Loading...
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3
4 Copyright (C) 2014 Intel Corporation
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22*/
23
24#include <linux/sched/signal.h>
25
26#include <net/bluetooth/bluetooth.h>
27#include <net/bluetooth/hci_core.h>
28#include <net/bluetooth/mgmt.h>
29
30#include "smp.h"
31#include "hci_request.h"
32
33#define HCI_REQ_DONE 0
34#define HCI_REQ_PEND 1
35#define HCI_REQ_CANCELED 2
36
37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
38{
39 skb_queue_head_init(&req->cmd_q);
40 req->hdev = hdev;
41 req->err = 0;
42}
43
44void hci_req_purge(struct hci_request *req)
45{
46 skb_queue_purge(&req->cmd_q);
47}
48
49bool hci_req_status_pend(struct hci_dev *hdev)
50{
51 return hdev->req_status == HCI_REQ_PEND;
52}
53
54static int req_run(struct hci_request *req, hci_req_complete_t complete,
55 hci_req_complete_skb_t complete_skb)
56{
57 struct hci_dev *hdev = req->hdev;
58 struct sk_buff *skb;
59 unsigned long flags;
60
61 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
62
63 /* If an error occurred during request building, remove all HCI
64 * commands queued on the HCI request queue.
65 */
66 if (req->err) {
67 skb_queue_purge(&req->cmd_q);
68 return req->err;
69 }
70
71 /* Do not allow empty requests */
72 if (skb_queue_empty(&req->cmd_q))
73 return -ENODATA;
74
75 skb = skb_peek_tail(&req->cmd_q);
76 if (complete) {
77 bt_cb(skb)->hci.req_complete = complete;
78 } else if (complete_skb) {
79 bt_cb(skb)->hci.req_complete_skb = complete_skb;
80 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
81 }
82
83 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
84 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
85 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
86
87 queue_work(hdev->workqueue, &hdev->cmd_work);
88
89 return 0;
90}
91
92int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
93{
94 return req_run(req, complete, NULL);
95}
96
97int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
98{
99 return req_run(req, NULL, complete);
100}
101
102static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
103 struct sk_buff *skb)
104{
105 BT_DBG("%s result 0x%2.2x", hdev->name, result);
106
107 if (hdev->req_status == HCI_REQ_PEND) {
108 hdev->req_result = result;
109 hdev->req_status = HCI_REQ_DONE;
110 if (skb)
111 hdev->req_skb = skb_get(skb);
112 wake_up_interruptible(&hdev->req_wait_q);
113 }
114}
115
116void hci_req_sync_cancel(struct hci_dev *hdev, int err)
117{
118 BT_DBG("%s err 0x%2.2x", hdev->name, err);
119
120 if (hdev->req_status == HCI_REQ_PEND) {
121 hdev->req_result = err;
122 hdev->req_status = HCI_REQ_CANCELED;
123 wake_up_interruptible(&hdev->req_wait_q);
124 }
125}
126
127struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
128 const void *param, u8 event, u32 timeout)
129{
130 struct hci_request req;
131 struct sk_buff *skb;
132 int err = 0;
133
134 BT_DBG("%s", hdev->name);
135
136 hci_req_init(&req, hdev);
137
138 hci_req_add_ev(&req, opcode, plen, param, event);
139
140 hdev->req_status = HCI_REQ_PEND;
141
142 err = hci_req_run_skb(&req, hci_req_sync_complete);
143 if (err < 0)
144 return ERR_PTR(err);
145
146 err = wait_event_interruptible_timeout(hdev->req_wait_q,
147 hdev->req_status != HCI_REQ_PEND, timeout);
148
149 if (err == -ERESTARTSYS)
150 return ERR_PTR(-EINTR);
151
152 switch (hdev->req_status) {
153 case HCI_REQ_DONE:
154 err = -bt_to_errno(hdev->req_result);
155 break;
156
157 case HCI_REQ_CANCELED:
158 err = -hdev->req_result;
159 break;
160
161 default:
162 err = -ETIMEDOUT;
163 break;
164 }
165
166 hdev->req_status = hdev->req_result = 0;
167 skb = hdev->req_skb;
168 hdev->req_skb = NULL;
169
170 BT_DBG("%s end: err %d", hdev->name, err);
171
172 if (err < 0) {
173 kfree_skb(skb);
174 return ERR_PTR(err);
175 }
176
177 if (!skb)
178 return ERR_PTR(-ENODATA);
179
180 return skb;
181}
182EXPORT_SYMBOL(__hci_cmd_sync_ev);
183
184struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
185 const void *param, u32 timeout)
186{
187 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
188}
189EXPORT_SYMBOL(__hci_cmd_sync);
190
191/* Execute request and wait for completion. */
192int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
193 unsigned long opt),
194 unsigned long opt, u32 timeout, u8 *hci_status)
195{
196 struct hci_request req;
197 int err = 0;
198
199 BT_DBG("%s start", hdev->name);
200
201 hci_req_init(&req, hdev);
202
203 hdev->req_status = HCI_REQ_PEND;
204
205 err = func(&req, opt);
206 if (err) {
207 if (hci_status)
208 *hci_status = HCI_ERROR_UNSPECIFIED;
209 return err;
210 }
211
212 err = hci_req_run_skb(&req, hci_req_sync_complete);
213 if (err < 0) {
214 hdev->req_status = 0;
215
216 /* ENODATA means the HCI request command queue is empty.
217 * This can happen when a request with conditionals doesn't
218 * trigger any commands to be sent. This is normal behavior
219 * and should not trigger an error return.
220 */
221 if (err == -ENODATA) {
222 if (hci_status)
223 *hci_status = 0;
224 return 0;
225 }
226
227 if (hci_status)
228 *hci_status = HCI_ERROR_UNSPECIFIED;
229
230 return err;
231 }
232
233 err = wait_event_interruptible_timeout(hdev->req_wait_q,
234 hdev->req_status != HCI_REQ_PEND, timeout);
235
236 if (err == -ERESTARTSYS)
237 return -EINTR;
238
239 switch (hdev->req_status) {
240 case HCI_REQ_DONE:
241 err = -bt_to_errno(hdev->req_result);
242 if (hci_status)
243 *hci_status = hdev->req_result;
244 break;
245
246 case HCI_REQ_CANCELED:
247 err = -hdev->req_result;
248 if (hci_status)
249 *hci_status = HCI_ERROR_UNSPECIFIED;
250 break;
251
252 default:
253 err = -ETIMEDOUT;
254 if (hci_status)
255 *hci_status = HCI_ERROR_UNSPECIFIED;
256 break;
257 }
258
259 kfree_skb(hdev->req_skb);
260 hdev->req_skb = NULL;
261 hdev->req_status = hdev->req_result = 0;
262
263 BT_DBG("%s end: err %d", hdev->name, err);
264
265 return err;
266}
267
268int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
269 unsigned long opt),
270 unsigned long opt, u32 timeout, u8 *hci_status)
271{
272 int ret;
273
274 if (!test_bit(HCI_UP, &hdev->flags))
275 return -ENETDOWN;
276
277 /* Serialize all requests */
278 hci_req_sync_lock(hdev);
279 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
280 hci_req_sync_unlock(hdev);
281
282 return ret;
283}
284
285struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
286 const void *param)
287{
288 int len = HCI_COMMAND_HDR_SIZE + plen;
289 struct hci_command_hdr *hdr;
290 struct sk_buff *skb;
291
292 skb = bt_skb_alloc(len, GFP_ATOMIC);
293 if (!skb)
294 return NULL;
295
296 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
297 hdr->opcode = cpu_to_le16(opcode);
298 hdr->plen = plen;
299
300 if (plen)
301 skb_put_data(skb, param, plen);
302
303 BT_DBG("skb len %d", skb->len);
304
305 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
306 hci_skb_opcode(skb) = opcode;
307
308 return skb;
309}
310
311/* Queue a command to an asynchronous HCI request */
312void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
313 const void *param, u8 event)
314{
315 struct hci_dev *hdev = req->hdev;
316 struct sk_buff *skb;
317
318 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
319
320 /* If an error occurred during request building, there is no point in
321 * queueing the HCI command. We can simply return.
322 */
323 if (req->err)
324 return;
325
326 skb = hci_prepare_cmd(hdev, opcode, plen, param);
327 if (!skb) {
328 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
329 opcode);
330 req->err = -ENOMEM;
331 return;
332 }
333
334 if (skb_queue_empty(&req->cmd_q))
335 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
336
337 bt_cb(skb)->hci.req_event = event;
338
339 skb_queue_tail(&req->cmd_q, skb);
340}
341
342void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
343 const void *param)
344{
345 hci_req_add_ev(req, opcode, plen, param, 0);
346}
347
348void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
349{
350 struct hci_dev *hdev = req->hdev;
351 struct hci_cp_write_page_scan_activity acp;
352 u8 type;
353
354 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
355 return;
356
357 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
358 return;
359
360 if (enable) {
361 type = PAGE_SCAN_TYPE_INTERLACED;
362
363 /* 160 msec page scan interval */
364 acp.interval = cpu_to_le16(0x0100);
365 } else {
366 type = PAGE_SCAN_TYPE_STANDARD; /* default */
367
368 /* default 1.28 sec page scan */
369 acp.interval = cpu_to_le16(0x0800);
370 }
371
372 acp.window = cpu_to_le16(0x0012);
373
374 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
375 __cpu_to_le16(hdev->page_scan_window) != acp.window)
376 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
377 sizeof(acp), &acp);
378
379 if (hdev->page_scan_type != type)
380 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
381}
382
383/* This function controls the background scanning based on hdev->pend_le_conns
384 * list. If there are pending LE connection we start the background scanning,
385 * otherwise we stop it.
386 *
387 * This function requires the caller holds hdev->lock.
388 */
389static void __hci_update_background_scan(struct hci_request *req)
390{
391 struct hci_dev *hdev = req->hdev;
392
393 if (!test_bit(HCI_UP, &hdev->flags) ||
394 test_bit(HCI_INIT, &hdev->flags) ||
395 hci_dev_test_flag(hdev, HCI_SETUP) ||
396 hci_dev_test_flag(hdev, HCI_CONFIG) ||
397 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
398 hci_dev_test_flag(hdev, HCI_UNREGISTER))
399 return;
400
401 /* No point in doing scanning if LE support hasn't been enabled */
402 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
403 return;
404
405 /* If discovery is active don't interfere with it */
406 if (hdev->discovery.state != DISCOVERY_STOPPED)
407 return;
408
409 /* Reset RSSI and UUID filters when starting background scanning
410 * since these filters are meant for service discovery only.
411 *
412 * The Start Discovery and Start Service Discovery operations
413 * ensure to set proper values for RSSI threshold and UUID
414 * filter list. So it is safe to just reset them here.
415 */
416 hci_discovery_filter_clear(hdev);
417
418 if (list_empty(&hdev->pend_le_conns) &&
419 list_empty(&hdev->pend_le_reports)) {
420 /* If there is no pending LE connections or devices
421 * to be scanned for, we should stop the background
422 * scanning.
423 */
424
425 /* If controller is not scanning we are done. */
426 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
427 return;
428
429 hci_req_add_le_scan_disable(req);
430
431 BT_DBG("%s stopping background scanning", hdev->name);
432 } else {
433 /* If there is at least one pending LE connection, we should
434 * keep the background scan running.
435 */
436
437 /* If controller is connecting, we should not start scanning
438 * since some controllers are not able to scan and connect at
439 * the same time.
440 */
441 if (hci_lookup_le_connect(hdev))
442 return;
443
444 /* If controller is currently scanning, we stop it to ensure we
445 * don't miss any advertising (due to duplicates filter).
446 */
447 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
448 hci_req_add_le_scan_disable(req);
449
450 hci_req_add_le_passive_scan(req);
451
452 BT_DBG("%s starting background scanning", hdev->name);
453 }
454}
455
456void __hci_req_update_name(struct hci_request *req)
457{
458 struct hci_dev *hdev = req->hdev;
459 struct hci_cp_write_local_name cp;
460
461 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
462
463 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
464}
465
466#define PNP_INFO_SVCLASS_ID 0x1200
467
468static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
469{
470 u8 *ptr = data, *uuids_start = NULL;
471 struct bt_uuid *uuid;
472
473 if (len < 4)
474 return ptr;
475
476 list_for_each_entry(uuid, &hdev->uuids, list) {
477 u16 uuid16;
478
479 if (uuid->size != 16)
480 continue;
481
482 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
483 if (uuid16 < 0x1100)
484 continue;
485
486 if (uuid16 == PNP_INFO_SVCLASS_ID)
487 continue;
488
489 if (!uuids_start) {
490 uuids_start = ptr;
491 uuids_start[0] = 1;
492 uuids_start[1] = EIR_UUID16_ALL;
493 ptr += 2;
494 }
495
496 /* Stop if not enough space to put next UUID */
497 if ((ptr - data) + sizeof(u16) > len) {
498 uuids_start[1] = EIR_UUID16_SOME;
499 break;
500 }
501
502 *ptr++ = (uuid16 & 0x00ff);
503 *ptr++ = (uuid16 & 0xff00) >> 8;
504 uuids_start[0] += sizeof(uuid16);
505 }
506
507 return ptr;
508}
509
510static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
511{
512 u8 *ptr = data, *uuids_start = NULL;
513 struct bt_uuid *uuid;
514
515 if (len < 6)
516 return ptr;
517
518 list_for_each_entry(uuid, &hdev->uuids, list) {
519 if (uuid->size != 32)
520 continue;
521
522 if (!uuids_start) {
523 uuids_start = ptr;
524 uuids_start[0] = 1;
525 uuids_start[1] = EIR_UUID32_ALL;
526 ptr += 2;
527 }
528
529 /* Stop if not enough space to put next UUID */
530 if ((ptr - data) + sizeof(u32) > len) {
531 uuids_start[1] = EIR_UUID32_SOME;
532 break;
533 }
534
535 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
536 ptr += sizeof(u32);
537 uuids_start[0] += sizeof(u32);
538 }
539
540 return ptr;
541}
542
543static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
544{
545 u8 *ptr = data, *uuids_start = NULL;
546 struct bt_uuid *uuid;
547
548 if (len < 18)
549 return ptr;
550
551 list_for_each_entry(uuid, &hdev->uuids, list) {
552 if (uuid->size != 128)
553 continue;
554
555 if (!uuids_start) {
556 uuids_start = ptr;
557 uuids_start[0] = 1;
558 uuids_start[1] = EIR_UUID128_ALL;
559 ptr += 2;
560 }
561
562 /* Stop if not enough space to put next UUID */
563 if ((ptr - data) + 16 > len) {
564 uuids_start[1] = EIR_UUID128_SOME;
565 break;
566 }
567
568 memcpy(ptr, uuid->uuid, 16);
569 ptr += 16;
570 uuids_start[0] += 16;
571 }
572
573 return ptr;
574}
575
576static void create_eir(struct hci_dev *hdev, u8 *data)
577{
578 u8 *ptr = data;
579 size_t name_len;
580
581 name_len = strlen(hdev->dev_name);
582
583 if (name_len > 0) {
584 /* EIR Data type */
585 if (name_len > 48) {
586 name_len = 48;
587 ptr[1] = EIR_NAME_SHORT;
588 } else
589 ptr[1] = EIR_NAME_COMPLETE;
590
591 /* EIR Data length */
592 ptr[0] = name_len + 1;
593
594 memcpy(ptr + 2, hdev->dev_name, name_len);
595
596 ptr += (name_len + 2);
597 }
598
599 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
600 ptr[0] = 2;
601 ptr[1] = EIR_TX_POWER;
602 ptr[2] = (u8) hdev->inq_tx_power;
603
604 ptr += 3;
605 }
606
607 if (hdev->devid_source > 0) {
608 ptr[0] = 9;
609 ptr[1] = EIR_DEVICE_ID;
610
611 put_unaligned_le16(hdev->devid_source, ptr + 2);
612 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
613 put_unaligned_le16(hdev->devid_product, ptr + 6);
614 put_unaligned_le16(hdev->devid_version, ptr + 8);
615
616 ptr += 10;
617 }
618
619 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
620 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
621 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
622}
623
624void __hci_req_update_eir(struct hci_request *req)
625{
626 struct hci_dev *hdev = req->hdev;
627 struct hci_cp_write_eir cp;
628
629 if (!hdev_is_powered(hdev))
630 return;
631
632 if (!lmp_ext_inq_capable(hdev))
633 return;
634
635 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
636 return;
637
638 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
639 return;
640
641 memset(&cp, 0, sizeof(cp));
642
643 create_eir(hdev, cp.data);
644
645 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
646 return;
647
648 memcpy(hdev->eir, cp.data, sizeof(cp.data));
649
650 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
651}
652
653void hci_req_add_le_scan_disable(struct hci_request *req)
654{
655 struct hci_dev *hdev = req->hdev;
656
657 if (use_ext_scan(hdev)) {
658 struct hci_cp_le_set_ext_scan_enable cp;
659
660 memset(&cp, 0, sizeof(cp));
661 cp.enable = LE_SCAN_DISABLE;
662 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
663 &cp);
664 } else {
665 struct hci_cp_le_set_scan_enable cp;
666
667 memset(&cp, 0, sizeof(cp));
668 cp.enable = LE_SCAN_DISABLE;
669 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
670 }
671}
672
673static void add_to_white_list(struct hci_request *req,
674 struct hci_conn_params *params)
675{
676 struct hci_cp_le_add_to_white_list cp;
677
678 cp.bdaddr_type = params->addr_type;
679 bacpy(&cp.bdaddr, ¶ms->addr);
680
681 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
682}
683
684static u8 update_white_list(struct hci_request *req)
685{
686 struct hci_dev *hdev = req->hdev;
687 struct hci_conn_params *params;
688 struct bdaddr_list *b;
689 uint8_t white_list_entries = 0;
690
691 /* Go through the current white list programmed into the
692 * controller one by one and check if that address is still
693 * in the list of pending connections or list of devices to
694 * report. If not present in either list, then queue the
695 * command to remove it from the controller.
696 */
697 list_for_each_entry(b, &hdev->le_white_list, list) {
698 /* If the device is neither in pend_le_conns nor
699 * pend_le_reports then remove it from the whitelist.
700 */
701 if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
702 &b->bdaddr, b->bdaddr_type) &&
703 !hci_pend_le_action_lookup(&hdev->pend_le_reports,
704 &b->bdaddr, b->bdaddr_type)) {
705 struct hci_cp_le_del_from_white_list cp;
706
707 cp.bdaddr_type = b->bdaddr_type;
708 bacpy(&cp.bdaddr, &b->bdaddr);
709
710 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
711 sizeof(cp), &cp);
712 continue;
713 }
714
715 if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
716 /* White list can not be used with RPAs */
717 return 0x00;
718 }
719
720 white_list_entries++;
721 }
722
723 /* Since all no longer valid white list entries have been
724 * removed, walk through the list of pending connections
725 * and ensure that any new device gets programmed into
726 * the controller.
727 *
728 * If the list of the devices is larger than the list of
729 * available white list entries in the controller, then
730 * just abort and return filer policy value to not use the
731 * white list.
732 */
733 list_for_each_entry(params, &hdev->pend_le_conns, action) {
734 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
735 ¶ms->addr, params->addr_type))
736 continue;
737
738 if (white_list_entries >= hdev->le_white_list_size) {
739 /* Select filter policy to accept all advertising */
740 return 0x00;
741 }
742
743 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
744 params->addr_type)) {
745 /* White list can not be used with RPAs */
746 return 0x00;
747 }
748
749 white_list_entries++;
750 add_to_white_list(req, params);
751 }
752
753 /* After adding all new pending connections, walk through
754 * the list of pending reports and also add these to the
755 * white list if there is still space.
756 */
757 list_for_each_entry(params, &hdev->pend_le_reports, action) {
758 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
759 ¶ms->addr, params->addr_type))
760 continue;
761
762 if (white_list_entries >= hdev->le_white_list_size) {
763 /* Select filter policy to accept all advertising */
764 return 0x00;
765 }
766
767 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
768 params->addr_type)) {
769 /* White list can not be used with RPAs */
770 return 0x00;
771 }
772
773 white_list_entries++;
774 add_to_white_list(req, params);
775 }
776
777 /* Select filter policy to use white list */
778 return 0x01;
779}
780
781static bool scan_use_rpa(struct hci_dev *hdev)
782{
783 return hci_dev_test_flag(hdev, HCI_PRIVACY);
784}
785
786static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
787 u16 window, u8 own_addr_type, u8 filter_policy)
788{
789 struct hci_dev *hdev = req->hdev;
790
791 /* Use ext scanning if set ext scan param and ext scan enable is
792 * supported
793 */
794 if (use_ext_scan(hdev)) {
795 struct hci_cp_le_set_ext_scan_params *ext_param_cp;
796 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
797 struct hci_cp_le_scan_phy_params *phy_params;
798 u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
799 u32 plen;
800
801 ext_param_cp = (void *)data;
802 phy_params = (void *)ext_param_cp->data;
803
804 memset(ext_param_cp, 0, sizeof(*ext_param_cp));
805 ext_param_cp->own_addr_type = own_addr_type;
806 ext_param_cp->filter_policy = filter_policy;
807
808 plen = sizeof(*ext_param_cp);
809
810 if (scan_1m(hdev) || scan_2m(hdev)) {
811 ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
812
813 memset(phy_params, 0, sizeof(*phy_params));
814 phy_params->type = type;
815 phy_params->interval = cpu_to_le16(interval);
816 phy_params->window = cpu_to_le16(window);
817
818 plen += sizeof(*phy_params);
819 phy_params++;
820 }
821
822 if (scan_coded(hdev)) {
823 ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
824
825 memset(phy_params, 0, sizeof(*phy_params));
826 phy_params->type = type;
827 phy_params->interval = cpu_to_le16(interval);
828 phy_params->window = cpu_to_le16(window);
829
830 plen += sizeof(*phy_params);
831 phy_params++;
832 }
833
834 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
835 plen, ext_param_cp);
836
837 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
838 ext_enable_cp.enable = LE_SCAN_ENABLE;
839 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
840
841 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
842 sizeof(ext_enable_cp), &ext_enable_cp);
843 } else {
844 struct hci_cp_le_set_scan_param param_cp;
845 struct hci_cp_le_set_scan_enable enable_cp;
846
847 memset(¶m_cp, 0, sizeof(param_cp));
848 param_cp.type = type;
849 param_cp.interval = cpu_to_le16(interval);
850 param_cp.window = cpu_to_le16(window);
851 param_cp.own_address_type = own_addr_type;
852 param_cp.filter_policy = filter_policy;
853 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
854 ¶m_cp);
855
856 memset(&enable_cp, 0, sizeof(enable_cp));
857 enable_cp.enable = LE_SCAN_ENABLE;
858 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
859 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
860 &enable_cp);
861 }
862}
863
864void hci_req_add_le_passive_scan(struct hci_request *req)
865{
866 struct hci_dev *hdev = req->hdev;
867 u8 own_addr_type;
868 u8 filter_policy;
869
870 /* Set require_privacy to false since no SCAN_REQ are send
871 * during passive scanning. Not using an non-resolvable address
872 * here is important so that peer devices using direct
873 * advertising with our address will be correctly reported
874 * by the controller.
875 */
876 if (hci_update_random_address(req, false, scan_use_rpa(hdev),
877 &own_addr_type))
878 return;
879
880 /* Adding or removing entries from the white list must
881 * happen before enabling scanning. The controller does
882 * not allow white list modification while scanning.
883 */
884 filter_policy = update_white_list(req);
885
886 /* When the controller is using random resolvable addresses and
887 * with that having LE privacy enabled, then controllers with
888 * Extended Scanner Filter Policies support can now enable support
889 * for handling directed advertising.
890 *
891 * So instead of using filter polices 0x00 (no whitelist)
892 * and 0x01 (whitelist enabled) use the new filter policies
893 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
894 */
895 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
896 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
897 filter_policy |= 0x02;
898
899 hci_req_start_scan(req, LE_SCAN_PASSIVE, hdev->le_scan_interval,
900 hdev->le_scan_window, own_addr_type, filter_policy);
901}
902
903static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
904{
905 struct adv_info *adv_instance;
906
907 /* Ignore instance 0 */
908 if (instance == 0x00)
909 return 0;
910
911 adv_instance = hci_find_adv_instance(hdev, instance);
912 if (!adv_instance)
913 return 0;
914
915 /* TODO: Take into account the "appearance" and "local-name" flags here.
916 * These are currently being ignored as they are not supported.
917 */
918 return adv_instance->scan_rsp_len;
919}
920
921static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
922{
923 u8 instance = hdev->cur_adv_instance;
924 struct adv_info *adv_instance;
925
926 /* Ignore instance 0 */
927 if (instance == 0x00)
928 return 0;
929
930 adv_instance = hci_find_adv_instance(hdev, instance);
931 if (!adv_instance)
932 return 0;
933
934 /* TODO: Take into account the "appearance" and "local-name" flags here.
935 * These are currently being ignored as they are not supported.
936 */
937 return adv_instance->scan_rsp_len;
938}
939
940void __hci_req_disable_advertising(struct hci_request *req)
941{
942 if (ext_adv_capable(req->hdev)) {
943 struct hci_cp_le_set_ext_adv_enable cp;
944
945 cp.enable = 0x00;
946 /* Disable all sets since we only support one set at the moment */
947 cp.num_of_sets = 0x00;
948
949 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp);
950 } else {
951 u8 enable = 0x00;
952
953 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
954 }
955}
956
957static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
958{
959 u32 flags;
960 struct adv_info *adv_instance;
961
962 if (instance == 0x00) {
963 /* Instance 0 always manages the "Tx Power" and "Flags"
964 * fields
965 */
966 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
967
968 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
969 * corresponds to the "connectable" instance flag.
970 */
971 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
972 flags |= MGMT_ADV_FLAG_CONNECTABLE;
973
974 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
975 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
976 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
977 flags |= MGMT_ADV_FLAG_DISCOV;
978
979 return flags;
980 }
981
982 adv_instance = hci_find_adv_instance(hdev, instance);
983
984 /* Return 0 when we got an invalid instance identifier. */
985 if (!adv_instance)
986 return 0;
987
988 return adv_instance->flags;
989}
990
991static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
992{
993 /* If privacy is not enabled don't use RPA */
994 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
995 return false;
996
997 /* If basic privacy mode is enabled use RPA */
998 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
999 return true;
1000
1001 /* If limited privacy mode is enabled don't use RPA if we're
1002 * both discoverable and bondable.
1003 */
1004 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1005 hci_dev_test_flag(hdev, HCI_BONDABLE))
1006 return false;
1007
1008 /* We're neither bondable nor discoverable in the limited
1009 * privacy mode, therefore use RPA.
1010 */
1011 return true;
1012}
1013
1014static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1015{
1016 /* If there is no connection we are OK to advertise. */
1017 if (hci_conn_num(hdev, LE_LINK) == 0)
1018 return true;
1019
1020 /* Check le_states if there is any connection in slave role. */
1021 if (hdev->conn_hash.le_num_slave > 0) {
1022 /* Slave connection state and non connectable mode bit 20. */
1023 if (!connectable && !(hdev->le_states[2] & 0x10))
1024 return false;
1025
1026 /* Slave connection state and connectable mode bit 38
1027 * and scannable bit 21.
1028 */
1029 if (connectable && (!(hdev->le_states[4] & 0x40) ||
1030 !(hdev->le_states[2] & 0x20)))
1031 return false;
1032 }
1033
1034 /* Check le_states if there is any connection in master role. */
1035 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
1036 /* Master connection state and non connectable mode bit 18. */
1037 if (!connectable && !(hdev->le_states[2] & 0x02))
1038 return false;
1039
1040 /* Master connection state and connectable mode bit 35 and
1041 * scannable 19.
1042 */
1043 if (connectable && (!(hdev->le_states[4] & 0x08) ||
1044 !(hdev->le_states[2] & 0x08)))
1045 return false;
1046 }
1047
1048 return true;
1049}
1050
1051void __hci_req_enable_advertising(struct hci_request *req)
1052{
1053 struct hci_dev *hdev = req->hdev;
1054 struct hci_cp_le_set_adv_param cp;
1055 u8 own_addr_type, enable = 0x01;
1056 bool connectable;
1057 u16 adv_min_interval, adv_max_interval;
1058 u32 flags;
1059
1060 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1061
1062 /* If the "connectable" instance flag was not set, then choose between
1063 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1064 */
1065 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1066 mgmt_get_connectable(hdev);
1067
1068 if (!is_advertising_allowed(hdev, connectable))
1069 return;
1070
1071 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1072 __hci_req_disable_advertising(req);
1073
1074 /* Clear the HCI_LE_ADV bit temporarily so that the
1075 * hci_update_random_address knows that it's safe to go ahead
1076 * and write a new random address. The flag will be set back on
1077 * as soon as the SET_ADV_ENABLE HCI command completes.
1078 */
1079 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1080
1081 /* Set require_privacy to true only when non-connectable
1082 * advertising is used. In that case it is fine to use a
1083 * non-resolvable private address.
1084 */
1085 if (hci_update_random_address(req, !connectable,
1086 adv_use_rpa(hdev, flags),
1087 &own_addr_type) < 0)
1088 return;
1089
1090 memset(&cp, 0, sizeof(cp));
1091
1092 if (connectable) {
1093 cp.type = LE_ADV_IND;
1094
1095 adv_min_interval = hdev->le_adv_min_interval;
1096 adv_max_interval = hdev->le_adv_max_interval;
1097 } else {
1098 if (get_cur_adv_instance_scan_rsp_len(hdev))
1099 cp.type = LE_ADV_SCAN_IND;
1100 else
1101 cp.type = LE_ADV_NONCONN_IND;
1102
1103 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1104 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1105 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1106 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1107 } else {
1108 adv_min_interval = hdev->le_adv_min_interval;
1109 adv_max_interval = hdev->le_adv_max_interval;
1110 }
1111 }
1112
1113 cp.min_interval = cpu_to_le16(adv_min_interval);
1114 cp.max_interval = cpu_to_le16(adv_max_interval);
1115 cp.own_address_type = own_addr_type;
1116 cp.channel_map = hdev->le_adv_channel_map;
1117
1118 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1119
1120 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1121}
1122
1123u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1124{
1125 size_t short_len;
1126 size_t complete_len;
1127
1128 /* no space left for name (+ NULL + type + len) */
1129 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1130 return ad_len;
1131
1132 /* use complete name if present and fits */
1133 complete_len = strlen(hdev->dev_name);
1134 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1135 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1136 hdev->dev_name, complete_len + 1);
1137
1138 /* use short name if present */
1139 short_len = strlen(hdev->short_name);
1140 if (short_len)
1141 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1142 hdev->short_name, short_len + 1);
1143
1144 /* use shortened full name if present, we already know that name
1145 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1146 */
1147 if (complete_len) {
1148 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1149
1150 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1151 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1152
1153 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1154 sizeof(name));
1155 }
1156
1157 return ad_len;
1158}
1159
1160static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1161{
1162 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1163}
1164
1165static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1166{
1167 u8 scan_rsp_len = 0;
1168
1169 if (hdev->appearance) {
1170 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1171 }
1172
1173 return append_local_name(hdev, ptr, scan_rsp_len);
1174}
1175
1176static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1177 u8 *ptr)
1178{
1179 struct adv_info *adv_instance;
1180 u32 instance_flags;
1181 u8 scan_rsp_len = 0;
1182
1183 adv_instance = hci_find_adv_instance(hdev, instance);
1184 if (!adv_instance)
1185 return 0;
1186
1187 instance_flags = adv_instance->flags;
1188
1189 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1190 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1191 }
1192
1193 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1194 adv_instance->scan_rsp_len);
1195
1196 scan_rsp_len += adv_instance->scan_rsp_len;
1197
1198 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1199 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1200
1201 return scan_rsp_len;
1202}
1203
1204void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1205{
1206 struct hci_dev *hdev = req->hdev;
1207 u8 len;
1208
1209 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1210 return;
1211
1212 if (ext_adv_capable(hdev)) {
1213 struct hci_cp_le_set_ext_scan_rsp_data cp;
1214
1215 memset(&cp, 0, sizeof(cp));
1216
1217 if (instance)
1218 len = create_instance_scan_rsp_data(hdev, instance,
1219 cp.data);
1220 else
1221 len = create_default_scan_rsp_data(hdev, cp.data);
1222
1223 if (hdev->scan_rsp_data_len == len &&
1224 !memcmp(cp.data, hdev->scan_rsp_data, len))
1225 return;
1226
1227 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1228 hdev->scan_rsp_data_len = len;
1229
1230 cp.handle = 0;
1231 cp.length = len;
1232 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1233 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1234
1235 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
1236 &cp);
1237 } else {
1238 struct hci_cp_le_set_scan_rsp_data cp;
1239
1240 memset(&cp, 0, sizeof(cp));
1241
1242 if (instance)
1243 len = create_instance_scan_rsp_data(hdev, instance,
1244 cp.data);
1245 else
1246 len = create_default_scan_rsp_data(hdev, cp.data);
1247
1248 if (hdev->scan_rsp_data_len == len &&
1249 !memcmp(cp.data, hdev->scan_rsp_data, len))
1250 return;
1251
1252 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1253 hdev->scan_rsp_data_len = len;
1254
1255 cp.length = len;
1256
1257 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1258 }
1259}
1260
1261static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1262{
1263 struct adv_info *adv_instance = NULL;
1264 u8 ad_len = 0, flags = 0;
1265 u32 instance_flags;
1266
1267 /* Return 0 when the current instance identifier is invalid. */
1268 if (instance) {
1269 adv_instance = hci_find_adv_instance(hdev, instance);
1270 if (!adv_instance)
1271 return 0;
1272 }
1273
1274 instance_flags = get_adv_instance_flags(hdev, instance);
1275
1276 /* The Add Advertising command allows userspace to set both the general
1277 * and limited discoverable flags.
1278 */
1279 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1280 flags |= LE_AD_GENERAL;
1281
1282 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1283 flags |= LE_AD_LIMITED;
1284
1285 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1286 flags |= LE_AD_NO_BREDR;
1287
1288 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1289 /* If a discovery flag wasn't provided, simply use the global
1290 * settings.
1291 */
1292 if (!flags)
1293 flags |= mgmt_get_adv_discov_flags(hdev);
1294
1295 /* If flags would still be empty, then there is no need to
1296 * include the "Flags" AD field".
1297 */
1298 if (flags) {
1299 ptr[0] = 0x02;
1300 ptr[1] = EIR_FLAGS;
1301 ptr[2] = flags;
1302
1303 ad_len += 3;
1304 ptr += 3;
1305 }
1306 }
1307
1308 if (adv_instance) {
1309 memcpy(ptr, adv_instance->adv_data,
1310 adv_instance->adv_data_len);
1311 ad_len += adv_instance->adv_data_len;
1312 ptr += adv_instance->adv_data_len;
1313 }
1314
1315 if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1316 s8 adv_tx_power;
1317
1318 if (ext_adv_capable(hdev)) {
1319 if (adv_instance)
1320 adv_tx_power = adv_instance->tx_power;
1321 else
1322 adv_tx_power = hdev->adv_tx_power;
1323 } else {
1324 adv_tx_power = hdev->adv_tx_power;
1325 }
1326
1327 /* Provide Tx Power only if we can provide a valid value for it */
1328 if (adv_tx_power != HCI_TX_POWER_INVALID) {
1329 ptr[0] = 0x02;
1330 ptr[1] = EIR_TX_POWER;
1331 ptr[2] = (u8)adv_tx_power;
1332
1333 ad_len += 3;
1334 ptr += 3;
1335 }
1336 }
1337
1338 return ad_len;
1339}
1340
1341void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1342{
1343 struct hci_dev *hdev = req->hdev;
1344 u8 len;
1345
1346 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1347 return;
1348
1349 if (ext_adv_capable(hdev)) {
1350 struct hci_cp_le_set_ext_adv_data cp;
1351
1352 memset(&cp, 0, sizeof(cp));
1353
1354 len = create_instance_adv_data(hdev, instance, cp.data);
1355
1356 /* There's nothing to do if the data hasn't changed */
1357 if (hdev->adv_data_len == len &&
1358 memcmp(cp.data, hdev->adv_data, len) == 0)
1359 return;
1360
1361 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1362 hdev->adv_data_len = len;
1363
1364 cp.length = len;
1365 cp.handle = 0;
1366 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1367 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1368
1369 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
1370 } else {
1371 struct hci_cp_le_set_adv_data cp;
1372
1373 memset(&cp, 0, sizeof(cp));
1374
1375 len = create_instance_adv_data(hdev, instance, cp.data);
1376
1377 /* There's nothing to do if the data hasn't changed */
1378 if (hdev->adv_data_len == len &&
1379 memcmp(cp.data, hdev->adv_data, len) == 0)
1380 return;
1381
1382 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1383 hdev->adv_data_len = len;
1384
1385 cp.length = len;
1386
1387 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1388 }
1389}
1390
1391int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1392{
1393 struct hci_request req;
1394
1395 hci_req_init(&req, hdev);
1396 __hci_req_update_adv_data(&req, instance);
1397
1398 return hci_req_run(&req, NULL);
1399}
1400
1401static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1402{
1403 BT_DBG("%s status %u", hdev->name, status);
1404}
1405
1406void hci_req_reenable_advertising(struct hci_dev *hdev)
1407{
1408 struct hci_request req;
1409
1410 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1411 list_empty(&hdev->adv_instances))
1412 return;
1413
1414 hci_req_init(&req, hdev);
1415
1416 if (hdev->cur_adv_instance) {
1417 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1418 true);
1419 } else {
1420 if (ext_adv_capable(hdev)) {
1421 __hci_req_start_ext_adv(&req, 0x00);
1422 } else {
1423 __hci_req_update_adv_data(&req, 0x00);
1424 __hci_req_update_scan_rsp_data(&req, 0x00);
1425 __hci_req_enable_advertising(&req);
1426 }
1427 }
1428
1429 hci_req_run(&req, adv_enable_complete);
1430}
1431
1432static void adv_timeout_expire(struct work_struct *work)
1433{
1434 struct hci_dev *hdev = container_of(work, struct hci_dev,
1435 adv_instance_expire.work);
1436
1437 struct hci_request req;
1438 u8 instance;
1439
1440 BT_DBG("%s", hdev->name);
1441
1442 hci_dev_lock(hdev);
1443
1444 hdev->adv_instance_timeout = 0;
1445
1446 instance = hdev->cur_adv_instance;
1447 if (instance == 0x00)
1448 goto unlock;
1449
1450 hci_req_init(&req, hdev);
1451
1452 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1453
1454 if (list_empty(&hdev->adv_instances))
1455 __hci_req_disable_advertising(&req);
1456
1457 hci_req_run(&req, NULL);
1458
1459unlock:
1460 hci_dev_unlock(hdev);
1461}
1462
1463int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
1464 bool use_rpa, struct adv_info *adv_instance,
1465 u8 *own_addr_type, bdaddr_t *rand_addr)
1466{
1467 int err;
1468
1469 bacpy(rand_addr, BDADDR_ANY);
1470
1471 /* If privacy is enabled use a resolvable private address. If
1472 * current RPA has expired then generate a new one.
1473 */
1474 if (use_rpa) {
1475 int to;
1476
1477 *own_addr_type = ADDR_LE_DEV_RANDOM;
1478
1479 if (adv_instance) {
1480 if (!adv_instance->rpa_expired &&
1481 !bacmp(&adv_instance->random_addr, &hdev->rpa))
1482 return 0;
1483
1484 adv_instance->rpa_expired = false;
1485 } else {
1486 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1487 !bacmp(&hdev->random_addr, &hdev->rpa))
1488 return 0;
1489 }
1490
1491 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1492 if (err < 0) {
1493 BT_ERR("%s failed to generate new RPA", hdev->name);
1494 return err;
1495 }
1496
1497 bacpy(rand_addr, &hdev->rpa);
1498
1499 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1500 if (adv_instance)
1501 queue_delayed_work(hdev->workqueue,
1502 &adv_instance->rpa_expired_cb, to);
1503 else
1504 queue_delayed_work(hdev->workqueue,
1505 &hdev->rpa_expired, to);
1506
1507 return 0;
1508 }
1509
1510 /* In case of required privacy without resolvable private address,
1511 * use an non-resolvable private address. This is useful for
1512 * non-connectable advertising.
1513 */
1514 if (require_privacy) {
1515 bdaddr_t nrpa;
1516
1517 while (true) {
1518 /* The non-resolvable private address is generated
1519 * from random six bytes with the two most significant
1520 * bits cleared.
1521 */
1522 get_random_bytes(&nrpa, 6);
1523 nrpa.b[5] &= 0x3f;
1524
1525 /* The non-resolvable private address shall not be
1526 * equal to the public address.
1527 */
1528 if (bacmp(&hdev->bdaddr, &nrpa))
1529 break;
1530 }
1531
1532 *own_addr_type = ADDR_LE_DEV_RANDOM;
1533 bacpy(rand_addr, &nrpa);
1534
1535 return 0;
1536 }
1537
1538 /* No privacy so use a public address. */
1539 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1540
1541 return 0;
1542}
1543
1544void __hci_req_clear_ext_adv_sets(struct hci_request *req)
1545{
1546 hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
1547}
1548
1549int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1550{
1551 struct hci_cp_le_set_ext_adv_params cp;
1552 struct hci_dev *hdev = req->hdev;
1553 bool connectable;
1554 u32 flags;
1555 bdaddr_t random_addr;
1556 u8 own_addr_type;
1557 int err;
1558 struct adv_info *adv_instance;
1559 bool secondary_adv;
1560 /* In ext adv set param interval is 3 octets */
1561 const u8 adv_interval[3] = { 0x00, 0x08, 0x00 };
1562
1563 if (instance > 0) {
1564 adv_instance = hci_find_adv_instance(hdev, instance);
1565 if (!adv_instance)
1566 return -EINVAL;
1567 } else {
1568 adv_instance = NULL;
1569 }
1570
1571 flags = get_adv_instance_flags(hdev, instance);
1572
1573 /* If the "connectable" instance flag was not set, then choose between
1574 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1575 */
1576 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1577 mgmt_get_connectable(hdev);
1578
1579 if (!is_advertising_allowed(hdev, connectable))
1580 return -EPERM;
1581
1582 /* Set require_privacy to true only when non-connectable
1583 * advertising is used. In that case it is fine to use a
1584 * non-resolvable private address.
1585 */
1586 err = hci_get_random_address(hdev, !connectable,
1587 adv_use_rpa(hdev, flags), adv_instance,
1588 &own_addr_type, &random_addr);
1589 if (err < 0)
1590 return err;
1591
1592 memset(&cp, 0, sizeof(cp));
1593
1594 memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval));
1595 memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval));
1596
1597 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1598
1599 if (connectable) {
1600 if (secondary_adv)
1601 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1602 else
1603 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1604 } else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
1605 if (secondary_adv)
1606 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1607 else
1608 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1609 } else {
1610 if (secondary_adv)
1611 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1612 else
1613 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1614 }
1615
1616 cp.own_addr_type = own_addr_type;
1617 cp.channel_map = hdev->le_adv_channel_map;
1618 cp.tx_power = 127;
1619 cp.handle = instance;
1620
1621 if (flags & MGMT_ADV_FLAG_SEC_2M) {
1622 cp.primary_phy = HCI_ADV_PHY_1M;
1623 cp.secondary_phy = HCI_ADV_PHY_2M;
1624 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1625 cp.primary_phy = HCI_ADV_PHY_CODED;
1626 cp.secondary_phy = HCI_ADV_PHY_CODED;
1627 } else {
1628 /* In all other cases use 1M */
1629 cp.primary_phy = HCI_ADV_PHY_1M;
1630 cp.secondary_phy = HCI_ADV_PHY_1M;
1631 }
1632
1633 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1634
1635 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1636 bacmp(&random_addr, BDADDR_ANY)) {
1637 struct hci_cp_le_set_adv_set_rand_addr cp;
1638
1639 /* Check if random address need to be updated */
1640 if (adv_instance) {
1641 if (!bacmp(&random_addr, &adv_instance->random_addr))
1642 return 0;
1643 } else {
1644 if (!bacmp(&random_addr, &hdev->random_addr))
1645 return 0;
1646 }
1647
1648 memset(&cp, 0, sizeof(cp));
1649
1650 cp.handle = 0;
1651 bacpy(&cp.bdaddr, &random_addr);
1652
1653 hci_req_add(req,
1654 HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1655 sizeof(cp), &cp);
1656 }
1657
1658 return 0;
1659}
1660
1661int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1662{
1663 struct hci_dev *hdev = req->hdev;
1664 struct hci_cp_le_set_ext_adv_enable *cp;
1665 struct hci_cp_ext_adv_set *adv_set;
1666 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1667 struct adv_info *adv_instance;
1668
1669 if (instance > 0) {
1670 adv_instance = hci_find_adv_instance(hdev, instance);
1671 if (!adv_instance)
1672 return -EINVAL;
1673 } else {
1674 adv_instance = NULL;
1675 }
1676
1677 cp = (void *) data;
1678 adv_set = (void *) cp->data;
1679
1680 memset(cp, 0, sizeof(*cp));
1681
1682 cp->enable = 0x01;
1683 cp->num_of_sets = 0x01;
1684
1685 memset(adv_set, 0, sizeof(*adv_set));
1686
1687 adv_set->handle = instance;
1688
1689 /* Set duration per instance since controller is responsible for
1690 * scheduling it.
1691 */
1692 if (adv_instance && adv_instance->duration) {
1693 u16 duration = adv_instance->duration * MSEC_PER_SEC;
1694
1695 /* Time = N * 10 ms */
1696 adv_set->duration = cpu_to_le16(duration / 10);
1697 }
1698
1699 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1700 sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
1701 data);
1702
1703 return 0;
1704}
1705
1706int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
1707{
1708 struct hci_dev *hdev = req->hdev;
1709 int err;
1710
1711 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1712 __hci_req_disable_advertising(req);
1713
1714 err = __hci_req_setup_ext_adv_instance(req, instance);
1715 if (err < 0)
1716 return err;
1717
1718 __hci_req_update_scan_rsp_data(req, instance);
1719 __hci_req_enable_ext_advertising(req, instance);
1720
1721 return 0;
1722}
1723
1724int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1725 bool force)
1726{
1727 struct hci_dev *hdev = req->hdev;
1728 struct adv_info *adv_instance = NULL;
1729 u16 timeout;
1730
1731 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1732 list_empty(&hdev->adv_instances))
1733 return -EPERM;
1734
1735 if (hdev->adv_instance_timeout)
1736 return -EBUSY;
1737
1738 adv_instance = hci_find_adv_instance(hdev, instance);
1739 if (!adv_instance)
1740 return -ENOENT;
1741
1742 /* A zero timeout means unlimited advertising. As long as there is
1743 * only one instance, duration should be ignored. We still set a timeout
1744 * in case further instances are being added later on.
1745 *
1746 * If the remaining lifetime of the instance is more than the duration
1747 * then the timeout corresponds to the duration, otherwise it will be
1748 * reduced to the remaining instance lifetime.
1749 */
1750 if (adv_instance->timeout == 0 ||
1751 adv_instance->duration <= adv_instance->remaining_time)
1752 timeout = adv_instance->duration;
1753 else
1754 timeout = adv_instance->remaining_time;
1755
1756 /* The remaining time is being reduced unless the instance is being
1757 * advertised without time limit.
1758 */
1759 if (adv_instance->timeout)
1760 adv_instance->remaining_time =
1761 adv_instance->remaining_time - timeout;
1762
1763 /* Only use work for scheduling instances with legacy advertising */
1764 if (!ext_adv_capable(hdev)) {
1765 hdev->adv_instance_timeout = timeout;
1766 queue_delayed_work(hdev->req_workqueue,
1767 &hdev->adv_instance_expire,
1768 msecs_to_jiffies(timeout * 1000));
1769 }
1770
1771 /* If we're just re-scheduling the same instance again then do not
1772 * execute any HCI commands. This happens when a single instance is
1773 * being advertised.
1774 */
1775 if (!force && hdev->cur_adv_instance == instance &&
1776 hci_dev_test_flag(hdev, HCI_LE_ADV))
1777 return 0;
1778
1779 hdev->cur_adv_instance = instance;
1780 if (ext_adv_capable(hdev)) {
1781 __hci_req_start_ext_adv(req, instance);
1782 } else {
1783 __hci_req_update_adv_data(req, instance);
1784 __hci_req_update_scan_rsp_data(req, instance);
1785 __hci_req_enable_advertising(req);
1786 }
1787
1788 return 0;
1789}
1790
1791static void cancel_adv_timeout(struct hci_dev *hdev)
1792{
1793 if (hdev->adv_instance_timeout) {
1794 hdev->adv_instance_timeout = 0;
1795 cancel_delayed_work(&hdev->adv_instance_expire);
1796 }
1797}
1798
1799/* For a single instance:
1800 * - force == true: The instance will be removed even when its remaining
1801 * lifetime is not zero.
1802 * - force == false: the instance will be deactivated but kept stored unless
1803 * the remaining lifetime is zero.
1804 *
1805 * For instance == 0x00:
1806 * - force == true: All instances will be removed regardless of their timeout
1807 * setting.
1808 * - force == false: Only instances that have a timeout will be removed.
1809 */
1810void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1811 struct hci_request *req, u8 instance,
1812 bool force)
1813{
1814 struct adv_info *adv_instance, *n, *next_instance = NULL;
1815 int err;
1816 u8 rem_inst;
1817
1818 /* Cancel any timeout concerning the removed instance(s). */
1819 if (!instance || hdev->cur_adv_instance == instance)
1820 cancel_adv_timeout(hdev);
1821
1822 /* Get the next instance to advertise BEFORE we remove
1823 * the current one. This can be the same instance again
1824 * if there is only one instance.
1825 */
1826 if (instance && hdev->cur_adv_instance == instance)
1827 next_instance = hci_get_next_instance(hdev, instance);
1828
1829 if (instance == 0x00) {
1830 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1831 list) {
1832 if (!(force || adv_instance->timeout))
1833 continue;
1834
1835 rem_inst = adv_instance->instance;
1836 err = hci_remove_adv_instance(hdev, rem_inst);
1837 if (!err)
1838 mgmt_advertising_removed(sk, hdev, rem_inst);
1839 }
1840 } else {
1841 adv_instance = hci_find_adv_instance(hdev, instance);
1842
1843 if (force || (adv_instance && adv_instance->timeout &&
1844 !adv_instance->remaining_time)) {
1845 /* Don't advertise a removed instance. */
1846 if (next_instance &&
1847 next_instance->instance == instance)
1848 next_instance = NULL;
1849
1850 err = hci_remove_adv_instance(hdev, instance);
1851 if (!err)
1852 mgmt_advertising_removed(sk, hdev, instance);
1853 }
1854 }
1855
1856 if (!req || !hdev_is_powered(hdev) ||
1857 hci_dev_test_flag(hdev, HCI_ADVERTISING))
1858 return;
1859
1860 if (next_instance)
1861 __hci_req_schedule_adv_instance(req, next_instance->instance,
1862 false);
1863}
1864
1865static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1866{
1867 struct hci_dev *hdev = req->hdev;
1868
1869 /* If we're advertising or initiating an LE connection we can't
1870 * go ahead and change the random address at this time. This is
1871 * because the eventual initiator address used for the
1872 * subsequently created connection will be undefined (some
1873 * controllers use the new address and others the one we had
1874 * when the operation started).
1875 *
1876 * In this kind of scenario skip the update and let the random
1877 * address be updated at the next cycle.
1878 */
1879 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1880 hci_lookup_le_connect(hdev)) {
1881 BT_DBG("Deferring random address update");
1882 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1883 return;
1884 }
1885
1886 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1887}
1888
1889int hci_update_random_address(struct hci_request *req, bool require_privacy,
1890 bool use_rpa, u8 *own_addr_type)
1891{
1892 struct hci_dev *hdev = req->hdev;
1893 int err;
1894
1895 /* If privacy is enabled use a resolvable private address. If
1896 * current RPA has expired or there is something else than
1897 * the current RPA in use, then generate a new one.
1898 */
1899 if (use_rpa) {
1900 int to;
1901
1902 *own_addr_type = ADDR_LE_DEV_RANDOM;
1903
1904 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1905 !bacmp(&hdev->random_addr, &hdev->rpa))
1906 return 0;
1907
1908 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1909 if (err < 0) {
1910 bt_dev_err(hdev, "failed to generate new RPA");
1911 return err;
1912 }
1913
1914 set_random_addr(req, &hdev->rpa);
1915
1916 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1917 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1918
1919 return 0;
1920 }
1921
1922 /* In case of required privacy without resolvable private address,
1923 * use an non-resolvable private address. This is useful for active
1924 * scanning and non-connectable advertising.
1925 */
1926 if (require_privacy) {
1927 bdaddr_t nrpa;
1928
1929 while (true) {
1930 /* The non-resolvable private address is generated
1931 * from random six bytes with the two most significant
1932 * bits cleared.
1933 */
1934 get_random_bytes(&nrpa, 6);
1935 nrpa.b[5] &= 0x3f;
1936
1937 /* The non-resolvable private address shall not be
1938 * equal to the public address.
1939 */
1940 if (bacmp(&hdev->bdaddr, &nrpa))
1941 break;
1942 }
1943
1944 *own_addr_type = ADDR_LE_DEV_RANDOM;
1945 set_random_addr(req, &nrpa);
1946 return 0;
1947 }
1948
1949 /* If forcing static address is in use or there is no public
1950 * address use the static address as random address (but skip
1951 * the HCI command if the current random address is already the
1952 * static one.
1953 *
1954 * In case BR/EDR has been disabled on a dual-mode controller
1955 * and a static address has been configured, then use that
1956 * address instead of the public BR/EDR address.
1957 */
1958 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1959 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1960 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1961 bacmp(&hdev->static_addr, BDADDR_ANY))) {
1962 *own_addr_type = ADDR_LE_DEV_RANDOM;
1963 if (bacmp(&hdev->static_addr, &hdev->random_addr))
1964 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1965 &hdev->static_addr);
1966 return 0;
1967 }
1968
1969 /* Neither privacy nor static address is being used so use a
1970 * public address.
1971 */
1972 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1973
1974 return 0;
1975}
1976
1977static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1978{
1979 struct bdaddr_list *b;
1980
1981 list_for_each_entry(b, &hdev->whitelist, list) {
1982 struct hci_conn *conn;
1983
1984 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1985 if (!conn)
1986 return true;
1987
1988 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1989 return true;
1990 }
1991
1992 return false;
1993}
1994
1995void __hci_req_update_scan(struct hci_request *req)
1996{
1997 struct hci_dev *hdev = req->hdev;
1998 u8 scan;
1999
2000 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2001 return;
2002
2003 if (!hdev_is_powered(hdev))
2004 return;
2005
2006 if (mgmt_powering_down(hdev))
2007 return;
2008
2009 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2010 disconnected_whitelist_entries(hdev))
2011 scan = SCAN_PAGE;
2012 else
2013 scan = SCAN_DISABLED;
2014
2015 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2016 scan |= SCAN_INQUIRY;
2017
2018 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2019 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2020 return;
2021
2022 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
2023}
2024
2025static int update_scan(struct hci_request *req, unsigned long opt)
2026{
2027 hci_dev_lock(req->hdev);
2028 __hci_req_update_scan(req);
2029 hci_dev_unlock(req->hdev);
2030 return 0;
2031}
2032
2033static void scan_update_work(struct work_struct *work)
2034{
2035 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
2036
2037 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2038}
2039
2040static int connectable_update(struct hci_request *req, unsigned long opt)
2041{
2042 struct hci_dev *hdev = req->hdev;
2043
2044 hci_dev_lock(hdev);
2045
2046 __hci_req_update_scan(req);
2047
2048 /* If BR/EDR is not enabled and we disable advertising as a
2049 * by-product of disabling connectable, we need to update the
2050 * advertising flags.
2051 */
2052 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2053 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
2054
2055 /* Update the advertising parameters if necessary */
2056 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2057 !list_empty(&hdev->adv_instances)) {
2058 if (ext_adv_capable(hdev))
2059 __hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2060 else
2061 __hci_req_enable_advertising(req);
2062 }
2063
2064 __hci_update_background_scan(req);
2065
2066 hci_dev_unlock(hdev);
2067
2068 return 0;
2069}
2070
2071static void connectable_update_work(struct work_struct *work)
2072{
2073 struct hci_dev *hdev = container_of(work, struct hci_dev,
2074 connectable_update);
2075 u8 status;
2076
2077 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2078 mgmt_set_connectable_complete(hdev, status);
2079}
2080
2081static u8 get_service_classes(struct hci_dev *hdev)
2082{
2083 struct bt_uuid *uuid;
2084 u8 val = 0;
2085
2086 list_for_each_entry(uuid, &hdev->uuids, list)
2087 val |= uuid->svc_hint;
2088
2089 return val;
2090}
2091
2092void __hci_req_update_class(struct hci_request *req)
2093{
2094 struct hci_dev *hdev = req->hdev;
2095 u8 cod[3];
2096
2097 BT_DBG("%s", hdev->name);
2098
2099 if (!hdev_is_powered(hdev))
2100 return;
2101
2102 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2103 return;
2104
2105 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2106 return;
2107
2108 cod[0] = hdev->minor_class;
2109 cod[1] = hdev->major_class;
2110 cod[2] = get_service_classes(hdev);
2111
2112 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2113 cod[1] |= 0x20;
2114
2115 if (memcmp(cod, hdev->dev_class, 3) == 0)
2116 return;
2117
2118 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2119}
2120
2121static void write_iac(struct hci_request *req)
2122{
2123 struct hci_dev *hdev = req->hdev;
2124 struct hci_cp_write_current_iac_lap cp;
2125
2126 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2127 return;
2128
2129 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2130 /* Limited discoverable mode */
2131 cp.num_iac = min_t(u8, hdev->num_iac, 2);
2132 cp.iac_lap[0] = 0x00; /* LIAC */
2133 cp.iac_lap[1] = 0x8b;
2134 cp.iac_lap[2] = 0x9e;
2135 cp.iac_lap[3] = 0x33; /* GIAC */
2136 cp.iac_lap[4] = 0x8b;
2137 cp.iac_lap[5] = 0x9e;
2138 } else {
2139 /* General discoverable mode */
2140 cp.num_iac = 1;
2141 cp.iac_lap[0] = 0x33; /* GIAC */
2142 cp.iac_lap[1] = 0x8b;
2143 cp.iac_lap[2] = 0x9e;
2144 }
2145
2146 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2147 (cp.num_iac * 3) + 1, &cp);
2148}
2149
2150static int discoverable_update(struct hci_request *req, unsigned long opt)
2151{
2152 struct hci_dev *hdev = req->hdev;
2153
2154 hci_dev_lock(hdev);
2155
2156 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2157 write_iac(req);
2158 __hci_req_update_scan(req);
2159 __hci_req_update_class(req);
2160 }
2161
2162 /* Advertising instances don't use the global discoverable setting, so
2163 * only update AD if advertising was enabled using Set Advertising.
2164 */
2165 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2166 __hci_req_update_adv_data(req, 0x00);
2167
2168 /* Discoverable mode affects the local advertising
2169 * address in limited privacy mode.
2170 */
2171 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2172 if (ext_adv_capable(hdev))
2173 __hci_req_start_ext_adv(req, 0x00);
2174 else
2175 __hci_req_enable_advertising(req);
2176 }
2177 }
2178
2179 hci_dev_unlock(hdev);
2180
2181 return 0;
2182}
2183
2184static void discoverable_update_work(struct work_struct *work)
2185{
2186 struct hci_dev *hdev = container_of(work, struct hci_dev,
2187 discoverable_update);
2188 u8 status;
2189
2190 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2191 mgmt_set_discoverable_complete(hdev, status);
2192}
2193
2194void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2195 u8 reason)
2196{
2197 switch (conn->state) {
2198 case BT_CONNECTED:
2199 case BT_CONFIG:
2200 if (conn->type == AMP_LINK) {
2201 struct hci_cp_disconn_phy_link cp;
2202
2203 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2204 cp.reason = reason;
2205 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2206 &cp);
2207 } else {
2208 struct hci_cp_disconnect dc;
2209
2210 dc.handle = cpu_to_le16(conn->handle);
2211 dc.reason = reason;
2212 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2213 }
2214
2215 conn->state = BT_DISCONN;
2216
2217 break;
2218 case BT_CONNECT:
2219 if (conn->type == LE_LINK) {
2220 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2221 break;
2222 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2223 0, NULL);
2224 } else if (conn->type == ACL_LINK) {
2225 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2226 break;
2227 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2228 6, &conn->dst);
2229 }
2230 break;
2231 case BT_CONNECT2:
2232 if (conn->type == ACL_LINK) {
2233 struct hci_cp_reject_conn_req rej;
2234
2235 bacpy(&rej.bdaddr, &conn->dst);
2236 rej.reason = reason;
2237
2238 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2239 sizeof(rej), &rej);
2240 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2241 struct hci_cp_reject_sync_conn_req rej;
2242
2243 bacpy(&rej.bdaddr, &conn->dst);
2244
2245 /* SCO rejection has its own limited set of
2246 * allowed error values (0x0D-0x0F) which isn't
2247 * compatible with most values passed to this
2248 * function. To be safe hard-code one of the
2249 * values that's suitable for SCO.
2250 */
2251 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2252
2253 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2254 sizeof(rej), &rej);
2255 }
2256 break;
2257 default:
2258 conn->state = BT_CLOSED;
2259 break;
2260 }
2261}
2262
2263static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2264{
2265 if (status)
2266 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
2267}
2268
2269int hci_abort_conn(struct hci_conn *conn, u8 reason)
2270{
2271 struct hci_request req;
2272 int err;
2273
2274 hci_req_init(&req, conn->hdev);
2275
2276 __hci_abort_conn(&req, conn, reason);
2277
2278 err = hci_req_run(&req, abort_conn_complete);
2279 if (err && err != -ENODATA) {
2280 bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2281 return err;
2282 }
2283
2284 return 0;
2285}
2286
2287static int update_bg_scan(struct hci_request *req, unsigned long opt)
2288{
2289 hci_dev_lock(req->hdev);
2290 __hci_update_background_scan(req);
2291 hci_dev_unlock(req->hdev);
2292 return 0;
2293}
2294
2295static void bg_scan_update(struct work_struct *work)
2296{
2297 struct hci_dev *hdev = container_of(work, struct hci_dev,
2298 bg_scan_update);
2299 struct hci_conn *conn;
2300 u8 status;
2301 int err;
2302
2303 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2304 if (!err)
2305 return;
2306
2307 hci_dev_lock(hdev);
2308
2309 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2310 if (conn)
2311 hci_le_conn_failed(conn, status);
2312
2313 hci_dev_unlock(hdev);
2314}
2315
2316static int le_scan_disable(struct hci_request *req, unsigned long opt)
2317{
2318 hci_req_add_le_scan_disable(req);
2319 return 0;
2320}
2321
2322static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2323{
2324 u8 length = opt;
2325 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2326 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2327 struct hci_cp_inquiry cp;
2328
2329 BT_DBG("%s", req->hdev->name);
2330
2331 hci_dev_lock(req->hdev);
2332 hci_inquiry_cache_flush(req->hdev);
2333 hci_dev_unlock(req->hdev);
2334
2335 memset(&cp, 0, sizeof(cp));
2336
2337 if (req->hdev->discovery.limited)
2338 memcpy(&cp.lap, liac, sizeof(cp.lap));
2339 else
2340 memcpy(&cp.lap, giac, sizeof(cp.lap));
2341
2342 cp.length = length;
2343
2344 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2345
2346 return 0;
2347}
2348
2349static void le_scan_disable_work(struct work_struct *work)
2350{
2351 struct hci_dev *hdev = container_of(work, struct hci_dev,
2352 le_scan_disable.work);
2353 u8 status;
2354
2355 BT_DBG("%s", hdev->name);
2356
2357 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2358 return;
2359
2360 cancel_delayed_work(&hdev->le_scan_restart);
2361
2362 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
2363 if (status) {
2364 bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
2365 status);
2366 return;
2367 }
2368
2369 hdev->discovery.scan_start = 0;
2370
2371 /* If we were running LE only scan, change discovery state. If
2372 * we were running both LE and BR/EDR inquiry simultaneously,
2373 * and BR/EDR inquiry is already finished, stop discovery,
2374 * otherwise BR/EDR inquiry will stop discovery when finished.
2375 * If we will resolve remote device name, do not change
2376 * discovery state.
2377 */
2378
2379 if (hdev->discovery.type == DISCOV_TYPE_LE)
2380 goto discov_stopped;
2381
2382 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2383 return;
2384
2385 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
2386 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
2387 hdev->discovery.state != DISCOVERY_RESOLVING)
2388 goto discov_stopped;
2389
2390 return;
2391 }
2392
2393 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
2394 HCI_CMD_TIMEOUT, &status);
2395 if (status) {
2396 bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2397 goto discov_stopped;
2398 }
2399
2400 return;
2401
2402discov_stopped:
2403 hci_dev_lock(hdev);
2404 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2405 hci_dev_unlock(hdev);
2406}
2407
2408static int le_scan_restart(struct hci_request *req, unsigned long opt)
2409{
2410 struct hci_dev *hdev = req->hdev;
2411
2412 /* If controller is not scanning we are done. */
2413 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2414 return 0;
2415
2416 hci_req_add_le_scan_disable(req);
2417
2418 if (use_ext_scan(hdev)) {
2419 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
2420
2421 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
2422 ext_enable_cp.enable = LE_SCAN_ENABLE;
2423 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2424
2425 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2426 sizeof(ext_enable_cp), &ext_enable_cp);
2427 } else {
2428 struct hci_cp_le_set_scan_enable cp;
2429
2430 memset(&cp, 0, sizeof(cp));
2431 cp.enable = LE_SCAN_ENABLE;
2432 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2433 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2434 }
2435
2436 return 0;
2437}
2438
2439static void le_scan_restart_work(struct work_struct *work)
2440{
2441 struct hci_dev *hdev = container_of(work, struct hci_dev,
2442 le_scan_restart.work);
2443 unsigned long timeout, duration, scan_start, now;
2444 u8 status;
2445
2446 BT_DBG("%s", hdev->name);
2447
2448 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2449 if (status) {
2450 bt_dev_err(hdev, "failed to restart LE scan: status %d",
2451 status);
2452 return;
2453 }
2454
2455 hci_dev_lock(hdev);
2456
2457 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2458 !hdev->discovery.scan_start)
2459 goto unlock;
2460
2461 /* When the scan was started, hdev->le_scan_disable has been queued
2462 * after duration from scan_start. During scan restart this job
2463 * has been canceled, and we need to queue it again after proper
2464 * timeout, to make sure that scan does not run indefinitely.
2465 */
2466 duration = hdev->discovery.scan_duration;
2467 scan_start = hdev->discovery.scan_start;
2468 now = jiffies;
2469 if (now - scan_start <= duration) {
2470 int elapsed;
2471
2472 if (now >= scan_start)
2473 elapsed = now - scan_start;
2474 else
2475 elapsed = ULONG_MAX - scan_start + now;
2476
2477 timeout = duration - elapsed;
2478 } else {
2479 timeout = 0;
2480 }
2481
2482 queue_delayed_work(hdev->req_workqueue,
2483 &hdev->le_scan_disable, timeout);
2484
2485unlock:
2486 hci_dev_unlock(hdev);
2487}
2488
2489static int active_scan(struct hci_request *req, unsigned long opt)
2490{
2491 uint16_t interval = opt;
2492 struct hci_dev *hdev = req->hdev;
2493 u8 own_addr_type;
2494 int err;
2495
2496 BT_DBG("%s", hdev->name);
2497
2498 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
2499 hci_dev_lock(hdev);
2500
2501 /* Don't let discovery abort an outgoing connection attempt
2502 * that's using directed advertising.
2503 */
2504 if (hci_lookup_le_connect(hdev)) {
2505 hci_dev_unlock(hdev);
2506 return -EBUSY;
2507 }
2508
2509 cancel_adv_timeout(hdev);
2510 hci_dev_unlock(hdev);
2511
2512 __hci_req_disable_advertising(req);
2513 }
2514
2515 /* If controller is scanning, it means the background scanning is
2516 * running. Thus, we should temporarily stop it in order to set the
2517 * discovery scanning parameters.
2518 */
2519 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2520 hci_req_add_le_scan_disable(req);
2521
2522 /* All active scans will be done with either a resolvable private
2523 * address (when privacy feature has been enabled) or non-resolvable
2524 * private address.
2525 */
2526 err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2527 &own_addr_type);
2528 if (err < 0)
2529 own_addr_type = ADDR_LE_DEV_PUBLIC;
2530
2531 hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN,
2532 own_addr_type, 0);
2533 return 0;
2534}
2535
2536static int interleaved_discov(struct hci_request *req, unsigned long opt)
2537{
2538 int err;
2539
2540 BT_DBG("%s", req->hdev->name);
2541
2542 err = active_scan(req, opt);
2543 if (err)
2544 return err;
2545
2546 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2547}
2548
2549static void start_discovery(struct hci_dev *hdev, u8 *status)
2550{
2551 unsigned long timeout;
2552
2553 BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2554
2555 switch (hdev->discovery.type) {
2556 case DISCOV_TYPE_BREDR:
2557 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2558 hci_req_sync(hdev, bredr_inquiry,
2559 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2560 status);
2561 return;
2562 case DISCOV_TYPE_INTERLEAVED:
2563 /* When running simultaneous discovery, the LE scanning time
2564 * should occupy the whole discovery time sine BR/EDR inquiry
2565 * and LE scanning are scheduled by the controller.
2566 *
2567 * For interleaving discovery in comparison, BR/EDR inquiry
2568 * and LE scanning are done sequentially with separate
2569 * timeouts.
2570 */
2571 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2572 &hdev->quirks)) {
2573 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2574 /* During simultaneous discovery, we double LE scan
2575 * interval. We must leave some time for the controller
2576 * to do BR/EDR inquiry.
2577 */
2578 hci_req_sync(hdev, interleaved_discov,
2579 DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2580 status);
2581 break;
2582 }
2583
2584 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2585 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2586 HCI_CMD_TIMEOUT, status);
2587 break;
2588 case DISCOV_TYPE_LE:
2589 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2590 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2591 HCI_CMD_TIMEOUT, status);
2592 break;
2593 default:
2594 *status = HCI_ERROR_UNSPECIFIED;
2595 return;
2596 }
2597
2598 if (*status)
2599 return;
2600
2601 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2602
2603 /* When service discovery is used and the controller has a
2604 * strict duplicate filter, it is important to remember the
2605 * start and duration of the scan. This is required for
2606 * restarting scanning during the discovery phase.
2607 */
2608 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2609 hdev->discovery.result_filtering) {
2610 hdev->discovery.scan_start = jiffies;
2611 hdev->discovery.scan_duration = timeout;
2612 }
2613
2614 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2615 timeout);
2616}
2617
2618bool hci_req_stop_discovery(struct hci_request *req)
2619{
2620 struct hci_dev *hdev = req->hdev;
2621 struct discovery_state *d = &hdev->discovery;
2622 struct hci_cp_remote_name_req_cancel cp;
2623 struct inquiry_entry *e;
2624 bool ret = false;
2625
2626 BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2627
2628 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2629 if (test_bit(HCI_INQUIRY, &hdev->flags))
2630 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2631
2632 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2633 cancel_delayed_work(&hdev->le_scan_disable);
2634 hci_req_add_le_scan_disable(req);
2635 }
2636
2637 ret = true;
2638 } else {
2639 /* Passive scanning */
2640 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2641 hci_req_add_le_scan_disable(req);
2642 ret = true;
2643 }
2644 }
2645
2646 /* No further actions needed for LE-only discovery */
2647 if (d->type == DISCOV_TYPE_LE)
2648 return ret;
2649
2650 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2651 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2652 NAME_PENDING);
2653 if (!e)
2654 return ret;
2655
2656 bacpy(&cp.bdaddr, &e->data.bdaddr);
2657 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2658 &cp);
2659 ret = true;
2660 }
2661
2662 return ret;
2663}
2664
2665static int stop_discovery(struct hci_request *req, unsigned long opt)
2666{
2667 hci_dev_lock(req->hdev);
2668 hci_req_stop_discovery(req);
2669 hci_dev_unlock(req->hdev);
2670
2671 return 0;
2672}
2673
2674static void discov_update(struct work_struct *work)
2675{
2676 struct hci_dev *hdev = container_of(work, struct hci_dev,
2677 discov_update);
2678 u8 status = 0;
2679
2680 switch (hdev->discovery.state) {
2681 case DISCOVERY_STARTING:
2682 start_discovery(hdev, &status);
2683 mgmt_start_discovery_complete(hdev, status);
2684 if (status)
2685 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2686 else
2687 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2688 break;
2689 case DISCOVERY_STOPPING:
2690 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2691 mgmt_stop_discovery_complete(hdev, status);
2692 if (!status)
2693 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2694 break;
2695 case DISCOVERY_STOPPED:
2696 default:
2697 return;
2698 }
2699}
2700
2701static void discov_off(struct work_struct *work)
2702{
2703 struct hci_dev *hdev = container_of(work, struct hci_dev,
2704 discov_off.work);
2705
2706 BT_DBG("%s", hdev->name);
2707
2708 hci_dev_lock(hdev);
2709
2710 /* When discoverable timeout triggers, then just make sure
2711 * the limited discoverable flag is cleared. Even in the case
2712 * of a timeout triggered from general discoverable, it is
2713 * safe to unconditionally clear the flag.
2714 */
2715 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2716 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2717 hdev->discov_timeout = 0;
2718
2719 hci_dev_unlock(hdev);
2720
2721 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2722 mgmt_new_settings(hdev);
2723}
2724
2725static int powered_update_hci(struct hci_request *req, unsigned long opt)
2726{
2727 struct hci_dev *hdev = req->hdev;
2728 u8 link_sec;
2729
2730 hci_dev_lock(hdev);
2731
2732 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2733 !lmp_host_ssp_capable(hdev)) {
2734 u8 mode = 0x01;
2735
2736 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2737
2738 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2739 u8 support = 0x01;
2740
2741 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2742 sizeof(support), &support);
2743 }
2744 }
2745
2746 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2747 lmp_bredr_capable(hdev)) {
2748 struct hci_cp_write_le_host_supported cp;
2749
2750 cp.le = 0x01;
2751 cp.simul = 0x00;
2752
2753 /* Check first if we already have the right
2754 * host state (host features set)
2755 */
2756 if (cp.le != lmp_host_le_capable(hdev) ||
2757 cp.simul != lmp_host_le_br_capable(hdev))
2758 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2759 sizeof(cp), &cp);
2760 }
2761
2762 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2763 /* Make sure the controller has a good default for
2764 * advertising data. This also applies to the case
2765 * where BR/EDR was toggled during the AUTO_OFF phase.
2766 */
2767 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2768 list_empty(&hdev->adv_instances)) {
2769 int err;
2770
2771 if (ext_adv_capable(hdev)) {
2772 err = __hci_req_setup_ext_adv_instance(req,
2773 0x00);
2774 if (!err)
2775 __hci_req_update_scan_rsp_data(req,
2776 0x00);
2777 } else {
2778 err = 0;
2779 __hci_req_update_adv_data(req, 0x00);
2780 __hci_req_update_scan_rsp_data(req, 0x00);
2781 }
2782
2783 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2784 if (!ext_adv_capable(hdev))
2785 __hci_req_enable_advertising(req);
2786 else if (!err)
2787 __hci_req_enable_ext_advertising(req,
2788 0x00);
2789 }
2790 } else if (!list_empty(&hdev->adv_instances)) {
2791 struct adv_info *adv_instance;
2792
2793 adv_instance = list_first_entry(&hdev->adv_instances,
2794 struct adv_info, list);
2795 __hci_req_schedule_adv_instance(req,
2796 adv_instance->instance,
2797 true);
2798 }
2799 }
2800
2801 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2802 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2803 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2804 sizeof(link_sec), &link_sec);
2805
2806 if (lmp_bredr_capable(hdev)) {
2807 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2808 __hci_req_write_fast_connectable(req, true);
2809 else
2810 __hci_req_write_fast_connectable(req, false);
2811 __hci_req_update_scan(req);
2812 __hci_req_update_class(req);
2813 __hci_req_update_name(req);
2814 __hci_req_update_eir(req);
2815 }
2816
2817 hci_dev_unlock(hdev);
2818 return 0;
2819}
2820
2821int __hci_req_hci_power_on(struct hci_dev *hdev)
2822{
2823 /* Register the available SMP channels (BR/EDR and LE) only when
2824 * successfully powering on the controller. This late
2825 * registration is required so that LE SMP can clearly decide if
2826 * the public address or static address is used.
2827 */
2828 smp_register(hdev);
2829
2830 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2831 NULL);
2832}
2833
2834void hci_request_setup(struct hci_dev *hdev)
2835{
2836 INIT_WORK(&hdev->discov_update, discov_update);
2837 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2838 INIT_WORK(&hdev->scan_update, scan_update_work);
2839 INIT_WORK(&hdev->connectable_update, connectable_update_work);
2840 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2841 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2842 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2843 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2844 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2845}
2846
2847void hci_request_cancel_all(struct hci_dev *hdev)
2848{
2849 hci_req_sync_cancel(hdev, ENODEV);
2850
2851 cancel_work_sync(&hdev->discov_update);
2852 cancel_work_sync(&hdev->bg_scan_update);
2853 cancel_work_sync(&hdev->scan_update);
2854 cancel_work_sync(&hdev->connectable_update);
2855 cancel_work_sync(&hdev->discoverable_update);
2856 cancel_delayed_work_sync(&hdev->discov_off);
2857 cancel_delayed_work_sync(&hdev->le_scan_disable);
2858 cancel_delayed_work_sync(&hdev->le_scan_restart);
2859
2860 if (hdev->adv_instance_timeout) {
2861 cancel_delayed_work_sync(&hdev->adv_instance_expire);
2862 hdev->adv_instance_timeout = 0;
2863 }
2864}
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3
4 Copyright (C) 2014 Intel Corporation
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22*/
23
24#include <linux/sched/signal.h>
25
26#include <net/bluetooth/bluetooth.h>
27#include <net/bluetooth/hci_core.h>
28#include <net/bluetooth/mgmt.h>
29
30#include "smp.h"
31#include "hci_request.h"
32
33#define HCI_REQ_DONE 0
34#define HCI_REQ_PEND 1
35#define HCI_REQ_CANCELED 2
36
37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
38{
39 skb_queue_head_init(&req->cmd_q);
40 req->hdev = hdev;
41 req->err = 0;
42}
43
44void hci_req_purge(struct hci_request *req)
45{
46 skb_queue_purge(&req->cmd_q);
47}
48
49static int req_run(struct hci_request *req, hci_req_complete_t complete,
50 hci_req_complete_skb_t complete_skb)
51{
52 struct hci_dev *hdev = req->hdev;
53 struct sk_buff *skb;
54 unsigned long flags;
55
56 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
57
58 /* If an error occurred during request building, remove all HCI
59 * commands queued on the HCI request queue.
60 */
61 if (req->err) {
62 skb_queue_purge(&req->cmd_q);
63 return req->err;
64 }
65
66 /* Do not allow empty requests */
67 if (skb_queue_empty(&req->cmd_q))
68 return -ENODATA;
69
70 skb = skb_peek_tail(&req->cmd_q);
71 if (complete) {
72 bt_cb(skb)->hci.req_complete = complete;
73 } else if (complete_skb) {
74 bt_cb(skb)->hci.req_complete_skb = complete_skb;
75 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
76 }
77
78 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
79 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
80 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
81
82 queue_work(hdev->workqueue, &hdev->cmd_work);
83
84 return 0;
85}
86
87int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
88{
89 return req_run(req, complete, NULL);
90}
91
92int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
93{
94 return req_run(req, NULL, complete);
95}
96
97static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
98 struct sk_buff *skb)
99{
100 BT_DBG("%s result 0x%2.2x", hdev->name, result);
101
102 if (hdev->req_status == HCI_REQ_PEND) {
103 hdev->req_result = result;
104 hdev->req_status = HCI_REQ_DONE;
105 if (skb)
106 hdev->req_skb = skb_get(skb);
107 wake_up_interruptible(&hdev->req_wait_q);
108 }
109}
110
111void hci_req_sync_cancel(struct hci_dev *hdev, int err)
112{
113 BT_DBG("%s err 0x%2.2x", hdev->name, err);
114
115 if (hdev->req_status == HCI_REQ_PEND) {
116 hdev->req_result = err;
117 hdev->req_status = HCI_REQ_CANCELED;
118 wake_up_interruptible(&hdev->req_wait_q);
119 }
120}
121
122struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
123 const void *param, u8 event, u32 timeout)
124{
125 DECLARE_WAITQUEUE(wait, current);
126 struct hci_request req;
127 struct sk_buff *skb;
128 int err = 0;
129
130 BT_DBG("%s", hdev->name);
131
132 hci_req_init(&req, hdev);
133
134 hci_req_add_ev(&req, opcode, plen, param, event);
135
136 hdev->req_status = HCI_REQ_PEND;
137
138 add_wait_queue(&hdev->req_wait_q, &wait);
139 set_current_state(TASK_INTERRUPTIBLE);
140
141 err = hci_req_run_skb(&req, hci_req_sync_complete);
142 if (err < 0) {
143 remove_wait_queue(&hdev->req_wait_q, &wait);
144 set_current_state(TASK_RUNNING);
145 return ERR_PTR(err);
146 }
147
148 schedule_timeout(timeout);
149
150 remove_wait_queue(&hdev->req_wait_q, &wait);
151
152 if (signal_pending(current))
153 return ERR_PTR(-EINTR);
154
155 switch (hdev->req_status) {
156 case HCI_REQ_DONE:
157 err = -bt_to_errno(hdev->req_result);
158 break;
159
160 case HCI_REQ_CANCELED:
161 err = -hdev->req_result;
162 break;
163
164 default:
165 err = -ETIMEDOUT;
166 break;
167 }
168
169 hdev->req_status = hdev->req_result = 0;
170 skb = hdev->req_skb;
171 hdev->req_skb = NULL;
172
173 BT_DBG("%s end: err %d", hdev->name, err);
174
175 if (err < 0) {
176 kfree_skb(skb);
177 return ERR_PTR(err);
178 }
179
180 if (!skb)
181 return ERR_PTR(-ENODATA);
182
183 return skb;
184}
185EXPORT_SYMBOL(__hci_cmd_sync_ev);
186
187struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
188 const void *param, u32 timeout)
189{
190 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
191}
192EXPORT_SYMBOL(__hci_cmd_sync);
193
194/* Execute request and wait for completion. */
195int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
196 unsigned long opt),
197 unsigned long opt, u32 timeout, u8 *hci_status)
198{
199 struct hci_request req;
200 DECLARE_WAITQUEUE(wait, current);
201 int err = 0;
202
203 BT_DBG("%s start", hdev->name);
204
205 hci_req_init(&req, hdev);
206
207 hdev->req_status = HCI_REQ_PEND;
208
209 err = func(&req, opt);
210 if (err) {
211 if (hci_status)
212 *hci_status = HCI_ERROR_UNSPECIFIED;
213 return err;
214 }
215
216 add_wait_queue(&hdev->req_wait_q, &wait);
217 set_current_state(TASK_INTERRUPTIBLE);
218
219 err = hci_req_run_skb(&req, hci_req_sync_complete);
220 if (err < 0) {
221 hdev->req_status = 0;
222
223 remove_wait_queue(&hdev->req_wait_q, &wait);
224 set_current_state(TASK_RUNNING);
225
226 /* ENODATA means the HCI request command queue is empty.
227 * This can happen when a request with conditionals doesn't
228 * trigger any commands to be sent. This is normal behavior
229 * and should not trigger an error return.
230 */
231 if (err == -ENODATA) {
232 if (hci_status)
233 *hci_status = 0;
234 return 0;
235 }
236
237 if (hci_status)
238 *hci_status = HCI_ERROR_UNSPECIFIED;
239
240 return err;
241 }
242
243 schedule_timeout(timeout);
244
245 remove_wait_queue(&hdev->req_wait_q, &wait);
246
247 if (signal_pending(current))
248 return -EINTR;
249
250 switch (hdev->req_status) {
251 case HCI_REQ_DONE:
252 err = -bt_to_errno(hdev->req_result);
253 if (hci_status)
254 *hci_status = hdev->req_result;
255 break;
256
257 case HCI_REQ_CANCELED:
258 err = -hdev->req_result;
259 if (hci_status)
260 *hci_status = HCI_ERROR_UNSPECIFIED;
261 break;
262
263 default:
264 err = -ETIMEDOUT;
265 if (hci_status)
266 *hci_status = HCI_ERROR_UNSPECIFIED;
267 break;
268 }
269
270 kfree_skb(hdev->req_skb);
271 hdev->req_skb = NULL;
272 hdev->req_status = hdev->req_result = 0;
273
274 BT_DBG("%s end: err %d", hdev->name, err);
275
276 return err;
277}
278
279int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
280 unsigned long opt),
281 unsigned long opt, u32 timeout, u8 *hci_status)
282{
283 int ret;
284
285 if (!test_bit(HCI_UP, &hdev->flags))
286 return -ENETDOWN;
287
288 /* Serialize all requests */
289 hci_req_sync_lock(hdev);
290 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
291 hci_req_sync_unlock(hdev);
292
293 return ret;
294}
295
296struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
297 const void *param)
298{
299 int len = HCI_COMMAND_HDR_SIZE + plen;
300 struct hci_command_hdr *hdr;
301 struct sk_buff *skb;
302
303 skb = bt_skb_alloc(len, GFP_ATOMIC);
304 if (!skb)
305 return NULL;
306
307 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
308 hdr->opcode = cpu_to_le16(opcode);
309 hdr->plen = plen;
310
311 if (plen)
312 skb_put_data(skb, param, plen);
313
314 BT_DBG("skb len %d", skb->len);
315
316 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
317 hci_skb_opcode(skb) = opcode;
318
319 return skb;
320}
321
322/* Queue a command to an asynchronous HCI request */
323void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
324 const void *param, u8 event)
325{
326 struct hci_dev *hdev = req->hdev;
327 struct sk_buff *skb;
328
329 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
330
331 /* If an error occurred during request building, there is no point in
332 * queueing the HCI command. We can simply return.
333 */
334 if (req->err)
335 return;
336
337 skb = hci_prepare_cmd(hdev, opcode, plen, param);
338 if (!skb) {
339 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
340 opcode);
341 req->err = -ENOMEM;
342 return;
343 }
344
345 if (skb_queue_empty(&req->cmd_q))
346 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
347
348 bt_cb(skb)->hci.req_event = event;
349
350 skb_queue_tail(&req->cmd_q, skb);
351}
352
353void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
354 const void *param)
355{
356 hci_req_add_ev(req, opcode, plen, param, 0);
357}
358
359void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
360{
361 struct hci_dev *hdev = req->hdev;
362 struct hci_cp_write_page_scan_activity acp;
363 u8 type;
364
365 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
366 return;
367
368 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
369 return;
370
371 if (enable) {
372 type = PAGE_SCAN_TYPE_INTERLACED;
373
374 /* 160 msec page scan interval */
375 acp.interval = cpu_to_le16(0x0100);
376 } else {
377 type = PAGE_SCAN_TYPE_STANDARD; /* default */
378
379 /* default 1.28 sec page scan */
380 acp.interval = cpu_to_le16(0x0800);
381 }
382
383 acp.window = cpu_to_le16(0x0012);
384
385 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
386 __cpu_to_le16(hdev->page_scan_window) != acp.window)
387 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
388 sizeof(acp), &acp);
389
390 if (hdev->page_scan_type != type)
391 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
392}
393
394/* This function controls the background scanning based on hdev->pend_le_conns
395 * list. If there are pending LE connection we start the background scanning,
396 * otherwise we stop it.
397 *
398 * This function requires the caller holds hdev->lock.
399 */
400static void __hci_update_background_scan(struct hci_request *req)
401{
402 struct hci_dev *hdev = req->hdev;
403
404 if (!test_bit(HCI_UP, &hdev->flags) ||
405 test_bit(HCI_INIT, &hdev->flags) ||
406 hci_dev_test_flag(hdev, HCI_SETUP) ||
407 hci_dev_test_flag(hdev, HCI_CONFIG) ||
408 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
409 hci_dev_test_flag(hdev, HCI_UNREGISTER))
410 return;
411
412 /* No point in doing scanning if LE support hasn't been enabled */
413 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
414 return;
415
416 /* If discovery is active don't interfere with it */
417 if (hdev->discovery.state != DISCOVERY_STOPPED)
418 return;
419
420 /* Reset RSSI and UUID filters when starting background scanning
421 * since these filters are meant for service discovery only.
422 *
423 * The Start Discovery and Start Service Discovery operations
424 * ensure to set proper values for RSSI threshold and UUID
425 * filter list. So it is safe to just reset them here.
426 */
427 hci_discovery_filter_clear(hdev);
428
429 if (list_empty(&hdev->pend_le_conns) &&
430 list_empty(&hdev->pend_le_reports)) {
431 /* If there is no pending LE connections or devices
432 * to be scanned for, we should stop the background
433 * scanning.
434 */
435
436 /* If controller is not scanning we are done. */
437 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
438 return;
439
440 hci_req_add_le_scan_disable(req);
441
442 BT_DBG("%s stopping background scanning", hdev->name);
443 } else {
444 /* If there is at least one pending LE connection, we should
445 * keep the background scan running.
446 */
447
448 /* If controller is connecting, we should not start scanning
449 * since some controllers are not able to scan and connect at
450 * the same time.
451 */
452 if (hci_lookup_le_connect(hdev))
453 return;
454
455 /* If controller is currently scanning, we stop it to ensure we
456 * don't miss any advertising (due to duplicates filter).
457 */
458 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
459 hci_req_add_le_scan_disable(req);
460
461 hci_req_add_le_passive_scan(req);
462
463 BT_DBG("%s starting background scanning", hdev->name);
464 }
465}
466
467void __hci_req_update_name(struct hci_request *req)
468{
469 struct hci_dev *hdev = req->hdev;
470 struct hci_cp_write_local_name cp;
471
472 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
473
474 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
475}
476
477#define PNP_INFO_SVCLASS_ID 0x1200
478
479static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
480{
481 u8 *ptr = data, *uuids_start = NULL;
482 struct bt_uuid *uuid;
483
484 if (len < 4)
485 return ptr;
486
487 list_for_each_entry(uuid, &hdev->uuids, list) {
488 u16 uuid16;
489
490 if (uuid->size != 16)
491 continue;
492
493 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
494 if (uuid16 < 0x1100)
495 continue;
496
497 if (uuid16 == PNP_INFO_SVCLASS_ID)
498 continue;
499
500 if (!uuids_start) {
501 uuids_start = ptr;
502 uuids_start[0] = 1;
503 uuids_start[1] = EIR_UUID16_ALL;
504 ptr += 2;
505 }
506
507 /* Stop if not enough space to put next UUID */
508 if ((ptr - data) + sizeof(u16) > len) {
509 uuids_start[1] = EIR_UUID16_SOME;
510 break;
511 }
512
513 *ptr++ = (uuid16 & 0x00ff);
514 *ptr++ = (uuid16 & 0xff00) >> 8;
515 uuids_start[0] += sizeof(uuid16);
516 }
517
518 return ptr;
519}
520
521static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
522{
523 u8 *ptr = data, *uuids_start = NULL;
524 struct bt_uuid *uuid;
525
526 if (len < 6)
527 return ptr;
528
529 list_for_each_entry(uuid, &hdev->uuids, list) {
530 if (uuid->size != 32)
531 continue;
532
533 if (!uuids_start) {
534 uuids_start = ptr;
535 uuids_start[0] = 1;
536 uuids_start[1] = EIR_UUID32_ALL;
537 ptr += 2;
538 }
539
540 /* Stop if not enough space to put next UUID */
541 if ((ptr - data) + sizeof(u32) > len) {
542 uuids_start[1] = EIR_UUID32_SOME;
543 break;
544 }
545
546 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
547 ptr += sizeof(u32);
548 uuids_start[0] += sizeof(u32);
549 }
550
551 return ptr;
552}
553
554static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
555{
556 u8 *ptr = data, *uuids_start = NULL;
557 struct bt_uuid *uuid;
558
559 if (len < 18)
560 return ptr;
561
562 list_for_each_entry(uuid, &hdev->uuids, list) {
563 if (uuid->size != 128)
564 continue;
565
566 if (!uuids_start) {
567 uuids_start = ptr;
568 uuids_start[0] = 1;
569 uuids_start[1] = EIR_UUID128_ALL;
570 ptr += 2;
571 }
572
573 /* Stop if not enough space to put next UUID */
574 if ((ptr - data) + 16 > len) {
575 uuids_start[1] = EIR_UUID128_SOME;
576 break;
577 }
578
579 memcpy(ptr, uuid->uuid, 16);
580 ptr += 16;
581 uuids_start[0] += 16;
582 }
583
584 return ptr;
585}
586
587static void create_eir(struct hci_dev *hdev, u8 *data)
588{
589 u8 *ptr = data;
590 size_t name_len;
591
592 name_len = strlen(hdev->dev_name);
593
594 if (name_len > 0) {
595 /* EIR Data type */
596 if (name_len > 48) {
597 name_len = 48;
598 ptr[1] = EIR_NAME_SHORT;
599 } else
600 ptr[1] = EIR_NAME_COMPLETE;
601
602 /* EIR Data length */
603 ptr[0] = name_len + 1;
604
605 memcpy(ptr + 2, hdev->dev_name, name_len);
606
607 ptr += (name_len + 2);
608 }
609
610 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
611 ptr[0] = 2;
612 ptr[1] = EIR_TX_POWER;
613 ptr[2] = (u8) hdev->inq_tx_power;
614
615 ptr += 3;
616 }
617
618 if (hdev->devid_source > 0) {
619 ptr[0] = 9;
620 ptr[1] = EIR_DEVICE_ID;
621
622 put_unaligned_le16(hdev->devid_source, ptr + 2);
623 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
624 put_unaligned_le16(hdev->devid_product, ptr + 6);
625 put_unaligned_le16(hdev->devid_version, ptr + 8);
626
627 ptr += 10;
628 }
629
630 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
631 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
632 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
633}
634
635void __hci_req_update_eir(struct hci_request *req)
636{
637 struct hci_dev *hdev = req->hdev;
638 struct hci_cp_write_eir cp;
639
640 if (!hdev_is_powered(hdev))
641 return;
642
643 if (!lmp_ext_inq_capable(hdev))
644 return;
645
646 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
647 return;
648
649 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
650 return;
651
652 memset(&cp, 0, sizeof(cp));
653
654 create_eir(hdev, cp.data);
655
656 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
657 return;
658
659 memcpy(hdev->eir, cp.data, sizeof(cp.data));
660
661 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
662}
663
664void hci_req_add_le_scan_disable(struct hci_request *req)
665{
666 struct hci_cp_le_set_scan_enable cp;
667
668 memset(&cp, 0, sizeof(cp));
669 cp.enable = LE_SCAN_DISABLE;
670 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
671}
672
673static void add_to_white_list(struct hci_request *req,
674 struct hci_conn_params *params)
675{
676 struct hci_cp_le_add_to_white_list cp;
677
678 cp.bdaddr_type = params->addr_type;
679 bacpy(&cp.bdaddr, ¶ms->addr);
680
681 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
682}
683
684static u8 update_white_list(struct hci_request *req)
685{
686 struct hci_dev *hdev = req->hdev;
687 struct hci_conn_params *params;
688 struct bdaddr_list *b;
689 uint8_t white_list_entries = 0;
690
691 /* Go through the current white list programmed into the
692 * controller one by one and check if that address is still
693 * in the list of pending connections or list of devices to
694 * report. If not present in either list, then queue the
695 * command to remove it from the controller.
696 */
697 list_for_each_entry(b, &hdev->le_white_list, list) {
698 /* If the device is neither in pend_le_conns nor
699 * pend_le_reports then remove it from the whitelist.
700 */
701 if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
702 &b->bdaddr, b->bdaddr_type) &&
703 !hci_pend_le_action_lookup(&hdev->pend_le_reports,
704 &b->bdaddr, b->bdaddr_type)) {
705 struct hci_cp_le_del_from_white_list cp;
706
707 cp.bdaddr_type = b->bdaddr_type;
708 bacpy(&cp.bdaddr, &b->bdaddr);
709
710 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
711 sizeof(cp), &cp);
712 continue;
713 }
714
715 if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
716 /* White list can not be used with RPAs */
717 return 0x00;
718 }
719
720 white_list_entries++;
721 }
722
723 /* Since all no longer valid white list entries have been
724 * removed, walk through the list of pending connections
725 * and ensure that any new device gets programmed into
726 * the controller.
727 *
728 * If the list of the devices is larger than the list of
729 * available white list entries in the controller, then
730 * just abort and return filer policy value to not use the
731 * white list.
732 */
733 list_for_each_entry(params, &hdev->pend_le_conns, action) {
734 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
735 ¶ms->addr, params->addr_type))
736 continue;
737
738 if (white_list_entries >= hdev->le_white_list_size) {
739 /* Select filter policy to accept all advertising */
740 return 0x00;
741 }
742
743 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
744 params->addr_type)) {
745 /* White list can not be used with RPAs */
746 return 0x00;
747 }
748
749 white_list_entries++;
750 add_to_white_list(req, params);
751 }
752
753 /* After adding all new pending connections, walk through
754 * the list of pending reports and also add these to the
755 * white list if there is still space.
756 */
757 list_for_each_entry(params, &hdev->pend_le_reports, action) {
758 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
759 ¶ms->addr, params->addr_type))
760 continue;
761
762 if (white_list_entries >= hdev->le_white_list_size) {
763 /* Select filter policy to accept all advertising */
764 return 0x00;
765 }
766
767 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
768 params->addr_type)) {
769 /* White list can not be used with RPAs */
770 return 0x00;
771 }
772
773 white_list_entries++;
774 add_to_white_list(req, params);
775 }
776
777 /* Select filter policy to use white list */
778 return 0x01;
779}
780
781static bool scan_use_rpa(struct hci_dev *hdev)
782{
783 return hci_dev_test_flag(hdev, HCI_PRIVACY);
784}
785
786void hci_req_add_le_passive_scan(struct hci_request *req)
787{
788 struct hci_cp_le_set_scan_param param_cp;
789 struct hci_cp_le_set_scan_enable enable_cp;
790 struct hci_dev *hdev = req->hdev;
791 u8 own_addr_type;
792 u8 filter_policy;
793
794 /* Set require_privacy to false since no SCAN_REQ are send
795 * during passive scanning. Not using an non-resolvable address
796 * here is important so that peer devices using direct
797 * advertising with our address will be correctly reported
798 * by the controller.
799 */
800 if (hci_update_random_address(req, false, scan_use_rpa(hdev),
801 &own_addr_type))
802 return;
803
804 /* Adding or removing entries from the white list must
805 * happen before enabling scanning. The controller does
806 * not allow white list modification while scanning.
807 */
808 filter_policy = update_white_list(req);
809
810 /* When the controller is using random resolvable addresses and
811 * with that having LE privacy enabled, then controllers with
812 * Extended Scanner Filter Policies support can now enable support
813 * for handling directed advertising.
814 *
815 * So instead of using filter polices 0x00 (no whitelist)
816 * and 0x01 (whitelist enabled) use the new filter policies
817 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
818 */
819 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
820 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
821 filter_policy |= 0x02;
822
823 memset(¶m_cp, 0, sizeof(param_cp));
824 param_cp.type = LE_SCAN_PASSIVE;
825 param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
826 param_cp.window = cpu_to_le16(hdev->le_scan_window);
827 param_cp.own_address_type = own_addr_type;
828 param_cp.filter_policy = filter_policy;
829 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
830 ¶m_cp);
831
832 memset(&enable_cp, 0, sizeof(enable_cp));
833 enable_cp.enable = LE_SCAN_ENABLE;
834 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
835 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
836 &enable_cp);
837}
838
839static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
840{
841 u8 instance = hdev->cur_adv_instance;
842 struct adv_info *adv_instance;
843
844 /* Ignore instance 0 */
845 if (instance == 0x00)
846 return 0;
847
848 adv_instance = hci_find_adv_instance(hdev, instance);
849 if (!adv_instance)
850 return 0;
851
852 /* TODO: Take into account the "appearance" and "local-name" flags here.
853 * These are currently being ignored as they are not supported.
854 */
855 return adv_instance->scan_rsp_len;
856}
857
858void __hci_req_disable_advertising(struct hci_request *req)
859{
860 u8 enable = 0x00;
861
862 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
863}
864
865static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
866{
867 u32 flags;
868 struct adv_info *adv_instance;
869
870 if (instance == 0x00) {
871 /* Instance 0 always manages the "Tx Power" and "Flags"
872 * fields
873 */
874 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
875
876 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
877 * corresponds to the "connectable" instance flag.
878 */
879 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
880 flags |= MGMT_ADV_FLAG_CONNECTABLE;
881
882 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
883 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
884 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
885 flags |= MGMT_ADV_FLAG_DISCOV;
886
887 return flags;
888 }
889
890 adv_instance = hci_find_adv_instance(hdev, instance);
891
892 /* Return 0 when we got an invalid instance identifier. */
893 if (!adv_instance)
894 return 0;
895
896 return adv_instance->flags;
897}
898
899static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
900{
901 /* If privacy is not enabled don't use RPA */
902 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
903 return false;
904
905 /* If basic privacy mode is enabled use RPA */
906 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
907 return true;
908
909 /* If limited privacy mode is enabled don't use RPA if we're
910 * both discoverable and bondable.
911 */
912 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
913 hci_dev_test_flag(hdev, HCI_BONDABLE))
914 return false;
915
916 /* We're neither bondable nor discoverable in the limited
917 * privacy mode, therefore use RPA.
918 */
919 return true;
920}
921
922static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
923{
924 /* If there is no connection we are OK to advertise. */
925 if (hci_conn_num(hdev, LE_LINK) == 0)
926 return true;
927
928 /* Check le_states if there is any connection in slave role. */
929 if (hdev->conn_hash.le_num_slave > 0) {
930 /* Slave connection state and non connectable mode bit 20. */
931 if (!connectable && !(hdev->le_states[2] & 0x10))
932 return false;
933
934 /* Slave connection state and connectable mode bit 38
935 * and scannable bit 21.
936 */
937 if (connectable && (!(hdev->le_states[4] & 0x40) ||
938 !(hdev->le_states[2] & 0x20)))
939 return false;
940 }
941
942 /* Check le_states if there is any connection in master role. */
943 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
944 /* Master connection state and non connectable mode bit 18. */
945 if (!connectable && !(hdev->le_states[2] & 0x02))
946 return false;
947
948 /* Master connection state and connectable mode bit 35 and
949 * scannable 19.
950 */
951 if (connectable && (!(hdev->le_states[4] & 0x08) ||
952 !(hdev->le_states[2] & 0x08)))
953 return false;
954 }
955
956 return true;
957}
958
959void __hci_req_enable_advertising(struct hci_request *req)
960{
961 struct hci_dev *hdev = req->hdev;
962 struct hci_cp_le_set_adv_param cp;
963 u8 own_addr_type, enable = 0x01;
964 bool connectable;
965 u32 flags;
966
967 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
968
969 /* If the "connectable" instance flag was not set, then choose between
970 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
971 */
972 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
973 mgmt_get_connectable(hdev);
974
975 if (!is_advertising_allowed(hdev, connectable))
976 return;
977
978 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
979 __hci_req_disable_advertising(req);
980
981 /* Clear the HCI_LE_ADV bit temporarily so that the
982 * hci_update_random_address knows that it's safe to go ahead
983 * and write a new random address. The flag will be set back on
984 * as soon as the SET_ADV_ENABLE HCI command completes.
985 */
986 hci_dev_clear_flag(hdev, HCI_LE_ADV);
987
988 /* Set require_privacy to true only when non-connectable
989 * advertising is used. In that case it is fine to use a
990 * non-resolvable private address.
991 */
992 if (hci_update_random_address(req, !connectable,
993 adv_use_rpa(hdev, flags),
994 &own_addr_type) < 0)
995 return;
996
997 memset(&cp, 0, sizeof(cp));
998 cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
999 cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
1000
1001 if (connectable)
1002 cp.type = LE_ADV_IND;
1003 else if (get_cur_adv_instance_scan_rsp_len(hdev))
1004 cp.type = LE_ADV_SCAN_IND;
1005 else
1006 cp.type = LE_ADV_NONCONN_IND;
1007
1008 cp.own_address_type = own_addr_type;
1009 cp.channel_map = hdev->le_adv_channel_map;
1010
1011 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1012
1013 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1014}
1015
1016u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1017{
1018 size_t short_len;
1019 size_t complete_len;
1020
1021 /* no space left for name (+ NULL + type + len) */
1022 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1023 return ad_len;
1024
1025 /* use complete name if present and fits */
1026 complete_len = strlen(hdev->dev_name);
1027 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1028 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1029 hdev->dev_name, complete_len + 1);
1030
1031 /* use short name if present */
1032 short_len = strlen(hdev->short_name);
1033 if (short_len)
1034 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1035 hdev->short_name, short_len + 1);
1036
1037 /* use shortened full name if present, we already know that name
1038 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1039 */
1040 if (complete_len) {
1041 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1042
1043 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1044 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1045
1046 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1047 sizeof(name));
1048 }
1049
1050 return ad_len;
1051}
1052
1053static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1054{
1055 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1056}
1057
1058static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1059{
1060 u8 scan_rsp_len = 0;
1061
1062 if (hdev->appearance) {
1063 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1064 }
1065
1066 return append_local_name(hdev, ptr, scan_rsp_len);
1067}
1068
1069static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1070 u8 *ptr)
1071{
1072 struct adv_info *adv_instance;
1073 u32 instance_flags;
1074 u8 scan_rsp_len = 0;
1075
1076 adv_instance = hci_find_adv_instance(hdev, instance);
1077 if (!adv_instance)
1078 return 0;
1079
1080 instance_flags = adv_instance->flags;
1081
1082 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1083 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1084 }
1085
1086 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1087 adv_instance->scan_rsp_len);
1088
1089 scan_rsp_len += adv_instance->scan_rsp_len;
1090
1091 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1092 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1093
1094 return scan_rsp_len;
1095}
1096
1097void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1098{
1099 struct hci_dev *hdev = req->hdev;
1100 struct hci_cp_le_set_scan_rsp_data cp;
1101 u8 len;
1102
1103 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1104 return;
1105
1106 memset(&cp, 0, sizeof(cp));
1107
1108 if (instance)
1109 len = create_instance_scan_rsp_data(hdev, instance, cp.data);
1110 else
1111 len = create_default_scan_rsp_data(hdev, cp.data);
1112
1113 if (hdev->scan_rsp_data_len == len &&
1114 !memcmp(cp.data, hdev->scan_rsp_data, len))
1115 return;
1116
1117 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1118 hdev->scan_rsp_data_len = len;
1119
1120 cp.length = len;
1121
1122 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1123}
1124
1125static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1126{
1127 struct adv_info *adv_instance = NULL;
1128 u8 ad_len = 0, flags = 0;
1129 u32 instance_flags;
1130
1131 /* Return 0 when the current instance identifier is invalid. */
1132 if (instance) {
1133 adv_instance = hci_find_adv_instance(hdev, instance);
1134 if (!adv_instance)
1135 return 0;
1136 }
1137
1138 instance_flags = get_adv_instance_flags(hdev, instance);
1139
1140 /* The Add Advertising command allows userspace to set both the general
1141 * and limited discoverable flags.
1142 */
1143 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1144 flags |= LE_AD_GENERAL;
1145
1146 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1147 flags |= LE_AD_LIMITED;
1148
1149 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1150 flags |= LE_AD_NO_BREDR;
1151
1152 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1153 /* If a discovery flag wasn't provided, simply use the global
1154 * settings.
1155 */
1156 if (!flags)
1157 flags |= mgmt_get_adv_discov_flags(hdev);
1158
1159 /* If flags would still be empty, then there is no need to
1160 * include the "Flags" AD field".
1161 */
1162 if (flags) {
1163 ptr[0] = 0x02;
1164 ptr[1] = EIR_FLAGS;
1165 ptr[2] = flags;
1166
1167 ad_len += 3;
1168 ptr += 3;
1169 }
1170 }
1171
1172 if (adv_instance) {
1173 memcpy(ptr, adv_instance->adv_data,
1174 adv_instance->adv_data_len);
1175 ad_len += adv_instance->adv_data_len;
1176 ptr += adv_instance->adv_data_len;
1177 }
1178
1179 /* Provide Tx Power only if we can provide a valid value for it */
1180 if (hdev->adv_tx_power != HCI_TX_POWER_INVALID &&
1181 (instance_flags & MGMT_ADV_FLAG_TX_POWER)) {
1182 ptr[0] = 0x02;
1183 ptr[1] = EIR_TX_POWER;
1184 ptr[2] = (u8)hdev->adv_tx_power;
1185
1186 ad_len += 3;
1187 ptr += 3;
1188 }
1189
1190 return ad_len;
1191}
1192
1193void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1194{
1195 struct hci_dev *hdev = req->hdev;
1196 struct hci_cp_le_set_adv_data cp;
1197 u8 len;
1198
1199 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1200 return;
1201
1202 memset(&cp, 0, sizeof(cp));
1203
1204 len = create_instance_adv_data(hdev, instance, cp.data);
1205
1206 /* There's nothing to do if the data hasn't changed */
1207 if (hdev->adv_data_len == len &&
1208 memcmp(cp.data, hdev->adv_data, len) == 0)
1209 return;
1210
1211 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1212 hdev->adv_data_len = len;
1213
1214 cp.length = len;
1215
1216 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1217}
1218
1219int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1220{
1221 struct hci_request req;
1222
1223 hci_req_init(&req, hdev);
1224 __hci_req_update_adv_data(&req, instance);
1225
1226 return hci_req_run(&req, NULL);
1227}
1228
1229static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1230{
1231 BT_DBG("%s status %u", hdev->name, status);
1232}
1233
1234void hci_req_reenable_advertising(struct hci_dev *hdev)
1235{
1236 struct hci_request req;
1237
1238 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1239 list_empty(&hdev->adv_instances))
1240 return;
1241
1242 hci_req_init(&req, hdev);
1243
1244 if (hdev->cur_adv_instance) {
1245 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1246 true);
1247 } else {
1248 __hci_req_update_adv_data(&req, 0x00);
1249 __hci_req_update_scan_rsp_data(&req, 0x00);
1250 __hci_req_enable_advertising(&req);
1251 }
1252
1253 hci_req_run(&req, adv_enable_complete);
1254}
1255
1256static void adv_timeout_expire(struct work_struct *work)
1257{
1258 struct hci_dev *hdev = container_of(work, struct hci_dev,
1259 adv_instance_expire.work);
1260
1261 struct hci_request req;
1262 u8 instance;
1263
1264 BT_DBG("%s", hdev->name);
1265
1266 hci_dev_lock(hdev);
1267
1268 hdev->adv_instance_timeout = 0;
1269
1270 instance = hdev->cur_adv_instance;
1271 if (instance == 0x00)
1272 goto unlock;
1273
1274 hci_req_init(&req, hdev);
1275
1276 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1277
1278 if (list_empty(&hdev->adv_instances))
1279 __hci_req_disable_advertising(&req);
1280
1281 hci_req_run(&req, NULL);
1282
1283unlock:
1284 hci_dev_unlock(hdev);
1285}
1286
1287int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1288 bool force)
1289{
1290 struct hci_dev *hdev = req->hdev;
1291 struct adv_info *adv_instance = NULL;
1292 u16 timeout;
1293
1294 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1295 list_empty(&hdev->adv_instances))
1296 return -EPERM;
1297
1298 if (hdev->adv_instance_timeout)
1299 return -EBUSY;
1300
1301 adv_instance = hci_find_adv_instance(hdev, instance);
1302 if (!adv_instance)
1303 return -ENOENT;
1304
1305 /* A zero timeout means unlimited advertising. As long as there is
1306 * only one instance, duration should be ignored. We still set a timeout
1307 * in case further instances are being added later on.
1308 *
1309 * If the remaining lifetime of the instance is more than the duration
1310 * then the timeout corresponds to the duration, otherwise it will be
1311 * reduced to the remaining instance lifetime.
1312 */
1313 if (adv_instance->timeout == 0 ||
1314 adv_instance->duration <= adv_instance->remaining_time)
1315 timeout = adv_instance->duration;
1316 else
1317 timeout = adv_instance->remaining_time;
1318
1319 /* The remaining time is being reduced unless the instance is being
1320 * advertised without time limit.
1321 */
1322 if (adv_instance->timeout)
1323 adv_instance->remaining_time =
1324 adv_instance->remaining_time - timeout;
1325
1326 hdev->adv_instance_timeout = timeout;
1327 queue_delayed_work(hdev->req_workqueue,
1328 &hdev->adv_instance_expire,
1329 msecs_to_jiffies(timeout * 1000));
1330
1331 /* If we're just re-scheduling the same instance again then do not
1332 * execute any HCI commands. This happens when a single instance is
1333 * being advertised.
1334 */
1335 if (!force && hdev->cur_adv_instance == instance &&
1336 hci_dev_test_flag(hdev, HCI_LE_ADV))
1337 return 0;
1338
1339 hdev->cur_adv_instance = instance;
1340 __hci_req_update_adv_data(req, instance);
1341 __hci_req_update_scan_rsp_data(req, instance);
1342 __hci_req_enable_advertising(req);
1343
1344 return 0;
1345}
1346
1347static void cancel_adv_timeout(struct hci_dev *hdev)
1348{
1349 if (hdev->adv_instance_timeout) {
1350 hdev->adv_instance_timeout = 0;
1351 cancel_delayed_work(&hdev->adv_instance_expire);
1352 }
1353}
1354
1355/* For a single instance:
1356 * - force == true: The instance will be removed even when its remaining
1357 * lifetime is not zero.
1358 * - force == false: the instance will be deactivated but kept stored unless
1359 * the remaining lifetime is zero.
1360 *
1361 * For instance == 0x00:
1362 * - force == true: All instances will be removed regardless of their timeout
1363 * setting.
1364 * - force == false: Only instances that have a timeout will be removed.
1365 */
1366void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1367 struct hci_request *req, u8 instance,
1368 bool force)
1369{
1370 struct adv_info *adv_instance, *n, *next_instance = NULL;
1371 int err;
1372 u8 rem_inst;
1373
1374 /* Cancel any timeout concerning the removed instance(s). */
1375 if (!instance || hdev->cur_adv_instance == instance)
1376 cancel_adv_timeout(hdev);
1377
1378 /* Get the next instance to advertise BEFORE we remove
1379 * the current one. This can be the same instance again
1380 * if there is only one instance.
1381 */
1382 if (instance && hdev->cur_adv_instance == instance)
1383 next_instance = hci_get_next_instance(hdev, instance);
1384
1385 if (instance == 0x00) {
1386 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1387 list) {
1388 if (!(force || adv_instance->timeout))
1389 continue;
1390
1391 rem_inst = adv_instance->instance;
1392 err = hci_remove_adv_instance(hdev, rem_inst);
1393 if (!err)
1394 mgmt_advertising_removed(sk, hdev, rem_inst);
1395 }
1396 } else {
1397 adv_instance = hci_find_adv_instance(hdev, instance);
1398
1399 if (force || (adv_instance && adv_instance->timeout &&
1400 !adv_instance->remaining_time)) {
1401 /* Don't advertise a removed instance. */
1402 if (next_instance &&
1403 next_instance->instance == instance)
1404 next_instance = NULL;
1405
1406 err = hci_remove_adv_instance(hdev, instance);
1407 if (!err)
1408 mgmt_advertising_removed(sk, hdev, instance);
1409 }
1410 }
1411
1412 if (!req || !hdev_is_powered(hdev) ||
1413 hci_dev_test_flag(hdev, HCI_ADVERTISING))
1414 return;
1415
1416 if (next_instance)
1417 __hci_req_schedule_adv_instance(req, next_instance->instance,
1418 false);
1419}
1420
1421static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1422{
1423 struct hci_dev *hdev = req->hdev;
1424
1425 /* If we're advertising or initiating an LE connection we can't
1426 * go ahead and change the random address at this time. This is
1427 * because the eventual initiator address used for the
1428 * subsequently created connection will be undefined (some
1429 * controllers use the new address and others the one we had
1430 * when the operation started).
1431 *
1432 * In this kind of scenario skip the update and let the random
1433 * address be updated at the next cycle.
1434 */
1435 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1436 hci_lookup_le_connect(hdev)) {
1437 BT_DBG("Deferring random address update");
1438 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1439 return;
1440 }
1441
1442 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1443}
1444
1445int hci_update_random_address(struct hci_request *req, bool require_privacy,
1446 bool use_rpa, u8 *own_addr_type)
1447{
1448 struct hci_dev *hdev = req->hdev;
1449 int err;
1450
1451 /* If privacy is enabled use a resolvable private address. If
1452 * current RPA has expired or there is something else than
1453 * the current RPA in use, then generate a new one.
1454 */
1455 if (use_rpa) {
1456 int to;
1457
1458 *own_addr_type = ADDR_LE_DEV_RANDOM;
1459
1460 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1461 !bacmp(&hdev->random_addr, &hdev->rpa))
1462 return 0;
1463
1464 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1465 if (err < 0) {
1466 bt_dev_err(hdev, "failed to generate new RPA");
1467 return err;
1468 }
1469
1470 set_random_addr(req, &hdev->rpa);
1471
1472 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1473 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1474
1475 return 0;
1476 }
1477
1478 /* In case of required privacy without resolvable private address,
1479 * use an non-resolvable private address. This is useful for active
1480 * scanning and non-connectable advertising.
1481 */
1482 if (require_privacy) {
1483 bdaddr_t nrpa;
1484
1485 while (true) {
1486 /* The non-resolvable private address is generated
1487 * from random six bytes with the two most significant
1488 * bits cleared.
1489 */
1490 get_random_bytes(&nrpa, 6);
1491 nrpa.b[5] &= 0x3f;
1492
1493 /* The non-resolvable private address shall not be
1494 * equal to the public address.
1495 */
1496 if (bacmp(&hdev->bdaddr, &nrpa))
1497 break;
1498 }
1499
1500 *own_addr_type = ADDR_LE_DEV_RANDOM;
1501 set_random_addr(req, &nrpa);
1502 return 0;
1503 }
1504
1505 /* If forcing static address is in use or there is no public
1506 * address use the static address as random address (but skip
1507 * the HCI command if the current random address is already the
1508 * static one.
1509 *
1510 * In case BR/EDR has been disabled on a dual-mode controller
1511 * and a static address has been configured, then use that
1512 * address instead of the public BR/EDR address.
1513 */
1514 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1515 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1516 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1517 bacmp(&hdev->static_addr, BDADDR_ANY))) {
1518 *own_addr_type = ADDR_LE_DEV_RANDOM;
1519 if (bacmp(&hdev->static_addr, &hdev->random_addr))
1520 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1521 &hdev->static_addr);
1522 return 0;
1523 }
1524
1525 /* Neither privacy nor static address is being used so use a
1526 * public address.
1527 */
1528 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1529
1530 return 0;
1531}
1532
1533static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1534{
1535 struct bdaddr_list *b;
1536
1537 list_for_each_entry(b, &hdev->whitelist, list) {
1538 struct hci_conn *conn;
1539
1540 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1541 if (!conn)
1542 return true;
1543
1544 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1545 return true;
1546 }
1547
1548 return false;
1549}
1550
1551void __hci_req_update_scan(struct hci_request *req)
1552{
1553 struct hci_dev *hdev = req->hdev;
1554 u8 scan;
1555
1556 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1557 return;
1558
1559 if (!hdev_is_powered(hdev))
1560 return;
1561
1562 if (mgmt_powering_down(hdev))
1563 return;
1564
1565 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1566 disconnected_whitelist_entries(hdev))
1567 scan = SCAN_PAGE;
1568 else
1569 scan = SCAN_DISABLED;
1570
1571 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1572 scan |= SCAN_INQUIRY;
1573
1574 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1575 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1576 return;
1577
1578 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1579}
1580
1581static int update_scan(struct hci_request *req, unsigned long opt)
1582{
1583 hci_dev_lock(req->hdev);
1584 __hci_req_update_scan(req);
1585 hci_dev_unlock(req->hdev);
1586 return 0;
1587}
1588
1589static void scan_update_work(struct work_struct *work)
1590{
1591 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1592
1593 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1594}
1595
1596static int connectable_update(struct hci_request *req, unsigned long opt)
1597{
1598 struct hci_dev *hdev = req->hdev;
1599
1600 hci_dev_lock(hdev);
1601
1602 __hci_req_update_scan(req);
1603
1604 /* If BR/EDR is not enabled and we disable advertising as a
1605 * by-product of disabling connectable, we need to update the
1606 * advertising flags.
1607 */
1608 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1609 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
1610
1611 /* Update the advertising parameters if necessary */
1612 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1613 !list_empty(&hdev->adv_instances))
1614 __hci_req_enable_advertising(req);
1615
1616 __hci_update_background_scan(req);
1617
1618 hci_dev_unlock(hdev);
1619
1620 return 0;
1621}
1622
1623static void connectable_update_work(struct work_struct *work)
1624{
1625 struct hci_dev *hdev = container_of(work, struct hci_dev,
1626 connectable_update);
1627 u8 status;
1628
1629 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
1630 mgmt_set_connectable_complete(hdev, status);
1631}
1632
1633static u8 get_service_classes(struct hci_dev *hdev)
1634{
1635 struct bt_uuid *uuid;
1636 u8 val = 0;
1637
1638 list_for_each_entry(uuid, &hdev->uuids, list)
1639 val |= uuid->svc_hint;
1640
1641 return val;
1642}
1643
1644void __hci_req_update_class(struct hci_request *req)
1645{
1646 struct hci_dev *hdev = req->hdev;
1647 u8 cod[3];
1648
1649 BT_DBG("%s", hdev->name);
1650
1651 if (!hdev_is_powered(hdev))
1652 return;
1653
1654 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1655 return;
1656
1657 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
1658 return;
1659
1660 cod[0] = hdev->minor_class;
1661 cod[1] = hdev->major_class;
1662 cod[2] = get_service_classes(hdev);
1663
1664 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1665 cod[1] |= 0x20;
1666
1667 if (memcmp(cod, hdev->dev_class, 3) == 0)
1668 return;
1669
1670 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
1671}
1672
1673static void write_iac(struct hci_request *req)
1674{
1675 struct hci_dev *hdev = req->hdev;
1676 struct hci_cp_write_current_iac_lap cp;
1677
1678 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1679 return;
1680
1681 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1682 /* Limited discoverable mode */
1683 cp.num_iac = min_t(u8, hdev->num_iac, 2);
1684 cp.iac_lap[0] = 0x00; /* LIAC */
1685 cp.iac_lap[1] = 0x8b;
1686 cp.iac_lap[2] = 0x9e;
1687 cp.iac_lap[3] = 0x33; /* GIAC */
1688 cp.iac_lap[4] = 0x8b;
1689 cp.iac_lap[5] = 0x9e;
1690 } else {
1691 /* General discoverable mode */
1692 cp.num_iac = 1;
1693 cp.iac_lap[0] = 0x33; /* GIAC */
1694 cp.iac_lap[1] = 0x8b;
1695 cp.iac_lap[2] = 0x9e;
1696 }
1697
1698 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
1699 (cp.num_iac * 3) + 1, &cp);
1700}
1701
1702static int discoverable_update(struct hci_request *req, unsigned long opt)
1703{
1704 struct hci_dev *hdev = req->hdev;
1705
1706 hci_dev_lock(hdev);
1707
1708 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1709 write_iac(req);
1710 __hci_req_update_scan(req);
1711 __hci_req_update_class(req);
1712 }
1713
1714 /* Advertising instances don't use the global discoverable setting, so
1715 * only update AD if advertising was enabled using Set Advertising.
1716 */
1717 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1718 __hci_req_update_adv_data(req, 0x00);
1719
1720 /* Discoverable mode affects the local advertising
1721 * address in limited privacy mode.
1722 */
1723 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1724 __hci_req_enable_advertising(req);
1725 }
1726
1727 hci_dev_unlock(hdev);
1728
1729 return 0;
1730}
1731
1732static void discoverable_update_work(struct work_struct *work)
1733{
1734 struct hci_dev *hdev = container_of(work, struct hci_dev,
1735 discoverable_update);
1736 u8 status;
1737
1738 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
1739 mgmt_set_discoverable_complete(hdev, status);
1740}
1741
1742void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
1743 u8 reason)
1744{
1745 switch (conn->state) {
1746 case BT_CONNECTED:
1747 case BT_CONFIG:
1748 if (conn->type == AMP_LINK) {
1749 struct hci_cp_disconn_phy_link cp;
1750
1751 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
1752 cp.reason = reason;
1753 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
1754 &cp);
1755 } else {
1756 struct hci_cp_disconnect dc;
1757
1758 dc.handle = cpu_to_le16(conn->handle);
1759 dc.reason = reason;
1760 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
1761 }
1762
1763 conn->state = BT_DISCONN;
1764
1765 break;
1766 case BT_CONNECT:
1767 if (conn->type == LE_LINK) {
1768 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
1769 break;
1770 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
1771 0, NULL);
1772 } else if (conn->type == ACL_LINK) {
1773 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
1774 break;
1775 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
1776 6, &conn->dst);
1777 }
1778 break;
1779 case BT_CONNECT2:
1780 if (conn->type == ACL_LINK) {
1781 struct hci_cp_reject_conn_req rej;
1782
1783 bacpy(&rej.bdaddr, &conn->dst);
1784 rej.reason = reason;
1785
1786 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
1787 sizeof(rej), &rej);
1788 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
1789 struct hci_cp_reject_sync_conn_req rej;
1790
1791 bacpy(&rej.bdaddr, &conn->dst);
1792
1793 /* SCO rejection has its own limited set of
1794 * allowed error values (0x0D-0x0F) which isn't
1795 * compatible with most values passed to this
1796 * function. To be safe hard-code one of the
1797 * values that's suitable for SCO.
1798 */
1799 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
1800
1801 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
1802 sizeof(rej), &rej);
1803 }
1804 break;
1805 default:
1806 conn->state = BT_CLOSED;
1807 break;
1808 }
1809}
1810
1811static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1812{
1813 if (status)
1814 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
1815}
1816
1817int hci_abort_conn(struct hci_conn *conn, u8 reason)
1818{
1819 struct hci_request req;
1820 int err;
1821
1822 hci_req_init(&req, conn->hdev);
1823
1824 __hci_abort_conn(&req, conn, reason);
1825
1826 err = hci_req_run(&req, abort_conn_complete);
1827 if (err && err != -ENODATA) {
1828 bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
1829 return err;
1830 }
1831
1832 return 0;
1833}
1834
1835static int update_bg_scan(struct hci_request *req, unsigned long opt)
1836{
1837 hci_dev_lock(req->hdev);
1838 __hci_update_background_scan(req);
1839 hci_dev_unlock(req->hdev);
1840 return 0;
1841}
1842
1843static void bg_scan_update(struct work_struct *work)
1844{
1845 struct hci_dev *hdev = container_of(work, struct hci_dev,
1846 bg_scan_update);
1847 struct hci_conn *conn;
1848 u8 status;
1849 int err;
1850
1851 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
1852 if (!err)
1853 return;
1854
1855 hci_dev_lock(hdev);
1856
1857 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
1858 if (conn)
1859 hci_le_conn_failed(conn, status);
1860
1861 hci_dev_unlock(hdev);
1862}
1863
1864static int le_scan_disable(struct hci_request *req, unsigned long opt)
1865{
1866 hci_req_add_le_scan_disable(req);
1867 return 0;
1868}
1869
1870static int bredr_inquiry(struct hci_request *req, unsigned long opt)
1871{
1872 u8 length = opt;
1873 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
1874 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
1875 struct hci_cp_inquiry cp;
1876
1877 BT_DBG("%s", req->hdev->name);
1878
1879 hci_dev_lock(req->hdev);
1880 hci_inquiry_cache_flush(req->hdev);
1881 hci_dev_unlock(req->hdev);
1882
1883 memset(&cp, 0, sizeof(cp));
1884
1885 if (req->hdev->discovery.limited)
1886 memcpy(&cp.lap, liac, sizeof(cp.lap));
1887 else
1888 memcpy(&cp.lap, giac, sizeof(cp.lap));
1889
1890 cp.length = length;
1891
1892 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1893
1894 return 0;
1895}
1896
1897static void le_scan_disable_work(struct work_struct *work)
1898{
1899 struct hci_dev *hdev = container_of(work, struct hci_dev,
1900 le_scan_disable.work);
1901 u8 status;
1902
1903 BT_DBG("%s", hdev->name);
1904
1905 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1906 return;
1907
1908 cancel_delayed_work(&hdev->le_scan_restart);
1909
1910 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
1911 if (status) {
1912 bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
1913 status);
1914 return;
1915 }
1916
1917 hdev->discovery.scan_start = 0;
1918
1919 /* If we were running LE only scan, change discovery state. If
1920 * we were running both LE and BR/EDR inquiry simultaneously,
1921 * and BR/EDR inquiry is already finished, stop discovery,
1922 * otherwise BR/EDR inquiry will stop discovery when finished.
1923 * If we will resolve remote device name, do not change
1924 * discovery state.
1925 */
1926
1927 if (hdev->discovery.type == DISCOV_TYPE_LE)
1928 goto discov_stopped;
1929
1930 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
1931 return;
1932
1933 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
1934 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
1935 hdev->discovery.state != DISCOVERY_RESOLVING)
1936 goto discov_stopped;
1937
1938 return;
1939 }
1940
1941 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
1942 HCI_CMD_TIMEOUT, &status);
1943 if (status) {
1944 bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
1945 goto discov_stopped;
1946 }
1947
1948 return;
1949
1950discov_stopped:
1951 hci_dev_lock(hdev);
1952 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1953 hci_dev_unlock(hdev);
1954}
1955
1956static int le_scan_restart(struct hci_request *req, unsigned long opt)
1957{
1958 struct hci_dev *hdev = req->hdev;
1959 struct hci_cp_le_set_scan_enable cp;
1960
1961 /* If controller is not scanning we are done. */
1962 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1963 return 0;
1964
1965 hci_req_add_le_scan_disable(req);
1966
1967 memset(&cp, 0, sizeof(cp));
1968 cp.enable = LE_SCAN_ENABLE;
1969 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1970 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1971
1972 return 0;
1973}
1974
1975static void le_scan_restart_work(struct work_struct *work)
1976{
1977 struct hci_dev *hdev = container_of(work, struct hci_dev,
1978 le_scan_restart.work);
1979 unsigned long timeout, duration, scan_start, now;
1980 u8 status;
1981
1982 BT_DBG("%s", hdev->name);
1983
1984 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
1985 if (status) {
1986 bt_dev_err(hdev, "failed to restart LE scan: status %d",
1987 status);
1988 return;
1989 }
1990
1991 hci_dev_lock(hdev);
1992
1993 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
1994 !hdev->discovery.scan_start)
1995 goto unlock;
1996
1997 /* When the scan was started, hdev->le_scan_disable has been queued
1998 * after duration from scan_start. During scan restart this job
1999 * has been canceled, and we need to queue it again after proper
2000 * timeout, to make sure that scan does not run indefinitely.
2001 */
2002 duration = hdev->discovery.scan_duration;
2003 scan_start = hdev->discovery.scan_start;
2004 now = jiffies;
2005 if (now - scan_start <= duration) {
2006 int elapsed;
2007
2008 if (now >= scan_start)
2009 elapsed = now - scan_start;
2010 else
2011 elapsed = ULONG_MAX - scan_start + now;
2012
2013 timeout = duration - elapsed;
2014 } else {
2015 timeout = 0;
2016 }
2017
2018 queue_delayed_work(hdev->req_workqueue,
2019 &hdev->le_scan_disable, timeout);
2020
2021unlock:
2022 hci_dev_unlock(hdev);
2023}
2024
2025static int active_scan(struct hci_request *req, unsigned long opt)
2026{
2027 uint16_t interval = opt;
2028 struct hci_dev *hdev = req->hdev;
2029 struct hci_cp_le_set_scan_param param_cp;
2030 struct hci_cp_le_set_scan_enable enable_cp;
2031 u8 own_addr_type;
2032 int err;
2033
2034 BT_DBG("%s", hdev->name);
2035
2036 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
2037 hci_dev_lock(hdev);
2038
2039 /* Don't let discovery abort an outgoing connection attempt
2040 * that's using directed advertising.
2041 */
2042 if (hci_lookup_le_connect(hdev)) {
2043 hci_dev_unlock(hdev);
2044 return -EBUSY;
2045 }
2046
2047 cancel_adv_timeout(hdev);
2048 hci_dev_unlock(hdev);
2049
2050 __hci_req_disable_advertising(req);
2051 }
2052
2053 /* If controller is scanning, it means the background scanning is
2054 * running. Thus, we should temporarily stop it in order to set the
2055 * discovery scanning parameters.
2056 */
2057 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2058 hci_req_add_le_scan_disable(req);
2059
2060 /* All active scans will be done with either a resolvable private
2061 * address (when privacy feature has been enabled) or non-resolvable
2062 * private address.
2063 */
2064 err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2065 &own_addr_type);
2066 if (err < 0)
2067 own_addr_type = ADDR_LE_DEV_PUBLIC;
2068
2069 memset(¶m_cp, 0, sizeof(param_cp));
2070 param_cp.type = LE_SCAN_ACTIVE;
2071 param_cp.interval = cpu_to_le16(interval);
2072 param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
2073 param_cp.own_address_type = own_addr_type;
2074
2075 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
2076 ¶m_cp);
2077
2078 memset(&enable_cp, 0, sizeof(enable_cp));
2079 enable_cp.enable = LE_SCAN_ENABLE;
2080 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2081
2082 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
2083 &enable_cp);
2084
2085 return 0;
2086}
2087
2088static int interleaved_discov(struct hci_request *req, unsigned long opt)
2089{
2090 int err;
2091
2092 BT_DBG("%s", req->hdev->name);
2093
2094 err = active_scan(req, opt);
2095 if (err)
2096 return err;
2097
2098 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2099}
2100
2101static void start_discovery(struct hci_dev *hdev, u8 *status)
2102{
2103 unsigned long timeout;
2104
2105 BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2106
2107 switch (hdev->discovery.type) {
2108 case DISCOV_TYPE_BREDR:
2109 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2110 hci_req_sync(hdev, bredr_inquiry,
2111 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2112 status);
2113 return;
2114 case DISCOV_TYPE_INTERLEAVED:
2115 /* When running simultaneous discovery, the LE scanning time
2116 * should occupy the whole discovery time sine BR/EDR inquiry
2117 * and LE scanning are scheduled by the controller.
2118 *
2119 * For interleaving discovery in comparison, BR/EDR inquiry
2120 * and LE scanning are done sequentially with separate
2121 * timeouts.
2122 */
2123 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2124 &hdev->quirks)) {
2125 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2126 /* During simultaneous discovery, we double LE scan
2127 * interval. We must leave some time for the controller
2128 * to do BR/EDR inquiry.
2129 */
2130 hci_req_sync(hdev, interleaved_discov,
2131 DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2132 status);
2133 break;
2134 }
2135
2136 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2137 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2138 HCI_CMD_TIMEOUT, status);
2139 break;
2140 case DISCOV_TYPE_LE:
2141 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2142 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2143 HCI_CMD_TIMEOUT, status);
2144 break;
2145 default:
2146 *status = HCI_ERROR_UNSPECIFIED;
2147 return;
2148 }
2149
2150 if (*status)
2151 return;
2152
2153 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2154
2155 /* When service discovery is used and the controller has a
2156 * strict duplicate filter, it is important to remember the
2157 * start and duration of the scan. This is required for
2158 * restarting scanning during the discovery phase.
2159 */
2160 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2161 hdev->discovery.result_filtering) {
2162 hdev->discovery.scan_start = jiffies;
2163 hdev->discovery.scan_duration = timeout;
2164 }
2165
2166 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2167 timeout);
2168}
2169
2170bool hci_req_stop_discovery(struct hci_request *req)
2171{
2172 struct hci_dev *hdev = req->hdev;
2173 struct discovery_state *d = &hdev->discovery;
2174 struct hci_cp_remote_name_req_cancel cp;
2175 struct inquiry_entry *e;
2176 bool ret = false;
2177
2178 BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2179
2180 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2181 if (test_bit(HCI_INQUIRY, &hdev->flags))
2182 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2183
2184 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2185 cancel_delayed_work(&hdev->le_scan_disable);
2186 hci_req_add_le_scan_disable(req);
2187 }
2188
2189 ret = true;
2190 } else {
2191 /* Passive scanning */
2192 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2193 hci_req_add_le_scan_disable(req);
2194 ret = true;
2195 }
2196 }
2197
2198 /* No further actions needed for LE-only discovery */
2199 if (d->type == DISCOV_TYPE_LE)
2200 return ret;
2201
2202 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2203 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2204 NAME_PENDING);
2205 if (!e)
2206 return ret;
2207
2208 bacpy(&cp.bdaddr, &e->data.bdaddr);
2209 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2210 &cp);
2211 ret = true;
2212 }
2213
2214 return ret;
2215}
2216
2217static int stop_discovery(struct hci_request *req, unsigned long opt)
2218{
2219 hci_dev_lock(req->hdev);
2220 hci_req_stop_discovery(req);
2221 hci_dev_unlock(req->hdev);
2222
2223 return 0;
2224}
2225
2226static void discov_update(struct work_struct *work)
2227{
2228 struct hci_dev *hdev = container_of(work, struct hci_dev,
2229 discov_update);
2230 u8 status = 0;
2231
2232 switch (hdev->discovery.state) {
2233 case DISCOVERY_STARTING:
2234 start_discovery(hdev, &status);
2235 mgmt_start_discovery_complete(hdev, status);
2236 if (status)
2237 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2238 else
2239 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2240 break;
2241 case DISCOVERY_STOPPING:
2242 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2243 mgmt_stop_discovery_complete(hdev, status);
2244 if (!status)
2245 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2246 break;
2247 case DISCOVERY_STOPPED:
2248 default:
2249 return;
2250 }
2251}
2252
2253static void discov_off(struct work_struct *work)
2254{
2255 struct hci_dev *hdev = container_of(work, struct hci_dev,
2256 discov_off.work);
2257
2258 BT_DBG("%s", hdev->name);
2259
2260 hci_dev_lock(hdev);
2261
2262 /* When discoverable timeout triggers, then just make sure
2263 * the limited discoverable flag is cleared. Even in the case
2264 * of a timeout triggered from general discoverable, it is
2265 * safe to unconditionally clear the flag.
2266 */
2267 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2268 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2269 hdev->discov_timeout = 0;
2270
2271 hci_dev_unlock(hdev);
2272
2273 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2274 mgmt_new_settings(hdev);
2275}
2276
2277static int powered_update_hci(struct hci_request *req, unsigned long opt)
2278{
2279 struct hci_dev *hdev = req->hdev;
2280 u8 link_sec;
2281
2282 hci_dev_lock(hdev);
2283
2284 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2285 !lmp_host_ssp_capable(hdev)) {
2286 u8 mode = 0x01;
2287
2288 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2289
2290 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2291 u8 support = 0x01;
2292
2293 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2294 sizeof(support), &support);
2295 }
2296 }
2297
2298 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2299 lmp_bredr_capable(hdev)) {
2300 struct hci_cp_write_le_host_supported cp;
2301
2302 cp.le = 0x01;
2303 cp.simul = 0x00;
2304
2305 /* Check first if we already have the right
2306 * host state (host features set)
2307 */
2308 if (cp.le != lmp_host_le_capable(hdev) ||
2309 cp.simul != lmp_host_le_br_capable(hdev))
2310 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2311 sizeof(cp), &cp);
2312 }
2313
2314 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2315 /* Make sure the controller has a good default for
2316 * advertising data. This also applies to the case
2317 * where BR/EDR was toggled during the AUTO_OFF phase.
2318 */
2319 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2320 list_empty(&hdev->adv_instances)) {
2321 __hci_req_update_adv_data(req, 0x00);
2322 __hci_req_update_scan_rsp_data(req, 0x00);
2323
2324 if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2325 __hci_req_enable_advertising(req);
2326 } else if (!list_empty(&hdev->adv_instances)) {
2327 struct adv_info *adv_instance;
2328
2329 adv_instance = list_first_entry(&hdev->adv_instances,
2330 struct adv_info, list);
2331 __hci_req_schedule_adv_instance(req,
2332 adv_instance->instance,
2333 true);
2334 }
2335 }
2336
2337 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2338 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2339 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2340 sizeof(link_sec), &link_sec);
2341
2342 if (lmp_bredr_capable(hdev)) {
2343 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2344 __hci_req_write_fast_connectable(req, true);
2345 else
2346 __hci_req_write_fast_connectable(req, false);
2347 __hci_req_update_scan(req);
2348 __hci_req_update_class(req);
2349 __hci_req_update_name(req);
2350 __hci_req_update_eir(req);
2351 }
2352
2353 hci_dev_unlock(hdev);
2354 return 0;
2355}
2356
2357int __hci_req_hci_power_on(struct hci_dev *hdev)
2358{
2359 /* Register the available SMP channels (BR/EDR and LE) only when
2360 * successfully powering on the controller. This late
2361 * registration is required so that LE SMP can clearly decide if
2362 * the public address or static address is used.
2363 */
2364 smp_register(hdev);
2365
2366 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2367 NULL);
2368}
2369
2370void hci_request_setup(struct hci_dev *hdev)
2371{
2372 INIT_WORK(&hdev->discov_update, discov_update);
2373 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2374 INIT_WORK(&hdev->scan_update, scan_update_work);
2375 INIT_WORK(&hdev->connectable_update, connectable_update_work);
2376 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2377 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2378 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2379 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2380 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2381}
2382
2383void hci_request_cancel_all(struct hci_dev *hdev)
2384{
2385 hci_req_sync_cancel(hdev, ENODEV);
2386
2387 cancel_work_sync(&hdev->discov_update);
2388 cancel_work_sync(&hdev->bg_scan_update);
2389 cancel_work_sync(&hdev->scan_update);
2390 cancel_work_sync(&hdev->connectable_update);
2391 cancel_work_sync(&hdev->discoverable_update);
2392 cancel_delayed_work_sync(&hdev->discov_off);
2393 cancel_delayed_work_sync(&hdev->le_scan_disable);
2394 cancel_delayed_work_sync(&hdev->le_scan_restart);
2395
2396 if (hdev->adv_instance_timeout) {
2397 cancel_delayed_work_sync(&hdev->adv_instance_expire);
2398 hdev->adv_instance_timeout = 0;
2399 }
2400}