *cache = context;
2889
2890	if (dirty) {
2891		set_bit(from_cblock(cblock), cache->dirty_bitset);
2892		atomic_inc(&cache->nr_dirty);
2893	} else
2894		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2895
2896	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2897	if (r)
2898		return r;
2899
 
 
 
 
 
2900	return 0;
2901}
2902
2903/*
2904 * The discard block size in the on disk metadata is not
2905 * neccessarily the same as we're currently using.  So we have to
2906 * be careful to only set the discarded attribute if we know it
2907 * covers a complete block of the new size.
2908 */
2909struct discard_load_info {
2910	struct cache *cache;
2911
2912	/*
2913	 * These blocks are sized using the on disk dblock size, rather
2914	 * than the current one.
2915	 */
2916	dm_block_t block_size;
2917	dm_block_t discard_begin, discard_end;
2918};
2919
2920static void discard_load_info_init(struct cache *cache,
2921				   struct discard_load_info *li)
2922{
2923	li->cache = cache;
2924	li->discard_begin = li->discard_end = 0;
2925}
2926
2927static void set_discard_range(struct discard_load_info *li)
2928{
2929	sector_t b, e;
2930
2931	if (li->discard_begin == li->discard_end)
2932		return;
2933
2934	/*
2935	 * Convert to sectors.
2936	 */
2937	b = li->discard_begin * li->block_size;
2938	e = li->discard_end * li->block_size;
2939
2940	/*
2941	 * Then convert back to the current dblock size.
2942	 */
2943	b = dm_sector_div_up(b, li->cache->discard_block_size);
2944	sector_div(e, li->cache->discard_block_size);
2945
2946	/*
2947	 * The origin may have shrunk, so we need to check we're still in
2948	 * bounds.
2949	 */
2950	if (e > from_dblock(li->cache->discard_nr_blocks))
2951		e = from_dblock(li->cache->discard_nr_blocks);
2952
2953	for (; b < e; b++)
2954		set_discard(li->cache, to_dblock(b));
2955}
2956
2957static int load_discard(void *context, sector_t discard_block_size,
2958			dm_dblock_t dblock, bool discard)
2959{
2960	struct discard_load_info *li = context;
2961
2962	li->block_size = discard_block_size;
2963
2964	if (discard) {
2965		if (from_dblock(dblock) == li->discard_end)
2966			/*
2967			 * We're already in a discard range, just extend it.
2968			 */
2969			li->discard_end = li->discard_end + 1ULL;
2970
2971		else {
2972			/*
2973			 * Emit the old range and start a new one.
2974			 */
2975			set_discard_range(li);
2976			li->discard_begin = from_dblock(dblock);
2977			li->discard_end = li->discard_begin + 1ULL;
2978		}
2979	} else {
2980		set_discard_range(li);
2981		li->discard_begin = li->discard_end = 0;
2982	}
2983
2984	return 0;
2985}
2986
2987static dm_cblock_t get_cache_dev_size(struct cache *cache)
2988{
2989	sector_t size = get_dev_size(cache->cache_dev);
2990	(void) sector_div(size, cache->sectors_per_block);
2991	return to_cblock(size);
2992}
2993
2994static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2995{
2996	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2997		if (cache->sized) {
2998			DMERR("%s: unable to extend cache due to missing cache table reload",
2999			      cache_device_name(cache));
3000			return false;
3001		}
3002	}
3003
3004	/*
3005	 * We can't drop a dirty block when shrinking the cache.
3006	 */
3007	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3008		new_size = to_cblock(from_cblock(new_size) + 1);
3009		if (is_dirty(cache, new_size)) {
3010			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3011			      cache_device_name(cache),
3012			      (unsigned long long) from_cblock(new_size));
3013			return false;
3014		}
3015	}
3016
3017	return true;
3018}
3019
3020static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3021{
3022	int r;
3023
3024	r = dm_cache_resize(cache->cmd, new_size);
3025	if (r) {
3026		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3027		metadata_operation_failed(cache, "dm_cache_resize", r);
3028		return r;
3029	}
3030
3031	set_cache_size(cache, new_size);
3032
3033	return 0;
3034}
3035
3036static int cache_preresume(struct dm_target *ti)
3037{
3038	int r = 0;
3039	struct cache *cache = ti->private;
3040	dm_cblock_t csize = get_cache_dev_size(cache);
3041
3042	/*
3043	 * Check to see if the cache has resized.
3044	 */
3045	if (!cache->sized) {
3046		r = resize_cache_dev(cache, csize);
3047		if (r)
3048			return r;
3049
3050		cache->sized = true;
3051
3052	} else if (csize != cache->cache_size) {
3053		if (!can_resize(cache, csize))
3054			return -EINVAL;
3055
3056		r = resize_cache_dev(cache, csize);
3057		if (r)
3058			return r;
3059	}
3060
3061	if (!cache->loaded_mappings) {
3062		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3063					   load_mapping, cache);
3064		if (r) {
3065			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3066			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3067			return r;
3068		}
3069
3070		cache->loaded_mappings = true;
3071	}
3072
3073	if (!cache->loaded_discards) {
3074		struct discard_load_info li;
3075
3076		/*
3077		 * The discard bitset could have been resized, or the
3078		 * discard block size changed.  To be safe we start by
3079		 * setting every dblock to not discarded.
3080		 */
3081		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3082
3083		discard_load_info_init(cache, &li);
3084		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3085		if (r) {
3086			DMERR("%s: could not load origin discards", cache_device_name(cache));
3087			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3088			return r;
3089		}
3090		set_discard_range(&li);
3091
3092		cache->loaded_discards = true;
3093	}
3094
3095	return r;
3096}
3097
3098static void cache_resume(struct dm_target *ti)
3099{
3100	struct cache *cache = ti->private;
3101
3102	cache->need_tick_bio = true;
3103	allow_background_work(cache);
3104	do_waker(&cache->waker.work);
3105}
3106
3107static void emit_flags(struct cache *cache, char *result,
3108		       unsigned maxlen, ssize_t *sz_ptr)
3109{
3110	ssize_t sz = *sz_ptr;
3111	struct cache_features *cf = &cache->features;
3112	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3113
3114	DMEMIT("%u ", count);
3115
3116	if (cf->metadata_version == 2)
3117		DMEMIT("metadata2 ");
3118
3119	if (writethrough_mode(cache))
3120		DMEMIT("writethrough ");
3121
3122	else if (passthrough_mode(cache))
3123		DMEMIT("passthrough ");
3124
3125	else if (writeback_mode(cache))
3126		DMEMIT("writeback ");
3127
3128	else {
3129		DMEMIT("unknown ");
3130		DMERR("%s: internal error: unknown io mode: %d",
3131		      cache_device_name(cache), (int) cf->io_mode);
3132	}
3133
3134	if (!cf->discard_passdown)
3135		DMEMIT("no_discard_passdown ");
3136
3137	*sz_ptr = sz;
3138}
3139
3140/*
3141 * Status format:
3142 *
3143 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3144 * <cache block size> <#used cache blocks>/<#total cache blocks>
3145 * <#read hits> <#read misses> <#write hits> <#write misses>
3146 * <#demotions> <#promotions> <#dirty>
3147 * <#features> <features>*
3148 * <#core args> <core args>
3149 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3150 */
3151static void cache_status(struct dm_target *ti, status_type_t type,
3152			 unsigned status_flags, char *result, unsigned maxlen)
3153{
3154	int r = 0;
3155	unsigned i;
3156	ssize_t sz = 0;
3157	dm_block_t nr_free_blocks_metadata = 0;
3158	dm_block_t nr_blocks_metadata = 0;
3159	char buf[BDEVNAME_SIZE];
3160	struct cache *cache = ti->private;
3161	dm_cblock_t residency;
3162	bool needs_check;
3163
3164	switch (type) {
3165	case STATUSTYPE_INFO:
3166		if (get_cache_mode(cache) == CM_FAIL) {
3167			DMEMIT("Fail");
3168			break;
3169		}
3170
3171		/* Commit to ensure statistics aren't out-of-date */
3172		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3173			(void) commit(cache, false);
3174
3175		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3176		if (r) {
3177			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3178			      cache_device_name(cache), r);
3179			goto err;
3180		}
3181
3182		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3183		if (r) {
3184			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3185			      cache_device_name(cache), r);
3186			goto err;
3187		}
3188
3189		residency = policy_residency(cache->policy);
3190
3191		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3192		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3193		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3194		       (unsigned long long)nr_blocks_metadata,
3195		       (unsigned long long)cache->sectors_per_block,
3196		       (unsigned long long) from_cblock(residency),
3197		       (unsigned long long) from_cblock(cache->cache_size),
3198		       (unsigned) atomic_read(&cache->stats.read_hit),
3199		       (unsigned) atomic_read(&cache->stats.read_miss),
3200		       (unsigned) atomic_read(&cache->stats.write_hit),
3201		       (unsigned) atomic_read(&cache->stats.write_miss),
3202		       (unsigned) atomic_read(&cache->stats.demotion),
3203		       (unsigned) atomic_read(&cache->stats.promotion),
3204		       (unsigned long) atomic_read(&cache->nr_dirty));
3205
3206		emit_flags(cache, result, maxlen, &sz);
 
 
 
 
 
 
 
 
 
 
 
 
 
3207
3208		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3209
3210		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3211		if (sz < maxlen) {
3212			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3213			if (r)
3214				DMERR("%s: policy_emit_config_values returned %d",
3215				      cache_device_name(cache), r);
3216		}
3217
3218		if (get_cache_mode(cache) == CM_READ_ONLY)
3219			DMEMIT("ro ");
3220		else
3221			DMEMIT("rw ");
3222
3223		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3224
3225		if (r || needs_check)
3226			DMEMIT("needs_check ");
3227		else
3228			DMEMIT("- ");
3229
3230		break;
3231
3232	case STATUSTYPE_TABLE:
3233		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3234		DMEMIT("%s ", buf);
3235		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3236		DMEMIT("%s ", buf);
3237		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3238		DMEMIT("%s", buf);
3239
3240		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3241			DMEMIT(" %s", cache->ctr_args[i]);
3242		if (cache->nr_ctr_args)
3243			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3244	}
3245
3246	return;
3247
3248err:
3249	DMEMIT("Error");
3250}
3251
3252/*
3253 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3254 * the one-past-the-end value.
3255 */
3256struct cblock_range {
3257	dm_cblock_t begin;
3258	dm_cblock_t end;
3259};
3260
3261/*
3262 * A cache block range can take two forms:
3263 *
3264 * i) A single cblock, eg. '3456'
3265 * ii) A begin and end cblock with a dash between, eg. 123-234
3266 */
3267static int parse_cblock_range(struct cache *cache, const char *str,
3268			      struct cblock_range *result)
3269{
3270	char dummy;
3271	uint64_t b, e;
3272	int r;
3273
3274	/*
3275	 * Try and parse form (ii) first.
3276	 */
3277	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3278	if (r < 0)
3279		return r;
3280
3281	if (r == 2) {
3282		result->begin = to_cblock(b);
3283		result->end = to_cblock(e);
3284		return 0;
3285	}
3286
3287	/*
3288	 * That didn't work, try form (i).
3289	 */
3290	r = sscanf(str, "%llu%c", &b, &dummy);
3291	if (r < 0)
3292		return r;
3293
3294	if (r == 1) {
3295		result->begin = to_cblock(b);
3296		result->end = to_cblock(from_cblock(result->begin) + 1u);
3297		return 0;
3298	}
3299
3300	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3301	return -EINVAL;
3302}
3303
3304static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3305{
3306	uint64_t b = from_cblock(range->begin);
3307	uint64_t e = from_cblock(range->end);
3308	uint64_t n = from_cblock(cache->cache_size);
3309
3310	if (b >= n) {
3311		DMERR("%s: begin cblock out of range: %llu >= %llu",
3312		      cache_device_name(cache), b, n);
3313		return -EINVAL;
3314	}
3315
3316	if (e > n) {
3317		DMERR("%s: end cblock out of range: %llu > %llu",
3318		      cache_device_name(cache), e, n);
3319		return -EINVAL;
3320	}
3321
3322	if (b >= e) {
3323		DMERR("%s: invalid cblock range: %llu >= %llu",
3324		      cache_device_name(cache), b, e);
3325		return -EINVAL;
3326	}
3327
3328	return 0;
3329}
3330
3331static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3332{
3333	return to_cblock(from_cblock(b) + 1);
3334}
3335
3336static int request_invalidation(struct cache *cache, struct cblock_range *range)
3337{
3338	int r = 0;
3339
3340	/*
3341	 * We don't need to do any locking here because we know we're in
3342	 * passthrough mode.  There's is potential for a race between an
3343	 * invalidation triggered by an io and an invalidation message.  This
3344	 * is harmless, we must not worry if the policy call fails.
3345	 */
3346	while (range->begin != range->end) {
3347		r = invalidate_cblock(cache, range->begin);
3348		if (r)
3349			return r;
3350
3351		range->begin = cblock_succ(range->begin);
3352	}
3353
3354	cache->commit_requested = true;
3355	return r;
3356}
3357
3358static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3359					      const char **cblock_ranges)
3360{
3361	int r = 0;
3362	unsigned i;
3363	struct cblock_range range;
3364
3365	if (!passthrough_mode(cache)) {
3366		DMERR("%s: cache has to be in passthrough mode for invalidation",
3367		      cache_device_name(cache));
3368		return -EPERM;
3369	}
3370
3371	for (i = 0; i < count; i++) {
3372		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3373		if (r)
3374			break;
3375
3376		r = validate_cblock_range(cache, &range);
3377		if (r)
3378			break;
3379
3380		/*
3381		 * Pass begin and end origin blocks to the worker and wake it.
3382		 */
3383		r = request_invalidation(cache, &range);
3384		if (r)
3385			break;
3386	}
3387
3388	return r;
3389}
3390
3391/*
3392 * Supports
3393 *	"<key> <value>"
3394 * and
3395 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3396 *
3397 * The key migration_threshold is supported by the cache target core.
3398 */
3399static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3400			 char *result, unsigned maxlen)
3401{
3402	struct cache *cache = ti->private;
3403
3404	if (!argc)
3405		return -EINVAL;
3406
3407	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3408		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3409		      cache_device_name(cache));
3410		return -EOPNOTSUPP;
3411	}
3412
3413	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3414		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3415
3416	if (argc != 2)
3417		return -EINVAL;
3418
3419	return set_config_value(cache, argv[0], argv[1]);
3420}
3421
3422static int cache_iterate_devices(struct dm_target *ti,
3423				 iterate_devices_callout_fn fn, void *data)
3424{
3425	int r = 0;
3426	struct cache *cache = ti->private;
3427
3428	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3429	if (!r)
3430		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3431
3432	return r;
3433}
3434
3435static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3436{
3437	struct request_queue *q = bdev_get_queue(origin_bdev);
3438
3439	return q && blk_queue_discard(q);
3440}
3441
3442/*
3443 * If discard_passdown was enabled verify that the origin device
3444 * supports discards.  Disable discard_passdown if not.
3445 */
3446static void disable_passdown_if_not_supported(struct cache *cache)
3447{
3448	struct block_device *origin_bdev = cache->origin_dev->bdev;
3449	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3450	const char *reason = NULL;
3451	char buf[BDEVNAME_SIZE];
3452
3453	if (!cache->features.discard_passdown)
3454		return;
3455
3456	if (!origin_dev_supports_discard(origin_bdev))
3457		reason = "discard unsupported";
3458
3459	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3460		reason = "max discard sectors smaller than a block";
3461
3462	if (reason) {
3463		DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3464		       bdevname(origin_bdev, buf), reason);
3465		cache->features.discard_passdown = false;
3466	}
3467}
3468
3469static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3470{
3471	struct block_device *origin_bdev = cache->origin_dev->bdev;
3472	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3473
3474	if (!cache->features.discard_passdown) {
3475		/* No passdown is done so setting own virtual limits */
3476		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3477						    cache->origin_sectors);
3478		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3479		return;
3480	}
3481
3482	/*
3483	 * cache_iterate_devices() is stacking both origin and fast device limits
3484	 * but discards aren't passed to fast device, so inherit origin's limits.
3485	 */
3486	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3487	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3488	limits->discard_granularity = origin_limits->discard_granularity;
3489	limits->discard_alignment = origin_limits->discard_alignment;
3490	limits->discard_misaligned = origin_limits->discard_misaligned;
3491}
3492
3493static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3494{
3495	struct cache *cache = ti->private;
3496	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3497
3498	/*
3499	 * If the system-determined stacked limits are compatible with the
3500	 * cache's blocksize (io_opt is a factor) do not override them.
3501	 */
3502	if (io_opt_sectors < cache->sectors_per_block ||
3503	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3504		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3505		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3506	}
3507
3508	disable_passdown_if_not_supported(cache);
3509	set_discard_limits(cache, limits);
3510}
3511
3512/*----------------------------------------------------------------*/
3513
3514static struct target_type cache_target = {
3515	.name = "cache",
3516	.version = {2, 1, 0},
3517	.module = THIS_MODULE,
3518	.ctr = cache_ctr,
3519	.dtr = cache_dtr,
3520	.map = cache_map,
3521	.end_io = cache_end_io,
3522	.postsuspend = cache_postsuspend,
3523	.preresume = cache_preresume,
3524	.resume = cache_resume,
3525	.status = cache_status,
3526	.message = cache_message,
3527	.iterate_devices = cache_iterate_devices,
3528	.io_hints = cache_io_hints,
3529};
3530
3531static int __init dm_cache_init(void)
3532{
3533	int r;
3534
3535	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3536	if (!migration_cache)
3537		return -ENOMEM;
3538
3539	r = dm_register_target(&cache_target);
3540	if (r) {
3541		DMERR("cache target registration failed: %d", r);
3542		kmem_cache_destroy(migration_cache);
3543		return r;
 
 
 
 
 
 
3544	}
3545
3546	return 0;
3547}
3548
3549static void __exit dm_cache_exit(void)
3550{
3551	dm_unregister_target(&cache_target);
3552	kmem_cache_destroy(migration_cache);
3553}
3554
3555module_init(dm_cache_init);
3556module_exit(dm_cache_exit);
3557
3558MODULE_DESCRIPTION(DM_NAME " cache target");
3559MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3560MODULE_LICENSE("GPL");
v4.6
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/init.h>
  16#include <linux/mempool.h>
  17#include <linux/module.h>
 
  18#include <linux/slab.h>
  19#include <linux/vmalloc.h>
  20
  21#define DM_MSG_PREFIX "cache"
  22
  23DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  24	"A percentage of time allocated for copying to and/or from cache");
  25
  26/*----------------------------------------------------------------*/
  27
  28#define IOT_RESOLUTION 4
 
 
 
 
 
 
 
 
 
 
 
  29
  30struct io_tracker {
  31	spinlock_t lock;
  32
  33	/*
  34	 * Sectors of in-flight IO.
  35	 */
  36	sector_t in_flight;
  37
  38	/*
  39	 * The time, in jiffies, when this device became idle (if it is
  40	 * indeed idle).
  41	 */
  42	unsigned long idle_time;
  43	unsigned long last_update_time;
  44};
  45
  46static void iot_init(struct io_tracker *iot)
  47{
  48	spin_lock_init(&iot->lock);
  49	iot->in_flight = 0ul;
  50	iot->idle_time = 0ul;
  51	iot->last_update_time = jiffies;
  52}
  53
  54static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  55{
  56	if (iot->in_flight)
  57		return false;
  58
  59	return time_after(jiffies, iot->idle_time + jifs);
  60}
  61
  62static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  63{
  64	bool r;
  65	unsigned long flags;
  66
  67	spin_lock_irqsave(&iot->lock, flags);
  68	r = __iot_idle_for(iot, jifs);
  69	spin_unlock_irqrestore(&iot->lock, flags);
  70
  71	return r;
  72}
  73
  74static void iot_io_begin(struct io_tracker *iot, sector_t len)
  75{
  76	unsigned long flags;
  77
  78	spin_lock_irqsave(&iot->lock, flags);
  79	iot->in_flight += len;
  80	spin_unlock_irqrestore(&iot->lock, flags);
  81}
  82
  83static void __iot_io_end(struct io_tracker *iot, sector_t len)
  84{
 
 
 
  85	iot->in_flight -= len;
  86	if (!iot->in_flight)
  87		iot->idle_time = jiffies;
  88}
  89
  90static void iot_io_end(struct io_tracker *iot, sector_t len)
  91{
  92	unsigned long flags;
  93
  94	spin_lock_irqsave(&iot->lock, flags);
  95	__iot_io_end(iot, len);
  96	spin_unlock_irqrestore(&iot->lock, flags);
  97}
  98
  99/*----------------------------------------------------------------*/
 100
 101/*
 102 * Glossary:
 103 *
 104 * oblock: index of an origin block
 105 * cblock: index of a cache block
 106 * promotion: movement of a block from origin to cache
 107 * demotion: movement of a block from cache to origin
 108 * migration: movement of a block between the origin and cache device,
 109 *	      either direction
 110 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111
 112/*----------------------------------------------------------------*/
 113
 114/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115 * There are a couple of places where we let a bio run, but want to do some
 116 * work before calling its endio function.  We do this by temporarily
 117 * changing the endio fn.
 118 */
 119struct dm_hook_info {
 120	bio_end_io_t *bi_end_io;
 121};
 122
 123static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 124			bio_end_io_t *bi_end_io, void *bi_private)
 125{
 126	h->bi_end_io = bio->bi_end_io;
 127
 128	bio->bi_end_io = bi_end_io;
 129	bio->bi_private = bi_private;
 130}
 131
 132static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 133{
 134	bio->bi_end_io = h->bi_end_io;
 135}
 136
 137/*----------------------------------------------------------------*/
 138
 139#define MIGRATION_POOL_SIZE 128
 140#define COMMIT_PERIOD HZ
 141#define MIGRATION_COUNT_WINDOW 10
 142
 143/*
 144 * The block size of the device holding cache data must be
 145 * between 32KB and 1GB.
 146 */
 147#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 148#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 149
 150enum cache_metadata_mode {
 151	CM_WRITE,		/* metadata may be changed */
 152	CM_READ_ONLY,		/* metadata may not be changed */
 153	CM_FAIL
 154};
 155
 156enum cache_io_mode {
 157	/*
 158	 * Data is written to cached blocks only.  These blocks are marked
 159	 * dirty.  If you lose the cache device you will lose data.
 160	 * Potential performance increase for both reads and writes.
 161	 */
 162	CM_IO_WRITEBACK,
 163
 164	/*
 165	 * Data is written to both cache and origin.  Blocks are never
 166	 * dirty.  Potential performance benfit for reads only.
 167	 */
 168	CM_IO_WRITETHROUGH,
 169
 170	/*
 171	 * A degraded mode useful for various cache coherency situations
 172	 * (eg, rolling back snapshots).  Reads and writes always go to the
 173	 * origin.  If a write goes to a cached oblock, then the cache
 174	 * block is invalidated.
 175	 */
 176	CM_IO_PASSTHROUGH
 177};
 178
 179struct cache_features {
 180	enum cache_metadata_mode mode;
 181	enum cache_io_mode io_mode;
 
 
 182};
 183
 184struct cache_stats {
 185	atomic_t read_hit;
 186	atomic_t read_miss;
 187	atomic_t write_hit;
 188	atomic_t write_miss;
 189	atomic_t demotion;
 190	atomic_t promotion;
 
 191	atomic_t copies_avoided;
 192	atomic_t cache_cell_clash;
 193	atomic_t commit_count;
 194	atomic_t discard_count;
 195};
 196
 197/*
 198 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
 199 * the one-past-the-end value.
 200 */
 201struct cblock_range {
 202	dm_cblock_t begin;
 203	dm_cblock_t end;
 204};
 205
 206struct invalidation_request {
 207	struct list_head list;
 208	struct cblock_range *cblocks;
 209
 210	atomic_t complete;
 211	int err;
 212
 213	wait_queue_head_t result_wait;
 214};
 215
 216struct cache {
 217	struct dm_target *ti;
 218	struct dm_target_callbacks callbacks;
 
 
 
 
 
 
 219
 220	struct dm_cache_metadata *cmd;
 221
 222	/*
 223	 * Metadata is written to this device.
 224	 */
 225	struct dm_dev *metadata_dev;
 226
 227	/*
 228	 * The slower of the two data devices.  Typically a spindle.
 229	 */
 230	struct dm_dev *origin_dev;
 231
 232	/*
 233	 * The faster of the two data devices.  Typically an SSD.
 234	 */
 235	struct dm_dev *cache_dev;
 236
 237	/*
 238	 * Size of the origin device in _complete_ blocks and native sectors.
 239	 */
 240	dm_oblock_t origin_blocks;
 241	sector_t origin_sectors;
 242
 243	/*
 244	 * Size of the cache device in blocks.
 245	 */
 246	dm_cblock_t cache_size;
 247
 248	/*
 249	 * Fields for converting from sectors to blocks.
 250	 */
 251	uint32_t sectors_per_block;
 252	int sectors_per_block_shift;
 253
 254	spinlock_t lock;
 255	struct list_head deferred_cells;
 256	struct bio_list deferred_bios;
 257	struct bio_list deferred_flush_bios;
 258	struct bio_list deferred_writethrough_bios;
 259	struct list_head quiesced_migrations;
 260	struct list_head completed_migrations;
 261	struct list_head need_commit_migrations;
 262	sector_t migration_threshold;
 263	wait_queue_head_t migration_wait;
 264	atomic_t nr_allocated_migrations;
 265
 266	/*
 267	 * The number of in flight migrations that are performing
 268	 * background io. eg, promotion, writeback.
 269	 */
 270	atomic_t nr_io_migrations;
 271
 272	wait_queue_head_t quiescing_wait;
 273	atomic_t quiescing;
 274	atomic_t quiescing_ack;
 275
 276	/*
 277	 * cache_size entries, dirty if set
 278	 */
 279	atomic_t nr_dirty;
 280	unsigned long *dirty_bitset;
 281
 282	/*
 283	 * origin_blocks entries, discarded if set.
 284	 */
 285	dm_dblock_t discard_nr_blocks;
 286	unsigned long *discard_bitset;
 287	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 288
 289	/*
 290	 * Rather than reconstructing the table line for the status we just
 291	 * save it and regurgitate.
 292	 */
 293	unsigned nr_ctr_args;
 294	const char **ctr_args;
 295
 296	struct dm_kcopyd_client *copier;
 
 
 297	struct workqueue_struct *wq;
 298	struct work_struct worker;
 
 299
 300	struct delayed_work waker;
 301	unsigned long last_commit_jiffies;
 
 
 
 302
 303	struct dm_bio_prison *prison;
 304	struct dm_deferred_set *all_io_ds;
 305
 306	mempool_t *migration_pool;
 
 
 
 307
 308	struct dm_cache_policy *policy;
 309	unsigned policy_nr_args;
 310
 311	bool need_tick_bio:1;
 312	bool sized:1;
 313	bool invalidate:1;
 314	bool commit_requested:1;
 315	bool loaded_mappings:1;
 316	bool loaded_discards:1;
 317
 318	/*
 319	 * Cache features such as write-through.
 320	 */
 321	struct cache_features features;
 322
 323	struct cache_stats stats;
 324
 325	/*
 326	 * Invalidation fields.
 327	 */
 328	spinlock_t invalidation_lock;
 329	struct list_head invalidation_requests;
 330
 331	struct io_tracker origin_tracker;
 332};
 333
 334struct per_bio_data {
 335	bool tick:1;
 336	unsigned req_nr:2;
 337	struct dm_deferred_entry *all_io_entry;
 338	struct dm_hook_info hook_info;
 339	sector_t len;
 
 340
 341	/*
 342	 * writethrough fields.  These MUST remain at the end of this
 343	 * structure and the 'cache' member must be the first as it
 344	 * is used to determine the offset of the writethrough fields.
 345	 */
 346	struct cache *cache;
 347	dm_cblock_t cblock;
 348	struct dm_bio_details bio_details;
 
 
 
 
 
 349};
 350
 351struct dm_cache_migration {
 352	struct list_head list;
 353	struct cache *cache;
 354
 355	unsigned long start_jiffies;
 356	dm_oblock_t old_oblock;
 357	dm_oblock_t new_oblock;
 358	dm_cblock_t cblock;
 359
 360	bool err:1;
 361	bool discard:1;
 362	bool writeback:1;
 363	bool demote:1;
 364	bool promote:1;
 365	bool requeue_holder:1;
 366	bool invalidate:1;
 367
 368	struct dm_bio_prison_cell *old_ocell;
 369	struct dm_bio_prison_cell *new_ocell;
 370};
 
 371
 372/*
 373 * Processing a bio in the worker thread may require these memory
 374 * allocations.  We prealloc to avoid deadlocks (the same worker thread
 375 * frees them back to the mempool).
 376 */
 377struct prealloc {
 378	struct dm_cache_migration *mg;
 379	struct dm_bio_prison_cell *cell1;
 380	struct dm_bio_prison_cell *cell2;
 381};
 382
 383static enum cache_metadata_mode get_cache_mode(struct cache *cache);
 
 
 
 384
 385static void wake_worker(struct cache *cache)
 386{
 387	queue_work(cache->wq, &cache->worker);
 
 
 
 388}
 389
 390/*----------------------------------------------------------------*/
 391
 392static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
 393{
 394	/* FIXME: change to use a local slab. */
 395	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
 396}
 397
 398static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
 399{
 400	dm_bio_prison_free_cell(cache->prison, cell);
 401}
 402
 403static struct dm_cache_migration *alloc_migration(struct cache *cache)
 404{
 405	struct dm_cache_migration *mg;
 406
 407	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
 408	if (mg) {
 409		mg->cache = cache;
 410		atomic_inc(&mg->cache->nr_allocated_migrations);
 411	}
 
 412
 413	return mg;
 414}
 415
 416static void free_migration(struct dm_cache_migration *mg)
 417{
 418	struct cache *cache = mg->cache;
 419
 420	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 421		wake_up(&cache->migration_wait);
 422
 423	mempool_free(mg, cache->migration_pool);
 424}
 425
 426static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
 427{
 428	if (!p->mg) {
 429		p->mg = alloc_migration(cache);
 430		if (!p->mg)
 431			return -ENOMEM;
 432	}
 433
 434	if (!p->cell1) {
 435		p->cell1 = alloc_prison_cell(cache);
 436		if (!p->cell1)
 437			return -ENOMEM;
 438	}
 439
 440	if (!p->cell2) {
 441		p->cell2 = alloc_prison_cell(cache);
 442		if (!p->cell2)
 443			return -ENOMEM;
 444	}
 445
 446	return 0;
 447}
 448
 449static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
 450{
 451	if (p->cell2)
 452		free_prison_cell(cache, p->cell2);
 453
 454	if (p->cell1)
 455		free_prison_cell(cache, p->cell1);
 456
 457	if (p->mg)
 458		free_migration(p->mg);
 459}
 460
 461static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
 462{
 463	struct dm_cache_migration *mg = p->mg;
 464
 465	BUG_ON(!mg);
 466	p->mg = NULL;
 467
 468	return mg;
 469}
 470
 471/*
 472 * You must have a cell within the prealloc struct to return.  If not this
 473 * function will BUG() rather than returning NULL.
 474 */
 475static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
 
 
 
 476{
 477	struct dm_bio_prison_cell *r = NULL;
 
 
 
 478
 479	if (p->cell1) {
 480		r = p->cell1;
 481		p->cell1 = NULL;
 482
 483	} else if (p->cell2) {
 484		r = p->cell2;
 485		p->cell2 = NULL;
 486	} else
 487		BUG();
 488
 489	return r;
 490}
 491
 492/*
 493 * You can't have more than two cells in a prealloc struct.  BUG() will be
 494 * called if you try and overfill.
 495 */
 496static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
 497{
 498	if (!p->cell2)
 499		p->cell2 = cell;
 500
 501	else if (!p->cell1)
 502		p->cell1 = cell;
 
 
 503
 504	else
 505		BUG();
 506}
 507
 508/*----------------------------------------------------------------*/
 509
 510static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
 511{
 512	key->virtual = 0;
 513	key->dev = 0;
 514	key->block_begin = from_oblock(begin);
 515	key->block_end = from_oblock(end);
 
 
 
 516}
 517
 518/*
 519 * The caller hands in a preallocated cell, and a free function for it.
 520 * The cell will be freed if there's an error, or if it wasn't used because
 521 * a cell with that key already exists.
 522 */
 523typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
 524
 525static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
 526			    struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
 527			    cell_free_fn free_fn, void *free_context,
 528			    struct dm_bio_prison_cell **cell_result)
 529{
 530	int r;
 531	struct dm_cell_key key;
 532
 533	build_key(oblock_begin, oblock_end, &key);
 534	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
 535	if (r)
 536		free_fn(free_context, cell_prealloc);
 537
 538	return r;
 539}
 540
 541static int bio_detain(struct cache *cache, dm_oblock_t oblock,
 542		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
 543		      cell_free_fn free_fn, void *free_context,
 544		      struct dm_bio_prison_cell **cell_result)
 545{
 
 
 
 546	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 547	return bio_detain_range(cache, oblock, end, bio,
 548				cell_prealloc, free_fn, free_context, cell_result);
 549}
 550
 551static int get_cell(struct cache *cache,
 552		    dm_oblock_t oblock,
 553		    struct prealloc *structs,
 554		    struct dm_bio_prison_cell **cell_result)
 555{
 556	int r;
 557	struct dm_cell_key key;
 558	struct dm_bio_prison_cell *cell_prealloc;
 
 559
 560	cell_prealloc = prealloc_get_cell(structs);
 
 561
 562	build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
 563	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
 564	if (r)
 565		prealloc_put_cell(structs, cell_prealloc);
 566
 567	return r;
 568}
 569
 570/*----------------------------------------------------------------*/
 571
 572static bool is_dirty(struct cache *cache, dm_cblock_t b)
 573{
 574	return test_bit(from_cblock(b), cache->dirty_bitset);
 575}
 576
 577static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 578{
 579	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 580		atomic_inc(&cache->nr_dirty);
 581		policy_set_dirty(cache->policy, oblock);
 582	}
 583}
 584
 585static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 
 
 
 
 
 
 
 
 
 
 
 586{
 587	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 588		policy_clear_dirty(cache->policy, oblock);
 589		if (atomic_dec_return(&cache->nr_dirty) == 0)
 590			dm_table_event(cache->ti->table);
 591	}
 
 
 592}
 593
 594/*----------------------------------------------------------------*/
 595
 596static bool block_size_is_power_of_two(struct cache *cache)
 597{
 598	return cache->sectors_per_block_shift >= 0;
 599}
 600
 601/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 602#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 603__always_inline
 604#endif
 605static dm_block_t block_div(dm_block_t b, uint32_t n)
 606{
 607	do_div(b, n);
 608
 609	return b;
 610}
 611
 612static dm_block_t oblocks_per_dblock(struct cache *cache)
 613{
 614	dm_block_t oblocks = cache->discard_block_size;
 615
 616	if (block_size_is_power_of_two(cache))
 617		oblocks >>= cache->sectors_per_block_shift;
 618	else
 619		oblocks = block_div(oblocks, cache->sectors_per_block);
 620
 621	return oblocks;
 622}
 623
 624static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 625{
 626	return to_dblock(block_div(from_oblock(oblock),
 627				   oblocks_per_dblock(cache)));
 628}
 629
 630static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
 631{
 632	return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
 633}
 634
 635static void set_discard(struct cache *cache, dm_dblock_t b)
 636{
 637	unsigned long flags;
 638
 639	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 640	atomic_inc(&cache->stats.discard_count);
 641
 642	spin_lock_irqsave(&cache->lock, flags);
 643	set_bit(from_dblock(b), cache->discard_bitset);
 644	spin_unlock_irqrestore(&cache->lock, flags);
 645}
 646
 647static void clear_discard(struct cache *cache, dm_dblock_t b)
 648{
 649	unsigned long flags;
 650
 651	spin_lock_irqsave(&cache->lock, flags);
 652	clear_bit(from_dblock(b), cache->discard_bitset);
 653	spin_unlock_irqrestore(&cache->lock, flags);
 654}
 655
 656static bool is_discarded(struct cache *cache, dm_dblock_t b)
 657{
 658	int r;
 659	unsigned long flags;
 660
 661	spin_lock_irqsave(&cache->lock, flags);
 662	r = test_bit(from_dblock(b), cache->discard_bitset);
 663	spin_unlock_irqrestore(&cache->lock, flags);
 664
 665	return r;
 666}
 667
 668static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 669{
 670	int r;
 671	unsigned long flags;
 672
 673	spin_lock_irqsave(&cache->lock, flags);
 674	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 675		     cache->discard_bitset);
 676	spin_unlock_irqrestore(&cache->lock, flags);
 677
 678	return r;
 679}
 680
 681/*----------------------------------------------------------------*/
 682
 683static void load_stats(struct cache *cache)
 684{
 685	struct dm_cache_statistics stats;
 686
 687	dm_cache_metadata_get_stats(cache->cmd, &stats);
 688	atomic_set(&cache->stats.read_hit, stats.read_hits);
 689	atomic_set(&cache->stats.read_miss, stats.read_misses);
 690	atomic_set(&cache->stats.write_hit, stats.write_hits);
 691	atomic_set(&cache->stats.write_miss, stats.write_misses);
 692}
 693
 694static void save_stats(struct cache *cache)
 695{
 696	struct dm_cache_statistics stats;
 697
 698	if (get_cache_mode(cache) >= CM_READ_ONLY)
 699		return;
 700
 701	stats.read_hits = atomic_read(&cache->stats.read_hit);
 702	stats.read_misses = atomic_read(&cache->stats.read_miss);
 703	stats.write_hits = atomic_read(&cache->stats.write_hit);
 704	stats.write_misses = atomic_read(&cache->stats.write_miss);
 705
 706	dm_cache_metadata_set_stats(cache->cmd, &stats);
 707}
 708
 709/*----------------------------------------------------------------
 710 * Per bio data
 711 *--------------------------------------------------------------*/
 712
 713/*
 714 * If using writeback, leave out struct per_bio_data's writethrough fields.
 715 */
 716#define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
 717#define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
 718
 719static bool writethrough_mode(struct cache_features *f)
 720{
 721	return f->io_mode == CM_IO_WRITETHROUGH;
 722}
 723
 724static bool writeback_mode(struct cache_features *f)
 725{
 726	return f->io_mode == CM_IO_WRITEBACK;
 727}
 728
 729static bool passthrough_mode(struct cache_features *f)
 730{
 731	return f->io_mode == CM_IO_PASSTHROUGH;
 732}
 733
 734static size_t get_per_bio_data_size(struct cache *cache)
 735{
 736	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
 737}
 738
 739static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
 740{
 741	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
 742	BUG_ON(!pb);
 743	return pb;
 744}
 745
 746static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
 747{
 748	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
 749
 750	pb->tick = false;
 751	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 752	pb->all_io_entry = NULL;
 753	pb->len = 0;
 754
 755	return pb;
 756}
 757
 758/*----------------------------------------------------------------
 759 * Remapping
 760 *--------------------------------------------------------------*/
 761static void remap_to_origin(struct cache *cache, struct bio *bio)
 762{
 763	bio->bi_bdev = cache->origin_dev->bdev;
 764}
 765
 766static void remap_to_cache(struct cache *cache, struct bio *bio,
 767			   dm_cblock_t cblock)
 768{
 769	sector_t bi_sector = bio->bi_iter.bi_sector;
 770	sector_t block = from_cblock(cblock);
 771
 772	bio->bi_bdev = cache->cache_dev->bdev;
 773	if (!block_size_is_power_of_two(cache))
 774		bio->bi_iter.bi_sector =
 775			(block * cache->sectors_per_block) +
 776			sector_div(bi_sector, cache->sectors_per_block);
 777	else
 778		bio->bi_iter.bi_sector =
 779			(block << cache->sectors_per_block_shift) |
 780			(bi_sector & (cache->sectors_per_block - 1));
 781}
 782
 783static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 784{
 785	unsigned long flags;
 786	size_t pb_data_size = get_per_bio_data_size(cache);
 787	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 788
 789	spin_lock_irqsave(&cache->lock, flags);
 790	if (cache->need_tick_bio &&
 791	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
 
 792		pb->tick = true;
 793		cache->need_tick_bio = false;
 794	}
 795	spin_unlock_irqrestore(&cache->lock, flags);
 796}
 797
 798static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 799				  dm_oblock_t oblock)
 800{
 801	check_if_tick_bio_needed(cache, bio);
 
 802	remap_to_origin(cache, bio);
 803	if (bio_data_dir(bio) == WRITE)
 804		clear_discard(cache, oblock_to_dblock(cache, oblock));
 805}
 806
 
 
 
 
 
 
 
 807static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 808				 dm_oblock_t oblock, dm_cblock_t cblock)
 809{
 810	check_if_tick_bio_needed(cache, bio);
 811	remap_to_cache(cache, bio, cblock);
 812	if (bio_data_dir(bio) == WRITE) {
 813		set_dirty(cache, oblock, cblock);
 814		clear_discard(cache, oblock_to_dblock(cache, oblock));
 815	}
 816}
 817
 818static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 819{
 820	sector_t block_nr = bio->bi_iter.bi_sector;
 821
 822	if (!block_size_is_power_of_two(cache))
 823		(void) sector_div(block_nr, cache->sectors_per_block);
 824	else
 825		block_nr >>= cache->sectors_per_block_shift;
 826
 827	return to_oblock(block_nr);
 828}
 829
 830static int bio_triggers_commit(struct cache *cache, struct bio *bio)
 831{
 832	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
 833}
 834
 835/*
 836 * You must increment the deferred set whilst the prison cell is held.  To
 837 * encourage this, we ask for 'cell' to be passed in.
 838 */
 839static void inc_ds(struct cache *cache, struct bio *bio,
 840		   struct dm_bio_prison_cell *cell)
 841{
 842	size_t pb_data_size = get_per_bio_data_size(cache);
 843	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 844
 845	BUG_ON(!cell);
 846	BUG_ON(pb->all_io_entry);
 847
 848	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
 849}
 850
 851static bool accountable_bio(struct cache *cache, struct bio *bio)
 852{
 853	return ((bio->bi_bdev == cache->origin_dev->bdev) &&
 854		!(bio->bi_rw & REQ_DISCARD));
 855}
 856
 857static void accounted_begin(struct cache *cache, struct bio *bio)
 858{
 859	size_t pb_data_size = get_per_bio_data_size(cache);
 860	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 861
 862	if (accountable_bio(cache, bio)) {
 
 863		pb->len = bio_sectors(bio);
 864		iot_io_begin(&cache->origin_tracker, pb->len);
 865	}
 866}
 867
 868static void accounted_complete(struct cache *cache, struct bio *bio)
 869{
 870	size_t pb_data_size = get_per_bio_data_size(cache);
 871	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 872
 873	iot_io_end(&cache->origin_tracker, pb->len);
 874}
 875
 876static void accounted_request(struct cache *cache, struct bio *bio)
 877{
 878	accounted_begin(cache, bio);
 879	generic_make_request(bio);
 880}
 881
 882static void issue(struct cache *cache, struct bio *bio)
 883{
 884	unsigned long flags;
 885
 886	if (!bio_triggers_commit(cache, bio)) {
 887		accounted_request(cache, bio);
 888		return;
 889	}
 890
 891	/*
 892	 * Batch together any bios that trigger commits and then issue a
 893	 * single commit for them in do_worker().
 894	 */
 895	spin_lock_irqsave(&cache->lock, flags);
 896	cache->commit_requested = true;
 897	bio_list_add(&cache->deferred_flush_bios, bio);
 898	spin_unlock_irqrestore(&cache->lock, flags);
 899}
 900
 901static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
 902{
 903	inc_ds(cache, bio, cell);
 904	issue(cache, bio);
 905}
 906
 907static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
 908{
 909	unsigned long flags;
 910
 911	spin_lock_irqsave(&cache->lock, flags);
 912	bio_list_add(&cache->deferred_writethrough_bios, bio);
 913	spin_unlock_irqrestore(&cache->lock, flags);
 914
 915	wake_worker(cache);
 916}
 917
 918static void writethrough_endio(struct bio *bio)
 919{
 920	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 921
 922	dm_unhook_bio(&pb->hook_info, bio);
 923
 924	if (bio->bi_error) {
 925		bio_endio(bio);
 926		return;
 927	}
 928
 929	dm_bio_restore(&pb->bio_details, bio);
 930	remap_to_cache(pb->cache, bio, pb->cblock);
 931
 
 932	/*
 933	 * We can't issue this bio directly, since we're in interrupt
 934	 * context.  So it gets put on a bio list for processing by the
 935	 * worker thread.
 936	 */
 937	defer_writethrough_bio(pb->cache, bio);
 938}
 939
 940/*
 941 * When running in writethrough mode we need to send writes to clean blocks
 942 * to both the cache and origin devices.  In future we'd like to clone the
 943 * bio and send them in parallel, but for now we're doing them in
 944 * series as this is easier.
 945 */
 946static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
 947				       dm_oblock_t oblock, dm_cblock_t cblock)
 948{
 949	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 950
 951	pb->cache = cache;
 952	pb->cblock = cblock;
 953	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
 954	dm_bio_record(&pb->bio_details, bio);
 955
 956	remap_to_origin_clear_discard(pb->cache, bio, oblock);
 957}
 958
 959/*----------------------------------------------------------------
 960 * Failure modes
 961 *--------------------------------------------------------------*/
 962static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 963{
 964	return cache->features.mode;
 965}
 966
 967static const char *cache_device_name(struct cache *cache)
 968{
 969	return dm_device_name(dm_table_get_md(cache->ti->table));
 970}
 971
 972static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 973{
 974	const char *descs[] = {
 975		"write",
 976		"read-only",
 977		"fail"
 978	};
 979
 980	dm_table_event(cache->ti->table);
 981	DMINFO("%s: switching cache to %s mode",
 982	       cache_device_name(cache), descs[(int)mode]);
 983}
 984
 985static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 986{
 987	bool needs_check;
 988	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 989
 990	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 991		DMERR("unable to read needs_check flag, setting failure mode");
 
 992		new_mode = CM_FAIL;
 993	}
 994
 995	if (new_mode == CM_WRITE && needs_check) {
 996		DMERR("%s: unable to switch cache to write mode until repaired.",
 997		      cache_device_name(cache));
 998		if (old_mode != new_mode)
 999			new_mode = old_mode;
1000		else
1001			new_mode = CM_READ_ONLY;
1002	}
1003
1004	/* Never move out of fail mode */
1005	if (old_mode == CM_FAIL)
1006		new_mode = CM_FAIL;
1007
1008	switch (new_mode) {
1009	case CM_FAIL:
1010	case CM_READ_ONLY:
1011		dm_cache_metadata_set_read_only(cache->cmd);
1012		break;
1013
1014	case CM_WRITE:
1015		dm_cache_metadata_set_read_write(cache->cmd);
1016		break;
1017	}
1018
1019	cache->features.mode = new_mode;
1020
1021	if (new_mode != old_mode)
1022		notify_mode_switch(cache, new_mode);
1023}
1024
1025static void abort_transaction(struct cache *cache)
1026{
1027	const char *dev_name = cache_device_name(cache);
1028
1029	if (get_cache_mode(cache) >= CM_READ_ONLY)
1030		return;
1031
1032	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1033		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1034		set_cache_mode(cache, CM_FAIL);
1035	}
1036
1037	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1038	if (dm_cache_metadata_abort(cache->cmd)) {
1039		DMERR("%s: failed to abort metadata transaction", dev_name);
1040		set_cache_mode(cache, CM_FAIL);
1041	}
1042}
1043
1044static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1045{
1046	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1047		    cache_device_name(cache), op, r);
1048	abort_transaction(cache);
1049	set_cache_mode(cache, CM_READ_ONLY);
1050}
1051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052/*----------------------------------------------------------------
1053 * Migration processing
1054 *
1055 * Migration covers moving data from the origin device to the cache, or
1056 * vice versa.
1057 *--------------------------------------------------------------*/
 
1058static void inc_io_migrations(struct cache *cache)
1059{
1060	atomic_inc(&cache->nr_io_migrations);
1061}
1062
1063static void dec_io_migrations(struct cache *cache)
1064{
1065	atomic_dec(&cache->nr_io_migrations);
1066}
1067
1068static bool discard_or_flush(struct bio *bio)
1069{
1070	return bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD);
1071}
1072
1073static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
 
1074{
1075	if (discard_or_flush(cell->holder)) {
1076		/*
1077		 * We have to handle these bios individually.
1078		 */
1079		dm_cell_release(cache->prison, cell, &cache->deferred_bios);
1080		free_prison_cell(cache, cell);
1081	} else
1082		list_add_tail(&cell->user_list, &cache->deferred_cells);
1083}
1084
1085static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
1086{
1087	unsigned long flags;
1088
1089	if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1090		/*
1091		 * There was no prisoner to promote to holder, the
1092		 * cell has been released.
1093		 */
1094		free_prison_cell(cache, cell);
1095		return;
1096	}
1097
1098	spin_lock_irqsave(&cache->lock, flags);
1099	__cell_defer(cache, cell);
1100	spin_unlock_irqrestore(&cache->lock, flags);
1101
1102	wake_worker(cache);
 
 
 
 
1103}
1104
1105static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1106{
1107	dm_cell_error(cache->prison, cell, err);
1108	free_prison_cell(cache, cell);
 
1109}
1110
1111static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1112{
1113	cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1114}
1115
1116static void free_io_migration(struct dm_cache_migration *mg)
1117{
1118	struct cache *cache = mg->cache;
1119
1120	dec_io_migrations(cache);
1121	free_migration(mg);
1122	wake_worker(cache);
1123}
1124
1125static void migration_failure(struct dm_cache_migration *mg)
1126{
1127	struct cache *cache = mg->cache;
1128	const char *dev_name = cache_device_name(cache);
 
 
1129
1130	if (mg->writeback) {
1131		DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1132		set_dirty(cache, mg->old_oblock, mg->cblock);
1133		cell_defer(cache, mg->old_ocell, false);
1134
1135	} else if (mg->demote) {
1136		DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1137		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1138
1139		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1140		if (mg->promote)
1141			cell_defer(cache, mg->new_ocell, true);
1142	} else {
1143		DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1144		policy_remove_mapping(cache->policy, mg->new_oblock);
1145		cell_defer(cache, mg->new_ocell, true);
1146	}
1147
1148	free_io_migration(mg);
 
 
 
1149}
1150
1151static void migration_success_pre_commit(struct dm_cache_migration *mg)
1152{
1153	int r;
1154	unsigned long flags;
1155	struct cache *cache = mg->cache;
1156
1157	if (mg->writeback) {
1158		clear_dirty(cache, mg->old_oblock, mg->cblock);
1159		cell_defer(cache, mg->old_ocell, false);
1160		free_io_migration(mg);
1161		return;
1162
1163	} else if (mg->demote) {
1164		r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1165		if (r) {
1166			DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1167				    cache_device_name(cache));
1168			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1169			policy_force_mapping(cache->policy, mg->new_oblock,
1170					     mg->old_oblock);
1171			if (mg->promote)
1172				cell_defer(cache, mg->new_ocell, true);
1173			free_io_migration(mg);
1174			return;
1175		}
1176	} else {
1177		r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1178		if (r) {
1179			DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1180				    cache_device_name(cache));
1181			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1182			policy_remove_mapping(cache->policy, mg->new_oblock);
1183			free_io_migration(mg);
1184			return;
1185		}
1186	}
1187
1188	spin_lock_irqsave(&cache->lock, flags);
1189	list_add_tail(&mg->list, &cache->need_commit_migrations);
1190	cache->commit_requested = true;
1191	spin_unlock_irqrestore(&cache->lock, flags);
1192}
1193
1194static void migration_success_post_commit(struct dm_cache_migration *mg)
1195{
1196	unsigned long flags;
1197	struct cache *cache = mg->cache;
1198
1199	if (mg->writeback) {
1200		DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1201			     cache_device_name(cache));
1202		return;
1203
1204	} else if (mg->demote) {
1205		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1206
1207		if (mg->promote) {
1208			mg->demote = false;
1209
1210			spin_lock_irqsave(&cache->lock, flags);
1211			list_add_tail(&mg->list, &cache->quiesced_migrations);
1212			spin_unlock_irqrestore(&cache->lock, flags);
1213
1214		} else {
1215			if (mg->invalidate)
1216				policy_remove_mapping(cache->policy, mg->old_oblock);
1217			free_io_migration(mg);
1218		}
1219
1220	} else {
1221		if (mg->requeue_holder) {
1222			clear_dirty(cache, mg->new_oblock, mg->cblock);
1223			cell_defer(cache, mg->new_ocell, true);
1224		} else {
1225			/*
1226			 * The block was promoted via an overwrite, so it's dirty.
1227			 */
1228			set_dirty(cache, mg->new_oblock, mg->cblock);
1229			bio_endio(mg->new_ocell->holder);
1230			cell_defer(cache, mg->new_ocell, false);
1231		}
1232		free_io_migration(mg);
1233	}
1234}
1235
1236static void copy_complete(int read_err, unsigned long write_err, void *context)
1237{
1238	unsigned long flags;
1239	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1240	struct cache *cache = mg->cache;
1241
1242	if (read_err || write_err)
1243		mg->err = true;
1244
1245	spin_lock_irqsave(&cache->lock, flags);
1246	list_add_tail(&mg->list, &cache->completed_migrations);
1247	spin_unlock_irqrestore(&cache->lock, flags);
1248
1249	wake_worker(cache);
1250}
1251
1252static void issue_copy(struct dm_cache_migration *mg)
1253{
1254	int r;
1255	struct dm_io_region o_region, c_region;
1256	struct cache *cache = mg->cache;
1257	sector_t cblock = from_cblock(mg->cblock);
1258
1259	o_region.bdev = cache->origin_dev->bdev;
 
1260	o_region.count = cache->sectors_per_block;
1261
1262	c_region.bdev = cache->cache_dev->bdev;
1263	c_region.sector = cblock * cache->sectors_per_block;
1264	c_region.count = cache->sectors_per_block;
1265
1266	if (mg->writeback || mg->demote) {
1267		/* demote */
1268		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1269		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1270	} else {
1271		/* promote */
1272		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1273		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1274	}
1275
1276	if (r < 0) {
1277		DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1278		migration_failure(mg);
1279	}
1280}
1281
1282static void overwrite_endio(struct bio *bio)
1283{
1284	struct dm_cache_migration *mg = bio->bi_private;
1285	struct cache *cache = mg->cache;
1286	size_t pb_data_size = get_per_bio_data_size(cache);
1287	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1288	unsigned long flags;
1289
1290	dm_unhook_bio(&pb->hook_info, bio);
1291
1292	if (bio->bi_error)
1293		mg->err = true;
1294
1295	mg->requeue_holder = false;
1296
1297	spin_lock_irqsave(&cache->lock, flags);
1298	list_add_tail(&mg->list, &cache->completed_migrations);
1299	spin_unlock_irqrestore(&cache->lock, flags);
1300
1301	wake_worker(cache);
1302}
1303
1304static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
 
1305{
1306	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1307	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1308
1309	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1310	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1311
1312	/*
1313	 * No need to inc_ds() here, since the cell will be held for the
1314	 * duration of the io.
1315	 */
 
 
 
 
 
 
1316	accounted_request(mg->cache, bio);
1317}
1318
1319static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
1320{
1321	return (bio_data_dir(bio) == WRITE) &&
1322		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1323}
 
1324
1325static void avoid_copy(struct dm_cache_migration *mg)
1326{
1327	atomic_inc(&mg->cache->stats.copies_avoided);
1328	migration_success_pre_commit(mg);
1329}
1330
1331static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1332				     dm_dblock_t *b, dm_dblock_t *e)
1333{
1334	sector_t sb = bio->bi_iter.bi_sector;
1335	sector_t se = bio_end_sector(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336
1337	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
 
 
 
 
 
 
 
 
1338
1339	if (se - sb < cache->discard_block_size)
1340		*e = *b;
1341	else
1342		*e = to_dblock(block_div(se, cache->discard_block_size));
1343}
 
 
1344
1345static void issue_discard(struct dm_cache_migration *mg)
1346{
1347	dm_dblock_t b, e;
1348	struct bio *bio = mg->new_ocell->holder;
1349	struct cache *cache = mg->cache;
1350
1351	calc_discard_block_range(cache, bio, &b, &e);
1352	while (b != e) {
1353		set_discard(cache, b);
1354		b = to_dblock(from_dblock(b) + 1);
1355	}
1356
1357	bio_endio(bio);
1358	cell_defer(cache, mg->new_ocell, false);
1359	free_migration(mg);
1360	wake_worker(cache);
 
 
 
 
 
 
 
 
 
1361}
1362
1363static void issue_copy_or_discard(struct dm_cache_migration *mg)
1364{
1365	bool avoid;
 
1366	struct cache *cache = mg->cache;
 
1367
1368	if (mg->discard) {
1369		issue_discard(mg);
1370		return;
1371	}
 
 
 
1372
1373	if (mg->writeback || mg->demote)
1374		avoid = !is_dirty(cache, mg->cblock) ||
1375			is_discarded_oblock(cache, mg->old_oblock);
1376	else {
1377		struct bio *bio = mg->new_ocell->holder;
1378
1379		avoid = is_discarded_oblock(cache, mg->new_oblock);
 
 
 
 
 
1380
1381		if (writeback_mode(&cache->features) &&
1382		    !avoid && bio_writes_complete_block(cache, bio)) {
1383			issue_overwrite(mg, bio);
1384			return;
1385		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386	}
1387
1388	avoid ? avoid_copy(mg) : issue_copy(mg);
1389}
1390
1391static void complete_migration(struct dm_cache_migration *mg)
1392{
1393	if (mg->err)
1394		migration_failure(mg);
 
 
 
 
 
1395	else
1396		migration_success_pre_commit(mg);
1397}
1398
1399static void process_migrations(struct cache *cache, struct list_head *head,
1400			       void (*fn)(struct dm_cache_migration *))
1401{
1402	unsigned long flags;
1403	struct list_head list;
1404	struct dm_cache_migration *mg, *tmp;
 
 
 
 
 
1405
1406	INIT_LIST_HEAD(&list);
1407	spin_lock_irqsave(&cache->lock, flags);
1408	list_splice_init(head, &list);
1409	spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 
1410
1411	list_for_each_entry_safe(mg, tmp, &list, list)
1412		fn(mg);
1413}
1414
1415static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1416{
1417	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1418}
1419
1420static void queue_quiesced_migration(struct dm_cache_migration *mg)
1421{
1422	unsigned long flags;
1423	struct cache *cache = mg->cache;
 
 
1424
1425	spin_lock_irqsave(&cache->lock, flags);
1426	__queue_quiesced_migration(mg);
1427	spin_unlock_irqrestore(&cache->lock, flags);
 
 
1428
1429	wake_worker(cache);
 
1430}
1431
1432static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1433{
1434	unsigned long flags;
1435	struct dm_cache_migration *mg, *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436
1437	spin_lock_irqsave(&cache->lock, flags);
1438	list_for_each_entry_safe(mg, tmp, work, list)
1439		__queue_quiesced_migration(mg);
1440	spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 
1441
1442	wake_worker(cache);
 
1443}
1444
1445static void check_for_quiesced_migrations(struct cache *cache,
1446					  struct per_bio_data *pb)
1447{
1448	struct list_head work;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449
1450	if (!pb->all_io_entry)
1451		return;
1452
1453	INIT_LIST_HEAD(&work);
1454	dm_deferred_entry_dec(pb->all_io_entry, &work);
 
 
1455
1456	if (!list_empty(&work))
1457		queue_quiesced_migrations(cache, &work);
1458}
1459
1460static void quiesce_migration(struct dm_cache_migration *mg)
1461{
1462	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1463		queue_quiesced_migration(mg);
1464}
 
 
 
1465
1466static void promote(struct cache *cache, struct prealloc *structs,
1467		    dm_oblock_t oblock, dm_cblock_t cblock,
1468		    struct dm_bio_prison_cell *cell)
1469{
1470	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1471
1472	mg->err = false;
1473	mg->discard = false;
1474	mg->writeback = false;
1475	mg->demote = false;
1476	mg->promote = true;
1477	mg->requeue_holder = true;
1478	mg->invalidate = false;
1479	mg->cache = cache;
1480	mg->new_oblock = oblock;
1481	mg->cblock = cblock;
1482	mg->old_ocell = NULL;
1483	mg->new_ocell = cell;
1484	mg->start_jiffies = jiffies;
1485
1486	inc_io_migrations(cache);
1487	quiesce_migration(mg);
1488}
1489
1490static void writeback(struct cache *cache, struct prealloc *structs,
1491		      dm_oblock_t oblock, dm_cblock_t cblock,
1492		      struct dm_bio_prison_cell *cell)
1493{
1494	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1495
1496	mg->err = false;
1497	mg->discard = false;
1498	mg->writeback = true;
1499	mg->demote = false;
1500	mg->promote = false;
1501	mg->requeue_holder = true;
1502	mg->invalidate = false;
1503	mg->cache = cache;
1504	mg->old_oblock = oblock;
1505	mg->cblock = cblock;
1506	mg->old_ocell = cell;
1507	mg->new_ocell = NULL;
1508	mg->start_jiffies = jiffies;
1509
1510	inc_io_migrations(cache);
1511	quiesce_migration(mg);
1512}
1513
1514static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1515				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1516				dm_cblock_t cblock,
1517				struct dm_bio_prison_cell *old_ocell,
1518				struct dm_bio_prison_cell *new_ocell)
1519{
1520	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1521
1522	mg->err = false;
1523	mg->discard = false;
1524	mg->writeback = false;
1525	mg->demote = true;
1526	mg->promote = true;
1527	mg->requeue_holder = true;
1528	mg->invalidate = false;
1529	mg->cache = cache;
1530	mg->old_oblock = old_oblock;
1531	mg->new_oblock = new_oblock;
1532	mg->cblock = cblock;
1533	mg->old_ocell = old_ocell;
1534	mg->new_ocell = new_ocell;
1535	mg->start_jiffies = jiffies;
1536
1537	inc_io_migrations(cache);
1538	quiesce_migration(mg);
1539}
1540
1541/*
1542 * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1543 * block are thrown away.
1544 */
1545static void invalidate(struct cache *cache, struct prealloc *structs,
1546		       dm_oblock_t oblock, dm_cblock_t cblock,
1547		       struct dm_bio_prison_cell *cell)
1548{
1549	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1550
1551	mg->err = false;
1552	mg->discard = false;
1553	mg->writeback = false;
1554	mg->demote = true;
1555	mg->promote = false;
1556	mg->requeue_holder = true;
1557	mg->invalidate = true;
1558	mg->cache = cache;
1559	mg->old_oblock = oblock;
1560	mg->cblock = cblock;
1561	mg->old_ocell = cell;
1562	mg->new_ocell = NULL;
1563	mg->start_jiffies = jiffies;
1564
1565	inc_io_migrations(cache);
1566	quiesce_migration(mg);
1567}
1568
1569static void discard(struct cache *cache, struct prealloc *structs,
1570		    struct dm_bio_prison_cell *cell)
1571{
1572	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1573
1574	mg->err = false;
1575	mg->discard = true;
1576	mg->writeback = false;
1577	mg->demote = false;
1578	mg->promote = false;
1579	mg->requeue_holder = false;
1580	mg->invalidate = false;
1581	mg->cache = cache;
1582	mg->old_ocell = NULL;
1583	mg->new_ocell = cell;
1584	mg->start_jiffies = jiffies;
1585
1586	quiesce_migration(mg);
1587}
1588
1589/*----------------------------------------------------------------
1590 * bio processing
1591 *--------------------------------------------------------------*/
1592static void defer_bio(struct cache *cache, struct bio *bio)
 
1593{
1594	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
1595
1596	spin_lock_irqsave(&cache->lock, flags);
1597	bio_list_add(&cache->deferred_bios, bio);
1598	spin_unlock_irqrestore(&cache->lock, flags);
1599
1600	wake_worker(cache);
 
 
 
1601}
1602
1603static void process_flush_bio(struct cache *cache, struct bio *bio)
1604{
1605	size_t pb_data_size = get_per_bio_data_size(cache);
1606	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 
 
 
 
 
 
1607
1608	BUG_ON(bio->bi_iter.bi_size);
1609	if (!pb->req_nr)
1610		remap_to_origin(cache, bio);
1611	else
1612		remap_to_cache(cache, bio, 0);
 
 
 
1613
1614	/*
1615	 * REQ_FLUSH is not directed at any particular block so we don't
1616	 * need to inc_ds().  REQ_FUA's are split into a write + REQ_FLUSH
1617	 * by dm-core.
1618	 */
1619	issue(cache, bio);
1620}
1621
1622static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1623				struct bio *bio)
1624{
1625	int r;
1626	dm_dblock_t b, e;
1627	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1628
1629	calc_discard_block_range(cache, bio, &b, &e);
1630	if (b == e) {
1631		bio_endio(bio);
1632		return;
1633	}
1634
1635	cell_prealloc = prealloc_get_cell(structs);
1636	r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1637			     (cell_free_fn) prealloc_put_cell,
1638			     structs, &new_ocell);
1639	if (r > 0)
1640		return;
1641
1642	discard(cache, structs, new_ocell);
1643}
1644
1645static bool spare_migration_bandwidth(struct cache *cache)
1646{
1647	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1648		cache->sectors_per_block;
1649	return current_volume < cache->migration_threshold;
1650}
 
 
 
 
 
 
 
 
 
 
 
1651
1652static void inc_hit_counter(struct cache *cache, struct bio *bio)
1653{
1654	atomic_inc(bio_data_dir(bio) == READ ?
1655		   &cache->stats.read_hit : &cache->stats.write_hit);
1656}
1657
1658static void inc_miss_counter(struct cache *cache, struct bio *bio)
1659{
1660	atomic_inc(bio_data_dir(bio) == READ ?
1661		   &cache->stats.read_miss : &cache->stats.write_miss);
1662}
1663
1664/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
1665
1666struct inc_detail {
1667	struct cache *cache;
1668	struct bio_list bios_for_issue;
1669	struct bio_list unhandled_bios;
1670	bool any_writes;
1671};
1672
1673static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
 
1674{
1675	struct bio *bio;
1676	struct inc_detail *detail = context;
1677	struct cache *cache = detail->cache;
1678
1679	inc_ds(cache, cell->holder, cell);
1680	if (bio_data_dir(cell->holder) == WRITE)
1681		detail->any_writes = true;
1682
1683	while ((bio = bio_list_pop(&cell->bios))) {
1684		if (discard_or_flush(bio)) {
1685			bio_list_add(&detail->unhandled_bios, bio);
1686			continue;
1687		}
1688
1689		if (bio_data_dir(bio) == WRITE)
1690			detail->any_writes = true;
 
1691
1692		bio_list_add(&detail->bios_for_issue, bio);
1693		inc_ds(cache, bio, cell);
1694	}
1695}
1696
1697// FIXME: refactor these two
1698static void remap_cell_to_origin_clear_discard(struct cache *cache,
1699					       struct dm_bio_prison_cell *cell,
1700					       dm_oblock_t oblock, bool issue_holder)
1701{
1702	struct bio *bio;
1703	unsigned long flags;
1704	struct inc_detail detail;
1705
1706	detail.cache = cache;
1707	bio_list_init(&detail.bios_for_issue);
1708	bio_list_init(&detail.unhandled_bios);
1709	detail.any_writes = false;
1710
1711	spin_lock_irqsave(&cache->lock, flags);
1712	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1713	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1714	spin_unlock_irqrestore(&cache->lock, flags);
 
1715
1716	remap_to_origin(cache, cell->holder);
1717	if (issue_holder)
1718		issue(cache, cell->holder);
1719	else
1720		accounted_begin(cache, cell->holder);
 
1721
1722	if (detail.any_writes)
1723		clear_discard(cache, oblock_to_dblock(cache, oblock));
1724
1725	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1726		remap_to_origin(cache, bio);
1727		issue(cache, bio);
1728	}
1729
1730	free_prison_cell(cache, cell);
1731}
1732
1733static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1734				      dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1735{
1736	struct bio *bio;
1737	unsigned long flags;
1738	struct inc_detail detail;
1739
1740	detail.cache = cache;
1741	bio_list_init(&detail.bios_for_issue);
1742	bio_list_init(&detail.unhandled_bios);
1743	detail.any_writes = false;
1744
1745	spin_lock_irqsave(&cache->lock, flags);
1746	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1747	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1748	spin_unlock_irqrestore(&cache->lock, flags);
1749
1750	remap_to_cache(cache, cell->holder, cblock);
1751	if (issue_holder)
1752		issue(cache, cell->holder);
1753	else
1754		accounted_begin(cache, cell->holder);
1755
1756	if (detail.any_writes) {
1757		set_dirty(cache, oblock, cblock);
1758		clear_discard(cache, oblock_to_dblock(cache, oblock));
1759	}
1760
1761	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1762		remap_to_cache(cache, bio, cblock);
1763		issue(cache, bio);
 
 
 
 
 
 
 
1764	}
1765
1766	free_prison_cell(cache, cell);
1767}
1768
1769/*----------------------------------------------------------------*/
 
1770
1771struct old_oblock_lock {
1772	struct policy_locker locker;
1773	struct cache *cache;
1774	struct prealloc *structs;
1775	struct dm_bio_prison_cell *cell;
1776};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1777
1778static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1779{
1780	/* This should never be called */
1781	BUG();
1782	return 0;
1783}
1784
1785static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1786{
1787	struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1788	struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1789
1790	return bio_detain(l->cache, b, NULL, cell_prealloc,
1791			  (cell_free_fn) prealloc_put_cell,
1792			  l->structs, &l->cell);
1793}
1794
1795static void process_cell(struct cache *cache, struct prealloc *structs,
1796			 struct dm_bio_prison_cell *new_ocell)
1797{
1798	int r;
1799	bool release_cell = true;
1800	struct bio *bio = new_ocell->holder;
1801	dm_oblock_t block = get_bio_block(cache, bio);
1802	struct policy_result lookup_result;
1803	bool passthrough = passthrough_mode(&cache->features);
1804	bool fast_promotion, can_migrate;
1805	struct old_oblock_lock ool;
1806
1807	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1808	can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1809
1810	ool.locker.fn = cell_locker;
1811	ool.cache = cache;
1812	ool.structs = structs;
1813	ool.cell = NULL;
1814	r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1815		       bio, &ool.locker, &lookup_result);
1816
1817	if (r == -EWOULDBLOCK)
1818		/* migration has been denied */
1819		lookup_result.op = POLICY_MISS;
1820
1821	switch (lookup_result.op) {
1822	case POLICY_HIT:
1823		if (passthrough) {
1824			inc_miss_counter(cache, bio);
1825
 
 
 
 
 
 
 
 
1826			/*
1827			 * Passthrough always maps to the origin,
1828			 * invalidating any cache blocks that are written
1829			 * to.
1830			 */
 
 
 
 
 
 
 
 
1831
 
 
 
 
 
1832			if (bio_data_dir(bio) == WRITE) {
 
1833				atomic_inc(&cache->stats.demotion);
1834				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1835				release_cell = false;
1836
1837			} else {
1838				/* FIXME: factor out issue_origin() */
1839				remap_to_origin_clear_discard(cache, bio, block);
1840				inc_and_issue(cache, bio, new_ocell);
1841			}
1842		} else {
1843			inc_hit_counter(cache, bio);
1844
1845			if (bio_data_dir(bio) == WRITE &&
1846			    writethrough_mode(&cache->features) &&
1847			    !is_dirty(cache, lookup_result.cblock)) {
1848				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1849				inc_and_issue(cache, bio, new_ocell);
1850
1851			} else {
1852				remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1853				release_cell = false;
1854			}
1855		}
 
1856
1857		break;
1858
1859	case POLICY_MISS:
1860		inc_miss_counter(cache, bio);
1861		remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1862		release_cell = false;
1863		break;
1864
1865	case POLICY_NEW:
1866		atomic_inc(&cache->stats.promotion);
1867		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1868		release_cell = false;
1869		break;
1870
1871	case POLICY_REPLACE:
1872		atomic_inc(&cache->stats.demotion);
1873		atomic_inc(&cache->stats.promotion);
1874		demote_then_promote(cache, structs, lookup_result.old_oblock,
1875				    block, lookup_result.cblock,
1876				    ool.cell, new_ocell);
1877		release_cell = false;
1878		break;
1879
1880	default:
1881		DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1882			    cache_device_name(cache), __func__,
1883			    (unsigned) lookup_result.op);
1884		bio_io_error(bio);
1885	}
1886
1887	if (release_cell)
1888		cell_defer(cache, new_ocell, false);
1889}
1890
1891static void process_bio(struct cache *cache, struct prealloc *structs,
1892			struct bio *bio)
1893{
1894	int r;
1895	dm_oblock_t block = get_bio_block(cache, bio);
1896	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1897
1898	/*
1899	 * Check to see if that block is currently migrating.
1900	 */
1901	cell_prealloc = prealloc_get_cell(structs);
1902	r = bio_detain(cache, block, bio, cell_prealloc,
1903		       (cell_free_fn) prealloc_put_cell,
1904		       structs, &new_ocell);
1905	if (r > 0)
1906		return;
1907
1908	process_cell(cache, structs, new_ocell);
1909}
1910
1911static int need_commit_due_to_time(struct cache *cache)
1912{
1913	return jiffies < cache->last_commit_jiffies ||
1914	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1915}
1916
1917/*
1918 * A non-zero return indicates read_only or fail_io mode.
1919 */
1920static int commit(struct cache *cache, bool clean_shutdown)
1921{
1922	int r;
1923
1924	if (get_cache_mode(cache) >= CM_READ_ONLY)
1925		return -EINVAL;
1926
1927	atomic_inc(&cache->stats.commit_count);
1928	r = dm_cache_commit(cache->cmd, clean_shutdown);
1929	if (r)
1930		metadata_operation_failed(cache, "dm_cache_commit", r);
1931
1932	return r;
1933}
1934
1935static int commit_if_needed(struct cache *cache)
 
 
 
1936{
1937	int r = 0;
1938
1939	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1940	    dm_cache_changed_this_transaction(cache->cmd)) {
1941		r = commit(cache, false);
1942		cache->commit_requested = false;
1943		cache->last_commit_jiffies = jiffies;
1944	}
1945
1946	return r;
1947}
1948
1949static void process_deferred_bios(struct cache *cache)
 
 
1950{
1951	bool prealloc_used = false;
1952	unsigned long flags;
1953	struct bio_list bios;
1954	struct bio *bio;
1955	struct prealloc structs;
1956
1957	memset(&structs, 0, sizeof(structs));
1958	bio_list_init(&bios);
 
 
1959
1960	spin_lock_irqsave(&cache->lock, flags);
1961	bio_list_merge(&bios, &cache->deferred_bios);
1962	bio_list_init(&cache->deferred_bios);
1963	spin_unlock_irqrestore(&cache->lock, flags);
1964
1965	while (!bio_list_empty(&bios)) {
1966		/*
1967		 * If we've got no free migration structs, and processing
1968		 * this bio might require one, we pause until there are some
1969		 * prepared mappings to process.
1970		 */
1971		prealloc_used = true;
1972		if (prealloc_data_structs(cache, &structs)) {
1973			spin_lock_irqsave(&cache->lock, flags);
1974			bio_list_merge(&cache->deferred_bios, &bios);
1975			spin_unlock_irqrestore(&cache->lock, flags);
1976			break;
1977		}
1978
1979		bio = bio_list_pop(&bios);
1980
1981		if (bio->bi_rw & REQ_FLUSH)
1982			process_flush_bio(cache, bio);
1983		else if (bio->bi_rw & REQ_DISCARD)
1984			process_discard_bio(cache, &structs, bio);
1985		else
1986			process_bio(cache, &structs, bio);
1987	}
1988
1989	if (prealloc_used)
1990		prealloc_free_structs(cache, &structs);
1991}
1992
1993static void process_deferred_cells(struct cache *cache)
1994{
1995	bool prealloc_used = false;
1996	unsigned long flags;
1997	struct dm_bio_prison_cell *cell, *tmp;
1998	struct list_head cells;
1999	struct prealloc structs;
2000
2001	memset(&structs, 0, sizeof(structs));
 
 
 
 
 
 
 
2002
2003	INIT_LIST_HEAD(&cells);
 
 
 
 
2004
2005	spin_lock_irqsave(&cache->lock, flags);
2006	list_splice_init(&cache->deferred_cells, &cells);
2007	spin_unlock_irqrestore(&cache->lock, flags);
2008
2009	list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2010		/*
2011		 * If we've got no free migration structs, and processing
2012		 * this bio might require one, we pause until there are some
2013		 * prepared mappings to process.
2014		 */
2015		prealloc_used = true;
2016		if (prealloc_data_structs(cache, &structs)) {
2017			spin_lock_irqsave(&cache->lock, flags);
2018			list_splice(&cells, &cache->deferred_cells);
2019			spin_unlock_irqrestore(&cache->lock, flags);
2020			break;
2021		}
2022
2023		process_cell(cache, &structs, cell);
2024	}
2025
2026	if (prealloc_used)
2027		prealloc_free_structs(cache, &structs);
2028}
2029
2030static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2031{
2032	unsigned long flags;
2033	struct bio_list bios;
2034	struct bio *bio;
2035
2036	bio_list_init(&bios);
2037
2038	spin_lock_irqsave(&cache->lock, flags);
2039	bio_list_merge(&bios, &cache->deferred_flush_bios);
2040	bio_list_init(&cache->deferred_flush_bios);
2041	spin_unlock_irqrestore(&cache->lock, flags);
2042
2043	/*
2044	 * These bios have already been through inc_ds()
2045	 */
2046	while ((bio = bio_list_pop(&bios)))
2047		submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2048}
2049
2050static void process_deferred_writethrough_bios(struct cache *cache)
2051{
2052	unsigned long flags;
 
2053	struct bio_list bios;
2054	struct bio *bio;
2055
2056	bio_list_init(&bios);
2057
2058	spin_lock_irqsave(&cache->lock, flags);
2059	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2060	bio_list_init(&cache->deferred_writethrough_bios);
2061	spin_unlock_irqrestore(&cache->lock, flags);
2062
2063	/*
2064	 * These bios have already been through inc_ds()
2065	 */
2066	while ((bio = bio_list_pop(&bios)))
2067		accounted_request(cache, bio);
2068}
2069
2070static void writeback_some_dirty_blocks(struct cache *cache)
2071{
2072	bool prealloc_used = false;
2073	dm_oblock_t oblock;
2074	dm_cblock_t cblock;
2075	struct prealloc structs;
2076	struct dm_bio_prison_cell *old_ocell;
2077	bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2078
2079	memset(&structs, 0, sizeof(structs));
2080
2081	while (spare_migration_bandwidth(cache)) {
2082		if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2083			break; /* no work to do */
2084
2085		prealloc_used = true;
2086		if (prealloc_data_structs(cache, &structs) ||
2087		    get_cell(cache, oblock, &structs, &old_ocell)) {
2088			policy_set_dirty(cache->policy, oblock);
2089			break;
2090		}
2091
2092		writeback(cache, &structs, oblock, cblock, old_ocell);
 
2093	}
2094
2095	if (prealloc_used)
2096		prealloc_free_structs(cache, &structs);
2097}
2098
2099/*----------------------------------------------------------------
2100 * Invalidations.
2101 * Dropping something from the cache *without* writing back.
2102 *--------------------------------------------------------------*/
2103
2104static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2105{
2106	int r = 0;
2107	uint64_t begin = from_cblock(req->cblocks->begin);
2108	uint64_t end = from_cblock(req->cblocks->end);
2109
2110	while (begin != end) {
2111		r = policy_remove_cblock(cache->policy, to_cblock(begin));
2112		if (!r) {
2113			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2114			if (r) {
2115				metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2116				break;
2117			}
2118
2119		} else if (r == -ENODATA) {
2120			/* harmless, already unmapped */
2121			r = 0;
2122
2123		} else {
2124			DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2125			break;
2126		}
2127
2128		begin++;
2129        }
2130
2131	cache->commit_requested = true;
2132
2133	req->err = r;
2134	atomic_set(&req->complete, 1);
2135
2136	wake_up(&req->result_wait);
2137}
2138
2139static void process_invalidation_requests(struct cache *cache)
2140{
2141	struct list_head list;
2142	struct invalidation_request *req, *tmp;
2143
2144	INIT_LIST_HEAD(&list);
2145	spin_lock(&cache->invalidation_lock);
2146	list_splice_init(&cache->invalidation_requests, &list);
2147	spin_unlock(&cache->invalidation_lock);
2148
2149	list_for_each_entry_safe (req, tmp, &list, list)
2150		process_invalidation_request(cache, req);
2151}
2152
2153/*----------------------------------------------------------------
2154 * Main worker loop
2155 *--------------------------------------------------------------*/
2156static bool is_quiescing(struct cache *cache)
2157{
2158	return atomic_read(&cache->quiescing);
2159}
2160
2161static void ack_quiescing(struct cache *cache)
2162{
2163	if (is_quiescing(cache)) {
2164		atomic_inc(&cache->quiescing_ack);
2165		wake_up(&cache->quiescing_wait);
2166	}
2167}
2168
2169static void wait_for_quiescing_ack(struct cache *cache)
2170{
2171	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2172}
2173
2174static void start_quiescing(struct cache *cache)
2175{
2176	atomic_inc(&cache->quiescing);
2177	wait_for_quiescing_ack(cache);
2178}
2179
2180static void stop_quiescing(struct cache *cache)
2181{
2182	atomic_set(&cache->quiescing, 0);
2183	atomic_set(&cache->quiescing_ack, 0);
2184}
2185
2186static void wait_for_migrations(struct cache *cache)
2187{
2188	wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2189}
2190
2191static void stop_worker(struct cache *cache)
2192{
2193	cancel_delayed_work(&cache->waker);
2194	flush_workqueue(cache->wq);
2195}
2196
2197static void requeue_deferred_cells(struct cache *cache)
2198{
2199	unsigned long flags;
2200	struct list_head cells;
2201	struct dm_bio_prison_cell *cell, *tmp;
2202
2203	INIT_LIST_HEAD(&cells);
2204	spin_lock_irqsave(&cache->lock, flags);
2205	list_splice_init(&cache->deferred_cells, &cells);
2206	spin_unlock_irqrestore(&cache->lock, flags);
2207
2208	list_for_each_entry_safe(cell, tmp, &cells, user_list)
2209		cell_requeue(cache, cell);
2210}
2211
2212static void requeue_deferred_bios(struct cache *cache)
2213{
2214	struct bio *bio;
2215	struct bio_list bios;
2216
2217	bio_list_init(&bios);
2218	bio_list_merge(&bios, &cache->deferred_bios);
2219	bio_list_init(&cache->deferred_bios);
2220
2221	while ((bio = bio_list_pop(&bios))) {
2222		bio->bi_error = DM_ENDIO_REQUEUE;
2223		bio_endio(bio);
2224	}
2225}
2226
2227static int more_work(struct cache *cache)
2228{
2229	if (is_quiescing(cache))
2230		return !list_empty(&cache->quiesced_migrations) ||
2231			!list_empty(&cache->completed_migrations) ||
2232			!list_empty(&cache->need_commit_migrations);
2233	else
2234		return !bio_list_empty(&cache->deferred_bios) ||
2235			!list_empty(&cache->deferred_cells) ||
2236			!bio_list_empty(&cache->deferred_flush_bios) ||
2237			!bio_list_empty(&cache->deferred_writethrough_bios) ||
2238			!list_empty(&cache->quiesced_migrations) ||
2239			!list_empty(&cache->completed_migrations) ||
2240			!list_empty(&cache->need_commit_migrations) ||
2241			cache->invalidate;
2242}
2243
2244static void do_worker(struct work_struct *ws)
2245{
2246	struct cache *cache = container_of(ws, struct cache, worker);
2247
2248	do {
2249		if (!is_quiescing(cache)) {
2250			writeback_some_dirty_blocks(cache);
2251			process_deferred_writethrough_bios(cache);
2252			process_deferred_bios(cache);
2253			process_deferred_cells(cache);
2254			process_invalidation_requests(cache);
2255		}
2256
2257		process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2258		process_migrations(cache, &cache->completed_migrations, complete_migration);
2259
2260		if (commit_if_needed(cache)) {
2261			process_deferred_flush_bios(cache, false);
2262			process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2263		} else {
2264			process_deferred_flush_bios(cache, true);
2265			process_migrations(cache, &cache->need_commit_migrations,
2266					   migration_success_post_commit);
2267		}
2268
2269		ack_quiescing(cache);
2270
2271	} while (more_work(cache));
2272}
2273
2274/*
2275 * We want to commit periodically so that not too much
2276 * unwritten metadata builds up.
2277 */
2278static void do_waker(struct work_struct *ws)
2279{
2280	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
 
2281	policy_tick(cache->policy, true);
2282	wake_worker(cache);
 
2283	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2284}
2285
2286/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
2287
2288static int is_congested(struct dm_dev *dev, int bdi_bits)
2289{
2290	struct request_queue *q = bdev_get_queue(dev->bdev);
2291	return bdi_congested(&q->backing_dev_info, bdi_bits);
2292}
2293
2294static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2295{
2296	struct cache *cache = container_of(cb, struct cache, callbacks);
 
 
2297
2298	return is_congested(cache->origin_dev, bdi_bits) ||
2299		is_congested(cache->cache_dev, bdi_bits);
 
 
2300}
2301
2302/*----------------------------------------------------------------
2303 * Target methods
2304 *--------------------------------------------------------------*/
2305
2306/*
2307 * This function gets called on the error paths of the constructor, so we
2308 * have to cope with a partially initialised struct.
2309 */
2310static void destroy(struct cache *cache)
2311{
2312	unsigned i;
2313
2314	mempool_destroy(cache->migration_pool);
2315
2316	if (cache->all_io_ds)
2317		dm_deferred_set_destroy(cache->all_io_ds);
2318
2319	if (cache->prison)
2320		dm_bio_prison_destroy(cache->prison);
2321
2322	if (cache->wq)
2323		destroy_workqueue(cache->wq);
2324
2325	if (cache->dirty_bitset)
2326		free_bitset(cache->dirty_bitset);
2327
2328	if (cache->discard_bitset)
2329		free_bitset(cache->discard_bitset);
2330
2331	if (cache->copier)
2332		dm_kcopyd_client_destroy(cache->copier);
2333
2334	if (cache->cmd)
2335		dm_cache_metadata_close(cache->cmd);
2336
2337	if (cache->metadata_dev)
2338		dm_put_device(cache->ti, cache->metadata_dev);
2339
2340	if (cache->origin_dev)
2341		dm_put_device(cache->ti, cache->origin_dev);
2342
2343	if (cache->cache_dev)
2344		dm_put_device(cache->ti, cache->cache_dev);
2345
2346	if (cache->policy)
2347		dm_cache_policy_destroy(cache->policy);
2348
2349	for (i = 0; i < cache->nr_ctr_args ; i++)
2350		kfree(cache->ctr_args[i]);
2351	kfree(cache->ctr_args);
2352
 
 
2353	kfree(cache);
2354}
2355
2356static void cache_dtr(struct dm_target *ti)
2357{
2358	struct cache *cache = ti->private;
2359
2360	destroy(cache);
2361}
2362
2363static sector_t get_dev_size(struct dm_dev *dev)
2364{
2365	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2366}
2367
2368/*----------------------------------------------------------------*/
2369
2370/*
2371 * Construct a cache device mapping.
2372 *
2373 * cache <metadata dev> <cache dev> <origin dev> <block size>
2374 *       <#feature args> [<feature arg>]*
2375 *       <policy> <#policy args> [<policy arg>]*
2376 *
2377 * metadata dev    : fast device holding the persistent metadata
2378 * cache dev	   : fast device holding cached data blocks
2379 * origin dev	   : slow device holding original data blocks
2380 * block size	   : cache unit size in sectors
2381 *
2382 * #feature args   : number of feature arguments passed
2383 * feature args    : writethrough.  (The default is writeback.)
2384 *
2385 * policy	   : the replacement policy to use
2386 * #policy args    : an even number of policy arguments corresponding
2387 *		     to key/value pairs passed to the policy
2388 * policy args	   : key/value pairs passed to the policy
2389 *		     E.g. 'sequential_threshold 1024'
2390 *		     See cache-policies.txt for details.
2391 *
2392 * Optional feature arguments are:
2393 *   writethrough  : write through caching that prohibits cache block
2394 *		     content from being different from origin block content.
2395 *		     Without this argument, the default behaviour is to write
2396 *		     back cache block contents later for performance reasons,
2397 *		     so they may differ from the corresponding origin blocks.
2398 */
2399struct cache_args {
2400	struct dm_target *ti;
2401
2402	struct dm_dev *metadata_dev;
2403
2404	struct dm_dev *cache_dev;
2405	sector_t cache_sectors;
2406
2407	struct dm_dev *origin_dev;
2408	sector_t origin_sectors;
2409
2410	uint32_t block_size;
2411
2412	const char *policy_name;
2413	int policy_argc;
2414	const char **policy_argv;
2415
2416	struct cache_features features;
2417};
2418
2419static void destroy_cache_args(struct cache_args *ca)
2420{
2421	if (ca->metadata_dev)
2422		dm_put_device(ca->ti, ca->metadata_dev);
2423
2424	if (ca->cache_dev)
2425		dm_put_device(ca->ti, ca->cache_dev);
2426
2427	if (ca->origin_dev)
2428		dm_put_device(ca->ti, ca->origin_dev);
2429
2430	kfree(ca);
2431}
2432
2433static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2434{
2435	if (!as->argc) {
2436		*error = "Insufficient args";
2437		return false;
2438	}
2439
2440	return true;
2441}
2442
2443static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2444			      char **error)
2445{
2446	int r;
2447	sector_t metadata_dev_size;
2448	char b[BDEVNAME_SIZE];
2449
2450	if (!at_least_one_arg(as, error))
2451		return -EINVAL;
2452
2453	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2454			  &ca->metadata_dev);
2455	if (r) {
2456		*error = "Error opening metadata device";
2457		return r;
2458	}
2459
2460	metadata_dev_size = get_dev_size(ca->metadata_dev);
2461	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2462		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2463		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2464
2465	return 0;
2466}
2467
2468static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2469			   char **error)
2470{
2471	int r;
2472
2473	if (!at_least_one_arg(as, error))
2474		return -EINVAL;
2475
2476	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2477			  &ca->cache_dev);
2478	if (r) {
2479		*error = "Error opening cache device";
2480		return r;
2481	}
2482	ca->cache_sectors = get_dev_size(ca->cache_dev);
2483
2484	return 0;
2485}
2486
2487static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2488			    char **error)
2489{
2490	int r;
2491
2492	if (!at_least_one_arg(as, error))
2493		return -EINVAL;
2494
2495	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2496			  &ca->origin_dev);
2497	if (r) {
2498		*error = "Error opening origin device";
2499		return r;
2500	}
2501
2502	ca->origin_sectors = get_dev_size(ca->origin_dev);
2503	if (ca->ti->len > ca->origin_sectors) {
2504		*error = "Device size larger than cached device";
2505		return -EINVAL;
2506	}
2507
2508	return 0;
2509}
2510
2511static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2512			    char **error)
2513{
2514	unsigned long block_size;
2515
2516	if (!at_least_one_arg(as, error))
2517		return -EINVAL;
2518
2519	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2520	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2521	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2522	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2523		*error = "Invalid data block size";
2524		return -EINVAL;
2525	}
2526
2527	if (block_size > ca->cache_sectors) {
2528		*error = "Data block size is larger than the cache device";
2529		return -EINVAL;
2530	}
2531
2532	ca->block_size = block_size;
2533
2534	return 0;
2535}
2536
2537static void init_features(struct cache_features *cf)
2538{
2539	cf->mode = CM_WRITE;
2540	cf->io_mode = CM_IO_WRITEBACK;
 
 
2541}
2542
2543static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2544			  char **error)
2545{
2546	static struct dm_arg _args[] = {
2547		{0, 1, "Invalid number of cache feature arguments"},
2548	};
2549
2550	int r;
2551	unsigned argc;
2552	const char *arg;
2553	struct cache_features *cf = &ca->features;
2554
2555	init_features(cf);
2556
2557	r = dm_read_arg_group(_args, as, &argc, error);
2558	if (r)
2559		return -EINVAL;
2560
2561	while (argc--) {
2562		arg = dm_shift_arg(as);
2563
2564		if (!strcasecmp(arg, "writeback"))
2565			cf->io_mode = CM_IO_WRITEBACK;
 
 
2566
2567		else if (!strcasecmp(arg, "writethrough"))
2568			cf->io_mode = CM_IO_WRITETHROUGH;
 
 
2569
2570		else if (!strcasecmp(arg, "passthrough"))
2571			cf->io_mode = CM_IO_PASSTHROUGH;
 
 
 
 
 
 
 
 
2572
2573		else {
2574			*error = "Unrecognised cache feature requested";
2575			return -EINVAL;
2576		}
2577	}
2578
 
 
 
 
 
2579	return 0;
2580}
2581
2582static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2583			char **error)
2584{
2585	static struct dm_arg _args[] = {
2586		{0, 1024, "Invalid number of policy arguments"},
2587	};
2588
2589	int r;
2590
2591	if (!at_least_one_arg(as, error))
2592		return -EINVAL;
2593
2594	ca->policy_name = dm_shift_arg(as);
2595
2596	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2597	if (r)
2598		return -EINVAL;
2599
2600	ca->policy_argv = (const char **)as->argv;
2601	dm_consume_args(as, ca->policy_argc);
2602
2603	return 0;
2604}
2605
2606static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2607			    char **error)
2608{
2609	int r;
2610	struct dm_arg_set as;
2611
2612	as.argc = argc;
2613	as.argv = argv;
2614
2615	r = parse_metadata_dev(ca, &as, error);
2616	if (r)
2617		return r;
2618
2619	r = parse_cache_dev(ca, &as, error);
2620	if (r)
2621		return r;
2622
2623	r = parse_origin_dev(ca, &as, error);
2624	if (r)
2625		return r;
2626
2627	r = parse_block_size(ca, &as, error);
2628	if (r)
2629		return r;
2630
2631	r = parse_features(ca, &as, error);
2632	if (r)
2633		return r;
2634
2635	r = parse_policy(ca, &as, error);
2636	if (r)
2637		return r;
2638
2639	return 0;
2640}
2641
2642/*----------------------------------------------------------------*/
2643
2644static struct kmem_cache *migration_cache;
2645
2646#define NOT_CORE_OPTION 1
2647
2648static int process_config_option(struct cache *cache, const char *key, const char *value)
2649{
2650	unsigned long tmp;
2651
2652	if (!strcasecmp(key, "migration_threshold")) {
2653		if (kstrtoul(value, 10, &tmp))
2654			return -EINVAL;
2655
2656		cache->migration_threshold = tmp;
2657		return 0;
2658	}
2659
2660	return NOT_CORE_OPTION;
2661}
2662
2663static int set_config_value(struct cache *cache, const char *key, const char *value)
2664{
2665	int r = process_config_option(cache, key, value);
2666
2667	if (r == NOT_CORE_OPTION)
2668		r = policy_set_config_value(cache->policy, key, value);
2669
2670	if (r)
2671		DMWARN("bad config value for %s: %s", key, value);
2672
2673	return r;
2674}
2675
2676static int set_config_values(struct cache *cache, int argc, const char **argv)
2677{
2678	int r = 0;
2679
2680	if (argc & 1) {
2681		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2682		return -EINVAL;
2683	}
2684
2685	while (argc) {
2686		r = set_config_value(cache, argv[0], argv[1]);
2687		if (r)
2688			break;
2689
2690		argc -= 2;
2691		argv += 2;
2692	}
2693
2694	return r;
2695}
2696
2697static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2698			       char **error)
2699{
2700	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2701							   cache->cache_size,
2702							   cache->origin_sectors,
2703							   cache->sectors_per_block);
2704	if (IS_ERR(p)) {
2705		*error = "Error creating cache's policy";
2706		return PTR_ERR(p);
2707	}
2708	cache->policy = p;
 
2709
2710	return 0;
2711}
2712
2713/*
2714 * We want the discard block size to be at least the size of the cache
2715 * block size and have no more than 2^14 discard blocks across the origin.
2716 */
2717#define MAX_DISCARD_BLOCKS (1 << 14)
2718
2719static bool too_many_discard_blocks(sector_t discard_block_size,
2720				    sector_t origin_size)
2721{
2722	(void) sector_div(origin_size, discard_block_size);
2723
2724	return origin_size > MAX_DISCARD_BLOCKS;
2725}
2726
2727static sector_t calculate_discard_block_size(sector_t cache_block_size,
2728					     sector_t origin_size)
2729{
2730	sector_t discard_block_size = cache_block_size;
2731
2732	if (origin_size)
2733		while (too_many_discard_blocks(discard_block_size, origin_size))
2734			discard_block_size *= 2;
2735
2736	return discard_block_size;
2737}
2738
2739static void set_cache_size(struct cache *cache, dm_cblock_t size)
2740{
2741	dm_block_t nr_blocks = from_cblock(size);
2742
2743	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2744		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2745			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2746			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2747			     (unsigned long long) nr_blocks);
2748
2749	cache->cache_size = size;
2750}
2751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2752#define DEFAULT_MIGRATION_THRESHOLD 2048
2753
2754static int cache_create(struct cache_args *ca, struct cache **result)
2755{
2756	int r = 0;
2757	char **error = &ca->ti->error;
2758	struct cache *cache;
2759	struct dm_target *ti = ca->ti;
2760	dm_block_t origin_blocks;
2761	struct dm_cache_metadata *cmd;
2762	bool may_format = ca->features.mode == CM_WRITE;
2763
2764	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2765	if (!cache)
2766		return -ENOMEM;
2767
2768	cache->ti = ca->ti;
2769	ti->private = cache;
2770	ti->num_flush_bios = 2;
2771	ti->flush_supported = true;
2772
2773	ti->num_discard_bios = 1;
2774	ti->discards_supported = true;
2775	ti->discard_zeroes_data_unsupported = true;
2776	ti->split_discard_bios = false;
2777
2778	cache->features = ca->features;
2779	ti->per_io_data_size = get_per_bio_data_size(cache);
 
 
 
 
 
2780
2781	cache->callbacks.congested_fn = cache_is_congested;
2782	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2783
2784	cache->metadata_dev = ca->metadata_dev;
2785	cache->origin_dev = ca->origin_dev;
2786	cache->cache_dev = ca->cache_dev;
2787
2788	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2789
2790	/* FIXME: factor out this whole section */
2791	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2792	origin_blocks = block_div(origin_blocks, ca->block_size);
2793	cache->origin_blocks = to_oblock(origin_blocks);
2794
2795	cache->sectors_per_block = ca->block_size;
2796	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2797		r = -EINVAL;
2798		goto bad;
2799	}
2800
2801	if (ca->block_size & (ca->block_size - 1)) {
2802		dm_block_t cache_size = ca->cache_sectors;
2803
2804		cache->sectors_per_block_shift = -1;
2805		cache_size = block_div(cache_size, ca->block_size);
2806		set_cache_size(cache, to_cblock(cache_size));
2807	} else {
2808		cache->sectors_per_block_shift = __ffs(ca->block_size);
2809		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2810	}
2811
2812	r = create_cache_policy(cache, ca, error);
2813	if (r)
2814		goto bad;
2815
2816	cache->policy_nr_args = ca->policy_argc;
2817	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2818
2819	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2820	if (r) {
2821		*error = "Error setting cache policy's config values";
2822		goto bad;
2823	}
2824
2825	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2826				     ca->block_size, may_format,
2827				     dm_cache_policy_get_hint_size(cache->policy));
 
2828	if (IS_ERR(cmd)) {
2829		*error = "Error creating metadata object";
2830		r = PTR_ERR(cmd);
2831		goto bad;
2832	}
2833	cache->cmd = cmd;
2834	set_cache_mode(cache, CM_WRITE);
2835	if (get_cache_mode(cache) != CM_WRITE) {
2836		*error = "Unable to get write access to metadata, please check/repair metadata.";
2837		r = -EINVAL;
2838		goto bad;
2839	}
2840
2841	if (passthrough_mode(&cache->features)) {
2842		bool all_clean;
2843
2844		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2845		if (r) {
2846			*error = "dm_cache_metadata_all_clean() failed";
2847			goto bad;
2848		}
2849
2850		if (!all_clean) {
2851			*error = "Cannot enter passthrough mode unless all blocks are clean";
2852			r = -EINVAL;
2853			goto bad;
2854		}
 
 
2855	}
2856
2857	spin_lock_init(&cache->lock);
2858	INIT_LIST_HEAD(&cache->deferred_cells);
2859	bio_list_init(&cache->deferred_bios);
2860	bio_list_init(&cache->deferred_flush_bios);
2861	bio_list_init(&cache->deferred_writethrough_bios);
2862	INIT_LIST_HEAD(&cache->quiesced_migrations);
2863	INIT_LIST_HEAD(&cache->completed_migrations);
2864	INIT_LIST_HEAD(&cache->need_commit_migrations);
2865	atomic_set(&cache->nr_allocated_migrations, 0);
2866	atomic_set(&cache->nr_io_migrations, 0);
2867	init_waitqueue_head(&cache->migration_wait);
2868
2869	init_waitqueue_head(&cache->quiescing_wait);
2870	atomic_set(&cache->quiescing, 0);
2871	atomic_set(&cache->quiescing_ack, 0);
2872
2873	r = -ENOMEM;
2874	atomic_set(&cache->nr_dirty, 0);
2875	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2876	if (!cache->dirty_bitset) {
2877		*error = "could not allocate dirty bitset";
2878		goto bad;
2879	}
2880	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2881
2882	cache->discard_block_size =
2883		calculate_discard_block_size(cache->sectors_per_block,
2884					     cache->origin_sectors);
2885	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2886							      cache->discard_block_size));
2887	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2888	if (!cache->discard_bitset) {
2889		*error = "could not allocate discard bitset";
2890		goto bad;
2891	}
2892	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2893
2894	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2895	if (IS_ERR(cache->copier)) {
2896		*error = "could not create kcopyd client";
2897		r = PTR_ERR(cache->copier);
2898		goto bad;
2899	}
2900
2901	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2902	if (!cache->wq) {
2903		*error = "could not create workqueue for metadata object";
2904		goto bad;
2905	}
2906	INIT_WORK(&cache->worker, do_worker);
 
2907	INIT_DELAYED_WORK(&cache->waker, do_waker);
2908	cache->last_commit_jiffies = jiffies;
2909
2910	cache->prison = dm_bio_prison_create();
2911	if (!cache->prison) {
2912		*error = "could not create bio prison";
2913		goto bad;
2914	}
2915
2916	cache->all_io_ds = dm_deferred_set_create();
2917	if (!cache->all_io_ds) {
2918		*error = "could not create all_io deferred set";
2919		goto bad;
2920	}
2921
2922	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2923							 migration_cache);
2924	if (!cache->migration_pool) {
2925		*error = "Error creating cache's migration mempool";
2926		goto bad;
2927	}
2928
2929	cache->need_tick_bio = true;
2930	cache->sized = false;
2931	cache->invalidate = false;
2932	cache->commit_requested = false;
2933	cache->loaded_mappings = false;
2934	cache->loaded_discards = false;
2935
2936	load_stats(cache);
2937
2938	atomic_set(&cache->stats.demotion, 0);
2939	atomic_set(&cache->stats.promotion, 0);
2940	atomic_set(&cache->stats.copies_avoided, 0);
2941	atomic_set(&cache->stats.cache_cell_clash, 0);
2942	atomic_set(&cache->stats.commit_count, 0);
2943	atomic_set(&cache->stats.discard_count, 0);
2944
2945	spin_lock_init(&cache->invalidation_lock);
2946	INIT_LIST_HEAD(&cache->invalidation_requests);
2947
2948	iot_init(&cache->origin_tracker);
 
 
 
 
 
2949
2950	*result = cache;
2951	return 0;
2952
2953bad:
2954	destroy(cache);
2955	return r;
2956}
2957
2958static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2959{
2960	unsigned i;
2961	const char **copy;
2962
2963	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2964	if (!copy)
2965		return -ENOMEM;
2966	for (i = 0; i < argc; i++) {
2967		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2968		if (!copy[i]) {
2969			while (i--)
2970				kfree(copy[i]);
2971			kfree(copy);
2972			return -ENOMEM;
2973		}
2974	}
2975
2976	cache->nr_ctr_args = argc;
2977	cache->ctr_args = copy;
2978
2979	return 0;
2980}
2981
2982static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2983{
2984	int r = -EINVAL;
2985	struct cache_args *ca;
2986	struct cache *cache = NULL;
2987
2988	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2989	if (!ca) {
2990		ti->error = "Error allocating memory for cache";
2991		return -ENOMEM;
2992	}
2993	ca->ti = ti;
2994
2995	r = parse_cache_args(ca, argc, argv, &ti->error);
2996	if (r)
2997		goto out;
2998
2999	r = cache_create(ca, &cache);
3000	if (r)
3001		goto out;
3002
3003	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3004	if (r) {
3005		destroy(cache);
3006		goto out;
3007	}
3008
3009	ti->private = cache;
3010
3011out:
3012	destroy_cache_args(ca);
3013	return r;
3014}
3015
3016/*----------------------------------------------------------------*/
3017
3018static int cache_map(struct dm_target *ti, struct bio *bio)
3019{
3020	struct cache *cache = ti->private;
3021
3022	int r;
3023	struct dm_bio_prison_cell *cell = NULL;
3024	dm_oblock_t block = get_bio_block(cache, bio);
3025	size_t pb_data_size = get_per_bio_data_size(cache);
3026	bool can_migrate = false;
3027	bool fast_promotion;
3028	struct policy_result lookup_result;
3029	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3030	struct old_oblock_lock ool;
3031
3032	ool.locker.fn = null_locker;
3033
 
3034	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3035		/*
3036		 * This can only occur if the io goes to a partial block at
3037		 * the end of the origin device.  We don't cache these.
3038		 * Just remap to the origin and carry on.
3039		 */
3040		remap_to_origin(cache, bio);
3041		accounted_begin(cache, bio);
3042		return DM_MAPIO_REMAPPED;
3043	}
3044
3045	if (discard_or_flush(bio)) {
3046		defer_bio(cache, bio);
3047		return DM_MAPIO_SUBMITTED;
3048	}
3049
3050	/*
3051	 * Check to see if that block is currently migrating.
3052	 */
3053	cell = alloc_prison_cell(cache);
3054	if (!cell) {
3055		defer_bio(cache, bio);
3056		return DM_MAPIO_SUBMITTED;
3057	}
3058
3059	r = bio_detain(cache, block, bio, cell,
3060		       (cell_free_fn) free_prison_cell,
3061		       cache, &cell);
3062	if (r) {
3063		if (r < 0)
3064			defer_bio(cache, bio);
3065
3066		return DM_MAPIO_SUBMITTED;
3067	}
3068
3069	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3070
3071	r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3072		       bio, &ool.locker, &lookup_result);
3073	if (r == -EWOULDBLOCK) {
3074		cell_defer(cache, cell, true);
3075		return DM_MAPIO_SUBMITTED;
3076
3077	} else if (r) {
3078		DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3079			    cache_device_name(cache), r);
3080		cell_defer(cache, cell, false);
3081		bio_io_error(bio);
3082		return DM_MAPIO_SUBMITTED;
3083	}
3084
3085	r = DM_MAPIO_REMAPPED;
3086	switch (lookup_result.op) {
3087	case POLICY_HIT:
3088		if (passthrough_mode(&cache->features)) {
3089			if (bio_data_dir(bio) == WRITE) {
3090				/*
3091				 * We need to invalidate this block, so
3092				 * defer for the worker thread.
3093				 */
3094				cell_defer(cache, cell, true);
3095				r = DM_MAPIO_SUBMITTED;
3096
3097			} else {
3098				inc_miss_counter(cache, bio);
3099				remap_to_origin_clear_discard(cache, bio, block);
3100				accounted_begin(cache, bio);
3101				inc_ds(cache, bio, cell);
3102				// FIXME: we want to remap hits or misses straight
3103				// away rather than passing over to the worker.
3104				cell_defer(cache, cell, false);
3105			}
3106
3107		} else {
3108			inc_hit_counter(cache, bio);
3109			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3110			    !is_dirty(cache, lookup_result.cblock)) {
3111				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3112				accounted_begin(cache, bio);
3113				inc_ds(cache, bio, cell);
3114				cell_defer(cache, cell, false);
3115
3116			} else
3117				remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3118		}
3119		break;
3120
3121	case POLICY_MISS:
3122		inc_miss_counter(cache, bio);
3123		if (pb->req_nr != 0) {
3124			/*
3125			 * This is a duplicate writethrough io that is no
3126			 * longer needed because the block has been demoted.
3127			 */
3128			bio_endio(bio);
3129			// FIXME: remap everything as a miss
3130			cell_defer(cache, cell, false);
3131			r = DM_MAPIO_SUBMITTED;
3132
3133		} else
3134			remap_cell_to_origin_clear_discard(cache, cell, block, false);
3135		break;
3136
3137	default:
3138		DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3139			    cache_device_name(cache), __func__,
3140			    (unsigned) lookup_result.op);
3141		cell_defer(cache, cell, false);
3142		bio_io_error(bio);
3143		r = DM_MAPIO_SUBMITTED;
3144	}
3145
3146	return r;
3147}
3148
3149static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3150{
3151	struct cache *cache = ti->private;
3152	unsigned long flags;
3153	size_t pb_data_size = get_per_bio_data_size(cache);
3154	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3155
3156	if (pb->tick) {
3157		policy_tick(cache->policy, false);
3158
3159		spin_lock_irqsave(&cache->lock, flags);
3160		cache->need_tick_bio = true;
3161		spin_unlock_irqrestore(&cache->lock, flags);
3162	}
3163
3164	check_for_quiesced_migrations(cache, pb);
3165	accounted_complete(cache, bio);
3166
3167	return 0;
3168}
3169
3170static int write_dirty_bitset(struct cache *cache)
3171{
3172	unsigned i, r;
3173
3174	if (get_cache_mode(cache) >= CM_READ_ONLY)
3175		return -EINVAL;
3176
3177	for (i = 0; i < from_cblock(cache->cache_size); i++) {
3178		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3179				       is_dirty(cache, to_cblock(i)));
3180		if (r) {
3181			metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3182			return r;
3183		}
3184	}
3185
3186	return 0;
3187}
3188
3189static int write_discard_bitset(struct cache *cache)
3190{
3191	unsigned i, r;
3192
3193	if (get_cache_mode(cache) >= CM_READ_ONLY)
3194		return -EINVAL;
3195
3196	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3197					   cache->discard_nr_blocks);
3198	if (r) {
3199		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3200		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3201		return r;
3202	}
3203
3204	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3205		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3206					 is_discarded(cache, to_dblock(i)));
3207		if (r) {
3208			metadata_operation_failed(cache, "dm_cache_set_discard", r);
3209			return r;
3210		}
3211	}
3212
3213	return 0;
3214}
3215
3216static int write_hints(struct cache *cache)
3217{
3218	int r;
3219
3220	if (get_cache_mode(cache) >= CM_READ_ONLY)
3221		return -EINVAL;
3222
3223	r = dm_cache_write_hints(cache->cmd, cache->policy);
3224	if (r) {
3225		metadata_operation_failed(cache, "dm_cache_write_hints", r);
3226		return r;
3227	}
3228
3229	return 0;
3230}
3231
3232/*
3233 * returns true on success
3234 */
3235static bool sync_metadata(struct cache *cache)
3236{
3237	int r1, r2, r3, r4;
3238
3239	r1 = write_dirty_bitset(cache);
3240	if (r1)
3241		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3242
3243	r2 = write_discard_bitset(cache);
3244	if (r2)
3245		DMERR("%s: could not write discard bitset", cache_device_name(cache));
3246
3247	save_stats(cache);
3248
3249	r3 = write_hints(cache);
3250	if (r3)
3251		DMERR("%s: could not write hints", cache_device_name(cache));
3252
3253	/*
3254	 * If writing the above metadata failed, we still commit, but don't
3255	 * set the clean shutdown flag.  This will effectively force every
3256	 * dirty bit to be set on reload.
3257	 */
3258	r4 = commit(cache, !r1 && !r2 && !r3);
3259	if (r4)
3260		DMERR("%s: could not write cache metadata", cache_device_name(cache));
3261
3262	return !r1 && !r2 && !r3 && !r4;
3263}
3264
3265static void cache_postsuspend(struct dm_target *ti)
3266{
3267	struct cache *cache = ti->private;
3268
3269	start_quiescing(cache);
3270	wait_for_migrations(cache);
3271	stop_worker(cache);
 
 
 
 
 
 
 
 
3272	requeue_deferred_bios(cache);
3273	requeue_deferred_cells(cache);
3274	stop_quiescing(cache);
3275
3276	if (get_cache_mode(cache) == CM_WRITE)
3277		(void) sync_metadata(cache);
3278}
3279
3280static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3281			bool dirty, uint32_t hint, bool hint_valid)
3282{
3283	int r;
3284	struct cache *cache = context;
3285
3286	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
 
 
 
 
 
 
3287	if (r)
3288		return r;
3289
3290	if (dirty)
3291		set_dirty(cache, oblock, cblock);
3292	else
3293		clear_dirty(cache, oblock, cblock);
3294
3295	return 0;
3296}
3297
3298/*
3299 * The discard block size in the on disk metadata is not
3300 * neccessarily the same as we're currently using.  So we have to
3301 * be careful to only set the discarded attribute if we know it
3302 * covers a complete block of the new size.
3303 */
3304struct discard_load_info {
3305	struct cache *cache;
3306
3307	/*
3308	 * These blocks are sized using the on disk dblock size, rather
3309	 * than the current one.
3310	 */
3311	dm_block_t block_size;
3312	dm_block_t discard_begin, discard_end;
3313};
3314
3315static void discard_load_info_init(struct cache *cache,
3316				   struct discard_load_info *li)
3317{
3318	li->cache = cache;
3319	li->discard_begin = li->discard_end = 0;
3320}
3321
3322static void set_discard_range(struct discard_load_info *li)
3323{
3324	sector_t b, e;
3325
3326	if (li->discard_begin == li->discard_end)
3327		return;
3328
3329	/*
3330	 * Convert to sectors.
3331	 */
3332	b = li->discard_begin * li->block_size;
3333	e = li->discard_end * li->block_size;
3334
3335	/*
3336	 * Then convert back to the current dblock size.
3337	 */
3338	b = dm_sector_div_up(b, li->cache->discard_block_size);
3339	sector_div(e, li->cache->discard_block_size);
3340
3341	/*
3342	 * The origin may have shrunk, so we need to check we're still in
3343	 * bounds.
3344	 */
3345	if (e > from_dblock(li->cache->discard_nr_blocks))
3346		e = from_dblock(li->cache->discard_nr_blocks);
3347
3348	for (; b < e; b++)
3349		set_discard(li->cache, to_dblock(b));
3350}
3351
3352static int load_discard(void *context, sector_t discard_block_size,
3353			dm_dblock_t dblock, bool discard)
3354{
3355	struct discard_load_info *li = context;
3356
3357	li->block_size = discard_block_size;
3358
3359	if (discard) {
3360		if (from_dblock(dblock) == li->discard_end)
3361			/*
3362			 * We're already in a discard range, just extend it.
3363			 */
3364			li->discard_end = li->discard_end + 1ULL;
3365
3366		else {
3367			/*
3368			 * Emit the old range and start a new one.
3369			 */
3370			set_discard_range(li);
3371			li->discard_begin = from_dblock(dblock);
3372			li->discard_end = li->discard_begin + 1ULL;
3373		}
3374	} else {
3375		set_discard_range(li);
3376		li->discard_begin = li->discard_end = 0;
3377	}
3378
3379	return 0;
3380}
3381
3382static dm_cblock_t get_cache_dev_size(struct cache *cache)
3383{
3384	sector_t size = get_dev_size(cache->cache_dev);
3385	(void) sector_div(size, cache->sectors_per_block);
3386	return to_cblock(size);
3387}
3388
3389static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3390{
3391	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3392		return true;
 
 
 
 
 
3393
3394	/*
3395	 * We can't drop a dirty block when shrinking the cache.
3396	 */
3397	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3398		new_size = to_cblock(from_cblock(new_size) + 1);
3399		if (is_dirty(cache, new_size)) {
3400			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3401			      cache_device_name(cache),
3402			      (unsigned long long) from_cblock(new_size));
3403			return false;
3404		}
3405	}
3406
3407	return true;
3408}
3409
3410static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3411{
3412	int r;
3413
3414	r = dm_cache_resize(cache->cmd, new_size);
3415	if (r) {
3416		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3417		metadata_operation_failed(cache, "dm_cache_resize", r);
3418		return r;
3419	}
3420
3421	set_cache_size(cache, new_size);
3422
3423	return 0;
3424}
3425
3426static int cache_preresume(struct dm_target *ti)
3427{
3428	int r = 0;
3429	struct cache *cache = ti->private;
3430	dm_cblock_t csize = get_cache_dev_size(cache);
3431
3432	/*
3433	 * Check to see if the cache has resized.
3434	 */
3435	if (!cache->sized) {
3436		r = resize_cache_dev(cache, csize);
3437		if (r)
3438			return r;
3439
3440		cache->sized = true;
3441
3442	} else if (csize != cache->cache_size) {
3443		if (!can_resize(cache, csize))
3444			return -EINVAL;
3445
3446		r = resize_cache_dev(cache, csize);
3447		if (r)
3448			return r;
3449	}
3450
3451	if (!cache->loaded_mappings) {
3452		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3453					   load_mapping, cache);
3454		if (r) {
3455			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3456			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3457			return r;
3458		}
3459
3460		cache->loaded_mappings = true;
3461	}
3462
3463	if (!cache->loaded_discards) {
3464		struct discard_load_info li;
3465
3466		/*
3467		 * The discard bitset could have been resized, or the
3468		 * discard block size changed.  To be safe we start by
3469		 * setting every dblock to not discarded.
3470		 */
3471		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3472
3473		discard_load_info_init(cache, &li);
3474		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3475		if (r) {
3476			DMERR("%s: could not load origin discards", cache_device_name(cache));
3477			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3478			return r;
3479		}
3480		set_discard_range(&li);
3481
3482		cache->loaded_discards = true;
3483	}
3484
3485	return r;
3486}
3487
3488static void cache_resume(struct dm_target *ti)
3489{
3490	struct cache *cache = ti->private;
3491
3492	cache->need_tick_bio = true;
 
3493	do_waker(&cache->waker.work);
3494}
3495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3496/*
3497 * Status format:
3498 *
3499 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3500 * <cache block size> <#used cache blocks>/<#total cache blocks>
3501 * <#read hits> <#read misses> <#write hits> <#write misses>
3502 * <#demotions> <#promotions> <#dirty>
3503 * <#features> <features>*
3504 * <#core args> <core args>
3505 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3506 */
3507static void cache_status(struct dm_target *ti, status_type_t type,
3508			 unsigned status_flags, char *result, unsigned maxlen)
3509{
3510	int r = 0;
3511	unsigned i;
3512	ssize_t sz = 0;
3513	dm_block_t nr_free_blocks_metadata = 0;
3514	dm_block_t nr_blocks_metadata = 0;
3515	char buf[BDEVNAME_SIZE];
3516	struct cache *cache = ti->private;
3517	dm_cblock_t residency;
3518	bool needs_check;
3519
3520	switch (type) {
3521	case STATUSTYPE_INFO:
3522		if (get_cache_mode(cache) == CM_FAIL) {
3523			DMEMIT("Fail");
3524			break;
3525		}
3526
3527		/* Commit to ensure statistics aren't out-of-date */
3528		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3529			(void) commit(cache, false);
3530
3531		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3532		if (r) {
3533			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3534			      cache_device_name(cache), r);
3535			goto err;
3536		}
3537
3538		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3539		if (r) {
3540			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3541			      cache_device_name(cache), r);
3542			goto err;
3543		}
3544
3545		residency = policy_residency(cache->policy);
3546
3547		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3548		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3549		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3550		       (unsigned long long)nr_blocks_metadata,
3551		       cache->sectors_per_block,
3552		       (unsigned long long) from_cblock(residency),
3553		       (unsigned long long) from_cblock(cache->cache_size),
3554		       (unsigned) atomic_read(&cache->stats.read_hit),
3555		       (unsigned) atomic_read(&cache->stats.read_miss),
3556		       (unsigned) atomic_read(&cache->stats.write_hit),
3557		       (unsigned) atomic_read(&cache->stats.write_miss),
3558		       (unsigned) atomic_read(&cache->stats.demotion),
3559		       (unsigned) atomic_read(&cache->stats.promotion),
3560		       (unsigned long) atomic_read(&cache->nr_dirty));
3561
3562		if (writethrough_mode(&cache->features))
3563			DMEMIT("1 writethrough ");
3564
3565		else if (passthrough_mode(&cache->features))
3566			DMEMIT("1 passthrough ");
3567
3568		else if (writeback_mode(&cache->features))
3569			DMEMIT("1 writeback ");
3570
3571		else {
3572			DMERR("%s: internal error: unknown io mode: %d",
3573			      cache_device_name(cache), (int) cache->features.io_mode);
3574			goto err;
3575		}
3576
3577		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3578
3579		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3580		if (sz < maxlen) {
3581			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3582			if (r)
3583				DMERR("%s: policy_emit_config_values returned %d",
3584				      cache_device_name(cache), r);
3585		}
3586
3587		if (get_cache_mode(cache) == CM_READ_ONLY)
3588			DMEMIT("ro ");
3589		else
3590			DMEMIT("rw ");
3591
3592		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3593
3594		if (r || needs_check)
3595			DMEMIT("needs_check ");
3596		else
3597			DMEMIT("- ");
3598
3599		break;
3600
3601	case STATUSTYPE_TABLE:
3602		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3603		DMEMIT("%s ", buf);
3604		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3605		DMEMIT("%s ", buf);
3606		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3607		DMEMIT("%s", buf);
3608
3609		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3610			DMEMIT(" %s", cache->ctr_args[i]);
3611		if (cache->nr_ctr_args)
3612			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3613	}
3614
3615	return;
3616
3617err:
3618	DMEMIT("Error");
3619}
3620
3621/*
 
 
 
 
 
 
 
 
 
3622 * A cache block range can take two forms:
3623 *
3624 * i) A single cblock, eg. '3456'
3625 * ii) A begin and end cblock with dots between, eg. 123-234
3626 */
3627static int parse_cblock_range(struct cache *cache, const char *str,
3628			      struct cblock_range *result)
3629{
3630	char dummy;
3631	uint64_t b, e;
3632	int r;
3633
3634	/*
3635	 * Try and parse form (ii) first.
3636	 */
3637	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3638	if (r < 0)
3639		return r;
3640
3641	if (r == 2) {
3642		result->begin = to_cblock(b);
3643		result->end = to_cblock(e);
3644		return 0;
3645	}
3646
3647	/*
3648	 * That didn't work, try form (i).
3649	 */
3650	r = sscanf(str, "%llu%c", &b, &dummy);
3651	if (r < 0)
3652		return r;
3653
3654	if (r == 1) {
3655		result->begin = to_cblock(b);
3656		result->end = to_cblock(from_cblock(result->begin) + 1u);
3657		return 0;
3658	}
3659
3660	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3661	return -EINVAL;
3662}
3663
3664static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3665{
3666	uint64_t b = from_cblock(range->begin);
3667	uint64_t e = from_cblock(range->end);
3668	uint64_t n = from_cblock(cache->cache_size);
3669
3670	if (b >= n) {
3671		DMERR("%s: begin cblock out of range: %llu >= %llu",
3672		      cache_device_name(cache), b, n);
3673		return -EINVAL;
3674	}
3675
3676	if (e > n) {
3677		DMERR("%s: end cblock out of range: %llu > %llu",
3678		      cache_device_name(cache), e, n);
3679		return -EINVAL;
3680	}
3681
3682	if (b >= e) {
3683		DMERR("%s: invalid cblock range: %llu >= %llu",
3684		      cache_device_name(cache), b, e);
3685		return -EINVAL;
3686	}
3687
3688	return 0;
3689}
3690
 
 
 
 
 
3691static int request_invalidation(struct cache *cache, struct cblock_range *range)
3692{
3693	struct invalidation_request req;
3694
3695	INIT_LIST_HEAD(&req.list);
3696	req.cblocks = range;
3697	atomic_set(&req.complete, 0);
3698	req.err = 0;
3699	init_waitqueue_head(&req.result_wait);
3700
3701	spin_lock(&cache->invalidation_lock);
3702	list_add(&req.list, &cache->invalidation_requests);
3703	spin_unlock(&cache->invalidation_lock);
3704	wake_worker(cache);
 
 
 
3705
3706	wait_event(req.result_wait, atomic_read(&req.complete));
3707	return req.err;
3708}
3709
3710static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3711					      const char **cblock_ranges)
3712{
3713	int r = 0;
3714	unsigned i;
3715	struct cblock_range range;
3716
3717	if (!passthrough_mode(&cache->features)) {
3718		DMERR("%s: cache has to be in passthrough mode for invalidation",
3719		      cache_device_name(cache));
3720		return -EPERM;
3721	}
3722
3723	for (i = 0; i < count; i++) {
3724		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3725		if (r)
3726			break;
3727
3728		r = validate_cblock_range(cache, &range);
3729		if (r)
3730			break;
3731
3732		/*
3733		 * Pass begin and end origin blocks to the worker and wake it.
3734		 */
3735		r = request_invalidation(cache, &range);
3736		if (r)
3737			break;
3738	}
3739
3740	return r;
3741}
3742
3743/*
3744 * Supports
3745 *	"<key> <value>"
3746 * and
3747 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3748 *
3749 * The key migration_threshold is supported by the cache target core.
3750 */
3751static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
 
3752{
3753	struct cache *cache = ti->private;
3754
3755	if (!argc)
3756		return -EINVAL;
3757
3758	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3759		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3760		      cache_device_name(cache));
3761		return -EOPNOTSUPP;
3762	}
3763
3764	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3765		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3766
3767	if (argc != 2)
3768		return -EINVAL;
3769
3770	return set_config_value(cache, argv[0], argv[1]);
3771}
3772
3773static int cache_iterate_devices(struct dm_target *ti,
3774				 iterate_devices_callout_fn fn, void *data)
3775{
3776	int r = 0;
3777	struct cache *cache = ti->private;
3778
3779	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3780	if (!r)
3781		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3782
3783	return r;
3784}
3785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3786static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3787{
 
 
 
 
 
 
 
 
 
 
 
3788	/*
3789	 * FIXME: these limits may be incompatible with the cache device
 
3790	 */
3791	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3792					    cache->origin_sectors);
3793	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
 
 
3794}
3795
3796static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3797{
3798	struct cache *cache = ti->private;
3799	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3800
3801	/*
3802	 * If the system-determined stacked limits are compatible with the
3803	 * cache's blocksize (io_opt is a factor) do not override them.
3804	 */
3805	if (io_opt_sectors < cache->sectors_per_block ||
3806	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3807		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3808		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3809	}
 
 
3810	set_discard_limits(cache, limits);
3811}
3812
3813/*----------------------------------------------------------------*/
3814
3815static struct target_type cache_target = {
3816	.name = "cache",
3817	.version = {1, 9, 0},
3818	.module = THIS_MODULE,
3819	.ctr = cache_ctr,
3820	.dtr = cache_dtr,
3821	.map = cache_map,
3822	.end_io = cache_end_io,
3823	.postsuspend = cache_postsuspend,
3824	.preresume = cache_preresume,
3825	.resume = cache_resume,
3826	.status = cache_status,
3827	.message = cache_message,
3828	.iterate_devices = cache_iterate_devices,
3829	.io_hints = cache_io_hints,
3830};
3831
3832static int __init dm_cache_init(void)
3833{
3834	int r;
3835
 
 
 
 
3836	r = dm_register_target(&cache_target);
3837	if (r) {
3838		DMERR("cache target registration failed: %d", r);
 
3839		return r;
3840	}
3841
3842	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3843	if (!migration_cache) {
3844		dm_unregister_target(&cache_target);
3845		return -ENOMEM;
3846	}
3847
3848	return 0;
3849}
3850
3851static void __exit dm_cache_exit(void)
3852{
3853	dm_unregister_target(&cache_target);
3854	kmem_cache_destroy(migration_cache);
3855}
3856
3857module_init(dm_cache_init);
3858module_exit(dm_cache_exit);
3859
3860MODULE_DESCRIPTION(DM_NAME " cache target");
3861MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3862MODULE_LICENSE("GPL");