Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2
   3  he.c
   4
   5  ForeRunnerHE ATM Adapter driver for ATM on Linux
   6  Copyright (C) 1999-2001  Naval Research Laboratory
   7
   8  This library is free software; you can redistribute it and/or
   9  modify it under the terms of the GNU Lesser General Public
  10  License as published by the Free Software Foundation; either
  11  version 2.1 of the License, or (at your option) any later version.
  12
  13  This library is distributed in the hope that it will be useful,
  14  but WITHOUT ANY WARRANTY; without even the implied warranty of
  15  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16  Lesser General Public License for more details.
  17
  18  You should have received a copy of the GNU Lesser General Public
  19  License along with this library; if not, write to the Free Software
  20  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21
  22*/
  23
  24/*
  25
  26  he.c
  27
  28  ForeRunnerHE ATM Adapter driver for ATM on Linux
  29  Copyright (C) 1999-2001  Naval Research Laboratory
  30
  31  Permission to use, copy, modify and distribute this software and its
  32  documentation is hereby granted, provided that both the copyright
  33  notice and this permission notice appear in all copies of the software,
  34  derivative works or modified versions, and any portions thereof, and
  35  that both notices appear in supporting documentation.
  36
  37  NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
  38  DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
  39  RESULTING FROM THE USE OF THIS SOFTWARE.
  40
  41  This driver was written using the "Programmer's Reference Manual for
  42  ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98.
  43
  44  AUTHORS:
  45	chas williams <chas@cmf.nrl.navy.mil>
  46	eric kinzie <ekinzie@cmf.nrl.navy.mil>
  47
  48  NOTES:
  49	4096 supported 'connections'
  50	group 0 is used for all traffic
  51	interrupt queue 0 is used for all interrupts
  52	aal0 support (based on work from ulrich.u.muller@nokia.com)
  53
  54 */
  55
  56#include <linux/module.h>
  57#include <linux/kernel.h>
  58#include <linux/skbuff.h>
  59#include <linux/pci.h>
  60#include <linux/errno.h>
  61#include <linux/types.h>
  62#include <linux/string.h>
  63#include <linux/delay.h>
  64#include <linux/init.h>
  65#include <linux/mm.h>
  66#include <linux/sched.h>
  67#include <linux/timer.h>
  68#include <linux/interrupt.h>
  69#include <linux/dma-mapping.h>
  70#include <linux/bitmap.h>
  71#include <linux/slab.h>
  72#include <asm/io.h>
  73#include <asm/byteorder.h>
  74#include <linux/uaccess.h>
  75
  76#include <linux/atmdev.h>
  77#include <linux/atm.h>
  78#include <linux/sonet.h>
  79
  80#undef USE_SCATTERGATHER
  81#undef USE_CHECKSUM_HW			/* still confused about this */
  82/* #undef HE_DEBUG */
  83
  84#include "he.h"
  85#include "suni.h"
  86#include <linux/atm_he.h>
  87
  88#define hprintk(fmt,args...)	printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
  89
  90#ifdef HE_DEBUG
  91#define HPRINTK(fmt,args...)	printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
  92#else /* !HE_DEBUG */
  93#define HPRINTK(fmt,args...)	do { } while (0)
  94#endif /* HE_DEBUG */
  95
  96/* declarations */
  97
  98static int he_open(struct atm_vcc *vcc);
  99static void he_close(struct atm_vcc *vcc);
 100static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
 101static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
 102static irqreturn_t he_irq_handler(int irq, void *dev_id);
 103static void he_tasklet(unsigned long data);
 104static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
 105static int he_start(struct atm_dev *dev);
 106static void he_stop(struct he_dev *dev);
 107static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
 108static unsigned char he_phy_get(struct atm_dev *, unsigned long);
 109
 110static u8 read_prom_byte(struct he_dev *he_dev, int addr);
 111
 112/* globals */
 113
 114static struct he_dev *he_devs;
 115static bool disable64;
 116static short nvpibits = -1;
 117static short nvcibits = -1;
 118static short rx_skb_reserve = 16;
 119static bool irq_coalesce = true;
 120static bool sdh;
 121
 122/* Read from EEPROM = 0000 0011b */
 123static unsigned int readtab[] = {
 124	CS_HIGH | CLK_HIGH,
 125	CS_LOW | CLK_LOW,
 126	CLK_HIGH,               /* 0 */
 127	CLK_LOW,
 128	CLK_HIGH,               /* 0 */
 129	CLK_LOW,
 130	CLK_HIGH,               /* 0 */
 131	CLK_LOW,
 132	CLK_HIGH,               /* 0 */
 133	CLK_LOW,
 134	CLK_HIGH,               /* 0 */
 135	CLK_LOW,
 136	CLK_HIGH,               /* 0 */
 137	CLK_LOW | SI_HIGH,
 138	CLK_HIGH | SI_HIGH,     /* 1 */
 139	CLK_LOW | SI_HIGH,
 140	CLK_HIGH | SI_HIGH      /* 1 */
 141};     
 142 
 143/* Clock to read from/write to the EEPROM */
 144static unsigned int clocktab[] = {
 145	CLK_LOW,
 146	CLK_HIGH,
 147	CLK_LOW,
 148	CLK_HIGH,
 149	CLK_LOW,
 150	CLK_HIGH,
 151	CLK_LOW,
 152	CLK_HIGH,
 153	CLK_LOW,
 154	CLK_HIGH,
 155	CLK_LOW,
 156	CLK_HIGH,
 157	CLK_LOW,
 158	CLK_HIGH,
 159	CLK_LOW,
 160	CLK_HIGH,
 161	CLK_LOW
 162};     
 163
 164static const struct atmdev_ops he_ops =
 165{
 166	.open =		he_open,
 167	.close =	he_close,	
 168	.ioctl =	he_ioctl,	
 169	.send =		he_send,
 170	.phy_put =	he_phy_put,
 171	.phy_get =	he_phy_get,
 172	.proc_read =	he_proc_read,
 173	.owner =	THIS_MODULE
 174};
 175
 176#define he_writel(dev, val, reg)	do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
 177#define he_readl(dev, reg)		readl((dev)->membase + (reg))
 178
 179/* section 2.12 connection memory access */
 180
 181static __inline__ void
 182he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
 183								unsigned flags)
 184{
 185	he_writel(he_dev, val, CON_DAT);
 186	(void) he_readl(he_dev, CON_DAT);		/* flush posted writes */
 187	he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
 188	while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
 189}
 190
 191#define he_writel_rcm(dev, val, reg) 				\
 192			he_writel_internal(dev, val, reg, CON_CTL_RCM)
 193
 194#define he_writel_tcm(dev, val, reg) 				\
 195			he_writel_internal(dev, val, reg, CON_CTL_TCM)
 196
 197#define he_writel_mbox(dev, val, reg) 				\
 198			he_writel_internal(dev, val, reg, CON_CTL_MBOX)
 199
 200static unsigned
 201he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
 202{
 203	he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
 204	while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
 205	return he_readl(he_dev, CON_DAT);
 206}
 207
 208#define he_readl_rcm(dev, reg) \
 209			he_readl_internal(dev, reg, CON_CTL_RCM)
 210
 211#define he_readl_tcm(dev, reg) \
 212			he_readl_internal(dev, reg, CON_CTL_TCM)
 213
 214#define he_readl_mbox(dev, reg) \
 215			he_readl_internal(dev, reg, CON_CTL_MBOX)
 216
 217
 218/* figure 2.2 connection id */
 219
 220#define he_mkcid(dev, vpi, vci)		(((vpi << (dev)->vcibits) | vci) & 0x1fff)
 221
 222/* 2.5.1 per connection transmit state registers */
 223
 224#define he_writel_tsr0(dev, val, cid) \
 225		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
 226#define he_readl_tsr0(dev, cid) \
 227		he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
 228
 229#define he_writel_tsr1(dev, val, cid) \
 230		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
 231
 232#define he_writel_tsr2(dev, val, cid) \
 233		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
 234
 235#define he_writel_tsr3(dev, val, cid) \
 236		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
 237
 238#define he_writel_tsr4(dev, val, cid) \
 239		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
 240
 241	/* from page 2-20
 242	 *
 243	 * NOTE While the transmit connection is active, bits 23 through 0
 244	 *      of this register must not be written by the host.  Byte
 245	 *      enables should be used during normal operation when writing
 246	 *      the most significant byte.
 247	 */
 248
 249#define he_writel_tsr4_upper(dev, val, cid) \
 250		he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
 251							CON_CTL_TCM \
 252							| CON_BYTE_DISABLE_2 \
 253							| CON_BYTE_DISABLE_1 \
 254							| CON_BYTE_DISABLE_0)
 255
 256#define he_readl_tsr4(dev, cid) \
 257		he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
 258
 259#define he_writel_tsr5(dev, val, cid) \
 260		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
 261
 262#define he_writel_tsr6(dev, val, cid) \
 263		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
 264
 265#define he_writel_tsr7(dev, val, cid) \
 266		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
 267
 268
 269#define he_writel_tsr8(dev, val, cid) \
 270		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
 271
 272#define he_writel_tsr9(dev, val, cid) \
 273		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
 274
 275#define he_writel_tsr10(dev, val, cid) \
 276		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
 277
 278#define he_writel_tsr11(dev, val, cid) \
 279		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
 280
 281
 282#define he_writel_tsr12(dev, val, cid) \
 283		he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
 284
 285#define he_writel_tsr13(dev, val, cid) \
 286		he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
 287
 288
 289#define he_writel_tsr14(dev, val, cid) \
 290		he_writel_tcm(dev, val, CONFIG_TSRD | cid)
 291
 292#define he_writel_tsr14_upper(dev, val, cid) \
 293		he_writel_internal(dev, val, CONFIG_TSRD | cid, \
 294							CON_CTL_TCM \
 295							| CON_BYTE_DISABLE_2 \
 296							| CON_BYTE_DISABLE_1 \
 297							| CON_BYTE_DISABLE_0)
 298
 299/* 2.7.1 per connection receive state registers */
 300
 301#define he_writel_rsr0(dev, val, cid) \
 302		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
 303#define he_readl_rsr0(dev, cid) \
 304		he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
 305
 306#define he_writel_rsr1(dev, val, cid) \
 307		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
 308
 309#define he_writel_rsr2(dev, val, cid) \
 310		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
 311
 312#define he_writel_rsr3(dev, val, cid) \
 313		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
 314
 315#define he_writel_rsr4(dev, val, cid) \
 316		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
 317
 318#define he_writel_rsr5(dev, val, cid) \
 319		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
 320
 321#define he_writel_rsr6(dev, val, cid) \
 322		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
 323
 324#define he_writel_rsr7(dev, val, cid) \
 325		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
 326
 327static __inline__ struct atm_vcc*
 328__find_vcc(struct he_dev *he_dev, unsigned cid)
 329{
 330	struct hlist_head *head;
 331	struct atm_vcc *vcc;
 332	struct sock *s;
 333	short vpi;
 334	int vci;
 335
 336	vpi = cid >> he_dev->vcibits;
 337	vci = cid & ((1 << he_dev->vcibits) - 1);
 338	head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
 339
 340	sk_for_each(s, head) {
 341		vcc = atm_sk(s);
 342		if (vcc->dev == he_dev->atm_dev &&
 343		    vcc->vci == vci && vcc->vpi == vpi &&
 344		    vcc->qos.rxtp.traffic_class != ATM_NONE) {
 345				return vcc;
 346		}
 347	}
 348	return NULL;
 349}
 350
 351static int he_init_one(struct pci_dev *pci_dev,
 352		       const struct pci_device_id *pci_ent)
 353{
 354	struct atm_dev *atm_dev = NULL;
 355	struct he_dev *he_dev = NULL;
 356	int err = 0;
 357
 358	printk(KERN_INFO "ATM he driver\n");
 359
 360	if (pci_enable_device(pci_dev))
 361		return -EIO;
 362	if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) {
 363		printk(KERN_WARNING "he: no suitable dma available\n");
 364		err = -EIO;
 365		goto init_one_failure;
 366	}
 367
 368	atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
 369	if (!atm_dev) {
 370		err = -ENODEV;
 371		goto init_one_failure;
 372	}
 373	pci_set_drvdata(pci_dev, atm_dev);
 374
 375	he_dev = kzalloc(sizeof(struct he_dev),
 376							GFP_KERNEL);
 377	if (!he_dev) {
 378		err = -ENOMEM;
 379		goto init_one_failure;
 380	}
 381	he_dev->pci_dev = pci_dev;
 382	he_dev->atm_dev = atm_dev;
 383	he_dev->atm_dev->dev_data = he_dev;
 384	atm_dev->dev_data = he_dev;
 385	he_dev->number = atm_dev->number;
 386	tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
 387	spin_lock_init(&he_dev->global_lock);
 388
 389	if (he_start(atm_dev)) {
 390		he_stop(he_dev);
 391		err = -ENODEV;
 392		goto init_one_failure;
 393	}
 394	he_dev->next = NULL;
 395	if (he_devs)
 396		he_dev->next = he_devs;
 397	he_devs = he_dev;
 398	return 0;
 399
 400init_one_failure:
 401	if (atm_dev)
 402		atm_dev_deregister(atm_dev);
 403	kfree(he_dev);
 404	pci_disable_device(pci_dev);
 405	return err;
 406}
 407
 408static void he_remove_one(struct pci_dev *pci_dev)
 409{
 410	struct atm_dev *atm_dev;
 411	struct he_dev *he_dev;
 412
 413	atm_dev = pci_get_drvdata(pci_dev);
 414	he_dev = HE_DEV(atm_dev);
 415
 416	/* need to remove from he_devs */
 417
 418	he_stop(he_dev);
 419	atm_dev_deregister(atm_dev);
 420	kfree(he_dev);
 421
 422	pci_disable_device(pci_dev);
 423}
 424
 425
 426static unsigned
 427rate_to_atmf(unsigned rate)		/* cps to atm forum format */
 428{
 429#define NONZERO (1 << 14)
 430
 431	unsigned exp = 0;
 432
 433	if (rate == 0)
 434		return 0;
 435
 436	rate <<= 9;
 437	while (rate > 0x3ff) {
 438		++exp;
 439		rate >>= 1;
 440	}
 441
 442	return (NONZERO | (exp << 9) | (rate & 0x1ff));
 443}
 444
 445static void he_init_rx_lbfp0(struct he_dev *he_dev)
 446{
 447	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 448	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 449	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 450	unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
 451	
 452	lbufd_index = 0;
 453	lbm_offset = he_readl(he_dev, RCMLBM_BA);
 454
 455	he_writel(he_dev, lbufd_index, RLBF0_H);
 456
 457	for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
 458		lbufd_index += 2;
 459		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 460
 461		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 462		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 463
 464		if (++lbuf_count == lbufs_per_row) {
 465			lbuf_count = 0;
 466			row_offset += he_dev->bytes_per_row;
 467		}
 468		lbm_offset += 4;
 469	}
 470		
 471	he_writel(he_dev, lbufd_index - 2, RLBF0_T);
 472	he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
 473}
 474
 475static void he_init_rx_lbfp1(struct he_dev *he_dev)
 476{
 477	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 478	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 479	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 480	unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
 481	
 482	lbufd_index = 1;
 483	lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
 484
 485	he_writel(he_dev, lbufd_index, RLBF1_H);
 486
 487	for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
 488		lbufd_index += 2;
 489		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 490
 491		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 492		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 493
 494		if (++lbuf_count == lbufs_per_row) {
 495			lbuf_count = 0;
 496			row_offset += he_dev->bytes_per_row;
 497		}
 498		lbm_offset += 4;
 499	}
 500		
 501	he_writel(he_dev, lbufd_index - 2, RLBF1_T);
 502	he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
 503}
 504
 505static void he_init_tx_lbfp(struct he_dev *he_dev)
 506{
 507	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 508	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 509	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 510	unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
 511	
 512	lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
 513	lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
 514
 515	he_writel(he_dev, lbufd_index, TLBF_H);
 516
 517	for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
 518		lbufd_index += 1;
 519		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 520
 521		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 522		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 523
 524		if (++lbuf_count == lbufs_per_row) {
 525			lbuf_count = 0;
 526			row_offset += he_dev->bytes_per_row;
 527		}
 528		lbm_offset += 2;
 529	}
 530		
 531	he_writel(he_dev, lbufd_index - 1, TLBF_T);
 532}
 533
 534static int he_init_tpdrq(struct he_dev *he_dev)
 535{
 536	he_dev->tpdrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
 537						CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq),
 538						&he_dev->tpdrq_phys,
 539						GFP_KERNEL);
 540	if (he_dev->tpdrq_base == NULL) {
 541		hprintk("failed to alloc tpdrq\n");
 542		return -ENOMEM;
 543	}
 544
 545	he_dev->tpdrq_tail = he_dev->tpdrq_base;
 546	he_dev->tpdrq_head = he_dev->tpdrq_base;
 547
 548	he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
 549	he_writel(he_dev, 0, TPDRQ_T);	
 550	he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
 551
 552	return 0;
 553}
 554
 555static void he_init_cs_block(struct he_dev *he_dev)
 556{
 557	unsigned clock, rate, delta;
 558	int reg;
 559
 560	/* 5.1.7 cs block initialization */
 561
 562	for (reg = 0; reg < 0x20; ++reg)
 563		he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
 564
 565	/* rate grid timer reload values */
 566
 567	clock = he_is622(he_dev) ? 66667000 : 50000000;
 568	rate = he_dev->atm_dev->link_rate;
 569	delta = rate / 16 / 2;
 570
 571	for (reg = 0; reg < 0x10; ++reg) {
 572		/* 2.4 internal transmit function
 573		 *
 574	 	 * we initialize the first row in the rate grid.
 575		 * values are period (in clock cycles) of timer
 576		 */
 577		unsigned period = clock / rate;
 578
 579		he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
 580		rate -= delta;
 581	}
 582
 583	if (he_is622(he_dev)) {
 584		/* table 5.2 (4 cells per lbuf) */
 585		he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
 586		he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
 587		he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
 588		he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
 589		he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
 590
 591		/* table 5.3, 5.4, 5.5, 5.6, 5.7 */
 592		he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
 593		he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
 594		he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
 595		he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
 596		he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
 597		he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
 598
 599		he_writel_mbox(he_dev, 0x4680, CS_RTATR);
 600
 601		/* table 5.8 */
 602		he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
 603		he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
 604		he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
 605		he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
 606		he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
 607		he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
 608
 609		/* table 5.9 */
 610		he_writel_mbox(he_dev, 0x5, CS_OTPPER);
 611		he_writel_mbox(he_dev, 0x14, CS_OTWPER);
 612	} else {
 613		/* table 5.1 (4 cells per lbuf) */
 614		he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
 615		he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
 616		he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
 617		he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
 618		he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
 619
 620		/* table 5.3, 5.4, 5.5, 5.6, 5.7 */
 621		he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
 622		he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
 623		he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
 624		he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
 625		he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
 626		he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
 627
 628		he_writel_mbox(he_dev, 0x4680, CS_RTATR);
 629
 630		/* table 5.8 */
 631		he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
 632		he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
 633		he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
 634		he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
 635		he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
 636		he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
 637
 638		/* table 5.9 */
 639		he_writel_mbox(he_dev, 0x6, CS_OTPPER);
 640		he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
 641	}
 642
 643	he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
 644
 645	for (reg = 0; reg < 0x8; ++reg)
 646		he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
 647
 648}
 649
 650static int he_init_cs_block_rcm(struct he_dev *he_dev)
 651{
 652	unsigned (*rategrid)[16][16];
 653	unsigned rate, delta;
 654	int i, j, reg;
 655
 656	unsigned rate_atmf, exp, man;
 657	unsigned long long rate_cps;
 658	int mult, buf, buf_limit = 4;
 659
 660	rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
 661	if (!rategrid)
 662		return -ENOMEM;
 663
 664	/* initialize rate grid group table */
 665
 666	for (reg = 0x0; reg < 0xff; ++reg)
 667		he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
 668
 669	/* initialize rate controller groups */
 670
 671	for (reg = 0x100; reg < 0x1ff; ++reg)
 672		he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
 673	
 674	/* initialize tNrm lookup table */
 675
 676	/* the manual makes reference to a routine in a sample driver
 677	   for proper configuration; fortunately, we only need this
 678	   in order to support abr connection */
 679	
 680	/* initialize rate to group table */
 681
 682	rate = he_dev->atm_dev->link_rate;
 683	delta = rate / 32;
 684
 685	/*
 686	 * 2.4 transmit internal functions
 687	 * 
 688	 * we construct a copy of the rate grid used by the scheduler
 689	 * in order to construct the rate to group table below
 690	 */
 691
 692	for (j = 0; j < 16; j++) {
 693		(*rategrid)[0][j] = rate;
 694		rate -= delta;
 695	}
 696
 697	for (i = 1; i < 16; i++)
 698		for (j = 0; j < 16; j++)
 699			if (i > 14)
 700				(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
 701			else
 702				(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
 703
 704	/*
 705	 * 2.4 transmit internal function
 706	 *
 707	 * this table maps the upper 5 bits of exponent and mantissa
 708	 * of the atm forum representation of the rate into an index
 709	 * on rate grid  
 710	 */
 711
 712	rate_atmf = 0;
 713	while (rate_atmf < 0x400) {
 714		man = (rate_atmf & 0x1f) << 4;
 715		exp = rate_atmf >> 5;
 716
 717		/* 
 718			instead of '/ 512', use '>> 9' to prevent a call
 719			to divdu3 on x86 platforms
 720		*/
 721		rate_cps = (unsigned long long) (1UL << exp) * (man + 512) >> 9;
 722
 723		if (rate_cps < 10)
 724			rate_cps = 10;	/* 2.2.1 minimum payload rate is 10 cps */
 725
 726		for (i = 255; i > 0; i--)
 727			if ((*rategrid)[i/16][i%16] >= rate_cps)
 728				break;	 /* pick nearest rate instead? */
 729
 730		/*
 731		 * each table entry is 16 bits: (rate grid index (8 bits)
 732		 * and a buffer limit (8 bits)
 733		 * there are two table entries in each 32-bit register
 734		 */
 735
 736#ifdef notdef
 737		buf = rate_cps * he_dev->tx_numbuffs /
 738				(he_dev->atm_dev->link_rate * 2);
 739#else
 740		/* this is pretty, but avoids _divdu3 and is mostly correct */
 741		mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
 742		if (rate_cps > (272ULL * mult))
 743			buf = 4;
 744		else if (rate_cps > (204ULL * mult))
 745			buf = 3;
 746		else if (rate_cps > (136ULL * mult))
 747			buf = 2;
 748		else if (rate_cps > (68ULL * mult))
 749			buf = 1;
 750		else
 751			buf = 0;
 752#endif
 753		if (buf > buf_limit)
 754			buf = buf_limit;
 755		reg = (reg << 16) | ((i << 8) | buf);
 756
 757#define RTGTBL_OFFSET 0x400
 758	  
 759		if (rate_atmf & 0x1)
 760			he_writel_rcm(he_dev, reg,
 761				CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
 762
 763		++rate_atmf;
 764	}
 765
 766	kfree(rategrid);
 767	return 0;
 768}
 769
 770static int he_init_group(struct he_dev *he_dev, int group)
 771{
 772	struct he_buff *heb, *next;
 773	dma_addr_t mapping;
 774	int i;
 775
 776	he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
 777	he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
 778	he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
 779	he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
 780		  G0_RBPS_BS + (group * 32));
 781
 782	/* bitmap table */
 783	he_dev->rbpl_table = kmalloc_array(BITS_TO_LONGS(RBPL_TABLE_SIZE),
 784					   sizeof(*he_dev->rbpl_table),
 785					   GFP_KERNEL);
 786	if (!he_dev->rbpl_table) {
 787		hprintk("unable to allocate rbpl bitmap table\n");
 788		return -ENOMEM;
 789	}
 790	bitmap_zero(he_dev->rbpl_table, RBPL_TABLE_SIZE);
 791
 792	/* rbpl_virt 64-bit pointers */
 793	he_dev->rbpl_virt = kmalloc_array(RBPL_TABLE_SIZE,
 794					  sizeof(*he_dev->rbpl_virt),
 795					  GFP_KERNEL);
 796	if (!he_dev->rbpl_virt) {
 797		hprintk("unable to allocate rbpl virt table\n");
 798		goto out_free_rbpl_table;
 799	}
 800
 801	/* large buffer pool */
 802	he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev,
 803					    CONFIG_RBPL_BUFSIZE, 64, 0);
 804	if (he_dev->rbpl_pool == NULL) {
 805		hprintk("unable to create rbpl pool\n");
 806		goto out_free_rbpl_virt;
 807	}
 808
 809	he_dev->rbpl_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
 810					       CONFIG_RBPL_SIZE * sizeof(struct he_rbp),
 811					       &he_dev->rbpl_phys, GFP_KERNEL);
 812	if (he_dev->rbpl_base == NULL) {
 813		hprintk("failed to alloc rbpl_base\n");
 814		goto out_destroy_rbpl_pool;
 815	}
 816
 817	INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
 818
 819	for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
 820
 821		heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping);
 822		if (!heb)
 823			goto out_free_rbpl;
 824		heb->mapping = mapping;
 825		list_add(&heb->entry, &he_dev->rbpl_outstanding);
 826
 827		set_bit(i, he_dev->rbpl_table);
 828		he_dev->rbpl_virt[i] = heb;
 829		he_dev->rbpl_hint = i + 1;
 830		he_dev->rbpl_base[i].idx =  i << RBP_IDX_OFFSET;
 831		he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
 832	}
 833	he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
 834
 835	he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
 836	he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
 837						G0_RBPL_T + (group * 32));
 838	he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
 839						G0_RBPL_BS + (group * 32));
 840	he_writel(he_dev,
 841			RBP_THRESH(CONFIG_RBPL_THRESH) |
 842			RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
 843			RBP_INT_ENB,
 844						G0_RBPL_QI + (group * 32));
 845
 846	/* rx buffer ready queue */
 847
 848	he_dev->rbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
 849					       CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
 850					       &he_dev->rbrq_phys, GFP_KERNEL);
 851	if (he_dev->rbrq_base == NULL) {
 852		hprintk("failed to allocate rbrq\n");
 853		goto out_free_rbpl;
 854	}
 855
 856	he_dev->rbrq_head = he_dev->rbrq_base;
 857	he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
 858	he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
 859	he_writel(he_dev,
 860		RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
 861						G0_RBRQ_Q + (group * 16));
 862	if (irq_coalesce) {
 863		hprintk("coalescing interrupts\n");
 864		he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
 865						G0_RBRQ_I + (group * 16));
 866	} else
 867		he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
 868						G0_RBRQ_I + (group * 16));
 869
 870	/* tx buffer ready queue */
 871
 872	he_dev->tbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
 873					       CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
 874					       &he_dev->tbrq_phys, GFP_KERNEL);
 875	if (he_dev->tbrq_base == NULL) {
 876		hprintk("failed to allocate tbrq\n");
 877		goto out_free_rbpq_base;
 878	}
 879
 880	he_dev->tbrq_head = he_dev->tbrq_base;
 881
 882	he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
 883	he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
 884	he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
 885	he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
 886
 887	return 0;
 888
 889out_free_rbpq_base:
 890	dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE *
 891			  sizeof(struct he_rbrq), he_dev->rbrq_base,
 892			  he_dev->rbrq_phys);
 893out_free_rbpl:
 894	list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
 895		dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
 896
 897	dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE *
 898			  sizeof(struct he_rbp), he_dev->rbpl_base,
 899			  he_dev->rbpl_phys);
 900out_destroy_rbpl_pool:
 901	dma_pool_destroy(he_dev->rbpl_pool);
 902out_free_rbpl_virt:
 903	kfree(he_dev->rbpl_virt);
 904out_free_rbpl_table:
 905	kfree(he_dev->rbpl_table);
 906
 907	return -ENOMEM;
 908}
 909
 910static int he_init_irq(struct he_dev *he_dev)
 911{
 912	int i;
 913
 914	/* 2.9.3.5  tail offset for each interrupt queue is located after the
 915		    end of the interrupt queue */
 916
 917	he_dev->irq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
 918					      (CONFIG_IRQ_SIZE + 1) * sizeof(struct he_irq),
 919					      &he_dev->irq_phys, GFP_KERNEL);
 
 
 920	if (he_dev->irq_base == NULL) {
 921		hprintk("failed to allocate irq\n");
 922		return -ENOMEM;
 923	}
 924	he_dev->irq_tailoffset = (unsigned *)
 925					&he_dev->irq_base[CONFIG_IRQ_SIZE];
 926	*he_dev->irq_tailoffset = 0;
 927	he_dev->irq_head = he_dev->irq_base;
 928	he_dev->irq_tail = he_dev->irq_base;
 929
 930	for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
 931		he_dev->irq_base[i].isw = ITYPE_INVALID;
 932
 933	he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
 934	he_writel(he_dev,
 935		IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
 936								IRQ0_HEAD);
 937	he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
 938	he_writel(he_dev, 0x0, IRQ0_DATA);
 939
 940	he_writel(he_dev, 0x0, IRQ1_BASE);
 941	he_writel(he_dev, 0x0, IRQ1_HEAD);
 942	he_writel(he_dev, 0x0, IRQ1_CNTL);
 943	he_writel(he_dev, 0x0, IRQ1_DATA);
 944
 945	he_writel(he_dev, 0x0, IRQ2_BASE);
 946	he_writel(he_dev, 0x0, IRQ2_HEAD);
 947	he_writel(he_dev, 0x0, IRQ2_CNTL);
 948	he_writel(he_dev, 0x0, IRQ2_DATA);
 949
 950	he_writel(he_dev, 0x0, IRQ3_BASE);
 951	he_writel(he_dev, 0x0, IRQ3_HEAD);
 952	he_writel(he_dev, 0x0, IRQ3_CNTL);
 953	he_writel(he_dev, 0x0, IRQ3_DATA);
 954
 955	/* 2.9.3.2 interrupt queue mapping registers */
 956
 957	he_writel(he_dev, 0x0, GRP_10_MAP);
 958	he_writel(he_dev, 0x0, GRP_32_MAP);
 959	he_writel(he_dev, 0x0, GRP_54_MAP);
 960	he_writel(he_dev, 0x0, GRP_76_MAP);
 961
 962	if (request_irq(he_dev->pci_dev->irq,
 963			he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
 964		hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
 965		return -EINVAL;
 966	}   
 967
 968	he_dev->irq = he_dev->pci_dev->irq;
 969
 970	return 0;
 971}
 972
 973static int he_start(struct atm_dev *dev)
 974{
 975	struct he_dev *he_dev;
 976	struct pci_dev *pci_dev;
 977	unsigned long membase;
 978
 979	u16 command;
 980	u32 gen_cntl_0, host_cntl, lb_swap;
 981	u8 cache_size, timer;
 982	
 983	unsigned err;
 984	unsigned int status, reg;
 985	int i, group;
 986
 987	he_dev = HE_DEV(dev);
 988	pci_dev = he_dev->pci_dev;
 989
 990	membase = pci_resource_start(pci_dev, 0);
 991	HPRINTK("membase = 0x%lx  irq = %d.\n", membase, pci_dev->irq);
 992
 993	/*
 994	 * pci bus controller initialization 
 995	 */
 996
 997	/* 4.3 pci bus controller-specific initialization */
 998	if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
 999		hprintk("can't read GEN_CNTL_0\n");
1000		return -EINVAL;
1001	}
1002	gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
1003	if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
1004		hprintk("can't write GEN_CNTL_0.\n");
1005		return -EINVAL;
1006	}
1007
1008	if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
1009		hprintk("can't read PCI_COMMAND.\n");
1010		return -EINVAL;
1011	}
1012
1013	command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
1014	if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
1015		hprintk("can't enable memory.\n");
1016		return -EINVAL;
1017	}
1018
1019	if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
1020		hprintk("can't read cache line size?\n");
1021		return -EINVAL;
1022	}
1023
1024	if (cache_size < 16) {
1025		cache_size = 16;
1026		if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
1027			hprintk("can't set cache line size to %d\n", cache_size);
1028	}
1029
1030	if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
1031		hprintk("can't read latency timer?\n");
1032		return -EINVAL;
1033	}
1034
1035	/* from table 3.9
1036	 *
1037	 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE
1038	 * 
1039	 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles]
1040	 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles]
1041	 *
1042	 */ 
1043#define LAT_TIMER 209
1044	if (timer < LAT_TIMER) {
1045		HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
1046		timer = LAT_TIMER;
1047		if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
1048			hprintk("can't set latency timer to %d\n", timer);
1049	}
1050
1051	if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
1052		hprintk("can't set up page mapping\n");
1053		return -EINVAL;
1054	}
1055
1056	/* 4.4 card reset */
1057	he_writel(he_dev, 0x0, RESET_CNTL);
1058	he_writel(he_dev, 0xff, RESET_CNTL);
1059
1060	msleep(16);	/* 16 ms */
1061	status = he_readl(he_dev, RESET_CNTL);
1062	if ((status & BOARD_RST_STATUS) == 0) {
1063		hprintk("reset failed\n");
1064		return -EINVAL;
1065	}
1066
1067	/* 4.5 set bus width */
1068	host_cntl = he_readl(he_dev, HOST_CNTL);
1069	if (host_cntl & PCI_BUS_SIZE64)
1070		gen_cntl_0 |= ENBL_64;
1071	else
1072		gen_cntl_0 &= ~ENBL_64;
1073
1074	if (disable64 == 1) {
1075		hprintk("disabling 64-bit pci bus transfers\n");
1076		gen_cntl_0 &= ~ENBL_64;
1077	}
1078
1079	if (gen_cntl_0 & ENBL_64)
1080		hprintk("64-bit transfers enabled\n");
1081
1082	pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1083
1084	/* 4.7 read prom contents */
1085	for (i = 0; i < PROD_ID_LEN; ++i)
1086		he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
1087
1088	he_dev->media = read_prom_byte(he_dev, MEDIA);
1089
1090	for (i = 0; i < 6; ++i)
1091		dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
1092
1093	hprintk("%s%s, %pM\n", he_dev->prod_id,
1094		he_dev->media & 0x40 ? "SM" : "MM", dev->esi);
1095	he_dev->atm_dev->link_rate = he_is622(he_dev) ?
1096						ATM_OC12_PCR : ATM_OC3_PCR;
1097
1098	/* 4.6 set host endianess */
1099	lb_swap = he_readl(he_dev, LB_SWAP);
1100	if (he_is622(he_dev))
1101		lb_swap &= ~XFER_SIZE;		/* 4 cells */
1102	else
1103		lb_swap |= XFER_SIZE;		/* 8 cells */
1104#ifdef __BIG_ENDIAN
1105	lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
1106#else
1107	lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
1108			DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
1109#endif /* __BIG_ENDIAN */
1110	he_writel(he_dev, lb_swap, LB_SWAP);
1111
1112	/* 4.8 sdram controller initialization */
1113	he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
1114
1115	/* 4.9 initialize rnum value */
1116	lb_swap |= SWAP_RNUM_MAX(0xf);
1117	he_writel(he_dev, lb_swap, LB_SWAP);
1118
1119	/* 4.10 initialize the interrupt queues */
1120	if ((err = he_init_irq(he_dev)) != 0)
1121		return err;
1122
1123	/* 4.11 enable pci bus controller state machines */
1124	host_cntl |= (OUTFF_ENB | CMDFF_ENB |
1125				QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
1126	he_writel(he_dev, host_cntl, HOST_CNTL);
1127
1128	gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
1129	pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1130
1131	/*
1132	 * atm network controller initialization
1133	 */
1134
1135	/* 5.1.1 generic configuration state */
1136
1137	/*
1138	 *		local (cell) buffer memory map
1139	 *                    
1140	 *             HE155                          HE622
1141	 *                                                      
1142	 *        0 ____________1023 bytes  0 _______________________2047 bytes
1143	 *         |            |            |                   |   |
1144	 *         |  utility   |            |        rx0        |   |
1145	 *        5|____________|         255|___________________| u |
1146	 *        6|            |         256|                   | t |
1147	 *         |            |            |                   | i |
1148	 *         |    rx0     |     row    |        tx         | l |
1149	 *         |            |            |                   | i |
1150	 *         |            |         767|___________________| t |
1151	 *      517|____________|         768|                   | y |
1152	 * row  518|            |            |        rx1        |   |
1153	 *         |            |        1023|___________________|___|
1154	 *         |            |
1155	 *         |    tx      |
1156	 *         |            |
1157	 *         |            |
1158	 *     1535|____________|
1159	 *     1536|            |
1160	 *         |    rx1     |
1161	 *     2047|____________|
1162	 *
1163	 */
1164
1165	/* total 4096 connections */
1166	he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
1167	he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
1168
1169	if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
1170		hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
1171		return -ENODEV;
1172	}
1173
1174	if (nvpibits != -1) {
1175		he_dev->vpibits = nvpibits;
1176		he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
1177	}
1178
1179	if (nvcibits != -1) {
1180		he_dev->vcibits = nvcibits;
1181		he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
1182	}
1183
1184
1185	if (he_is622(he_dev)) {
1186		he_dev->cells_per_row = 40;
1187		he_dev->bytes_per_row = 2048;
1188		he_dev->r0_numrows = 256;
1189		he_dev->tx_numrows = 512;
1190		he_dev->r1_numrows = 256;
1191		he_dev->r0_startrow = 0;
1192		he_dev->tx_startrow = 256;
1193		he_dev->r1_startrow = 768;
1194	} else {
1195		he_dev->cells_per_row = 20;
1196		he_dev->bytes_per_row = 1024;
1197		he_dev->r0_numrows = 512;
1198		he_dev->tx_numrows = 1018;
1199		he_dev->r1_numrows = 512;
1200		he_dev->r0_startrow = 6;
1201		he_dev->tx_startrow = 518;
1202		he_dev->r1_startrow = 1536;
1203	}
1204
1205	he_dev->cells_per_lbuf = 4;
1206	he_dev->buffer_limit = 4;
1207	he_dev->r0_numbuffs = he_dev->r0_numrows *
1208				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1209	if (he_dev->r0_numbuffs > 2560)
1210		he_dev->r0_numbuffs = 2560;
1211
1212	he_dev->r1_numbuffs = he_dev->r1_numrows *
1213				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1214	if (he_dev->r1_numbuffs > 2560)
1215		he_dev->r1_numbuffs = 2560;
1216
1217	he_dev->tx_numbuffs = he_dev->tx_numrows *
1218				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1219	if (he_dev->tx_numbuffs > 5120)
1220		he_dev->tx_numbuffs = 5120;
1221
1222	/* 5.1.2 configure hardware dependent registers */
1223
1224	he_writel(he_dev, 
1225		SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
1226		RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
1227		(he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
1228		(he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
1229								LBARB);
1230
1231	he_writel(he_dev, BANK_ON |
1232		(he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
1233								SDRAMCON);
1234
1235	he_writel(he_dev,
1236		(he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
1237						RM_RW_WAIT(1), RCMCONFIG);
1238	he_writel(he_dev,
1239		(he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
1240						TM_RW_WAIT(1), TCMCONFIG);
1241
1242	he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
1243
1244	he_writel(he_dev, 
1245		(he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
1246		(he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
1247		RX_VALVP(he_dev->vpibits) |
1248		RX_VALVC(he_dev->vcibits),			 RC_CONFIG);
1249
1250	he_writel(he_dev, DRF_THRESH(0x20) |
1251		(he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
1252		TX_VCI_MASK(he_dev->vcibits) |
1253		LBFREE_CNT(he_dev->tx_numbuffs), 		TX_CONFIG);
1254
1255	he_writel(he_dev, 0x0, TXAAL5_PROTO);
1256
1257	he_writel(he_dev, PHY_INT_ENB |
1258		(he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
1259								RH_CONFIG);
1260
1261	/* 5.1.3 initialize connection memory */
1262
1263	for (i = 0; i < TCM_MEM_SIZE; ++i)
1264		he_writel_tcm(he_dev, 0, i);
1265
1266	for (i = 0; i < RCM_MEM_SIZE; ++i)
1267		he_writel_rcm(he_dev, 0, i);
1268
1269	/*
1270	 *	transmit connection memory map
1271	 *
1272	 *                  tx memory
1273	 *          0x0 ___________________
1274	 *             |                   |
1275	 *             |                   |
1276	 *             |       TSRa        |
1277	 *             |                   |
1278	 *             |                   |
1279	 *       0x8000|___________________|
1280	 *             |                   |
1281	 *             |       TSRb        |
1282	 *       0xc000|___________________|
1283	 *             |                   |
1284	 *             |       TSRc        |
1285	 *       0xe000|___________________|
1286	 *             |       TSRd        |
1287	 *       0xf000|___________________|
1288	 *             |       tmABR       |
1289	 *      0x10000|___________________|
1290	 *             |                   |
1291	 *             |       tmTPD       |
1292	 *             |___________________|
1293	 *             |                   |
1294	 *                      ....
1295	 *      0x1ffff|___________________|
1296	 *
1297	 *
1298	 */
1299
1300	he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
1301	he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
1302	he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
1303	he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
1304	he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
1305
1306
1307	/*
1308	 *	receive connection memory map
1309	 *
1310	 *          0x0 ___________________
1311	 *             |                   |
1312	 *             |                   |
1313	 *             |       RSRa        |
1314	 *             |                   |
1315	 *             |                   |
1316	 *       0x8000|___________________|
1317	 *             |                   |
1318	 *             |             rx0/1 |
1319	 *             |       LBM         |   link lists of local
1320	 *             |             tx    |   buffer memory 
1321	 *             |                   |
1322	 *       0xd000|___________________|
1323	 *             |                   |
1324	 *             |      rmABR        |
1325	 *       0xe000|___________________|
1326	 *             |                   |
1327	 *             |       RSRb        |
1328	 *             |___________________|
1329	 *             |                   |
1330	 *                      ....
1331	 *       0xffff|___________________|
1332	 */
1333
1334	he_writel(he_dev, 0x08000, RCMLBM_BA);
1335	he_writel(he_dev, 0x0e000, RCMRSRB_BA);
1336	he_writel(he_dev, 0x0d800, RCMABR_BA);
1337
1338	/* 5.1.4 initialize local buffer free pools linked lists */
1339
1340	he_init_rx_lbfp0(he_dev);
1341	he_init_rx_lbfp1(he_dev);
1342
1343	he_writel(he_dev, 0x0, RLBC_H);
1344	he_writel(he_dev, 0x0, RLBC_T);
1345	he_writel(he_dev, 0x0, RLBC_H2);
1346
1347	he_writel(he_dev, 512, RXTHRSH);	/* 10% of r0+r1 buffers */
1348	he_writel(he_dev, 256, LITHRSH); 	/* 5% of r0+r1 buffers */
1349
1350	he_init_tx_lbfp(he_dev);
1351
1352	he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
1353
1354	/* 5.1.5 initialize intermediate receive queues */
1355
1356	if (he_is622(he_dev)) {
1357		he_writel(he_dev, 0x000f, G0_INMQ_S);
1358		he_writel(he_dev, 0x200f, G0_INMQ_L);
1359
1360		he_writel(he_dev, 0x001f, G1_INMQ_S);
1361		he_writel(he_dev, 0x201f, G1_INMQ_L);
1362
1363		he_writel(he_dev, 0x002f, G2_INMQ_S);
1364		he_writel(he_dev, 0x202f, G2_INMQ_L);
1365
1366		he_writel(he_dev, 0x003f, G3_INMQ_S);
1367		he_writel(he_dev, 0x203f, G3_INMQ_L);
1368
1369		he_writel(he_dev, 0x004f, G4_INMQ_S);
1370		he_writel(he_dev, 0x204f, G4_INMQ_L);
1371
1372		he_writel(he_dev, 0x005f, G5_INMQ_S);
1373		he_writel(he_dev, 0x205f, G5_INMQ_L);
1374
1375		he_writel(he_dev, 0x006f, G6_INMQ_S);
1376		he_writel(he_dev, 0x206f, G6_INMQ_L);
1377
1378		he_writel(he_dev, 0x007f, G7_INMQ_S);
1379		he_writel(he_dev, 0x207f, G7_INMQ_L);
1380	} else {
1381		he_writel(he_dev, 0x0000, G0_INMQ_S);
1382		he_writel(he_dev, 0x0008, G0_INMQ_L);
1383
1384		he_writel(he_dev, 0x0001, G1_INMQ_S);
1385		he_writel(he_dev, 0x0009, G1_INMQ_L);
1386
1387		he_writel(he_dev, 0x0002, G2_INMQ_S);
1388		he_writel(he_dev, 0x000a, G2_INMQ_L);
1389
1390		he_writel(he_dev, 0x0003, G3_INMQ_S);
1391		he_writel(he_dev, 0x000b, G3_INMQ_L);
1392
1393		he_writel(he_dev, 0x0004, G4_INMQ_S);
1394		he_writel(he_dev, 0x000c, G4_INMQ_L);
1395
1396		he_writel(he_dev, 0x0005, G5_INMQ_S);
1397		he_writel(he_dev, 0x000d, G5_INMQ_L);
1398
1399		he_writel(he_dev, 0x0006, G6_INMQ_S);
1400		he_writel(he_dev, 0x000e, G6_INMQ_L);
1401
1402		he_writel(he_dev, 0x0007, G7_INMQ_S);
1403		he_writel(he_dev, 0x000f, G7_INMQ_L);
1404	}
1405
1406	/* 5.1.6 application tunable parameters */
1407
1408	he_writel(he_dev, 0x0, MCC);
1409	he_writel(he_dev, 0x0, OEC);
1410	he_writel(he_dev, 0x0, DCC);
1411	he_writel(he_dev, 0x0, CEC);
1412	
1413	/* 5.1.7 cs block initialization */
1414
1415	he_init_cs_block(he_dev);
1416
1417	/* 5.1.8 cs block connection memory initialization */
1418	
1419	if (he_init_cs_block_rcm(he_dev) < 0)
1420		return -ENOMEM;
1421
1422	/* 5.1.10 initialize host structures */
1423
1424	he_init_tpdrq(he_dev);
1425
1426	he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev,
1427					   sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
1428	if (he_dev->tpd_pool == NULL) {
1429		hprintk("unable to create tpd dma_pool\n");
1430		return -ENOMEM;         
1431	}
1432
1433	INIT_LIST_HEAD(&he_dev->outstanding_tpds);
1434
1435	if (he_init_group(he_dev, 0) != 0)
1436		return -ENOMEM;
1437
1438	for (group = 1; group < HE_NUM_GROUPS; ++group) {
1439		he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
1440		he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
1441		he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
1442		he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1443						G0_RBPS_BS + (group * 32));
1444
1445		he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
1446		he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
1447		he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1448						G0_RBPL_QI + (group * 32));
1449		he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
1450
1451		he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
1452		he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
1453		he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
1454						G0_RBRQ_Q + (group * 16));
1455		he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
1456
1457		he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
1458		he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
1459		he_writel(he_dev, TBRQ_THRESH(0x1),
1460						G0_TBRQ_THRESH + (group * 16));
1461		he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
1462	}
1463
1464	/* host status page */
1465
1466	he_dev->hsp = dma_alloc_coherent(&he_dev->pci_dev->dev,
1467					 sizeof(struct he_hsp),
1468					 &he_dev->hsp_phys, GFP_KERNEL);
1469	if (he_dev->hsp == NULL) {
1470		hprintk("failed to allocate host status page\n");
1471		return -ENOMEM;
1472	}
1473	he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
1474
1475	/* initialize framer */
1476
1477#ifdef CONFIG_ATM_HE_USE_SUNI
1478	if (he_isMM(he_dev))
1479		suni_init(he_dev->atm_dev);
1480	if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
1481		he_dev->atm_dev->phy->start(he_dev->atm_dev);
1482#endif /* CONFIG_ATM_HE_USE_SUNI */
1483
1484	if (sdh) {
1485		/* this really should be in suni.c but for now... */
1486		int val;
1487
1488		val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
1489		val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
1490		he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
1491		he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
1492	}
1493
1494	/* 5.1.12 enable transmit and receive */
1495
1496	reg = he_readl_mbox(he_dev, CS_ERCTL0);
1497	reg |= TX_ENABLE|ER_ENABLE;
1498	he_writel_mbox(he_dev, reg, CS_ERCTL0);
1499
1500	reg = he_readl(he_dev, RC_CONFIG);
1501	reg |= RX_ENABLE;
1502	he_writel(he_dev, reg, RC_CONFIG);
1503
1504	for (i = 0; i < HE_NUM_CS_STPER; ++i) {
1505		he_dev->cs_stper[i].inuse = 0;
1506		he_dev->cs_stper[i].pcr = -1;
1507	}
1508	he_dev->total_bw = 0;
1509
1510
1511	/* atm linux initialization */
1512
1513	he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
1514	he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
1515
1516	he_dev->irq_peak = 0;
1517	he_dev->rbrq_peak = 0;
1518	he_dev->rbpl_peak = 0;
1519	he_dev->tbrq_peak = 0;
1520
1521	HPRINTK("hell bent for leather!\n");
1522
1523	return 0;
1524}
1525
1526static void
1527he_stop(struct he_dev *he_dev)
1528{
1529	struct he_buff *heb, *next;
1530	struct pci_dev *pci_dev;
1531	u32 gen_cntl_0, reg;
1532	u16 command;
1533
1534	pci_dev = he_dev->pci_dev;
1535
1536	/* disable interrupts */
1537
1538	if (he_dev->membase) {
1539		pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
1540		gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
1541		pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1542
1543		tasklet_disable(&he_dev->tasklet);
1544
1545		/* disable recv and transmit */
1546
1547		reg = he_readl_mbox(he_dev, CS_ERCTL0);
1548		reg &= ~(TX_ENABLE|ER_ENABLE);
1549		he_writel_mbox(he_dev, reg, CS_ERCTL0);
1550
1551		reg = he_readl(he_dev, RC_CONFIG);
1552		reg &= ~(RX_ENABLE);
1553		he_writel(he_dev, reg, RC_CONFIG);
1554	}
1555
1556#ifdef CONFIG_ATM_HE_USE_SUNI
1557	if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
1558		he_dev->atm_dev->phy->stop(he_dev->atm_dev);
1559#endif /* CONFIG_ATM_HE_USE_SUNI */
1560
1561	if (he_dev->irq)
1562		free_irq(he_dev->irq, he_dev);
1563
1564	if (he_dev->irq_base)
1565		dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1)
1566				  * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
1567
1568	if (he_dev->hsp)
1569		dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp),
1570				  he_dev->hsp, he_dev->hsp_phys);
1571
1572	if (he_dev->rbpl_base) {
1573		list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
1574			dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1575
1576		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE
1577				  * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
1578	}
1579
1580	kfree(he_dev->rbpl_virt);
1581	kfree(he_dev->rbpl_table);
1582	dma_pool_destroy(he_dev->rbpl_pool);
1583
1584	if (he_dev->rbrq_base)
1585		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
1586				  he_dev->rbrq_base, he_dev->rbrq_phys);
1587
1588	if (he_dev->tbrq_base)
1589		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1590				  he_dev->tbrq_base, he_dev->tbrq_phys);
1591
1592	if (he_dev->tpdrq_base)
1593		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1594				  he_dev->tpdrq_base, he_dev->tpdrq_phys);
1595
1596	dma_pool_destroy(he_dev->tpd_pool);
1597
1598	if (he_dev->pci_dev) {
1599		pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
1600		command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
1601		pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
1602	}
1603	
1604	if (he_dev->membase)
1605		iounmap(he_dev->membase);
1606}
1607
1608static struct he_tpd *
1609__alloc_tpd(struct he_dev *he_dev)
1610{
1611	struct he_tpd *tpd;
1612	dma_addr_t mapping;
1613
1614	tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping);
1615	if (tpd == NULL)
1616		return NULL;
1617			
1618	tpd->status = TPD_ADDR(mapping);
1619	tpd->reserved = 0; 
1620	tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
1621	tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
1622	tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
1623
1624	return tpd;
1625}
1626
1627#define AAL5_LEN(buf,len) 						\
1628			((((unsigned char *)(buf))[(len)-6] << 8) |	\
1629				(((unsigned char *)(buf))[(len)-5]))
1630
1631/* 2.10.1.2 receive
1632 *
1633 * aal5 packets can optionally return the tcp checksum in the lower
1634 * 16 bits of the crc (RSR0_TCP_CKSUM)
1635 */
1636
1637#define TCP_CKSUM(buf,len) 						\
1638			((((unsigned char *)(buf))[(len)-2] << 8) |	\
1639				(((unsigned char *)(buf))[(len-1)]))
1640
1641static int
1642he_service_rbrq(struct he_dev *he_dev, int group)
1643{
1644	struct he_rbrq *rbrq_tail = (struct he_rbrq *)
1645				((unsigned long)he_dev->rbrq_base |
1646					he_dev->hsp->group[group].rbrq_tail);
1647	unsigned cid, lastcid = -1;
1648	struct sk_buff *skb;
1649	struct atm_vcc *vcc = NULL;
1650	struct he_vcc *he_vcc;
1651	struct he_buff *heb, *next;
1652	int i;
1653	int pdus_assembled = 0;
1654	int updated = 0;
1655
1656	read_lock(&vcc_sklist_lock);
1657	while (he_dev->rbrq_head != rbrq_tail) {
1658		++updated;
1659
1660		HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
1661			he_dev->rbrq_head, group,
1662			RBRQ_ADDR(he_dev->rbrq_head),
1663			RBRQ_BUFLEN(he_dev->rbrq_head),
1664			RBRQ_CID(he_dev->rbrq_head),
1665			RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
1666			RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
1667			RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
1668			RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
1669			RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
1670			RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
1671
1672		i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
1673		heb = he_dev->rbpl_virt[i];
1674
1675		cid = RBRQ_CID(he_dev->rbrq_head);
1676		if (cid != lastcid)
1677			vcc = __find_vcc(he_dev, cid);
1678		lastcid = cid;
1679
1680		if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
1681			hprintk("vcc/he_vcc == NULL  (cid 0x%x)\n", cid);
1682			if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1683				clear_bit(i, he_dev->rbpl_table);
1684				list_del(&heb->entry);
1685				dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1686			}
1687					
1688			goto next_rbrq_entry;
1689		}
1690
1691		if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1692			hprintk("HBUF_ERR!  (cid 0x%x)\n", cid);
1693			atomic_inc(&vcc->stats->rx_drop);
1694			goto return_host_buffers;
1695		}
1696
1697		heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
1698		clear_bit(i, he_dev->rbpl_table);
1699		list_move_tail(&heb->entry, &he_vcc->buffers);
1700		he_vcc->pdu_len += heb->len;
1701
1702		if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
1703			lastcid = -1;
1704			HPRINTK("wake_up rx_waitq  (cid 0x%x)\n", cid);
1705			wake_up(&he_vcc->rx_waitq);
1706			goto return_host_buffers;
1707		}
1708
1709		if (!RBRQ_END_PDU(he_dev->rbrq_head))
1710			goto next_rbrq_entry;
1711
1712		if (RBRQ_LEN_ERR(he_dev->rbrq_head)
1713				|| RBRQ_CRC_ERR(he_dev->rbrq_head)) {
1714			HPRINTK("%s%s (%d.%d)\n",
1715				RBRQ_CRC_ERR(he_dev->rbrq_head)
1716							? "CRC_ERR " : "",
1717				RBRQ_LEN_ERR(he_dev->rbrq_head)
1718							? "LEN_ERR" : "",
1719							vcc->vpi, vcc->vci);
1720			atomic_inc(&vcc->stats->rx_err);
1721			goto return_host_buffers;
1722		}
1723
1724		skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
1725							GFP_ATOMIC);
1726		if (!skb) {
1727			HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
1728			goto return_host_buffers;
1729		}
1730
1731		if (rx_skb_reserve > 0)
1732			skb_reserve(skb, rx_skb_reserve);
1733
1734		__net_timestamp(skb);
1735
1736		list_for_each_entry(heb, &he_vcc->buffers, entry)
1737			skb_put_data(skb, &heb->data, heb->len);
1738
1739		switch (vcc->qos.aal) {
1740			case ATM_AAL0:
1741				/* 2.10.1.5 raw cell receive */
1742				skb->len = ATM_AAL0_SDU;
1743				skb_set_tail_pointer(skb, skb->len);
1744				break;
1745			case ATM_AAL5:
1746				/* 2.10.1.2 aal5 receive */
1747
1748				skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
1749				skb_set_tail_pointer(skb, skb->len);
1750#ifdef USE_CHECKSUM_HW
1751				if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
1752					skb->ip_summed = CHECKSUM_COMPLETE;
1753					skb->csum = TCP_CKSUM(skb->data,
1754							he_vcc->pdu_len);
1755				}
1756#endif
1757				break;
1758		}
1759
1760#ifdef should_never_happen
1761		if (skb->len > vcc->qos.rxtp.max_sdu)
1762			hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)!  cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
1763#endif
1764
1765#ifdef notdef
1766		ATM_SKB(skb)->vcc = vcc;
1767#endif
1768		spin_unlock(&he_dev->global_lock);
1769		vcc->push(vcc, skb);
1770		spin_lock(&he_dev->global_lock);
1771
1772		atomic_inc(&vcc->stats->rx);
1773
1774return_host_buffers:
1775		++pdus_assembled;
1776
1777		list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
1778			dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1779		INIT_LIST_HEAD(&he_vcc->buffers);
1780		he_vcc->pdu_len = 0;
1781
1782next_rbrq_entry:
1783		he_dev->rbrq_head = (struct he_rbrq *)
1784				((unsigned long) he_dev->rbrq_base |
1785					RBRQ_MASK(he_dev->rbrq_head + 1));
1786
1787	}
1788	read_unlock(&vcc_sklist_lock);
1789
1790	if (updated) {
1791		if (updated > he_dev->rbrq_peak)
1792			he_dev->rbrq_peak = updated;
1793
1794		he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
1795						G0_RBRQ_H + (group * 16));
1796	}
1797
1798	return pdus_assembled;
1799}
1800
1801static void
1802he_service_tbrq(struct he_dev *he_dev, int group)
1803{
1804	struct he_tbrq *tbrq_tail = (struct he_tbrq *)
1805				((unsigned long)he_dev->tbrq_base |
1806					he_dev->hsp->group[group].tbrq_tail);
1807	struct he_tpd *tpd;
1808	int slot, updated = 0;
1809	struct he_tpd *__tpd;
1810
1811	/* 2.1.6 transmit buffer return queue */
1812
1813	while (he_dev->tbrq_head != tbrq_tail) {
1814		++updated;
1815
1816		HPRINTK("tbrq%d 0x%x%s%s\n",
1817			group,
1818			TBRQ_TPD(he_dev->tbrq_head), 
1819			TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
1820			TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
1821		tpd = NULL;
1822		list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
1823			if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
1824				tpd = __tpd;
1825				list_del(&__tpd->entry);
1826				break;
1827			}
1828		}
1829
1830		if (tpd == NULL) {
1831			hprintk("unable to locate tpd for dma buffer %x\n",
1832						TBRQ_TPD(he_dev->tbrq_head));
1833			goto next_tbrq_entry;
1834		}
1835
1836		if (TBRQ_EOS(he_dev->tbrq_head)) {
1837			HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
1838				he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
1839			if (tpd->vcc)
1840				wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
1841
1842			goto next_tbrq_entry;
1843		}
1844
1845		for (slot = 0; slot < TPD_MAXIOV; ++slot) {
1846			if (tpd->iovec[slot].addr)
1847				dma_unmap_single(&he_dev->pci_dev->dev,
1848					tpd->iovec[slot].addr,
1849					tpd->iovec[slot].len & TPD_LEN_MASK,
1850							DMA_TO_DEVICE);
1851			if (tpd->iovec[slot].len & TPD_LST)
1852				break;
1853				
1854		}
1855
1856		if (tpd->skb) {	/* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */
1857			if (tpd->vcc && tpd->vcc->pop)
1858				tpd->vcc->pop(tpd->vcc, tpd->skb);
1859			else
1860				dev_kfree_skb_any(tpd->skb);
1861		}
1862
1863next_tbrq_entry:
1864		if (tpd)
1865			dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
1866		he_dev->tbrq_head = (struct he_tbrq *)
1867				((unsigned long) he_dev->tbrq_base |
1868					TBRQ_MASK(he_dev->tbrq_head + 1));
1869	}
1870
1871	if (updated) {
1872		if (updated > he_dev->tbrq_peak)
1873			he_dev->tbrq_peak = updated;
1874
1875		he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
1876						G0_TBRQ_H + (group * 16));
1877	}
1878}
1879
1880static void
1881he_service_rbpl(struct he_dev *he_dev, int group)
1882{
1883	struct he_rbp *new_tail;
1884	struct he_rbp *rbpl_head;
1885	struct he_buff *heb;
1886	dma_addr_t mapping;
1887	int i;
1888	int moved = 0;
1889
1890	rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1891					RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
1892
1893	for (;;) {
1894		new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1895						RBPL_MASK(he_dev->rbpl_tail+1));
1896
1897		/* table 3.42 -- rbpl_tail should never be set to rbpl_head */
1898		if (new_tail == rbpl_head)
1899			break;
1900
1901		i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
1902		if (i > (RBPL_TABLE_SIZE - 1)) {
1903			i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
1904			if (i > (RBPL_TABLE_SIZE - 1))
1905				break;
1906		}
1907		he_dev->rbpl_hint = i + 1;
1908
1909		heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping);
1910		if (!heb)
1911			break;
1912		heb->mapping = mapping;
1913		list_add(&heb->entry, &he_dev->rbpl_outstanding);
1914		he_dev->rbpl_virt[i] = heb;
1915		set_bit(i, he_dev->rbpl_table);
1916		new_tail->idx = i << RBP_IDX_OFFSET;
1917		new_tail->phys = mapping + offsetof(struct he_buff, data);
1918
1919		he_dev->rbpl_tail = new_tail;
1920		++moved;
1921	} 
1922
1923	if (moved)
1924		he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
1925}
1926
1927static void
1928he_tasklet(unsigned long data)
1929{
1930	unsigned long flags;
1931	struct he_dev *he_dev = (struct he_dev *) data;
1932	int group, type;
1933	int updated = 0;
1934
1935	HPRINTK("tasklet (0x%lx)\n", data);
1936	spin_lock_irqsave(&he_dev->global_lock, flags);
1937
1938	while (he_dev->irq_head != he_dev->irq_tail) {
1939		++updated;
1940
1941		type = ITYPE_TYPE(he_dev->irq_head->isw);
1942		group = ITYPE_GROUP(he_dev->irq_head->isw);
1943
1944		switch (type) {
1945			case ITYPE_RBRQ_THRESH:
1946				HPRINTK("rbrq%d threshold\n", group);
1947				/* fall through */
1948			case ITYPE_RBRQ_TIMER:
1949				if (he_service_rbrq(he_dev, group))
1950					he_service_rbpl(he_dev, group);
1951				break;
1952			case ITYPE_TBRQ_THRESH:
1953				HPRINTK("tbrq%d threshold\n", group);
1954				/* fall through */
1955			case ITYPE_TPD_COMPLETE:
1956				he_service_tbrq(he_dev, group);
1957				break;
1958			case ITYPE_RBPL_THRESH:
1959				he_service_rbpl(he_dev, group);
1960				break;
1961			case ITYPE_RBPS_THRESH:
1962				/* shouldn't happen unless small buffers enabled */
1963				break;
1964			case ITYPE_PHY:
1965				HPRINTK("phy interrupt\n");
1966#ifdef CONFIG_ATM_HE_USE_SUNI
1967				spin_unlock_irqrestore(&he_dev->global_lock, flags);
1968				if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
1969					he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
1970				spin_lock_irqsave(&he_dev->global_lock, flags);
1971#endif
1972				break;
1973			case ITYPE_OTHER:
1974				switch (type|group) {
1975					case ITYPE_PARITY:
1976						hprintk("parity error\n");
1977						break;
1978					case ITYPE_ABORT:
1979						hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
1980						break;
1981				}
1982				break;
1983			case ITYPE_TYPE(ITYPE_INVALID):
1984				/* see 8.1.1 -- check all queues */
1985
1986				HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
1987
1988				he_service_rbrq(he_dev, 0);
1989				he_service_rbpl(he_dev, 0);
1990				he_service_tbrq(he_dev, 0);
1991				break;
1992			default:
1993				hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
1994		}
1995
1996		he_dev->irq_head->isw = ITYPE_INVALID;
1997
1998		he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
1999	}
2000
2001	if (updated) {
2002		if (updated > he_dev->irq_peak)
2003			he_dev->irq_peak = updated;
2004
2005		he_writel(he_dev,
2006			IRQ_SIZE(CONFIG_IRQ_SIZE) |
2007			IRQ_THRESH(CONFIG_IRQ_THRESH) |
2008			IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
2009		(void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */
2010	}
2011	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2012}
2013
2014static irqreturn_t
2015he_irq_handler(int irq, void *dev_id)
2016{
2017	unsigned long flags;
2018	struct he_dev *he_dev = (struct he_dev * )dev_id;
2019	int handled = 0;
2020
2021	if (he_dev == NULL)
2022		return IRQ_NONE;
2023
2024	spin_lock_irqsave(&he_dev->global_lock, flags);
2025
2026	he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
2027						(*he_dev->irq_tailoffset << 2));
2028
2029	if (he_dev->irq_tail == he_dev->irq_head) {
2030		HPRINTK("tailoffset not updated?\n");
2031		he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
2032			((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
2033		(void) he_readl(he_dev, INT_FIFO);	/* 8.1.2 controller errata */
2034	}
2035
2036#ifdef DEBUG
2037	if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */)
2038		hprintk("spurious (or shared) interrupt?\n");
2039#endif
2040
2041	if (he_dev->irq_head != he_dev->irq_tail) {
2042		handled = 1;
2043		tasklet_schedule(&he_dev->tasklet);
2044		he_writel(he_dev, INT_CLEAR_A, INT_FIFO);	/* clear interrupt */
2045		(void) he_readl(he_dev, INT_FIFO);		/* flush posted writes */
2046	}
2047	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2048	return IRQ_RETVAL(handled);
2049
2050}
2051
2052static __inline__ void
2053__enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
2054{
2055	struct he_tpdrq *new_tail;
2056
2057	HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
2058					tpd, cid, he_dev->tpdrq_tail);
2059
2060	/* new_tail = he_dev->tpdrq_tail; */
2061	new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
2062					TPDRQ_MASK(he_dev->tpdrq_tail+1));
2063
2064	/*
2065	 * check to see if we are about to set the tail == head
2066	 * if true, update the head pointer from the adapter
2067	 * to see if this is really the case (reading the queue
2068	 * head for every enqueue would be unnecessarily slow)
2069	 */
2070
2071	if (new_tail == he_dev->tpdrq_head) {
2072		he_dev->tpdrq_head = (struct he_tpdrq *)
2073			(((unsigned long)he_dev->tpdrq_base) |
2074				TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
2075
2076		if (new_tail == he_dev->tpdrq_head) {
2077			int slot;
2078
2079			hprintk("tpdrq full (cid 0x%x)\n", cid);
2080			/*
2081			 * FIXME
2082			 * push tpd onto a transmit backlog queue
2083			 * after service_tbrq, service the backlog
2084			 * for now, we just drop the pdu
2085			 */
2086			for (slot = 0; slot < TPD_MAXIOV; ++slot) {
2087				if (tpd->iovec[slot].addr)
2088					dma_unmap_single(&he_dev->pci_dev->dev,
2089						tpd->iovec[slot].addr,
2090						tpd->iovec[slot].len & TPD_LEN_MASK,
2091								DMA_TO_DEVICE);
2092			}
2093			if (tpd->skb) {
2094				if (tpd->vcc->pop)
2095					tpd->vcc->pop(tpd->vcc, tpd->skb);
2096				else
2097					dev_kfree_skb_any(tpd->skb);
2098				atomic_inc(&tpd->vcc->stats->tx_err);
2099			}
2100			dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
2101			return;
2102		}
2103	}
2104
2105	/* 2.1.5 transmit packet descriptor ready queue */
2106	list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
2107	he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
2108	he_dev->tpdrq_tail->cid = cid;
2109	wmb();
2110
2111	he_dev->tpdrq_tail = new_tail;
2112
2113	he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
2114	(void) he_readl(he_dev, TPDRQ_T);		/* flush posted writes */
2115}
2116
2117static int
2118he_open(struct atm_vcc *vcc)
2119{
2120	unsigned long flags;
2121	struct he_dev *he_dev = HE_DEV(vcc->dev);
2122	struct he_vcc *he_vcc;
2123	int err = 0;
2124	unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
2125	short vpi = vcc->vpi;
2126	int vci = vcc->vci;
2127
2128	if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
2129		return 0;
2130
2131	HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
2132
2133	set_bit(ATM_VF_ADDR, &vcc->flags);
2134
2135	cid = he_mkcid(he_dev, vpi, vci);
2136
2137	he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
2138	if (he_vcc == NULL) {
2139		hprintk("unable to allocate he_vcc during open\n");
2140		return -ENOMEM;
2141	}
2142
2143	INIT_LIST_HEAD(&he_vcc->buffers);
2144	he_vcc->pdu_len = 0;
2145	he_vcc->rc_index = -1;
2146
2147	init_waitqueue_head(&he_vcc->rx_waitq);
2148	init_waitqueue_head(&he_vcc->tx_waitq);
2149
2150	vcc->dev_data = he_vcc;
2151
2152	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2153		int pcr_goal;
2154
2155		pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
2156		if (pcr_goal == 0)
2157			pcr_goal = he_dev->atm_dev->link_rate;
2158		if (pcr_goal < 0)	/* means round down, technically */
2159			pcr_goal = -pcr_goal;
2160
2161		HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
2162
2163		switch (vcc->qos.aal) {
2164			case ATM_AAL5:
2165				tsr0_aal = TSR0_AAL5;
2166				tsr4 = TSR4_AAL5;
2167				break;
2168			case ATM_AAL0:
2169				tsr0_aal = TSR0_AAL0_SDU;
2170				tsr4 = TSR4_AAL0_SDU;
2171				break;
2172			default:
2173				err = -EINVAL;
2174				goto open_failed;
2175		}
2176
2177		spin_lock_irqsave(&he_dev->global_lock, flags);
2178		tsr0 = he_readl_tsr0(he_dev, cid);
2179		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2180
2181		if (TSR0_CONN_STATE(tsr0) != 0) {
2182			hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
2183			err = -EBUSY;
2184			goto open_failed;
2185		}
2186
2187		switch (vcc->qos.txtp.traffic_class) {
2188			case ATM_UBR:
2189				/* 2.3.3.1 open connection ubr */
2190
2191				tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
2192					TSR0_USE_WMIN | TSR0_UPDATE_GER;
2193				break;
2194
2195			case ATM_CBR:
2196				/* 2.3.3.2 open connection cbr */
2197
2198				/* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */
2199				if ((he_dev->total_bw + pcr_goal)
2200					> (he_dev->atm_dev->link_rate * 9 / 10))
2201				{
2202					err = -EBUSY;
2203					goto open_failed;
2204				}
2205
2206				spin_lock_irqsave(&he_dev->global_lock, flags);			/* also protects he_dev->cs_stper[] */
2207
2208				/* find an unused cs_stper register */
2209				for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
2210					if (he_dev->cs_stper[reg].inuse == 0 || 
2211					    he_dev->cs_stper[reg].pcr == pcr_goal)
2212							break;
2213
2214				if (reg == HE_NUM_CS_STPER) {
2215					err = -EBUSY;
2216					spin_unlock_irqrestore(&he_dev->global_lock, flags);
2217					goto open_failed;
2218				}
2219
2220				he_dev->total_bw += pcr_goal;
2221
2222				he_vcc->rc_index = reg;
2223				++he_dev->cs_stper[reg].inuse;
2224				he_dev->cs_stper[reg].pcr = pcr_goal;
2225
2226				clock = he_is622(he_dev) ? 66667000 : 50000000;
2227				period = clock / pcr_goal;
2228				
2229				HPRINTK("rc_index = %d period = %d\n",
2230								reg, period);
2231
2232				he_writel_mbox(he_dev, rate_to_atmf(period/2),
2233							CS_STPER0 + reg);
2234				spin_unlock_irqrestore(&he_dev->global_lock, flags);
2235
2236				tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
2237							TSR0_RC_INDEX(reg);
2238
2239				break;
2240			default:
2241				err = -EINVAL;
2242				goto open_failed;
2243		}
2244
2245		spin_lock_irqsave(&he_dev->global_lock, flags);
2246
2247		he_writel_tsr0(he_dev, tsr0, cid);
2248		he_writel_tsr4(he_dev, tsr4 | 1, cid);
2249		he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
2250					TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
2251		he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
2252		he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
2253
2254		he_writel_tsr3(he_dev, 0x0, cid);
2255		he_writel_tsr5(he_dev, 0x0, cid);
2256		he_writel_tsr6(he_dev, 0x0, cid);
2257		he_writel_tsr7(he_dev, 0x0, cid);
2258		he_writel_tsr8(he_dev, 0x0, cid);
2259		he_writel_tsr10(he_dev, 0x0, cid);
2260		he_writel_tsr11(he_dev, 0x0, cid);
2261		he_writel_tsr12(he_dev, 0x0, cid);
2262		he_writel_tsr13(he_dev, 0x0, cid);
2263		he_writel_tsr14(he_dev, 0x0, cid);
2264		(void) he_readl_tsr0(he_dev, cid);		/* flush posted writes */
2265		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2266	}
2267
2268	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2269		unsigned aal;
2270
2271		HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
2272		 				&HE_VCC(vcc)->rx_waitq);
2273
2274		switch (vcc->qos.aal) {
2275			case ATM_AAL5:
2276				aal = RSR0_AAL5;
2277				break;
2278			case ATM_AAL0:
2279				aal = RSR0_RAWCELL;
2280				break;
2281			default:
2282				err = -EINVAL;
2283				goto open_failed;
2284		}
2285
2286		spin_lock_irqsave(&he_dev->global_lock, flags);
2287
2288		rsr0 = he_readl_rsr0(he_dev, cid);
2289		if (rsr0 & RSR0_OPEN_CONN) {
2290			spin_unlock_irqrestore(&he_dev->global_lock, flags);
2291
2292			hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
2293			err = -EBUSY;
2294			goto open_failed;
2295		}
2296
2297		rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
2298		rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
2299		rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ? 
2300				(RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
2301
2302#ifdef USE_CHECKSUM_HW
2303		if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
2304			rsr0 |= RSR0_TCP_CKSUM;
2305#endif
2306
2307		he_writel_rsr4(he_dev, rsr4, cid);
2308		he_writel_rsr1(he_dev, rsr1, cid);
2309		/* 5.1.11 last parameter initialized should be
2310			  the open/closed indication in rsr0 */
2311		he_writel_rsr0(he_dev,
2312			rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
2313		(void) he_readl_rsr0(he_dev, cid);		/* flush posted writes */
2314
2315		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2316	}
2317
2318open_failed:
2319
2320	if (err) {
2321		kfree(he_vcc);
2322		clear_bit(ATM_VF_ADDR, &vcc->flags);
2323	}
2324	else
2325		set_bit(ATM_VF_READY, &vcc->flags);
2326
2327	return err;
2328}
2329
2330static void
2331he_close(struct atm_vcc *vcc)
2332{
2333	unsigned long flags;
2334	DECLARE_WAITQUEUE(wait, current);
2335	struct he_dev *he_dev = HE_DEV(vcc->dev);
2336	struct he_tpd *tpd;
2337	unsigned cid;
2338	struct he_vcc *he_vcc = HE_VCC(vcc);
2339#define MAX_RETRY 30
2340	int retry = 0, sleep = 1, tx_inuse;
2341
2342	HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
2343
2344	clear_bit(ATM_VF_READY, &vcc->flags);
2345	cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2346
2347	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2348		int timeout;
2349
2350		HPRINTK("close rx cid 0x%x\n", cid);
2351
2352		/* 2.7.2.2 close receive operation */
2353
2354		/* wait for previous close (if any) to finish */
2355
2356		spin_lock_irqsave(&he_dev->global_lock, flags);
2357		while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
2358			HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
2359			udelay(250);
2360		}
2361
2362		set_current_state(TASK_UNINTERRUPTIBLE);
2363		add_wait_queue(&he_vcc->rx_waitq, &wait);
2364
2365		he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
2366		(void) he_readl_rsr0(he_dev, cid);		/* flush posted writes */
2367		he_writel_mbox(he_dev, cid, RXCON_CLOSE);
2368		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2369
2370		timeout = schedule_timeout(30*HZ);
2371
2372		remove_wait_queue(&he_vcc->rx_waitq, &wait);
2373		set_current_state(TASK_RUNNING);
2374
2375		if (timeout == 0)
2376			hprintk("close rx timeout cid 0x%x\n", cid);
2377
2378		HPRINTK("close rx cid 0x%x complete\n", cid);
2379
2380	}
2381
2382	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2383		volatile unsigned tsr4, tsr0;
2384		int timeout;
2385
2386		HPRINTK("close tx cid 0x%x\n", cid);
2387		
2388		/* 2.1.2
2389		 *
2390		 * ... the host must first stop queueing packets to the TPDRQ
2391		 * on the connection to be closed, then wait for all outstanding
2392		 * packets to be transmitted and their buffers returned to the
2393		 * TBRQ. When the last packet on the connection arrives in the
2394		 * TBRQ, the host issues the close command to the adapter.
2395		 */
2396
2397		while (((tx_inuse = refcount_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
2398		       (retry < MAX_RETRY)) {
2399			msleep(sleep);
2400			if (sleep < 250)
2401				sleep = sleep * 2;
2402
2403			++retry;
2404		}
2405
2406		if (tx_inuse > 1)
2407			hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
2408
2409		/* 2.3.1.1 generic close operations with flush */
2410
2411		spin_lock_irqsave(&he_dev->global_lock, flags);
2412		he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
2413					/* also clears TSR4_SESSION_ENDED */
2414
2415		switch (vcc->qos.txtp.traffic_class) {
2416			case ATM_UBR:
2417				he_writel_tsr1(he_dev, 
2418					TSR1_MCR(rate_to_atmf(200000))
2419					| TSR1_PCR(0), cid);
2420				break;
2421			case ATM_CBR:
2422				he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
2423				break;
2424		}
2425		(void) he_readl_tsr4(he_dev, cid);		/* flush posted writes */
2426
2427		tpd = __alloc_tpd(he_dev);
2428		if (tpd == NULL) {
2429			hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
2430			goto close_tx_incomplete;
2431		}
2432		tpd->status |= TPD_EOS | TPD_INT;
2433		tpd->skb = NULL;
2434		tpd->vcc = vcc;
2435		wmb();
2436
2437		set_current_state(TASK_UNINTERRUPTIBLE);
2438		add_wait_queue(&he_vcc->tx_waitq, &wait);
2439		__enqueue_tpd(he_dev, tpd, cid);
2440		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2441
2442		timeout = schedule_timeout(30*HZ);
2443
2444		remove_wait_queue(&he_vcc->tx_waitq, &wait);
2445		set_current_state(TASK_RUNNING);
2446
2447		spin_lock_irqsave(&he_dev->global_lock, flags);
2448
2449		if (timeout == 0) {
2450			hprintk("close tx timeout cid 0x%x\n", cid);
2451			goto close_tx_incomplete;
2452		}
2453
2454		while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
2455			HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
2456			udelay(250);
2457		}
2458
2459		while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
2460			HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
2461			udelay(250);
2462		}
2463
2464close_tx_incomplete:
2465
2466		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2467			int reg = he_vcc->rc_index;
2468
2469			HPRINTK("cs_stper reg = %d\n", reg);
2470
2471			if (he_dev->cs_stper[reg].inuse == 0)
2472				hprintk("cs_stper[%d].inuse = 0!\n", reg);
2473			else
2474				--he_dev->cs_stper[reg].inuse;
2475
2476			he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
2477		}
2478		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2479
2480		HPRINTK("close tx cid 0x%x complete\n", cid);
2481	}
2482
2483	kfree(he_vcc);
2484
2485	clear_bit(ATM_VF_ADDR, &vcc->flags);
2486}
2487
2488static int
2489he_send(struct atm_vcc *vcc, struct sk_buff *skb)
2490{
2491	unsigned long flags;
2492	struct he_dev *he_dev = HE_DEV(vcc->dev);
2493	unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2494	struct he_tpd *tpd;
2495#ifdef USE_SCATTERGATHER
2496	int i, slot = 0;
2497#endif
2498
2499#define HE_TPD_BUFSIZE 0xffff
2500
2501	HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
2502
2503	if ((skb->len > HE_TPD_BUFSIZE) ||
2504	    ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
2505		hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
2506		if (vcc->pop)
2507			vcc->pop(vcc, skb);
2508		else
2509			dev_kfree_skb_any(skb);
2510		atomic_inc(&vcc->stats->tx_err);
2511		return -EINVAL;
2512	}
2513
2514#ifndef USE_SCATTERGATHER
2515	if (skb_shinfo(skb)->nr_frags) {
2516		hprintk("no scatter/gather support\n");
2517		if (vcc->pop)
2518			vcc->pop(vcc, skb);
2519		else
2520			dev_kfree_skb_any(skb);
2521		atomic_inc(&vcc->stats->tx_err);
2522		return -EINVAL;
2523	}
2524#endif
2525	spin_lock_irqsave(&he_dev->global_lock, flags);
2526
2527	tpd = __alloc_tpd(he_dev);
2528	if (tpd == NULL) {
2529		if (vcc->pop)
2530			vcc->pop(vcc, skb);
2531		else
2532			dev_kfree_skb_any(skb);
2533		atomic_inc(&vcc->stats->tx_err);
2534		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2535		return -ENOMEM;
2536	}
2537
2538	if (vcc->qos.aal == ATM_AAL5)
2539		tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
2540	else {
2541		char *pti_clp = (void *) (skb->data + 3);
2542		int clp, pti;
2543
2544		pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 
2545		clp = (*pti_clp & ATM_HDR_CLP);
2546		tpd->status |= TPD_CELLTYPE(pti);
2547		if (clp)
2548			tpd->status |= TPD_CLP;
2549
2550		skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
2551	}
2552
2553#ifdef USE_SCATTERGATHER
2554	tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data,
2555				skb_headlen(skb), DMA_TO_DEVICE);
2556	tpd->iovec[slot].len = skb_headlen(skb);
2557	++slot;
2558
2559	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2560		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2561
2562		if (slot == TPD_MAXIOV) {	/* queue tpd; start new tpd */
2563			tpd->vcc = vcc;
2564			tpd->skb = NULL;	/* not the last fragment
2565						   so dont ->push() yet */
2566			wmb();
2567
2568			__enqueue_tpd(he_dev, tpd, cid);
2569			tpd = __alloc_tpd(he_dev);
2570			if (tpd == NULL) {
2571				if (vcc->pop)
2572					vcc->pop(vcc, skb);
2573				else
2574					dev_kfree_skb_any(skb);
2575				atomic_inc(&vcc->stats->tx_err);
2576				spin_unlock_irqrestore(&he_dev->global_lock, flags);
2577				return -ENOMEM;
2578			}
2579			tpd->status |= TPD_USERCELL;
2580			slot = 0;
2581		}
2582
2583		tpd->iovec[slot].addr = skb_frag_dma_map(&he_dev->pci_dev->dev,
2584				frag, 0, skb_frag_size(frag), DMA_TO_DEVICE);
2585		tpd->iovec[slot].len = skb_frag_size(frag);
 
2586		++slot;
2587
2588	}
2589
2590	tpd->iovec[slot - 1].len |= TPD_LST;
2591#else
2592	tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
2593	tpd->length0 = skb->len | TPD_LST;
2594#endif
2595	tpd->status |= TPD_INT;
2596
2597	tpd->vcc = vcc;
2598	tpd->skb = skb;
2599	wmb();
2600	ATM_SKB(skb)->vcc = vcc;
2601
2602	__enqueue_tpd(he_dev, tpd, cid);
2603	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2604
2605	atomic_inc(&vcc->stats->tx);
2606
2607	return 0;
2608}
2609
2610static int
2611he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
2612{
2613	unsigned long flags;
2614	struct he_dev *he_dev = HE_DEV(atm_dev);
2615	struct he_ioctl_reg reg;
2616	int err = 0;
2617
2618	switch (cmd) {
2619		case HE_GET_REG:
2620			if (!capable(CAP_NET_ADMIN))
2621				return -EPERM;
2622
2623			if (copy_from_user(&reg, arg,
2624					   sizeof(struct he_ioctl_reg)))
2625				return -EFAULT;
2626
2627			spin_lock_irqsave(&he_dev->global_lock, flags);
2628			switch (reg.type) {
2629				case HE_REGTYPE_PCI:
2630					if (reg.addr >= HE_REGMAP_SIZE) {
2631						err = -EINVAL;
2632						break;
2633					}
2634
2635					reg.val = he_readl(he_dev, reg.addr);
2636					break;
2637				case HE_REGTYPE_RCM:
2638					reg.val =
2639						he_readl_rcm(he_dev, reg.addr);
2640					break;
2641				case HE_REGTYPE_TCM:
2642					reg.val =
2643						he_readl_tcm(he_dev, reg.addr);
2644					break;
2645				case HE_REGTYPE_MBOX:
2646					reg.val =
2647						he_readl_mbox(he_dev, reg.addr);
2648					break;
2649				default:
2650					err = -EINVAL;
2651					break;
2652			}
2653			spin_unlock_irqrestore(&he_dev->global_lock, flags);
2654			if (err == 0)
2655				if (copy_to_user(arg, &reg,
2656							sizeof(struct he_ioctl_reg)))
2657					return -EFAULT;
2658			break;
2659		default:
2660#ifdef CONFIG_ATM_HE_USE_SUNI
2661			if (atm_dev->phy && atm_dev->phy->ioctl)
2662				err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
2663#else /* CONFIG_ATM_HE_USE_SUNI */
2664			err = -EINVAL;
2665#endif /* CONFIG_ATM_HE_USE_SUNI */
2666			break;
2667	}
2668
2669	return err;
2670}
2671
2672static void
2673he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
2674{
2675	unsigned long flags;
2676	struct he_dev *he_dev = HE_DEV(atm_dev);
2677
2678	HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
2679
2680	spin_lock_irqsave(&he_dev->global_lock, flags);
2681	he_writel(he_dev, val, FRAMER + (addr*4));
2682	(void) he_readl(he_dev, FRAMER + (addr*4));		/* flush posted writes */
2683	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2684}
2685 
2686	
2687static unsigned char
2688he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
2689{ 
2690	unsigned long flags;
2691	struct he_dev *he_dev = HE_DEV(atm_dev);
2692	unsigned reg;
2693
2694	spin_lock_irqsave(&he_dev->global_lock, flags);
2695	reg = he_readl(he_dev, FRAMER + (addr*4));
2696	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2697
2698	HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
2699	return reg;
2700}
2701
2702static int
2703he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
2704{
2705	unsigned long flags;
2706	struct he_dev *he_dev = HE_DEV(dev);
2707	int left, i;
2708#ifdef notdef
2709	struct he_rbrq *rbrq_tail;
2710	struct he_tpdrq *tpdrq_head;
2711	int rbpl_head, rbpl_tail;
2712#endif
2713	static long mcc = 0, oec = 0, dcc = 0, cec = 0;
2714
2715
2716	left = *pos;
2717	if (!left--)
2718		return sprintf(page, "ATM he driver\n");
2719
2720	if (!left--)
2721		return sprintf(page, "%s%s\n\n",
2722			he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
2723
2724	if (!left--)
2725		return sprintf(page, "Mismatched Cells  VPI/VCI Not Open  Dropped Cells  RCM Dropped Cells\n");
2726
2727	spin_lock_irqsave(&he_dev->global_lock, flags);
2728	mcc += he_readl(he_dev, MCC);
2729	oec += he_readl(he_dev, OEC);
2730	dcc += he_readl(he_dev, DCC);
2731	cec += he_readl(he_dev, CEC);
2732	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2733
2734	if (!left--)
2735		return sprintf(page, "%16ld  %16ld  %13ld  %17ld\n\n", 
2736							mcc, oec, dcc, cec);
2737
2738	if (!left--)
2739		return sprintf(page, "irq_size = %d  inuse = ?  peak = %d\n",
2740				CONFIG_IRQ_SIZE, he_dev->irq_peak);
2741
2742	if (!left--)
2743		return sprintf(page, "tpdrq_size = %d  inuse = ?\n",
2744						CONFIG_TPDRQ_SIZE);
2745
2746	if (!left--)
2747		return sprintf(page, "rbrq_size = %d  inuse = ?  peak = %d\n",
2748				CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
2749
2750	if (!left--)
2751		return sprintf(page, "tbrq_size = %d  peak = %d\n",
2752					CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
2753
2754
2755#ifdef notdef
2756	rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
2757	rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
2758
2759	inuse = rbpl_head - rbpl_tail;
2760	if (inuse < 0)
2761		inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
2762	inuse /= sizeof(struct he_rbp);
2763
2764	if (!left--)
2765		return sprintf(page, "rbpl_size = %d  inuse = %d\n\n",
2766						CONFIG_RBPL_SIZE, inuse);
2767#endif
2768
2769	if (!left--)
2770		return sprintf(page, "rate controller periods (cbr)\n                 pcr  #vc\n");
2771
2772	for (i = 0; i < HE_NUM_CS_STPER; ++i)
2773		if (!left--)
2774			return sprintf(page, "cs_stper%-2d  %8ld  %3d\n", i,
2775						he_dev->cs_stper[i].pcr,
2776						he_dev->cs_stper[i].inuse);
2777
2778	if (!left--)
2779		return sprintf(page, "total bw (cbr): %d  (limit %d)\n",
2780			he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
2781
2782	return 0;
2783}
2784
2785/* eeprom routines  -- see 4.7 */
2786
2787static u8 read_prom_byte(struct he_dev *he_dev, int addr)
2788{
2789	u32 val = 0, tmp_read = 0;
2790	int i, j = 0;
2791	u8 byte_read = 0;
2792
2793	val = readl(he_dev->membase + HOST_CNTL);
2794	val &= 0xFFFFE0FF;
2795       
2796	/* Turn on write enable */
2797	val |= 0x800;
2798	he_writel(he_dev, val, HOST_CNTL);
2799       
2800	/* Send READ instruction */
2801	for (i = 0; i < ARRAY_SIZE(readtab); i++) {
2802		he_writel(he_dev, val | readtab[i], HOST_CNTL);
2803		udelay(EEPROM_DELAY);
2804	}
2805       
2806	/* Next, we need to send the byte address to read from */
2807	for (i = 7; i >= 0; i--) {
2808		he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2809		udelay(EEPROM_DELAY);
2810		he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2811		udelay(EEPROM_DELAY);
2812	}
2813       
2814	j = 0;
2815
2816	val &= 0xFFFFF7FF;      /* Turn off write enable */
2817	he_writel(he_dev, val, HOST_CNTL);
2818       
2819	/* Now, we can read data from the EEPROM by clocking it in */
2820	for (i = 7; i >= 0; i--) {
2821		he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2822		udelay(EEPROM_DELAY);
2823		tmp_read = he_readl(he_dev, HOST_CNTL);
2824		byte_read |= (unsigned char)
2825			   ((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
2826		he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2827		udelay(EEPROM_DELAY);
2828	}
2829       
2830	he_writel(he_dev, val | ID_CS, HOST_CNTL);
2831	udelay(EEPROM_DELAY);
2832
2833	return byte_read;
2834}
2835
2836MODULE_LICENSE("GPL");
2837MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
2838MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
2839module_param(disable64, bool, 0);
2840MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
2841module_param(nvpibits, short, 0);
2842MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
2843module_param(nvcibits, short, 0);
2844MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
2845module_param(rx_skb_reserve, short, 0);
2846MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
2847module_param(irq_coalesce, bool, 0);
2848MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
2849module_param(sdh, bool, 0);
2850MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
2851
2852static const struct pci_device_id he_pci_tbl[] = {
2853	{ PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
2854	{ 0, }
2855};
2856
2857MODULE_DEVICE_TABLE(pci, he_pci_tbl);
2858
2859static struct pci_driver he_driver = {
2860	.name =		"he",
2861	.probe =	he_init_one,
2862	.remove =	he_remove_one,
2863	.id_table =	he_pci_tbl,
2864};
2865
2866module_pci_driver(he_driver);
v4.6
   1/*
   2
   3  he.c
   4
   5  ForeRunnerHE ATM Adapter driver for ATM on Linux
   6  Copyright (C) 1999-2001  Naval Research Laboratory
   7
   8  This library is free software; you can redistribute it and/or
   9  modify it under the terms of the GNU Lesser General Public
  10  License as published by the Free Software Foundation; either
  11  version 2.1 of the License, or (at your option) any later version.
  12
  13  This library is distributed in the hope that it will be useful,
  14  but WITHOUT ANY WARRANTY; without even the implied warranty of
  15  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16  Lesser General Public License for more details.
  17
  18  You should have received a copy of the GNU Lesser General Public
  19  License along with this library; if not, write to the Free Software
  20  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21
  22*/
  23
  24/*
  25
  26  he.c
  27
  28  ForeRunnerHE ATM Adapter driver for ATM on Linux
  29  Copyright (C) 1999-2001  Naval Research Laboratory
  30
  31  Permission to use, copy, modify and distribute this software and its
  32  documentation is hereby granted, provided that both the copyright
  33  notice and this permission notice appear in all copies of the software,
  34  derivative works or modified versions, and any portions thereof, and
  35  that both notices appear in supporting documentation.
  36
  37  NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
  38  DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
  39  RESULTING FROM THE USE OF THIS SOFTWARE.
  40
  41  This driver was written using the "Programmer's Reference Manual for
  42  ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98.
  43
  44  AUTHORS:
  45	chas williams <chas@cmf.nrl.navy.mil>
  46	eric kinzie <ekinzie@cmf.nrl.navy.mil>
  47
  48  NOTES:
  49	4096 supported 'connections'
  50	group 0 is used for all traffic
  51	interrupt queue 0 is used for all interrupts
  52	aal0 support (based on work from ulrich.u.muller@nokia.com)
  53
  54 */
  55
  56#include <linux/module.h>
  57#include <linux/kernel.h>
  58#include <linux/skbuff.h>
  59#include <linux/pci.h>
  60#include <linux/errno.h>
  61#include <linux/types.h>
  62#include <linux/string.h>
  63#include <linux/delay.h>
  64#include <linux/init.h>
  65#include <linux/mm.h>
  66#include <linux/sched.h>
  67#include <linux/timer.h>
  68#include <linux/interrupt.h>
  69#include <linux/dma-mapping.h>
  70#include <linux/bitmap.h>
  71#include <linux/slab.h>
  72#include <asm/io.h>
  73#include <asm/byteorder.h>
  74#include <asm/uaccess.h>
  75
  76#include <linux/atmdev.h>
  77#include <linux/atm.h>
  78#include <linux/sonet.h>
  79
  80#undef USE_SCATTERGATHER
  81#undef USE_CHECKSUM_HW			/* still confused about this */
  82/* #undef HE_DEBUG */
  83
  84#include "he.h"
  85#include "suni.h"
  86#include <linux/atm_he.h>
  87
  88#define hprintk(fmt,args...)	printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
  89
  90#ifdef HE_DEBUG
  91#define HPRINTK(fmt,args...)	printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
  92#else /* !HE_DEBUG */
  93#define HPRINTK(fmt,args...)	do { } while (0)
  94#endif /* HE_DEBUG */
  95
  96/* declarations */
  97
  98static int he_open(struct atm_vcc *vcc);
  99static void he_close(struct atm_vcc *vcc);
 100static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
 101static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
 102static irqreturn_t he_irq_handler(int irq, void *dev_id);
 103static void he_tasklet(unsigned long data);
 104static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
 105static int he_start(struct atm_dev *dev);
 106static void he_stop(struct he_dev *dev);
 107static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
 108static unsigned char he_phy_get(struct atm_dev *, unsigned long);
 109
 110static u8 read_prom_byte(struct he_dev *he_dev, int addr);
 111
 112/* globals */
 113
 114static struct he_dev *he_devs;
 115static bool disable64;
 116static short nvpibits = -1;
 117static short nvcibits = -1;
 118static short rx_skb_reserve = 16;
 119static bool irq_coalesce = true;
 120static bool sdh;
 121
 122/* Read from EEPROM = 0000 0011b */
 123static unsigned int readtab[] = {
 124	CS_HIGH | CLK_HIGH,
 125	CS_LOW | CLK_LOW,
 126	CLK_HIGH,               /* 0 */
 127	CLK_LOW,
 128	CLK_HIGH,               /* 0 */
 129	CLK_LOW,
 130	CLK_HIGH,               /* 0 */
 131	CLK_LOW,
 132	CLK_HIGH,               /* 0 */
 133	CLK_LOW,
 134	CLK_HIGH,               /* 0 */
 135	CLK_LOW,
 136	CLK_HIGH,               /* 0 */
 137	CLK_LOW | SI_HIGH,
 138	CLK_HIGH | SI_HIGH,     /* 1 */
 139	CLK_LOW | SI_HIGH,
 140	CLK_HIGH | SI_HIGH      /* 1 */
 141};     
 142 
 143/* Clock to read from/write to the EEPROM */
 144static unsigned int clocktab[] = {
 145	CLK_LOW,
 146	CLK_HIGH,
 147	CLK_LOW,
 148	CLK_HIGH,
 149	CLK_LOW,
 150	CLK_HIGH,
 151	CLK_LOW,
 152	CLK_HIGH,
 153	CLK_LOW,
 154	CLK_HIGH,
 155	CLK_LOW,
 156	CLK_HIGH,
 157	CLK_LOW,
 158	CLK_HIGH,
 159	CLK_LOW,
 160	CLK_HIGH,
 161	CLK_LOW
 162};     
 163
 164static struct atmdev_ops he_ops =
 165{
 166	.open =		he_open,
 167	.close =	he_close,	
 168	.ioctl =	he_ioctl,	
 169	.send =		he_send,
 170	.phy_put =	he_phy_put,
 171	.phy_get =	he_phy_get,
 172	.proc_read =	he_proc_read,
 173	.owner =	THIS_MODULE
 174};
 175
 176#define he_writel(dev, val, reg)	do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
 177#define he_readl(dev, reg)		readl((dev)->membase + (reg))
 178
 179/* section 2.12 connection memory access */
 180
 181static __inline__ void
 182he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
 183								unsigned flags)
 184{
 185	he_writel(he_dev, val, CON_DAT);
 186	(void) he_readl(he_dev, CON_DAT);		/* flush posted writes */
 187	he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
 188	while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
 189}
 190
 191#define he_writel_rcm(dev, val, reg) 				\
 192			he_writel_internal(dev, val, reg, CON_CTL_RCM)
 193
 194#define he_writel_tcm(dev, val, reg) 				\
 195			he_writel_internal(dev, val, reg, CON_CTL_TCM)
 196
 197#define he_writel_mbox(dev, val, reg) 				\
 198			he_writel_internal(dev, val, reg, CON_CTL_MBOX)
 199
 200static unsigned
 201he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
 202{
 203	he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
 204	while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
 205	return he_readl(he_dev, CON_DAT);
 206}
 207
 208#define he_readl_rcm(dev, reg) \
 209			he_readl_internal(dev, reg, CON_CTL_RCM)
 210
 211#define he_readl_tcm(dev, reg) \
 212			he_readl_internal(dev, reg, CON_CTL_TCM)
 213
 214#define he_readl_mbox(dev, reg) \
 215			he_readl_internal(dev, reg, CON_CTL_MBOX)
 216
 217
 218/* figure 2.2 connection id */
 219
 220#define he_mkcid(dev, vpi, vci)		(((vpi << (dev)->vcibits) | vci) & 0x1fff)
 221
 222/* 2.5.1 per connection transmit state registers */
 223
 224#define he_writel_tsr0(dev, val, cid) \
 225		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
 226#define he_readl_tsr0(dev, cid) \
 227		he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
 228
 229#define he_writel_tsr1(dev, val, cid) \
 230		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
 231
 232#define he_writel_tsr2(dev, val, cid) \
 233		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
 234
 235#define he_writel_tsr3(dev, val, cid) \
 236		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
 237
 238#define he_writel_tsr4(dev, val, cid) \
 239		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
 240
 241	/* from page 2-20
 242	 *
 243	 * NOTE While the transmit connection is active, bits 23 through 0
 244	 *      of this register must not be written by the host.  Byte
 245	 *      enables should be used during normal operation when writing
 246	 *      the most significant byte.
 247	 */
 248
 249#define he_writel_tsr4_upper(dev, val, cid) \
 250		he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
 251							CON_CTL_TCM \
 252							| CON_BYTE_DISABLE_2 \
 253							| CON_BYTE_DISABLE_1 \
 254							| CON_BYTE_DISABLE_0)
 255
 256#define he_readl_tsr4(dev, cid) \
 257		he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
 258
 259#define he_writel_tsr5(dev, val, cid) \
 260		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
 261
 262#define he_writel_tsr6(dev, val, cid) \
 263		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
 264
 265#define he_writel_tsr7(dev, val, cid) \
 266		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
 267
 268
 269#define he_writel_tsr8(dev, val, cid) \
 270		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
 271
 272#define he_writel_tsr9(dev, val, cid) \
 273		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
 274
 275#define he_writel_tsr10(dev, val, cid) \
 276		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
 277
 278#define he_writel_tsr11(dev, val, cid) \
 279		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
 280
 281
 282#define he_writel_tsr12(dev, val, cid) \
 283		he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
 284
 285#define he_writel_tsr13(dev, val, cid) \
 286		he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
 287
 288
 289#define he_writel_tsr14(dev, val, cid) \
 290		he_writel_tcm(dev, val, CONFIG_TSRD | cid)
 291
 292#define he_writel_tsr14_upper(dev, val, cid) \
 293		he_writel_internal(dev, val, CONFIG_TSRD | cid, \
 294							CON_CTL_TCM \
 295							| CON_BYTE_DISABLE_2 \
 296							| CON_BYTE_DISABLE_1 \
 297							| CON_BYTE_DISABLE_0)
 298
 299/* 2.7.1 per connection receive state registers */
 300
 301#define he_writel_rsr0(dev, val, cid) \
 302		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
 303#define he_readl_rsr0(dev, cid) \
 304		he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
 305
 306#define he_writel_rsr1(dev, val, cid) \
 307		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
 308
 309#define he_writel_rsr2(dev, val, cid) \
 310		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
 311
 312#define he_writel_rsr3(dev, val, cid) \
 313		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
 314
 315#define he_writel_rsr4(dev, val, cid) \
 316		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
 317
 318#define he_writel_rsr5(dev, val, cid) \
 319		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
 320
 321#define he_writel_rsr6(dev, val, cid) \
 322		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
 323
 324#define he_writel_rsr7(dev, val, cid) \
 325		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
 326
 327static __inline__ struct atm_vcc*
 328__find_vcc(struct he_dev *he_dev, unsigned cid)
 329{
 330	struct hlist_head *head;
 331	struct atm_vcc *vcc;
 332	struct sock *s;
 333	short vpi;
 334	int vci;
 335
 336	vpi = cid >> he_dev->vcibits;
 337	vci = cid & ((1 << he_dev->vcibits) - 1);
 338	head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
 339
 340	sk_for_each(s, head) {
 341		vcc = atm_sk(s);
 342		if (vcc->dev == he_dev->atm_dev &&
 343		    vcc->vci == vci && vcc->vpi == vpi &&
 344		    vcc->qos.rxtp.traffic_class != ATM_NONE) {
 345				return vcc;
 346		}
 347	}
 348	return NULL;
 349}
 350
 351static int he_init_one(struct pci_dev *pci_dev,
 352		       const struct pci_device_id *pci_ent)
 353{
 354	struct atm_dev *atm_dev = NULL;
 355	struct he_dev *he_dev = NULL;
 356	int err = 0;
 357
 358	printk(KERN_INFO "ATM he driver\n");
 359
 360	if (pci_enable_device(pci_dev))
 361		return -EIO;
 362	if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) {
 363		printk(KERN_WARNING "he: no suitable dma available\n");
 364		err = -EIO;
 365		goto init_one_failure;
 366	}
 367
 368	atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
 369	if (!atm_dev) {
 370		err = -ENODEV;
 371		goto init_one_failure;
 372	}
 373	pci_set_drvdata(pci_dev, atm_dev);
 374
 375	he_dev = kzalloc(sizeof(struct he_dev),
 376							GFP_KERNEL);
 377	if (!he_dev) {
 378		err = -ENOMEM;
 379		goto init_one_failure;
 380	}
 381	he_dev->pci_dev = pci_dev;
 382	he_dev->atm_dev = atm_dev;
 383	he_dev->atm_dev->dev_data = he_dev;
 384	atm_dev->dev_data = he_dev;
 385	he_dev->number = atm_dev->number;
 386	tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
 387	spin_lock_init(&he_dev->global_lock);
 388
 389	if (he_start(atm_dev)) {
 390		he_stop(he_dev);
 391		err = -ENODEV;
 392		goto init_one_failure;
 393	}
 394	he_dev->next = NULL;
 395	if (he_devs)
 396		he_dev->next = he_devs;
 397	he_devs = he_dev;
 398	return 0;
 399
 400init_one_failure:
 401	if (atm_dev)
 402		atm_dev_deregister(atm_dev);
 403	kfree(he_dev);
 404	pci_disable_device(pci_dev);
 405	return err;
 406}
 407
 408static void he_remove_one(struct pci_dev *pci_dev)
 409{
 410	struct atm_dev *atm_dev;
 411	struct he_dev *he_dev;
 412
 413	atm_dev = pci_get_drvdata(pci_dev);
 414	he_dev = HE_DEV(atm_dev);
 415
 416	/* need to remove from he_devs */
 417
 418	he_stop(he_dev);
 419	atm_dev_deregister(atm_dev);
 420	kfree(he_dev);
 421
 422	pci_disable_device(pci_dev);
 423}
 424
 425
 426static unsigned
 427rate_to_atmf(unsigned rate)		/* cps to atm forum format */
 428{
 429#define NONZERO (1 << 14)
 430
 431	unsigned exp = 0;
 432
 433	if (rate == 0)
 434		return 0;
 435
 436	rate <<= 9;
 437	while (rate > 0x3ff) {
 438		++exp;
 439		rate >>= 1;
 440	}
 441
 442	return (NONZERO | (exp << 9) | (rate & 0x1ff));
 443}
 444
 445static void he_init_rx_lbfp0(struct he_dev *he_dev)
 446{
 447	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 448	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 449	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 450	unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
 451	
 452	lbufd_index = 0;
 453	lbm_offset = he_readl(he_dev, RCMLBM_BA);
 454
 455	he_writel(he_dev, lbufd_index, RLBF0_H);
 456
 457	for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
 458		lbufd_index += 2;
 459		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 460
 461		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 462		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 463
 464		if (++lbuf_count == lbufs_per_row) {
 465			lbuf_count = 0;
 466			row_offset += he_dev->bytes_per_row;
 467		}
 468		lbm_offset += 4;
 469	}
 470		
 471	he_writel(he_dev, lbufd_index - 2, RLBF0_T);
 472	he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
 473}
 474
 475static void he_init_rx_lbfp1(struct he_dev *he_dev)
 476{
 477	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 478	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 479	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 480	unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
 481	
 482	lbufd_index = 1;
 483	lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
 484
 485	he_writel(he_dev, lbufd_index, RLBF1_H);
 486
 487	for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
 488		lbufd_index += 2;
 489		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 490
 491		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 492		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 493
 494		if (++lbuf_count == lbufs_per_row) {
 495			lbuf_count = 0;
 496			row_offset += he_dev->bytes_per_row;
 497		}
 498		lbm_offset += 4;
 499	}
 500		
 501	he_writel(he_dev, lbufd_index - 2, RLBF1_T);
 502	he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
 503}
 504
 505static void he_init_tx_lbfp(struct he_dev *he_dev)
 506{
 507	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 508	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 509	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 510	unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
 511	
 512	lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
 513	lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
 514
 515	he_writel(he_dev, lbufd_index, TLBF_H);
 516
 517	for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
 518		lbufd_index += 1;
 519		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 520
 521		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 522		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 523
 524		if (++lbuf_count == lbufs_per_row) {
 525			lbuf_count = 0;
 526			row_offset += he_dev->bytes_per_row;
 527		}
 528		lbm_offset += 2;
 529	}
 530		
 531	he_writel(he_dev, lbufd_index - 1, TLBF_T);
 532}
 533
 534static int he_init_tpdrq(struct he_dev *he_dev)
 535{
 536	he_dev->tpdrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 537						 CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq),
 538						 &he_dev->tpdrq_phys, GFP_KERNEL);
 
 539	if (he_dev->tpdrq_base == NULL) {
 540		hprintk("failed to alloc tpdrq\n");
 541		return -ENOMEM;
 542	}
 543
 544	he_dev->tpdrq_tail = he_dev->tpdrq_base;
 545	he_dev->tpdrq_head = he_dev->tpdrq_base;
 546
 547	he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
 548	he_writel(he_dev, 0, TPDRQ_T);	
 549	he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
 550
 551	return 0;
 552}
 553
 554static void he_init_cs_block(struct he_dev *he_dev)
 555{
 556	unsigned clock, rate, delta;
 557	int reg;
 558
 559	/* 5.1.7 cs block initialization */
 560
 561	for (reg = 0; reg < 0x20; ++reg)
 562		he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
 563
 564	/* rate grid timer reload values */
 565
 566	clock = he_is622(he_dev) ? 66667000 : 50000000;
 567	rate = he_dev->atm_dev->link_rate;
 568	delta = rate / 16 / 2;
 569
 570	for (reg = 0; reg < 0x10; ++reg) {
 571		/* 2.4 internal transmit function
 572		 *
 573	 	 * we initialize the first row in the rate grid.
 574		 * values are period (in clock cycles) of timer
 575		 */
 576		unsigned period = clock / rate;
 577
 578		he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
 579		rate -= delta;
 580	}
 581
 582	if (he_is622(he_dev)) {
 583		/* table 5.2 (4 cells per lbuf) */
 584		he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
 585		he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
 586		he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
 587		he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
 588		he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
 589
 590		/* table 5.3, 5.4, 5.5, 5.6, 5.7 */
 591		he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
 592		he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
 593		he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
 594		he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
 595		he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
 596		he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
 597
 598		he_writel_mbox(he_dev, 0x4680, CS_RTATR);
 599
 600		/* table 5.8 */
 601		he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
 602		he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
 603		he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
 604		he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
 605		he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
 606		he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
 607
 608		/* table 5.9 */
 609		he_writel_mbox(he_dev, 0x5, CS_OTPPER);
 610		he_writel_mbox(he_dev, 0x14, CS_OTWPER);
 611	} else {
 612		/* table 5.1 (4 cells per lbuf) */
 613		he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
 614		he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
 615		he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
 616		he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
 617		he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
 618
 619		/* table 5.3, 5.4, 5.5, 5.6, 5.7 */
 620		he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
 621		he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
 622		he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
 623		he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
 624		he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
 625		he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
 626
 627		he_writel_mbox(he_dev, 0x4680, CS_RTATR);
 628
 629		/* table 5.8 */
 630		he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
 631		he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
 632		he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
 633		he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
 634		he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
 635		he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
 636
 637		/* table 5.9 */
 638		he_writel_mbox(he_dev, 0x6, CS_OTPPER);
 639		he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
 640	}
 641
 642	he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
 643
 644	for (reg = 0; reg < 0x8; ++reg)
 645		he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
 646
 647}
 648
 649static int he_init_cs_block_rcm(struct he_dev *he_dev)
 650{
 651	unsigned (*rategrid)[16][16];
 652	unsigned rate, delta;
 653	int i, j, reg;
 654
 655	unsigned rate_atmf, exp, man;
 656	unsigned long long rate_cps;
 657	int mult, buf, buf_limit = 4;
 658
 659	rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
 660	if (!rategrid)
 661		return -ENOMEM;
 662
 663	/* initialize rate grid group table */
 664
 665	for (reg = 0x0; reg < 0xff; ++reg)
 666		he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
 667
 668	/* initialize rate controller groups */
 669
 670	for (reg = 0x100; reg < 0x1ff; ++reg)
 671		he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
 672	
 673	/* initialize tNrm lookup table */
 674
 675	/* the manual makes reference to a routine in a sample driver
 676	   for proper configuration; fortunately, we only need this
 677	   in order to support abr connection */
 678	
 679	/* initialize rate to group table */
 680
 681	rate = he_dev->atm_dev->link_rate;
 682	delta = rate / 32;
 683
 684	/*
 685	 * 2.4 transmit internal functions
 686	 * 
 687	 * we construct a copy of the rate grid used by the scheduler
 688	 * in order to construct the rate to group table below
 689	 */
 690
 691	for (j = 0; j < 16; j++) {
 692		(*rategrid)[0][j] = rate;
 693		rate -= delta;
 694	}
 695
 696	for (i = 1; i < 16; i++)
 697		for (j = 0; j < 16; j++)
 698			if (i > 14)
 699				(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
 700			else
 701				(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
 702
 703	/*
 704	 * 2.4 transmit internal function
 705	 *
 706	 * this table maps the upper 5 bits of exponent and mantissa
 707	 * of the atm forum representation of the rate into an index
 708	 * on rate grid  
 709	 */
 710
 711	rate_atmf = 0;
 712	while (rate_atmf < 0x400) {
 713		man = (rate_atmf & 0x1f) << 4;
 714		exp = rate_atmf >> 5;
 715
 716		/* 
 717			instead of '/ 512', use '>> 9' to prevent a call
 718			to divdu3 on x86 platforms
 719		*/
 720		rate_cps = (unsigned long long) (1 << exp) * (man + 512) >> 9;
 721
 722		if (rate_cps < 10)
 723			rate_cps = 10;	/* 2.2.1 minimum payload rate is 10 cps */
 724
 725		for (i = 255; i > 0; i--)
 726			if ((*rategrid)[i/16][i%16] >= rate_cps)
 727				break;	 /* pick nearest rate instead? */
 728
 729		/*
 730		 * each table entry is 16 bits: (rate grid index (8 bits)
 731		 * and a buffer limit (8 bits)
 732		 * there are two table entries in each 32-bit register
 733		 */
 734
 735#ifdef notdef
 736		buf = rate_cps * he_dev->tx_numbuffs /
 737				(he_dev->atm_dev->link_rate * 2);
 738#else
 739		/* this is pretty, but avoids _divdu3 and is mostly correct */
 740		mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
 741		if (rate_cps > (272 * mult))
 742			buf = 4;
 743		else if (rate_cps > (204 * mult))
 744			buf = 3;
 745		else if (rate_cps > (136 * mult))
 746			buf = 2;
 747		else if (rate_cps > (68 * mult))
 748			buf = 1;
 749		else
 750			buf = 0;
 751#endif
 752		if (buf > buf_limit)
 753			buf = buf_limit;
 754		reg = (reg << 16) | ((i << 8) | buf);
 755
 756#define RTGTBL_OFFSET 0x400
 757	  
 758		if (rate_atmf & 0x1)
 759			he_writel_rcm(he_dev, reg,
 760				CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
 761
 762		++rate_atmf;
 763	}
 764
 765	kfree(rategrid);
 766	return 0;
 767}
 768
 769static int he_init_group(struct he_dev *he_dev, int group)
 770{
 771	struct he_buff *heb, *next;
 772	dma_addr_t mapping;
 773	int i;
 774
 775	he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
 776	he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
 777	he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
 778	he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
 779		  G0_RBPS_BS + (group * 32));
 780
 781	/* bitmap table */
 782	he_dev->rbpl_table = kmalloc(BITS_TO_LONGS(RBPL_TABLE_SIZE)
 783				     * sizeof(unsigned long), GFP_KERNEL);
 
 784	if (!he_dev->rbpl_table) {
 785		hprintk("unable to allocate rbpl bitmap table\n");
 786		return -ENOMEM;
 787	}
 788	bitmap_zero(he_dev->rbpl_table, RBPL_TABLE_SIZE);
 789
 790	/* rbpl_virt 64-bit pointers */
 791	he_dev->rbpl_virt = kmalloc(RBPL_TABLE_SIZE
 792				    * sizeof(struct he_buff *), GFP_KERNEL);
 
 793	if (!he_dev->rbpl_virt) {
 794		hprintk("unable to allocate rbpl virt table\n");
 795		goto out_free_rbpl_table;
 796	}
 797
 798	/* large buffer pool */
 799	he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev,
 800					    CONFIG_RBPL_BUFSIZE, 64, 0);
 801	if (he_dev->rbpl_pool == NULL) {
 802		hprintk("unable to create rbpl pool\n");
 803		goto out_free_rbpl_virt;
 804	}
 805
 806	he_dev->rbpl_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 807						CONFIG_RBPL_SIZE * sizeof(struct he_rbp),
 808						&he_dev->rbpl_phys, GFP_KERNEL);
 809	if (he_dev->rbpl_base == NULL) {
 810		hprintk("failed to alloc rbpl_base\n");
 811		goto out_destroy_rbpl_pool;
 812	}
 813
 814	INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
 815
 816	for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
 817
 818		heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping);
 819		if (!heb)
 820			goto out_free_rbpl;
 821		heb->mapping = mapping;
 822		list_add(&heb->entry, &he_dev->rbpl_outstanding);
 823
 824		set_bit(i, he_dev->rbpl_table);
 825		he_dev->rbpl_virt[i] = heb;
 826		he_dev->rbpl_hint = i + 1;
 827		he_dev->rbpl_base[i].idx =  i << RBP_IDX_OFFSET;
 828		he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
 829	}
 830	he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
 831
 832	he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
 833	he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
 834						G0_RBPL_T + (group * 32));
 835	he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
 836						G0_RBPL_BS + (group * 32));
 837	he_writel(he_dev,
 838			RBP_THRESH(CONFIG_RBPL_THRESH) |
 839			RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
 840			RBP_INT_ENB,
 841						G0_RBPL_QI + (group * 32));
 842
 843	/* rx buffer ready queue */
 844
 845	he_dev->rbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 846						CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
 847						&he_dev->rbrq_phys, GFP_KERNEL);
 848	if (he_dev->rbrq_base == NULL) {
 849		hprintk("failed to allocate rbrq\n");
 850		goto out_free_rbpl;
 851	}
 852
 853	he_dev->rbrq_head = he_dev->rbrq_base;
 854	he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
 855	he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
 856	he_writel(he_dev,
 857		RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
 858						G0_RBRQ_Q + (group * 16));
 859	if (irq_coalesce) {
 860		hprintk("coalescing interrupts\n");
 861		he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
 862						G0_RBRQ_I + (group * 16));
 863	} else
 864		he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
 865						G0_RBRQ_I + (group * 16));
 866
 867	/* tx buffer ready queue */
 868
 869	he_dev->tbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 870						CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
 871						&he_dev->tbrq_phys, GFP_KERNEL);
 872	if (he_dev->tbrq_base == NULL) {
 873		hprintk("failed to allocate tbrq\n");
 874		goto out_free_rbpq_base;
 875	}
 876
 877	he_dev->tbrq_head = he_dev->tbrq_base;
 878
 879	he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
 880	he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
 881	he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
 882	he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
 883
 884	return 0;
 885
 886out_free_rbpq_base:
 887	dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE *
 888			  sizeof(struct he_rbrq), he_dev->rbrq_base,
 889			  he_dev->rbrq_phys);
 890out_free_rbpl:
 891	list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
 892		dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
 893
 894	dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE *
 895			  sizeof(struct he_rbp), he_dev->rbpl_base,
 896			  he_dev->rbpl_phys);
 897out_destroy_rbpl_pool:
 898	dma_pool_destroy(he_dev->rbpl_pool);
 899out_free_rbpl_virt:
 900	kfree(he_dev->rbpl_virt);
 901out_free_rbpl_table:
 902	kfree(he_dev->rbpl_table);
 903
 904	return -ENOMEM;
 905}
 906
 907static int he_init_irq(struct he_dev *he_dev)
 908{
 909	int i;
 910
 911	/* 2.9.3.5  tail offset for each interrupt queue is located after the
 912		    end of the interrupt queue */
 913
 914	he_dev->irq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 915					       (CONFIG_IRQ_SIZE + 1)
 916					       * sizeof(struct he_irq),
 917					       &he_dev->irq_phys,
 918					       GFP_KERNEL);
 919	if (he_dev->irq_base == NULL) {
 920		hprintk("failed to allocate irq\n");
 921		return -ENOMEM;
 922	}
 923	he_dev->irq_tailoffset = (unsigned *)
 924					&he_dev->irq_base[CONFIG_IRQ_SIZE];
 925	*he_dev->irq_tailoffset = 0;
 926	he_dev->irq_head = he_dev->irq_base;
 927	he_dev->irq_tail = he_dev->irq_base;
 928
 929	for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
 930		he_dev->irq_base[i].isw = ITYPE_INVALID;
 931
 932	he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
 933	he_writel(he_dev,
 934		IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
 935								IRQ0_HEAD);
 936	he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
 937	he_writel(he_dev, 0x0, IRQ0_DATA);
 938
 939	he_writel(he_dev, 0x0, IRQ1_BASE);
 940	he_writel(he_dev, 0x0, IRQ1_HEAD);
 941	he_writel(he_dev, 0x0, IRQ1_CNTL);
 942	he_writel(he_dev, 0x0, IRQ1_DATA);
 943
 944	he_writel(he_dev, 0x0, IRQ2_BASE);
 945	he_writel(he_dev, 0x0, IRQ2_HEAD);
 946	he_writel(he_dev, 0x0, IRQ2_CNTL);
 947	he_writel(he_dev, 0x0, IRQ2_DATA);
 948
 949	he_writel(he_dev, 0x0, IRQ3_BASE);
 950	he_writel(he_dev, 0x0, IRQ3_HEAD);
 951	he_writel(he_dev, 0x0, IRQ3_CNTL);
 952	he_writel(he_dev, 0x0, IRQ3_DATA);
 953
 954	/* 2.9.3.2 interrupt queue mapping registers */
 955
 956	he_writel(he_dev, 0x0, GRP_10_MAP);
 957	he_writel(he_dev, 0x0, GRP_32_MAP);
 958	he_writel(he_dev, 0x0, GRP_54_MAP);
 959	he_writel(he_dev, 0x0, GRP_76_MAP);
 960
 961	if (request_irq(he_dev->pci_dev->irq,
 962			he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
 963		hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
 964		return -EINVAL;
 965	}   
 966
 967	he_dev->irq = he_dev->pci_dev->irq;
 968
 969	return 0;
 970}
 971
 972static int he_start(struct atm_dev *dev)
 973{
 974	struct he_dev *he_dev;
 975	struct pci_dev *pci_dev;
 976	unsigned long membase;
 977
 978	u16 command;
 979	u32 gen_cntl_0, host_cntl, lb_swap;
 980	u8 cache_size, timer;
 981	
 982	unsigned err;
 983	unsigned int status, reg;
 984	int i, group;
 985
 986	he_dev = HE_DEV(dev);
 987	pci_dev = he_dev->pci_dev;
 988
 989	membase = pci_resource_start(pci_dev, 0);
 990	HPRINTK("membase = 0x%lx  irq = %d.\n", membase, pci_dev->irq);
 991
 992	/*
 993	 * pci bus controller initialization 
 994	 */
 995
 996	/* 4.3 pci bus controller-specific initialization */
 997	if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
 998		hprintk("can't read GEN_CNTL_0\n");
 999		return -EINVAL;
1000	}
1001	gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
1002	if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
1003		hprintk("can't write GEN_CNTL_0.\n");
1004		return -EINVAL;
1005	}
1006
1007	if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
1008		hprintk("can't read PCI_COMMAND.\n");
1009		return -EINVAL;
1010	}
1011
1012	command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
1013	if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
1014		hprintk("can't enable memory.\n");
1015		return -EINVAL;
1016	}
1017
1018	if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
1019		hprintk("can't read cache line size?\n");
1020		return -EINVAL;
1021	}
1022
1023	if (cache_size < 16) {
1024		cache_size = 16;
1025		if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
1026			hprintk("can't set cache line size to %d\n", cache_size);
1027	}
1028
1029	if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
1030		hprintk("can't read latency timer?\n");
1031		return -EINVAL;
1032	}
1033
1034	/* from table 3.9
1035	 *
1036	 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE
1037	 * 
1038	 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles]
1039	 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles]
1040	 *
1041	 */ 
1042#define LAT_TIMER 209
1043	if (timer < LAT_TIMER) {
1044		HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
1045		timer = LAT_TIMER;
1046		if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
1047			hprintk("can't set latency timer to %d\n", timer);
1048	}
1049
1050	if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
1051		hprintk("can't set up page mapping\n");
1052		return -EINVAL;
1053	}
1054
1055	/* 4.4 card reset */
1056	he_writel(he_dev, 0x0, RESET_CNTL);
1057	he_writel(he_dev, 0xff, RESET_CNTL);
1058
1059	msleep(16);	/* 16 ms */
1060	status = he_readl(he_dev, RESET_CNTL);
1061	if ((status & BOARD_RST_STATUS) == 0) {
1062		hprintk("reset failed\n");
1063		return -EINVAL;
1064	}
1065
1066	/* 4.5 set bus width */
1067	host_cntl = he_readl(he_dev, HOST_CNTL);
1068	if (host_cntl & PCI_BUS_SIZE64)
1069		gen_cntl_0 |= ENBL_64;
1070	else
1071		gen_cntl_0 &= ~ENBL_64;
1072
1073	if (disable64 == 1) {
1074		hprintk("disabling 64-bit pci bus transfers\n");
1075		gen_cntl_0 &= ~ENBL_64;
1076	}
1077
1078	if (gen_cntl_0 & ENBL_64)
1079		hprintk("64-bit transfers enabled\n");
1080
1081	pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1082
1083	/* 4.7 read prom contents */
1084	for (i = 0; i < PROD_ID_LEN; ++i)
1085		he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
1086
1087	he_dev->media = read_prom_byte(he_dev, MEDIA);
1088
1089	for (i = 0; i < 6; ++i)
1090		dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
1091
1092	hprintk("%s%s, %pM\n", he_dev->prod_id,
1093		he_dev->media & 0x40 ? "SM" : "MM", dev->esi);
1094	he_dev->atm_dev->link_rate = he_is622(he_dev) ?
1095						ATM_OC12_PCR : ATM_OC3_PCR;
1096
1097	/* 4.6 set host endianess */
1098	lb_swap = he_readl(he_dev, LB_SWAP);
1099	if (he_is622(he_dev))
1100		lb_swap &= ~XFER_SIZE;		/* 4 cells */
1101	else
1102		lb_swap |= XFER_SIZE;		/* 8 cells */
1103#ifdef __BIG_ENDIAN
1104	lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
1105#else
1106	lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
1107			DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
1108#endif /* __BIG_ENDIAN */
1109	he_writel(he_dev, lb_swap, LB_SWAP);
1110
1111	/* 4.8 sdram controller initialization */
1112	he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
1113
1114	/* 4.9 initialize rnum value */
1115	lb_swap |= SWAP_RNUM_MAX(0xf);
1116	he_writel(he_dev, lb_swap, LB_SWAP);
1117
1118	/* 4.10 initialize the interrupt queues */
1119	if ((err = he_init_irq(he_dev)) != 0)
1120		return err;
1121
1122	/* 4.11 enable pci bus controller state machines */
1123	host_cntl |= (OUTFF_ENB | CMDFF_ENB |
1124				QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
1125	he_writel(he_dev, host_cntl, HOST_CNTL);
1126
1127	gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
1128	pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1129
1130	/*
1131	 * atm network controller initialization
1132	 */
1133
1134	/* 5.1.1 generic configuration state */
1135
1136	/*
1137	 *		local (cell) buffer memory map
1138	 *                    
1139	 *             HE155                          HE622
1140	 *                                                      
1141	 *        0 ____________1023 bytes  0 _______________________2047 bytes
1142	 *         |            |            |                   |   |
1143	 *         |  utility   |            |        rx0        |   |
1144	 *        5|____________|         255|___________________| u |
1145	 *        6|            |         256|                   | t |
1146	 *         |            |            |                   | i |
1147	 *         |    rx0     |     row    |        tx         | l |
1148	 *         |            |            |                   | i |
1149	 *         |            |         767|___________________| t |
1150	 *      517|____________|         768|                   | y |
1151	 * row  518|            |            |        rx1        |   |
1152	 *         |            |        1023|___________________|___|
1153	 *         |            |
1154	 *         |    tx      |
1155	 *         |            |
1156	 *         |            |
1157	 *     1535|____________|
1158	 *     1536|            |
1159	 *         |    rx1     |
1160	 *     2047|____________|
1161	 *
1162	 */
1163
1164	/* total 4096 connections */
1165	he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
1166	he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
1167
1168	if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
1169		hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
1170		return -ENODEV;
1171	}
1172
1173	if (nvpibits != -1) {
1174		he_dev->vpibits = nvpibits;
1175		he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
1176	}
1177
1178	if (nvcibits != -1) {
1179		he_dev->vcibits = nvcibits;
1180		he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
1181	}
1182
1183
1184	if (he_is622(he_dev)) {
1185		he_dev->cells_per_row = 40;
1186		he_dev->bytes_per_row = 2048;
1187		he_dev->r0_numrows = 256;
1188		he_dev->tx_numrows = 512;
1189		he_dev->r1_numrows = 256;
1190		he_dev->r0_startrow = 0;
1191		he_dev->tx_startrow = 256;
1192		he_dev->r1_startrow = 768;
1193	} else {
1194		he_dev->cells_per_row = 20;
1195		he_dev->bytes_per_row = 1024;
1196		he_dev->r0_numrows = 512;
1197		he_dev->tx_numrows = 1018;
1198		he_dev->r1_numrows = 512;
1199		he_dev->r0_startrow = 6;
1200		he_dev->tx_startrow = 518;
1201		he_dev->r1_startrow = 1536;
1202	}
1203
1204	he_dev->cells_per_lbuf = 4;
1205	he_dev->buffer_limit = 4;
1206	he_dev->r0_numbuffs = he_dev->r0_numrows *
1207				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1208	if (he_dev->r0_numbuffs > 2560)
1209		he_dev->r0_numbuffs = 2560;
1210
1211	he_dev->r1_numbuffs = he_dev->r1_numrows *
1212				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1213	if (he_dev->r1_numbuffs > 2560)
1214		he_dev->r1_numbuffs = 2560;
1215
1216	he_dev->tx_numbuffs = he_dev->tx_numrows *
1217				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1218	if (he_dev->tx_numbuffs > 5120)
1219		he_dev->tx_numbuffs = 5120;
1220
1221	/* 5.1.2 configure hardware dependent registers */
1222
1223	he_writel(he_dev, 
1224		SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
1225		RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
1226		(he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
1227		(he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
1228								LBARB);
1229
1230	he_writel(he_dev, BANK_ON |
1231		(he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
1232								SDRAMCON);
1233
1234	he_writel(he_dev,
1235		(he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
1236						RM_RW_WAIT(1), RCMCONFIG);
1237	he_writel(he_dev,
1238		(he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
1239						TM_RW_WAIT(1), TCMCONFIG);
1240
1241	he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
1242
1243	he_writel(he_dev, 
1244		(he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
1245		(he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
1246		RX_VALVP(he_dev->vpibits) |
1247		RX_VALVC(he_dev->vcibits),			 RC_CONFIG);
1248
1249	he_writel(he_dev, DRF_THRESH(0x20) |
1250		(he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
1251		TX_VCI_MASK(he_dev->vcibits) |
1252		LBFREE_CNT(he_dev->tx_numbuffs), 		TX_CONFIG);
1253
1254	he_writel(he_dev, 0x0, TXAAL5_PROTO);
1255
1256	he_writel(he_dev, PHY_INT_ENB |
1257		(he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
1258								RH_CONFIG);
1259
1260	/* 5.1.3 initialize connection memory */
1261
1262	for (i = 0; i < TCM_MEM_SIZE; ++i)
1263		he_writel_tcm(he_dev, 0, i);
1264
1265	for (i = 0; i < RCM_MEM_SIZE; ++i)
1266		he_writel_rcm(he_dev, 0, i);
1267
1268	/*
1269	 *	transmit connection memory map
1270	 *
1271	 *                  tx memory
1272	 *          0x0 ___________________
1273	 *             |                   |
1274	 *             |                   |
1275	 *             |       TSRa        |
1276	 *             |                   |
1277	 *             |                   |
1278	 *       0x8000|___________________|
1279	 *             |                   |
1280	 *             |       TSRb        |
1281	 *       0xc000|___________________|
1282	 *             |                   |
1283	 *             |       TSRc        |
1284	 *       0xe000|___________________|
1285	 *             |       TSRd        |
1286	 *       0xf000|___________________|
1287	 *             |       tmABR       |
1288	 *      0x10000|___________________|
1289	 *             |                   |
1290	 *             |       tmTPD       |
1291	 *             |___________________|
1292	 *             |                   |
1293	 *                      ....
1294	 *      0x1ffff|___________________|
1295	 *
1296	 *
1297	 */
1298
1299	he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
1300	he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
1301	he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
1302	he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
1303	he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
1304
1305
1306	/*
1307	 *	receive connection memory map
1308	 *
1309	 *          0x0 ___________________
1310	 *             |                   |
1311	 *             |                   |
1312	 *             |       RSRa        |
1313	 *             |                   |
1314	 *             |                   |
1315	 *       0x8000|___________________|
1316	 *             |                   |
1317	 *             |             rx0/1 |
1318	 *             |       LBM         |   link lists of local
1319	 *             |             tx    |   buffer memory 
1320	 *             |                   |
1321	 *       0xd000|___________________|
1322	 *             |                   |
1323	 *             |      rmABR        |
1324	 *       0xe000|___________________|
1325	 *             |                   |
1326	 *             |       RSRb        |
1327	 *             |___________________|
1328	 *             |                   |
1329	 *                      ....
1330	 *       0xffff|___________________|
1331	 */
1332
1333	he_writel(he_dev, 0x08000, RCMLBM_BA);
1334	he_writel(he_dev, 0x0e000, RCMRSRB_BA);
1335	he_writel(he_dev, 0x0d800, RCMABR_BA);
1336
1337	/* 5.1.4 initialize local buffer free pools linked lists */
1338
1339	he_init_rx_lbfp0(he_dev);
1340	he_init_rx_lbfp1(he_dev);
1341
1342	he_writel(he_dev, 0x0, RLBC_H);
1343	he_writel(he_dev, 0x0, RLBC_T);
1344	he_writel(he_dev, 0x0, RLBC_H2);
1345
1346	he_writel(he_dev, 512, RXTHRSH);	/* 10% of r0+r1 buffers */
1347	he_writel(he_dev, 256, LITHRSH); 	/* 5% of r0+r1 buffers */
1348
1349	he_init_tx_lbfp(he_dev);
1350
1351	he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
1352
1353	/* 5.1.5 initialize intermediate receive queues */
1354
1355	if (he_is622(he_dev)) {
1356		he_writel(he_dev, 0x000f, G0_INMQ_S);
1357		he_writel(he_dev, 0x200f, G0_INMQ_L);
1358
1359		he_writel(he_dev, 0x001f, G1_INMQ_S);
1360		he_writel(he_dev, 0x201f, G1_INMQ_L);
1361
1362		he_writel(he_dev, 0x002f, G2_INMQ_S);
1363		he_writel(he_dev, 0x202f, G2_INMQ_L);
1364
1365		he_writel(he_dev, 0x003f, G3_INMQ_S);
1366		he_writel(he_dev, 0x203f, G3_INMQ_L);
1367
1368		he_writel(he_dev, 0x004f, G4_INMQ_S);
1369		he_writel(he_dev, 0x204f, G4_INMQ_L);
1370
1371		he_writel(he_dev, 0x005f, G5_INMQ_S);
1372		he_writel(he_dev, 0x205f, G5_INMQ_L);
1373
1374		he_writel(he_dev, 0x006f, G6_INMQ_S);
1375		he_writel(he_dev, 0x206f, G6_INMQ_L);
1376
1377		he_writel(he_dev, 0x007f, G7_INMQ_S);
1378		he_writel(he_dev, 0x207f, G7_INMQ_L);
1379	} else {
1380		he_writel(he_dev, 0x0000, G0_INMQ_S);
1381		he_writel(he_dev, 0x0008, G0_INMQ_L);
1382
1383		he_writel(he_dev, 0x0001, G1_INMQ_S);
1384		he_writel(he_dev, 0x0009, G1_INMQ_L);
1385
1386		he_writel(he_dev, 0x0002, G2_INMQ_S);
1387		he_writel(he_dev, 0x000a, G2_INMQ_L);
1388
1389		he_writel(he_dev, 0x0003, G3_INMQ_S);
1390		he_writel(he_dev, 0x000b, G3_INMQ_L);
1391
1392		he_writel(he_dev, 0x0004, G4_INMQ_S);
1393		he_writel(he_dev, 0x000c, G4_INMQ_L);
1394
1395		he_writel(he_dev, 0x0005, G5_INMQ_S);
1396		he_writel(he_dev, 0x000d, G5_INMQ_L);
1397
1398		he_writel(he_dev, 0x0006, G6_INMQ_S);
1399		he_writel(he_dev, 0x000e, G6_INMQ_L);
1400
1401		he_writel(he_dev, 0x0007, G7_INMQ_S);
1402		he_writel(he_dev, 0x000f, G7_INMQ_L);
1403	}
1404
1405	/* 5.1.6 application tunable parameters */
1406
1407	he_writel(he_dev, 0x0, MCC);
1408	he_writel(he_dev, 0x0, OEC);
1409	he_writel(he_dev, 0x0, DCC);
1410	he_writel(he_dev, 0x0, CEC);
1411	
1412	/* 5.1.7 cs block initialization */
1413
1414	he_init_cs_block(he_dev);
1415
1416	/* 5.1.8 cs block connection memory initialization */
1417	
1418	if (he_init_cs_block_rcm(he_dev) < 0)
1419		return -ENOMEM;
1420
1421	/* 5.1.10 initialize host structures */
1422
1423	he_init_tpdrq(he_dev);
1424
1425	he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev,
1426					   sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
1427	if (he_dev->tpd_pool == NULL) {
1428		hprintk("unable to create tpd dma_pool\n");
1429		return -ENOMEM;         
1430	}
1431
1432	INIT_LIST_HEAD(&he_dev->outstanding_tpds);
1433
1434	if (he_init_group(he_dev, 0) != 0)
1435		return -ENOMEM;
1436
1437	for (group = 1; group < HE_NUM_GROUPS; ++group) {
1438		he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
1439		he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
1440		he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
1441		he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1442						G0_RBPS_BS + (group * 32));
1443
1444		he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
1445		he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
1446		he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1447						G0_RBPL_QI + (group * 32));
1448		he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
1449
1450		he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
1451		he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
1452		he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
1453						G0_RBRQ_Q + (group * 16));
1454		he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
1455
1456		he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
1457		he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
1458		he_writel(he_dev, TBRQ_THRESH(0x1),
1459						G0_TBRQ_THRESH + (group * 16));
1460		he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
1461	}
1462
1463	/* host status page */
1464
1465	he_dev->hsp = dma_zalloc_coherent(&he_dev->pci_dev->dev,
1466					  sizeof(struct he_hsp),
1467					  &he_dev->hsp_phys, GFP_KERNEL);
1468	if (he_dev->hsp == NULL) {
1469		hprintk("failed to allocate host status page\n");
1470		return -ENOMEM;
1471	}
1472	he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
1473
1474	/* initialize framer */
1475
1476#ifdef CONFIG_ATM_HE_USE_SUNI
1477	if (he_isMM(he_dev))
1478		suni_init(he_dev->atm_dev);
1479	if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
1480		he_dev->atm_dev->phy->start(he_dev->atm_dev);
1481#endif /* CONFIG_ATM_HE_USE_SUNI */
1482
1483	if (sdh) {
1484		/* this really should be in suni.c but for now... */
1485		int val;
1486
1487		val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
1488		val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
1489		he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
1490		he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
1491	}
1492
1493	/* 5.1.12 enable transmit and receive */
1494
1495	reg = he_readl_mbox(he_dev, CS_ERCTL0);
1496	reg |= TX_ENABLE|ER_ENABLE;
1497	he_writel_mbox(he_dev, reg, CS_ERCTL0);
1498
1499	reg = he_readl(he_dev, RC_CONFIG);
1500	reg |= RX_ENABLE;
1501	he_writel(he_dev, reg, RC_CONFIG);
1502
1503	for (i = 0; i < HE_NUM_CS_STPER; ++i) {
1504		he_dev->cs_stper[i].inuse = 0;
1505		he_dev->cs_stper[i].pcr = -1;
1506	}
1507	he_dev->total_bw = 0;
1508
1509
1510	/* atm linux initialization */
1511
1512	he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
1513	he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
1514
1515	he_dev->irq_peak = 0;
1516	he_dev->rbrq_peak = 0;
1517	he_dev->rbpl_peak = 0;
1518	he_dev->tbrq_peak = 0;
1519
1520	HPRINTK("hell bent for leather!\n");
1521
1522	return 0;
1523}
1524
1525static void
1526he_stop(struct he_dev *he_dev)
1527{
1528	struct he_buff *heb, *next;
1529	struct pci_dev *pci_dev;
1530	u32 gen_cntl_0, reg;
1531	u16 command;
1532
1533	pci_dev = he_dev->pci_dev;
1534
1535	/* disable interrupts */
1536
1537	if (he_dev->membase) {
1538		pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
1539		gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
1540		pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1541
1542		tasklet_disable(&he_dev->tasklet);
1543
1544		/* disable recv and transmit */
1545
1546		reg = he_readl_mbox(he_dev, CS_ERCTL0);
1547		reg &= ~(TX_ENABLE|ER_ENABLE);
1548		he_writel_mbox(he_dev, reg, CS_ERCTL0);
1549
1550		reg = he_readl(he_dev, RC_CONFIG);
1551		reg &= ~(RX_ENABLE);
1552		he_writel(he_dev, reg, RC_CONFIG);
1553	}
1554
1555#ifdef CONFIG_ATM_HE_USE_SUNI
1556	if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
1557		he_dev->atm_dev->phy->stop(he_dev->atm_dev);
1558#endif /* CONFIG_ATM_HE_USE_SUNI */
1559
1560	if (he_dev->irq)
1561		free_irq(he_dev->irq, he_dev);
1562
1563	if (he_dev->irq_base)
1564		dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1)
1565				  * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
1566
1567	if (he_dev->hsp)
1568		dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp),
1569				  he_dev->hsp, he_dev->hsp_phys);
1570
1571	if (he_dev->rbpl_base) {
1572		list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
1573			dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1574
1575		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE
1576				  * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
1577	}
1578
1579	kfree(he_dev->rbpl_virt);
1580	kfree(he_dev->rbpl_table);
1581	dma_pool_destroy(he_dev->rbpl_pool);
1582
1583	if (he_dev->rbrq_base)
1584		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
1585				  he_dev->rbrq_base, he_dev->rbrq_phys);
1586
1587	if (he_dev->tbrq_base)
1588		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1589				  he_dev->tbrq_base, he_dev->tbrq_phys);
1590
1591	if (he_dev->tpdrq_base)
1592		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1593				  he_dev->tpdrq_base, he_dev->tpdrq_phys);
1594
1595	dma_pool_destroy(he_dev->tpd_pool);
1596
1597	if (he_dev->pci_dev) {
1598		pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
1599		command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
1600		pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
1601	}
1602	
1603	if (he_dev->membase)
1604		iounmap(he_dev->membase);
1605}
1606
1607static struct he_tpd *
1608__alloc_tpd(struct he_dev *he_dev)
1609{
1610	struct he_tpd *tpd;
1611	dma_addr_t mapping;
1612
1613	tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping);
1614	if (tpd == NULL)
1615		return NULL;
1616			
1617	tpd->status = TPD_ADDR(mapping);
1618	tpd->reserved = 0; 
1619	tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
1620	tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
1621	tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
1622
1623	return tpd;
1624}
1625
1626#define AAL5_LEN(buf,len) 						\
1627			((((unsigned char *)(buf))[(len)-6] << 8) |	\
1628				(((unsigned char *)(buf))[(len)-5]))
1629
1630/* 2.10.1.2 receive
1631 *
1632 * aal5 packets can optionally return the tcp checksum in the lower
1633 * 16 bits of the crc (RSR0_TCP_CKSUM)
1634 */
1635
1636#define TCP_CKSUM(buf,len) 						\
1637			((((unsigned char *)(buf))[(len)-2] << 8) |	\
1638				(((unsigned char *)(buf))[(len-1)]))
1639
1640static int
1641he_service_rbrq(struct he_dev *he_dev, int group)
1642{
1643	struct he_rbrq *rbrq_tail = (struct he_rbrq *)
1644				((unsigned long)he_dev->rbrq_base |
1645					he_dev->hsp->group[group].rbrq_tail);
1646	unsigned cid, lastcid = -1;
1647	struct sk_buff *skb;
1648	struct atm_vcc *vcc = NULL;
1649	struct he_vcc *he_vcc;
1650	struct he_buff *heb, *next;
1651	int i;
1652	int pdus_assembled = 0;
1653	int updated = 0;
1654
1655	read_lock(&vcc_sklist_lock);
1656	while (he_dev->rbrq_head != rbrq_tail) {
1657		++updated;
1658
1659		HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
1660			he_dev->rbrq_head, group,
1661			RBRQ_ADDR(he_dev->rbrq_head),
1662			RBRQ_BUFLEN(he_dev->rbrq_head),
1663			RBRQ_CID(he_dev->rbrq_head),
1664			RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
1665			RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
1666			RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
1667			RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
1668			RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
1669			RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
1670
1671		i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
1672		heb = he_dev->rbpl_virt[i];
1673
1674		cid = RBRQ_CID(he_dev->rbrq_head);
1675		if (cid != lastcid)
1676			vcc = __find_vcc(he_dev, cid);
1677		lastcid = cid;
1678
1679		if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
1680			hprintk("vcc/he_vcc == NULL  (cid 0x%x)\n", cid);
1681			if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1682				clear_bit(i, he_dev->rbpl_table);
1683				list_del(&heb->entry);
1684				dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1685			}
1686					
1687			goto next_rbrq_entry;
1688		}
1689
1690		if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1691			hprintk("HBUF_ERR!  (cid 0x%x)\n", cid);
1692				atomic_inc(&vcc->stats->rx_drop);
1693			goto return_host_buffers;
1694		}
1695
1696		heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
1697		clear_bit(i, he_dev->rbpl_table);
1698		list_move_tail(&heb->entry, &he_vcc->buffers);
1699		he_vcc->pdu_len += heb->len;
1700
1701		if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
1702			lastcid = -1;
1703			HPRINTK("wake_up rx_waitq  (cid 0x%x)\n", cid);
1704			wake_up(&he_vcc->rx_waitq);
1705			goto return_host_buffers;
1706		}
1707
1708		if (!RBRQ_END_PDU(he_dev->rbrq_head))
1709			goto next_rbrq_entry;
1710
1711		if (RBRQ_LEN_ERR(he_dev->rbrq_head)
1712				|| RBRQ_CRC_ERR(he_dev->rbrq_head)) {
1713			HPRINTK("%s%s (%d.%d)\n",
1714				RBRQ_CRC_ERR(he_dev->rbrq_head)
1715							? "CRC_ERR " : "",
1716				RBRQ_LEN_ERR(he_dev->rbrq_head)
1717							? "LEN_ERR" : "",
1718							vcc->vpi, vcc->vci);
1719			atomic_inc(&vcc->stats->rx_err);
1720			goto return_host_buffers;
1721		}
1722
1723		skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
1724							GFP_ATOMIC);
1725		if (!skb) {
1726			HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
1727			goto return_host_buffers;
1728		}
1729
1730		if (rx_skb_reserve > 0)
1731			skb_reserve(skb, rx_skb_reserve);
1732
1733		__net_timestamp(skb);
1734
1735		list_for_each_entry(heb, &he_vcc->buffers, entry)
1736			memcpy(skb_put(skb, heb->len), &heb->data, heb->len);
1737
1738		switch (vcc->qos.aal) {
1739			case ATM_AAL0:
1740				/* 2.10.1.5 raw cell receive */
1741				skb->len = ATM_AAL0_SDU;
1742				skb_set_tail_pointer(skb, skb->len);
1743				break;
1744			case ATM_AAL5:
1745				/* 2.10.1.2 aal5 receive */
1746
1747				skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
1748				skb_set_tail_pointer(skb, skb->len);
1749#ifdef USE_CHECKSUM_HW
1750				if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
1751					skb->ip_summed = CHECKSUM_COMPLETE;
1752					skb->csum = TCP_CKSUM(skb->data,
1753							he_vcc->pdu_len);
1754				}
1755#endif
1756				break;
1757		}
1758
1759#ifdef should_never_happen
1760		if (skb->len > vcc->qos.rxtp.max_sdu)
1761			hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)!  cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
1762#endif
1763
1764#ifdef notdef
1765		ATM_SKB(skb)->vcc = vcc;
1766#endif
1767		spin_unlock(&he_dev->global_lock);
1768		vcc->push(vcc, skb);
1769		spin_lock(&he_dev->global_lock);
1770
1771		atomic_inc(&vcc->stats->rx);
1772
1773return_host_buffers:
1774		++pdus_assembled;
1775
1776		list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
1777			dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1778		INIT_LIST_HEAD(&he_vcc->buffers);
1779		he_vcc->pdu_len = 0;
1780
1781next_rbrq_entry:
1782		he_dev->rbrq_head = (struct he_rbrq *)
1783				((unsigned long) he_dev->rbrq_base |
1784					RBRQ_MASK(he_dev->rbrq_head + 1));
1785
1786	}
1787	read_unlock(&vcc_sklist_lock);
1788
1789	if (updated) {
1790		if (updated > he_dev->rbrq_peak)
1791			he_dev->rbrq_peak = updated;
1792
1793		he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
1794						G0_RBRQ_H + (group * 16));
1795	}
1796
1797	return pdus_assembled;
1798}
1799
1800static void
1801he_service_tbrq(struct he_dev *he_dev, int group)
1802{
1803	struct he_tbrq *tbrq_tail = (struct he_tbrq *)
1804				((unsigned long)he_dev->tbrq_base |
1805					he_dev->hsp->group[group].tbrq_tail);
1806	struct he_tpd *tpd;
1807	int slot, updated = 0;
1808	struct he_tpd *__tpd;
1809
1810	/* 2.1.6 transmit buffer return queue */
1811
1812	while (he_dev->tbrq_head != tbrq_tail) {
1813		++updated;
1814
1815		HPRINTK("tbrq%d 0x%x%s%s\n",
1816			group,
1817			TBRQ_TPD(he_dev->tbrq_head), 
1818			TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
1819			TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
1820		tpd = NULL;
1821		list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
1822			if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
1823				tpd = __tpd;
1824				list_del(&__tpd->entry);
1825				break;
1826			}
1827		}
1828
1829		if (tpd == NULL) {
1830			hprintk("unable to locate tpd for dma buffer %x\n",
1831						TBRQ_TPD(he_dev->tbrq_head));
1832			goto next_tbrq_entry;
1833		}
1834
1835		if (TBRQ_EOS(he_dev->tbrq_head)) {
1836			HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
1837				he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
1838			if (tpd->vcc)
1839				wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
1840
1841			goto next_tbrq_entry;
1842		}
1843
1844		for (slot = 0; slot < TPD_MAXIOV; ++slot) {
1845			if (tpd->iovec[slot].addr)
1846				dma_unmap_single(&he_dev->pci_dev->dev,
1847					tpd->iovec[slot].addr,
1848					tpd->iovec[slot].len & TPD_LEN_MASK,
1849							DMA_TO_DEVICE);
1850			if (tpd->iovec[slot].len & TPD_LST)
1851				break;
1852				
1853		}
1854
1855		if (tpd->skb) {	/* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */
1856			if (tpd->vcc && tpd->vcc->pop)
1857				tpd->vcc->pop(tpd->vcc, tpd->skb);
1858			else
1859				dev_kfree_skb_any(tpd->skb);
1860		}
1861
1862next_tbrq_entry:
1863		if (tpd)
1864			dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
1865		he_dev->tbrq_head = (struct he_tbrq *)
1866				((unsigned long) he_dev->tbrq_base |
1867					TBRQ_MASK(he_dev->tbrq_head + 1));
1868	}
1869
1870	if (updated) {
1871		if (updated > he_dev->tbrq_peak)
1872			he_dev->tbrq_peak = updated;
1873
1874		he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
1875						G0_TBRQ_H + (group * 16));
1876	}
1877}
1878
1879static void
1880he_service_rbpl(struct he_dev *he_dev, int group)
1881{
1882	struct he_rbp *new_tail;
1883	struct he_rbp *rbpl_head;
1884	struct he_buff *heb;
1885	dma_addr_t mapping;
1886	int i;
1887	int moved = 0;
1888
1889	rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1890					RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
1891
1892	for (;;) {
1893		new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1894						RBPL_MASK(he_dev->rbpl_tail+1));
1895
1896		/* table 3.42 -- rbpl_tail should never be set to rbpl_head */
1897		if (new_tail == rbpl_head)
1898			break;
1899
1900		i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
1901		if (i > (RBPL_TABLE_SIZE - 1)) {
1902			i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
1903			if (i > (RBPL_TABLE_SIZE - 1))
1904				break;
1905		}
1906		he_dev->rbpl_hint = i + 1;
1907
1908		heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping);
1909		if (!heb)
1910			break;
1911		heb->mapping = mapping;
1912		list_add(&heb->entry, &he_dev->rbpl_outstanding);
1913		he_dev->rbpl_virt[i] = heb;
1914		set_bit(i, he_dev->rbpl_table);
1915		new_tail->idx = i << RBP_IDX_OFFSET;
1916		new_tail->phys = mapping + offsetof(struct he_buff, data);
1917
1918		he_dev->rbpl_tail = new_tail;
1919		++moved;
1920	} 
1921
1922	if (moved)
1923		he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
1924}
1925
1926static void
1927he_tasklet(unsigned long data)
1928{
1929	unsigned long flags;
1930	struct he_dev *he_dev = (struct he_dev *) data;
1931	int group, type;
1932	int updated = 0;
1933
1934	HPRINTK("tasklet (0x%lx)\n", data);
1935	spin_lock_irqsave(&he_dev->global_lock, flags);
1936
1937	while (he_dev->irq_head != he_dev->irq_tail) {
1938		++updated;
1939
1940		type = ITYPE_TYPE(he_dev->irq_head->isw);
1941		group = ITYPE_GROUP(he_dev->irq_head->isw);
1942
1943		switch (type) {
1944			case ITYPE_RBRQ_THRESH:
1945				HPRINTK("rbrq%d threshold\n", group);
1946				/* fall through */
1947			case ITYPE_RBRQ_TIMER:
1948				if (he_service_rbrq(he_dev, group))
1949					he_service_rbpl(he_dev, group);
1950				break;
1951			case ITYPE_TBRQ_THRESH:
1952				HPRINTK("tbrq%d threshold\n", group);
1953				/* fall through */
1954			case ITYPE_TPD_COMPLETE:
1955				he_service_tbrq(he_dev, group);
1956				break;
1957			case ITYPE_RBPL_THRESH:
1958				he_service_rbpl(he_dev, group);
1959				break;
1960			case ITYPE_RBPS_THRESH:
1961				/* shouldn't happen unless small buffers enabled */
1962				break;
1963			case ITYPE_PHY:
1964				HPRINTK("phy interrupt\n");
1965#ifdef CONFIG_ATM_HE_USE_SUNI
1966				spin_unlock_irqrestore(&he_dev->global_lock, flags);
1967				if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
1968					he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
1969				spin_lock_irqsave(&he_dev->global_lock, flags);
1970#endif
1971				break;
1972			case ITYPE_OTHER:
1973				switch (type|group) {
1974					case ITYPE_PARITY:
1975						hprintk("parity error\n");
1976						break;
1977					case ITYPE_ABORT:
1978						hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
1979						break;
1980				}
1981				break;
1982			case ITYPE_TYPE(ITYPE_INVALID):
1983				/* see 8.1.1 -- check all queues */
1984
1985				HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
1986
1987				he_service_rbrq(he_dev, 0);
1988				he_service_rbpl(he_dev, 0);
1989				he_service_tbrq(he_dev, 0);
1990				break;
1991			default:
1992				hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
1993		}
1994
1995		he_dev->irq_head->isw = ITYPE_INVALID;
1996
1997		he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
1998	}
1999
2000	if (updated) {
2001		if (updated > he_dev->irq_peak)
2002			he_dev->irq_peak = updated;
2003
2004		he_writel(he_dev,
2005			IRQ_SIZE(CONFIG_IRQ_SIZE) |
2006			IRQ_THRESH(CONFIG_IRQ_THRESH) |
2007			IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
2008		(void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */
2009	}
2010	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2011}
2012
2013static irqreturn_t
2014he_irq_handler(int irq, void *dev_id)
2015{
2016	unsigned long flags;
2017	struct he_dev *he_dev = (struct he_dev * )dev_id;
2018	int handled = 0;
2019
2020	if (he_dev == NULL)
2021		return IRQ_NONE;
2022
2023	spin_lock_irqsave(&he_dev->global_lock, flags);
2024
2025	he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
2026						(*he_dev->irq_tailoffset << 2));
2027
2028	if (he_dev->irq_tail == he_dev->irq_head) {
2029		HPRINTK("tailoffset not updated?\n");
2030		he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
2031			((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
2032		(void) he_readl(he_dev, INT_FIFO);	/* 8.1.2 controller errata */
2033	}
2034
2035#ifdef DEBUG
2036	if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */)
2037		hprintk("spurious (or shared) interrupt?\n");
2038#endif
2039
2040	if (he_dev->irq_head != he_dev->irq_tail) {
2041		handled = 1;
2042		tasklet_schedule(&he_dev->tasklet);
2043		he_writel(he_dev, INT_CLEAR_A, INT_FIFO);	/* clear interrupt */
2044		(void) he_readl(he_dev, INT_FIFO);		/* flush posted writes */
2045	}
2046	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2047	return IRQ_RETVAL(handled);
2048
2049}
2050
2051static __inline__ void
2052__enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
2053{
2054	struct he_tpdrq *new_tail;
2055
2056	HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
2057					tpd, cid, he_dev->tpdrq_tail);
2058
2059	/* new_tail = he_dev->tpdrq_tail; */
2060	new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
2061					TPDRQ_MASK(he_dev->tpdrq_tail+1));
2062
2063	/*
2064	 * check to see if we are about to set the tail == head
2065	 * if true, update the head pointer from the adapter
2066	 * to see if this is really the case (reading the queue
2067	 * head for every enqueue would be unnecessarily slow)
2068	 */
2069
2070	if (new_tail == he_dev->tpdrq_head) {
2071		he_dev->tpdrq_head = (struct he_tpdrq *)
2072			(((unsigned long)he_dev->tpdrq_base) |
2073				TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
2074
2075		if (new_tail == he_dev->tpdrq_head) {
2076			int slot;
2077
2078			hprintk("tpdrq full (cid 0x%x)\n", cid);
2079			/*
2080			 * FIXME
2081			 * push tpd onto a transmit backlog queue
2082			 * after service_tbrq, service the backlog
2083			 * for now, we just drop the pdu
2084			 */
2085			for (slot = 0; slot < TPD_MAXIOV; ++slot) {
2086				if (tpd->iovec[slot].addr)
2087					dma_unmap_single(&he_dev->pci_dev->dev,
2088						tpd->iovec[slot].addr,
2089						tpd->iovec[slot].len & TPD_LEN_MASK,
2090								DMA_TO_DEVICE);
2091			}
2092			if (tpd->skb) {
2093				if (tpd->vcc->pop)
2094					tpd->vcc->pop(tpd->vcc, tpd->skb);
2095				else
2096					dev_kfree_skb_any(tpd->skb);
2097				atomic_inc(&tpd->vcc->stats->tx_err);
2098			}
2099			dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
2100			return;
2101		}
2102	}
2103
2104	/* 2.1.5 transmit packet descriptor ready queue */
2105	list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
2106	he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
2107	he_dev->tpdrq_tail->cid = cid;
2108	wmb();
2109
2110	he_dev->tpdrq_tail = new_tail;
2111
2112	he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
2113	(void) he_readl(he_dev, TPDRQ_T);		/* flush posted writes */
2114}
2115
2116static int
2117he_open(struct atm_vcc *vcc)
2118{
2119	unsigned long flags;
2120	struct he_dev *he_dev = HE_DEV(vcc->dev);
2121	struct he_vcc *he_vcc;
2122	int err = 0;
2123	unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
2124	short vpi = vcc->vpi;
2125	int vci = vcc->vci;
2126
2127	if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
2128		return 0;
2129
2130	HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
2131
2132	set_bit(ATM_VF_ADDR, &vcc->flags);
2133
2134	cid = he_mkcid(he_dev, vpi, vci);
2135
2136	he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
2137	if (he_vcc == NULL) {
2138		hprintk("unable to allocate he_vcc during open\n");
2139		return -ENOMEM;
2140	}
2141
2142	INIT_LIST_HEAD(&he_vcc->buffers);
2143	he_vcc->pdu_len = 0;
2144	he_vcc->rc_index = -1;
2145
2146	init_waitqueue_head(&he_vcc->rx_waitq);
2147	init_waitqueue_head(&he_vcc->tx_waitq);
2148
2149	vcc->dev_data = he_vcc;
2150
2151	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2152		int pcr_goal;
2153
2154		pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
2155		if (pcr_goal == 0)
2156			pcr_goal = he_dev->atm_dev->link_rate;
2157		if (pcr_goal < 0)	/* means round down, technically */
2158			pcr_goal = -pcr_goal;
2159
2160		HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
2161
2162		switch (vcc->qos.aal) {
2163			case ATM_AAL5:
2164				tsr0_aal = TSR0_AAL5;
2165				tsr4 = TSR4_AAL5;
2166				break;
2167			case ATM_AAL0:
2168				tsr0_aal = TSR0_AAL0_SDU;
2169				tsr4 = TSR4_AAL0_SDU;
2170				break;
2171			default:
2172				err = -EINVAL;
2173				goto open_failed;
2174		}
2175
2176		spin_lock_irqsave(&he_dev->global_lock, flags);
2177		tsr0 = he_readl_tsr0(he_dev, cid);
2178		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2179
2180		if (TSR0_CONN_STATE(tsr0) != 0) {
2181			hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
2182			err = -EBUSY;
2183			goto open_failed;
2184		}
2185
2186		switch (vcc->qos.txtp.traffic_class) {
2187			case ATM_UBR:
2188				/* 2.3.3.1 open connection ubr */
2189
2190				tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
2191					TSR0_USE_WMIN | TSR0_UPDATE_GER;
2192				break;
2193
2194			case ATM_CBR:
2195				/* 2.3.3.2 open connection cbr */
2196
2197				/* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */
2198				if ((he_dev->total_bw + pcr_goal)
2199					> (he_dev->atm_dev->link_rate * 9 / 10))
2200				{
2201					err = -EBUSY;
2202					goto open_failed;
2203				}
2204
2205				spin_lock_irqsave(&he_dev->global_lock, flags);			/* also protects he_dev->cs_stper[] */
2206
2207				/* find an unused cs_stper register */
2208				for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
2209					if (he_dev->cs_stper[reg].inuse == 0 || 
2210					    he_dev->cs_stper[reg].pcr == pcr_goal)
2211							break;
2212
2213				if (reg == HE_NUM_CS_STPER) {
2214					err = -EBUSY;
2215					spin_unlock_irqrestore(&he_dev->global_lock, flags);
2216					goto open_failed;
2217				}
2218
2219				he_dev->total_bw += pcr_goal;
2220
2221				he_vcc->rc_index = reg;
2222				++he_dev->cs_stper[reg].inuse;
2223				he_dev->cs_stper[reg].pcr = pcr_goal;
2224
2225				clock = he_is622(he_dev) ? 66667000 : 50000000;
2226				period = clock / pcr_goal;
2227				
2228				HPRINTK("rc_index = %d period = %d\n",
2229								reg, period);
2230
2231				he_writel_mbox(he_dev, rate_to_atmf(period/2),
2232							CS_STPER0 + reg);
2233				spin_unlock_irqrestore(&he_dev->global_lock, flags);
2234
2235				tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
2236							TSR0_RC_INDEX(reg);
2237
2238				break;
2239			default:
2240				err = -EINVAL;
2241				goto open_failed;
2242		}
2243
2244		spin_lock_irqsave(&he_dev->global_lock, flags);
2245
2246		he_writel_tsr0(he_dev, tsr0, cid);
2247		he_writel_tsr4(he_dev, tsr4 | 1, cid);
2248		he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
2249					TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
2250		he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
2251		he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
2252
2253		he_writel_tsr3(he_dev, 0x0, cid);
2254		he_writel_tsr5(he_dev, 0x0, cid);
2255		he_writel_tsr6(he_dev, 0x0, cid);
2256		he_writel_tsr7(he_dev, 0x0, cid);
2257		he_writel_tsr8(he_dev, 0x0, cid);
2258		he_writel_tsr10(he_dev, 0x0, cid);
2259		he_writel_tsr11(he_dev, 0x0, cid);
2260		he_writel_tsr12(he_dev, 0x0, cid);
2261		he_writel_tsr13(he_dev, 0x0, cid);
2262		he_writel_tsr14(he_dev, 0x0, cid);
2263		(void) he_readl_tsr0(he_dev, cid);		/* flush posted writes */
2264		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2265	}
2266
2267	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2268		unsigned aal;
2269
2270		HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
2271		 				&HE_VCC(vcc)->rx_waitq);
2272
2273		switch (vcc->qos.aal) {
2274			case ATM_AAL5:
2275				aal = RSR0_AAL5;
2276				break;
2277			case ATM_AAL0:
2278				aal = RSR0_RAWCELL;
2279				break;
2280			default:
2281				err = -EINVAL;
2282				goto open_failed;
2283		}
2284
2285		spin_lock_irqsave(&he_dev->global_lock, flags);
2286
2287		rsr0 = he_readl_rsr0(he_dev, cid);
2288		if (rsr0 & RSR0_OPEN_CONN) {
2289			spin_unlock_irqrestore(&he_dev->global_lock, flags);
2290
2291			hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
2292			err = -EBUSY;
2293			goto open_failed;
2294		}
2295
2296		rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
2297		rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
2298		rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ? 
2299				(RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
2300
2301#ifdef USE_CHECKSUM_HW
2302		if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
2303			rsr0 |= RSR0_TCP_CKSUM;
2304#endif
2305
2306		he_writel_rsr4(he_dev, rsr4, cid);
2307		he_writel_rsr1(he_dev, rsr1, cid);
2308		/* 5.1.11 last parameter initialized should be
2309			  the open/closed indication in rsr0 */
2310		he_writel_rsr0(he_dev,
2311			rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
2312		(void) he_readl_rsr0(he_dev, cid);		/* flush posted writes */
2313
2314		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2315	}
2316
2317open_failed:
2318
2319	if (err) {
2320		kfree(he_vcc);
2321		clear_bit(ATM_VF_ADDR, &vcc->flags);
2322	}
2323	else
2324		set_bit(ATM_VF_READY, &vcc->flags);
2325
2326	return err;
2327}
2328
2329static void
2330he_close(struct atm_vcc *vcc)
2331{
2332	unsigned long flags;
2333	DECLARE_WAITQUEUE(wait, current);
2334	struct he_dev *he_dev = HE_DEV(vcc->dev);
2335	struct he_tpd *tpd;
2336	unsigned cid;
2337	struct he_vcc *he_vcc = HE_VCC(vcc);
2338#define MAX_RETRY 30
2339	int retry = 0, sleep = 1, tx_inuse;
2340
2341	HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
2342
2343	clear_bit(ATM_VF_READY, &vcc->flags);
2344	cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2345
2346	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2347		int timeout;
2348
2349		HPRINTK("close rx cid 0x%x\n", cid);
2350
2351		/* 2.7.2.2 close receive operation */
2352
2353		/* wait for previous close (if any) to finish */
2354
2355		spin_lock_irqsave(&he_dev->global_lock, flags);
2356		while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
2357			HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
2358			udelay(250);
2359		}
2360
2361		set_current_state(TASK_UNINTERRUPTIBLE);
2362		add_wait_queue(&he_vcc->rx_waitq, &wait);
2363
2364		he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
2365		(void) he_readl_rsr0(he_dev, cid);		/* flush posted writes */
2366		he_writel_mbox(he_dev, cid, RXCON_CLOSE);
2367		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2368
2369		timeout = schedule_timeout(30*HZ);
2370
2371		remove_wait_queue(&he_vcc->rx_waitq, &wait);
2372		set_current_state(TASK_RUNNING);
2373
2374		if (timeout == 0)
2375			hprintk("close rx timeout cid 0x%x\n", cid);
2376
2377		HPRINTK("close rx cid 0x%x complete\n", cid);
2378
2379	}
2380
2381	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2382		volatile unsigned tsr4, tsr0;
2383		int timeout;
2384
2385		HPRINTK("close tx cid 0x%x\n", cid);
2386		
2387		/* 2.1.2
2388		 *
2389		 * ... the host must first stop queueing packets to the TPDRQ
2390		 * on the connection to be closed, then wait for all outstanding
2391		 * packets to be transmitted and their buffers returned to the
2392		 * TBRQ. When the last packet on the connection arrives in the
2393		 * TBRQ, the host issues the close command to the adapter.
2394		 */
2395
2396		while (((tx_inuse = atomic_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
2397		       (retry < MAX_RETRY)) {
2398			msleep(sleep);
2399			if (sleep < 250)
2400				sleep = sleep * 2;
2401
2402			++retry;
2403		}
2404
2405		if (tx_inuse > 1)
2406			hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
2407
2408		/* 2.3.1.1 generic close operations with flush */
2409
2410		spin_lock_irqsave(&he_dev->global_lock, flags);
2411		he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
2412					/* also clears TSR4_SESSION_ENDED */
2413
2414		switch (vcc->qos.txtp.traffic_class) {
2415			case ATM_UBR:
2416				he_writel_tsr1(he_dev, 
2417					TSR1_MCR(rate_to_atmf(200000))
2418					| TSR1_PCR(0), cid);
2419				break;
2420			case ATM_CBR:
2421				he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
2422				break;
2423		}
2424		(void) he_readl_tsr4(he_dev, cid);		/* flush posted writes */
2425
2426		tpd = __alloc_tpd(he_dev);
2427		if (tpd == NULL) {
2428			hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
2429			goto close_tx_incomplete;
2430		}
2431		tpd->status |= TPD_EOS | TPD_INT;
2432		tpd->skb = NULL;
2433		tpd->vcc = vcc;
2434		wmb();
2435
2436		set_current_state(TASK_UNINTERRUPTIBLE);
2437		add_wait_queue(&he_vcc->tx_waitq, &wait);
2438		__enqueue_tpd(he_dev, tpd, cid);
2439		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2440
2441		timeout = schedule_timeout(30*HZ);
2442
2443		remove_wait_queue(&he_vcc->tx_waitq, &wait);
2444		set_current_state(TASK_RUNNING);
2445
2446		spin_lock_irqsave(&he_dev->global_lock, flags);
2447
2448		if (timeout == 0) {
2449			hprintk("close tx timeout cid 0x%x\n", cid);
2450			goto close_tx_incomplete;
2451		}
2452
2453		while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
2454			HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
2455			udelay(250);
2456		}
2457
2458		while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
2459			HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
2460			udelay(250);
2461		}
2462
2463close_tx_incomplete:
2464
2465		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2466			int reg = he_vcc->rc_index;
2467
2468			HPRINTK("cs_stper reg = %d\n", reg);
2469
2470			if (he_dev->cs_stper[reg].inuse == 0)
2471				hprintk("cs_stper[%d].inuse = 0!\n", reg);
2472			else
2473				--he_dev->cs_stper[reg].inuse;
2474
2475			he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
2476		}
2477		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2478
2479		HPRINTK("close tx cid 0x%x complete\n", cid);
2480	}
2481
2482	kfree(he_vcc);
2483
2484	clear_bit(ATM_VF_ADDR, &vcc->flags);
2485}
2486
2487static int
2488he_send(struct atm_vcc *vcc, struct sk_buff *skb)
2489{
2490	unsigned long flags;
2491	struct he_dev *he_dev = HE_DEV(vcc->dev);
2492	unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2493	struct he_tpd *tpd;
2494#ifdef USE_SCATTERGATHER
2495	int i, slot = 0;
2496#endif
2497
2498#define HE_TPD_BUFSIZE 0xffff
2499
2500	HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
2501
2502	if ((skb->len > HE_TPD_BUFSIZE) ||
2503	    ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
2504		hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
2505		if (vcc->pop)
2506			vcc->pop(vcc, skb);
2507		else
2508			dev_kfree_skb_any(skb);
2509		atomic_inc(&vcc->stats->tx_err);
2510		return -EINVAL;
2511	}
2512
2513#ifndef USE_SCATTERGATHER
2514	if (skb_shinfo(skb)->nr_frags) {
2515		hprintk("no scatter/gather support\n");
2516		if (vcc->pop)
2517			vcc->pop(vcc, skb);
2518		else
2519			dev_kfree_skb_any(skb);
2520		atomic_inc(&vcc->stats->tx_err);
2521		return -EINVAL;
2522	}
2523#endif
2524	spin_lock_irqsave(&he_dev->global_lock, flags);
2525
2526	tpd = __alloc_tpd(he_dev);
2527	if (tpd == NULL) {
2528		if (vcc->pop)
2529			vcc->pop(vcc, skb);
2530		else
2531			dev_kfree_skb_any(skb);
2532		atomic_inc(&vcc->stats->tx_err);
2533		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2534		return -ENOMEM;
2535	}
2536
2537	if (vcc->qos.aal == ATM_AAL5)
2538		tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
2539	else {
2540		char *pti_clp = (void *) (skb->data + 3);
2541		int clp, pti;
2542
2543		pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 
2544		clp = (*pti_clp & ATM_HDR_CLP);
2545		tpd->status |= TPD_CELLTYPE(pti);
2546		if (clp)
2547			tpd->status |= TPD_CLP;
2548
2549		skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
2550	}
2551
2552#ifdef USE_SCATTERGATHER
2553	tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data,
2554				skb_headlen(skb), DMA_TO_DEVICE);
2555	tpd->iovec[slot].len = skb_headlen(skb);
2556	++slot;
2557
2558	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2559		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2560
2561		if (slot == TPD_MAXIOV) {	/* queue tpd; start new tpd */
2562			tpd->vcc = vcc;
2563			tpd->skb = NULL;	/* not the last fragment
2564						   so dont ->push() yet */
2565			wmb();
2566
2567			__enqueue_tpd(he_dev, tpd, cid);
2568			tpd = __alloc_tpd(he_dev);
2569			if (tpd == NULL) {
2570				if (vcc->pop)
2571					vcc->pop(vcc, skb);
2572				else
2573					dev_kfree_skb_any(skb);
2574				atomic_inc(&vcc->stats->tx_err);
2575				spin_unlock_irqrestore(&he_dev->global_lock, flags);
2576				return -ENOMEM;
2577			}
2578			tpd->status |= TPD_USERCELL;
2579			slot = 0;
2580		}
2581
2582		tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev,
2583			(void *) page_address(frag->page) + frag->page_offset,
2584				frag->size, DMA_TO_DEVICE);
2585		tpd->iovec[slot].len = frag->size;
2586		++slot;
2587
2588	}
2589
2590	tpd->iovec[slot - 1].len |= TPD_LST;
2591#else
2592	tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
2593	tpd->length0 = skb->len | TPD_LST;
2594#endif
2595	tpd->status |= TPD_INT;
2596
2597	tpd->vcc = vcc;
2598	tpd->skb = skb;
2599	wmb();
2600	ATM_SKB(skb)->vcc = vcc;
2601
2602	__enqueue_tpd(he_dev, tpd, cid);
2603	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2604
2605	atomic_inc(&vcc->stats->tx);
2606
2607	return 0;
2608}
2609
2610static int
2611he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
2612{
2613	unsigned long flags;
2614	struct he_dev *he_dev = HE_DEV(atm_dev);
2615	struct he_ioctl_reg reg;
2616	int err = 0;
2617
2618	switch (cmd) {
2619		case HE_GET_REG:
2620			if (!capable(CAP_NET_ADMIN))
2621				return -EPERM;
2622
2623			if (copy_from_user(&reg, arg,
2624					   sizeof(struct he_ioctl_reg)))
2625				return -EFAULT;
2626
2627			spin_lock_irqsave(&he_dev->global_lock, flags);
2628			switch (reg.type) {
2629				case HE_REGTYPE_PCI:
2630					if (reg.addr >= HE_REGMAP_SIZE) {
2631						err = -EINVAL;
2632						break;
2633					}
2634
2635					reg.val = he_readl(he_dev, reg.addr);
2636					break;
2637				case HE_REGTYPE_RCM:
2638					reg.val =
2639						he_readl_rcm(he_dev, reg.addr);
2640					break;
2641				case HE_REGTYPE_TCM:
2642					reg.val =
2643						he_readl_tcm(he_dev, reg.addr);
2644					break;
2645				case HE_REGTYPE_MBOX:
2646					reg.val =
2647						he_readl_mbox(he_dev, reg.addr);
2648					break;
2649				default:
2650					err = -EINVAL;
2651					break;
2652			}
2653			spin_unlock_irqrestore(&he_dev->global_lock, flags);
2654			if (err == 0)
2655				if (copy_to_user(arg, &reg,
2656							sizeof(struct he_ioctl_reg)))
2657					return -EFAULT;
2658			break;
2659		default:
2660#ifdef CONFIG_ATM_HE_USE_SUNI
2661			if (atm_dev->phy && atm_dev->phy->ioctl)
2662				err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
2663#else /* CONFIG_ATM_HE_USE_SUNI */
2664			err = -EINVAL;
2665#endif /* CONFIG_ATM_HE_USE_SUNI */
2666			break;
2667	}
2668
2669	return err;
2670}
2671
2672static void
2673he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
2674{
2675	unsigned long flags;
2676	struct he_dev *he_dev = HE_DEV(atm_dev);
2677
2678	HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
2679
2680	spin_lock_irqsave(&he_dev->global_lock, flags);
2681	he_writel(he_dev, val, FRAMER + (addr*4));
2682	(void) he_readl(he_dev, FRAMER + (addr*4));		/* flush posted writes */
2683	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2684}
2685 
2686	
2687static unsigned char
2688he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
2689{ 
2690	unsigned long flags;
2691	struct he_dev *he_dev = HE_DEV(atm_dev);
2692	unsigned reg;
2693
2694	spin_lock_irqsave(&he_dev->global_lock, flags);
2695	reg = he_readl(he_dev, FRAMER + (addr*4));
2696	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2697
2698	HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
2699	return reg;
2700}
2701
2702static int
2703he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
2704{
2705	unsigned long flags;
2706	struct he_dev *he_dev = HE_DEV(dev);
2707	int left, i;
2708#ifdef notdef
2709	struct he_rbrq *rbrq_tail;
2710	struct he_tpdrq *tpdrq_head;
2711	int rbpl_head, rbpl_tail;
2712#endif
2713	static long mcc = 0, oec = 0, dcc = 0, cec = 0;
2714
2715
2716	left = *pos;
2717	if (!left--)
2718		return sprintf(page, "ATM he driver\n");
2719
2720	if (!left--)
2721		return sprintf(page, "%s%s\n\n",
2722			he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
2723
2724	if (!left--)
2725		return sprintf(page, "Mismatched Cells  VPI/VCI Not Open  Dropped Cells  RCM Dropped Cells\n");
2726
2727	spin_lock_irqsave(&he_dev->global_lock, flags);
2728	mcc += he_readl(he_dev, MCC);
2729	oec += he_readl(he_dev, OEC);
2730	dcc += he_readl(he_dev, DCC);
2731	cec += he_readl(he_dev, CEC);
2732	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2733
2734	if (!left--)
2735		return sprintf(page, "%16ld  %16ld  %13ld  %17ld\n\n", 
2736							mcc, oec, dcc, cec);
2737
2738	if (!left--)
2739		return sprintf(page, "irq_size = %d  inuse = ?  peak = %d\n",
2740				CONFIG_IRQ_SIZE, he_dev->irq_peak);
2741
2742	if (!left--)
2743		return sprintf(page, "tpdrq_size = %d  inuse = ?\n",
2744						CONFIG_TPDRQ_SIZE);
2745
2746	if (!left--)
2747		return sprintf(page, "rbrq_size = %d  inuse = ?  peak = %d\n",
2748				CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
2749
2750	if (!left--)
2751		return sprintf(page, "tbrq_size = %d  peak = %d\n",
2752					CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
2753
2754
2755#ifdef notdef
2756	rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
2757	rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
2758
2759	inuse = rbpl_head - rbpl_tail;
2760	if (inuse < 0)
2761		inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
2762	inuse /= sizeof(struct he_rbp);
2763
2764	if (!left--)
2765		return sprintf(page, "rbpl_size = %d  inuse = %d\n\n",
2766						CONFIG_RBPL_SIZE, inuse);
2767#endif
2768
2769	if (!left--)
2770		return sprintf(page, "rate controller periods (cbr)\n                 pcr  #vc\n");
2771
2772	for (i = 0; i < HE_NUM_CS_STPER; ++i)
2773		if (!left--)
2774			return sprintf(page, "cs_stper%-2d  %8ld  %3d\n", i,
2775						he_dev->cs_stper[i].pcr,
2776						he_dev->cs_stper[i].inuse);
2777
2778	if (!left--)
2779		return sprintf(page, "total bw (cbr): %d  (limit %d)\n",
2780			he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
2781
2782	return 0;
2783}
2784
2785/* eeprom routines  -- see 4.7 */
2786
2787static u8 read_prom_byte(struct he_dev *he_dev, int addr)
2788{
2789	u32 val = 0, tmp_read = 0;
2790	int i, j = 0;
2791	u8 byte_read = 0;
2792
2793	val = readl(he_dev->membase + HOST_CNTL);
2794	val &= 0xFFFFE0FF;
2795       
2796	/* Turn on write enable */
2797	val |= 0x800;
2798	he_writel(he_dev, val, HOST_CNTL);
2799       
2800	/* Send READ instruction */
2801	for (i = 0; i < ARRAY_SIZE(readtab); i++) {
2802		he_writel(he_dev, val | readtab[i], HOST_CNTL);
2803		udelay(EEPROM_DELAY);
2804	}
2805       
2806	/* Next, we need to send the byte address to read from */
2807	for (i = 7; i >= 0; i--) {
2808		he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2809		udelay(EEPROM_DELAY);
2810		he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2811		udelay(EEPROM_DELAY);
2812	}
2813       
2814	j = 0;
2815
2816	val &= 0xFFFFF7FF;      /* Turn off write enable */
2817	he_writel(he_dev, val, HOST_CNTL);
2818       
2819	/* Now, we can read data from the EEPROM by clocking it in */
2820	for (i = 7; i >= 0; i--) {
2821		he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2822		udelay(EEPROM_DELAY);
2823		tmp_read = he_readl(he_dev, HOST_CNTL);
2824		byte_read |= (unsigned char)
2825			   ((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
2826		he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2827		udelay(EEPROM_DELAY);
2828	}
2829       
2830	he_writel(he_dev, val | ID_CS, HOST_CNTL);
2831	udelay(EEPROM_DELAY);
2832
2833	return byte_read;
2834}
2835
2836MODULE_LICENSE("GPL");
2837MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
2838MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
2839module_param(disable64, bool, 0);
2840MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
2841module_param(nvpibits, short, 0);
2842MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
2843module_param(nvcibits, short, 0);
2844MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
2845module_param(rx_skb_reserve, short, 0);
2846MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
2847module_param(irq_coalesce, bool, 0);
2848MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
2849module_param(sdh, bool, 0);
2850MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
2851
2852static struct pci_device_id he_pci_tbl[] = {
2853	{ PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
2854	{ 0, }
2855};
2856
2857MODULE_DEVICE_TABLE(pci, he_pci_tbl);
2858
2859static struct pci_driver he_driver = {
2860	.name =		"he",
2861	.probe =	he_init_one,
2862	.remove =	he_remove_one,
2863	.id_table =	he_pci_tbl,
2864};
2865
2866module_pci_driver(he_driver);