Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/mm.h>
  3#include <linux/gfp.h>
  4#include <linux/hugetlb.h>
  5#include <asm/pgalloc.h>
  6#include <asm/pgtable.h>
  7#include <asm/tlb.h>
  8#include <asm/fixmap.h>
  9#include <asm/mtrr.h>
 10
 11#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
 12phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
 13EXPORT_SYMBOL(physical_mask);
 14#endif
 15
 16#ifdef CONFIG_HIGHPTE
 17#define PGTABLE_HIGHMEM __GFP_HIGHMEM
 18#else
 19#define PGTABLE_HIGHMEM 0
 20#endif
 21
 22gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
 23
 24pgtable_t pte_alloc_one(struct mm_struct *mm)
 25{
 26	return __pte_alloc_one(mm, __userpte_alloc_gfp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27}
 28
 29static int __init setup_userpte(char *arg)
 30{
 31	if (!arg)
 32		return -EINVAL;
 33
 34	/*
 35	 * "userpte=nohigh" disables allocation of user pagetables in
 36	 * high memory.
 37	 */
 38	if (strcmp(arg, "nohigh") == 0)
 39		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 40	else
 41		return -EINVAL;
 42	return 0;
 43}
 44early_param("userpte", setup_userpte);
 45
 46void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 47{
 48	pgtable_pte_page_dtor(pte);
 49	paravirt_release_pte(page_to_pfn(pte));
 50	paravirt_tlb_remove_table(tlb, pte);
 51}
 52
 53#if CONFIG_PGTABLE_LEVELS > 2
 54void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 55{
 56	struct page *page = virt_to_page(pmd);
 57	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 58	/*
 59	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
 60	 * entries need a full cr3 reload to flush.
 61	 */
 62#ifdef CONFIG_X86_PAE
 63	tlb->need_flush_all = 1;
 64#endif
 65	pgtable_pmd_page_dtor(page);
 66	paravirt_tlb_remove_table(tlb, page);
 67}
 68
 69#if CONFIG_PGTABLE_LEVELS > 3
 70void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 71{
 72	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 73	paravirt_tlb_remove_table(tlb, virt_to_page(pud));
 74}
 75
 76#if CONFIG_PGTABLE_LEVELS > 4
 77void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
 78{
 79	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
 80	paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
 81}
 82#endif	/* CONFIG_PGTABLE_LEVELS > 4 */
 83#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
 84#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
 85
 86static inline void pgd_list_add(pgd_t *pgd)
 87{
 88	struct page *page = virt_to_page(pgd);
 89
 90	list_add(&page->lru, &pgd_list);
 91}
 92
 93static inline void pgd_list_del(pgd_t *pgd)
 94{
 95	struct page *page = virt_to_page(pgd);
 96
 97	list_del(&page->lru);
 98}
 99
100#define UNSHARED_PTRS_PER_PGD				\
101	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
102#define MAX_UNSHARED_PTRS_PER_PGD			\
103	max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
104
105
106static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
107{
108	virt_to_page(pgd)->pt_mm = mm;
 
109}
110
111struct mm_struct *pgd_page_get_mm(struct page *page)
112{
113	return page->pt_mm;
114}
115
116static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
117{
118	/* If the pgd points to a shared pagetable level (either the
119	   ptes in non-PAE, or shared PMD in PAE), then just copy the
120	   references from swapper_pg_dir. */
121	if (CONFIG_PGTABLE_LEVELS == 2 ||
122	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
123	    CONFIG_PGTABLE_LEVELS >= 4) {
124		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
125				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
126				KERNEL_PGD_PTRS);
127	}
128
129	/* list required to sync kernel mapping updates */
130	if (!SHARED_KERNEL_PMD) {
131		pgd_set_mm(pgd, mm);
132		pgd_list_add(pgd);
133	}
134}
135
136static void pgd_dtor(pgd_t *pgd)
137{
138	if (SHARED_KERNEL_PMD)
139		return;
140
141	spin_lock(&pgd_lock);
142	pgd_list_del(pgd);
143	spin_unlock(&pgd_lock);
144}
145
146/*
147 * List of all pgd's needed for non-PAE so it can invalidate entries
148 * in both cached and uncached pgd's; not needed for PAE since the
149 * kernel pmd is shared. If PAE were not to share the pmd a similar
150 * tactic would be needed. This is essentially codepath-based locking
151 * against pageattr.c; it is the unique case in which a valid change
152 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
153 * vmalloc faults work because attached pagetables are never freed.
154 * -- nyc
155 */
156
157#ifdef CONFIG_X86_PAE
158/*
159 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
160 * updating the top-level pagetable entries to guarantee the
161 * processor notices the update.  Since this is expensive, and
162 * all 4 top-level entries are used almost immediately in a
163 * new process's life, we just pre-populate them here.
164 *
165 * Also, if we're in a paravirt environment where the kernel pmd is
166 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
167 * and initialize the kernel pmds here.
168 */
169#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
170#define MAX_PREALLOCATED_PMDS	MAX_UNSHARED_PTRS_PER_PGD
171
172/*
173 * We allocate separate PMDs for the kernel part of the user page-table
174 * when PTI is enabled. We need them to map the per-process LDT into the
175 * user-space page-table.
176 */
177#define PREALLOCATED_USER_PMDS	 (boot_cpu_has(X86_FEATURE_PTI) ? \
178					KERNEL_PGD_PTRS : 0)
179#define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
180
181void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
182{
183	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
184
185	/* Note: almost everything apart from _PAGE_PRESENT is
186	   reserved at the pmd (PDPT) level. */
187	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
188
189	/*
190	 * According to Intel App note "TLBs, Paging-Structure Caches,
191	 * and Their Invalidation", April 2007, document 317080-001,
192	 * section 8.1: in PAE mode we explicitly have to flush the
193	 * TLB via cr3 if the top-level pgd is changed...
194	 */
195	flush_tlb_mm(mm);
196}
197#else  /* !CONFIG_X86_PAE */
198
199/* No need to prepopulate any pagetable entries in non-PAE modes. */
200#define PREALLOCATED_PMDS	0
201#define MAX_PREALLOCATED_PMDS	0
202#define PREALLOCATED_USER_PMDS	 0
203#define MAX_PREALLOCATED_USER_PMDS 0
204#endif	/* CONFIG_X86_PAE */
205
206static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
207{
208	int i;
209
210	for (i = 0; i < count; i++)
211		if (pmds[i]) {
212			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
213			free_page((unsigned long)pmds[i]);
214			mm_dec_nr_pmds(mm);
215		}
216}
217
218static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
219{
220	int i;
221	bool failed = false;
222	gfp_t gfp = GFP_PGTABLE_USER;
223
224	if (mm == &init_mm)
225		gfp &= ~__GFP_ACCOUNT;
226
227	for (i = 0; i < count; i++) {
228		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
229		if (!pmd)
230			failed = true;
231		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
232			free_page((unsigned long)pmd);
233			pmd = NULL;
234			failed = true;
235		}
236		if (pmd)
237			mm_inc_nr_pmds(mm);
238		pmds[i] = pmd;
239	}
240
241	if (failed) {
242		free_pmds(mm, pmds, count);
243		return -ENOMEM;
244	}
245
246	return 0;
247}
248
249/*
250 * Mop up any pmd pages which may still be attached to the pgd.
251 * Normally they will be freed by munmap/exit_mmap, but any pmd we
252 * preallocate which never got a corresponding vma will need to be
253 * freed manually.
254 */
255static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
256{
257	pgd_t pgd = *pgdp;
258
259	if (pgd_val(pgd) != 0) {
260		pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
261
262		pgd_clear(pgdp);
263
264		paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
265		pmd_free(mm, pmd);
266		mm_dec_nr_pmds(mm);
267	}
268}
269
270static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
271{
272	int i;
273
274	for (i = 0; i < PREALLOCATED_PMDS; i++)
275		mop_up_one_pmd(mm, &pgdp[i]);
276
277#ifdef CONFIG_PAGE_TABLE_ISOLATION
278
279	if (!boot_cpu_has(X86_FEATURE_PTI))
280		return;
281
282	pgdp = kernel_to_user_pgdp(pgdp);
283
284	for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
285		mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
286#endif
 
 
287}
288
289static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
290{
291	p4d_t *p4d;
292	pud_t *pud;
293	int i;
294
295	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
296		return;
297
298	p4d = p4d_offset(pgd, 0);
299	pud = pud_offset(p4d, 0);
300
301	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
302		pmd_t *pmd = pmds[i];
303
304		if (i >= KERNEL_PGD_BOUNDARY)
305			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
306			       sizeof(pmd_t) * PTRS_PER_PMD);
307
308		pud_populate(mm, pud, pmd);
309	}
310}
311
312#ifdef CONFIG_PAGE_TABLE_ISOLATION
313static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
314				     pgd_t *k_pgd, pmd_t *pmds[])
315{
316	pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
317	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
318	p4d_t *u_p4d;
319	pud_t *u_pud;
320	int i;
321
322	u_p4d = p4d_offset(u_pgd, 0);
323	u_pud = pud_offset(u_p4d, 0);
324
325	s_pgd += KERNEL_PGD_BOUNDARY;
326	u_pud += KERNEL_PGD_BOUNDARY;
327
328	for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
329		pmd_t *pmd = pmds[i];
330
331		memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
332		       sizeof(pmd_t) * PTRS_PER_PMD);
333
334		pud_populate(mm, u_pud, pmd);
335	}
336
337}
338#else
339static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
340				     pgd_t *k_pgd, pmd_t *pmds[])
341{
342}
343#endif
344/*
345 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
346 * assumes that pgd should be in one page.
347 *
348 * But kernel with PAE paging that is not running as a Xen domain
349 * only needs to allocate 32 bytes for pgd instead of one page.
350 */
351#ifdef CONFIG_X86_PAE
352
353#include <linux/slab.h>
354
355#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
356#define PGD_ALIGN	32
357
358static struct kmem_cache *pgd_cache;
359
360void __init pgtable_cache_init(void)
361{
362	/*
363	 * When PAE kernel is running as a Xen domain, it does not use
364	 * shared kernel pmd. And this requires a whole page for pgd.
365	 */
366	if (!SHARED_KERNEL_PMD)
367		return;
368
369	/*
370	 * when PAE kernel is not running as a Xen domain, it uses
371	 * shared kernel pmd. Shared kernel pmd does not require a whole
372	 * page for pgd. We are able to just allocate a 32-byte for pgd.
373	 * During boot time, we create a 32-byte slab for pgd table allocation.
374	 */
375	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
376				      SLAB_PANIC, NULL);
 
 
 
 
377}
 
378
379static inline pgd_t *_pgd_alloc(void)
380{
381	/*
382	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
383	 * We allocate one page for pgd.
384	 */
385	if (!SHARED_KERNEL_PMD)
386		return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
387						 PGD_ALLOCATION_ORDER);
388
389	/*
390	 * Now PAE kernel is not running as a Xen domain. We can allocate
391	 * a 32-byte slab for pgd to save memory space.
392	 */
393	return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
394}
395
396static inline void _pgd_free(pgd_t *pgd)
397{
398	if (!SHARED_KERNEL_PMD)
399		free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
400	else
401		kmem_cache_free(pgd_cache, pgd);
402}
403#else
404
405static inline pgd_t *_pgd_alloc(void)
406{
407	return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
408					 PGD_ALLOCATION_ORDER);
409}
410
411static inline void _pgd_free(pgd_t *pgd)
412{
413	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
414}
415#endif /* CONFIG_X86_PAE */
416
417pgd_t *pgd_alloc(struct mm_struct *mm)
418{
419	pgd_t *pgd;
420	pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
421	pmd_t *pmds[MAX_PREALLOCATED_PMDS];
422
423	pgd = _pgd_alloc();
424
425	if (pgd == NULL)
426		goto out;
427
428	mm->pgd = pgd;
429
430	if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
431		goto out_free_pgd;
432
433	if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
434		goto out_free_pmds;
435
436	if (paravirt_pgd_alloc(mm) != 0)
437		goto out_free_user_pmds;
438
439	/*
440	 * Make sure that pre-populating the pmds is atomic with
441	 * respect to anything walking the pgd_list, so that they
442	 * never see a partially populated pgd.
443	 */
444	spin_lock(&pgd_lock);
445
446	pgd_ctor(mm, pgd);
447	pgd_prepopulate_pmd(mm, pgd, pmds);
448	pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
449
450	spin_unlock(&pgd_lock);
451
452	return pgd;
453
454out_free_user_pmds:
455	free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
456out_free_pmds:
457	free_pmds(mm, pmds, PREALLOCATED_PMDS);
458out_free_pgd:
459	_pgd_free(pgd);
460out:
461	return NULL;
462}
463
464void pgd_free(struct mm_struct *mm, pgd_t *pgd)
465{
466	pgd_mop_up_pmds(mm, pgd);
467	pgd_dtor(pgd);
468	paravirt_pgd_free(mm, pgd);
469	_pgd_free(pgd);
470}
471
472/*
473 * Used to set accessed or dirty bits in the page table entries
474 * on other architectures. On x86, the accessed and dirty bits
475 * are tracked by hardware. However, do_wp_page calls this function
476 * to also make the pte writeable at the same time the dirty bit is
477 * set. In that case we do actually need to write the PTE.
478 */
479int ptep_set_access_flags(struct vm_area_struct *vma,
480			  unsigned long address, pte_t *ptep,
481			  pte_t entry, int dirty)
482{
483	int changed = !pte_same(*ptep, entry);
484
485	if (changed && dirty)
486		set_pte(ptep, entry);
 
 
487
488	return changed;
489}
490
491#ifdef CONFIG_TRANSPARENT_HUGEPAGE
492int pmdp_set_access_flags(struct vm_area_struct *vma,
493			  unsigned long address, pmd_t *pmdp,
494			  pmd_t entry, int dirty)
495{
496	int changed = !pmd_same(*pmdp, entry);
497
498	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
499
500	if (changed && dirty) {
501		set_pmd(pmdp, entry);
502		/*
503		 * We had a write-protection fault here and changed the pmd
504		 * to to more permissive. No need to flush the TLB for that,
505		 * #PF is architecturally guaranteed to do that and in the
506		 * worst-case we'll generate a spurious fault.
507		 */
508	}
509
510	return changed;
511}
512
513int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
514			  pud_t *pudp, pud_t entry, int dirty)
515{
516	int changed = !pud_same(*pudp, entry);
517
518	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
519
520	if (changed && dirty) {
521		set_pud(pudp, entry);
522		/*
523		 * We had a write-protection fault here and changed the pud
524		 * to to more permissive. No need to flush the TLB for that,
525		 * #PF is architecturally guaranteed to do that and in the
526		 * worst-case we'll generate a spurious fault.
527		 */
528	}
529
530	return changed;
531}
532#endif
533
534int ptep_test_and_clear_young(struct vm_area_struct *vma,
535			      unsigned long addr, pte_t *ptep)
536{
537	int ret = 0;
538
539	if (pte_young(*ptep))
540		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
541					 (unsigned long *) &ptep->pte);
542
 
 
 
543	return ret;
544}
545
546#ifdef CONFIG_TRANSPARENT_HUGEPAGE
547int pmdp_test_and_clear_young(struct vm_area_struct *vma,
548			      unsigned long addr, pmd_t *pmdp)
549{
550	int ret = 0;
551
552	if (pmd_young(*pmdp))
553		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
554					 (unsigned long *)pmdp);
555
556	return ret;
557}
558int pudp_test_and_clear_young(struct vm_area_struct *vma,
559			      unsigned long addr, pud_t *pudp)
560{
561	int ret = 0;
562
563	if (pud_young(*pudp))
564		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
565					 (unsigned long *)pudp);
566
567	return ret;
568}
569#endif
570
571int ptep_clear_flush_young(struct vm_area_struct *vma,
572			   unsigned long address, pte_t *ptep)
573{
574	/*
575	 * On x86 CPUs, clearing the accessed bit without a TLB flush
576	 * doesn't cause data corruption. [ It could cause incorrect
577	 * page aging and the (mistaken) reclaim of hot pages, but the
578	 * chance of that should be relatively low. ]
579	 *
580	 * So as a performance optimization don't flush the TLB when
581	 * clearing the accessed bit, it will eventually be flushed by
582	 * a context switch or a VM operation anyway. [ In the rare
583	 * event of it not getting flushed for a long time the delay
584	 * shouldn't really matter because there's no real memory
585	 * pressure for swapout to react to. ]
586	 */
587	return ptep_test_and_clear_young(vma, address, ptep);
588}
589
590#ifdef CONFIG_TRANSPARENT_HUGEPAGE
591int pmdp_clear_flush_young(struct vm_area_struct *vma,
592			   unsigned long address, pmd_t *pmdp)
593{
594	int young;
595
596	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
597
598	young = pmdp_test_and_clear_young(vma, address, pmdp);
599	if (young)
600		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
601
602	return young;
603}
604#endif
605
606/**
607 * reserve_top_address - reserves a hole in the top of kernel address space
608 * @reserve - size of hole to reserve
609 *
610 * Can be used to relocate the fixmap area and poke a hole in the top
611 * of kernel address space to make room for a hypervisor.
612 */
613void __init reserve_top_address(unsigned long reserve)
614{
615#ifdef CONFIG_X86_32
616	BUG_ON(fixmaps_set > 0);
617	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
618	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
619	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
620#endif
621}
622
623int fixmaps_set;
624
625void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
626{
627	unsigned long address = __fix_to_virt(idx);
628
629#ifdef CONFIG_X86_64
630       /*
631	* Ensure that the static initial page tables are covering the
632	* fixmap completely.
633	*/
634	BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
635		     (FIXMAP_PMD_NUM * PTRS_PER_PTE));
636#endif
637
638	if (idx >= __end_of_fixed_addresses) {
639		BUG();
640		return;
641	}
642	set_pte_vaddr(address, pte);
643	fixmaps_set++;
644}
645
646void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
647		       pgprot_t flags)
648{
649	/* Sanitize 'prot' against any unsupported bits: */
650	pgprot_val(flags) &= __default_kernel_pte_mask;
651
652	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
653}
654
655#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
656#ifdef CONFIG_X86_5LEVEL
657/**
658 * p4d_set_huge - setup kernel P4D mapping
659 *
660 * No 512GB pages yet -- always return 0
661 */
662int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
663{
664	return 0;
665}
666
667/**
668 * p4d_clear_huge - clear kernel P4D mapping when it is set
669 *
670 * No 512GB pages yet -- always return 0
671 */
672int p4d_clear_huge(p4d_t *p4d)
673{
674	return 0;
675}
676#endif
677
678/**
679 * pud_set_huge - setup kernel PUD mapping
680 *
681 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
682 * function sets up a huge page only if any of the following conditions are met:
683 *
684 * - MTRRs are disabled, or
685 *
686 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
687 *
688 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
689 *   has no effect on the requested PAT memory type.
690 *
691 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
692 * page mapping attempt fails.
693 *
694 * Returns 1 on success and 0 on failure.
695 */
696int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
697{
698	u8 mtrr, uniform;
699
700	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
701	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
702	    (mtrr != MTRR_TYPE_WRBACK))
703		return 0;
704
705	/* Bail out if we are we on a populated non-leaf entry: */
706	if (pud_present(*pud) && !pud_huge(*pud))
707		return 0;
708
709	prot = pgprot_4k_2_large(prot);
710
711	set_pte((pte_t *)pud, pfn_pte(
712		(u64)addr >> PAGE_SHIFT,
713		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
714
715	return 1;
716}
717
718/**
719 * pmd_set_huge - setup kernel PMD mapping
720 *
721 * See text over pud_set_huge() above.
722 *
723 * Returns 1 on success and 0 on failure.
724 */
725int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
726{
727	u8 mtrr, uniform;
728
729	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
730	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
731	    (mtrr != MTRR_TYPE_WRBACK)) {
732		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
733			     __func__, addr, addr + PMD_SIZE);
734		return 0;
735	}
736
737	/* Bail out if we are we on a populated non-leaf entry: */
738	if (pmd_present(*pmd) && !pmd_huge(*pmd))
739		return 0;
740
741	prot = pgprot_4k_2_large(prot);
742
743	set_pte((pte_t *)pmd, pfn_pte(
744		(u64)addr >> PAGE_SHIFT,
745		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
746
747	return 1;
748}
749
750/**
751 * pud_clear_huge - clear kernel PUD mapping when it is set
752 *
753 * Returns 1 on success and 0 on failure (no PUD map is found).
754 */
755int pud_clear_huge(pud_t *pud)
756{
757	if (pud_large(*pud)) {
758		pud_clear(pud);
759		return 1;
760	}
761
762	return 0;
763}
764
765/**
766 * pmd_clear_huge - clear kernel PMD mapping when it is set
767 *
768 * Returns 1 on success and 0 on failure (no PMD map is found).
769 */
770int pmd_clear_huge(pmd_t *pmd)
771{
772	if (pmd_large(*pmd)) {
773		pmd_clear(pmd);
774		return 1;
775	}
776
777	return 0;
778}
779
780/*
781 * Until we support 512GB pages, skip them in the vmap area.
782 */
783int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
784{
785	return 0;
786}
787
788#ifdef CONFIG_X86_64
789/**
790 * pud_free_pmd_page - Clear pud entry and free pmd page.
791 * @pud: Pointer to a PUD.
792 * @addr: Virtual address associated with pud.
793 *
794 * Context: The pud range has been unmapped and TLB purged.
795 * Return: 1 if clearing the entry succeeded. 0 otherwise.
796 *
797 * NOTE: Callers must allow a single page allocation.
798 */
799int pud_free_pmd_page(pud_t *pud, unsigned long addr)
800{
801	pmd_t *pmd, *pmd_sv;
802	pte_t *pte;
803	int i;
804
805	pmd = (pmd_t *)pud_page_vaddr(*pud);
806	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
807	if (!pmd_sv)
808		return 0;
809
810	for (i = 0; i < PTRS_PER_PMD; i++) {
811		pmd_sv[i] = pmd[i];
812		if (!pmd_none(pmd[i]))
813			pmd_clear(&pmd[i]);
814	}
815
816	pud_clear(pud);
817
818	/* INVLPG to clear all paging-structure caches */
819	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
820
821	for (i = 0; i < PTRS_PER_PMD; i++) {
822		if (!pmd_none(pmd_sv[i])) {
823			pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
824			free_page((unsigned long)pte);
825		}
826	}
827
828	free_page((unsigned long)pmd_sv);
829	free_page((unsigned long)pmd);
830
831	return 1;
832}
833
834/**
835 * pmd_free_pte_page - Clear pmd entry and free pte page.
836 * @pmd: Pointer to a PMD.
837 * @addr: Virtual address associated with pmd.
838 *
839 * Context: The pmd range has been unmapped and TLB purged.
840 * Return: 1 if clearing the entry succeeded. 0 otherwise.
841 */
842int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
843{
844	pte_t *pte;
845
846	pte = (pte_t *)pmd_page_vaddr(*pmd);
847	pmd_clear(pmd);
848
849	/* INVLPG to clear all paging-structure caches */
850	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
851
852	free_page((unsigned long)pte);
853
854	return 1;
855}
856
857#else /* !CONFIG_X86_64 */
858
859int pud_free_pmd_page(pud_t *pud, unsigned long addr)
860{
861	return pud_none(*pud);
862}
863
864/*
865 * Disable free page handling on x86-PAE. This assures that ioremap()
866 * does not update sync'd pmd entries. See vmalloc_sync_one().
867 */
868int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
869{
870	return pmd_none(*pmd);
871}
872
873#endif /* CONFIG_X86_64 */
874#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
v4.6
 
  1#include <linux/mm.h>
  2#include <linux/gfp.h>
 
  3#include <asm/pgalloc.h>
  4#include <asm/pgtable.h>
  5#include <asm/tlb.h>
  6#include <asm/fixmap.h>
  7#include <asm/mtrr.h>
  8
  9#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
 
 
 
 10
 11#ifdef CONFIG_HIGHPTE
 12#define PGALLOC_USER_GFP __GFP_HIGHMEM
 13#else
 14#define PGALLOC_USER_GFP 0
 15#endif
 16
 17gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
 18
 19pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 20{
 21	return (pte_t *)__get_free_page(PGALLOC_GFP);
 22}
 23
 24pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 25{
 26	struct page *pte;
 27
 28	pte = alloc_pages(__userpte_alloc_gfp, 0);
 29	if (!pte)
 30		return NULL;
 31	if (!pgtable_page_ctor(pte)) {
 32		__free_page(pte);
 33		return NULL;
 34	}
 35	return pte;
 36}
 37
 38static int __init setup_userpte(char *arg)
 39{
 40	if (!arg)
 41		return -EINVAL;
 42
 43	/*
 44	 * "userpte=nohigh" disables allocation of user pagetables in
 45	 * high memory.
 46	 */
 47	if (strcmp(arg, "nohigh") == 0)
 48		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 49	else
 50		return -EINVAL;
 51	return 0;
 52}
 53early_param("userpte", setup_userpte);
 54
 55void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 56{
 57	pgtable_page_dtor(pte);
 58	paravirt_release_pte(page_to_pfn(pte));
 59	tlb_remove_page(tlb, pte);
 60}
 61
 62#if CONFIG_PGTABLE_LEVELS > 2
 63void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 64{
 65	struct page *page = virt_to_page(pmd);
 66	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 67	/*
 68	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
 69	 * entries need a full cr3 reload to flush.
 70	 */
 71#ifdef CONFIG_X86_PAE
 72	tlb->need_flush_all = 1;
 73#endif
 74	pgtable_pmd_page_dtor(page);
 75	tlb_remove_page(tlb, page);
 76}
 77
 78#if CONFIG_PGTABLE_LEVELS > 3
 79void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 80{
 81	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 82	tlb_remove_page(tlb, virt_to_page(pud));
 
 
 
 
 
 
 
 83}
 
 84#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
 85#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
 86
 87static inline void pgd_list_add(pgd_t *pgd)
 88{
 89	struct page *page = virt_to_page(pgd);
 90
 91	list_add(&page->lru, &pgd_list);
 92}
 93
 94static inline void pgd_list_del(pgd_t *pgd)
 95{
 96	struct page *page = virt_to_page(pgd);
 97
 98	list_del(&page->lru);
 99}
100
101#define UNSHARED_PTRS_PER_PGD				\
102	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
 
 
103
104
105static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
106{
107	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
108	virt_to_page(pgd)->index = (pgoff_t)mm;
109}
110
111struct mm_struct *pgd_page_get_mm(struct page *page)
112{
113	return (struct mm_struct *)page->index;
114}
115
116static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
117{
118	/* If the pgd points to a shared pagetable level (either the
119	   ptes in non-PAE, or shared PMD in PAE), then just copy the
120	   references from swapper_pg_dir. */
121	if (CONFIG_PGTABLE_LEVELS == 2 ||
122	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
123	    CONFIG_PGTABLE_LEVELS == 4) {
124		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
125				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
126				KERNEL_PGD_PTRS);
127	}
128
129	/* list required to sync kernel mapping updates */
130	if (!SHARED_KERNEL_PMD) {
131		pgd_set_mm(pgd, mm);
132		pgd_list_add(pgd);
133	}
134}
135
136static void pgd_dtor(pgd_t *pgd)
137{
138	if (SHARED_KERNEL_PMD)
139		return;
140
141	spin_lock(&pgd_lock);
142	pgd_list_del(pgd);
143	spin_unlock(&pgd_lock);
144}
145
146/*
147 * List of all pgd's needed for non-PAE so it can invalidate entries
148 * in both cached and uncached pgd's; not needed for PAE since the
149 * kernel pmd is shared. If PAE were not to share the pmd a similar
150 * tactic would be needed. This is essentially codepath-based locking
151 * against pageattr.c; it is the unique case in which a valid change
152 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
153 * vmalloc faults work because attached pagetables are never freed.
154 * -- nyc
155 */
156
157#ifdef CONFIG_X86_PAE
158/*
159 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
160 * updating the top-level pagetable entries to guarantee the
161 * processor notices the update.  Since this is expensive, and
162 * all 4 top-level entries are used almost immediately in a
163 * new process's life, we just pre-populate them here.
164 *
165 * Also, if we're in a paravirt environment where the kernel pmd is
166 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
167 * and initialize the kernel pmds here.
168 */
169#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
 
 
 
 
 
 
 
 
 
 
170
171void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
172{
173	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
174
175	/* Note: almost everything apart from _PAGE_PRESENT is
176	   reserved at the pmd (PDPT) level. */
177	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
178
179	/*
180	 * According to Intel App note "TLBs, Paging-Structure Caches,
181	 * and Their Invalidation", April 2007, document 317080-001,
182	 * section 8.1: in PAE mode we explicitly have to flush the
183	 * TLB via cr3 if the top-level pgd is changed...
184	 */
185	flush_tlb_mm(mm);
186}
187#else  /* !CONFIG_X86_PAE */
188
189/* No need to prepopulate any pagetable entries in non-PAE modes. */
190#define PREALLOCATED_PMDS	0
191
 
 
192#endif	/* CONFIG_X86_PAE */
193
194static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
195{
196	int i;
197
198	for(i = 0; i < PREALLOCATED_PMDS; i++)
199		if (pmds[i]) {
200			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
201			free_page((unsigned long)pmds[i]);
202			mm_dec_nr_pmds(mm);
203		}
204}
205
206static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
207{
208	int i;
209	bool failed = false;
 
 
 
 
210
211	for(i = 0; i < PREALLOCATED_PMDS; i++) {
212		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
213		if (!pmd)
214			failed = true;
215		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
216			free_page((unsigned long)pmd);
217			pmd = NULL;
218			failed = true;
219		}
220		if (pmd)
221			mm_inc_nr_pmds(mm);
222		pmds[i] = pmd;
223	}
224
225	if (failed) {
226		free_pmds(mm, pmds);
227		return -ENOMEM;
228	}
229
230	return 0;
231}
232
233/*
234 * Mop up any pmd pages which may still be attached to the pgd.
235 * Normally they will be freed by munmap/exit_mmap, but any pmd we
236 * preallocate which never got a corresponding vma will need to be
237 * freed manually.
238 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
240{
241	int i;
242
243	for(i = 0; i < PREALLOCATED_PMDS; i++) {
244		pgd_t pgd = pgdp[i];
245
246		if (pgd_val(pgd) != 0) {
247			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
 
 
248
249			pgdp[i] = native_make_pgd(0);
250
251			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
252			pmd_free(mm, pmd);
253			mm_dec_nr_pmds(mm);
254		}
255	}
256}
257
258static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
259{
 
260	pud_t *pud;
261	int i;
262
263	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
264		return;
265
266	pud = pud_offset(pgd, 0);
 
267
268	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
269		pmd_t *pmd = pmds[i];
270
271		if (i >= KERNEL_PGD_BOUNDARY)
272			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
273			       sizeof(pmd_t) * PTRS_PER_PMD);
274
275		pud_populate(mm, pud, pmd);
276	}
277}
278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279/*
280 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
281 * assumes that pgd should be in one page.
282 *
283 * But kernel with PAE paging that is not running as a Xen domain
284 * only needs to allocate 32 bytes for pgd instead of one page.
285 */
286#ifdef CONFIG_X86_PAE
287
288#include <linux/slab.h>
289
290#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
291#define PGD_ALIGN	32
292
293static struct kmem_cache *pgd_cache;
294
295static int __init pgd_cache_init(void)
296{
297	/*
298	 * When PAE kernel is running as a Xen domain, it does not use
299	 * shared kernel pmd. And this requires a whole page for pgd.
300	 */
301	if (!SHARED_KERNEL_PMD)
302		return 0;
303
304	/*
305	 * when PAE kernel is not running as a Xen domain, it uses
306	 * shared kernel pmd. Shared kernel pmd does not require a whole
307	 * page for pgd. We are able to just allocate a 32-byte for pgd.
308	 * During boot time, we create a 32-byte slab for pgd table allocation.
309	 */
310	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
311				      SLAB_PANIC, NULL);
312	if (!pgd_cache)
313		return -ENOMEM;
314
315	return 0;
316}
317core_initcall(pgd_cache_init);
318
319static inline pgd_t *_pgd_alloc(void)
320{
321	/*
322	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
323	 * We allocate one page for pgd.
324	 */
325	if (!SHARED_KERNEL_PMD)
326		return (pgd_t *)__get_free_page(PGALLOC_GFP);
 
327
328	/*
329	 * Now PAE kernel is not running as a Xen domain. We can allocate
330	 * a 32-byte slab for pgd to save memory space.
331	 */
332	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
333}
334
335static inline void _pgd_free(pgd_t *pgd)
336{
337	if (!SHARED_KERNEL_PMD)
338		free_page((unsigned long)pgd);
339	else
340		kmem_cache_free(pgd_cache, pgd);
341}
342#else
 
343static inline pgd_t *_pgd_alloc(void)
344{
345	return (pgd_t *)__get_free_page(PGALLOC_GFP);
 
346}
347
348static inline void _pgd_free(pgd_t *pgd)
349{
350	free_page((unsigned long)pgd);
351}
352#endif /* CONFIG_X86_PAE */
353
354pgd_t *pgd_alloc(struct mm_struct *mm)
355{
356	pgd_t *pgd;
357	pmd_t *pmds[PREALLOCATED_PMDS];
 
358
359	pgd = _pgd_alloc();
360
361	if (pgd == NULL)
362		goto out;
363
364	mm->pgd = pgd;
365
366	if (preallocate_pmds(mm, pmds) != 0)
367		goto out_free_pgd;
368
 
 
 
369	if (paravirt_pgd_alloc(mm) != 0)
370		goto out_free_pmds;
371
372	/*
373	 * Make sure that pre-populating the pmds is atomic with
374	 * respect to anything walking the pgd_list, so that they
375	 * never see a partially populated pgd.
376	 */
377	spin_lock(&pgd_lock);
378
379	pgd_ctor(mm, pgd);
380	pgd_prepopulate_pmd(mm, pgd, pmds);
 
381
382	spin_unlock(&pgd_lock);
383
384	return pgd;
385
 
 
386out_free_pmds:
387	free_pmds(mm, pmds);
388out_free_pgd:
389	_pgd_free(pgd);
390out:
391	return NULL;
392}
393
394void pgd_free(struct mm_struct *mm, pgd_t *pgd)
395{
396	pgd_mop_up_pmds(mm, pgd);
397	pgd_dtor(pgd);
398	paravirt_pgd_free(mm, pgd);
399	_pgd_free(pgd);
400}
401
402/*
403 * Used to set accessed or dirty bits in the page table entries
404 * on other architectures. On x86, the accessed and dirty bits
405 * are tracked by hardware. However, do_wp_page calls this function
406 * to also make the pte writeable at the same time the dirty bit is
407 * set. In that case we do actually need to write the PTE.
408 */
409int ptep_set_access_flags(struct vm_area_struct *vma,
410			  unsigned long address, pte_t *ptep,
411			  pte_t entry, int dirty)
412{
413	int changed = !pte_same(*ptep, entry);
414
415	if (changed && dirty) {
416		*ptep = entry;
417		pte_update(vma->vm_mm, address, ptep);
418	}
419
420	return changed;
421}
422
423#ifdef CONFIG_TRANSPARENT_HUGEPAGE
424int pmdp_set_access_flags(struct vm_area_struct *vma,
425			  unsigned long address, pmd_t *pmdp,
426			  pmd_t entry, int dirty)
427{
428	int changed = !pmd_same(*pmdp, entry);
429
430	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
431
432	if (changed && dirty) {
433		*pmdp = entry;
434		/*
435		 * We had a write-protection fault here and changed the pmd
436		 * to to more permissive. No need to flush the TLB for that,
437		 * #PF is architecturally guaranteed to do that and in the
438		 * worst-case we'll generate a spurious fault.
439		 */
440	}
441
442	return changed;
443}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444#endif
445
446int ptep_test_and_clear_young(struct vm_area_struct *vma,
447			      unsigned long addr, pte_t *ptep)
448{
449	int ret = 0;
450
451	if (pte_young(*ptep))
452		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
453					 (unsigned long *) &ptep->pte);
454
455	if (ret)
456		pte_update(vma->vm_mm, addr, ptep);
457
458	return ret;
459}
460
461#ifdef CONFIG_TRANSPARENT_HUGEPAGE
462int pmdp_test_and_clear_young(struct vm_area_struct *vma,
463			      unsigned long addr, pmd_t *pmdp)
464{
465	int ret = 0;
466
467	if (pmd_young(*pmdp))
468		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
469					 (unsigned long *)pmdp);
470
471	return ret;
472}
 
 
 
 
 
 
 
 
 
 
 
473#endif
474
475int ptep_clear_flush_young(struct vm_area_struct *vma,
476			   unsigned long address, pte_t *ptep)
477{
478	/*
479	 * On x86 CPUs, clearing the accessed bit without a TLB flush
480	 * doesn't cause data corruption. [ It could cause incorrect
481	 * page aging and the (mistaken) reclaim of hot pages, but the
482	 * chance of that should be relatively low. ]
483	 *
484	 * So as a performance optimization don't flush the TLB when
485	 * clearing the accessed bit, it will eventually be flushed by
486	 * a context switch or a VM operation anyway. [ In the rare
487	 * event of it not getting flushed for a long time the delay
488	 * shouldn't really matter because there's no real memory
489	 * pressure for swapout to react to. ]
490	 */
491	return ptep_test_and_clear_young(vma, address, ptep);
492}
493
494#ifdef CONFIG_TRANSPARENT_HUGEPAGE
495int pmdp_clear_flush_young(struct vm_area_struct *vma,
496			   unsigned long address, pmd_t *pmdp)
497{
498	int young;
499
500	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
501
502	young = pmdp_test_and_clear_young(vma, address, pmdp);
503	if (young)
504		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
505
506	return young;
507}
508#endif
509
510/**
511 * reserve_top_address - reserves a hole in the top of kernel address space
512 * @reserve - size of hole to reserve
513 *
514 * Can be used to relocate the fixmap area and poke a hole in the top
515 * of kernel address space to make room for a hypervisor.
516 */
517void __init reserve_top_address(unsigned long reserve)
518{
519#ifdef CONFIG_X86_32
520	BUG_ON(fixmaps_set > 0);
521	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
522	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
523	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
524#endif
525}
526
527int fixmaps_set;
528
529void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
530{
531	unsigned long address = __fix_to_virt(idx);
532
 
 
 
 
 
 
 
 
 
533	if (idx >= __end_of_fixed_addresses) {
534		BUG();
535		return;
536	}
537	set_pte_vaddr(address, pte);
538	fixmaps_set++;
539}
540
541void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
542		       pgprot_t flags)
543{
 
 
 
544	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
545}
546
547#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
548/**
549 * pud_set_huge - setup kernel PUD mapping
550 *
551 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
552 * function sets up a huge page only if any of the following conditions are met:
553 *
554 * - MTRRs are disabled, or
555 *
556 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
557 *
558 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
559 *   has no effect on the requested PAT memory type.
560 *
561 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
562 * page mapping attempt fails.
563 *
564 * Returns 1 on success and 0 on failure.
565 */
566int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
567{
568	u8 mtrr, uniform;
569
570	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
571	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
572	    (mtrr != MTRR_TYPE_WRBACK))
573		return 0;
574
 
 
 
 
575	prot = pgprot_4k_2_large(prot);
576
577	set_pte((pte_t *)pud, pfn_pte(
578		(u64)addr >> PAGE_SHIFT,
579		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
580
581	return 1;
582}
583
584/**
585 * pmd_set_huge - setup kernel PMD mapping
586 *
587 * See text over pud_set_huge() above.
588 *
589 * Returns 1 on success and 0 on failure.
590 */
591int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
592{
593	u8 mtrr, uniform;
594
595	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
596	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
597	    (mtrr != MTRR_TYPE_WRBACK)) {
598		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
599			     __func__, addr, addr + PMD_SIZE);
600		return 0;
601	}
602
 
 
 
 
603	prot = pgprot_4k_2_large(prot);
604
605	set_pte((pte_t *)pmd, pfn_pte(
606		(u64)addr >> PAGE_SHIFT,
607		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
608
609	return 1;
610}
611
612/**
613 * pud_clear_huge - clear kernel PUD mapping when it is set
614 *
615 * Returns 1 on success and 0 on failure (no PUD map is found).
616 */
617int pud_clear_huge(pud_t *pud)
618{
619	if (pud_large(*pud)) {
620		pud_clear(pud);
621		return 1;
622	}
623
624	return 0;
625}
626
627/**
628 * pmd_clear_huge - clear kernel PMD mapping when it is set
629 *
630 * Returns 1 on success and 0 on failure (no PMD map is found).
631 */
632int pmd_clear_huge(pmd_t *pmd)
633{
634	if (pmd_large(*pmd)) {
635		pmd_clear(pmd);
636		return 1;
637	}
638
639	return 0;
640}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */