Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/workqueue.c - generic async execution with shared worker pool
   4 *
   5 * Copyright (C) 2002		Ingo Molnar
   6 *
   7 *   Derived from the taskqueue/keventd code by:
   8 *     David Woodhouse <dwmw2@infradead.org>
   9 *     Andrew Morton
  10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  11 *     Theodore Ts'o <tytso@mit.edu>
  12 *
  13 * Made to use alloc_percpu by Christoph Lameter.
  14 *
  15 * Copyright (C) 2010		SUSE Linux Products GmbH
  16 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  17 *
  18 * This is the generic async execution mechanism.  Work items as are
  19 * executed in process context.  The worker pool is shared and
  20 * automatically managed.  There are two worker pools for each CPU (one for
  21 * normal work items and the other for high priority ones) and some extra
  22 * pools for workqueues which are not bound to any specific CPU - the
  23 * number of these backing pools is dynamic.
  24 *
  25 * Please read Documentation/core-api/workqueue.rst for details.
  26 */
  27
  28#include <linux/export.h>
  29#include <linux/kernel.h>
  30#include <linux/sched.h>
  31#include <linux/init.h>
  32#include <linux/signal.h>
  33#include <linux/completion.h>
  34#include <linux/workqueue.h>
  35#include <linux/slab.h>
  36#include <linux/cpu.h>
  37#include <linux/notifier.h>
  38#include <linux/kthread.h>
  39#include <linux/hardirq.h>
  40#include <linux/mempolicy.h>
  41#include <linux/freezer.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51#include <linux/sched/isolation.h>
  52#include <linux/nmi.h>
  53
  54#include "workqueue_internal.h"
  55
  56enum {
  57	/*
  58	 * worker_pool flags
  59	 *
  60	 * A bound pool is either associated or disassociated with its CPU.
  61	 * While associated (!DISASSOCIATED), all workers are bound to the
  62	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  63	 * is in effect.
  64	 *
  65	 * While DISASSOCIATED, the cpu may be offline and all workers have
  66	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  67	 * be executing on any CPU.  The pool behaves as an unbound one.
  68	 *
  69	 * Note that DISASSOCIATED should be flipped only while holding
  70	 * wq_pool_attach_mutex to avoid changing binding state while
  71	 * worker_attach_to_pool() is in progress.
  72	 */
  73	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
  74	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  75
  76	/* worker flags */
  77	WORKER_DIE		= 1 << 1,	/* die die die */
  78	WORKER_IDLE		= 1 << 2,	/* is idle */
  79	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  80	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  81	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  82	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  83
  84	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  85				  WORKER_UNBOUND | WORKER_REBOUND,
  86
  87	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  88
  89	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  90	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  91
  92	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  93	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  94
  95	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  96						/* call for help after 10ms
  97						   (min two ticks) */
  98	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
  99	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
 100
 101	/*
 102	 * Rescue workers are used only on emergencies and shared by
 103	 * all cpus.  Give MIN_NICE.
 104	 */
 105	RESCUER_NICE_LEVEL	= MIN_NICE,
 106	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 107
 108	WQ_NAME_LEN		= 24,
 109};
 110
 111/*
 112 * Structure fields follow one of the following exclusion rules.
 113 *
 114 * I: Modifiable by initialization/destruction paths and read-only for
 115 *    everyone else.
 116 *
 117 * P: Preemption protected.  Disabling preemption is enough and should
 118 *    only be modified and accessed from the local cpu.
 119 *
 120 * L: pool->lock protected.  Access with pool->lock held.
 121 *
 122 * X: During normal operation, modification requires pool->lock and should
 123 *    be done only from local cpu.  Either disabling preemption on local
 124 *    cpu or grabbing pool->lock is enough for read access.  If
 125 *    POOL_DISASSOCIATED is set, it's identical to L.
 126 *
 127 * A: wq_pool_attach_mutex protected.
 128 *
 129 * PL: wq_pool_mutex protected.
 130 *
 131 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 132 *
 133 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 134 *
 135 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 136 *      RCU for reads.
 137 *
 138 * WQ: wq->mutex protected.
 139 *
 140 * WR: wq->mutex protected for writes.  RCU protected for reads.
 141 *
 142 * MD: wq_mayday_lock protected.
 143 */
 144
 145/* struct worker is defined in workqueue_internal.h */
 146
 147struct worker_pool {
 148	spinlock_t		lock;		/* the pool lock */
 149	int			cpu;		/* I: the associated cpu */
 150	int			node;		/* I: the associated node ID */
 151	int			id;		/* I: pool ID */
 152	unsigned int		flags;		/* X: flags */
 153
 154	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 155
 156	struct list_head	worklist;	/* L: list of pending works */
 157
 158	int			nr_workers;	/* L: total number of workers */
 159	int			nr_idle;	/* L: currently idle workers */
 160
 161	struct list_head	idle_list;	/* X: list of idle workers */
 162	struct timer_list	idle_timer;	/* L: worker idle timeout */
 163	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 164
 165	/* a workers is either on busy_hash or idle_list, or the manager */
 166	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 167						/* L: hash of busy workers */
 168
 169	struct worker		*manager;	/* L: purely informational */
 
 170	struct list_head	workers;	/* A: attached workers */
 171	struct completion	*detach_completion; /* all workers detached */
 172
 173	struct ida		worker_ida;	/* worker IDs for task name */
 174
 175	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 176	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 177	int			refcnt;		/* PL: refcnt for unbound pools */
 178
 179	/*
 180	 * The current concurrency level.  As it's likely to be accessed
 181	 * from other CPUs during try_to_wake_up(), put it in a separate
 182	 * cacheline.
 183	 */
 184	atomic_t		nr_running ____cacheline_aligned_in_smp;
 185
 186	/*
 187	 * Destruction of pool is RCU protected to allow dereferences
 188	 * from get_work_pool().
 189	 */
 190	struct rcu_head		rcu;
 191} ____cacheline_aligned_in_smp;
 192
 193/*
 194 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 195 * of work_struct->data are used for flags and the remaining high bits
 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 197 * number of flag bits.
 198 */
 199struct pool_workqueue {
 200	struct worker_pool	*pool;		/* I: the associated pool */
 201	struct workqueue_struct *wq;		/* I: the owning workqueue */
 202	int			work_color;	/* L: current color */
 203	int			flush_color;	/* L: flushing color */
 204	int			refcnt;		/* L: reference count */
 205	int			nr_in_flight[WORK_NR_COLORS];
 206						/* L: nr of in_flight works */
 207	int			nr_active;	/* L: nr of active works */
 208	int			max_active;	/* L: max active works */
 209	struct list_head	delayed_works;	/* L: delayed works */
 210	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 211	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 212
 213	/*
 214	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 215	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 216	 * itself is also RCU protected so that the first pwq can be
 217	 * determined without grabbing wq->mutex.
 218	 */
 219	struct work_struct	unbound_release_work;
 220	struct rcu_head		rcu;
 221} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 222
 223/*
 224 * Structure used to wait for workqueue flush.
 225 */
 226struct wq_flusher {
 227	struct list_head	list;		/* WQ: list of flushers */
 228	int			flush_color;	/* WQ: flush color waiting for */
 229	struct completion	done;		/* flush completion */
 230};
 231
 232struct wq_device;
 233
 234/*
 235 * The externally visible workqueue.  It relays the issued work items to
 236 * the appropriate worker_pool through its pool_workqueues.
 237 */
 238struct workqueue_struct {
 239	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 240	struct list_head	list;		/* PR: list of all workqueues */
 241
 242	struct mutex		mutex;		/* protects this wq */
 243	int			work_color;	/* WQ: current work color */
 244	int			flush_color;	/* WQ: current flush color */
 245	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 246	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 247	struct list_head	flusher_queue;	/* WQ: flush waiters */
 248	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 249
 250	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 251	struct worker		*rescuer;	/* I: rescue worker */
 252
 253	int			nr_drainers;	/* WQ: drain in progress */
 254	int			saved_max_active; /* WQ: saved pwq max_active */
 255
 256	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 257	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
 258
 259#ifdef CONFIG_SYSFS
 260	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 261#endif
 262#ifdef CONFIG_LOCKDEP
 263	char			*lock_name;
 264	struct lock_class_key	key;
 265	struct lockdep_map	lockdep_map;
 266#endif
 267	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 268
 269	/*
 270	 * Destruction of workqueue_struct is RCU protected to allow walking
 271	 * the workqueues list without grabbing wq_pool_mutex.
 272	 * This is used to dump all workqueues from sysrq.
 273	 */
 274	struct rcu_head		rcu;
 275
 276	/* hot fields used during command issue, aligned to cacheline */
 277	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 278	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 279	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 280};
 281
 282static struct kmem_cache *pwq_cache;
 283
 284static cpumask_var_t *wq_numa_possible_cpumask;
 285					/* possible CPUs of each node */
 286
 287static bool wq_disable_numa;
 288module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 289
 290/* see the comment above the definition of WQ_POWER_EFFICIENT */
 291static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 292module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 293
 294static bool wq_online;			/* can kworkers be created yet? */
 295
 296static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 297
 298/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 299static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 300
 301static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 302static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
 303static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 304static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
 305
 306static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 307static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 308
 309/* PL: allowable cpus for unbound wqs and work items */
 310static cpumask_var_t wq_unbound_cpumask;
 311
 312/* CPU where unbound work was last round robin scheduled from this CPU */
 313static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 314
 315/*
 316 * Local execution of unbound work items is no longer guaranteed.  The
 317 * following always forces round-robin CPU selection on unbound work items
 318 * to uncover usages which depend on it.
 319 */
 320#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 321static bool wq_debug_force_rr_cpu = true;
 322#else
 323static bool wq_debug_force_rr_cpu = false;
 324#endif
 325module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 326
 327/* the per-cpu worker pools */
 328static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 329
 330static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 331
 332/* PL: hash of all unbound pools keyed by pool->attrs */
 333static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 334
 335/* I: attributes used when instantiating standard unbound pools on demand */
 336static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 337
 338/* I: attributes used when instantiating ordered pools on demand */
 339static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 340
 341struct workqueue_struct *system_wq __read_mostly;
 342EXPORT_SYMBOL(system_wq);
 343struct workqueue_struct *system_highpri_wq __read_mostly;
 344EXPORT_SYMBOL_GPL(system_highpri_wq);
 345struct workqueue_struct *system_long_wq __read_mostly;
 346EXPORT_SYMBOL_GPL(system_long_wq);
 347struct workqueue_struct *system_unbound_wq __read_mostly;
 348EXPORT_SYMBOL_GPL(system_unbound_wq);
 349struct workqueue_struct *system_freezable_wq __read_mostly;
 350EXPORT_SYMBOL_GPL(system_freezable_wq);
 351struct workqueue_struct *system_power_efficient_wq __read_mostly;
 352EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 353struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 354EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 355
 356static int worker_thread(void *__worker);
 357static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 358
 359#define CREATE_TRACE_POINTS
 360#include <trace/events/workqueue.h>
 361
 362#define assert_rcu_or_pool_mutex()					\
 363	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 364			 !lockdep_is_held(&wq_pool_mutex),		\
 365			 "RCU or wq_pool_mutex should be held")
 366
 367#define assert_rcu_or_wq_mutex(wq)					\
 368	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 369			 !lockdep_is_held(&wq->mutex),			\
 370			 "RCU or wq->mutex should be held")
 371
 372#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 373	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 374			 !lockdep_is_held(&wq->mutex) &&		\
 375			 !lockdep_is_held(&wq_pool_mutex),		\
 376			 "RCU, wq->mutex or wq_pool_mutex should be held")
 377
 378#define for_each_cpu_worker_pool(pool, cpu)				\
 379	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 380	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 381	     (pool)++)
 382
 383/**
 384 * for_each_pool - iterate through all worker_pools in the system
 385 * @pool: iteration cursor
 386 * @pi: integer used for iteration
 387 *
 388 * This must be called either with wq_pool_mutex held or RCU read
 389 * locked.  If the pool needs to be used beyond the locking in effect, the
 390 * caller is responsible for guaranteeing that the pool stays online.
 391 *
 392 * The if/else clause exists only for the lockdep assertion and can be
 393 * ignored.
 394 */
 395#define for_each_pool(pool, pi)						\
 396	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 397		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 398		else
 399
 400/**
 401 * for_each_pool_worker - iterate through all workers of a worker_pool
 402 * @worker: iteration cursor
 403 * @pool: worker_pool to iterate workers of
 404 *
 405 * This must be called with wq_pool_attach_mutex.
 406 *
 407 * The if/else clause exists only for the lockdep assertion and can be
 408 * ignored.
 409 */
 410#define for_each_pool_worker(worker, pool)				\
 411	list_for_each_entry((worker), &(pool)->workers, node)		\
 412		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
 413		else
 414
 415/**
 416 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 417 * @pwq: iteration cursor
 418 * @wq: the target workqueue
 419 *
 420 * This must be called either with wq->mutex held or RCU read locked.
 421 * If the pwq needs to be used beyond the locking in effect, the caller is
 422 * responsible for guaranteeing that the pwq stays online.
 423 *
 424 * The if/else clause exists only for the lockdep assertion and can be
 425 * ignored.
 426 */
 427#define for_each_pwq(pwq, wq)						\
 428	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
 429		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
 430		else
 431
 432#ifdef CONFIG_DEBUG_OBJECTS_WORK
 433
 434static struct debug_obj_descr work_debug_descr;
 435
 436static void *work_debug_hint(void *addr)
 437{
 438	return ((struct work_struct *) addr)->func;
 439}
 440
 441static bool work_is_static_object(void *addr)
 442{
 443	struct work_struct *work = addr;
 444
 445	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 446}
 447
 448/*
 449 * fixup_init is called when:
 450 * - an active object is initialized
 451 */
 452static bool work_fixup_init(void *addr, enum debug_obj_state state)
 453{
 454	struct work_struct *work = addr;
 455
 456	switch (state) {
 457	case ODEBUG_STATE_ACTIVE:
 458		cancel_work_sync(work);
 459		debug_object_init(work, &work_debug_descr);
 460		return true;
 461	default:
 462		return false;
 463	}
 464}
 465
 466/*
 467 * fixup_free is called when:
 468 * - an active object is freed
 469 */
 470static bool work_fixup_free(void *addr, enum debug_obj_state state)
 471{
 472	struct work_struct *work = addr;
 473
 474	switch (state) {
 475	case ODEBUG_STATE_ACTIVE:
 476		cancel_work_sync(work);
 477		debug_object_free(work, &work_debug_descr);
 478		return true;
 479	default:
 480		return false;
 481	}
 482}
 483
 484static struct debug_obj_descr work_debug_descr = {
 485	.name		= "work_struct",
 486	.debug_hint	= work_debug_hint,
 487	.is_static_object = work_is_static_object,
 488	.fixup_init	= work_fixup_init,
 489	.fixup_free	= work_fixup_free,
 490};
 491
 492static inline void debug_work_activate(struct work_struct *work)
 493{
 494	debug_object_activate(work, &work_debug_descr);
 495}
 496
 497static inline void debug_work_deactivate(struct work_struct *work)
 498{
 499	debug_object_deactivate(work, &work_debug_descr);
 500}
 501
 502void __init_work(struct work_struct *work, int onstack)
 503{
 504	if (onstack)
 505		debug_object_init_on_stack(work, &work_debug_descr);
 506	else
 507		debug_object_init(work, &work_debug_descr);
 508}
 509EXPORT_SYMBOL_GPL(__init_work);
 510
 511void destroy_work_on_stack(struct work_struct *work)
 512{
 513	debug_object_free(work, &work_debug_descr);
 514}
 515EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 516
 517void destroy_delayed_work_on_stack(struct delayed_work *work)
 518{
 519	destroy_timer_on_stack(&work->timer);
 520	debug_object_free(&work->work, &work_debug_descr);
 521}
 522EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 523
 524#else
 525static inline void debug_work_activate(struct work_struct *work) { }
 526static inline void debug_work_deactivate(struct work_struct *work) { }
 527#endif
 528
 529/**
 530 * worker_pool_assign_id - allocate ID and assing it to @pool
 531 * @pool: the pool pointer of interest
 532 *
 533 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 534 * successfully, -errno on failure.
 535 */
 536static int worker_pool_assign_id(struct worker_pool *pool)
 537{
 538	int ret;
 539
 540	lockdep_assert_held(&wq_pool_mutex);
 541
 542	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 543			GFP_KERNEL);
 544	if (ret >= 0) {
 545		pool->id = ret;
 546		return 0;
 547	}
 548	return ret;
 549}
 550
 551/**
 552 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 553 * @wq: the target workqueue
 554 * @node: the node ID
 555 *
 556 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
 557 * read locked.
 558 * If the pwq needs to be used beyond the locking in effect, the caller is
 559 * responsible for guaranteeing that the pwq stays online.
 560 *
 561 * Return: The unbound pool_workqueue for @node.
 562 */
 563static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 564						  int node)
 565{
 566	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 567
 568	/*
 569	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 570	 * delayed item is pending.  The plan is to keep CPU -> NODE
 571	 * mapping valid and stable across CPU on/offlines.  Once that
 572	 * happens, this workaround can be removed.
 573	 */
 574	if (unlikely(node == NUMA_NO_NODE))
 575		return wq->dfl_pwq;
 576
 577	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 578}
 579
 580static unsigned int work_color_to_flags(int color)
 581{
 582	return color << WORK_STRUCT_COLOR_SHIFT;
 583}
 584
 585static int get_work_color(struct work_struct *work)
 586{
 587	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 588		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 589}
 590
 591static int work_next_color(int color)
 592{
 593	return (color + 1) % WORK_NR_COLORS;
 594}
 595
 596/*
 597 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 598 * contain the pointer to the queued pwq.  Once execution starts, the flag
 599 * is cleared and the high bits contain OFFQ flags and pool ID.
 600 *
 601 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 602 * and clear_work_data() can be used to set the pwq, pool or clear
 603 * work->data.  These functions should only be called while the work is
 604 * owned - ie. while the PENDING bit is set.
 605 *
 606 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 607 * corresponding to a work.  Pool is available once the work has been
 608 * queued anywhere after initialization until it is sync canceled.  pwq is
 609 * available only while the work item is queued.
 610 *
 611 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 612 * canceled.  While being canceled, a work item may have its PENDING set
 613 * but stay off timer and worklist for arbitrarily long and nobody should
 614 * try to steal the PENDING bit.
 615 */
 616static inline void set_work_data(struct work_struct *work, unsigned long data,
 617				 unsigned long flags)
 618{
 619	WARN_ON_ONCE(!work_pending(work));
 620	atomic_long_set(&work->data, data | flags | work_static(work));
 621}
 622
 623static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 624			 unsigned long extra_flags)
 625{
 626	set_work_data(work, (unsigned long)pwq,
 627		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 628}
 629
 630static void set_work_pool_and_keep_pending(struct work_struct *work,
 631					   int pool_id)
 632{
 633	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 634		      WORK_STRUCT_PENDING);
 635}
 636
 637static void set_work_pool_and_clear_pending(struct work_struct *work,
 638					    int pool_id)
 639{
 640	/*
 641	 * The following wmb is paired with the implied mb in
 642	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 643	 * here are visible to and precede any updates by the next PENDING
 644	 * owner.
 645	 */
 646	smp_wmb();
 647	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 648	/*
 649	 * The following mb guarantees that previous clear of a PENDING bit
 650	 * will not be reordered with any speculative LOADS or STORES from
 651	 * work->current_func, which is executed afterwards.  This possible
 652	 * reordering can lead to a missed execution on attempt to queue
 653	 * the same @work.  E.g. consider this case:
 654	 *
 655	 *   CPU#0                         CPU#1
 656	 *   ----------------------------  --------------------------------
 657	 *
 658	 * 1  STORE event_indicated
 659	 * 2  queue_work_on() {
 660	 * 3    test_and_set_bit(PENDING)
 661	 * 4 }                             set_..._and_clear_pending() {
 662	 * 5                                 set_work_data() # clear bit
 663	 * 6                                 smp_mb()
 664	 * 7                               work->current_func() {
 665	 * 8				      LOAD event_indicated
 666	 *				   }
 667	 *
 668	 * Without an explicit full barrier speculative LOAD on line 8 can
 669	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 670	 * CPU#0 observes the PENDING bit is still set and new execution of
 671	 * a @work is not queued in a hope, that CPU#1 will eventually
 672	 * finish the queued @work.  Meanwhile CPU#1 does not see
 673	 * event_indicated is set, because speculative LOAD was executed
 674	 * before actual STORE.
 675	 */
 676	smp_mb();
 677}
 678
 679static void clear_work_data(struct work_struct *work)
 680{
 681	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 682	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 683}
 684
 685static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 686{
 687	unsigned long data = atomic_long_read(&work->data);
 688
 689	if (data & WORK_STRUCT_PWQ)
 690		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 691	else
 692		return NULL;
 693}
 694
 695/**
 696 * get_work_pool - return the worker_pool a given work was associated with
 697 * @work: the work item of interest
 698 *
 699 * Pools are created and destroyed under wq_pool_mutex, and allows read
 700 * access under RCU read lock.  As such, this function should be
 701 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 702 *
 703 * All fields of the returned pool are accessible as long as the above
 704 * mentioned locking is in effect.  If the returned pool needs to be used
 705 * beyond the critical section, the caller is responsible for ensuring the
 706 * returned pool is and stays online.
 707 *
 708 * Return: The worker_pool @work was last associated with.  %NULL if none.
 709 */
 710static struct worker_pool *get_work_pool(struct work_struct *work)
 711{
 712	unsigned long data = atomic_long_read(&work->data);
 713	int pool_id;
 714
 715	assert_rcu_or_pool_mutex();
 716
 717	if (data & WORK_STRUCT_PWQ)
 718		return ((struct pool_workqueue *)
 719			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 720
 721	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 722	if (pool_id == WORK_OFFQ_POOL_NONE)
 723		return NULL;
 724
 725	return idr_find(&worker_pool_idr, pool_id);
 726}
 727
 728/**
 729 * get_work_pool_id - return the worker pool ID a given work is associated with
 730 * @work: the work item of interest
 731 *
 732 * Return: The worker_pool ID @work was last associated with.
 733 * %WORK_OFFQ_POOL_NONE if none.
 734 */
 735static int get_work_pool_id(struct work_struct *work)
 736{
 737	unsigned long data = atomic_long_read(&work->data);
 738
 739	if (data & WORK_STRUCT_PWQ)
 740		return ((struct pool_workqueue *)
 741			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 742
 743	return data >> WORK_OFFQ_POOL_SHIFT;
 744}
 745
 746static void mark_work_canceling(struct work_struct *work)
 747{
 748	unsigned long pool_id = get_work_pool_id(work);
 749
 750	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 751	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 752}
 753
 754static bool work_is_canceling(struct work_struct *work)
 755{
 756	unsigned long data = atomic_long_read(&work->data);
 757
 758	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 759}
 760
 761/*
 762 * Policy functions.  These define the policies on how the global worker
 763 * pools are managed.  Unless noted otherwise, these functions assume that
 764 * they're being called with pool->lock held.
 765 */
 766
 767static bool __need_more_worker(struct worker_pool *pool)
 768{
 769	return !atomic_read(&pool->nr_running);
 770}
 771
 772/*
 773 * Need to wake up a worker?  Called from anything but currently
 774 * running workers.
 775 *
 776 * Note that, because unbound workers never contribute to nr_running, this
 777 * function will always return %true for unbound pools as long as the
 778 * worklist isn't empty.
 779 */
 780static bool need_more_worker(struct worker_pool *pool)
 781{
 782	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 783}
 784
 785/* Can I start working?  Called from busy but !running workers. */
 786static bool may_start_working(struct worker_pool *pool)
 787{
 788	return pool->nr_idle;
 789}
 790
 791/* Do I need to keep working?  Called from currently running workers. */
 792static bool keep_working(struct worker_pool *pool)
 793{
 794	return !list_empty(&pool->worklist) &&
 795		atomic_read(&pool->nr_running) <= 1;
 796}
 797
 798/* Do we need a new worker?  Called from manager. */
 799static bool need_to_create_worker(struct worker_pool *pool)
 800{
 801	return need_more_worker(pool) && !may_start_working(pool);
 802}
 803
 804/* Do we have too many workers and should some go away? */
 805static bool too_many_workers(struct worker_pool *pool)
 806{
 807	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 808	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 809	int nr_busy = pool->nr_workers - nr_idle;
 810
 811	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 812}
 813
 814/*
 815 * Wake up functions.
 816 */
 817
 818/* Return the first idle worker.  Safe with preemption disabled */
 819static struct worker *first_idle_worker(struct worker_pool *pool)
 820{
 821	if (unlikely(list_empty(&pool->idle_list)))
 822		return NULL;
 823
 824	return list_first_entry(&pool->idle_list, struct worker, entry);
 825}
 826
 827/**
 828 * wake_up_worker - wake up an idle worker
 829 * @pool: worker pool to wake worker from
 830 *
 831 * Wake up the first idle worker of @pool.
 832 *
 833 * CONTEXT:
 834 * spin_lock_irq(pool->lock).
 835 */
 836static void wake_up_worker(struct worker_pool *pool)
 837{
 838	struct worker *worker = first_idle_worker(pool);
 839
 840	if (likely(worker))
 841		wake_up_process(worker->task);
 842}
 843
 844/**
 845 * wq_worker_running - a worker is running again
 846 * @task: task waking up
 
 847 *
 848 * This function is called when a worker returns from schedule()
 
 
 
 
 849 */
 850void wq_worker_running(struct task_struct *task)
 851{
 852	struct worker *worker = kthread_data(task);
 853
 854	if (!worker->sleeping)
 855		return;
 856	if (!(worker->flags & WORKER_NOT_RUNNING))
 857		atomic_inc(&worker->pool->nr_running);
 858	worker->sleeping = 0;
 859}
 860
 861/**
 862 * wq_worker_sleeping - a worker is going to sleep
 863 * @task: task going to sleep
 864 *
 865 * This function is called from schedule() when a busy worker is
 866 * going to sleep.
 
 
 
 
 
 
 
 867 */
 868void wq_worker_sleeping(struct task_struct *task)
 869{
 870	struct worker *next, *worker = kthread_data(task);
 871	struct worker_pool *pool;
 872
 873	/*
 874	 * Rescuers, which may not have all the fields set up like normal
 875	 * workers, also reach here, let's not access anything before
 876	 * checking NOT_RUNNING.
 877	 */
 878	if (worker->flags & WORKER_NOT_RUNNING)
 879		return;
 880
 881	pool = worker->pool;
 882
 883	if (WARN_ON_ONCE(worker->sleeping))
 884		return;
 885
 886	worker->sleeping = 1;
 887	spin_lock_irq(&pool->lock);
 888
 889	/*
 890	 * The counterpart of the following dec_and_test, implied mb,
 891	 * worklist not empty test sequence is in insert_work().
 892	 * Please read comment there.
 893	 *
 894	 * NOT_RUNNING is clear.  This means that we're bound to and
 895	 * running on the local cpu w/ rq lock held and preemption
 896	 * disabled, which in turn means that none else could be
 897	 * manipulating idle_list, so dereferencing idle_list without pool
 898	 * lock is safe.
 899	 */
 900	if (atomic_dec_and_test(&pool->nr_running) &&
 901	    !list_empty(&pool->worklist)) {
 902		next = first_idle_worker(pool);
 903		if (next)
 904			wake_up_process(next->task);
 905	}
 906	spin_unlock_irq(&pool->lock);
 907}
 908
 909/**
 910 * wq_worker_last_func - retrieve worker's last work function
 911 * @task: Task to retrieve last work function of.
 912 *
 913 * Determine the last function a worker executed. This is called from
 914 * the scheduler to get a worker's last known identity.
 915 *
 916 * CONTEXT:
 917 * spin_lock_irq(rq->lock)
 918 *
 919 * This function is called during schedule() when a kworker is going
 920 * to sleep. It's used by psi to identify aggregation workers during
 921 * dequeuing, to allow periodic aggregation to shut-off when that
 922 * worker is the last task in the system or cgroup to go to sleep.
 923 *
 924 * As this function doesn't involve any workqueue-related locking, it
 925 * only returns stable values when called from inside the scheduler's
 926 * queuing and dequeuing paths, when @task, which must be a kworker,
 927 * is guaranteed to not be processing any works.
 928 *
 929 * Return:
 930 * The last work function %current executed as a worker, NULL if it
 931 * hasn't executed any work yet.
 932 */
 933work_func_t wq_worker_last_func(struct task_struct *task)
 934{
 935	struct worker *worker = kthread_data(task);
 936
 937	return worker->last_func;
 938}
 939
 940/**
 941 * worker_set_flags - set worker flags and adjust nr_running accordingly
 942 * @worker: self
 943 * @flags: flags to set
 944 *
 945 * Set @flags in @worker->flags and adjust nr_running accordingly.
 946 *
 947 * CONTEXT:
 948 * spin_lock_irq(pool->lock)
 949 */
 950static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 951{
 952	struct worker_pool *pool = worker->pool;
 953
 954	WARN_ON_ONCE(worker->task != current);
 955
 956	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 957	if ((flags & WORKER_NOT_RUNNING) &&
 958	    !(worker->flags & WORKER_NOT_RUNNING)) {
 959		atomic_dec(&pool->nr_running);
 960	}
 961
 962	worker->flags |= flags;
 963}
 964
 965/**
 966 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 967 * @worker: self
 968 * @flags: flags to clear
 969 *
 970 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 971 *
 972 * CONTEXT:
 973 * spin_lock_irq(pool->lock)
 974 */
 975static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 976{
 977	struct worker_pool *pool = worker->pool;
 978	unsigned int oflags = worker->flags;
 979
 980	WARN_ON_ONCE(worker->task != current);
 981
 982	worker->flags &= ~flags;
 983
 984	/*
 985	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 986	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 987	 * of multiple flags, not a single flag.
 988	 */
 989	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 990		if (!(worker->flags & WORKER_NOT_RUNNING))
 991			atomic_inc(&pool->nr_running);
 992}
 993
 994/**
 995 * find_worker_executing_work - find worker which is executing a work
 996 * @pool: pool of interest
 997 * @work: work to find worker for
 998 *
 999 * Find a worker which is executing @work on @pool by searching
1000 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1001 * to match, its current execution should match the address of @work and
1002 * its work function.  This is to avoid unwanted dependency between
1003 * unrelated work executions through a work item being recycled while still
1004 * being executed.
1005 *
1006 * This is a bit tricky.  A work item may be freed once its execution
1007 * starts and nothing prevents the freed area from being recycled for
1008 * another work item.  If the same work item address ends up being reused
1009 * before the original execution finishes, workqueue will identify the
1010 * recycled work item as currently executing and make it wait until the
1011 * current execution finishes, introducing an unwanted dependency.
1012 *
1013 * This function checks the work item address and work function to avoid
1014 * false positives.  Note that this isn't complete as one may construct a
1015 * work function which can introduce dependency onto itself through a
1016 * recycled work item.  Well, if somebody wants to shoot oneself in the
1017 * foot that badly, there's only so much we can do, and if such deadlock
1018 * actually occurs, it should be easy to locate the culprit work function.
1019 *
1020 * CONTEXT:
1021 * spin_lock_irq(pool->lock).
1022 *
1023 * Return:
1024 * Pointer to worker which is executing @work if found, %NULL
1025 * otherwise.
1026 */
1027static struct worker *find_worker_executing_work(struct worker_pool *pool,
1028						 struct work_struct *work)
1029{
1030	struct worker *worker;
1031
1032	hash_for_each_possible(pool->busy_hash, worker, hentry,
1033			       (unsigned long)work)
1034		if (worker->current_work == work &&
1035		    worker->current_func == work->func)
1036			return worker;
1037
1038	return NULL;
1039}
1040
1041/**
1042 * move_linked_works - move linked works to a list
1043 * @work: start of series of works to be scheduled
1044 * @head: target list to append @work to
1045 * @nextp: out parameter for nested worklist walking
1046 *
1047 * Schedule linked works starting from @work to @head.  Work series to
1048 * be scheduled starts at @work and includes any consecutive work with
1049 * WORK_STRUCT_LINKED set in its predecessor.
1050 *
1051 * If @nextp is not NULL, it's updated to point to the next work of
1052 * the last scheduled work.  This allows move_linked_works() to be
1053 * nested inside outer list_for_each_entry_safe().
1054 *
1055 * CONTEXT:
1056 * spin_lock_irq(pool->lock).
1057 */
1058static void move_linked_works(struct work_struct *work, struct list_head *head,
1059			      struct work_struct **nextp)
1060{
1061	struct work_struct *n;
1062
1063	/*
1064	 * Linked worklist will always end before the end of the list,
1065	 * use NULL for list head.
1066	 */
1067	list_for_each_entry_safe_from(work, n, NULL, entry) {
1068		list_move_tail(&work->entry, head);
1069		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1070			break;
1071	}
1072
1073	/*
1074	 * If we're already inside safe list traversal and have moved
1075	 * multiple works to the scheduled queue, the next position
1076	 * needs to be updated.
1077	 */
1078	if (nextp)
1079		*nextp = n;
1080}
1081
1082/**
1083 * get_pwq - get an extra reference on the specified pool_workqueue
1084 * @pwq: pool_workqueue to get
1085 *
1086 * Obtain an extra reference on @pwq.  The caller should guarantee that
1087 * @pwq has positive refcnt and be holding the matching pool->lock.
1088 */
1089static void get_pwq(struct pool_workqueue *pwq)
1090{
1091	lockdep_assert_held(&pwq->pool->lock);
1092	WARN_ON_ONCE(pwq->refcnt <= 0);
1093	pwq->refcnt++;
1094}
1095
1096/**
1097 * put_pwq - put a pool_workqueue reference
1098 * @pwq: pool_workqueue to put
1099 *
1100 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1101 * destruction.  The caller should be holding the matching pool->lock.
1102 */
1103static void put_pwq(struct pool_workqueue *pwq)
1104{
1105	lockdep_assert_held(&pwq->pool->lock);
1106	if (likely(--pwq->refcnt))
1107		return;
1108	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1109		return;
1110	/*
1111	 * @pwq can't be released under pool->lock, bounce to
1112	 * pwq_unbound_release_workfn().  This never recurses on the same
1113	 * pool->lock as this path is taken only for unbound workqueues and
1114	 * the release work item is scheduled on a per-cpu workqueue.  To
1115	 * avoid lockdep warning, unbound pool->locks are given lockdep
1116	 * subclass of 1 in get_unbound_pool().
1117	 */
1118	schedule_work(&pwq->unbound_release_work);
1119}
1120
1121/**
1122 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1123 * @pwq: pool_workqueue to put (can be %NULL)
1124 *
1125 * put_pwq() with locking.  This function also allows %NULL @pwq.
1126 */
1127static void put_pwq_unlocked(struct pool_workqueue *pwq)
1128{
1129	if (pwq) {
1130		/*
1131		 * As both pwqs and pools are RCU protected, the
1132		 * following lock operations are safe.
1133		 */
1134		spin_lock_irq(&pwq->pool->lock);
1135		put_pwq(pwq);
1136		spin_unlock_irq(&pwq->pool->lock);
1137	}
1138}
1139
1140static void pwq_activate_delayed_work(struct work_struct *work)
1141{
1142	struct pool_workqueue *pwq = get_work_pwq(work);
1143
1144	trace_workqueue_activate_work(work);
1145	if (list_empty(&pwq->pool->worklist))
1146		pwq->pool->watchdog_ts = jiffies;
1147	move_linked_works(work, &pwq->pool->worklist, NULL);
1148	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1149	pwq->nr_active++;
1150}
1151
1152static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1153{
1154	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1155						    struct work_struct, entry);
1156
1157	pwq_activate_delayed_work(work);
1158}
1159
1160/**
1161 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1162 * @pwq: pwq of interest
1163 * @color: color of work which left the queue
1164 *
1165 * A work either has completed or is removed from pending queue,
1166 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1167 *
1168 * CONTEXT:
1169 * spin_lock_irq(pool->lock).
1170 */
1171static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1172{
1173	/* uncolored work items don't participate in flushing or nr_active */
1174	if (color == WORK_NO_COLOR)
1175		goto out_put;
1176
1177	pwq->nr_in_flight[color]--;
1178
1179	pwq->nr_active--;
1180	if (!list_empty(&pwq->delayed_works)) {
1181		/* one down, submit a delayed one */
1182		if (pwq->nr_active < pwq->max_active)
1183			pwq_activate_first_delayed(pwq);
1184	}
1185
1186	/* is flush in progress and are we at the flushing tip? */
1187	if (likely(pwq->flush_color != color))
1188		goto out_put;
1189
1190	/* are there still in-flight works? */
1191	if (pwq->nr_in_flight[color])
1192		goto out_put;
1193
1194	/* this pwq is done, clear flush_color */
1195	pwq->flush_color = -1;
1196
1197	/*
1198	 * If this was the last pwq, wake up the first flusher.  It
1199	 * will handle the rest.
1200	 */
1201	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1202		complete(&pwq->wq->first_flusher->done);
1203out_put:
1204	put_pwq(pwq);
1205}
1206
1207/**
1208 * try_to_grab_pending - steal work item from worklist and disable irq
1209 * @work: work item to steal
1210 * @is_dwork: @work is a delayed_work
1211 * @flags: place to store irq state
1212 *
1213 * Try to grab PENDING bit of @work.  This function can handle @work in any
1214 * stable state - idle, on timer or on worklist.
1215 *
1216 * Return:
1217 *  1		if @work was pending and we successfully stole PENDING
1218 *  0		if @work was idle and we claimed PENDING
1219 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1220 *  -ENOENT	if someone else is canceling @work, this state may persist
1221 *		for arbitrarily long
1222 *
1223 * Note:
1224 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1225 * interrupted while holding PENDING and @work off queue, irq must be
1226 * disabled on entry.  This, combined with delayed_work->timer being
1227 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1228 *
1229 * On successful return, >= 0, irq is disabled and the caller is
1230 * responsible for releasing it using local_irq_restore(*@flags).
1231 *
1232 * This function is safe to call from any context including IRQ handler.
1233 */
1234static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1235			       unsigned long *flags)
1236{
1237	struct worker_pool *pool;
1238	struct pool_workqueue *pwq;
1239
1240	local_irq_save(*flags);
1241
1242	/* try to steal the timer if it exists */
1243	if (is_dwork) {
1244		struct delayed_work *dwork = to_delayed_work(work);
1245
1246		/*
1247		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1248		 * guaranteed that the timer is not queued anywhere and not
1249		 * running on the local CPU.
1250		 */
1251		if (likely(del_timer(&dwork->timer)))
1252			return 1;
1253	}
1254
1255	/* try to claim PENDING the normal way */
1256	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1257		return 0;
1258
1259	rcu_read_lock();
1260	/*
1261	 * The queueing is in progress, or it is already queued. Try to
1262	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1263	 */
1264	pool = get_work_pool(work);
1265	if (!pool)
1266		goto fail;
1267
1268	spin_lock(&pool->lock);
1269	/*
1270	 * work->data is guaranteed to point to pwq only while the work
1271	 * item is queued on pwq->wq, and both updating work->data to point
1272	 * to pwq on queueing and to pool on dequeueing are done under
1273	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1274	 * points to pwq which is associated with a locked pool, the work
1275	 * item is currently queued on that pool.
1276	 */
1277	pwq = get_work_pwq(work);
1278	if (pwq && pwq->pool == pool) {
1279		debug_work_deactivate(work);
1280
1281		/*
1282		 * A delayed work item cannot be grabbed directly because
1283		 * it might have linked NO_COLOR work items which, if left
1284		 * on the delayed_list, will confuse pwq->nr_active
1285		 * management later on and cause stall.  Make sure the work
1286		 * item is activated before grabbing.
1287		 */
1288		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1289			pwq_activate_delayed_work(work);
1290
1291		list_del_init(&work->entry);
1292		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1293
1294		/* work->data points to pwq iff queued, point to pool */
1295		set_work_pool_and_keep_pending(work, pool->id);
1296
1297		spin_unlock(&pool->lock);
1298		rcu_read_unlock();
1299		return 1;
1300	}
1301	spin_unlock(&pool->lock);
1302fail:
1303	rcu_read_unlock();
1304	local_irq_restore(*flags);
1305	if (work_is_canceling(work))
1306		return -ENOENT;
1307	cpu_relax();
1308	return -EAGAIN;
1309}
1310
1311/**
1312 * insert_work - insert a work into a pool
1313 * @pwq: pwq @work belongs to
1314 * @work: work to insert
1315 * @head: insertion point
1316 * @extra_flags: extra WORK_STRUCT_* flags to set
1317 *
1318 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1319 * work_struct flags.
1320 *
1321 * CONTEXT:
1322 * spin_lock_irq(pool->lock).
1323 */
1324static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1325			struct list_head *head, unsigned int extra_flags)
1326{
1327	struct worker_pool *pool = pwq->pool;
1328
1329	/* we own @work, set data and link */
1330	set_work_pwq(work, pwq, extra_flags);
1331	list_add_tail(&work->entry, head);
1332	get_pwq(pwq);
1333
1334	/*
1335	 * Ensure either wq_worker_sleeping() sees the above
1336	 * list_add_tail() or we see zero nr_running to avoid workers lying
1337	 * around lazily while there are works to be processed.
1338	 */
1339	smp_mb();
1340
1341	if (__need_more_worker(pool))
1342		wake_up_worker(pool);
1343}
1344
1345/*
1346 * Test whether @work is being queued from another work executing on the
1347 * same workqueue.
1348 */
1349static bool is_chained_work(struct workqueue_struct *wq)
1350{
1351	struct worker *worker;
1352
1353	worker = current_wq_worker();
1354	/*
1355	 * Return %true iff I'm a worker executing a work item on @wq.  If
1356	 * I'm @worker, it's safe to dereference it without locking.
1357	 */
1358	return worker && worker->current_pwq->wq == wq;
1359}
1360
1361/*
1362 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1363 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1364 * avoid perturbing sensitive tasks.
1365 */
1366static int wq_select_unbound_cpu(int cpu)
1367{
1368	static bool printed_dbg_warning;
1369	int new_cpu;
1370
1371	if (likely(!wq_debug_force_rr_cpu)) {
1372		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1373			return cpu;
1374	} else if (!printed_dbg_warning) {
1375		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1376		printed_dbg_warning = true;
1377	}
1378
1379	if (cpumask_empty(wq_unbound_cpumask))
1380		return cpu;
1381
1382	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1383	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1384	if (unlikely(new_cpu >= nr_cpu_ids)) {
1385		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1386		if (unlikely(new_cpu >= nr_cpu_ids))
1387			return cpu;
1388	}
1389	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1390
1391	return new_cpu;
1392}
1393
1394static void __queue_work(int cpu, struct workqueue_struct *wq,
1395			 struct work_struct *work)
1396{
1397	struct pool_workqueue *pwq;
1398	struct worker_pool *last_pool;
1399	struct list_head *worklist;
1400	unsigned int work_flags;
1401	unsigned int req_cpu = cpu;
1402
1403	/*
1404	 * While a work item is PENDING && off queue, a task trying to
1405	 * steal the PENDING will busy-loop waiting for it to either get
1406	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1407	 * happen with IRQ disabled.
1408	 */
1409	lockdep_assert_irqs_disabled();
1410
1411	debug_work_activate(work);
1412
1413	/* if draining, only works from the same workqueue are allowed */
1414	if (unlikely(wq->flags & __WQ_DRAINING) &&
1415	    WARN_ON_ONCE(!is_chained_work(wq)))
1416		return;
1417	rcu_read_lock();
1418retry:
1419	if (req_cpu == WORK_CPU_UNBOUND)
1420		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1421
1422	/* pwq which will be used unless @work is executing elsewhere */
1423	if (!(wq->flags & WQ_UNBOUND))
1424		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1425	else
1426		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1427
1428	/*
1429	 * If @work was previously on a different pool, it might still be
1430	 * running there, in which case the work needs to be queued on that
1431	 * pool to guarantee non-reentrancy.
1432	 */
1433	last_pool = get_work_pool(work);
1434	if (last_pool && last_pool != pwq->pool) {
1435		struct worker *worker;
1436
1437		spin_lock(&last_pool->lock);
1438
1439		worker = find_worker_executing_work(last_pool, work);
1440
1441		if (worker && worker->current_pwq->wq == wq) {
1442			pwq = worker->current_pwq;
1443		} else {
1444			/* meh... not running there, queue here */
1445			spin_unlock(&last_pool->lock);
1446			spin_lock(&pwq->pool->lock);
1447		}
1448	} else {
1449		spin_lock(&pwq->pool->lock);
1450	}
1451
1452	/*
1453	 * pwq is determined and locked.  For unbound pools, we could have
1454	 * raced with pwq release and it could already be dead.  If its
1455	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1456	 * without another pwq replacing it in the numa_pwq_tbl or while
1457	 * work items are executing on it, so the retrying is guaranteed to
1458	 * make forward-progress.
1459	 */
1460	if (unlikely(!pwq->refcnt)) {
1461		if (wq->flags & WQ_UNBOUND) {
1462			spin_unlock(&pwq->pool->lock);
1463			cpu_relax();
1464			goto retry;
1465		}
1466		/* oops */
1467		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1468			  wq->name, cpu);
1469	}
1470
1471	/* pwq determined, queue */
1472	trace_workqueue_queue_work(req_cpu, pwq, work);
1473
1474	if (WARN_ON(!list_empty(&work->entry)))
1475		goto out;
 
 
1476
1477	pwq->nr_in_flight[pwq->work_color]++;
1478	work_flags = work_color_to_flags(pwq->work_color);
1479
1480	if (likely(pwq->nr_active < pwq->max_active)) {
1481		trace_workqueue_activate_work(work);
1482		pwq->nr_active++;
1483		worklist = &pwq->pool->worklist;
1484		if (list_empty(worklist))
1485			pwq->pool->watchdog_ts = jiffies;
1486	} else {
1487		work_flags |= WORK_STRUCT_DELAYED;
1488		worklist = &pwq->delayed_works;
1489	}
1490
1491	insert_work(pwq, work, worklist, work_flags);
1492
1493out:
1494	spin_unlock(&pwq->pool->lock);
1495	rcu_read_unlock();
1496}
1497
1498/**
1499 * queue_work_on - queue work on specific cpu
1500 * @cpu: CPU number to execute work on
1501 * @wq: workqueue to use
1502 * @work: work to queue
1503 *
1504 * We queue the work to a specific CPU, the caller must ensure it
1505 * can't go away.
1506 *
1507 * Return: %false if @work was already on a queue, %true otherwise.
1508 */
1509bool queue_work_on(int cpu, struct workqueue_struct *wq,
1510		   struct work_struct *work)
1511{
1512	bool ret = false;
1513	unsigned long flags;
1514
1515	local_irq_save(flags);
1516
1517	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1518		__queue_work(cpu, wq, work);
1519		ret = true;
1520	}
1521
1522	local_irq_restore(flags);
1523	return ret;
1524}
1525EXPORT_SYMBOL(queue_work_on);
1526
1527/**
1528 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1529 * @node: NUMA node ID that we want to select a CPU from
1530 *
1531 * This function will attempt to find a "random" cpu available on a given
1532 * node. If there are no CPUs available on the given node it will return
1533 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1534 * available CPU if we need to schedule this work.
1535 */
1536static int workqueue_select_cpu_near(int node)
1537{
1538	int cpu;
1539
1540	/* No point in doing this if NUMA isn't enabled for workqueues */
1541	if (!wq_numa_enabled)
1542		return WORK_CPU_UNBOUND;
1543
1544	/* Delay binding to CPU if node is not valid or online */
1545	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1546		return WORK_CPU_UNBOUND;
1547
1548	/* Use local node/cpu if we are already there */
1549	cpu = raw_smp_processor_id();
1550	if (node == cpu_to_node(cpu))
1551		return cpu;
1552
1553	/* Use "random" otherwise know as "first" online CPU of node */
1554	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1555
1556	/* If CPU is valid return that, otherwise just defer */
1557	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1558}
1559
1560/**
1561 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1562 * @node: NUMA node that we are targeting the work for
1563 * @wq: workqueue to use
1564 * @work: work to queue
1565 *
1566 * We queue the work to a "random" CPU within a given NUMA node. The basic
1567 * idea here is to provide a way to somehow associate work with a given
1568 * NUMA node.
1569 *
1570 * This function will only make a best effort attempt at getting this onto
1571 * the right NUMA node. If no node is requested or the requested node is
1572 * offline then we just fall back to standard queue_work behavior.
1573 *
1574 * Currently the "random" CPU ends up being the first available CPU in the
1575 * intersection of cpu_online_mask and the cpumask of the node, unless we
1576 * are running on the node. In that case we just use the current CPU.
1577 *
1578 * Return: %false if @work was already on a queue, %true otherwise.
1579 */
1580bool queue_work_node(int node, struct workqueue_struct *wq,
1581		     struct work_struct *work)
1582{
1583	unsigned long flags;
1584	bool ret = false;
1585
1586	/*
1587	 * This current implementation is specific to unbound workqueues.
1588	 * Specifically we only return the first available CPU for a given
1589	 * node instead of cycling through individual CPUs within the node.
1590	 *
1591	 * If this is used with a per-cpu workqueue then the logic in
1592	 * workqueue_select_cpu_near would need to be updated to allow for
1593	 * some round robin type logic.
1594	 */
1595	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1596
1597	local_irq_save(flags);
1598
1599	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1600		int cpu = workqueue_select_cpu_near(node);
1601
1602		__queue_work(cpu, wq, work);
1603		ret = true;
1604	}
1605
1606	local_irq_restore(flags);
1607	return ret;
1608}
1609EXPORT_SYMBOL_GPL(queue_work_node);
1610
1611void delayed_work_timer_fn(struct timer_list *t)
1612{
1613	struct delayed_work *dwork = from_timer(dwork, t, timer);
1614
1615	/* should have been called from irqsafe timer with irq already off */
1616	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1617}
1618EXPORT_SYMBOL(delayed_work_timer_fn);
1619
1620static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1621				struct delayed_work *dwork, unsigned long delay)
1622{
1623	struct timer_list *timer = &dwork->timer;
1624	struct work_struct *work = &dwork->work;
1625
1626	WARN_ON_ONCE(!wq);
1627	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1628	WARN_ON_ONCE(timer_pending(timer));
1629	WARN_ON_ONCE(!list_empty(&work->entry));
1630
1631	/*
1632	 * If @delay is 0, queue @dwork->work immediately.  This is for
1633	 * both optimization and correctness.  The earliest @timer can
1634	 * expire is on the closest next tick and delayed_work users depend
1635	 * on that there's no such delay when @delay is 0.
1636	 */
1637	if (!delay) {
1638		__queue_work(cpu, wq, &dwork->work);
1639		return;
1640	}
1641
1642	dwork->wq = wq;
1643	dwork->cpu = cpu;
1644	timer->expires = jiffies + delay;
1645
1646	if (unlikely(cpu != WORK_CPU_UNBOUND))
1647		add_timer_on(timer, cpu);
1648	else
1649		add_timer(timer);
1650}
1651
1652/**
1653 * queue_delayed_work_on - queue work on specific CPU after delay
1654 * @cpu: CPU number to execute work on
1655 * @wq: workqueue to use
1656 * @dwork: work to queue
1657 * @delay: number of jiffies to wait before queueing
1658 *
1659 * Return: %false if @work was already on a queue, %true otherwise.  If
1660 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1661 * execution.
1662 */
1663bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1664			   struct delayed_work *dwork, unsigned long delay)
1665{
1666	struct work_struct *work = &dwork->work;
1667	bool ret = false;
1668	unsigned long flags;
1669
1670	/* read the comment in __queue_work() */
1671	local_irq_save(flags);
1672
1673	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1674		__queue_delayed_work(cpu, wq, dwork, delay);
1675		ret = true;
1676	}
1677
1678	local_irq_restore(flags);
1679	return ret;
1680}
1681EXPORT_SYMBOL(queue_delayed_work_on);
1682
1683/**
1684 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1685 * @cpu: CPU number to execute work on
1686 * @wq: workqueue to use
1687 * @dwork: work to queue
1688 * @delay: number of jiffies to wait before queueing
1689 *
1690 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1691 * modify @dwork's timer so that it expires after @delay.  If @delay is
1692 * zero, @work is guaranteed to be scheduled immediately regardless of its
1693 * current state.
1694 *
1695 * Return: %false if @dwork was idle and queued, %true if @dwork was
1696 * pending and its timer was modified.
1697 *
1698 * This function is safe to call from any context including IRQ handler.
1699 * See try_to_grab_pending() for details.
1700 */
1701bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1702			 struct delayed_work *dwork, unsigned long delay)
1703{
1704	unsigned long flags;
1705	int ret;
1706
1707	do {
1708		ret = try_to_grab_pending(&dwork->work, true, &flags);
1709	} while (unlikely(ret == -EAGAIN));
1710
1711	if (likely(ret >= 0)) {
1712		__queue_delayed_work(cpu, wq, dwork, delay);
1713		local_irq_restore(flags);
1714	}
1715
1716	/* -ENOENT from try_to_grab_pending() becomes %true */
1717	return ret;
1718}
1719EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1720
1721static void rcu_work_rcufn(struct rcu_head *rcu)
1722{
1723	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1724
1725	/* read the comment in __queue_work() */
1726	local_irq_disable();
1727	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1728	local_irq_enable();
1729}
1730
1731/**
1732 * queue_rcu_work - queue work after a RCU grace period
1733 * @wq: workqueue to use
1734 * @rwork: work to queue
1735 *
1736 * Return: %false if @rwork was already pending, %true otherwise.  Note
1737 * that a full RCU grace period is guaranteed only after a %true return.
1738 * While @rwork is guaranteed to be executed after a %false return, the
1739 * execution may happen before a full RCU grace period has passed.
1740 */
1741bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1742{
1743	struct work_struct *work = &rwork->work;
1744
1745	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1746		rwork->wq = wq;
1747		call_rcu(&rwork->rcu, rcu_work_rcufn);
1748		return true;
1749	}
1750
1751	return false;
1752}
1753EXPORT_SYMBOL(queue_rcu_work);
1754
1755/**
1756 * worker_enter_idle - enter idle state
1757 * @worker: worker which is entering idle state
1758 *
1759 * @worker is entering idle state.  Update stats and idle timer if
1760 * necessary.
1761 *
1762 * LOCKING:
1763 * spin_lock_irq(pool->lock).
1764 */
1765static void worker_enter_idle(struct worker *worker)
1766{
1767	struct worker_pool *pool = worker->pool;
1768
1769	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1770	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1771			 (worker->hentry.next || worker->hentry.pprev)))
1772		return;
1773
1774	/* can't use worker_set_flags(), also called from create_worker() */
1775	worker->flags |= WORKER_IDLE;
1776	pool->nr_idle++;
1777	worker->last_active = jiffies;
1778
1779	/* idle_list is LIFO */
1780	list_add(&worker->entry, &pool->idle_list);
1781
1782	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1783		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1784
1785	/*
1786	 * Sanity check nr_running.  Because unbind_workers() releases
1787	 * pool->lock between setting %WORKER_UNBOUND and zapping
1788	 * nr_running, the warning may trigger spuriously.  Check iff
1789	 * unbind is not in progress.
1790	 */
1791	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1792		     pool->nr_workers == pool->nr_idle &&
1793		     atomic_read(&pool->nr_running));
1794}
1795
1796/**
1797 * worker_leave_idle - leave idle state
1798 * @worker: worker which is leaving idle state
1799 *
1800 * @worker is leaving idle state.  Update stats.
1801 *
1802 * LOCKING:
1803 * spin_lock_irq(pool->lock).
1804 */
1805static void worker_leave_idle(struct worker *worker)
1806{
1807	struct worker_pool *pool = worker->pool;
1808
1809	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1810		return;
1811	worker_clr_flags(worker, WORKER_IDLE);
1812	pool->nr_idle--;
1813	list_del_init(&worker->entry);
1814}
1815
1816static struct worker *alloc_worker(int node)
1817{
1818	struct worker *worker;
1819
1820	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1821	if (worker) {
1822		INIT_LIST_HEAD(&worker->entry);
1823		INIT_LIST_HEAD(&worker->scheduled);
1824		INIT_LIST_HEAD(&worker->node);
1825		/* on creation a worker is in !idle && prep state */
1826		worker->flags = WORKER_PREP;
1827	}
1828	return worker;
1829}
1830
1831/**
1832 * worker_attach_to_pool() - attach a worker to a pool
1833 * @worker: worker to be attached
1834 * @pool: the target pool
1835 *
1836 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1837 * cpu-binding of @worker are kept coordinated with the pool across
1838 * cpu-[un]hotplugs.
1839 */
1840static void worker_attach_to_pool(struct worker *worker,
1841				   struct worker_pool *pool)
1842{
1843	mutex_lock(&wq_pool_attach_mutex);
1844
1845	/*
1846	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1847	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1848	 */
1849	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1850
1851	/*
1852	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853	 * stable across this function.  See the comments above the flag
1854	 * definition for details.
1855	 */
1856	if (pool->flags & POOL_DISASSOCIATED)
1857		worker->flags |= WORKER_UNBOUND;
1858
1859	list_add_tail(&worker->node, &pool->workers);
1860	worker->pool = pool;
1861
1862	mutex_unlock(&wq_pool_attach_mutex);
1863}
1864
1865/**
1866 * worker_detach_from_pool() - detach a worker from its pool
1867 * @worker: worker which is attached to its pool
 
1868 *
1869 * Undo the attaching which had been done in worker_attach_to_pool().  The
1870 * caller worker shouldn't access to the pool after detached except it has
1871 * other reference to the pool.
1872 */
1873static void worker_detach_from_pool(struct worker *worker)
 
1874{
1875	struct worker_pool *pool = worker->pool;
1876	struct completion *detach_completion = NULL;
1877
1878	mutex_lock(&wq_pool_attach_mutex);
1879
1880	list_del(&worker->node);
1881	worker->pool = NULL;
1882
1883	if (list_empty(&pool->workers))
1884		detach_completion = pool->detach_completion;
1885	mutex_unlock(&wq_pool_attach_mutex);
1886
1887	/* clear leftover flags without pool->lock after it is detached */
1888	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1889
1890	if (detach_completion)
1891		complete(detach_completion);
1892}
1893
1894/**
1895 * create_worker - create a new workqueue worker
1896 * @pool: pool the new worker will belong to
1897 *
1898 * Create and start a new worker which is attached to @pool.
1899 *
1900 * CONTEXT:
1901 * Might sleep.  Does GFP_KERNEL allocations.
1902 *
1903 * Return:
1904 * Pointer to the newly created worker.
1905 */
1906static struct worker *create_worker(struct worker_pool *pool)
1907{
1908	struct worker *worker = NULL;
1909	int id = -1;
1910	char id_buf[16];
1911
1912	/* ID is needed to determine kthread name */
1913	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1914	if (id < 0)
1915		goto fail;
1916
1917	worker = alloc_worker(pool->node);
1918	if (!worker)
1919		goto fail;
1920
 
1921	worker->id = id;
1922
1923	if (pool->cpu >= 0)
1924		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1925			 pool->attrs->nice < 0  ? "H" : "");
1926	else
1927		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1928
1929	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1930					      "kworker/%s", id_buf);
1931	if (IS_ERR(worker->task))
1932		goto fail;
1933
1934	set_user_nice(worker->task, pool->attrs->nice);
1935	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1936
1937	/* successful, attach the worker to the pool */
1938	worker_attach_to_pool(worker, pool);
1939
1940	/* start the newly created worker */
1941	spin_lock_irq(&pool->lock);
1942	worker->pool->nr_workers++;
1943	worker_enter_idle(worker);
1944	wake_up_process(worker->task);
1945	spin_unlock_irq(&pool->lock);
1946
1947	return worker;
1948
1949fail:
1950	if (id >= 0)
1951		ida_simple_remove(&pool->worker_ida, id);
1952	kfree(worker);
1953	return NULL;
1954}
1955
1956/**
1957 * destroy_worker - destroy a workqueue worker
1958 * @worker: worker to be destroyed
1959 *
1960 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1961 * be idle.
1962 *
1963 * CONTEXT:
1964 * spin_lock_irq(pool->lock).
1965 */
1966static void destroy_worker(struct worker *worker)
1967{
1968	struct worker_pool *pool = worker->pool;
1969
1970	lockdep_assert_held(&pool->lock);
1971
1972	/* sanity check frenzy */
1973	if (WARN_ON(worker->current_work) ||
1974	    WARN_ON(!list_empty(&worker->scheduled)) ||
1975	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1976		return;
1977
1978	pool->nr_workers--;
1979	pool->nr_idle--;
1980
1981	list_del_init(&worker->entry);
1982	worker->flags |= WORKER_DIE;
1983	wake_up_process(worker->task);
1984}
1985
1986static void idle_worker_timeout(struct timer_list *t)
1987{
1988	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1989
1990	spin_lock_irq(&pool->lock);
1991
1992	while (too_many_workers(pool)) {
1993		struct worker *worker;
1994		unsigned long expires;
1995
1996		/* idle_list is kept in LIFO order, check the last one */
1997		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1998		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1999
2000		if (time_before(jiffies, expires)) {
2001			mod_timer(&pool->idle_timer, expires);
2002			break;
2003		}
2004
2005		destroy_worker(worker);
2006	}
2007
2008	spin_unlock_irq(&pool->lock);
2009}
2010
2011static void send_mayday(struct work_struct *work)
2012{
2013	struct pool_workqueue *pwq = get_work_pwq(work);
2014	struct workqueue_struct *wq = pwq->wq;
2015
2016	lockdep_assert_held(&wq_mayday_lock);
2017
2018	if (!wq->rescuer)
2019		return;
2020
2021	/* mayday mayday mayday */
2022	if (list_empty(&pwq->mayday_node)) {
2023		/*
2024		 * If @pwq is for an unbound wq, its base ref may be put at
2025		 * any time due to an attribute change.  Pin @pwq until the
2026		 * rescuer is done with it.
2027		 */
2028		get_pwq(pwq);
2029		list_add_tail(&pwq->mayday_node, &wq->maydays);
2030		wake_up_process(wq->rescuer->task);
2031	}
2032}
2033
2034static void pool_mayday_timeout(struct timer_list *t)
2035{
2036	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2037	struct work_struct *work;
2038
2039	spin_lock_irq(&pool->lock);
2040	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2041
2042	if (need_to_create_worker(pool)) {
2043		/*
2044		 * We've been trying to create a new worker but
2045		 * haven't been successful.  We might be hitting an
2046		 * allocation deadlock.  Send distress signals to
2047		 * rescuers.
2048		 */
2049		list_for_each_entry(work, &pool->worklist, entry)
2050			send_mayday(work);
2051	}
2052
2053	spin_unlock(&wq_mayday_lock);
2054	spin_unlock_irq(&pool->lock);
2055
2056	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2057}
2058
2059/**
2060 * maybe_create_worker - create a new worker if necessary
2061 * @pool: pool to create a new worker for
2062 *
2063 * Create a new worker for @pool if necessary.  @pool is guaranteed to
2064 * have at least one idle worker on return from this function.  If
2065 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2066 * sent to all rescuers with works scheduled on @pool to resolve
2067 * possible allocation deadlock.
2068 *
2069 * On return, need_to_create_worker() is guaranteed to be %false and
2070 * may_start_working() %true.
2071 *
2072 * LOCKING:
2073 * spin_lock_irq(pool->lock) which may be released and regrabbed
2074 * multiple times.  Does GFP_KERNEL allocations.  Called only from
2075 * manager.
2076 */
2077static void maybe_create_worker(struct worker_pool *pool)
2078__releases(&pool->lock)
2079__acquires(&pool->lock)
2080{
2081restart:
2082	spin_unlock_irq(&pool->lock);
2083
2084	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2085	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2086
2087	while (true) {
2088		if (create_worker(pool) || !need_to_create_worker(pool))
2089			break;
2090
2091		schedule_timeout_interruptible(CREATE_COOLDOWN);
2092
2093		if (!need_to_create_worker(pool))
2094			break;
2095	}
2096
2097	del_timer_sync(&pool->mayday_timer);
2098	spin_lock_irq(&pool->lock);
2099	/*
2100	 * This is necessary even after a new worker was just successfully
2101	 * created as @pool->lock was dropped and the new worker might have
2102	 * already become busy.
2103	 */
2104	if (need_to_create_worker(pool))
2105		goto restart;
2106}
2107
2108/**
2109 * manage_workers - manage worker pool
2110 * @worker: self
2111 *
2112 * Assume the manager role and manage the worker pool @worker belongs
2113 * to.  At any given time, there can be only zero or one manager per
2114 * pool.  The exclusion is handled automatically by this function.
2115 *
2116 * The caller can safely start processing works on false return.  On
2117 * true return, it's guaranteed that need_to_create_worker() is false
2118 * and may_start_working() is true.
2119 *
2120 * CONTEXT:
2121 * spin_lock_irq(pool->lock) which may be released and regrabbed
2122 * multiple times.  Does GFP_KERNEL allocations.
2123 *
2124 * Return:
2125 * %false if the pool doesn't need management and the caller can safely
2126 * start processing works, %true if management function was performed and
2127 * the conditions that the caller verified before calling the function may
2128 * no longer be true.
2129 */
2130static bool manage_workers(struct worker *worker)
2131{
2132	struct worker_pool *pool = worker->pool;
2133
2134	if (pool->flags & POOL_MANAGER_ACTIVE)
2135		return false;
2136
2137	pool->flags |= POOL_MANAGER_ACTIVE;
2138	pool->manager = worker;
2139
2140	maybe_create_worker(pool);
2141
2142	pool->manager = NULL;
2143	pool->flags &= ~POOL_MANAGER_ACTIVE;
2144	wake_up(&wq_manager_wait);
2145	return true;
2146}
2147
2148/**
2149 * process_one_work - process single work
2150 * @worker: self
2151 * @work: work to process
2152 *
2153 * Process @work.  This function contains all the logics necessary to
2154 * process a single work including synchronization against and
2155 * interaction with other workers on the same cpu, queueing and
2156 * flushing.  As long as context requirement is met, any worker can
2157 * call this function to process a work.
2158 *
2159 * CONTEXT:
2160 * spin_lock_irq(pool->lock) which is released and regrabbed.
2161 */
2162static void process_one_work(struct worker *worker, struct work_struct *work)
2163__releases(&pool->lock)
2164__acquires(&pool->lock)
2165{
2166	struct pool_workqueue *pwq = get_work_pwq(work);
2167	struct worker_pool *pool = worker->pool;
2168	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2169	int work_color;
2170	struct worker *collision;
2171#ifdef CONFIG_LOCKDEP
2172	/*
2173	 * It is permissible to free the struct work_struct from
2174	 * inside the function that is called from it, this we need to
2175	 * take into account for lockdep too.  To avoid bogus "held
2176	 * lock freed" warnings as well as problems when looking into
2177	 * work->lockdep_map, make a copy and use that here.
2178	 */
2179	struct lockdep_map lockdep_map;
2180
2181	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2182#endif
2183	/* ensure we're on the correct CPU */
2184	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2185		     raw_smp_processor_id() != pool->cpu);
2186
2187	/*
2188	 * A single work shouldn't be executed concurrently by
2189	 * multiple workers on a single cpu.  Check whether anyone is
2190	 * already processing the work.  If so, defer the work to the
2191	 * currently executing one.
2192	 */
2193	collision = find_worker_executing_work(pool, work);
2194	if (unlikely(collision)) {
2195		move_linked_works(work, &collision->scheduled, NULL);
2196		return;
2197	}
2198
2199	/* claim and dequeue */
2200	debug_work_deactivate(work);
2201	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2202	worker->current_work = work;
2203	worker->current_func = work->func;
2204	worker->current_pwq = pwq;
2205	work_color = get_work_color(work);
2206
2207	/*
2208	 * Record wq name for cmdline and debug reporting, may get
2209	 * overridden through set_worker_desc().
2210	 */
2211	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2212
2213	list_del_init(&work->entry);
2214
2215	/*
2216	 * CPU intensive works don't participate in concurrency management.
2217	 * They're the scheduler's responsibility.  This takes @worker out
2218	 * of concurrency management and the next code block will chain
2219	 * execution of the pending work items.
2220	 */
2221	if (unlikely(cpu_intensive))
2222		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2223
2224	/*
2225	 * Wake up another worker if necessary.  The condition is always
2226	 * false for normal per-cpu workers since nr_running would always
2227	 * be >= 1 at this point.  This is used to chain execution of the
2228	 * pending work items for WORKER_NOT_RUNNING workers such as the
2229	 * UNBOUND and CPU_INTENSIVE ones.
2230	 */
2231	if (need_more_worker(pool))
2232		wake_up_worker(pool);
2233
2234	/*
2235	 * Record the last pool and clear PENDING which should be the last
2236	 * update to @work.  Also, do this inside @pool->lock so that
2237	 * PENDING and queued state changes happen together while IRQ is
2238	 * disabled.
2239	 */
2240	set_work_pool_and_clear_pending(work, pool->id);
2241
2242	spin_unlock_irq(&pool->lock);
2243
2244	lock_map_acquire(&pwq->wq->lockdep_map);
2245	lock_map_acquire(&lockdep_map);
2246	/*
2247	 * Strictly speaking we should mark the invariant state without holding
2248	 * any locks, that is, before these two lock_map_acquire()'s.
2249	 *
2250	 * However, that would result in:
2251	 *
2252	 *   A(W1)
2253	 *   WFC(C)
2254	 *		A(W1)
2255	 *		C(C)
2256	 *
2257	 * Which would create W1->C->W1 dependencies, even though there is no
2258	 * actual deadlock possible. There are two solutions, using a
2259	 * read-recursive acquire on the work(queue) 'locks', but this will then
2260	 * hit the lockdep limitation on recursive locks, or simply discard
2261	 * these locks.
2262	 *
2263	 * AFAICT there is no possible deadlock scenario between the
2264	 * flush_work() and complete() primitives (except for single-threaded
2265	 * workqueues), so hiding them isn't a problem.
2266	 */
2267	lockdep_invariant_state(true);
2268	trace_workqueue_execute_start(work);
2269	worker->current_func(work);
2270	/*
2271	 * While we must be careful to not use "work" after this, the trace
2272	 * point will only record its address.
2273	 */
2274	trace_workqueue_execute_end(work);
2275	lock_map_release(&lockdep_map);
2276	lock_map_release(&pwq->wq->lockdep_map);
2277
2278	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2279		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2280		       "     last function: %ps\n",
2281		       current->comm, preempt_count(), task_pid_nr(current),
2282		       worker->current_func);
2283		debug_show_held_locks(current);
2284		dump_stack();
2285	}
2286
2287	/*
2288	 * The following prevents a kworker from hogging CPU on !PREEMPT
2289	 * kernels, where a requeueing work item waiting for something to
2290	 * happen could deadlock with stop_machine as such work item could
2291	 * indefinitely requeue itself while all other CPUs are trapped in
2292	 * stop_machine. At the same time, report a quiescent RCU state so
2293	 * the same condition doesn't freeze RCU.
2294	 */
2295	cond_resched();
2296
2297	spin_lock_irq(&pool->lock);
2298
2299	/* clear cpu intensive status */
2300	if (unlikely(cpu_intensive))
2301		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2302
2303	/* tag the worker for identification in schedule() */
2304	worker->last_func = worker->current_func;
2305
2306	/* we're done with it, release */
2307	hash_del(&worker->hentry);
2308	worker->current_work = NULL;
2309	worker->current_func = NULL;
2310	worker->current_pwq = NULL;
 
2311	pwq_dec_nr_in_flight(pwq, work_color);
2312}
2313
2314/**
2315 * process_scheduled_works - process scheduled works
2316 * @worker: self
2317 *
2318 * Process all scheduled works.  Please note that the scheduled list
2319 * may change while processing a work, so this function repeatedly
2320 * fetches a work from the top and executes it.
2321 *
2322 * CONTEXT:
2323 * spin_lock_irq(pool->lock) which may be released and regrabbed
2324 * multiple times.
2325 */
2326static void process_scheduled_works(struct worker *worker)
2327{
2328	while (!list_empty(&worker->scheduled)) {
2329		struct work_struct *work = list_first_entry(&worker->scheduled,
2330						struct work_struct, entry);
2331		process_one_work(worker, work);
2332	}
2333}
2334
2335static void set_pf_worker(bool val)
2336{
2337	mutex_lock(&wq_pool_attach_mutex);
2338	if (val)
2339		current->flags |= PF_WQ_WORKER;
2340	else
2341		current->flags &= ~PF_WQ_WORKER;
2342	mutex_unlock(&wq_pool_attach_mutex);
2343}
2344
2345/**
2346 * worker_thread - the worker thread function
2347 * @__worker: self
2348 *
2349 * The worker thread function.  All workers belong to a worker_pool -
2350 * either a per-cpu one or dynamic unbound one.  These workers process all
2351 * work items regardless of their specific target workqueue.  The only
2352 * exception is work items which belong to workqueues with a rescuer which
2353 * will be explained in rescuer_thread().
2354 *
2355 * Return: 0
2356 */
2357static int worker_thread(void *__worker)
2358{
2359	struct worker *worker = __worker;
2360	struct worker_pool *pool = worker->pool;
2361
2362	/* tell the scheduler that this is a workqueue worker */
2363	set_pf_worker(true);
2364woke_up:
2365	spin_lock_irq(&pool->lock);
2366
2367	/* am I supposed to die? */
2368	if (unlikely(worker->flags & WORKER_DIE)) {
2369		spin_unlock_irq(&pool->lock);
2370		WARN_ON_ONCE(!list_empty(&worker->entry));
2371		set_pf_worker(false);
2372
2373		set_task_comm(worker->task, "kworker/dying");
2374		ida_simple_remove(&pool->worker_ida, worker->id);
2375		worker_detach_from_pool(worker);
2376		kfree(worker);
2377		return 0;
2378	}
2379
2380	worker_leave_idle(worker);
2381recheck:
2382	/* no more worker necessary? */
2383	if (!need_more_worker(pool))
2384		goto sleep;
2385
2386	/* do we need to manage? */
2387	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2388		goto recheck;
2389
2390	/*
2391	 * ->scheduled list can only be filled while a worker is
2392	 * preparing to process a work or actually processing it.
2393	 * Make sure nobody diddled with it while I was sleeping.
2394	 */
2395	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2396
2397	/*
2398	 * Finish PREP stage.  We're guaranteed to have at least one idle
2399	 * worker or that someone else has already assumed the manager
2400	 * role.  This is where @worker starts participating in concurrency
2401	 * management if applicable and concurrency management is restored
2402	 * after being rebound.  See rebind_workers() for details.
2403	 */
2404	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2405
2406	do {
2407		struct work_struct *work =
2408			list_first_entry(&pool->worklist,
2409					 struct work_struct, entry);
2410
2411		pool->watchdog_ts = jiffies;
2412
2413		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2414			/* optimization path, not strictly necessary */
2415			process_one_work(worker, work);
2416			if (unlikely(!list_empty(&worker->scheduled)))
2417				process_scheduled_works(worker);
2418		} else {
2419			move_linked_works(work, &worker->scheduled, NULL);
2420			process_scheduled_works(worker);
2421		}
2422	} while (keep_working(pool));
2423
2424	worker_set_flags(worker, WORKER_PREP);
2425sleep:
2426	/*
2427	 * pool->lock is held and there's no work to process and no need to
2428	 * manage, sleep.  Workers are woken up only while holding
2429	 * pool->lock or from local cpu, so setting the current state
2430	 * before releasing pool->lock is enough to prevent losing any
2431	 * event.
2432	 */
2433	worker_enter_idle(worker);
2434	__set_current_state(TASK_IDLE);
2435	spin_unlock_irq(&pool->lock);
2436	schedule();
2437	goto woke_up;
2438}
2439
2440/**
2441 * rescuer_thread - the rescuer thread function
2442 * @__rescuer: self
2443 *
2444 * Workqueue rescuer thread function.  There's one rescuer for each
2445 * workqueue which has WQ_MEM_RECLAIM set.
2446 *
2447 * Regular work processing on a pool may block trying to create a new
2448 * worker which uses GFP_KERNEL allocation which has slight chance of
2449 * developing into deadlock if some works currently on the same queue
2450 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2451 * the problem rescuer solves.
2452 *
2453 * When such condition is possible, the pool summons rescuers of all
2454 * workqueues which have works queued on the pool and let them process
2455 * those works so that forward progress can be guaranteed.
2456 *
2457 * This should happen rarely.
2458 *
2459 * Return: 0
2460 */
2461static int rescuer_thread(void *__rescuer)
2462{
2463	struct worker *rescuer = __rescuer;
2464	struct workqueue_struct *wq = rescuer->rescue_wq;
2465	struct list_head *scheduled = &rescuer->scheduled;
2466	bool should_stop;
2467
2468	set_user_nice(current, RESCUER_NICE_LEVEL);
2469
2470	/*
2471	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2472	 * doesn't participate in concurrency management.
2473	 */
2474	set_pf_worker(true);
2475repeat:
2476	set_current_state(TASK_IDLE);
2477
2478	/*
2479	 * By the time the rescuer is requested to stop, the workqueue
2480	 * shouldn't have any work pending, but @wq->maydays may still have
2481	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2482	 * all the work items before the rescuer got to them.  Go through
2483	 * @wq->maydays processing before acting on should_stop so that the
2484	 * list is always empty on exit.
2485	 */
2486	should_stop = kthread_should_stop();
2487
2488	/* see whether any pwq is asking for help */
2489	spin_lock_irq(&wq_mayday_lock);
2490
2491	while (!list_empty(&wq->maydays)) {
2492		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2493					struct pool_workqueue, mayday_node);
2494		struct worker_pool *pool = pwq->pool;
2495		struct work_struct *work, *n;
2496		bool first = true;
2497
2498		__set_current_state(TASK_RUNNING);
2499		list_del_init(&pwq->mayday_node);
2500
2501		spin_unlock_irq(&wq_mayday_lock);
2502
2503		worker_attach_to_pool(rescuer, pool);
2504
2505		spin_lock_irq(&pool->lock);
 
2506
2507		/*
2508		 * Slurp in all works issued via this workqueue and
2509		 * process'em.
2510		 */
2511		WARN_ON_ONCE(!list_empty(scheduled));
2512		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2513			if (get_work_pwq(work) == pwq) {
2514				if (first)
2515					pool->watchdog_ts = jiffies;
2516				move_linked_works(work, scheduled, &n);
2517			}
2518			first = false;
2519		}
2520
2521		if (!list_empty(scheduled)) {
2522			process_scheduled_works(rescuer);
2523
2524			/*
2525			 * The above execution of rescued work items could
2526			 * have created more to rescue through
2527			 * pwq_activate_first_delayed() or chained
2528			 * queueing.  Let's put @pwq back on mayday list so
2529			 * that such back-to-back work items, which may be
2530			 * being used to relieve memory pressure, don't
2531			 * incur MAYDAY_INTERVAL delay inbetween.
2532			 */
2533			if (need_to_create_worker(pool)) {
2534				spin_lock(&wq_mayday_lock);
2535				get_pwq(pwq);
2536				list_move_tail(&pwq->mayday_node, &wq->maydays);
2537				spin_unlock(&wq_mayday_lock);
2538			}
2539		}
2540
2541		/*
2542		 * Put the reference grabbed by send_mayday().  @pool won't
2543		 * go away while we're still attached to it.
2544		 */
2545		put_pwq(pwq);
2546
2547		/*
2548		 * Leave this pool.  If need_more_worker() is %true, notify a
2549		 * regular worker; otherwise, we end up with 0 concurrency
2550		 * and stalling the execution.
2551		 */
2552		if (need_more_worker(pool))
2553			wake_up_worker(pool);
2554
 
2555		spin_unlock_irq(&pool->lock);
2556
2557		worker_detach_from_pool(rescuer);
2558
2559		spin_lock_irq(&wq_mayday_lock);
2560	}
2561
2562	spin_unlock_irq(&wq_mayday_lock);
2563
2564	if (should_stop) {
2565		__set_current_state(TASK_RUNNING);
2566		set_pf_worker(false);
2567		return 0;
2568	}
2569
2570	/* rescuers should never participate in concurrency management */
2571	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2572	schedule();
2573	goto repeat;
2574}
2575
2576/**
2577 * check_flush_dependency - check for flush dependency sanity
2578 * @target_wq: workqueue being flushed
2579 * @target_work: work item being flushed (NULL for workqueue flushes)
2580 *
2581 * %current is trying to flush the whole @target_wq or @target_work on it.
2582 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2583 * reclaiming memory or running on a workqueue which doesn't have
2584 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2585 * a deadlock.
2586 */
2587static void check_flush_dependency(struct workqueue_struct *target_wq,
2588				   struct work_struct *target_work)
2589{
2590	work_func_t target_func = target_work ? target_work->func : NULL;
2591	struct worker *worker;
2592
2593	if (target_wq->flags & WQ_MEM_RECLAIM)
2594		return;
2595
2596	worker = current_wq_worker();
2597
2598	WARN_ONCE(current->flags & PF_MEMALLOC,
2599		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2600		  current->pid, current->comm, target_wq->name, target_func);
2601	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2602			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2603		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2604		  worker->current_pwq->wq->name, worker->current_func,
2605		  target_wq->name, target_func);
2606}
2607
2608struct wq_barrier {
2609	struct work_struct	work;
2610	struct completion	done;
2611	struct task_struct	*task;	/* purely informational */
2612};
2613
2614static void wq_barrier_func(struct work_struct *work)
2615{
2616	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2617	complete(&barr->done);
2618}
2619
2620/**
2621 * insert_wq_barrier - insert a barrier work
2622 * @pwq: pwq to insert barrier into
2623 * @barr: wq_barrier to insert
2624 * @target: target work to attach @barr to
2625 * @worker: worker currently executing @target, NULL if @target is not executing
2626 *
2627 * @barr is linked to @target such that @barr is completed only after
2628 * @target finishes execution.  Please note that the ordering
2629 * guarantee is observed only with respect to @target and on the local
2630 * cpu.
2631 *
2632 * Currently, a queued barrier can't be canceled.  This is because
2633 * try_to_grab_pending() can't determine whether the work to be
2634 * grabbed is at the head of the queue and thus can't clear LINKED
2635 * flag of the previous work while there must be a valid next work
2636 * after a work with LINKED flag set.
2637 *
2638 * Note that when @worker is non-NULL, @target may be modified
2639 * underneath us, so we can't reliably determine pwq from @target.
2640 *
2641 * CONTEXT:
2642 * spin_lock_irq(pool->lock).
2643 */
2644static void insert_wq_barrier(struct pool_workqueue *pwq,
2645			      struct wq_barrier *barr,
2646			      struct work_struct *target, struct worker *worker)
2647{
2648	struct list_head *head;
2649	unsigned int linked = 0;
2650
2651	/*
2652	 * debugobject calls are safe here even with pool->lock locked
2653	 * as we know for sure that this will not trigger any of the
2654	 * checks and call back into the fixup functions where we
2655	 * might deadlock.
2656	 */
2657	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2658	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2659
2660	init_completion_map(&barr->done, &target->lockdep_map);
2661
2662	barr->task = current;
2663
2664	/*
2665	 * If @target is currently being executed, schedule the
2666	 * barrier to the worker; otherwise, put it after @target.
2667	 */
2668	if (worker)
2669		head = worker->scheduled.next;
2670	else {
2671		unsigned long *bits = work_data_bits(target);
2672
2673		head = target->entry.next;
2674		/* there can already be other linked works, inherit and set */
2675		linked = *bits & WORK_STRUCT_LINKED;
2676		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2677	}
2678
2679	debug_work_activate(&barr->work);
2680	insert_work(pwq, &barr->work, head,
2681		    work_color_to_flags(WORK_NO_COLOR) | linked);
2682}
2683
2684/**
2685 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2686 * @wq: workqueue being flushed
2687 * @flush_color: new flush color, < 0 for no-op
2688 * @work_color: new work color, < 0 for no-op
2689 *
2690 * Prepare pwqs for workqueue flushing.
2691 *
2692 * If @flush_color is non-negative, flush_color on all pwqs should be
2693 * -1.  If no pwq has in-flight commands at the specified color, all
2694 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2695 * has in flight commands, its pwq->flush_color is set to
2696 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2697 * wakeup logic is armed and %true is returned.
2698 *
2699 * The caller should have initialized @wq->first_flusher prior to
2700 * calling this function with non-negative @flush_color.  If
2701 * @flush_color is negative, no flush color update is done and %false
2702 * is returned.
2703 *
2704 * If @work_color is non-negative, all pwqs should have the same
2705 * work_color which is previous to @work_color and all will be
2706 * advanced to @work_color.
2707 *
2708 * CONTEXT:
2709 * mutex_lock(wq->mutex).
2710 *
2711 * Return:
2712 * %true if @flush_color >= 0 and there's something to flush.  %false
2713 * otherwise.
2714 */
2715static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2716				      int flush_color, int work_color)
2717{
2718	bool wait = false;
2719	struct pool_workqueue *pwq;
2720
2721	if (flush_color >= 0) {
2722		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2723		atomic_set(&wq->nr_pwqs_to_flush, 1);
2724	}
2725
2726	for_each_pwq(pwq, wq) {
2727		struct worker_pool *pool = pwq->pool;
2728
2729		spin_lock_irq(&pool->lock);
2730
2731		if (flush_color >= 0) {
2732			WARN_ON_ONCE(pwq->flush_color != -1);
2733
2734			if (pwq->nr_in_flight[flush_color]) {
2735				pwq->flush_color = flush_color;
2736				atomic_inc(&wq->nr_pwqs_to_flush);
2737				wait = true;
2738			}
2739		}
2740
2741		if (work_color >= 0) {
2742			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2743			pwq->work_color = work_color;
2744		}
2745
2746		spin_unlock_irq(&pool->lock);
2747	}
2748
2749	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2750		complete(&wq->first_flusher->done);
2751
2752	return wait;
2753}
2754
2755/**
2756 * flush_workqueue - ensure that any scheduled work has run to completion.
2757 * @wq: workqueue to flush
2758 *
2759 * This function sleeps until all work items which were queued on entry
2760 * have finished execution, but it is not livelocked by new incoming ones.
2761 */
2762void flush_workqueue(struct workqueue_struct *wq)
2763{
2764	struct wq_flusher this_flusher = {
2765		.list = LIST_HEAD_INIT(this_flusher.list),
2766		.flush_color = -1,
2767		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2768	};
2769	int next_color;
2770
2771	if (WARN_ON(!wq_online))
2772		return;
2773
2774	lock_map_acquire(&wq->lockdep_map);
2775	lock_map_release(&wq->lockdep_map);
2776
2777	mutex_lock(&wq->mutex);
2778
2779	/*
2780	 * Start-to-wait phase
2781	 */
2782	next_color = work_next_color(wq->work_color);
2783
2784	if (next_color != wq->flush_color) {
2785		/*
2786		 * Color space is not full.  The current work_color
2787		 * becomes our flush_color and work_color is advanced
2788		 * by one.
2789		 */
2790		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2791		this_flusher.flush_color = wq->work_color;
2792		wq->work_color = next_color;
2793
2794		if (!wq->first_flusher) {
2795			/* no flush in progress, become the first flusher */
2796			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2797
2798			wq->first_flusher = &this_flusher;
2799
2800			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2801						       wq->work_color)) {
2802				/* nothing to flush, done */
2803				wq->flush_color = next_color;
2804				wq->first_flusher = NULL;
2805				goto out_unlock;
2806			}
2807		} else {
2808			/* wait in queue */
2809			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2810			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2811			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2812		}
2813	} else {
2814		/*
2815		 * Oops, color space is full, wait on overflow queue.
2816		 * The next flush completion will assign us
2817		 * flush_color and transfer to flusher_queue.
2818		 */
2819		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2820	}
2821
2822	check_flush_dependency(wq, NULL);
2823
2824	mutex_unlock(&wq->mutex);
2825
2826	wait_for_completion(&this_flusher.done);
2827
2828	/*
2829	 * Wake-up-and-cascade phase
2830	 *
2831	 * First flushers are responsible for cascading flushes and
2832	 * handling overflow.  Non-first flushers can simply return.
2833	 */
2834	if (wq->first_flusher != &this_flusher)
2835		return;
2836
2837	mutex_lock(&wq->mutex);
2838
2839	/* we might have raced, check again with mutex held */
2840	if (wq->first_flusher != &this_flusher)
2841		goto out_unlock;
2842
2843	wq->first_flusher = NULL;
2844
2845	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2846	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2847
2848	while (true) {
2849		struct wq_flusher *next, *tmp;
2850
2851		/* complete all the flushers sharing the current flush color */
2852		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2853			if (next->flush_color != wq->flush_color)
2854				break;
2855			list_del_init(&next->list);
2856			complete(&next->done);
2857		}
2858
2859		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2860			     wq->flush_color != work_next_color(wq->work_color));
2861
2862		/* this flush_color is finished, advance by one */
2863		wq->flush_color = work_next_color(wq->flush_color);
2864
2865		/* one color has been freed, handle overflow queue */
2866		if (!list_empty(&wq->flusher_overflow)) {
2867			/*
2868			 * Assign the same color to all overflowed
2869			 * flushers, advance work_color and append to
2870			 * flusher_queue.  This is the start-to-wait
2871			 * phase for these overflowed flushers.
2872			 */
2873			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2874				tmp->flush_color = wq->work_color;
2875
2876			wq->work_color = work_next_color(wq->work_color);
2877
2878			list_splice_tail_init(&wq->flusher_overflow,
2879					      &wq->flusher_queue);
2880			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2881		}
2882
2883		if (list_empty(&wq->flusher_queue)) {
2884			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2885			break;
2886		}
2887
2888		/*
2889		 * Need to flush more colors.  Make the next flusher
2890		 * the new first flusher and arm pwqs.
2891		 */
2892		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2893		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2894
2895		list_del_init(&next->list);
2896		wq->first_flusher = next;
2897
2898		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2899			break;
2900
2901		/*
2902		 * Meh... this color is already done, clear first
2903		 * flusher and repeat cascading.
2904		 */
2905		wq->first_flusher = NULL;
2906	}
2907
2908out_unlock:
2909	mutex_unlock(&wq->mutex);
2910}
2911EXPORT_SYMBOL(flush_workqueue);
2912
2913/**
2914 * drain_workqueue - drain a workqueue
2915 * @wq: workqueue to drain
2916 *
2917 * Wait until the workqueue becomes empty.  While draining is in progress,
2918 * only chain queueing is allowed.  IOW, only currently pending or running
2919 * work items on @wq can queue further work items on it.  @wq is flushed
2920 * repeatedly until it becomes empty.  The number of flushing is determined
2921 * by the depth of chaining and should be relatively short.  Whine if it
2922 * takes too long.
2923 */
2924void drain_workqueue(struct workqueue_struct *wq)
2925{
2926	unsigned int flush_cnt = 0;
2927	struct pool_workqueue *pwq;
2928
2929	/*
2930	 * __queue_work() needs to test whether there are drainers, is much
2931	 * hotter than drain_workqueue() and already looks at @wq->flags.
2932	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2933	 */
2934	mutex_lock(&wq->mutex);
2935	if (!wq->nr_drainers++)
2936		wq->flags |= __WQ_DRAINING;
2937	mutex_unlock(&wq->mutex);
2938reflush:
2939	flush_workqueue(wq);
2940
2941	mutex_lock(&wq->mutex);
2942
2943	for_each_pwq(pwq, wq) {
2944		bool drained;
2945
2946		spin_lock_irq(&pwq->pool->lock);
2947		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2948		spin_unlock_irq(&pwq->pool->lock);
2949
2950		if (drained)
2951			continue;
2952
2953		if (++flush_cnt == 10 ||
2954		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2955			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2956				wq->name, flush_cnt);
2957
2958		mutex_unlock(&wq->mutex);
2959		goto reflush;
2960	}
2961
2962	if (!--wq->nr_drainers)
2963		wq->flags &= ~__WQ_DRAINING;
2964	mutex_unlock(&wq->mutex);
2965}
2966EXPORT_SYMBOL_GPL(drain_workqueue);
2967
2968static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2969			     bool from_cancel)
2970{
2971	struct worker *worker = NULL;
2972	struct worker_pool *pool;
2973	struct pool_workqueue *pwq;
2974
2975	might_sleep();
2976
2977	rcu_read_lock();
2978	pool = get_work_pool(work);
2979	if (!pool) {
2980		rcu_read_unlock();
2981		return false;
2982	}
2983
2984	spin_lock_irq(&pool->lock);
2985	/* see the comment in try_to_grab_pending() with the same code */
2986	pwq = get_work_pwq(work);
2987	if (pwq) {
2988		if (unlikely(pwq->pool != pool))
2989			goto already_gone;
2990	} else {
2991		worker = find_worker_executing_work(pool, work);
2992		if (!worker)
2993			goto already_gone;
2994		pwq = worker->current_pwq;
2995	}
2996
2997	check_flush_dependency(pwq->wq, work);
2998
2999	insert_wq_barrier(pwq, barr, work, worker);
3000	spin_unlock_irq(&pool->lock);
3001
3002	/*
3003	 * Force a lock recursion deadlock when using flush_work() inside a
3004	 * single-threaded or rescuer equipped workqueue.
3005	 *
3006	 * For single threaded workqueues the deadlock happens when the work
3007	 * is after the work issuing the flush_work(). For rescuer equipped
3008	 * workqueues the deadlock happens when the rescuer stalls, blocking
3009	 * forward progress.
3010	 */
3011	if (!from_cancel &&
3012	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3013		lock_map_acquire(&pwq->wq->lockdep_map);
3014		lock_map_release(&pwq->wq->lockdep_map);
3015	}
3016	rcu_read_unlock();
3017	return true;
3018already_gone:
3019	spin_unlock_irq(&pool->lock);
3020	rcu_read_unlock();
3021	return false;
3022}
3023
3024static bool __flush_work(struct work_struct *work, bool from_cancel)
3025{
3026	struct wq_barrier barr;
3027
3028	if (WARN_ON(!wq_online))
3029		return false;
3030
3031	if (WARN_ON(!work->func))
3032		return false;
3033
3034	if (!from_cancel) {
3035		lock_map_acquire(&work->lockdep_map);
3036		lock_map_release(&work->lockdep_map);
3037	}
3038
3039	if (start_flush_work(work, &barr, from_cancel)) {
3040		wait_for_completion(&barr.done);
3041		destroy_work_on_stack(&barr.work);
3042		return true;
3043	} else {
3044		return false;
3045	}
3046}
3047
3048/**
3049 * flush_work - wait for a work to finish executing the last queueing instance
3050 * @work: the work to flush
3051 *
3052 * Wait until @work has finished execution.  @work is guaranteed to be idle
3053 * on return if it hasn't been requeued since flush started.
3054 *
3055 * Return:
3056 * %true if flush_work() waited for the work to finish execution,
3057 * %false if it was already idle.
3058 */
3059bool flush_work(struct work_struct *work)
3060{
3061	return __flush_work(work, false);
 
 
 
 
 
 
 
 
 
 
 
3062}
3063EXPORT_SYMBOL_GPL(flush_work);
3064
3065struct cwt_wait {
3066	wait_queue_entry_t		wait;
3067	struct work_struct	*work;
3068};
3069
3070static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3071{
3072	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3073
3074	if (cwait->work != key)
3075		return 0;
3076	return autoremove_wake_function(wait, mode, sync, key);
3077}
3078
3079static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3080{
3081	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3082	unsigned long flags;
3083	int ret;
3084
3085	do {
3086		ret = try_to_grab_pending(work, is_dwork, &flags);
3087		/*
3088		 * If someone else is already canceling, wait for it to
3089		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3090		 * because we may get scheduled between @work's completion
3091		 * and the other canceling task resuming and clearing
3092		 * CANCELING - flush_work() will return false immediately
3093		 * as @work is no longer busy, try_to_grab_pending() will
3094		 * return -ENOENT as @work is still being canceled and the
3095		 * other canceling task won't be able to clear CANCELING as
3096		 * we're hogging the CPU.
3097		 *
3098		 * Let's wait for completion using a waitqueue.  As this
3099		 * may lead to the thundering herd problem, use a custom
3100		 * wake function which matches @work along with exclusive
3101		 * wait and wakeup.
3102		 */
3103		if (unlikely(ret == -ENOENT)) {
3104			struct cwt_wait cwait;
3105
3106			init_wait(&cwait.wait);
3107			cwait.wait.func = cwt_wakefn;
3108			cwait.work = work;
3109
3110			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3111						  TASK_UNINTERRUPTIBLE);
3112			if (work_is_canceling(work))
3113				schedule();
3114			finish_wait(&cancel_waitq, &cwait.wait);
3115		}
3116	} while (unlikely(ret < 0));
3117
3118	/* tell other tasks trying to grab @work to back off */
3119	mark_work_canceling(work);
3120	local_irq_restore(flags);
3121
3122	/*
3123	 * This allows canceling during early boot.  We know that @work
3124	 * isn't executing.
3125	 */
3126	if (wq_online)
3127		__flush_work(work, true);
3128
3129	clear_work_data(work);
3130
3131	/*
3132	 * Paired with prepare_to_wait() above so that either
3133	 * waitqueue_active() is visible here or !work_is_canceling() is
3134	 * visible there.
3135	 */
3136	smp_mb();
3137	if (waitqueue_active(&cancel_waitq))
3138		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3139
3140	return ret;
3141}
3142
3143/**
3144 * cancel_work_sync - cancel a work and wait for it to finish
3145 * @work: the work to cancel
3146 *
3147 * Cancel @work and wait for its execution to finish.  This function
3148 * can be used even if the work re-queues itself or migrates to
3149 * another workqueue.  On return from this function, @work is
3150 * guaranteed to be not pending or executing on any CPU.
3151 *
3152 * cancel_work_sync(&delayed_work->work) must not be used for
3153 * delayed_work's.  Use cancel_delayed_work_sync() instead.
3154 *
3155 * The caller must ensure that the workqueue on which @work was last
3156 * queued can't be destroyed before this function returns.
3157 *
3158 * Return:
3159 * %true if @work was pending, %false otherwise.
3160 */
3161bool cancel_work_sync(struct work_struct *work)
3162{
3163	return __cancel_work_timer(work, false);
3164}
3165EXPORT_SYMBOL_GPL(cancel_work_sync);
3166
3167/**
3168 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3169 * @dwork: the delayed work to flush
3170 *
3171 * Delayed timer is cancelled and the pending work is queued for
3172 * immediate execution.  Like flush_work(), this function only
3173 * considers the last queueing instance of @dwork.
3174 *
3175 * Return:
3176 * %true if flush_work() waited for the work to finish execution,
3177 * %false if it was already idle.
3178 */
3179bool flush_delayed_work(struct delayed_work *dwork)
3180{
3181	local_irq_disable();
3182	if (del_timer_sync(&dwork->timer))
3183		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3184	local_irq_enable();
3185	return flush_work(&dwork->work);
3186}
3187EXPORT_SYMBOL(flush_delayed_work);
3188
3189/**
3190 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3191 * @rwork: the rcu work to flush
3192 *
3193 * Return:
3194 * %true if flush_rcu_work() waited for the work to finish execution,
3195 * %false if it was already idle.
3196 */
3197bool flush_rcu_work(struct rcu_work *rwork)
3198{
3199	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3200		rcu_barrier();
3201		flush_work(&rwork->work);
3202		return true;
3203	} else {
3204		return flush_work(&rwork->work);
3205	}
3206}
3207EXPORT_SYMBOL(flush_rcu_work);
3208
3209static bool __cancel_work(struct work_struct *work, bool is_dwork)
3210{
3211	unsigned long flags;
3212	int ret;
3213
3214	do {
3215		ret = try_to_grab_pending(work, is_dwork, &flags);
3216	} while (unlikely(ret == -EAGAIN));
3217
3218	if (unlikely(ret < 0))
3219		return false;
3220
3221	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3222	local_irq_restore(flags);
3223	return ret;
3224}
3225
3226/**
3227 * cancel_delayed_work - cancel a delayed work
3228 * @dwork: delayed_work to cancel
3229 *
3230 * Kill off a pending delayed_work.
3231 *
3232 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3233 * pending.
3234 *
3235 * Note:
3236 * The work callback function may still be running on return, unless
3237 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3238 * use cancel_delayed_work_sync() to wait on it.
3239 *
3240 * This function is safe to call from any context including IRQ handler.
3241 */
3242bool cancel_delayed_work(struct delayed_work *dwork)
3243{
3244	return __cancel_work(&dwork->work, true);
3245}
3246EXPORT_SYMBOL(cancel_delayed_work);
3247
3248/**
3249 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3250 * @dwork: the delayed work cancel
3251 *
3252 * This is cancel_work_sync() for delayed works.
3253 *
3254 * Return:
3255 * %true if @dwork was pending, %false otherwise.
3256 */
3257bool cancel_delayed_work_sync(struct delayed_work *dwork)
3258{
3259	return __cancel_work_timer(&dwork->work, true);
3260}
3261EXPORT_SYMBOL(cancel_delayed_work_sync);
3262
3263/**
3264 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3265 * @func: the function to call
3266 *
3267 * schedule_on_each_cpu() executes @func on each online CPU using the
3268 * system workqueue and blocks until all CPUs have completed.
3269 * schedule_on_each_cpu() is very slow.
3270 *
3271 * Return:
3272 * 0 on success, -errno on failure.
3273 */
3274int schedule_on_each_cpu(work_func_t func)
3275{
3276	int cpu;
3277	struct work_struct __percpu *works;
3278
3279	works = alloc_percpu(struct work_struct);
3280	if (!works)
3281		return -ENOMEM;
3282
3283	get_online_cpus();
3284
3285	for_each_online_cpu(cpu) {
3286		struct work_struct *work = per_cpu_ptr(works, cpu);
3287
3288		INIT_WORK(work, func);
3289		schedule_work_on(cpu, work);
3290	}
3291
3292	for_each_online_cpu(cpu)
3293		flush_work(per_cpu_ptr(works, cpu));
3294
3295	put_online_cpus();
3296	free_percpu(works);
3297	return 0;
3298}
3299
3300/**
3301 * execute_in_process_context - reliably execute the routine with user context
3302 * @fn:		the function to execute
3303 * @ew:		guaranteed storage for the execute work structure (must
3304 *		be available when the work executes)
3305 *
3306 * Executes the function immediately if process context is available,
3307 * otherwise schedules the function for delayed execution.
3308 *
3309 * Return:	0 - function was executed
3310 *		1 - function was scheduled for execution
3311 */
3312int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3313{
3314	if (!in_interrupt()) {
3315		fn(&ew->work);
3316		return 0;
3317	}
3318
3319	INIT_WORK(&ew->work, fn);
3320	schedule_work(&ew->work);
3321
3322	return 1;
3323}
3324EXPORT_SYMBOL_GPL(execute_in_process_context);
3325
3326/**
3327 * free_workqueue_attrs - free a workqueue_attrs
3328 * @attrs: workqueue_attrs to free
3329 *
3330 * Undo alloc_workqueue_attrs().
3331 */
3332void free_workqueue_attrs(struct workqueue_attrs *attrs)
3333{
3334	if (attrs) {
3335		free_cpumask_var(attrs->cpumask);
3336		kfree(attrs);
3337	}
3338}
3339
3340/**
3341 * alloc_workqueue_attrs - allocate a workqueue_attrs
 
3342 *
3343 * Allocate a new workqueue_attrs, initialize with default settings and
3344 * return it.
3345 *
3346 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3347 */
3348struct workqueue_attrs *alloc_workqueue_attrs(void)
3349{
3350	struct workqueue_attrs *attrs;
3351
3352	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3353	if (!attrs)
3354		goto fail;
3355	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3356		goto fail;
3357
3358	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3359	return attrs;
3360fail:
3361	free_workqueue_attrs(attrs);
3362	return NULL;
3363}
3364
3365static void copy_workqueue_attrs(struct workqueue_attrs *to,
3366				 const struct workqueue_attrs *from)
3367{
3368	to->nice = from->nice;
3369	cpumask_copy(to->cpumask, from->cpumask);
3370	/*
3371	 * Unlike hash and equality test, this function doesn't ignore
3372	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3373	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3374	 */
3375	to->no_numa = from->no_numa;
3376}
3377
3378/* hash value of the content of @attr */
3379static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3380{
3381	u32 hash = 0;
3382
3383	hash = jhash_1word(attrs->nice, hash);
3384	hash = jhash(cpumask_bits(attrs->cpumask),
3385		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3386	return hash;
3387}
3388
3389/* content equality test */
3390static bool wqattrs_equal(const struct workqueue_attrs *a,
3391			  const struct workqueue_attrs *b)
3392{
3393	if (a->nice != b->nice)
3394		return false;
3395	if (!cpumask_equal(a->cpumask, b->cpumask))
3396		return false;
3397	return true;
3398}
3399
3400/**
3401 * init_worker_pool - initialize a newly zalloc'd worker_pool
3402 * @pool: worker_pool to initialize
3403 *
3404 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3405 *
3406 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3407 * inside @pool proper are initialized and put_unbound_pool() can be called
3408 * on @pool safely to release it.
3409 */
3410static int init_worker_pool(struct worker_pool *pool)
3411{
3412	spin_lock_init(&pool->lock);
3413	pool->id = -1;
3414	pool->cpu = -1;
3415	pool->node = NUMA_NO_NODE;
3416	pool->flags |= POOL_DISASSOCIATED;
3417	pool->watchdog_ts = jiffies;
3418	INIT_LIST_HEAD(&pool->worklist);
3419	INIT_LIST_HEAD(&pool->idle_list);
3420	hash_init(pool->busy_hash);
3421
3422	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3423
3424	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3425
 
3426	INIT_LIST_HEAD(&pool->workers);
3427
3428	ida_init(&pool->worker_ida);
3429	INIT_HLIST_NODE(&pool->hash_node);
3430	pool->refcnt = 1;
3431
3432	/* shouldn't fail above this point */
3433	pool->attrs = alloc_workqueue_attrs();
3434	if (!pool->attrs)
3435		return -ENOMEM;
3436	return 0;
3437}
3438
3439#ifdef CONFIG_LOCKDEP
3440static void wq_init_lockdep(struct workqueue_struct *wq)
3441{
3442	char *lock_name;
3443
3444	lockdep_register_key(&wq->key);
3445	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3446	if (!lock_name)
3447		lock_name = wq->name;
3448
3449	wq->lock_name = lock_name;
3450	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3451}
3452
3453static void wq_unregister_lockdep(struct workqueue_struct *wq)
3454{
3455	lockdep_unregister_key(&wq->key);
3456}
3457
3458static void wq_free_lockdep(struct workqueue_struct *wq)
3459{
3460	if (wq->lock_name != wq->name)
3461		kfree(wq->lock_name);
3462}
3463#else
3464static void wq_init_lockdep(struct workqueue_struct *wq)
3465{
3466}
3467
3468static void wq_unregister_lockdep(struct workqueue_struct *wq)
3469{
3470}
3471
3472static void wq_free_lockdep(struct workqueue_struct *wq)
3473{
3474}
3475#endif
3476
3477static void rcu_free_wq(struct rcu_head *rcu)
3478{
3479	struct workqueue_struct *wq =
3480		container_of(rcu, struct workqueue_struct, rcu);
3481
3482	wq_free_lockdep(wq);
3483
3484	if (!(wq->flags & WQ_UNBOUND))
3485		free_percpu(wq->cpu_pwqs);
3486	else
3487		free_workqueue_attrs(wq->unbound_attrs);
3488
3489	kfree(wq->rescuer);
3490	kfree(wq);
3491}
3492
3493static void rcu_free_pool(struct rcu_head *rcu)
3494{
3495	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3496
3497	ida_destroy(&pool->worker_ida);
3498	free_workqueue_attrs(pool->attrs);
3499	kfree(pool);
3500}
3501
3502/**
3503 * put_unbound_pool - put a worker_pool
3504 * @pool: worker_pool to put
3505 *
3506 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3507 * safe manner.  get_unbound_pool() calls this function on its failure path
3508 * and this function should be able to release pools which went through,
3509 * successfully or not, init_worker_pool().
3510 *
3511 * Should be called with wq_pool_mutex held.
3512 */
3513static void put_unbound_pool(struct worker_pool *pool)
3514{
3515	DECLARE_COMPLETION_ONSTACK(detach_completion);
3516	struct worker *worker;
3517
3518	lockdep_assert_held(&wq_pool_mutex);
3519
3520	if (--pool->refcnt)
3521		return;
3522
3523	/* sanity checks */
3524	if (WARN_ON(!(pool->cpu < 0)) ||
3525	    WARN_ON(!list_empty(&pool->worklist)))
3526		return;
3527
3528	/* release id and unhash */
3529	if (pool->id >= 0)
3530		idr_remove(&worker_pool_idr, pool->id);
3531	hash_del(&pool->hash_node);
3532
3533	/*
3534	 * Become the manager and destroy all workers.  This prevents
3535	 * @pool's workers from blocking on attach_mutex.  We're the last
3536	 * manager and @pool gets freed with the flag set.
3537	 */
3538	spin_lock_irq(&pool->lock);
3539	wait_event_lock_irq(wq_manager_wait,
3540			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3541	pool->flags |= POOL_MANAGER_ACTIVE;
3542
3543	while ((worker = first_idle_worker(pool)))
3544		destroy_worker(worker);
3545	WARN_ON(pool->nr_workers || pool->nr_idle);
3546	spin_unlock_irq(&pool->lock);
3547
3548	mutex_lock(&wq_pool_attach_mutex);
3549	if (!list_empty(&pool->workers))
3550		pool->detach_completion = &detach_completion;
3551	mutex_unlock(&wq_pool_attach_mutex);
3552
3553	if (pool->detach_completion)
3554		wait_for_completion(pool->detach_completion);
3555
3556	/* shut down the timers */
3557	del_timer_sync(&pool->idle_timer);
3558	del_timer_sync(&pool->mayday_timer);
3559
3560	/* RCU protected to allow dereferences from get_work_pool() */
3561	call_rcu(&pool->rcu, rcu_free_pool);
3562}
3563
3564/**
3565 * get_unbound_pool - get a worker_pool with the specified attributes
3566 * @attrs: the attributes of the worker_pool to get
3567 *
3568 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3569 * reference count and return it.  If there already is a matching
3570 * worker_pool, it will be used; otherwise, this function attempts to
3571 * create a new one.
3572 *
3573 * Should be called with wq_pool_mutex held.
3574 *
3575 * Return: On success, a worker_pool with the same attributes as @attrs.
3576 * On failure, %NULL.
3577 */
3578static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3579{
3580	u32 hash = wqattrs_hash(attrs);
3581	struct worker_pool *pool;
3582	int node;
3583	int target_node = NUMA_NO_NODE;
3584
3585	lockdep_assert_held(&wq_pool_mutex);
3586
3587	/* do we already have a matching pool? */
3588	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3589		if (wqattrs_equal(pool->attrs, attrs)) {
3590			pool->refcnt++;
3591			return pool;
3592		}
3593	}
3594
3595	/* if cpumask is contained inside a NUMA node, we belong to that node */
3596	if (wq_numa_enabled) {
3597		for_each_node(node) {
3598			if (cpumask_subset(attrs->cpumask,
3599					   wq_numa_possible_cpumask[node])) {
3600				target_node = node;
3601				break;
3602			}
3603		}
3604	}
3605
3606	/* nope, create a new one */
3607	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3608	if (!pool || init_worker_pool(pool) < 0)
3609		goto fail;
3610
3611	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3612	copy_workqueue_attrs(pool->attrs, attrs);
3613	pool->node = target_node;
3614
3615	/*
3616	 * no_numa isn't a worker_pool attribute, always clear it.  See
3617	 * 'struct workqueue_attrs' comments for detail.
3618	 */
3619	pool->attrs->no_numa = false;
3620
3621	if (worker_pool_assign_id(pool) < 0)
3622		goto fail;
3623
3624	/* create and start the initial worker */
3625	if (wq_online && !create_worker(pool))
3626		goto fail;
3627
3628	/* install */
3629	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3630
3631	return pool;
3632fail:
3633	if (pool)
3634		put_unbound_pool(pool);
3635	return NULL;
3636}
3637
3638static void rcu_free_pwq(struct rcu_head *rcu)
3639{
3640	kmem_cache_free(pwq_cache,
3641			container_of(rcu, struct pool_workqueue, rcu));
3642}
3643
3644/*
3645 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3646 * and needs to be destroyed.
3647 */
3648static void pwq_unbound_release_workfn(struct work_struct *work)
3649{
3650	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3651						  unbound_release_work);
3652	struct workqueue_struct *wq = pwq->wq;
3653	struct worker_pool *pool = pwq->pool;
3654	bool is_last;
3655
3656	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3657		return;
3658
3659	mutex_lock(&wq->mutex);
3660	list_del_rcu(&pwq->pwqs_node);
3661	is_last = list_empty(&wq->pwqs);
3662	mutex_unlock(&wq->mutex);
3663
3664	mutex_lock(&wq_pool_mutex);
3665	put_unbound_pool(pool);
3666	mutex_unlock(&wq_pool_mutex);
3667
3668	call_rcu(&pwq->rcu, rcu_free_pwq);
3669
3670	/*
3671	 * If we're the last pwq going away, @wq is already dead and no one
3672	 * is gonna access it anymore.  Schedule RCU free.
3673	 */
3674	if (is_last) {
3675		wq_unregister_lockdep(wq);
3676		call_rcu(&wq->rcu, rcu_free_wq);
3677	}
3678}
3679
3680/**
3681 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3682 * @pwq: target pool_workqueue
3683 *
3684 * If @pwq isn't freezing, set @pwq->max_active to the associated
3685 * workqueue's saved_max_active and activate delayed work items
3686 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3687 */
3688static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3689{
3690	struct workqueue_struct *wq = pwq->wq;
3691	bool freezable = wq->flags & WQ_FREEZABLE;
3692	unsigned long flags;
3693
3694	/* for @wq->saved_max_active */
3695	lockdep_assert_held(&wq->mutex);
3696
3697	/* fast exit for non-freezable wqs */
3698	if (!freezable && pwq->max_active == wq->saved_max_active)
3699		return;
3700
3701	/* this function can be called during early boot w/ irq disabled */
3702	spin_lock_irqsave(&pwq->pool->lock, flags);
3703
3704	/*
3705	 * During [un]freezing, the caller is responsible for ensuring that
3706	 * this function is called at least once after @workqueue_freezing
3707	 * is updated and visible.
3708	 */
3709	if (!freezable || !workqueue_freezing) {
3710		pwq->max_active = wq->saved_max_active;
3711
3712		while (!list_empty(&pwq->delayed_works) &&
3713		       pwq->nr_active < pwq->max_active)
3714			pwq_activate_first_delayed(pwq);
3715
3716		/*
3717		 * Need to kick a worker after thawed or an unbound wq's
3718		 * max_active is bumped.  It's a slow path.  Do it always.
3719		 */
3720		wake_up_worker(pwq->pool);
3721	} else {
3722		pwq->max_active = 0;
3723	}
3724
3725	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3726}
3727
3728/* initialize newly alloced @pwq which is associated with @wq and @pool */
3729static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3730		     struct worker_pool *pool)
3731{
3732	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3733
3734	memset(pwq, 0, sizeof(*pwq));
3735
3736	pwq->pool = pool;
3737	pwq->wq = wq;
3738	pwq->flush_color = -1;
3739	pwq->refcnt = 1;
3740	INIT_LIST_HEAD(&pwq->delayed_works);
3741	INIT_LIST_HEAD(&pwq->pwqs_node);
3742	INIT_LIST_HEAD(&pwq->mayday_node);
3743	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3744}
3745
3746/* sync @pwq with the current state of its associated wq and link it */
3747static void link_pwq(struct pool_workqueue *pwq)
3748{
3749	struct workqueue_struct *wq = pwq->wq;
3750
3751	lockdep_assert_held(&wq->mutex);
3752
3753	/* may be called multiple times, ignore if already linked */
3754	if (!list_empty(&pwq->pwqs_node))
3755		return;
3756
3757	/* set the matching work_color */
3758	pwq->work_color = wq->work_color;
3759
3760	/* sync max_active to the current setting */
3761	pwq_adjust_max_active(pwq);
3762
3763	/* link in @pwq */
3764	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3765}
3766
3767/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3768static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3769					const struct workqueue_attrs *attrs)
3770{
3771	struct worker_pool *pool;
3772	struct pool_workqueue *pwq;
3773
3774	lockdep_assert_held(&wq_pool_mutex);
3775
3776	pool = get_unbound_pool(attrs);
3777	if (!pool)
3778		return NULL;
3779
3780	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3781	if (!pwq) {
3782		put_unbound_pool(pool);
3783		return NULL;
3784	}
3785
3786	init_pwq(pwq, wq, pool);
3787	return pwq;
3788}
3789
3790/**
3791 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3792 * @attrs: the wq_attrs of the default pwq of the target workqueue
3793 * @node: the target NUMA node
3794 * @cpu_going_down: if >= 0, the CPU to consider as offline
3795 * @cpumask: outarg, the resulting cpumask
3796 *
3797 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3798 * @cpu_going_down is >= 0, that cpu is considered offline during
3799 * calculation.  The result is stored in @cpumask.
3800 *
3801 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3802 * enabled and @node has online CPUs requested by @attrs, the returned
3803 * cpumask is the intersection of the possible CPUs of @node and
3804 * @attrs->cpumask.
3805 *
3806 * The caller is responsible for ensuring that the cpumask of @node stays
3807 * stable.
3808 *
3809 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3810 * %false if equal.
3811 */
3812static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3813				 int cpu_going_down, cpumask_t *cpumask)
3814{
3815	if (!wq_numa_enabled || attrs->no_numa)
3816		goto use_dfl;
3817
3818	/* does @node have any online CPUs @attrs wants? */
3819	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3820	if (cpu_going_down >= 0)
3821		cpumask_clear_cpu(cpu_going_down, cpumask);
3822
3823	if (cpumask_empty(cpumask))
3824		goto use_dfl;
3825
3826	/* yeap, return possible CPUs in @node that @attrs wants */
3827	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3828
3829	if (cpumask_empty(cpumask)) {
3830		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3831				"possible intersect\n");
3832		return false;
3833	}
3834
3835	return !cpumask_equal(cpumask, attrs->cpumask);
3836
3837use_dfl:
3838	cpumask_copy(cpumask, attrs->cpumask);
3839	return false;
3840}
3841
3842/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3843static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3844						   int node,
3845						   struct pool_workqueue *pwq)
3846{
3847	struct pool_workqueue *old_pwq;
3848
3849	lockdep_assert_held(&wq_pool_mutex);
3850	lockdep_assert_held(&wq->mutex);
3851
3852	/* link_pwq() can handle duplicate calls */
3853	link_pwq(pwq);
3854
3855	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3856	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3857	return old_pwq;
3858}
3859
3860/* context to store the prepared attrs & pwqs before applying */
3861struct apply_wqattrs_ctx {
3862	struct workqueue_struct	*wq;		/* target workqueue */
3863	struct workqueue_attrs	*attrs;		/* attrs to apply */
3864	struct list_head	list;		/* queued for batching commit */
3865	struct pool_workqueue	*dfl_pwq;
3866	struct pool_workqueue	*pwq_tbl[];
3867};
3868
3869/* free the resources after success or abort */
3870static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3871{
3872	if (ctx) {
3873		int node;
3874
3875		for_each_node(node)
3876			put_pwq_unlocked(ctx->pwq_tbl[node]);
3877		put_pwq_unlocked(ctx->dfl_pwq);
3878
3879		free_workqueue_attrs(ctx->attrs);
3880
3881		kfree(ctx);
3882	}
3883}
3884
3885/* allocate the attrs and pwqs for later installation */
3886static struct apply_wqattrs_ctx *
3887apply_wqattrs_prepare(struct workqueue_struct *wq,
3888		      const struct workqueue_attrs *attrs)
3889{
3890	struct apply_wqattrs_ctx *ctx;
3891	struct workqueue_attrs *new_attrs, *tmp_attrs;
3892	int node;
3893
3894	lockdep_assert_held(&wq_pool_mutex);
3895
3896	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
 
3897
3898	new_attrs = alloc_workqueue_attrs();
3899	tmp_attrs = alloc_workqueue_attrs();
3900	if (!ctx || !new_attrs || !tmp_attrs)
3901		goto out_free;
3902
3903	/*
3904	 * Calculate the attrs of the default pwq.
3905	 * If the user configured cpumask doesn't overlap with the
3906	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3907	 */
3908	copy_workqueue_attrs(new_attrs, attrs);
3909	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3910	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3911		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3912
3913	/*
3914	 * We may create multiple pwqs with differing cpumasks.  Make a
3915	 * copy of @new_attrs which will be modified and used to obtain
3916	 * pools.
3917	 */
3918	copy_workqueue_attrs(tmp_attrs, new_attrs);
3919
3920	/*
3921	 * If something goes wrong during CPU up/down, we'll fall back to
3922	 * the default pwq covering whole @attrs->cpumask.  Always create
3923	 * it even if we don't use it immediately.
3924	 */
3925	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3926	if (!ctx->dfl_pwq)
3927		goto out_free;
3928
3929	for_each_node(node) {
3930		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3931			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3932			if (!ctx->pwq_tbl[node])
3933				goto out_free;
3934		} else {
3935			ctx->dfl_pwq->refcnt++;
3936			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3937		}
3938	}
3939
3940	/* save the user configured attrs and sanitize it. */
3941	copy_workqueue_attrs(new_attrs, attrs);
3942	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3943	ctx->attrs = new_attrs;
3944
3945	ctx->wq = wq;
3946	free_workqueue_attrs(tmp_attrs);
3947	return ctx;
3948
3949out_free:
3950	free_workqueue_attrs(tmp_attrs);
3951	free_workqueue_attrs(new_attrs);
3952	apply_wqattrs_cleanup(ctx);
3953	return NULL;
3954}
3955
3956/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3957static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3958{
3959	int node;
3960
3961	/* all pwqs have been created successfully, let's install'em */
3962	mutex_lock(&ctx->wq->mutex);
3963
3964	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3965
3966	/* save the previous pwq and install the new one */
3967	for_each_node(node)
3968		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3969							  ctx->pwq_tbl[node]);
3970
3971	/* @dfl_pwq might not have been used, ensure it's linked */
3972	link_pwq(ctx->dfl_pwq);
3973	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3974
3975	mutex_unlock(&ctx->wq->mutex);
3976}
3977
3978static void apply_wqattrs_lock(void)
3979{
3980	/* CPUs should stay stable across pwq creations and installations */
3981	get_online_cpus();
3982	mutex_lock(&wq_pool_mutex);
3983}
3984
3985static void apply_wqattrs_unlock(void)
3986{
3987	mutex_unlock(&wq_pool_mutex);
3988	put_online_cpus();
3989}
3990
3991static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3992					const struct workqueue_attrs *attrs)
3993{
3994	struct apply_wqattrs_ctx *ctx;
3995
3996	/* only unbound workqueues can change attributes */
3997	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3998		return -EINVAL;
3999
4000	/* creating multiple pwqs breaks ordering guarantee */
4001	if (!list_empty(&wq->pwqs)) {
4002		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4003			return -EINVAL;
4004
4005		wq->flags &= ~__WQ_ORDERED;
4006	}
4007
4008	ctx = apply_wqattrs_prepare(wq, attrs);
4009	if (!ctx)
4010		return -ENOMEM;
4011
4012	/* the ctx has been prepared successfully, let's commit it */
4013	apply_wqattrs_commit(ctx);
4014	apply_wqattrs_cleanup(ctx);
4015
4016	return 0;
4017}
4018
4019/**
4020 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4021 * @wq: the target workqueue
4022 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4023 *
4024 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4025 * machines, this function maps a separate pwq to each NUMA node with
4026 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4027 * NUMA node it was issued on.  Older pwqs are released as in-flight work
4028 * items finish.  Note that a work item which repeatedly requeues itself
4029 * back-to-back will stay on its current pwq.
4030 *
4031 * Performs GFP_KERNEL allocations.
4032 *
4033 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4034 *
4035 * Return: 0 on success and -errno on failure.
4036 */
4037int apply_workqueue_attrs(struct workqueue_struct *wq,
4038			  const struct workqueue_attrs *attrs)
4039{
4040	int ret;
4041
4042	lockdep_assert_cpus_held();
4043
4044	mutex_lock(&wq_pool_mutex);
4045	ret = apply_workqueue_attrs_locked(wq, attrs);
4046	mutex_unlock(&wq_pool_mutex);
4047
4048	return ret;
4049}
 
4050
4051/**
4052 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4053 * @wq: the target workqueue
4054 * @cpu: the CPU coming up or going down
4055 * @online: whether @cpu is coming up or going down
4056 *
4057 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4058 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4059 * @wq accordingly.
4060 *
4061 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4062 * falls back to @wq->dfl_pwq which may not be optimal but is always
4063 * correct.
4064 *
4065 * Note that when the last allowed CPU of a NUMA node goes offline for a
4066 * workqueue with a cpumask spanning multiple nodes, the workers which were
4067 * already executing the work items for the workqueue will lose their CPU
4068 * affinity and may execute on any CPU.  This is similar to how per-cpu
4069 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4070 * affinity, it's the user's responsibility to flush the work item from
4071 * CPU_DOWN_PREPARE.
4072 */
4073static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4074				   bool online)
4075{
4076	int node = cpu_to_node(cpu);
4077	int cpu_off = online ? -1 : cpu;
4078	struct pool_workqueue *old_pwq = NULL, *pwq;
4079	struct workqueue_attrs *target_attrs;
4080	cpumask_t *cpumask;
4081
4082	lockdep_assert_held(&wq_pool_mutex);
4083
4084	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4085	    wq->unbound_attrs->no_numa)
4086		return;
4087
4088	/*
4089	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4090	 * Let's use a preallocated one.  The following buf is protected by
4091	 * CPU hotplug exclusion.
4092	 */
4093	target_attrs = wq_update_unbound_numa_attrs_buf;
4094	cpumask = target_attrs->cpumask;
4095
4096	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4097	pwq = unbound_pwq_by_node(wq, node);
4098
4099	/*
4100	 * Let's determine what needs to be done.  If the target cpumask is
4101	 * different from the default pwq's, we need to compare it to @pwq's
4102	 * and create a new one if they don't match.  If the target cpumask
4103	 * equals the default pwq's, the default pwq should be used.
4104	 */
4105	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4106		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4107			return;
4108	} else {
4109		goto use_dfl_pwq;
4110	}
4111
4112	/* create a new pwq */
4113	pwq = alloc_unbound_pwq(wq, target_attrs);
4114	if (!pwq) {
4115		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4116			wq->name);
4117		goto use_dfl_pwq;
4118	}
4119
4120	/* Install the new pwq. */
4121	mutex_lock(&wq->mutex);
4122	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4123	goto out_unlock;
4124
4125use_dfl_pwq:
4126	mutex_lock(&wq->mutex);
4127	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4128	get_pwq(wq->dfl_pwq);
4129	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4130	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4131out_unlock:
4132	mutex_unlock(&wq->mutex);
4133	put_pwq_unlocked(old_pwq);
4134}
4135
4136static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4137{
4138	bool highpri = wq->flags & WQ_HIGHPRI;
4139	int cpu, ret;
4140
4141	if (!(wq->flags & WQ_UNBOUND)) {
4142		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4143		if (!wq->cpu_pwqs)
4144			return -ENOMEM;
4145
4146		for_each_possible_cpu(cpu) {
4147			struct pool_workqueue *pwq =
4148				per_cpu_ptr(wq->cpu_pwqs, cpu);
4149			struct worker_pool *cpu_pools =
4150				per_cpu(cpu_worker_pools, cpu);
4151
4152			init_pwq(pwq, wq, &cpu_pools[highpri]);
4153
4154			mutex_lock(&wq->mutex);
4155			link_pwq(pwq);
4156			mutex_unlock(&wq->mutex);
4157		}
4158		return 0;
4159	}
4160
4161	get_online_cpus();
4162	if (wq->flags & __WQ_ORDERED) {
4163		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4164		/* there should only be single pwq for ordering guarantee */
4165		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4166			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4167		     "ordering guarantee broken for workqueue %s\n", wq->name);
 
4168	} else {
4169		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4170	}
4171	put_online_cpus();
4172
4173	return ret;
4174}
4175
4176static int wq_clamp_max_active(int max_active, unsigned int flags,
4177			       const char *name)
4178{
4179	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4180
4181	if (max_active < 1 || max_active > lim)
4182		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4183			max_active, name, 1, lim);
4184
4185	return clamp_val(max_active, 1, lim);
4186}
4187
4188/*
4189 * Workqueues which may be used during memory reclaim should have a rescuer
4190 * to guarantee forward progress.
4191 */
4192static int init_rescuer(struct workqueue_struct *wq)
4193{
4194	struct worker *rescuer;
4195	int ret;
4196
4197	if (!(wq->flags & WQ_MEM_RECLAIM))
4198		return 0;
4199
4200	rescuer = alloc_worker(NUMA_NO_NODE);
4201	if (!rescuer)
4202		return -ENOMEM;
4203
4204	rescuer->rescue_wq = wq;
4205	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4206	ret = PTR_ERR_OR_ZERO(rescuer->task);
4207	if (ret) {
4208		kfree(rescuer);
4209		return ret;
4210	}
4211
4212	wq->rescuer = rescuer;
4213	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4214	wake_up_process(rescuer->task);
4215
4216	return 0;
4217}
4218
4219__printf(1, 4)
4220struct workqueue_struct *alloc_workqueue(const char *fmt,
4221					 unsigned int flags,
4222					 int max_active, ...)
 
4223{
4224	size_t tbl_size = 0;
4225	va_list args;
4226	struct workqueue_struct *wq;
4227	struct pool_workqueue *pwq;
4228
4229	/*
4230	 * Unbound && max_active == 1 used to imply ordered, which is no
4231	 * longer the case on NUMA machines due to per-node pools.  While
4232	 * alloc_ordered_workqueue() is the right way to create an ordered
4233	 * workqueue, keep the previous behavior to avoid subtle breakages
4234	 * on NUMA.
4235	 */
4236	if ((flags & WQ_UNBOUND) && max_active == 1)
4237		flags |= __WQ_ORDERED;
4238
4239	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4240	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4241		flags |= WQ_UNBOUND;
4242
4243	/* allocate wq and format name */
4244	if (flags & WQ_UNBOUND)
4245		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4246
4247	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4248	if (!wq)
4249		return NULL;
4250
4251	if (flags & WQ_UNBOUND) {
4252		wq->unbound_attrs = alloc_workqueue_attrs();
4253		if (!wq->unbound_attrs)
4254			goto err_free_wq;
4255	}
4256
4257	va_start(args, max_active);
4258	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4259	va_end(args);
4260
4261	max_active = max_active ?: WQ_DFL_ACTIVE;
4262	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4263
4264	/* init wq */
4265	wq->flags = flags;
4266	wq->saved_max_active = max_active;
4267	mutex_init(&wq->mutex);
4268	atomic_set(&wq->nr_pwqs_to_flush, 0);
4269	INIT_LIST_HEAD(&wq->pwqs);
4270	INIT_LIST_HEAD(&wq->flusher_queue);
4271	INIT_LIST_HEAD(&wq->flusher_overflow);
4272	INIT_LIST_HEAD(&wq->maydays);
4273
4274	wq_init_lockdep(wq);
4275	INIT_LIST_HEAD(&wq->list);
4276
4277	if (alloc_and_link_pwqs(wq) < 0)
4278		goto err_unreg_lockdep;
4279
4280	if (wq_online && init_rescuer(wq) < 0)
4281		goto err_destroy;
4282
4283	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4284		goto err_destroy;
4285
4286	/*
4287	 * wq_pool_mutex protects global freeze state and workqueues list.
4288	 * Grab it, adjust max_active and add the new @wq to workqueues
4289	 * list.
4290	 */
4291	mutex_lock(&wq_pool_mutex);
4292
4293	mutex_lock(&wq->mutex);
4294	for_each_pwq(pwq, wq)
4295		pwq_adjust_max_active(pwq);
4296	mutex_unlock(&wq->mutex);
4297
4298	list_add_tail_rcu(&wq->list, &workqueues);
4299
4300	mutex_unlock(&wq_pool_mutex);
4301
4302	return wq;
4303
4304err_unreg_lockdep:
4305	wq_unregister_lockdep(wq);
4306	wq_free_lockdep(wq);
4307err_free_wq:
4308	free_workqueue_attrs(wq->unbound_attrs);
4309	kfree(wq);
4310	return NULL;
4311err_destroy:
4312	destroy_workqueue(wq);
4313	return NULL;
4314}
4315EXPORT_SYMBOL_GPL(alloc_workqueue);
4316
4317/**
4318 * destroy_workqueue - safely terminate a workqueue
4319 * @wq: target workqueue
4320 *
4321 * Safely destroy a workqueue. All work currently pending will be done first.
4322 */
4323void destroy_workqueue(struct workqueue_struct *wq)
4324{
4325	struct pool_workqueue *pwq;
4326	int node;
4327
4328	/* drain it before proceeding with destruction */
4329	drain_workqueue(wq);
4330
4331	/* sanity checks */
4332	mutex_lock(&wq->mutex);
4333	for_each_pwq(pwq, wq) {
4334		int i;
4335
4336		for (i = 0; i < WORK_NR_COLORS; i++) {
4337			if (WARN_ON(pwq->nr_in_flight[i])) {
4338				mutex_unlock(&wq->mutex);
4339				show_workqueue_state();
4340				return;
4341			}
4342		}
4343
4344		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4345		    WARN_ON(pwq->nr_active) ||
4346		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4347			mutex_unlock(&wq->mutex);
4348			show_workqueue_state();
4349			return;
4350		}
4351	}
4352	mutex_unlock(&wq->mutex);
4353
4354	/*
4355	 * wq list is used to freeze wq, remove from list after
4356	 * flushing is complete in case freeze races us.
4357	 */
4358	mutex_lock(&wq_pool_mutex);
4359	list_del_rcu(&wq->list);
4360	mutex_unlock(&wq_pool_mutex);
4361
4362	workqueue_sysfs_unregister(wq);
4363
4364	if (wq->rescuer)
4365		kthread_stop(wq->rescuer->task);
4366
4367	if (!(wq->flags & WQ_UNBOUND)) {
4368		wq_unregister_lockdep(wq);
4369		/*
4370		 * The base ref is never dropped on per-cpu pwqs.  Directly
4371		 * schedule RCU free.
4372		 */
4373		call_rcu(&wq->rcu, rcu_free_wq);
4374	} else {
4375		/*
4376		 * We're the sole accessor of @wq at this point.  Directly
4377		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4378		 * @wq will be freed when the last pwq is released.
4379		 */
4380		for_each_node(node) {
4381			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4382			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4383			put_pwq_unlocked(pwq);
4384		}
4385
4386		/*
4387		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4388		 * put.  Don't access it afterwards.
4389		 */
4390		pwq = wq->dfl_pwq;
4391		wq->dfl_pwq = NULL;
4392		put_pwq_unlocked(pwq);
4393	}
4394}
4395EXPORT_SYMBOL_GPL(destroy_workqueue);
4396
4397/**
4398 * workqueue_set_max_active - adjust max_active of a workqueue
4399 * @wq: target workqueue
4400 * @max_active: new max_active value.
4401 *
4402 * Set max_active of @wq to @max_active.
4403 *
4404 * CONTEXT:
4405 * Don't call from IRQ context.
4406 */
4407void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4408{
4409	struct pool_workqueue *pwq;
4410
4411	/* disallow meddling with max_active for ordered workqueues */
4412	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4413		return;
4414
4415	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4416
4417	mutex_lock(&wq->mutex);
4418
4419	wq->flags &= ~__WQ_ORDERED;
4420	wq->saved_max_active = max_active;
4421
4422	for_each_pwq(pwq, wq)
4423		pwq_adjust_max_active(pwq);
4424
4425	mutex_unlock(&wq->mutex);
4426}
4427EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4428
4429/**
4430 * current_work - retrieve %current task's work struct
4431 *
4432 * Determine if %current task is a workqueue worker and what it's working on.
4433 * Useful to find out the context that the %current task is running in.
4434 *
4435 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4436 */
4437struct work_struct *current_work(void)
4438{
4439	struct worker *worker = current_wq_worker();
4440
4441	return worker ? worker->current_work : NULL;
4442}
4443EXPORT_SYMBOL(current_work);
4444
4445/**
4446 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4447 *
4448 * Determine whether %current is a workqueue rescuer.  Can be used from
4449 * work functions to determine whether it's being run off the rescuer task.
4450 *
4451 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4452 */
4453bool current_is_workqueue_rescuer(void)
4454{
4455	struct worker *worker = current_wq_worker();
4456
4457	return worker && worker->rescue_wq;
4458}
4459
4460/**
4461 * workqueue_congested - test whether a workqueue is congested
4462 * @cpu: CPU in question
4463 * @wq: target workqueue
4464 *
4465 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4466 * no synchronization around this function and the test result is
4467 * unreliable and only useful as advisory hints or for debugging.
4468 *
4469 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4470 * Note that both per-cpu and unbound workqueues may be associated with
4471 * multiple pool_workqueues which have separate congested states.  A
4472 * workqueue being congested on one CPU doesn't mean the workqueue is also
4473 * contested on other CPUs / NUMA nodes.
4474 *
4475 * Return:
4476 * %true if congested, %false otherwise.
4477 */
4478bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4479{
4480	struct pool_workqueue *pwq;
4481	bool ret;
4482
4483	rcu_read_lock();
4484	preempt_disable();
4485
4486	if (cpu == WORK_CPU_UNBOUND)
4487		cpu = smp_processor_id();
4488
4489	if (!(wq->flags & WQ_UNBOUND))
4490		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4491	else
4492		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4493
4494	ret = !list_empty(&pwq->delayed_works);
4495	preempt_enable();
4496	rcu_read_unlock();
4497
4498	return ret;
4499}
4500EXPORT_SYMBOL_GPL(workqueue_congested);
4501
4502/**
4503 * work_busy - test whether a work is currently pending or running
4504 * @work: the work to be tested
4505 *
4506 * Test whether @work is currently pending or running.  There is no
4507 * synchronization around this function and the test result is
4508 * unreliable and only useful as advisory hints or for debugging.
4509 *
4510 * Return:
4511 * OR'd bitmask of WORK_BUSY_* bits.
4512 */
4513unsigned int work_busy(struct work_struct *work)
4514{
4515	struct worker_pool *pool;
4516	unsigned long flags;
4517	unsigned int ret = 0;
4518
4519	if (work_pending(work))
4520		ret |= WORK_BUSY_PENDING;
4521
4522	rcu_read_lock();
4523	pool = get_work_pool(work);
4524	if (pool) {
4525		spin_lock_irqsave(&pool->lock, flags);
4526		if (find_worker_executing_work(pool, work))
4527			ret |= WORK_BUSY_RUNNING;
4528		spin_unlock_irqrestore(&pool->lock, flags);
4529	}
4530	rcu_read_unlock();
4531
4532	return ret;
4533}
4534EXPORT_SYMBOL_GPL(work_busy);
4535
4536/**
4537 * set_worker_desc - set description for the current work item
4538 * @fmt: printf-style format string
4539 * @...: arguments for the format string
4540 *
4541 * This function can be called by a running work function to describe what
4542 * the work item is about.  If the worker task gets dumped, this
4543 * information will be printed out together to help debugging.  The
4544 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4545 */
4546void set_worker_desc(const char *fmt, ...)
4547{
4548	struct worker *worker = current_wq_worker();
4549	va_list args;
4550
4551	if (worker) {
4552		va_start(args, fmt);
4553		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4554		va_end(args);
 
4555	}
4556}
4557EXPORT_SYMBOL_GPL(set_worker_desc);
4558
4559/**
4560 * print_worker_info - print out worker information and description
4561 * @log_lvl: the log level to use when printing
4562 * @task: target task
4563 *
4564 * If @task is a worker and currently executing a work item, print out the
4565 * name of the workqueue being serviced and worker description set with
4566 * set_worker_desc() by the currently executing work item.
4567 *
4568 * This function can be safely called on any task as long as the
4569 * task_struct itself is accessible.  While safe, this function isn't
4570 * synchronized and may print out mixups or garbages of limited length.
4571 */
4572void print_worker_info(const char *log_lvl, struct task_struct *task)
4573{
4574	work_func_t *fn = NULL;
4575	char name[WQ_NAME_LEN] = { };
4576	char desc[WORKER_DESC_LEN] = { };
4577	struct pool_workqueue *pwq = NULL;
4578	struct workqueue_struct *wq = NULL;
 
4579	struct worker *worker;
4580
4581	if (!(task->flags & PF_WQ_WORKER))
4582		return;
4583
4584	/*
4585	 * This function is called without any synchronization and @task
4586	 * could be in any state.  Be careful with dereferences.
4587	 */
4588	worker = kthread_probe_data(task);
4589
4590	/*
4591	 * Carefully copy the associated workqueue's workfn, name and desc.
4592	 * Keep the original last '\0' in case the original is garbage.
4593	 */
4594	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4595	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4596	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4597	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4598	probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
 
 
 
 
4599
4600	if (fn || name[0] || desc[0]) {
4601		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4602		if (strcmp(name, desc))
4603			pr_cont(" (%s)", desc);
4604		pr_cont("\n");
4605	}
4606}
4607
4608static void pr_cont_pool_info(struct worker_pool *pool)
4609{
4610	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4611	if (pool->node != NUMA_NO_NODE)
4612		pr_cont(" node=%d", pool->node);
4613	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4614}
4615
4616static void pr_cont_work(bool comma, struct work_struct *work)
4617{
4618	if (work->func == wq_barrier_func) {
4619		struct wq_barrier *barr;
4620
4621		barr = container_of(work, struct wq_barrier, work);
4622
4623		pr_cont("%s BAR(%d)", comma ? "," : "",
4624			task_pid_nr(barr->task));
4625	} else {
4626		pr_cont("%s %ps", comma ? "," : "", work->func);
4627	}
4628}
4629
4630static void show_pwq(struct pool_workqueue *pwq)
4631{
4632	struct worker_pool *pool = pwq->pool;
4633	struct work_struct *work;
4634	struct worker *worker;
4635	bool has_in_flight = false, has_pending = false;
4636	int bkt;
4637
4638	pr_info("  pwq %d:", pool->id);
4639	pr_cont_pool_info(pool);
4640
4641	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4642		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4643
4644	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4645		if (worker->current_pwq == pwq) {
4646			has_in_flight = true;
4647			break;
4648		}
4649	}
4650	if (has_in_flight) {
4651		bool comma = false;
4652
4653		pr_info("    in-flight:");
4654		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4655			if (worker->current_pwq != pwq)
4656				continue;
4657
4658			pr_cont("%s %d%s:%ps", comma ? "," : "",
4659				task_pid_nr(worker->task),
4660				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4661				worker->current_func);
4662			list_for_each_entry(work, &worker->scheduled, entry)
4663				pr_cont_work(false, work);
4664			comma = true;
4665		}
4666		pr_cont("\n");
4667	}
4668
4669	list_for_each_entry(work, &pool->worklist, entry) {
4670		if (get_work_pwq(work) == pwq) {
4671			has_pending = true;
4672			break;
4673		}
4674	}
4675	if (has_pending) {
4676		bool comma = false;
4677
4678		pr_info("    pending:");
4679		list_for_each_entry(work, &pool->worklist, entry) {
4680			if (get_work_pwq(work) != pwq)
4681				continue;
4682
4683			pr_cont_work(comma, work);
4684			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4685		}
4686		pr_cont("\n");
4687	}
4688
4689	if (!list_empty(&pwq->delayed_works)) {
4690		bool comma = false;
4691
4692		pr_info("    delayed:");
4693		list_for_each_entry(work, &pwq->delayed_works, entry) {
4694			pr_cont_work(comma, work);
4695			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4696		}
4697		pr_cont("\n");
4698	}
4699}
4700
4701/**
4702 * show_workqueue_state - dump workqueue state
4703 *
4704 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4705 * all busy workqueues and pools.
4706 */
4707void show_workqueue_state(void)
4708{
4709	struct workqueue_struct *wq;
4710	struct worker_pool *pool;
4711	unsigned long flags;
4712	int pi;
4713
4714	rcu_read_lock();
4715
4716	pr_info("Showing busy workqueues and worker pools:\n");
4717
4718	list_for_each_entry_rcu(wq, &workqueues, list) {
4719		struct pool_workqueue *pwq;
4720		bool idle = true;
4721
4722		for_each_pwq(pwq, wq) {
4723			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4724				idle = false;
4725				break;
4726			}
4727		}
4728		if (idle)
4729			continue;
4730
4731		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4732
4733		for_each_pwq(pwq, wq) {
4734			spin_lock_irqsave(&pwq->pool->lock, flags);
4735			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4736				show_pwq(pwq);
4737			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4738			/*
4739			 * We could be printing a lot from atomic context, e.g.
4740			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4741			 * hard lockup.
4742			 */
4743			touch_nmi_watchdog();
4744		}
4745	}
4746
4747	for_each_pool(pool, pi) {
4748		struct worker *worker;
4749		bool first = true;
4750
4751		spin_lock_irqsave(&pool->lock, flags);
4752		if (pool->nr_workers == pool->nr_idle)
4753			goto next_pool;
4754
4755		pr_info("pool %d:", pool->id);
4756		pr_cont_pool_info(pool);
4757		pr_cont(" hung=%us workers=%d",
4758			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4759			pool->nr_workers);
4760		if (pool->manager)
4761			pr_cont(" manager: %d",
4762				task_pid_nr(pool->manager->task));
4763		list_for_each_entry(worker, &pool->idle_list, entry) {
4764			pr_cont(" %s%d", first ? "idle: " : "",
4765				task_pid_nr(worker->task));
4766			first = false;
4767		}
4768		pr_cont("\n");
4769	next_pool:
4770		spin_unlock_irqrestore(&pool->lock, flags);
4771		/*
4772		 * We could be printing a lot from atomic context, e.g.
4773		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4774		 * hard lockup.
4775		 */
4776		touch_nmi_watchdog();
4777	}
4778
4779	rcu_read_unlock();
4780}
4781
4782/* used to show worker information through /proc/PID/{comm,stat,status} */
4783void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4784{
4785	int off;
4786
4787	/* always show the actual comm */
4788	off = strscpy(buf, task->comm, size);
4789	if (off < 0)
4790		return;
4791
4792	/* stabilize PF_WQ_WORKER and worker pool association */
4793	mutex_lock(&wq_pool_attach_mutex);
4794
4795	if (task->flags & PF_WQ_WORKER) {
4796		struct worker *worker = kthread_data(task);
4797		struct worker_pool *pool = worker->pool;
4798
4799		if (pool) {
4800			spin_lock_irq(&pool->lock);
4801			/*
4802			 * ->desc tracks information (wq name or
4803			 * set_worker_desc()) for the latest execution.  If
4804			 * current, prepend '+', otherwise '-'.
4805			 */
4806			if (worker->desc[0] != '\0') {
4807				if (worker->current_work)
4808					scnprintf(buf + off, size - off, "+%s",
4809						  worker->desc);
4810				else
4811					scnprintf(buf + off, size - off, "-%s",
4812						  worker->desc);
4813			}
4814			spin_unlock_irq(&pool->lock);
4815		}
4816	}
4817
4818	mutex_unlock(&wq_pool_attach_mutex);
4819}
4820
4821#ifdef CONFIG_SMP
4822
4823/*
4824 * CPU hotplug.
4825 *
4826 * There are two challenges in supporting CPU hotplug.  Firstly, there
4827 * are a lot of assumptions on strong associations among work, pwq and
4828 * pool which make migrating pending and scheduled works very
4829 * difficult to implement without impacting hot paths.  Secondly,
4830 * worker pools serve mix of short, long and very long running works making
4831 * blocked draining impractical.
4832 *
4833 * This is solved by allowing the pools to be disassociated from the CPU
4834 * running as an unbound one and allowing it to be reattached later if the
4835 * cpu comes back online.
4836 */
4837
4838static void unbind_workers(int cpu)
4839{
4840	struct worker_pool *pool;
4841	struct worker *worker;
4842
4843	for_each_cpu_worker_pool(pool, cpu) {
4844		mutex_lock(&wq_pool_attach_mutex);
4845		spin_lock_irq(&pool->lock);
4846
4847		/*
4848		 * We've blocked all attach/detach operations. Make all workers
4849		 * unbound and set DISASSOCIATED.  Before this, all workers
4850		 * except for the ones which are still executing works from
4851		 * before the last CPU down must be on the cpu.  After
4852		 * this, they may become diasporas.
4853		 */
4854		for_each_pool_worker(worker, pool)
4855			worker->flags |= WORKER_UNBOUND;
4856
4857		pool->flags |= POOL_DISASSOCIATED;
4858
4859		spin_unlock_irq(&pool->lock);
4860		mutex_unlock(&wq_pool_attach_mutex);
4861
4862		/*
4863		 * Call schedule() so that we cross rq->lock and thus can
4864		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4865		 * This is necessary as scheduler callbacks may be invoked
4866		 * from other cpus.
4867		 */
4868		schedule();
4869
4870		/*
4871		 * Sched callbacks are disabled now.  Zap nr_running.
4872		 * After this, nr_running stays zero and need_more_worker()
4873		 * and keep_working() are always true as long as the
4874		 * worklist is not empty.  This pool now behaves as an
4875		 * unbound (in terms of concurrency management) pool which
4876		 * are served by workers tied to the pool.
4877		 */
4878		atomic_set(&pool->nr_running, 0);
4879
4880		/*
4881		 * With concurrency management just turned off, a busy
4882		 * worker blocking could lead to lengthy stalls.  Kick off
4883		 * unbound chain execution of currently pending work items.
4884		 */
4885		spin_lock_irq(&pool->lock);
4886		wake_up_worker(pool);
4887		spin_unlock_irq(&pool->lock);
4888	}
4889}
4890
4891/**
4892 * rebind_workers - rebind all workers of a pool to the associated CPU
4893 * @pool: pool of interest
4894 *
4895 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4896 */
4897static void rebind_workers(struct worker_pool *pool)
4898{
4899	struct worker *worker;
4900
4901	lockdep_assert_held(&wq_pool_attach_mutex);
4902
4903	/*
4904	 * Restore CPU affinity of all workers.  As all idle workers should
4905	 * be on the run-queue of the associated CPU before any local
4906	 * wake-ups for concurrency management happen, restore CPU affinity
4907	 * of all workers first and then clear UNBOUND.  As we're called
4908	 * from CPU_ONLINE, the following shouldn't fail.
4909	 */
4910	for_each_pool_worker(worker, pool)
4911		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4912						  pool->attrs->cpumask) < 0);
4913
4914	spin_lock_irq(&pool->lock);
4915
4916	pool->flags &= ~POOL_DISASSOCIATED;
4917
4918	for_each_pool_worker(worker, pool) {
4919		unsigned int worker_flags = worker->flags;
4920
4921		/*
4922		 * A bound idle worker should actually be on the runqueue
4923		 * of the associated CPU for local wake-ups targeting it to
4924		 * work.  Kick all idle workers so that they migrate to the
4925		 * associated CPU.  Doing this in the same loop as
4926		 * replacing UNBOUND with REBOUND is safe as no worker will
4927		 * be bound before @pool->lock is released.
4928		 */
4929		if (worker_flags & WORKER_IDLE)
4930			wake_up_process(worker->task);
4931
4932		/*
4933		 * We want to clear UNBOUND but can't directly call
4934		 * worker_clr_flags() or adjust nr_running.  Atomically
4935		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4936		 * @worker will clear REBOUND using worker_clr_flags() when
4937		 * it initiates the next execution cycle thus restoring
4938		 * concurrency management.  Note that when or whether
4939		 * @worker clears REBOUND doesn't affect correctness.
4940		 *
4941		 * WRITE_ONCE() is necessary because @worker->flags may be
4942		 * tested without holding any lock in
4943		 * wq_worker_running().  Without it, NOT_RUNNING test may
4944		 * fail incorrectly leading to premature concurrency
4945		 * management operations.
4946		 */
4947		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4948		worker_flags |= WORKER_REBOUND;
4949		worker_flags &= ~WORKER_UNBOUND;
4950		WRITE_ONCE(worker->flags, worker_flags);
4951	}
4952
4953	spin_unlock_irq(&pool->lock);
4954}
4955
4956/**
4957 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4958 * @pool: unbound pool of interest
4959 * @cpu: the CPU which is coming up
4960 *
4961 * An unbound pool may end up with a cpumask which doesn't have any online
4962 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4963 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4964 * online CPU before, cpus_allowed of all its workers should be restored.
4965 */
4966static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4967{
4968	static cpumask_t cpumask;
4969	struct worker *worker;
4970
4971	lockdep_assert_held(&wq_pool_attach_mutex);
4972
4973	/* is @cpu allowed for @pool? */
4974	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4975		return;
4976
4977	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4978
4979	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4980	for_each_pool_worker(worker, pool)
4981		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4982}
4983
4984int workqueue_prepare_cpu(unsigned int cpu)
4985{
4986	struct worker_pool *pool;
4987
4988	for_each_cpu_worker_pool(pool, cpu) {
4989		if (pool->nr_workers)
4990			continue;
4991		if (!create_worker(pool))
4992			return -ENOMEM;
4993	}
4994	return 0;
4995}
4996
4997int workqueue_online_cpu(unsigned int cpu)
4998{
4999	struct worker_pool *pool;
5000	struct workqueue_struct *wq;
5001	int pi;
5002
5003	mutex_lock(&wq_pool_mutex);
5004
5005	for_each_pool(pool, pi) {
5006		mutex_lock(&wq_pool_attach_mutex);
5007
5008		if (pool->cpu == cpu)
5009			rebind_workers(pool);
5010		else if (pool->cpu < 0)
5011			restore_unbound_workers_cpumask(pool, cpu);
5012
5013		mutex_unlock(&wq_pool_attach_mutex);
5014	}
5015
5016	/* update NUMA affinity of unbound workqueues */
5017	list_for_each_entry(wq, &workqueues, list)
5018		wq_update_unbound_numa(wq, cpu, true);
5019
5020	mutex_unlock(&wq_pool_mutex);
5021	return 0;
5022}
5023
5024int workqueue_offline_cpu(unsigned int cpu)
5025{
5026	struct workqueue_struct *wq;
5027
5028	/* unbinding per-cpu workers should happen on the local CPU */
5029	if (WARN_ON(cpu != smp_processor_id()))
5030		return -1;
5031
5032	unbind_workers(cpu);
5033
5034	/* update NUMA affinity of unbound workqueues */
5035	mutex_lock(&wq_pool_mutex);
5036	list_for_each_entry(wq, &workqueues, list)
5037		wq_update_unbound_numa(wq, cpu, false);
5038	mutex_unlock(&wq_pool_mutex);
5039
5040	return 0;
5041}
5042
 
 
5043struct work_for_cpu {
5044	struct work_struct work;
5045	long (*fn)(void *);
5046	void *arg;
5047	long ret;
5048};
5049
5050static void work_for_cpu_fn(struct work_struct *work)
5051{
5052	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5053
5054	wfc->ret = wfc->fn(wfc->arg);
5055}
5056
5057/**
5058 * work_on_cpu - run a function in thread context on a particular cpu
5059 * @cpu: the cpu to run on
5060 * @fn: the function to run
5061 * @arg: the function arg
5062 *
5063 * It is up to the caller to ensure that the cpu doesn't go offline.
5064 * The caller must not hold any locks which would prevent @fn from completing.
5065 *
5066 * Return: The value @fn returns.
5067 */
5068long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5069{
5070	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5071
5072	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5073	schedule_work_on(cpu, &wfc.work);
5074	flush_work(&wfc.work);
5075	destroy_work_on_stack(&wfc.work);
5076	return wfc.ret;
5077}
5078EXPORT_SYMBOL_GPL(work_on_cpu);
5079
5080/**
5081 * work_on_cpu_safe - run a function in thread context on a particular cpu
5082 * @cpu: the cpu to run on
5083 * @fn:  the function to run
5084 * @arg: the function argument
5085 *
5086 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5087 * any locks which would prevent @fn from completing.
5088 *
5089 * Return: The value @fn returns.
5090 */
5091long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5092{
5093	long ret = -ENODEV;
5094
5095	get_online_cpus();
5096	if (cpu_online(cpu))
5097		ret = work_on_cpu(cpu, fn, arg);
5098	put_online_cpus();
5099	return ret;
5100}
5101EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5102#endif /* CONFIG_SMP */
5103
5104#ifdef CONFIG_FREEZER
5105
5106/**
5107 * freeze_workqueues_begin - begin freezing workqueues
5108 *
5109 * Start freezing workqueues.  After this function returns, all freezable
5110 * workqueues will queue new works to their delayed_works list instead of
5111 * pool->worklist.
5112 *
5113 * CONTEXT:
5114 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5115 */
5116void freeze_workqueues_begin(void)
5117{
5118	struct workqueue_struct *wq;
5119	struct pool_workqueue *pwq;
5120
5121	mutex_lock(&wq_pool_mutex);
5122
5123	WARN_ON_ONCE(workqueue_freezing);
5124	workqueue_freezing = true;
5125
5126	list_for_each_entry(wq, &workqueues, list) {
5127		mutex_lock(&wq->mutex);
5128		for_each_pwq(pwq, wq)
5129			pwq_adjust_max_active(pwq);
5130		mutex_unlock(&wq->mutex);
5131	}
5132
5133	mutex_unlock(&wq_pool_mutex);
5134}
5135
5136/**
5137 * freeze_workqueues_busy - are freezable workqueues still busy?
5138 *
5139 * Check whether freezing is complete.  This function must be called
5140 * between freeze_workqueues_begin() and thaw_workqueues().
5141 *
5142 * CONTEXT:
5143 * Grabs and releases wq_pool_mutex.
5144 *
5145 * Return:
5146 * %true if some freezable workqueues are still busy.  %false if freezing
5147 * is complete.
5148 */
5149bool freeze_workqueues_busy(void)
5150{
5151	bool busy = false;
5152	struct workqueue_struct *wq;
5153	struct pool_workqueue *pwq;
5154
5155	mutex_lock(&wq_pool_mutex);
5156
5157	WARN_ON_ONCE(!workqueue_freezing);
5158
5159	list_for_each_entry(wq, &workqueues, list) {
5160		if (!(wq->flags & WQ_FREEZABLE))
5161			continue;
5162		/*
5163		 * nr_active is monotonically decreasing.  It's safe
5164		 * to peek without lock.
5165		 */
5166		rcu_read_lock();
5167		for_each_pwq(pwq, wq) {
5168			WARN_ON_ONCE(pwq->nr_active < 0);
5169			if (pwq->nr_active) {
5170				busy = true;
5171				rcu_read_unlock();
5172				goto out_unlock;
5173			}
5174		}
5175		rcu_read_unlock();
5176	}
5177out_unlock:
5178	mutex_unlock(&wq_pool_mutex);
5179	return busy;
5180}
5181
5182/**
5183 * thaw_workqueues - thaw workqueues
5184 *
5185 * Thaw workqueues.  Normal queueing is restored and all collected
5186 * frozen works are transferred to their respective pool worklists.
5187 *
5188 * CONTEXT:
5189 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5190 */
5191void thaw_workqueues(void)
5192{
5193	struct workqueue_struct *wq;
5194	struct pool_workqueue *pwq;
5195
5196	mutex_lock(&wq_pool_mutex);
5197
5198	if (!workqueue_freezing)
5199		goto out_unlock;
5200
5201	workqueue_freezing = false;
5202
5203	/* restore max_active and repopulate worklist */
5204	list_for_each_entry(wq, &workqueues, list) {
5205		mutex_lock(&wq->mutex);
5206		for_each_pwq(pwq, wq)
5207			pwq_adjust_max_active(pwq);
5208		mutex_unlock(&wq->mutex);
5209	}
5210
5211out_unlock:
5212	mutex_unlock(&wq_pool_mutex);
5213}
5214#endif /* CONFIG_FREEZER */
5215
5216static int workqueue_apply_unbound_cpumask(void)
5217{
5218	LIST_HEAD(ctxs);
5219	int ret = 0;
5220	struct workqueue_struct *wq;
5221	struct apply_wqattrs_ctx *ctx, *n;
5222
5223	lockdep_assert_held(&wq_pool_mutex);
5224
5225	list_for_each_entry(wq, &workqueues, list) {
5226		if (!(wq->flags & WQ_UNBOUND))
5227			continue;
5228		/* creating multiple pwqs breaks ordering guarantee */
5229		if (wq->flags & __WQ_ORDERED)
5230			continue;
5231
5232		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5233		if (!ctx) {
5234			ret = -ENOMEM;
5235			break;
5236		}
5237
5238		list_add_tail(&ctx->list, &ctxs);
5239	}
5240
5241	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5242		if (!ret)
5243			apply_wqattrs_commit(ctx);
5244		apply_wqattrs_cleanup(ctx);
5245	}
5246
5247	return ret;
5248}
5249
5250/**
5251 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5252 *  @cpumask: the cpumask to set
5253 *
5254 *  The low-level workqueues cpumask is a global cpumask that limits
5255 *  the affinity of all unbound workqueues.  This function check the @cpumask
5256 *  and apply it to all unbound workqueues and updates all pwqs of them.
5257 *
5258 *  Retun:	0	- Success
5259 *  		-EINVAL	- Invalid @cpumask
5260 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5261 */
5262int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5263{
5264	int ret = -EINVAL;
5265	cpumask_var_t saved_cpumask;
5266
5267	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5268		return -ENOMEM;
5269
5270	/*
5271	 * Not excluding isolated cpus on purpose.
5272	 * If the user wishes to include them, we allow that.
5273	 */
5274	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5275	if (!cpumask_empty(cpumask)) {
5276		apply_wqattrs_lock();
5277
5278		/* save the old wq_unbound_cpumask. */
5279		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5280
5281		/* update wq_unbound_cpumask at first and apply it to wqs. */
5282		cpumask_copy(wq_unbound_cpumask, cpumask);
5283		ret = workqueue_apply_unbound_cpumask();
5284
5285		/* restore the wq_unbound_cpumask when failed. */
5286		if (ret < 0)
5287			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5288
5289		apply_wqattrs_unlock();
5290	}
5291
5292	free_cpumask_var(saved_cpumask);
5293	return ret;
5294}
5295
5296#ifdef CONFIG_SYSFS
5297/*
5298 * Workqueues with WQ_SYSFS flag set is visible to userland via
5299 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5300 * following attributes.
5301 *
5302 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5303 *  max_active	RW int	: maximum number of in-flight work items
5304 *
5305 * Unbound workqueues have the following extra attributes.
5306 *
5307 *  pool_ids	RO int	: the associated pool IDs for each node
5308 *  nice	RW int	: nice value of the workers
5309 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5310 *  numa	RW bool	: whether enable NUMA affinity
5311 */
5312struct wq_device {
5313	struct workqueue_struct		*wq;
5314	struct device			dev;
5315};
5316
5317static struct workqueue_struct *dev_to_wq(struct device *dev)
5318{
5319	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5320
5321	return wq_dev->wq;
5322}
5323
5324static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5325			    char *buf)
5326{
5327	struct workqueue_struct *wq = dev_to_wq(dev);
5328
5329	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5330}
5331static DEVICE_ATTR_RO(per_cpu);
5332
5333static ssize_t max_active_show(struct device *dev,
5334			       struct device_attribute *attr, char *buf)
5335{
5336	struct workqueue_struct *wq = dev_to_wq(dev);
5337
5338	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5339}
5340
5341static ssize_t max_active_store(struct device *dev,
5342				struct device_attribute *attr, const char *buf,
5343				size_t count)
5344{
5345	struct workqueue_struct *wq = dev_to_wq(dev);
5346	int val;
5347
5348	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5349		return -EINVAL;
5350
5351	workqueue_set_max_active(wq, val);
5352	return count;
5353}
5354static DEVICE_ATTR_RW(max_active);
5355
5356static struct attribute *wq_sysfs_attrs[] = {
5357	&dev_attr_per_cpu.attr,
5358	&dev_attr_max_active.attr,
5359	NULL,
5360};
5361ATTRIBUTE_GROUPS(wq_sysfs);
5362
5363static ssize_t wq_pool_ids_show(struct device *dev,
5364				struct device_attribute *attr, char *buf)
5365{
5366	struct workqueue_struct *wq = dev_to_wq(dev);
5367	const char *delim = "";
5368	int node, written = 0;
5369
5370	get_online_cpus();
5371	rcu_read_lock();
5372	for_each_node(node) {
5373		written += scnprintf(buf + written, PAGE_SIZE - written,
5374				     "%s%d:%d", delim, node,
5375				     unbound_pwq_by_node(wq, node)->pool->id);
5376		delim = " ";
5377	}
5378	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5379	rcu_read_unlock();
5380	put_online_cpus();
5381
5382	return written;
5383}
5384
5385static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5386			    char *buf)
5387{
5388	struct workqueue_struct *wq = dev_to_wq(dev);
5389	int written;
5390
5391	mutex_lock(&wq->mutex);
5392	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5393	mutex_unlock(&wq->mutex);
5394
5395	return written;
5396}
5397
5398/* prepare workqueue_attrs for sysfs store operations */
5399static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5400{
5401	struct workqueue_attrs *attrs;
5402
5403	lockdep_assert_held(&wq_pool_mutex);
5404
5405	attrs = alloc_workqueue_attrs();
5406	if (!attrs)
5407		return NULL;
5408
5409	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5410	return attrs;
5411}
5412
5413static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5414			     const char *buf, size_t count)
5415{
5416	struct workqueue_struct *wq = dev_to_wq(dev);
5417	struct workqueue_attrs *attrs;
5418	int ret = -ENOMEM;
5419
5420	apply_wqattrs_lock();
5421
5422	attrs = wq_sysfs_prep_attrs(wq);
5423	if (!attrs)
5424		goto out_unlock;
5425
5426	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5427	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5428		ret = apply_workqueue_attrs_locked(wq, attrs);
5429	else
5430		ret = -EINVAL;
5431
5432out_unlock:
5433	apply_wqattrs_unlock();
5434	free_workqueue_attrs(attrs);
5435	return ret ?: count;
5436}
5437
5438static ssize_t wq_cpumask_show(struct device *dev,
5439			       struct device_attribute *attr, char *buf)
5440{
5441	struct workqueue_struct *wq = dev_to_wq(dev);
5442	int written;
5443
5444	mutex_lock(&wq->mutex);
5445	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5446			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5447	mutex_unlock(&wq->mutex);
5448	return written;
5449}
5450
5451static ssize_t wq_cpumask_store(struct device *dev,
5452				struct device_attribute *attr,
5453				const char *buf, size_t count)
5454{
5455	struct workqueue_struct *wq = dev_to_wq(dev);
5456	struct workqueue_attrs *attrs;
5457	int ret = -ENOMEM;
5458
5459	apply_wqattrs_lock();
5460
5461	attrs = wq_sysfs_prep_attrs(wq);
5462	if (!attrs)
5463		goto out_unlock;
5464
5465	ret = cpumask_parse(buf, attrs->cpumask);
5466	if (!ret)
5467		ret = apply_workqueue_attrs_locked(wq, attrs);
5468
5469out_unlock:
5470	apply_wqattrs_unlock();
5471	free_workqueue_attrs(attrs);
5472	return ret ?: count;
5473}
5474
5475static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5476			    char *buf)
5477{
5478	struct workqueue_struct *wq = dev_to_wq(dev);
5479	int written;
5480
5481	mutex_lock(&wq->mutex);
5482	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5483			    !wq->unbound_attrs->no_numa);
5484	mutex_unlock(&wq->mutex);
5485
5486	return written;
5487}
5488
5489static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5490			     const char *buf, size_t count)
5491{
5492	struct workqueue_struct *wq = dev_to_wq(dev);
5493	struct workqueue_attrs *attrs;
5494	int v, ret = -ENOMEM;
5495
5496	apply_wqattrs_lock();
5497
5498	attrs = wq_sysfs_prep_attrs(wq);
5499	if (!attrs)
5500		goto out_unlock;
5501
5502	ret = -EINVAL;
5503	if (sscanf(buf, "%d", &v) == 1) {
5504		attrs->no_numa = !v;
5505		ret = apply_workqueue_attrs_locked(wq, attrs);
5506	}
5507
5508out_unlock:
5509	apply_wqattrs_unlock();
5510	free_workqueue_attrs(attrs);
5511	return ret ?: count;
5512}
5513
5514static struct device_attribute wq_sysfs_unbound_attrs[] = {
5515	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5516	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5517	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5518	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5519	__ATTR_NULL,
5520};
5521
5522static struct bus_type wq_subsys = {
5523	.name				= "workqueue",
5524	.dev_groups			= wq_sysfs_groups,
5525};
5526
5527static ssize_t wq_unbound_cpumask_show(struct device *dev,
5528		struct device_attribute *attr, char *buf)
5529{
5530	int written;
5531
5532	mutex_lock(&wq_pool_mutex);
5533	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5534			    cpumask_pr_args(wq_unbound_cpumask));
5535	mutex_unlock(&wq_pool_mutex);
5536
5537	return written;
5538}
5539
5540static ssize_t wq_unbound_cpumask_store(struct device *dev,
5541		struct device_attribute *attr, const char *buf, size_t count)
5542{
5543	cpumask_var_t cpumask;
5544	int ret;
5545
5546	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5547		return -ENOMEM;
5548
5549	ret = cpumask_parse(buf, cpumask);
5550	if (!ret)
5551		ret = workqueue_set_unbound_cpumask(cpumask);
5552
5553	free_cpumask_var(cpumask);
5554	return ret ? ret : count;
5555}
5556
5557static struct device_attribute wq_sysfs_cpumask_attr =
5558	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5559	       wq_unbound_cpumask_store);
5560
5561static int __init wq_sysfs_init(void)
5562{
5563	int err;
5564
5565	err = subsys_virtual_register(&wq_subsys, NULL);
5566	if (err)
5567		return err;
5568
5569	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5570}
5571core_initcall(wq_sysfs_init);
5572
5573static void wq_device_release(struct device *dev)
5574{
5575	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5576
5577	kfree(wq_dev);
5578}
5579
5580/**
5581 * workqueue_sysfs_register - make a workqueue visible in sysfs
5582 * @wq: the workqueue to register
5583 *
5584 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5585 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5586 * which is the preferred method.
5587 *
5588 * Workqueue user should use this function directly iff it wants to apply
5589 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5590 * apply_workqueue_attrs() may race against userland updating the
5591 * attributes.
5592 *
5593 * Return: 0 on success, -errno on failure.
5594 */
5595int workqueue_sysfs_register(struct workqueue_struct *wq)
5596{
5597	struct wq_device *wq_dev;
5598	int ret;
5599
5600	/*
5601	 * Adjusting max_active or creating new pwqs by applying
5602	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5603	 * workqueues.
5604	 */
5605	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5606		return -EINVAL;
5607
5608	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5609	if (!wq_dev)
5610		return -ENOMEM;
5611
5612	wq_dev->wq = wq;
5613	wq_dev->dev.bus = &wq_subsys;
5614	wq_dev->dev.release = wq_device_release;
5615	dev_set_name(&wq_dev->dev, "%s", wq->name);
5616
5617	/*
5618	 * unbound_attrs are created separately.  Suppress uevent until
5619	 * everything is ready.
5620	 */
5621	dev_set_uevent_suppress(&wq_dev->dev, true);
5622
5623	ret = device_register(&wq_dev->dev);
5624	if (ret) {
5625		put_device(&wq_dev->dev);
5626		wq->wq_dev = NULL;
5627		return ret;
5628	}
5629
5630	if (wq->flags & WQ_UNBOUND) {
5631		struct device_attribute *attr;
5632
5633		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5634			ret = device_create_file(&wq_dev->dev, attr);
5635			if (ret) {
5636				device_unregister(&wq_dev->dev);
5637				wq->wq_dev = NULL;
5638				return ret;
5639			}
5640		}
5641	}
5642
5643	dev_set_uevent_suppress(&wq_dev->dev, false);
5644	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5645	return 0;
5646}
5647
5648/**
5649 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5650 * @wq: the workqueue to unregister
5651 *
5652 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5653 */
5654static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5655{
5656	struct wq_device *wq_dev = wq->wq_dev;
5657
5658	if (!wq->wq_dev)
5659		return;
5660
5661	wq->wq_dev = NULL;
5662	device_unregister(&wq_dev->dev);
5663}
5664#else	/* CONFIG_SYSFS */
5665static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5666#endif	/* CONFIG_SYSFS */
5667
5668/*
5669 * Workqueue watchdog.
5670 *
5671 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5672 * flush dependency, a concurrency managed work item which stays RUNNING
5673 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5674 * usual warning mechanisms don't trigger and internal workqueue state is
5675 * largely opaque.
5676 *
5677 * Workqueue watchdog monitors all worker pools periodically and dumps
5678 * state if some pools failed to make forward progress for a while where
5679 * forward progress is defined as the first item on ->worklist changing.
5680 *
5681 * This mechanism is controlled through the kernel parameter
5682 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5683 * corresponding sysfs parameter file.
5684 */
5685#ifdef CONFIG_WQ_WATCHDOG
5686
5687static unsigned long wq_watchdog_thresh = 30;
5688static struct timer_list wq_watchdog_timer;
5689
5690static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5691static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5692
5693static void wq_watchdog_reset_touched(void)
5694{
5695	int cpu;
5696
5697	wq_watchdog_touched = jiffies;
5698	for_each_possible_cpu(cpu)
5699		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5700}
5701
5702static void wq_watchdog_timer_fn(struct timer_list *unused)
5703{
5704	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5705	bool lockup_detected = false;
5706	struct worker_pool *pool;
5707	int pi;
5708
5709	if (!thresh)
5710		return;
5711
5712	rcu_read_lock();
5713
5714	for_each_pool(pool, pi) {
5715		unsigned long pool_ts, touched, ts;
5716
5717		if (list_empty(&pool->worklist))
5718			continue;
5719
5720		/* get the latest of pool and touched timestamps */
5721		pool_ts = READ_ONCE(pool->watchdog_ts);
5722		touched = READ_ONCE(wq_watchdog_touched);
5723
5724		if (time_after(pool_ts, touched))
5725			ts = pool_ts;
5726		else
5727			ts = touched;
5728
5729		if (pool->cpu >= 0) {
5730			unsigned long cpu_touched =
5731				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5732						  pool->cpu));
5733			if (time_after(cpu_touched, ts))
5734				ts = cpu_touched;
5735		}
5736
5737		/* did we stall? */
5738		if (time_after(jiffies, ts + thresh)) {
5739			lockup_detected = true;
5740			pr_emerg("BUG: workqueue lockup - pool");
5741			pr_cont_pool_info(pool);
5742			pr_cont(" stuck for %us!\n",
5743				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5744		}
5745	}
5746
5747	rcu_read_unlock();
5748
5749	if (lockup_detected)
5750		show_workqueue_state();
5751
5752	wq_watchdog_reset_touched();
5753	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5754}
5755
5756notrace void wq_watchdog_touch(int cpu)
5757{
5758	if (cpu >= 0)
5759		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5760	else
5761		wq_watchdog_touched = jiffies;
5762}
5763
5764static void wq_watchdog_set_thresh(unsigned long thresh)
5765{
5766	wq_watchdog_thresh = 0;
5767	del_timer_sync(&wq_watchdog_timer);
5768
5769	if (thresh) {
5770		wq_watchdog_thresh = thresh;
5771		wq_watchdog_reset_touched();
5772		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5773	}
5774}
5775
5776static int wq_watchdog_param_set_thresh(const char *val,
5777					const struct kernel_param *kp)
5778{
5779	unsigned long thresh;
5780	int ret;
5781
5782	ret = kstrtoul(val, 0, &thresh);
5783	if (ret)
5784		return ret;
5785
5786	if (system_wq)
5787		wq_watchdog_set_thresh(thresh);
5788	else
5789		wq_watchdog_thresh = thresh;
5790
5791	return 0;
5792}
5793
5794static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5795	.set	= wq_watchdog_param_set_thresh,
5796	.get	= param_get_ulong,
5797};
5798
5799module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5800		0644);
5801
5802static void wq_watchdog_init(void)
5803{
5804	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5805	wq_watchdog_set_thresh(wq_watchdog_thresh);
5806}
5807
5808#else	/* CONFIG_WQ_WATCHDOG */
5809
5810static inline void wq_watchdog_init(void) { }
5811
5812#endif	/* CONFIG_WQ_WATCHDOG */
5813
5814static void __init wq_numa_init(void)
5815{
5816	cpumask_var_t *tbl;
5817	int node, cpu;
5818
5819	if (num_possible_nodes() <= 1)
5820		return;
5821
5822	if (wq_disable_numa) {
5823		pr_info("workqueue: NUMA affinity support disabled\n");
5824		return;
5825	}
5826
5827	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5828	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5829
5830	/*
5831	 * We want masks of possible CPUs of each node which isn't readily
5832	 * available.  Build one from cpu_to_node() which should have been
5833	 * fully initialized by now.
5834	 */
5835	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5836	BUG_ON(!tbl);
5837
5838	for_each_node(node)
5839		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5840				node_online(node) ? node : NUMA_NO_NODE));
5841
5842	for_each_possible_cpu(cpu) {
5843		node = cpu_to_node(cpu);
5844		if (WARN_ON(node == NUMA_NO_NODE)) {
5845			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5846			/* happens iff arch is bonkers, let's just proceed */
5847			return;
5848		}
5849		cpumask_set_cpu(cpu, tbl[node]);
5850	}
5851
5852	wq_numa_possible_cpumask = tbl;
5853	wq_numa_enabled = true;
5854}
5855
5856/**
5857 * workqueue_init_early - early init for workqueue subsystem
5858 *
5859 * This is the first half of two-staged workqueue subsystem initialization
5860 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5861 * idr are up.  It sets up all the data structures and system workqueues
5862 * and allows early boot code to create workqueues and queue/cancel work
5863 * items.  Actual work item execution starts only after kthreads can be
5864 * created and scheduled right before early initcalls.
5865 */
5866int __init workqueue_init_early(void)
5867{
5868	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5869	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5870	int i, cpu;
5871
5872	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5873
5874	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5875	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5876
5877	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5878
5879	/* initialize CPU pools */
5880	for_each_possible_cpu(cpu) {
5881		struct worker_pool *pool;
5882
5883		i = 0;
5884		for_each_cpu_worker_pool(pool, cpu) {
5885			BUG_ON(init_worker_pool(pool));
5886			pool->cpu = cpu;
5887			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5888			pool->attrs->nice = std_nice[i++];
5889			pool->node = cpu_to_node(cpu);
5890
5891			/* alloc pool ID */
5892			mutex_lock(&wq_pool_mutex);
5893			BUG_ON(worker_pool_assign_id(pool));
5894			mutex_unlock(&wq_pool_mutex);
5895		}
5896	}
5897
5898	/* create default unbound and ordered wq attrs */
5899	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5900		struct workqueue_attrs *attrs;
5901
5902		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5903		attrs->nice = std_nice[i];
5904		unbound_std_wq_attrs[i] = attrs;
5905
5906		/*
5907		 * An ordered wq should have only one pwq as ordering is
5908		 * guaranteed by max_active which is enforced by pwqs.
5909		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5910		 */
5911		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5912		attrs->nice = std_nice[i];
5913		attrs->no_numa = true;
5914		ordered_wq_attrs[i] = attrs;
5915	}
5916
5917	system_wq = alloc_workqueue("events", 0, 0);
5918	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5919	system_long_wq = alloc_workqueue("events_long", 0, 0);
5920	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5921					    WQ_UNBOUND_MAX_ACTIVE);
5922	system_freezable_wq = alloc_workqueue("events_freezable",
5923					      WQ_FREEZABLE, 0);
5924	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5925					      WQ_POWER_EFFICIENT, 0);
5926	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5927					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5928					      0);
5929	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5930	       !system_unbound_wq || !system_freezable_wq ||
5931	       !system_power_efficient_wq ||
5932	       !system_freezable_power_efficient_wq);
5933
5934	return 0;
5935}
5936
5937/**
5938 * workqueue_init - bring workqueue subsystem fully online
5939 *
5940 * This is the latter half of two-staged workqueue subsystem initialization
5941 * and invoked as soon as kthreads can be created and scheduled.
5942 * Workqueues have been created and work items queued on them, but there
5943 * are no kworkers executing the work items yet.  Populate the worker pools
5944 * with the initial workers and enable future kworker creations.
5945 */
5946int __init workqueue_init(void)
5947{
5948	struct workqueue_struct *wq;
5949	struct worker_pool *pool;
5950	int cpu, bkt;
5951
5952	/*
5953	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5954	 * CPU to node mapping may not be available that early on some
5955	 * archs such as power and arm64.  As per-cpu pools created
5956	 * previously could be missing node hint and unbound pools NUMA
5957	 * affinity, fix them up.
5958	 *
5959	 * Also, while iterating workqueues, create rescuers if requested.
5960	 */
5961	wq_numa_init();
5962
5963	mutex_lock(&wq_pool_mutex);
5964
5965	for_each_possible_cpu(cpu) {
5966		for_each_cpu_worker_pool(pool, cpu) {
5967			pool->node = cpu_to_node(cpu);
5968		}
5969	}
5970
5971	list_for_each_entry(wq, &workqueues, list) {
5972		wq_update_unbound_numa(wq, smp_processor_id(), true);
5973		WARN(init_rescuer(wq),
5974		     "workqueue: failed to create early rescuer for %s",
5975		     wq->name);
5976	}
5977
5978	mutex_unlock(&wq_pool_mutex);
5979
5980	/* create the initial workers */
5981	for_each_online_cpu(cpu) {
5982		for_each_cpu_worker_pool(pool, cpu) {
5983			pool->flags &= ~POOL_DISASSOCIATED;
5984			BUG_ON(!create_worker(pool));
5985		}
5986	}
5987
5988	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5989		BUG_ON(!create_worker(pool));
5990
5991	wq_online = true;
5992	wq_watchdog_init();
5993
5994	return 0;
5995}
v4.17
 
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002		Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010		SUSE Linux Products GmbH
  15 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There are two worker pools for each CPU (one for
  20 * normal work items and the other for high priority ones) and some extra
  21 * pools for workqueues which are not bound to any specific CPU - the
  22 * number of these backing pools is dynamic.
  23 *
  24 * Please read Documentation/core-api/workqueue.rst for details.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/sched.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/completion.h>
  33#include <linux/workqueue.h>
  34#include <linux/slab.h>
  35#include <linux/cpu.h>
  36#include <linux/notifier.h>
  37#include <linux/kthread.h>
  38#include <linux/hardirq.h>
  39#include <linux/mempolicy.h>
  40#include <linux/freezer.h>
  41#include <linux/debug_locks.h>
  42#include <linux/lockdep.h>
  43#include <linux/idr.h>
  44#include <linux/jhash.h>
  45#include <linux/hashtable.h>
  46#include <linux/rculist.h>
  47#include <linux/nodemask.h>
  48#include <linux/moduleparam.h>
  49#include <linux/uaccess.h>
  50#include <linux/sched/isolation.h>
  51#include <linux/nmi.h>
  52
  53#include "workqueue_internal.h"
  54
  55enum {
  56	/*
  57	 * worker_pool flags
  58	 *
  59	 * A bound pool is either associated or disassociated with its CPU.
  60	 * While associated (!DISASSOCIATED), all workers are bound to the
  61	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  62	 * is in effect.
  63	 *
  64	 * While DISASSOCIATED, the cpu may be offline and all workers have
  65	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  66	 * be executing on any CPU.  The pool behaves as an unbound one.
  67	 *
  68	 * Note that DISASSOCIATED should be flipped only while holding
  69	 * attach_mutex to avoid changing binding state while
  70	 * worker_attach_to_pool() is in progress.
  71	 */
  72	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
  73	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  74
  75	/* worker flags */
  76	WORKER_DIE		= 1 << 1,	/* die die die */
  77	WORKER_IDLE		= 1 << 2,	/* is idle */
  78	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  79	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  80	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  81	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  82
  83	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  84				  WORKER_UNBOUND | WORKER_REBOUND,
  85
  86	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  87
  88	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  89	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  90
  91	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  92	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  93
  94	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  95						/* call for help after 10ms
  96						   (min two ticks) */
  97	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
  98	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
  99
 100	/*
 101	 * Rescue workers are used only on emergencies and shared by
 102	 * all cpus.  Give MIN_NICE.
 103	 */
 104	RESCUER_NICE_LEVEL	= MIN_NICE,
 105	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 106
 107	WQ_NAME_LEN		= 24,
 108};
 109
 110/*
 111 * Structure fields follow one of the following exclusion rules.
 112 *
 113 * I: Modifiable by initialization/destruction paths and read-only for
 114 *    everyone else.
 115 *
 116 * P: Preemption protected.  Disabling preemption is enough and should
 117 *    only be modified and accessed from the local cpu.
 118 *
 119 * L: pool->lock protected.  Access with pool->lock held.
 120 *
 121 * X: During normal operation, modification requires pool->lock and should
 122 *    be done only from local cpu.  Either disabling preemption on local
 123 *    cpu or grabbing pool->lock is enough for read access.  If
 124 *    POOL_DISASSOCIATED is set, it's identical to L.
 125 *
 126 * A: pool->attach_mutex protected.
 127 *
 128 * PL: wq_pool_mutex protected.
 129 *
 130 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
 131 *
 132 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 133 *
 134 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 135 *      sched-RCU for reads.
 136 *
 137 * WQ: wq->mutex protected.
 138 *
 139 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
 140 *
 141 * MD: wq_mayday_lock protected.
 142 */
 143
 144/* struct worker is defined in workqueue_internal.h */
 145
 146struct worker_pool {
 147	spinlock_t		lock;		/* the pool lock */
 148	int			cpu;		/* I: the associated cpu */
 149	int			node;		/* I: the associated node ID */
 150	int			id;		/* I: pool ID */
 151	unsigned int		flags;		/* X: flags */
 152
 153	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 154
 155	struct list_head	worklist;	/* L: list of pending works */
 156
 157	int			nr_workers;	/* L: total number of workers */
 158	int			nr_idle;	/* L: currently idle workers */
 159
 160	struct list_head	idle_list;	/* X: list of idle workers */
 161	struct timer_list	idle_timer;	/* L: worker idle timeout */
 162	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 163
 164	/* a workers is either on busy_hash or idle_list, or the manager */
 165	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 166						/* L: hash of busy workers */
 167
 168	struct worker		*manager;	/* L: purely informational */
 169	struct mutex		attach_mutex;	/* attach/detach exclusion */
 170	struct list_head	workers;	/* A: attached workers */
 171	struct completion	*detach_completion; /* all workers detached */
 172
 173	struct ida		worker_ida;	/* worker IDs for task name */
 174
 175	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 176	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 177	int			refcnt;		/* PL: refcnt for unbound pools */
 178
 179	/*
 180	 * The current concurrency level.  As it's likely to be accessed
 181	 * from other CPUs during try_to_wake_up(), put it in a separate
 182	 * cacheline.
 183	 */
 184	atomic_t		nr_running ____cacheline_aligned_in_smp;
 185
 186	/*
 187	 * Destruction of pool is sched-RCU protected to allow dereferences
 188	 * from get_work_pool().
 189	 */
 190	struct rcu_head		rcu;
 191} ____cacheline_aligned_in_smp;
 192
 193/*
 194 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 195 * of work_struct->data are used for flags and the remaining high bits
 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 197 * number of flag bits.
 198 */
 199struct pool_workqueue {
 200	struct worker_pool	*pool;		/* I: the associated pool */
 201	struct workqueue_struct *wq;		/* I: the owning workqueue */
 202	int			work_color;	/* L: current color */
 203	int			flush_color;	/* L: flushing color */
 204	int			refcnt;		/* L: reference count */
 205	int			nr_in_flight[WORK_NR_COLORS];
 206						/* L: nr of in_flight works */
 207	int			nr_active;	/* L: nr of active works */
 208	int			max_active;	/* L: max active works */
 209	struct list_head	delayed_works;	/* L: delayed works */
 210	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 211	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 212
 213	/*
 214	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 215	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 216	 * itself is also sched-RCU protected so that the first pwq can be
 217	 * determined without grabbing wq->mutex.
 218	 */
 219	struct work_struct	unbound_release_work;
 220	struct rcu_head		rcu;
 221} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 222
 223/*
 224 * Structure used to wait for workqueue flush.
 225 */
 226struct wq_flusher {
 227	struct list_head	list;		/* WQ: list of flushers */
 228	int			flush_color;	/* WQ: flush color waiting for */
 229	struct completion	done;		/* flush completion */
 230};
 231
 232struct wq_device;
 233
 234/*
 235 * The externally visible workqueue.  It relays the issued work items to
 236 * the appropriate worker_pool through its pool_workqueues.
 237 */
 238struct workqueue_struct {
 239	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 240	struct list_head	list;		/* PR: list of all workqueues */
 241
 242	struct mutex		mutex;		/* protects this wq */
 243	int			work_color;	/* WQ: current work color */
 244	int			flush_color;	/* WQ: current flush color */
 245	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 246	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 247	struct list_head	flusher_queue;	/* WQ: flush waiters */
 248	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 249
 250	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 251	struct worker		*rescuer;	/* I: rescue worker */
 252
 253	int			nr_drainers;	/* WQ: drain in progress */
 254	int			saved_max_active; /* WQ: saved pwq max_active */
 255
 256	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 257	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
 258
 259#ifdef CONFIG_SYSFS
 260	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 261#endif
 262#ifdef CONFIG_LOCKDEP
 
 
 263	struct lockdep_map	lockdep_map;
 264#endif
 265	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 266
 267	/*
 268	 * Destruction of workqueue_struct is sched-RCU protected to allow
 269	 * walking the workqueues list without grabbing wq_pool_mutex.
 270	 * This is used to dump all workqueues from sysrq.
 271	 */
 272	struct rcu_head		rcu;
 273
 274	/* hot fields used during command issue, aligned to cacheline */
 275	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 276	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 277	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 278};
 279
 280static struct kmem_cache *pwq_cache;
 281
 282static cpumask_var_t *wq_numa_possible_cpumask;
 283					/* possible CPUs of each node */
 284
 285static bool wq_disable_numa;
 286module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 287
 288/* see the comment above the definition of WQ_POWER_EFFICIENT */
 289static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 290module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 291
 292static bool wq_online;			/* can kworkers be created yet? */
 293
 294static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 295
 296/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 297static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 298
 299static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 
 300static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 301static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
 302
 303static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 304static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 305
 306/* PL: allowable cpus for unbound wqs and work items */
 307static cpumask_var_t wq_unbound_cpumask;
 308
 309/* CPU where unbound work was last round robin scheduled from this CPU */
 310static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 311
 312/*
 313 * Local execution of unbound work items is no longer guaranteed.  The
 314 * following always forces round-robin CPU selection on unbound work items
 315 * to uncover usages which depend on it.
 316 */
 317#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 318static bool wq_debug_force_rr_cpu = true;
 319#else
 320static bool wq_debug_force_rr_cpu = false;
 321#endif
 322module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 323
 324/* the per-cpu worker pools */
 325static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 326
 327static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 328
 329/* PL: hash of all unbound pools keyed by pool->attrs */
 330static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 331
 332/* I: attributes used when instantiating standard unbound pools on demand */
 333static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 334
 335/* I: attributes used when instantiating ordered pools on demand */
 336static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 337
 338struct workqueue_struct *system_wq __read_mostly;
 339EXPORT_SYMBOL(system_wq);
 340struct workqueue_struct *system_highpri_wq __read_mostly;
 341EXPORT_SYMBOL_GPL(system_highpri_wq);
 342struct workqueue_struct *system_long_wq __read_mostly;
 343EXPORT_SYMBOL_GPL(system_long_wq);
 344struct workqueue_struct *system_unbound_wq __read_mostly;
 345EXPORT_SYMBOL_GPL(system_unbound_wq);
 346struct workqueue_struct *system_freezable_wq __read_mostly;
 347EXPORT_SYMBOL_GPL(system_freezable_wq);
 348struct workqueue_struct *system_power_efficient_wq __read_mostly;
 349EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 350struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 351EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 352
 353static int worker_thread(void *__worker);
 354static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 355
 356#define CREATE_TRACE_POINTS
 357#include <trace/events/workqueue.h>
 358
 359#define assert_rcu_or_pool_mutex()					\
 360	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 361			 !lockdep_is_held(&wq_pool_mutex),		\
 362			 "sched RCU or wq_pool_mutex should be held")
 363
 364#define assert_rcu_or_wq_mutex(wq)					\
 365	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 366			 !lockdep_is_held(&wq->mutex),			\
 367			 "sched RCU or wq->mutex should be held")
 368
 369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 370	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 371			 !lockdep_is_held(&wq->mutex) &&		\
 372			 !lockdep_is_held(&wq_pool_mutex),		\
 373			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
 374
 375#define for_each_cpu_worker_pool(pool, cpu)				\
 376	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 377	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 378	     (pool)++)
 379
 380/**
 381 * for_each_pool - iterate through all worker_pools in the system
 382 * @pool: iteration cursor
 383 * @pi: integer used for iteration
 384 *
 385 * This must be called either with wq_pool_mutex held or sched RCU read
 386 * locked.  If the pool needs to be used beyond the locking in effect, the
 387 * caller is responsible for guaranteeing that the pool stays online.
 388 *
 389 * The if/else clause exists only for the lockdep assertion and can be
 390 * ignored.
 391 */
 392#define for_each_pool(pool, pi)						\
 393	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 394		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 395		else
 396
 397/**
 398 * for_each_pool_worker - iterate through all workers of a worker_pool
 399 * @worker: iteration cursor
 400 * @pool: worker_pool to iterate workers of
 401 *
 402 * This must be called with @pool->attach_mutex.
 403 *
 404 * The if/else clause exists only for the lockdep assertion and can be
 405 * ignored.
 406 */
 407#define for_each_pool_worker(worker, pool)				\
 408	list_for_each_entry((worker), &(pool)->workers, node)		\
 409		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
 410		else
 411
 412/**
 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 414 * @pwq: iteration cursor
 415 * @wq: the target workqueue
 416 *
 417 * This must be called either with wq->mutex held or sched RCU read locked.
 418 * If the pwq needs to be used beyond the locking in effect, the caller is
 419 * responsible for guaranteeing that the pwq stays online.
 420 *
 421 * The if/else clause exists only for the lockdep assertion and can be
 422 * ignored.
 423 */
 424#define for_each_pwq(pwq, wq)						\
 425	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
 426		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
 427		else
 428
 429#ifdef CONFIG_DEBUG_OBJECTS_WORK
 430
 431static struct debug_obj_descr work_debug_descr;
 432
 433static void *work_debug_hint(void *addr)
 434{
 435	return ((struct work_struct *) addr)->func;
 436}
 437
 438static bool work_is_static_object(void *addr)
 439{
 440	struct work_struct *work = addr;
 441
 442	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 443}
 444
 445/*
 446 * fixup_init is called when:
 447 * - an active object is initialized
 448 */
 449static bool work_fixup_init(void *addr, enum debug_obj_state state)
 450{
 451	struct work_struct *work = addr;
 452
 453	switch (state) {
 454	case ODEBUG_STATE_ACTIVE:
 455		cancel_work_sync(work);
 456		debug_object_init(work, &work_debug_descr);
 457		return true;
 458	default:
 459		return false;
 460	}
 461}
 462
 463/*
 464 * fixup_free is called when:
 465 * - an active object is freed
 466 */
 467static bool work_fixup_free(void *addr, enum debug_obj_state state)
 468{
 469	struct work_struct *work = addr;
 470
 471	switch (state) {
 472	case ODEBUG_STATE_ACTIVE:
 473		cancel_work_sync(work);
 474		debug_object_free(work, &work_debug_descr);
 475		return true;
 476	default:
 477		return false;
 478	}
 479}
 480
 481static struct debug_obj_descr work_debug_descr = {
 482	.name		= "work_struct",
 483	.debug_hint	= work_debug_hint,
 484	.is_static_object = work_is_static_object,
 485	.fixup_init	= work_fixup_init,
 486	.fixup_free	= work_fixup_free,
 487};
 488
 489static inline void debug_work_activate(struct work_struct *work)
 490{
 491	debug_object_activate(work, &work_debug_descr);
 492}
 493
 494static inline void debug_work_deactivate(struct work_struct *work)
 495{
 496	debug_object_deactivate(work, &work_debug_descr);
 497}
 498
 499void __init_work(struct work_struct *work, int onstack)
 500{
 501	if (onstack)
 502		debug_object_init_on_stack(work, &work_debug_descr);
 503	else
 504		debug_object_init(work, &work_debug_descr);
 505}
 506EXPORT_SYMBOL_GPL(__init_work);
 507
 508void destroy_work_on_stack(struct work_struct *work)
 509{
 510	debug_object_free(work, &work_debug_descr);
 511}
 512EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 513
 514void destroy_delayed_work_on_stack(struct delayed_work *work)
 515{
 516	destroy_timer_on_stack(&work->timer);
 517	debug_object_free(&work->work, &work_debug_descr);
 518}
 519EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 520
 521#else
 522static inline void debug_work_activate(struct work_struct *work) { }
 523static inline void debug_work_deactivate(struct work_struct *work) { }
 524#endif
 525
 526/**
 527 * worker_pool_assign_id - allocate ID and assing it to @pool
 528 * @pool: the pool pointer of interest
 529 *
 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 531 * successfully, -errno on failure.
 532 */
 533static int worker_pool_assign_id(struct worker_pool *pool)
 534{
 535	int ret;
 536
 537	lockdep_assert_held(&wq_pool_mutex);
 538
 539	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 540			GFP_KERNEL);
 541	if (ret >= 0) {
 542		pool->id = ret;
 543		return 0;
 544	}
 545	return ret;
 546}
 547
 548/**
 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 550 * @wq: the target workqueue
 551 * @node: the node ID
 552 *
 553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 554 * read locked.
 555 * If the pwq needs to be used beyond the locking in effect, the caller is
 556 * responsible for guaranteeing that the pwq stays online.
 557 *
 558 * Return: The unbound pool_workqueue for @node.
 559 */
 560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 561						  int node)
 562{
 563	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 564
 565	/*
 566	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 567	 * delayed item is pending.  The plan is to keep CPU -> NODE
 568	 * mapping valid and stable across CPU on/offlines.  Once that
 569	 * happens, this workaround can be removed.
 570	 */
 571	if (unlikely(node == NUMA_NO_NODE))
 572		return wq->dfl_pwq;
 573
 574	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 575}
 576
 577static unsigned int work_color_to_flags(int color)
 578{
 579	return color << WORK_STRUCT_COLOR_SHIFT;
 580}
 581
 582static int get_work_color(struct work_struct *work)
 583{
 584	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 585		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 586}
 587
 588static int work_next_color(int color)
 589{
 590	return (color + 1) % WORK_NR_COLORS;
 591}
 592
 593/*
 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 595 * contain the pointer to the queued pwq.  Once execution starts, the flag
 596 * is cleared and the high bits contain OFFQ flags and pool ID.
 597 *
 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 599 * and clear_work_data() can be used to set the pwq, pool or clear
 600 * work->data.  These functions should only be called while the work is
 601 * owned - ie. while the PENDING bit is set.
 602 *
 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 604 * corresponding to a work.  Pool is available once the work has been
 605 * queued anywhere after initialization until it is sync canceled.  pwq is
 606 * available only while the work item is queued.
 607 *
 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 609 * canceled.  While being canceled, a work item may have its PENDING set
 610 * but stay off timer and worklist for arbitrarily long and nobody should
 611 * try to steal the PENDING bit.
 612 */
 613static inline void set_work_data(struct work_struct *work, unsigned long data,
 614				 unsigned long flags)
 615{
 616	WARN_ON_ONCE(!work_pending(work));
 617	atomic_long_set(&work->data, data | flags | work_static(work));
 618}
 619
 620static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 621			 unsigned long extra_flags)
 622{
 623	set_work_data(work, (unsigned long)pwq,
 624		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 625}
 626
 627static void set_work_pool_and_keep_pending(struct work_struct *work,
 628					   int pool_id)
 629{
 630	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 631		      WORK_STRUCT_PENDING);
 632}
 633
 634static void set_work_pool_and_clear_pending(struct work_struct *work,
 635					    int pool_id)
 636{
 637	/*
 638	 * The following wmb is paired with the implied mb in
 639	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 640	 * here are visible to and precede any updates by the next PENDING
 641	 * owner.
 642	 */
 643	smp_wmb();
 644	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 645	/*
 646	 * The following mb guarantees that previous clear of a PENDING bit
 647	 * will not be reordered with any speculative LOADS or STORES from
 648	 * work->current_func, which is executed afterwards.  This possible
 649	 * reordering can lead to a missed execution on attempt to qeueue
 650	 * the same @work.  E.g. consider this case:
 651	 *
 652	 *   CPU#0                         CPU#1
 653	 *   ----------------------------  --------------------------------
 654	 *
 655	 * 1  STORE event_indicated
 656	 * 2  queue_work_on() {
 657	 * 3    test_and_set_bit(PENDING)
 658	 * 4 }                             set_..._and_clear_pending() {
 659	 * 5                                 set_work_data() # clear bit
 660	 * 6                                 smp_mb()
 661	 * 7                               work->current_func() {
 662	 * 8				      LOAD event_indicated
 663	 *				   }
 664	 *
 665	 * Without an explicit full barrier speculative LOAD on line 8 can
 666	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 667	 * CPU#0 observes the PENDING bit is still set and new execution of
 668	 * a @work is not queued in a hope, that CPU#1 will eventually
 669	 * finish the queued @work.  Meanwhile CPU#1 does not see
 670	 * event_indicated is set, because speculative LOAD was executed
 671	 * before actual STORE.
 672	 */
 673	smp_mb();
 674}
 675
 676static void clear_work_data(struct work_struct *work)
 677{
 678	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 679	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 680}
 681
 682static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 683{
 684	unsigned long data = atomic_long_read(&work->data);
 685
 686	if (data & WORK_STRUCT_PWQ)
 687		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 688	else
 689		return NULL;
 690}
 691
 692/**
 693 * get_work_pool - return the worker_pool a given work was associated with
 694 * @work: the work item of interest
 695 *
 696 * Pools are created and destroyed under wq_pool_mutex, and allows read
 697 * access under sched-RCU read lock.  As such, this function should be
 698 * called under wq_pool_mutex or with preemption disabled.
 699 *
 700 * All fields of the returned pool are accessible as long as the above
 701 * mentioned locking is in effect.  If the returned pool needs to be used
 702 * beyond the critical section, the caller is responsible for ensuring the
 703 * returned pool is and stays online.
 704 *
 705 * Return: The worker_pool @work was last associated with.  %NULL if none.
 706 */
 707static struct worker_pool *get_work_pool(struct work_struct *work)
 708{
 709	unsigned long data = atomic_long_read(&work->data);
 710	int pool_id;
 711
 712	assert_rcu_or_pool_mutex();
 713
 714	if (data & WORK_STRUCT_PWQ)
 715		return ((struct pool_workqueue *)
 716			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 717
 718	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 719	if (pool_id == WORK_OFFQ_POOL_NONE)
 720		return NULL;
 721
 722	return idr_find(&worker_pool_idr, pool_id);
 723}
 724
 725/**
 726 * get_work_pool_id - return the worker pool ID a given work is associated with
 727 * @work: the work item of interest
 728 *
 729 * Return: The worker_pool ID @work was last associated with.
 730 * %WORK_OFFQ_POOL_NONE if none.
 731 */
 732static int get_work_pool_id(struct work_struct *work)
 733{
 734	unsigned long data = atomic_long_read(&work->data);
 735
 736	if (data & WORK_STRUCT_PWQ)
 737		return ((struct pool_workqueue *)
 738			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 739
 740	return data >> WORK_OFFQ_POOL_SHIFT;
 741}
 742
 743static void mark_work_canceling(struct work_struct *work)
 744{
 745	unsigned long pool_id = get_work_pool_id(work);
 746
 747	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 748	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 749}
 750
 751static bool work_is_canceling(struct work_struct *work)
 752{
 753	unsigned long data = atomic_long_read(&work->data);
 754
 755	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 756}
 757
 758/*
 759 * Policy functions.  These define the policies on how the global worker
 760 * pools are managed.  Unless noted otherwise, these functions assume that
 761 * they're being called with pool->lock held.
 762 */
 763
 764static bool __need_more_worker(struct worker_pool *pool)
 765{
 766	return !atomic_read(&pool->nr_running);
 767}
 768
 769/*
 770 * Need to wake up a worker?  Called from anything but currently
 771 * running workers.
 772 *
 773 * Note that, because unbound workers never contribute to nr_running, this
 774 * function will always return %true for unbound pools as long as the
 775 * worklist isn't empty.
 776 */
 777static bool need_more_worker(struct worker_pool *pool)
 778{
 779	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 780}
 781
 782/* Can I start working?  Called from busy but !running workers. */
 783static bool may_start_working(struct worker_pool *pool)
 784{
 785	return pool->nr_idle;
 786}
 787
 788/* Do I need to keep working?  Called from currently running workers. */
 789static bool keep_working(struct worker_pool *pool)
 790{
 791	return !list_empty(&pool->worklist) &&
 792		atomic_read(&pool->nr_running) <= 1;
 793}
 794
 795/* Do we need a new worker?  Called from manager. */
 796static bool need_to_create_worker(struct worker_pool *pool)
 797{
 798	return need_more_worker(pool) && !may_start_working(pool);
 799}
 800
 801/* Do we have too many workers and should some go away? */
 802static bool too_many_workers(struct worker_pool *pool)
 803{
 804	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 805	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 806	int nr_busy = pool->nr_workers - nr_idle;
 807
 808	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 809}
 810
 811/*
 812 * Wake up functions.
 813 */
 814
 815/* Return the first idle worker.  Safe with preemption disabled */
 816static struct worker *first_idle_worker(struct worker_pool *pool)
 817{
 818	if (unlikely(list_empty(&pool->idle_list)))
 819		return NULL;
 820
 821	return list_first_entry(&pool->idle_list, struct worker, entry);
 822}
 823
 824/**
 825 * wake_up_worker - wake up an idle worker
 826 * @pool: worker pool to wake worker from
 827 *
 828 * Wake up the first idle worker of @pool.
 829 *
 830 * CONTEXT:
 831 * spin_lock_irq(pool->lock).
 832 */
 833static void wake_up_worker(struct worker_pool *pool)
 834{
 835	struct worker *worker = first_idle_worker(pool);
 836
 837	if (likely(worker))
 838		wake_up_process(worker->task);
 839}
 840
 841/**
 842 * wq_worker_waking_up - a worker is waking up
 843 * @task: task waking up
 844 * @cpu: CPU @task is waking up to
 845 *
 846 * This function is called during try_to_wake_up() when a worker is
 847 * being awoken.
 848 *
 849 * CONTEXT:
 850 * spin_lock_irq(rq->lock)
 851 */
 852void wq_worker_waking_up(struct task_struct *task, int cpu)
 853{
 854	struct worker *worker = kthread_data(task);
 855
 856	if (!(worker->flags & WORKER_NOT_RUNNING)) {
 857		WARN_ON_ONCE(worker->pool->cpu != cpu);
 
 858		atomic_inc(&worker->pool->nr_running);
 859	}
 860}
 861
 862/**
 863 * wq_worker_sleeping - a worker is going to sleep
 864 * @task: task going to sleep
 865 *
 866 * This function is called during schedule() when a busy worker is
 867 * going to sleep.  Worker on the same cpu can be woken up by
 868 * returning pointer to its task.
 869 *
 870 * CONTEXT:
 871 * spin_lock_irq(rq->lock)
 872 *
 873 * Return:
 874 * Worker task on @cpu to wake up, %NULL if none.
 875 */
 876struct task_struct *wq_worker_sleeping(struct task_struct *task)
 877{
 878	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 879	struct worker_pool *pool;
 880
 881	/*
 882	 * Rescuers, which may not have all the fields set up like normal
 883	 * workers, also reach here, let's not access anything before
 884	 * checking NOT_RUNNING.
 885	 */
 886	if (worker->flags & WORKER_NOT_RUNNING)
 887		return NULL;
 888
 889	pool = worker->pool;
 890
 891	/* this can only happen on the local cpu */
 892	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
 893		return NULL;
 
 
 894
 895	/*
 896	 * The counterpart of the following dec_and_test, implied mb,
 897	 * worklist not empty test sequence is in insert_work().
 898	 * Please read comment there.
 899	 *
 900	 * NOT_RUNNING is clear.  This means that we're bound to and
 901	 * running on the local cpu w/ rq lock held and preemption
 902	 * disabled, which in turn means that none else could be
 903	 * manipulating idle_list, so dereferencing idle_list without pool
 904	 * lock is safe.
 905	 */
 906	if (atomic_dec_and_test(&pool->nr_running) &&
 907	    !list_empty(&pool->worklist))
 908		to_wakeup = first_idle_worker(pool);
 909	return to_wakeup ? to_wakeup->task : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910}
 911
 912/**
 913 * worker_set_flags - set worker flags and adjust nr_running accordingly
 914 * @worker: self
 915 * @flags: flags to set
 916 *
 917 * Set @flags in @worker->flags and adjust nr_running accordingly.
 918 *
 919 * CONTEXT:
 920 * spin_lock_irq(pool->lock)
 921 */
 922static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 923{
 924	struct worker_pool *pool = worker->pool;
 925
 926	WARN_ON_ONCE(worker->task != current);
 927
 928	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 929	if ((flags & WORKER_NOT_RUNNING) &&
 930	    !(worker->flags & WORKER_NOT_RUNNING)) {
 931		atomic_dec(&pool->nr_running);
 932	}
 933
 934	worker->flags |= flags;
 935}
 936
 937/**
 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 939 * @worker: self
 940 * @flags: flags to clear
 941 *
 942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 943 *
 944 * CONTEXT:
 945 * spin_lock_irq(pool->lock)
 946 */
 947static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 948{
 949	struct worker_pool *pool = worker->pool;
 950	unsigned int oflags = worker->flags;
 951
 952	WARN_ON_ONCE(worker->task != current);
 953
 954	worker->flags &= ~flags;
 955
 956	/*
 957	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 958	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 959	 * of multiple flags, not a single flag.
 960	 */
 961	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 962		if (!(worker->flags & WORKER_NOT_RUNNING))
 963			atomic_inc(&pool->nr_running);
 964}
 965
 966/**
 967 * find_worker_executing_work - find worker which is executing a work
 968 * @pool: pool of interest
 969 * @work: work to find worker for
 970 *
 971 * Find a worker which is executing @work on @pool by searching
 972 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 973 * to match, its current execution should match the address of @work and
 974 * its work function.  This is to avoid unwanted dependency between
 975 * unrelated work executions through a work item being recycled while still
 976 * being executed.
 977 *
 978 * This is a bit tricky.  A work item may be freed once its execution
 979 * starts and nothing prevents the freed area from being recycled for
 980 * another work item.  If the same work item address ends up being reused
 981 * before the original execution finishes, workqueue will identify the
 982 * recycled work item as currently executing and make it wait until the
 983 * current execution finishes, introducing an unwanted dependency.
 984 *
 985 * This function checks the work item address and work function to avoid
 986 * false positives.  Note that this isn't complete as one may construct a
 987 * work function which can introduce dependency onto itself through a
 988 * recycled work item.  Well, if somebody wants to shoot oneself in the
 989 * foot that badly, there's only so much we can do, and if such deadlock
 990 * actually occurs, it should be easy to locate the culprit work function.
 991 *
 992 * CONTEXT:
 993 * spin_lock_irq(pool->lock).
 994 *
 995 * Return:
 996 * Pointer to worker which is executing @work if found, %NULL
 997 * otherwise.
 998 */
 999static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000						 struct work_struct *work)
1001{
1002	struct worker *worker;
1003
1004	hash_for_each_possible(pool->busy_hash, worker, hentry,
1005			       (unsigned long)work)
1006		if (worker->current_work == work &&
1007		    worker->current_func == work->func)
1008			return worker;
1009
1010	return NULL;
1011}
1012
1013/**
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
1017 * @nextp: out parameter for nested worklist walking
1018 *
1019 * Schedule linked works starting from @work to @head.  Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1022 *
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work.  This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1026 *
1027 * CONTEXT:
1028 * spin_lock_irq(pool->lock).
1029 */
1030static void move_linked_works(struct work_struct *work, struct list_head *head,
1031			      struct work_struct **nextp)
1032{
1033	struct work_struct *n;
1034
1035	/*
1036	 * Linked worklist will always end before the end of the list,
1037	 * use NULL for list head.
1038	 */
1039	list_for_each_entry_safe_from(work, n, NULL, entry) {
1040		list_move_tail(&work->entry, head);
1041		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042			break;
1043	}
1044
1045	/*
1046	 * If we're already inside safe list traversal and have moved
1047	 * multiple works to the scheduled queue, the next position
1048	 * needs to be updated.
1049	 */
1050	if (nextp)
1051		*nextp = n;
1052}
1053
1054/**
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1057 *
1058 * Obtain an extra reference on @pwq.  The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1060 */
1061static void get_pwq(struct pool_workqueue *pwq)
1062{
1063	lockdep_assert_held(&pwq->pool->lock);
1064	WARN_ON_ONCE(pwq->refcnt <= 0);
1065	pwq->refcnt++;
1066}
1067
1068/**
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1071 *
1072 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1073 * destruction.  The caller should be holding the matching pool->lock.
1074 */
1075static void put_pwq(struct pool_workqueue *pwq)
1076{
1077	lockdep_assert_held(&pwq->pool->lock);
1078	if (likely(--pwq->refcnt))
1079		return;
1080	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081		return;
1082	/*
1083	 * @pwq can't be released under pool->lock, bounce to
1084	 * pwq_unbound_release_workfn().  This never recurses on the same
1085	 * pool->lock as this path is taken only for unbound workqueues and
1086	 * the release work item is scheduled on a per-cpu workqueue.  To
1087	 * avoid lockdep warning, unbound pool->locks are given lockdep
1088	 * subclass of 1 in get_unbound_pool().
1089	 */
1090	schedule_work(&pwq->unbound_release_work);
1091}
1092
1093/**
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1096 *
1097 * put_pwq() with locking.  This function also allows %NULL @pwq.
1098 */
1099static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100{
1101	if (pwq) {
1102		/*
1103		 * As both pwqs and pools are sched-RCU protected, the
1104		 * following lock operations are safe.
1105		 */
1106		spin_lock_irq(&pwq->pool->lock);
1107		put_pwq(pwq);
1108		spin_unlock_irq(&pwq->pool->lock);
1109	}
1110}
1111
1112static void pwq_activate_delayed_work(struct work_struct *work)
1113{
1114	struct pool_workqueue *pwq = get_work_pwq(work);
1115
1116	trace_workqueue_activate_work(work);
1117	if (list_empty(&pwq->pool->worklist))
1118		pwq->pool->watchdog_ts = jiffies;
1119	move_linked_works(work, &pwq->pool->worklist, NULL);
1120	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121	pwq->nr_active++;
1122}
1123
1124static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1125{
1126	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127						    struct work_struct, entry);
1128
1129	pwq_activate_delayed_work(work);
1130}
1131
1132/**
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
1135 * @color: color of work which left the queue
1136 *
1137 * A work either has completed or is removed from pending queue,
1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139 *
1140 * CONTEXT:
1141 * spin_lock_irq(pool->lock).
1142 */
1143static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1144{
1145	/* uncolored work items don't participate in flushing or nr_active */
1146	if (color == WORK_NO_COLOR)
1147		goto out_put;
1148
1149	pwq->nr_in_flight[color]--;
1150
1151	pwq->nr_active--;
1152	if (!list_empty(&pwq->delayed_works)) {
1153		/* one down, submit a delayed one */
1154		if (pwq->nr_active < pwq->max_active)
1155			pwq_activate_first_delayed(pwq);
1156	}
1157
1158	/* is flush in progress and are we at the flushing tip? */
1159	if (likely(pwq->flush_color != color))
1160		goto out_put;
1161
1162	/* are there still in-flight works? */
1163	if (pwq->nr_in_flight[color])
1164		goto out_put;
1165
1166	/* this pwq is done, clear flush_color */
1167	pwq->flush_color = -1;
1168
1169	/*
1170	 * If this was the last pwq, wake up the first flusher.  It
1171	 * will handle the rest.
1172	 */
1173	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174		complete(&pwq->wq->first_flusher->done);
1175out_put:
1176	put_pwq(pwq);
1177}
1178
1179/**
1180 * try_to_grab_pending - steal work item from worklist and disable irq
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
1183 * @flags: place to store irq state
1184 *
1185 * Try to grab PENDING bit of @work.  This function can handle @work in any
1186 * stable state - idle, on timer or on worklist.
1187 *
1188 * Return:
1189 *  1		if @work was pending and we successfully stole PENDING
1190 *  0		if @work was idle and we claimed PENDING
1191 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192 *  -ENOENT	if someone else is canceling @work, this state may persist
1193 *		for arbitrarily long
1194 *
1195 * Note:
1196 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry.  This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1200 *
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1203 *
1204 * This function is safe to call from any context including IRQ handler.
1205 */
1206static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207			       unsigned long *flags)
1208{
1209	struct worker_pool *pool;
1210	struct pool_workqueue *pwq;
1211
1212	local_irq_save(*flags);
1213
1214	/* try to steal the timer if it exists */
1215	if (is_dwork) {
1216		struct delayed_work *dwork = to_delayed_work(work);
1217
1218		/*
1219		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1220		 * guaranteed that the timer is not queued anywhere and not
1221		 * running on the local CPU.
1222		 */
1223		if (likely(del_timer(&dwork->timer)))
1224			return 1;
1225	}
1226
1227	/* try to claim PENDING the normal way */
1228	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229		return 0;
1230
 
1231	/*
1232	 * The queueing is in progress, or it is already queued. Try to
1233	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234	 */
1235	pool = get_work_pool(work);
1236	if (!pool)
1237		goto fail;
1238
1239	spin_lock(&pool->lock);
1240	/*
1241	 * work->data is guaranteed to point to pwq only while the work
1242	 * item is queued on pwq->wq, and both updating work->data to point
1243	 * to pwq on queueing and to pool on dequeueing are done under
1244	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1245	 * points to pwq which is associated with a locked pool, the work
1246	 * item is currently queued on that pool.
1247	 */
1248	pwq = get_work_pwq(work);
1249	if (pwq && pwq->pool == pool) {
1250		debug_work_deactivate(work);
1251
1252		/*
1253		 * A delayed work item cannot be grabbed directly because
1254		 * it might have linked NO_COLOR work items which, if left
1255		 * on the delayed_list, will confuse pwq->nr_active
1256		 * management later on and cause stall.  Make sure the work
1257		 * item is activated before grabbing.
1258		 */
1259		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260			pwq_activate_delayed_work(work);
1261
1262		list_del_init(&work->entry);
1263		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1264
1265		/* work->data points to pwq iff queued, point to pool */
1266		set_work_pool_and_keep_pending(work, pool->id);
1267
1268		spin_unlock(&pool->lock);
 
1269		return 1;
1270	}
1271	spin_unlock(&pool->lock);
1272fail:
 
1273	local_irq_restore(*flags);
1274	if (work_is_canceling(work))
1275		return -ENOENT;
1276	cpu_relax();
1277	return -EAGAIN;
1278}
1279
1280/**
1281 * insert_work - insert a work into a pool
1282 * @pwq: pwq @work belongs to
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1286 *
1287 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1288 * work_struct flags.
1289 *
1290 * CONTEXT:
1291 * spin_lock_irq(pool->lock).
1292 */
1293static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294			struct list_head *head, unsigned int extra_flags)
1295{
1296	struct worker_pool *pool = pwq->pool;
1297
1298	/* we own @work, set data and link */
1299	set_work_pwq(work, pwq, extra_flags);
1300	list_add_tail(&work->entry, head);
1301	get_pwq(pwq);
1302
1303	/*
1304	 * Ensure either wq_worker_sleeping() sees the above
1305	 * list_add_tail() or we see zero nr_running to avoid workers lying
1306	 * around lazily while there are works to be processed.
1307	 */
1308	smp_mb();
1309
1310	if (__need_more_worker(pool))
1311		wake_up_worker(pool);
1312}
1313
1314/*
1315 * Test whether @work is being queued from another work executing on the
1316 * same workqueue.
1317 */
1318static bool is_chained_work(struct workqueue_struct *wq)
1319{
1320	struct worker *worker;
1321
1322	worker = current_wq_worker();
1323	/*
1324	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1325	 * I'm @worker, it's safe to dereference it without locking.
1326	 */
1327	return worker && worker->current_pwq->wq == wq;
1328}
1329
1330/*
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1334 */
1335static int wq_select_unbound_cpu(int cpu)
1336{
1337	static bool printed_dbg_warning;
1338	int new_cpu;
1339
1340	if (likely(!wq_debug_force_rr_cpu)) {
1341		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342			return cpu;
1343	} else if (!printed_dbg_warning) {
1344		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345		printed_dbg_warning = true;
1346	}
1347
1348	if (cpumask_empty(wq_unbound_cpumask))
1349		return cpu;
1350
1351	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353	if (unlikely(new_cpu >= nr_cpu_ids)) {
1354		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355		if (unlikely(new_cpu >= nr_cpu_ids))
1356			return cpu;
1357	}
1358	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1359
1360	return new_cpu;
1361}
1362
1363static void __queue_work(int cpu, struct workqueue_struct *wq,
1364			 struct work_struct *work)
1365{
1366	struct pool_workqueue *pwq;
1367	struct worker_pool *last_pool;
1368	struct list_head *worklist;
1369	unsigned int work_flags;
1370	unsigned int req_cpu = cpu;
1371
1372	/*
1373	 * While a work item is PENDING && off queue, a task trying to
1374	 * steal the PENDING will busy-loop waiting for it to either get
1375	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1376	 * happen with IRQ disabled.
1377	 */
1378	lockdep_assert_irqs_disabled();
1379
1380	debug_work_activate(work);
1381
1382	/* if draining, only works from the same workqueue are allowed */
1383	if (unlikely(wq->flags & __WQ_DRAINING) &&
1384	    WARN_ON_ONCE(!is_chained_work(wq)))
1385		return;
 
1386retry:
1387	if (req_cpu == WORK_CPU_UNBOUND)
1388		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1389
1390	/* pwq which will be used unless @work is executing elsewhere */
1391	if (!(wq->flags & WQ_UNBOUND))
1392		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1393	else
1394		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1395
1396	/*
1397	 * If @work was previously on a different pool, it might still be
1398	 * running there, in which case the work needs to be queued on that
1399	 * pool to guarantee non-reentrancy.
1400	 */
1401	last_pool = get_work_pool(work);
1402	if (last_pool && last_pool != pwq->pool) {
1403		struct worker *worker;
1404
1405		spin_lock(&last_pool->lock);
1406
1407		worker = find_worker_executing_work(last_pool, work);
1408
1409		if (worker && worker->current_pwq->wq == wq) {
1410			pwq = worker->current_pwq;
1411		} else {
1412			/* meh... not running there, queue here */
1413			spin_unlock(&last_pool->lock);
1414			spin_lock(&pwq->pool->lock);
1415		}
1416	} else {
1417		spin_lock(&pwq->pool->lock);
1418	}
1419
1420	/*
1421	 * pwq is determined and locked.  For unbound pools, we could have
1422	 * raced with pwq release and it could already be dead.  If its
1423	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1424	 * without another pwq replacing it in the numa_pwq_tbl or while
1425	 * work items are executing on it, so the retrying is guaranteed to
1426	 * make forward-progress.
1427	 */
1428	if (unlikely(!pwq->refcnt)) {
1429		if (wq->flags & WQ_UNBOUND) {
1430			spin_unlock(&pwq->pool->lock);
1431			cpu_relax();
1432			goto retry;
1433		}
1434		/* oops */
1435		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436			  wq->name, cpu);
1437	}
1438
1439	/* pwq determined, queue */
1440	trace_workqueue_queue_work(req_cpu, pwq, work);
1441
1442	if (WARN_ON(!list_empty(&work->entry))) {
1443		spin_unlock(&pwq->pool->lock);
1444		return;
1445	}
1446
1447	pwq->nr_in_flight[pwq->work_color]++;
1448	work_flags = work_color_to_flags(pwq->work_color);
1449
1450	if (likely(pwq->nr_active < pwq->max_active)) {
1451		trace_workqueue_activate_work(work);
1452		pwq->nr_active++;
1453		worklist = &pwq->pool->worklist;
1454		if (list_empty(worklist))
1455			pwq->pool->watchdog_ts = jiffies;
1456	} else {
1457		work_flags |= WORK_STRUCT_DELAYED;
1458		worklist = &pwq->delayed_works;
1459	}
1460
1461	insert_work(pwq, work, worklist, work_flags);
1462
 
1463	spin_unlock(&pwq->pool->lock);
 
1464}
1465
1466/**
1467 * queue_work_on - queue work on specific cpu
1468 * @cpu: CPU number to execute work on
1469 * @wq: workqueue to use
1470 * @work: work to queue
1471 *
1472 * We queue the work to a specific CPU, the caller must ensure it
1473 * can't go away.
1474 *
1475 * Return: %false if @work was already on a queue, %true otherwise.
1476 */
1477bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478		   struct work_struct *work)
1479{
1480	bool ret = false;
1481	unsigned long flags;
1482
1483	local_irq_save(flags);
1484
1485	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1486		__queue_work(cpu, wq, work);
1487		ret = true;
1488	}
1489
1490	local_irq_restore(flags);
1491	return ret;
1492}
1493EXPORT_SYMBOL(queue_work_on);
1494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495void delayed_work_timer_fn(struct timer_list *t)
1496{
1497	struct delayed_work *dwork = from_timer(dwork, t, timer);
1498
1499	/* should have been called from irqsafe timer with irq already off */
1500	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1501}
1502EXPORT_SYMBOL(delayed_work_timer_fn);
1503
1504static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505				struct delayed_work *dwork, unsigned long delay)
1506{
1507	struct timer_list *timer = &dwork->timer;
1508	struct work_struct *work = &dwork->work;
1509
1510	WARN_ON_ONCE(!wq);
1511	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1512	WARN_ON_ONCE(timer_pending(timer));
1513	WARN_ON_ONCE(!list_empty(&work->entry));
1514
1515	/*
1516	 * If @delay is 0, queue @dwork->work immediately.  This is for
1517	 * both optimization and correctness.  The earliest @timer can
1518	 * expire is on the closest next tick and delayed_work users depend
1519	 * on that there's no such delay when @delay is 0.
1520	 */
1521	if (!delay) {
1522		__queue_work(cpu, wq, &dwork->work);
1523		return;
1524	}
1525
1526	dwork->wq = wq;
1527	dwork->cpu = cpu;
1528	timer->expires = jiffies + delay;
1529
1530	if (unlikely(cpu != WORK_CPU_UNBOUND))
1531		add_timer_on(timer, cpu);
1532	else
1533		add_timer(timer);
1534}
1535
1536/**
1537 * queue_delayed_work_on - queue work on specific CPU after delay
1538 * @cpu: CPU number to execute work on
1539 * @wq: workqueue to use
1540 * @dwork: work to queue
1541 * @delay: number of jiffies to wait before queueing
1542 *
1543 * Return: %false if @work was already on a queue, %true otherwise.  If
1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1545 * execution.
1546 */
1547bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1548			   struct delayed_work *dwork, unsigned long delay)
1549{
1550	struct work_struct *work = &dwork->work;
1551	bool ret = false;
1552	unsigned long flags;
1553
1554	/* read the comment in __queue_work() */
1555	local_irq_save(flags);
1556
1557	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1558		__queue_delayed_work(cpu, wq, dwork, delay);
1559		ret = true;
1560	}
1561
1562	local_irq_restore(flags);
1563	return ret;
1564}
1565EXPORT_SYMBOL(queue_delayed_work_on);
1566
1567/**
1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1569 * @cpu: CPU number to execute work on
1570 * @wq: workqueue to use
1571 * @dwork: work to queue
1572 * @delay: number of jiffies to wait before queueing
1573 *
1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1575 * modify @dwork's timer so that it expires after @delay.  If @delay is
1576 * zero, @work is guaranteed to be scheduled immediately regardless of its
1577 * current state.
1578 *
1579 * Return: %false if @dwork was idle and queued, %true if @dwork was
1580 * pending and its timer was modified.
1581 *
1582 * This function is safe to call from any context including IRQ handler.
1583 * See try_to_grab_pending() for details.
1584 */
1585bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1586			 struct delayed_work *dwork, unsigned long delay)
1587{
1588	unsigned long flags;
1589	int ret;
1590
1591	do {
1592		ret = try_to_grab_pending(&dwork->work, true, &flags);
1593	} while (unlikely(ret == -EAGAIN));
1594
1595	if (likely(ret >= 0)) {
1596		__queue_delayed_work(cpu, wq, dwork, delay);
1597		local_irq_restore(flags);
1598	}
1599
1600	/* -ENOENT from try_to_grab_pending() becomes %true */
1601	return ret;
1602}
1603EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1604
1605static void rcu_work_rcufn(struct rcu_head *rcu)
1606{
1607	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1608
1609	/* read the comment in __queue_work() */
1610	local_irq_disable();
1611	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1612	local_irq_enable();
1613}
1614
1615/**
1616 * queue_rcu_work - queue work after a RCU grace period
1617 * @wq: workqueue to use
1618 * @rwork: work to queue
1619 *
1620 * Return: %false if @rwork was already pending, %true otherwise.  Note
1621 * that a full RCU grace period is guaranteed only after a %true return.
1622 * While @rwork is guarnateed to be executed after a %false return, the
1623 * execution may happen before a full RCU grace period has passed.
1624 */
1625bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1626{
1627	struct work_struct *work = &rwork->work;
1628
1629	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1630		rwork->wq = wq;
1631		call_rcu(&rwork->rcu, rcu_work_rcufn);
1632		return true;
1633	}
1634
1635	return false;
1636}
1637EXPORT_SYMBOL(queue_rcu_work);
1638
1639/**
1640 * worker_enter_idle - enter idle state
1641 * @worker: worker which is entering idle state
1642 *
1643 * @worker is entering idle state.  Update stats and idle timer if
1644 * necessary.
1645 *
1646 * LOCKING:
1647 * spin_lock_irq(pool->lock).
1648 */
1649static void worker_enter_idle(struct worker *worker)
1650{
1651	struct worker_pool *pool = worker->pool;
1652
1653	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1654	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1655			 (worker->hentry.next || worker->hentry.pprev)))
1656		return;
1657
1658	/* can't use worker_set_flags(), also called from create_worker() */
1659	worker->flags |= WORKER_IDLE;
1660	pool->nr_idle++;
1661	worker->last_active = jiffies;
1662
1663	/* idle_list is LIFO */
1664	list_add(&worker->entry, &pool->idle_list);
1665
1666	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1667		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1668
1669	/*
1670	 * Sanity check nr_running.  Because unbind_workers() releases
1671	 * pool->lock between setting %WORKER_UNBOUND and zapping
1672	 * nr_running, the warning may trigger spuriously.  Check iff
1673	 * unbind is not in progress.
1674	 */
1675	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1676		     pool->nr_workers == pool->nr_idle &&
1677		     atomic_read(&pool->nr_running));
1678}
1679
1680/**
1681 * worker_leave_idle - leave idle state
1682 * @worker: worker which is leaving idle state
1683 *
1684 * @worker is leaving idle state.  Update stats.
1685 *
1686 * LOCKING:
1687 * spin_lock_irq(pool->lock).
1688 */
1689static void worker_leave_idle(struct worker *worker)
1690{
1691	struct worker_pool *pool = worker->pool;
1692
1693	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1694		return;
1695	worker_clr_flags(worker, WORKER_IDLE);
1696	pool->nr_idle--;
1697	list_del_init(&worker->entry);
1698}
1699
1700static struct worker *alloc_worker(int node)
1701{
1702	struct worker *worker;
1703
1704	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1705	if (worker) {
1706		INIT_LIST_HEAD(&worker->entry);
1707		INIT_LIST_HEAD(&worker->scheduled);
1708		INIT_LIST_HEAD(&worker->node);
1709		/* on creation a worker is in !idle && prep state */
1710		worker->flags = WORKER_PREP;
1711	}
1712	return worker;
1713}
1714
1715/**
1716 * worker_attach_to_pool() - attach a worker to a pool
1717 * @worker: worker to be attached
1718 * @pool: the target pool
1719 *
1720 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1721 * cpu-binding of @worker are kept coordinated with the pool across
1722 * cpu-[un]hotplugs.
1723 */
1724static void worker_attach_to_pool(struct worker *worker,
1725				   struct worker_pool *pool)
1726{
1727	mutex_lock(&pool->attach_mutex);
1728
1729	/*
1730	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1731	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1732	 */
1733	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1734
1735	/*
1736	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1737	 * stable across this function.  See the comments above the
1738	 * flag definition for details.
1739	 */
1740	if (pool->flags & POOL_DISASSOCIATED)
1741		worker->flags |= WORKER_UNBOUND;
1742
1743	list_add_tail(&worker->node, &pool->workers);
 
1744
1745	mutex_unlock(&pool->attach_mutex);
1746}
1747
1748/**
1749 * worker_detach_from_pool() - detach a worker from its pool
1750 * @worker: worker which is attached to its pool
1751 * @pool: the pool @worker is attached to
1752 *
1753 * Undo the attaching which had been done in worker_attach_to_pool().  The
1754 * caller worker shouldn't access to the pool after detached except it has
1755 * other reference to the pool.
1756 */
1757static void worker_detach_from_pool(struct worker *worker,
1758				    struct worker_pool *pool)
1759{
 
1760	struct completion *detach_completion = NULL;
1761
1762	mutex_lock(&pool->attach_mutex);
 
1763	list_del(&worker->node);
 
 
1764	if (list_empty(&pool->workers))
1765		detach_completion = pool->detach_completion;
1766	mutex_unlock(&pool->attach_mutex);
1767
1768	/* clear leftover flags without pool->lock after it is detached */
1769	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1770
1771	if (detach_completion)
1772		complete(detach_completion);
1773}
1774
1775/**
1776 * create_worker - create a new workqueue worker
1777 * @pool: pool the new worker will belong to
1778 *
1779 * Create and start a new worker which is attached to @pool.
1780 *
1781 * CONTEXT:
1782 * Might sleep.  Does GFP_KERNEL allocations.
1783 *
1784 * Return:
1785 * Pointer to the newly created worker.
1786 */
1787static struct worker *create_worker(struct worker_pool *pool)
1788{
1789	struct worker *worker = NULL;
1790	int id = -1;
1791	char id_buf[16];
1792
1793	/* ID is needed to determine kthread name */
1794	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1795	if (id < 0)
1796		goto fail;
1797
1798	worker = alloc_worker(pool->node);
1799	if (!worker)
1800		goto fail;
1801
1802	worker->pool = pool;
1803	worker->id = id;
1804
1805	if (pool->cpu >= 0)
1806		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1807			 pool->attrs->nice < 0  ? "H" : "");
1808	else
1809		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1810
1811	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1812					      "kworker/%s", id_buf);
1813	if (IS_ERR(worker->task))
1814		goto fail;
1815
1816	set_user_nice(worker->task, pool->attrs->nice);
1817	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1818
1819	/* successful, attach the worker to the pool */
1820	worker_attach_to_pool(worker, pool);
1821
1822	/* start the newly created worker */
1823	spin_lock_irq(&pool->lock);
1824	worker->pool->nr_workers++;
1825	worker_enter_idle(worker);
1826	wake_up_process(worker->task);
1827	spin_unlock_irq(&pool->lock);
1828
1829	return worker;
1830
1831fail:
1832	if (id >= 0)
1833		ida_simple_remove(&pool->worker_ida, id);
1834	kfree(worker);
1835	return NULL;
1836}
1837
1838/**
1839 * destroy_worker - destroy a workqueue worker
1840 * @worker: worker to be destroyed
1841 *
1842 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1843 * be idle.
1844 *
1845 * CONTEXT:
1846 * spin_lock_irq(pool->lock).
1847 */
1848static void destroy_worker(struct worker *worker)
1849{
1850	struct worker_pool *pool = worker->pool;
1851
1852	lockdep_assert_held(&pool->lock);
1853
1854	/* sanity check frenzy */
1855	if (WARN_ON(worker->current_work) ||
1856	    WARN_ON(!list_empty(&worker->scheduled)) ||
1857	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1858		return;
1859
1860	pool->nr_workers--;
1861	pool->nr_idle--;
1862
1863	list_del_init(&worker->entry);
1864	worker->flags |= WORKER_DIE;
1865	wake_up_process(worker->task);
1866}
1867
1868static void idle_worker_timeout(struct timer_list *t)
1869{
1870	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1871
1872	spin_lock_irq(&pool->lock);
1873
1874	while (too_many_workers(pool)) {
1875		struct worker *worker;
1876		unsigned long expires;
1877
1878		/* idle_list is kept in LIFO order, check the last one */
1879		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1880		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1881
1882		if (time_before(jiffies, expires)) {
1883			mod_timer(&pool->idle_timer, expires);
1884			break;
1885		}
1886
1887		destroy_worker(worker);
1888	}
1889
1890	spin_unlock_irq(&pool->lock);
1891}
1892
1893static void send_mayday(struct work_struct *work)
1894{
1895	struct pool_workqueue *pwq = get_work_pwq(work);
1896	struct workqueue_struct *wq = pwq->wq;
1897
1898	lockdep_assert_held(&wq_mayday_lock);
1899
1900	if (!wq->rescuer)
1901		return;
1902
1903	/* mayday mayday mayday */
1904	if (list_empty(&pwq->mayday_node)) {
1905		/*
1906		 * If @pwq is for an unbound wq, its base ref may be put at
1907		 * any time due to an attribute change.  Pin @pwq until the
1908		 * rescuer is done with it.
1909		 */
1910		get_pwq(pwq);
1911		list_add_tail(&pwq->mayday_node, &wq->maydays);
1912		wake_up_process(wq->rescuer->task);
1913	}
1914}
1915
1916static void pool_mayday_timeout(struct timer_list *t)
1917{
1918	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1919	struct work_struct *work;
1920
1921	spin_lock_irq(&pool->lock);
1922	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1923
1924	if (need_to_create_worker(pool)) {
1925		/*
1926		 * We've been trying to create a new worker but
1927		 * haven't been successful.  We might be hitting an
1928		 * allocation deadlock.  Send distress signals to
1929		 * rescuers.
1930		 */
1931		list_for_each_entry(work, &pool->worklist, entry)
1932			send_mayday(work);
1933	}
1934
1935	spin_unlock(&wq_mayday_lock);
1936	spin_unlock_irq(&pool->lock);
1937
1938	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1939}
1940
1941/**
1942 * maybe_create_worker - create a new worker if necessary
1943 * @pool: pool to create a new worker for
1944 *
1945 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1946 * have at least one idle worker on return from this function.  If
1947 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1948 * sent to all rescuers with works scheduled on @pool to resolve
1949 * possible allocation deadlock.
1950 *
1951 * On return, need_to_create_worker() is guaranteed to be %false and
1952 * may_start_working() %true.
1953 *
1954 * LOCKING:
1955 * spin_lock_irq(pool->lock) which may be released and regrabbed
1956 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1957 * manager.
1958 */
1959static void maybe_create_worker(struct worker_pool *pool)
1960__releases(&pool->lock)
1961__acquires(&pool->lock)
1962{
1963restart:
1964	spin_unlock_irq(&pool->lock);
1965
1966	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1967	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1968
1969	while (true) {
1970		if (create_worker(pool) || !need_to_create_worker(pool))
1971			break;
1972
1973		schedule_timeout_interruptible(CREATE_COOLDOWN);
1974
1975		if (!need_to_create_worker(pool))
1976			break;
1977	}
1978
1979	del_timer_sync(&pool->mayday_timer);
1980	spin_lock_irq(&pool->lock);
1981	/*
1982	 * This is necessary even after a new worker was just successfully
1983	 * created as @pool->lock was dropped and the new worker might have
1984	 * already become busy.
1985	 */
1986	if (need_to_create_worker(pool))
1987		goto restart;
1988}
1989
1990/**
1991 * manage_workers - manage worker pool
1992 * @worker: self
1993 *
1994 * Assume the manager role and manage the worker pool @worker belongs
1995 * to.  At any given time, there can be only zero or one manager per
1996 * pool.  The exclusion is handled automatically by this function.
1997 *
1998 * The caller can safely start processing works on false return.  On
1999 * true return, it's guaranteed that need_to_create_worker() is false
2000 * and may_start_working() is true.
2001 *
2002 * CONTEXT:
2003 * spin_lock_irq(pool->lock) which may be released and regrabbed
2004 * multiple times.  Does GFP_KERNEL allocations.
2005 *
2006 * Return:
2007 * %false if the pool doesn't need management and the caller can safely
2008 * start processing works, %true if management function was performed and
2009 * the conditions that the caller verified before calling the function may
2010 * no longer be true.
2011 */
2012static bool manage_workers(struct worker *worker)
2013{
2014	struct worker_pool *pool = worker->pool;
2015
2016	if (pool->flags & POOL_MANAGER_ACTIVE)
2017		return false;
2018
2019	pool->flags |= POOL_MANAGER_ACTIVE;
2020	pool->manager = worker;
2021
2022	maybe_create_worker(pool);
2023
2024	pool->manager = NULL;
2025	pool->flags &= ~POOL_MANAGER_ACTIVE;
2026	wake_up(&wq_manager_wait);
2027	return true;
2028}
2029
2030/**
2031 * process_one_work - process single work
2032 * @worker: self
2033 * @work: work to process
2034 *
2035 * Process @work.  This function contains all the logics necessary to
2036 * process a single work including synchronization against and
2037 * interaction with other workers on the same cpu, queueing and
2038 * flushing.  As long as context requirement is met, any worker can
2039 * call this function to process a work.
2040 *
2041 * CONTEXT:
2042 * spin_lock_irq(pool->lock) which is released and regrabbed.
2043 */
2044static void process_one_work(struct worker *worker, struct work_struct *work)
2045__releases(&pool->lock)
2046__acquires(&pool->lock)
2047{
2048	struct pool_workqueue *pwq = get_work_pwq(work);
2049	struct worker_pool *pool = worker->pool;
2050	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2051	int work_color;
2052	struct worker *collision;
2053#ifdef CONFIG_LOCKDEP
2054	/*
2055	 * It is permissible to free the struct work_struct from
2056	 * inside the function that is called from it, this we need to
2057	 * take into account for lockdep too.  To avoid bogus "held
2058	 * lock freed" warnings as well as problems when looking into
2059	 * work->lockdep_map, make a copy and use that here.
2060	 */
2061	struct lockdep_map lockdep_map;
2062
2063	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2064#endif
2065	/* ensure we're on the correct CPU */
2066	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2067		     raw_smp_processor_id() != pool->cpu);
2068
2069	/*
2070	 * A single work shouldn't be executed concurrently by
2071	 * multiple workers on a single cpu.  Check whether anyone is
2072	 * already processing the work.  If so, defer the work to the
2073	 * currently executing one.
2074	 */
2075	collision = find_worker_executing_work(pool, work);
2076	if (unlikely(collision)) {
2077		move_linked_works(work, &collision->scheduled, NULL);
2078		return;
2079	}
2080
2081	/* claim and dequeue */
2082	debug_work_deactivate(work);
2083	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2084	worker->current_work = work;
2085	worker->current_func = work->func;
2086	worker->current_pwq = pwq;
2087	work_color = get_work_color(work);
2088
 
 
 
 
 
 
2089	list_del_init(&work->entry);
2090
2091	/*
2092	 * CPU intensive works don't participate in concurrency management.
2093	 * They're the scheduler's responsibility.  This takes @worker out
2094	 * of concurrency management and the next code block will chain
2095	 * execution of the pending work items.
2096	 */
2097	if (unlikely(cpu_intensive))
2098		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2099
2100	/*
2101	 * Wake up another worker if necessary.  The condition is always
2102	 * false for normal per-cpu workers since nr_running would always
2103	 * be >= 1 at this point.  This is used to chain execution of the
2104	 * pending work items for WORKER_NOT_RUNNING workers such as the
2105	 * UNBOUND and CPU_INTENSIVE ones.
2106	 */
2107	if (need_more_worker(pool))
2108		wake_up_worker(pool);
2109
2110	/*
2111	 * Record the last pool and clear PENDING which should be the last
2112	 * update to @work.  Also, do this inside @pool->lock so that
2113	 * PENDING and queued state changes happen together while IRQ is
2114	 * disabled.
2115	 */
2116	set_work_pool_and_clear_pending(work, pool->id);
2117
2118	spin_unlock_irq(&pool->lock);
2119
2120	lock_map_acquire(&pwq->wq->lockdep_map);
2121	lock_map_acquire(&lockdep_map);
2122	/*
2123	 * Strictly speaking we should mark the invariant state without holding
2124	 * any locks, that is, before these two lock_map_acquire()'s.
2125	 *
2126	 * However, that would result in:
2127	 *
2128	 *   A(W1)
2129	 *   WFC(C)
2130	 *		A(W1)
2131	 *		C(C)
2132	 *
2133	 * Which would create W1->C->W1 dependencies, even though there is no
2134	 * actual deadlock possible. There are two solutions, using a
2135	 * read-recursive acquire on the work(queue) 'locks', but this will then
2136	 * hit the lockdep limitation on recursive locks, or simply discard
2137	 * these locks.
2138	 *
2139	 * AFAICT there is no possible deadlock scenario between the
2140	 * flush_work() and complete() primitives (except for single-threaded
2141	 * workqueues), so hiding them isn't a problem.
2142	 */
2143	lockdep_invariant_state(true);
2144	trace_workqueue_execute_start(work);
2145	worker->current_func(work);
2146	/*
2147	 * While we must be careful to not use "work" after this, the trace
2148	 * point will only record its address.
2149	 */
2150	trace_workqueue_execute_end(work);
2151	lock_map_release(&lockdep_map);
2152	lock_map_release(&pwq->wq->lockdep_map);
2153
2154	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2155		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2156		       "     last function: %pf\n",
2157		       current->comm, preempt_count(), task_pid_nr(current),
2158		       worker->current_func);
2159		debug_show_held_locks(current);
2160		dump_stack();
2161	}
2162
2163	/*
2164	 * The following prevents a kworker from hogging CPU on !PREEMPT
2165	 * kernels, where a requeueing work item waiting for something to
2166	 * happen could deadlock with stop_machine as such work item could
2167	 * indefinitely requeue itself while all other CPUs are trapped in
2168	 * stop_machine. At the same time, report a quiescent RCU state so
2169	 * the same condition doesn't freeze RCU.
2170	 */
2171	cond_resched();
2172
2173	spin_lock_irq(&pool->lock);
2174
2175	/* clear cpu intensive status */
2176	if (unlikely(cpu_intensive))
2177		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2178
 
 
 
2179	/* we're done with it, release */
2180	hash_del(&worker->hentry);
2181	worker->current_work = NULL;
2182	worker->current_func = NULL;
2183	worker->current_pwq = NULL;
2184	worker->desc_valid = false;
2185	pwq_dec_nr_in_flight(pwq, work_color);
2186}
2187
2188/**
2189 * process_scheduled_works - process scheduled works
2190 * @worker: self
2191 *
2192 * Process all scheduled works.  Please note that the scheduled list
2193 * may change while processing a work, so this function repeatedly
2194 * fetches a work from the top and executes it.
2195 *
2196 * CONTEXT:
2197 * spin_lock_irq(pool->lock) which may be released and regrabbed
2198 * multiple times.
2199 */
2200static void process_scheduled_works(struct worker *worker)
2201{
2202	while (!list_empty(&worker->scheduled)) {
2203		struct work_struct *work = list_first_entry(&worker->scheduled,
2204						struct work_struct, entry);
2205		process_one_work(worker, work);
2206	}
2207}
2208
 
 
 
 
 
 
 
 
 
 
2209/**
2210 * worker_thread - the worker thread function
2211 * @__worker: self
2212 *
2213 * The worker thread function.  All workers belong to a worker_pool -
2214 * either a per-cpu one or dynamic unbound one.  These workers process all
2215 * work items regardless of their specific target workqueue.  The only
2216 * exception is work items which belong to workqueues with a rescuer which
2217 * will be explained in rescuer_thread().
2218 *
2219 * Return: 0
2220 */
2221static int worker_thread(void *__worker)
2222{
2223	struct worker *worker = __worker;
2224	struct worker_pool *pool = worker->pool;
2225
2226	/* tell the scheduler that this is a workqueue worker */
2227	worker->task->flags |= PF_WQ_WORKER;
2228woke_up:
2229	spin_lock_irq(&pool->lock);
2230
2231	/* am I supposed to die? */
2232	if (unlikely(worker->flags & WORKER_DIE)) {
2233		spin_unlock_irq(&pool->lock);
2234		WARN_ON_ONCE(!list_empty(&worker->entry));
2235		worker->task->flags &= ~PF_WQ_WORKER;
2236
2237		set_task_comm(worker->task, "kworker/dying");
2238		ida_simple_remove(&pool->worker_ida, worker->id);
2239		worker_detach_from_pool(worker, pool);
2240		kfree(worker);
2241		return 0;
2242	}
2243
2244	worker_leave_idle(worker);
2245recheck:
2246	/* no more worker necessary? */
2247	if (!need_more_worker(pool))
2248		goto sleep;
2249
2250	/* do we need to manage? */
2251	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2252		goto recheck;
2253
2254	/*
2255	 * ->scheduled list can only be filled while a worker is
2256	 * preparing to process a work or actually processing it.
2257	 * Make sure nobody diddled with it while I was sleeping.
2258	 */
2259	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2260
2261	/*
2262	 * Finish PREP stage.  We're guaranteed to have at least one idle
2263	 * worker or that someone else has already assumed the manager
2264	 * role.  This is where @worker starts participating in concurrency
2265	 * management if applicable and concurrency management is restored
2266	 * after being rebound.  See rebind_workers() for details.
2267	 */
2268	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2269
2270	do {
2271		struct work_struct *work =
2272			list_first_entry(&pool->worklist,
2273					 struct work_struct, entry);
2274
2275		pool->watchdog_ts = jiffies;
2276
2277		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2278			/* optimization path, not strictly necessary */
2279			process_one_work(worker, work);
2280			if (unlikely(!list_empty(&worker->scheduled)))
2281				process_scheduled_works(worker);
2282		} else {
2283			move_linked_works(work, &worker->scheduled, NULL);
2284			process_scheduled_works(worker);
2285		}
2286	} while (keep_working(pool));
2287
2288	worker_set_flags(worker, WORKER_PREP);
2289sleep:
2290	/*
2291	 * pool->lock is held and there's no work to process and no need to
2292	 * manage, sleep.  Workers are woken up only while holding
2293	 * pool->lock or from local cpu, so setting the current state
2294	 * before releasing pool->lock is enough to prevent losing any
2295	 * event.
2296	 */
2297	worker_enter_idle(worker);
2298	__set_current_state(TASK_IDLE);
2299	spin_unlock_irq(&pool->lock);
2300	schedule();
2301	goto woke_up;
2302}
2303
2304/**
2305 * rescuer_thread - the rescuer thread function
2306 * @__rescuer: self
2307 *
2308 * Workqueue rescuer thread function.  There's one rescuer for each
2309 * workqueue which has WQ_MEM_RECLAIM set.
2310 *
2311 * Regular work processing on a pool may block trying to create a new
2312 * worker which uses GFP_KERNEL allocation which has slight chance of
2313 * developing into deadlock if some works currently on the same queue
2314 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2315 * the problem rescuer solves.
2316 *
2317 * When such condition is possible, the pool summons rescuers of all
2318 * workqueues which have works queued on the pool and let them process
2319 * those works so that forward progress can be guaranteed.
2320 *
2321 * This should happen rarely.
2322 *
2323 * Return: 0
2324 */
2325static int rescuer_thread(void *__rescuer)
2326{
2327	struct worker *rescuer = __rescuer;
2328	struct workqueue_struct *wq = rescuer->rescue_wq;
2329	struct list_head *scheduled = &rescuer->scheduled;
2330	bool should_stop;
2331
2332	set_user_nice(current, RESCUER_NICE_LEVEL);
2333
2334	/*
2335	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2336	 * doesn't participate in concurrency management.
2337	 */
2338	rescuer->task->flags |= PF_WQ_WORKER;
2339repeat:
2340	set_current_state(TASK_IDLE);
2341
2342	/*
2343	 * By the time the rescuer is requested to stop, the workqueue
2344	 * shouldn't have any work pending, but @wq->maydays may still have
2345	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2346	 * all the work items before the rescuer got to them.  Go through
2347	 * @wq->maydays processing before acting on should_stop so that the
2348	 * list is always empty on exit.
2349	 */
2350	should_stop = kthread_should_stop();
2351
2352	/* see whether any pwq is asking for help */
2353	spin_lock_irq(&wq_mayday_lock);
2354
2355	while (!list_empty(&wq->maydays)) {
2356		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2357					struct pool_workqueue, mayday_node);
2358		struct worker_pool *pool = pwq->pool;
2359		struct work_struct *work, *n;
2360		bool first = true;
2361
2362		__set_current_state(TASK_RUNNING);
2363		list_del_init(&pwq->mayday_node);
2364
2365		spin_unlock_irq(&wq_mayday_lock);
2366
2367		worker_attach_to_pool(rescuer, pool);
2368
2369		spin_lock_irq(&pool->lock);
2370		rescuer->pool = pool;
2371
2372		/*
2373		 * Slurp in all works issued via this workqueue and
2374		 * process'em.
2375		 */
2376		WARN_ON_ONCE(!list_empty(scheduled));
2377		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2378			if (get_work_pwq(work) == pwq) {
2379				if (first)
2380					pool->watchdog_ts = jiffies;
2381				move_linked_works(work, scheduled, &n);
2382			}
2383			first = false;
2384		}
2385
2386		if (!list_empty(scheduled)) {
2387			process_scheduled_works(rescuer);
2388
2389			/*
2390			 * The above execution of rescued work items could
2391			 * have created more to rescue through
2392			 * pwq_activate_first_delayed() or chained
2393			 * queueing.  Let's put @pwq back on mayday list so
2394			 * that such back-to-back work items, which may be
2395			 * being used to relieve memory pressure, don't
2396			 * incur MAYDAY_INTERVAL delay inbetween.
2397			 */
2398			if (need_to_create_worker(pool)) {
2399				spin_lock(&wq_mayday_lock);
2400				get_pwq(pwq);
2401				list_move_tail(&pwq->mayday_node, &wq->maydays);
2402				spin_unlock(&wq_mayday_lock);
2403			}
2404		}
2405
2406		/*
2407		 * Put the reference grabbed by send_mayday().  @pool won't
2408		 * go away while we're still attached to it.
2409		 */
2410		put_pwq(pwq);
2411
2412		/*
2413		 * Leave this pool.  If need_more_worker() is %true, notify a
2414		 * regular worker; otherwise, we end up with 0 concurrency
2415		 * and stalling the execution.
2416		 */
2417		if (need_more_worker(pool))
2418			wake_up_worker(pool);
2419
2420		rescuer->pool = NULL;
2421		spin_unlock_irq(&pool->lock);
2422
2423		worker_detach_from_pool(rescuer, pool);
2424
2425		spin_lock_irq(&wq_mayday_lock);
2426	}
2427
2428	spin_unlock_irq(&wq_mayday_lock);
2429
2430	if (should_stop) {
2431		__set_current_state(TASK_RUNNING);
2432		rescuer->task->flags &= ~PF_WQ_WORKER;
2433		return 0;
2434	}
2435
2436	/* rescuers should never participate in concurrency management */
2437	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2438	schedule();
2439	goto repeat;
2440}
2441
2442/**
2443 * check_flush_dependency - check for flush dependency sanity
2444 * @target_wq: workqueue being flushed
2445 * @target_work: work item being flushed (NULL for workqueue flushes)
2446 *
2447 * %current is trying to flush the whole @target_wq or @target_work on it.
2448 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2449 * reclaiming memory or running on a workqueue which doesn't have
2450 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2451 * a deadlock.
2452 */
2453static void check_flush_dependency(struct workqueue_struct *target_wq,
2454				   struct work_struct *target_work)
2455{
2456	work_func_t target_func = target_work ? target_work->func : NULL;
2457	struct worker *worker;
2458
2459	if (target_wq->flags & WQ_MEM_RECLAIM)
2460		return;
2461
2462	worker = current_wq_worker();
2463
2464	WARN_ONCE(current->flags & PF_MEMALLOC,
2465		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2466		  current->pid, current->comm, target_wq->name, target_func);
2467	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2468			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2469		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2470		  worker->current_pwq->wq->name, worker->current_func,
2471		  target_wq->name, target_func);
2472}
2473
2474struct wq_barrier {
2475	struct work_struct	work;
2476	struct completion	done;
2477	struct task_struct	*task;	/* purely informational */
2478};
2479
2480static void wq_barrier_func(struct work_struct *work)
2481{
2482	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2483	complete(&barr->done);
2484}
2485
2486/**
2487 * insert_wq_barrier - insert a barrier work
2488 * @pwq: pwq to insert barrier into
2489 * @barr: wq_barrier to insert
2490 * @target: target work to attach @barr to
2491 * @worker: worker currently executing @target, NULL if @target is not executing
2492 *
2493 * @barr is linked to @target such that @barr is completed only after
2494 * @target finishes execution.  Please note that the ordering
2495 * guarantee is observed only with respect to @target and on the local
2496 * cpu.
2497 *
2498 * Currently, a queued barrier can't be canceled.  This is because
2499 * try_to_grab_pending() can't determine whether the work to be
2500 * grabbed is at the head of the queue and thus can't clear LINKED
2501 * flag of the previous work while there must be a valid next work
2502 * after a work with LINKED flag set.
2503 *
2504 * Note that when @worker is non-NULL, @target may be modified
2505 * underneath us, so we can't reliably determine pwq from @target.
2506 *
2507 * CONTEXT:
2508 * spin_lock_irq(pool->lock).
2509 */
2510static void insert_wq_barrier(struct pool_workqueue *pwq,
2511			      struct wq_barrier *barr,
2512			      struct work_struct *target, struct worker *worker)
2513{
2514	struct list_head *head;
2515	unsigned int linked = 0;
2516
2517	/*
2518	 * debugobject calls are safe here even with pool->lock locked
2519	 * as we know for sure that this will not trigger any of the
2520	 * checks and call back into the fixup functions where we
2521	 * might deadlock.
2522	 */
2523	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2524	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2525
2526	init_completion_map(&barr->done, &target->lockdep_map);
2527
2528	barr->task = current;
2529
2530	/*
2531	 * If @target is currently being executed, schedule the
2532	 * barrier to the worker; otherwise, put it after @target.
2533	 */
2534	if (worker)
2535		head = worker->scheduled.next;
2536	else {
2537		unsigned long *bits = work_data_bits(target);
2538
2539		head = target->entry.next;
2540		/* there can already be other linked works, inherit and set */
2541		linked = *bits & WORK_STRUCT_LINKED;
2542		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2543	}
2544
2545	debug_work_activate(&barr->work);
2546	insert_work(pwq, &barr->work, head,
2547		    work_color_to_flags(WORK_NO_COLOR) | linked);
2548}
2549
2550/**
2551 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2552 * @wq: workqueue being flushed
2553 * @flush_color: new flush color, < 0 for no-op
2554 * @work_color: new work color, < 0 for no-op
2555 *
2556 * Prepare pwqs for workqueue flushing.
2557 *
2558 * If @flush_color is non-negative, flush_color on all pwqs should be
2559 * -1.  If no pwq has in-flight commands at the specified color, all
2560 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2561 * has in flight commands, its pwq->flush_color is set to
2562 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2563 * wakeup logic is armed and %true is returned.
2564 *
2565 * The caller should have initialized @wq->first_flusher prior to
2566 * calling this function with non-negative @flush_color.  If
2567 * @flush_color is negative, no flush color update is done and %false
2568 * is returned.
2569 *
2570 * If @work_color is non-negative, all pwqs should have the same
2571 * work_color which is previous to @work_color and all will be
2572 * advanced to @work_color.
2573 *
2574 * CONTEXT:
2575 * mutex_lock(wq->mutex).
2576 *
2577 * Return:
2578 * %true if @flush_color >= 0 and there's something to flush.  %false
2579 * otherwise.
2580 */
2581static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2582				      int flush_color, int work_color)
2583{
2584	bool wait = false;
2585	struct pool_workqueue *pwq;
2586
2587	if (flush_color >= 0) {
2588		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2589		atomic_set(&wq->nr_pwqs_to_flush, 1);
2590	}
2591
2592	for_each_pwq(pwq, wq) {
2593		struct worker_pool *pool = pwq->pool;
2594
2595		spin_lock_irq(&pool->lock);
2596
2597		if (flush_color >= 0) {
2598			WARN_ON_ONCE(pwq->flush_color != -1);
2599
2600			if (pwq->nr_in_flight[flush_color]) {
2601				pwq->flush_color = flush_color;
2602				atomic_inc(&wq->nr_pwqs_to_flush);
2603				wait = true;
2604			}
2605		}
2606
2607		if (work_color >= 0) {
2608			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2609			pwq->work_color = work_color;
2610		}
2611
2612		spin_unlock_irq(&pool->lock);
2613	}
2614
2615	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2616		complete(&wq->first_flusher->done);
2617
2618	return wait;
2619}
2620
2621/**
2622 * flush_workqueue - ensure that any scheduled work has run to completion.
2623 * @wq: workqueue to flush
2624 *
2625 * This function sleeps until all work items which were queued on entry
2626 * have finished execution, but it is not livelocked by new incoming ones.
2627 */
2628void flush_workqueue(struct workqueue_struct *wq)
2629{
2630	struct wq_flusher this_flusher = {
2631		.list = LIST_HEAD_INIT(this_flusher.list),
2632		.flush_color = -1,
2633		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2634	};
2635	int next_color;
2636
2637	if (WARN_ON(!wq_online))
2638		return;
2639
 
 
 
2640	mutex_lock(&wq->mutex);
2641
2642	/*
2643	 * Start-to-wait phase
2644	 */
2645	next_color = work_next_color(wq->work_color);
2646
2647	if (next_color != wq->flush_color) {
2648		/*
2649		 * Color space is not full.  The current work_color
2650		 * becomes our flush_color and work_color is advanced
2651		 * by one.
2652		 */
2653		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2654		this_flusher.flush_color = wq->work_color;
2655		wq->work_color = next_color;
2656
2657		if (!wq->first_flusher) {
2658			/* no flush in progress, become the first flusher */
2659			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2660
2661			wq->first_flusher = &this_flusher;
2662
2663			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2664						       wq->work_color)) {
2665				/* nothing to flush, done */
2666				wq->flush_color = next_color;
2667				wq->first_flusher = NULL;
2668				goto out_unlock;
2669			}
2670		} else {
2671			/* wait in queue */
2672			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2673			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2674			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2675		}
2676	} else {
2677		/*
2678		 * Oops, color space is full, wait on overflow queue.
2679		 * The next flush completion will assign us
2680		 * flush_color and transfer to flusher_queue.
2681		 */
2682		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2683	}
2684
2685	check_flush_dependency(wq, NULL);
2686
2687	mutex_unlock(&wq->mutex);
2688
2689	wait_for_completion(&this_flusher.done);
2690
2691	/*
2692	 * Wake-up-and-cascade phase
2693	 *
2694	 * First flushers are responsible for cascading flushes and
2695	 * handling overflow.  Non-first flushers can simply return.
2696	 */
2697	if (wq->first_flusher != &this_flusher)
2698		return;
2699
2700	mutex_lock(&wq->mutex);
2701
2702	/* we might have raced, check again with mutex held */
2703	if (wq->first_flusher != &this_flusher)
2704		goto out_unlock;
2705
2706	wq->first_flusher = NULL;
2707
2708	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2709	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2710
2711	while (true) {
2712		struct wq_flusher *next, *tmp;
2713
2714		/* complete all the flushers sharing the current flush color */
2715		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2716			if (next->flush_color != wq->flush_color)
2717				break;
2718			list_del_init(&next->list);
2719			complete(&next->done);
2720		}
2721
2722		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2723			     wq->flush_color != work_next_color(wq->work_color));
2724
2725		/* this flush_color is finished, advance by one */
2726		wq->flush_color = work_next_color(wq->flush_color);
2727
2728		/* one color has been freed, handle overflow queue */
2729		if (!list_empty(&wq->flusher_overflow)) {
2730			/*
2731			 * Assign the same color to all overflowed
2732			 * flushers, advance work_color and append to
2733			 * flusher_queue.  This is the start-to-wait
2734			 * phase for these overflowed flushers.
2735			 */
2736			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2737				tmp->flush_color = wq->work_color;
2738
2739			wq->work_color = work_next_color(wq->work_color);
2740
2741			list_splice_tail_init(&wq->flusher_overflow,
2742					      &wq->flusher_queue);
2743			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2744		}
2745
2746		if (list_empty(&wq->flusher_queue)) {
2747			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2748			break;
2749		}
2750
2751		/*
2752		 * Need to flush more colors.  Make the next flusher
2753		 * the new first flusher and arm pwqs.
2754		 */
2755		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2756		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2757
2758		list_del_init(&next->list);
2759		wq->first_flusher = next;
2760
2761		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2762			break;
2763
2764		/*
2765		 * Meh... this color is already done, clear first
2766		 * flusher and repeat cascading.
2767		 */
2768		wq->first_flusher = NULL;
2769	}
2770
2771out_unlock:
2772	mutex_unlock(&wq->mutex);
2773}
2774EXPORT_SYMBOL(flush_workqueue);
2775
2776/**
2777 * drain_workqueue - drain a workqueue
2778 * @wq: workqueue to drain
2779 *
2780 * Wait until the workqueue becomes empty.  While draining is in progress,
2781 * only chain queueing is allowed.  IOW, only currently pending or running
2782 * work items on @wq can queue further work items on it.  @wq is flushed
2783 * repeatedly until it becomes empty.  The number of flushing is determined
2784 * by the depth of chaining and should be relatively short.  Whine if it
2785 * takes too long.
2786 */
2787void drain_workqueue(struct workqueue_struct *wq)
2788{
2789	unsigned int flush_cnt = 0;
2790	struct pool_workqueue *pwq;
2791
2792	/*
2793	 * __queue_work() needs to test whether there are drainers, is much
2794	 * hotter than drain_workqueue() and already looks at @wq->flags.
2795	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2796	 */
2797	mutex_lock(&wq->mutex);
2798	if (!wq->nr_drainers++)
2799		wq->flags |= __WQ_DRAINING;
2800	mutex_unlock(&wq->mutex);
2801reflush:
2802	flush_workqueue(wq);
2803
2804	mutex_lock(&wq->mutex);
2805
2806	for_each_pwq(pwq, wq) {
2807		bool drained;
2808
2809		spin_lock_irq(&pwq->pool->lock);
2810		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2811		spin_unlock_irq(&pwq->pool->lock);
2812
2813		if (drained)
2814			continue;
2815
2816		if (++flush_cnt == 10 ||
2817		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2818			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2819				wq->name, flush_cnt);
2820
2821		mutex_unlock(&wq->mutex);
2822		goto reflush;
2823	}
2824
2825	if (!--wq->nr_drainers)
2826		wq->flags &= ~__WQ_DRAINING;
2827	mutex_unlock(&wq->mutex);
2828}
2829EXPORT_SYMBOL_GPL(drain_workqueue);
2830
2831static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
 
2832{
2833	struct worker *worker = NULL;
2834	struct worker_pool *pool;
2835	struct pool_workqueue *pwq;
2836
2837	might_sleep();
2838
2839	local_irq_disable();
2840	pool = get_work_pool(work);
2841	if (!pool) {
2842		local_irq_enable();
2843		return false;
2844	}
2845
2846	spin_lock(&pool->lock);
2847	/* see the comment in try_to_grab_pending() with the same code */
2848	pwq = get_work_pwq(work);
2849	if (pwq) {
2850		if (unlikely(pwq->pool != pool))
2851			goto already_gone;
2852	} else {
2853		worker = find_worker_executing_work(pool, work);
2854		if (!worker)
2855			goto already_gone;
2856		pwq = worker->current_pwq;
2857	}
2858
2859	check_flush_dependency(pwq->wq, work);
2860
2861	insert_wq_barrier(pwq, barr, work, worker);
2862	spin_unlock_irq(&pool->lock);
2863
2864	/*
2865	 * Force a lock recursion deadlock when using flush_work() inside a
2866	 * single-threaded or rescuer equipped workqueue.
2867	 *
2868	 * For single threaded workqueues the deadlock happens when the work
2869	 * is after the work issuing the flush_work(). For rescuer equipped
2870	 * workqueues the deadlock happens when the rescuer stalls, blocking
2871	 * forward progress.
2872	 */
2873	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
 
2874		lock_map_acquire(&pwq->wq->lockdep_map);
2875		lock_map_release(&pwq->wq->lockdep_map);
2876	}
2877
2878	return true;
2879already_gone:
2880	spin_unlock_irq(&pool->lock);
 
2881	return false;
2882}
2883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2884/**
2885 * flush_work - wait for a work to finish executing the last queueing instance
2886 * @work: the work to flush
2887 *
2888 * Wait until @work has finished execution.  @work is guaranteed to be idle
2889 * on return if it hasn't been requeued since flush started.
2890 *
2891 * Return:
2892 * %true if flush_work() waited for the work to finish execution,
2893 * %false if it was already idle.
2894 */
2895bool flush_work(struct work_struct *work)
2896{
2897	struct wq_barrier barr;
2898
2899	if (WARN_ON(!wq_online))
2900		return false;
2901
2902	if (start_flush_work(work, &barr)) {
2903		wait_for_completion(&barr.done);
2904		destroy_work_on_stack(&barr.work);
2905		return true;
2906	} else {
2907		return false;
2908	}
2909}
2910EXPORT_SYMBOL_GPL(flush_work);
2911
2912struct cwt_wait {
2913	wait_queue_entry_t		wait;
2914	struct work_struct	*work;
2915};
2916
2917static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2918{
2919	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2920
2921	if (cwait->work != key)
2922		return 0;
2923	return autoremove_wake_function(wait, mode, sync, key);
2924}
2925
2926static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2927{
2928	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2929	unsigned long flags;
2930	int ret;
2931
2932	do {
2933		ret = try_to_grab_pending(work, is_dwork, &flags);
2934		/*
2935		 * If someone else is already canceling, wait for it to
2936		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2937		 * because we may get scheduled between @work's completion
2938		 * and the other canceling task resuming and clearing
2939		 * CANCELING - flush_work() will return false immediately
2940		 * as @work is no longer busy, try_to_grab_pending() will
2941		 * return -ENOENT as @work is still being canceled and the
2942		 * other canceling task won't be able to clear CANCELING as
2943		 * we're hogging the CPU.
2944		 *
2945		 * Let's wait for completion using a waitqueue.  As this
2946		 * may lead to the thundering herd problem, use a custom
2947		 * wake function which matches @work along with exclusive
2948		 * wait and wakeup.
2949		 */
2950		if (unlikely(ret == -ENOENT)) {
2951			struct cwt_wait cwait;
2952
2953			init_wait(&cwait.wait);
2954			cwait.wait.func = cwt_wakefn;
2955			cwait.work = work;
2956
2957			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2958						  TASK_UNINTERRUPTIBLE);
2959			if (work_is_canceling(work))
2960				schedule();
2961			finish_wait(&cancel_waitq, &cwait.wait);
2962		}
2963	} while (unlikely(ret < 0));
2964
2965	/* tell other tasks trying to grab @work to back off */
2966	mark_work_canceling(work);
2967	local_irq_restore(flags);
2968
2969	/*
2970	 * This allows canceling during early boot.  We know that @work
2971	 * isn't executing.
2972	 */
2973	if (wq_online)
2974		flush_work(work);
2975
2976	clear_work_data(work);
2977
2978	/*
2979	 * Paired with prepare_to_wait() above so that either
2980	 * waitqueue_active() is visible here or !work_is_canceling() is
2981	 * visible there.
2982	 */
2983	smp_mb();
2984	if (waitqueue_active(&cancel_waitq))
2985		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2986
2987	return ret;
2988}
2989
2990/**
2991 * cancel_work_sync - cancel a work and wait for it to finish
2992 * @work: the work to cancel
2993 *
2994 * Cancel @work and wait for its execution to finish.  This function
2995 * can be used even if the work re-queues itself or migrates to
2996 * another workqueue.  On return from this function, @work is
2997 * guaranteed to be not pending or executing on any CPU.
2998 *
2999 * cancel_work_sync(&delayed_work->work) must not be used for
3000 * delayed_work's.  Use cancel_delayed_work_sync() instead.
3001 *
3002 * The caller must ensure that the workqueue on which @work was last
3003 * queued can't be destroyed before this function returns.
3004 *
3005 * Return:
3006 * %true if @work was pending, %false otherwise.
3007 */
3008bool cancel_work_sync(struct work_struct *work)
3009{
3010	return __cancel_work_timer(work, false);
3011}
3012EXPORT_SYMBOL_GPL(cancel_work_sync);
3013
3014/**
3015 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3016 * @dwork: the delayed work to flush
3017 *
3018 * Delayed timer is cancelled and the pending work is queued for
3019 * immediate execution.  Like flush_work(), this function only
3020 * considers the last queueing instance of @dwork.
3021 *
3022 * Return:
3023 * %true if flush_work() waited for the work to finish execution,
3024 * %false if it was already idle.
3025 */
3026bool flush_delayed_work(struct delayed_work *dwork)
3027{
3028	local_irq_disable();
3029	if (del_timer_sync(&dwork->timer))
3030		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3031	local_irq_enable();
3032	return flush_work(&dwork->work);
3033}
3034EXPORT_SYMBOL(flush_delayed_work);
3035
3036/**
3037 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3038 * @rwork: the rcu work to flush
3039 *
3040 * Return:
3041 * %true if flush_rcu_work() waited for the work to finish execution,
3042 * %false if it was already idle.
3043 */
3044bool flush_rcu_work(struct rcu_work *rwork)
3045{
3046	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3047		rcu_barrier();
3048		flush_work(&rwork->work);
3049		return true;
3050	} else {
3051		return flush_work(&rwork->work);
3052	}
3053}
3054EXPORT_SYMBOL(flush_rcu_work);
3055
3056static bool __cancel_work(struct work_struct *work, bool is_dwork)
3057{
3058	unsigned long flags;
3059	int ret;
3060
3061	do {
3062		ret = try_to_grab_pending(work, is_dwork, &flags);
3063	} while (unlikely(ret == -EAGAIN));
3064
3065	if (unlikely(ret < 0))
3066		return false;
3067
3068	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3069	local_irq_restore(flags);
3070	return ret;
3071}
3072
3073/**
3074 * cancel_delayed_work - cancel a delayed work
3075 * @dwork: delayed_work to cancel
3076 *
3077 * Kill off a pending delayed_work.
3078 *
3079 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3080 * pending.
3081 *
3082 * Note:
3083 * The work callback function may still be running on return, unless
3084 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3085 * use cancel_delayed_work_sync() to wait on it.
3086 *
3087 * This function is safe to call from any context including IRQ handler.
3088 */
3089bool cancel_delayed_work(struct delayed_work *dwork)
3090{
3091	return __cancel_work(&dwork->work, true);
3092}
3093EXPORT_SYMBOL(cancel_delayed_work);
3094
3095/**
3096 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3097 * @dwork: the delayed work cancel
3098 *
3099 * This is cancel_work_sync() for delayed works.
3100 *
3101 * Return:
3102 * %true if @dwork was pending, %false otherwise.
3103 */
3104bool cancel_delayed_work_sync(struct delayed_work *dwork)
3105{
3106	return __cancel_work_timer(&dwork->work, true);
3107}
3108EXPORT_SYMBOL(cancel_delayed_work_sync);
3109
3110/**
3111 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3112 * @func: the function to call
3113 *
3114 * schedule_on_each_cpu() executes @func on each online CPU using the
3115 * system workqueue and blocks until all CPUs have completed.
3116 * schedule_on_each_cpu() is very slow.
3117 *
3118 * Return:
3119 * 0 on success, -errno on failure.
3120 */
3121int schedule_on_each_cpu(work_func_t func)
3122{
3123	int cpu;
3124	struct work_struct __percpu *works;
3125
3126	works = alloc_percpu(struct work_struct);
3127	if (!works)
3128		return -ENOMEM;
3129
3130	get_online_cpus();
3131
3132	for_each_online_cpu(cpu) {
3133		struct work_struct *work = per_cpu_ptr(works, cpu);
3134
3135		INIT_WORK(work, func);
3136		schedule_work_on(cpu, work);
3137	}
3138
3139	for_each_online_cpu(cpu)
3140		flush_work(per_cpu_ptr(works, cpu));
3141
3142	put_online_cpus();
3143	free_percpu(works);
3144	return 0;
3145}
3146
3147/**
3148 * execute_in_process_context - reliably execute the routine with user context
3149 * @fn:		the function to execute
3150 * @ew:		guaranteed storage for the execute work structure (must
3151 *		be available when the work executes)
3152 *
3153 * Executes the function immediately if process context is available,
3154 * otherwise schedules the function for delayed execution.
3155 *
3156 * Return:	0 - function was executed
3157 *		1 - function was scheduled for execution
3158 */
3159int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3160{
3161	if (!in_interrupt()) {
3162		fn(&ew->work);
3163		return 0;
3164	}
3165
3166	INIT_WORK(&ew->work, fn);
3167	schedule_work(&ew->work);
3168
3169	return 1;
3170}
3171EXPORT_SYMBOL_GPL(execute_in_process_context);
3172
3173/**
3174 * free_workqueue_attrs - free a workqueue_attrs
3175 * @attrs: workqueue_attrs to free
3176 *
3177 * Undo alloc_workqueue_attrs().
3178 */
3179void free_workqueue_attrs(struct workqueue_attrs *attrs)
3180{
3181	if (attrs) {
3182		free_cpumask_var(attrs->cpumask);
3183		kfree(attrs);
3184	}
3185}
3186
3187/**
3188 * alloc_workqueue_attrs - allocate a workqueue_attrs
3189 * @gfp_mask: allocation mask to use
3190 *
3191 * Allocate a new workqueue_attrs, initialize with default settings and
3192 * return it.
3193 *
3194 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3195 */
3196struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3197{
3198	struct workqueue_attrs *attrs;
3199
3200	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3201	if (!attrs)
3202		goto fail;
3203	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3204		goto fail;
3205
3206	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3207	return attrs;
3208fail:
3209	free_workqueue_attrs(attrs);
3210	return NULL;
3211}
3212
3213static void copy_workqueue_attrs(struct workqueue_attrs *to,
3214				 const struct workqueue_attrs *from)
3215{
3216	to->nice = from->nice;
3217	cpumask_copy(to->cpumask, from->cpumask);
3218	/*
3219	 * Unlike hash and equality test, this function doesn't ignore
3220	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3221	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3222	 */
3223	to->no_numa = from->no_numa;
3224}
3225
3226/* hash value of the content of @attr */
3227static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3228{
3229	u32 hash = 0;
3230
3231	hash = jhash_1word(attrs->nice, hash);
3232	hash = jhash(cpumask_bits(attrs->cpumask),
3233		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3234	return hash;
3235}
3236
3237/* content equality test */
3238static bool wqattrs_equal(const struct workqueue_attrs *a,
3239			  const struct workqueue_attrs *b)
3240{
3241	if (a->nice != b->nice)
3242		return false;
3243	if (!cpumask_equal(a->cpumask, b->cpumask))
3244		return false;
3245	return true;
3246}
3247
3248/**
3249 * init_worker_pool - initialize a newly zalloc'd worker_pool
3250 * @pool: worker_pool to initialize
3251 *
3252 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3253 *
3254 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3255 * inside @pool proper are initialized and put_unbound_pool() can be called
3256 * on @pool safely to release it.
3257 */
3258static int init_worker_pool(struct worker_pool *pool)
3259{
3260	spin_lock_init(&pool->lock);
3261	pool->id = -1;
3262	pool->cpu = -1;
3263	pool->node = NUMA_NO_NODE;
3264	pool->flags |= POOL_DISASSOCIATED;
3265	pool->watchdog_ts = jiffies;
3266	INIT_LIST_HEAD(&pool->worklist);
3267	INIT_LIST_HEAD(&pool->idle_list);
3268	hash_init(pool->busy_hash);
3269
3270	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3271
3272	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3273
3274	mutex_init(&pool->attach_mutex);
3275	INIT_LIST_HEAD(&pool->workers);
3276
3277	ida_init(&pool->worker_ida);
3278	INIT_HLIST_NODE(&pool->hash_node);
3279	pool->refcnt = 1;
3280
3281	/* shouldn't fail above this point */
3282	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3283	if (!pool->attrs)
3284		return -ENOMEM;
3285	return 0;
3286}
3287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3288static void rcu_free_wq(struct rcu_head *rcu)
3289{
3290	struct workqueue_struct *wq =
3291		container_of(rcu, struct workqueue_struct, rcu);
3292
 
 
3293	if (!(wq->flags & WQ_UNBOUND))
3294		free_percpu(wq->cpu_pwqs);
3295	else
3296		free_workqueue_attrs(wq->unbound_attrs);
3297
3298	kfree(wq->rescuer);
3299	kfree(wq);
3300}
3301
3302static void rcu_free_pool(struct rcu_head *rcu)
3303{
3304	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3305
3306	ida_destroy(&pool->worker_ida);
3307	free_workqueue_attrs(pool->attrs);
3308	kfree(pool);
3309}
3310
3311/**
3312 * put_unbound_pool - put a worker_pool
3313 * @pool: worker_pool to put
3314 *
3315 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3316 * safe manner.  get_unbound_pool() calls this function on its failure path
3317 * and this function should be able to release pools which went through,
3318 * successfully or not, init_worker_pool().
3319 *
3320 * Should be called with wq_pool_mutex held.
3321 */
3322static void put_unbound_pool(struct worker_pool *pool)
3323{
3324	DECLARE_COMPLETION_ONSTACK(detach_completion);
3325	struct worker *worker;
3326
3327	lockdep_assert_held(&wq_pool_mutex);
3328
3329	if (--pool->refcnt)
3330		return;
3331
3332	/* sanity checks */
3333	if (WARN_ON(!(pool->cpu < 0)) ||
3334	    WARN_ON(!list_empty(&pool->worklist)))
3335		return;
3336
3337	/* release id and unhash */
3338	if (pool->id >= 0)
3339		idr_remove(&worker_pool_idr, pool->id);
3340	hash_del(&pool->hash_node);
3341
3342	/*
3343	 * Become the manager and destroy all workers.  This prevents
3344	 * @pool's workers from blocking on attach_mutex.  We're the last
3345	 * manager and @pool gets freed with the flag set.
3346	 */
3347	spin_lock_irq(&pool->lock);
3348	wait_event_lock_irq(wq_manager_wait,
3349			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3350	pool->flags |= POOL_MANAGER_ACTIVE;
3351
3352	while ((worker = first_idle_worker(pool)))
3353		destroy_worker(worker);
3354	WARN_ON(pool->nr_workers || pool->nr_idle);
3355	spin_unlock_irq(&pool->lock);
3356
3357	mutex_lock(&pool->attach_mutex);
3358	if (!list_empty(&pool->workers))
3359		pool->detach_completion = &detach_completion;
3360	mutex_unlock(&pool->attach_mutex);
3361
3362	if (pool->detach_completion)
3363		wait_for_completion(pool->detach_completion);
3364
3365	/* shut down the timers */
3366	del_timer_sync(&pool->idle_timer);
3367	del_timer_sync(&pool->mayday_timer);
3368
3369	/* sched-RCU protected to allow dereferences from get_work_pool() */
3370	call_rcu_sched(&pool->rcu, rcu_free_pool);
3371}
3372
3373/**
3374 * get_unbound_pool - get a worker_pool with the specified attributes
3375 * @attrs: the attributes of the worker_pool to get
3376 *
3377 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3378 * reference count and return it.  If there already is a matching
3379 * worker_pool, it will be used; otherwise, this function attempts to
3380 * create a new one.
3381 *
3382 * Should be called with wq_pool_mutex held.
3383 *
3384 * Return: On success, a worker_pool with the same attributes as @attrs.
3385 * On failure, %NULL.
3386 */
3387static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3388{
3389	u32 hash = wqattrs_hash(attrs);
3390	struct worker_pool *pool;
3391	int node;
3392	int target_node = NUMA_NO_NODE;
3393
3394	lockdep_assert_held(&wq_pool_mutex);
3395
3396	/* do we already have a matching pool? */
3397	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3398		if (wqattrs_equal(pool->attrs, attrs)) {
3399			pool->refcnt++;
3400			return pool;
3401		}
3402	}
3403
3404	/* if cpumask is contained inside a NUMA node, we belong to that node */
3405	if (wq_numa_enabled) {
3406		for_each_node(node) {
3407			if (cpumask_subset(attrs->cpumask,
3408					   wq_numa_possible_cpumask[node])) {
3409				target_node = node;
3410				break;
3411			}
3412		}
3413	}
3414
3415	/* nope, create a new one */
3416	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3417	if (!pool || init_worker_pool(pool) < 0)
3418		goto fail;
3419
3420	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3421	copy_workqueue_attrs(pool->attrs, attrs);
3422	pool->node = target_node;
3423
3424	/*
3425	 * no_numa isn't a worker_pool attribute, always clear it.  See
3426	 * 'struct workqueue_attrs' comments for detail.
3427	 */
3428	pool->attrs->no_numa = false;
3429
3430	if (worker_pool_assign_id(pool) < 0)
3431		goto fail;
3432
3433	/* create and start the initial worker */
3434	if (wq_online && !create_worker(pool))
3435		goto fail;
3436
3437	/* install */
3438	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3439
3440	return pool;
3441fail:
3442	if (pool)
3443		put_unbound_pool(pool);
3444	return NULL;
3445}
3446
3447static void rcu_free_pwq(struct rcu_head *rcu)
3448{
3449	kmem_cache_free(pwq_cache,
3450			container_of(rcu, struct pool_workqueue, rcu));
3451}
3452
3453/*
3454 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3455 * and needs to be destroyed.
3456 */
3457static void pwq_unbound_release_workfn(struct work_struct *work)
3458{
3459	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3460						  unbound_release_work);
3461	struct workqueue_struct *wq = pwq->wq;
3462	struct worker_pool *pool = pwq->pool;
3463	bool is_last;
3464
3465	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3466		return;
3467
3468	mutex_lock(&wq->mutex);
3469	list_del_rcu(&pwq->pwqs_node);
3470	is_last = list_empty(&wq->pwqs);
3471	mutex_unlock(&wq->mutex);
3472
3473	mutex_lock(&wq_pool_mutex);
3474	put_unbound_pool(pool);
3475	mutex_unlock(&wq_pool_mutex);
3476
3477	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3478
3479	/*
3480	 * If we're the last pwq going away, @wq is already dead and no one
3481	 * is gonna access it anymore.  Schedule RCU free.
3482	 */
3483	if (is_last)
3484		call_rcu_sched(&wq->rcu, rcu_free_wq);
 
 
3485}
3486
3487/**
3488 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3489 * @pwq: target pool_workqueue
3490 *
3491 * If @pwq isn't freezing, set @pwq->max_active to the associated
3492 * workqueue's saved_max_active and activate delayed work items
3493 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3494 */
3495static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3496{
3497	struct workqueue_struct *wq = pwq->wq;
3498	bool freezable = wq->flags & WQ_FREEZABLE;
3499	unsigned long flags;
3500
3501	/* for @wq->saved_max_active */
3502	lockdep_assert_held(&wq->mutex);
3503
3504	/* fast exit for non-freezable wqs */
3505	if (!freezable && pwq->max_active == wq->saved_max_active)
3506		return;
3507
3508	/* this function can be called during early boot w/ irq disabled */
3509	spin_lock_irqsave(&pwq->pool->lock, flags);
3510
3511	/*
3512	 * During [un]freezing, the caller is responsible for ensuring that
3513	 * this function is called at least once after @workqueue_freezing
3514	 * is updated and visible.
3515	 */
3516	if (!freezable || !workqueue_freezing) {
3517		pwq->max_active = wq->saved_max_active;
3518
3519		while (!list_empty(&pwq->delayed_works) &&
3520		       pwq->nr_active < pwq->max_active)
3521			pwq_activate_first_delayed(pwq);
3522
3523		/*
3524		 * Need to kick a worker after thawed or an unbound wq's
3525		 * max_active is bumped.  It's a slow path.  Do it always.
3526		 */
3527		wake_up_worker(pwq->pool);
3528	} else {
3529		pwq->max_active = 0;
3530	}
3531
3532	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3533}
3534
3535/* initialize newly alloced @pwq which is associated with @wq and @pool */
3536static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3537		     struct worker_pool *pool)
3538{
3539	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3540
3541	memset(pwq, 0, sizeof(*pwq));
3542
3543	pwq->pool = pool;
3544	pwq->wq = wq;
3545	pwq->flush_color = -1;
3546	pwq->refcnt = 1;
3547	INIT_LIST_HEAD(&pwq->delayed_works);
3548	INIT_LIST_HEAD(&pwq->pwqs_node);
3549	INIT_LIST_HEAD(&pwq->mayday_node);
3550	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3551}
3552
3553/* sync @pwq with the current state of its associated wq and link it */
3554static void link_pwq(struct pool_workqueue *pwq)
3555{
3556	struct workqueue_struct *wq = pwq->wq;
3557
3558	lockdep_assert_held(&wq->mutex);
3559
3560	/* may be called multiple times, ignore if already linked */
3561	if (!list_empty(&pwq->pwqs_node))
3562		return;
3563
3564	/* set the matching work_color */
3565	pwq->work_color = wq->work_color;
3566
3567	/* sync max_active to the current setting */
3568	pwq_adjust_max_active(pwq);
3569
3570	/* link in @pwq */
3571	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3572}
3573
3574/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3575static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3576					const struct workqueue_attrs *attrs)
3577{
3578	struct worker_pool *pool;
3579	struct pool_workqueue *pwq;
3580
3581	lockdep_assert_held(&wq_pool_mutex);
3582
3583	pool = get_unbound_pool(attrs);
3584	if (!pool)
3585		return NULL;
3586
3587	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3588	if (!pwq) {
3589		put_unbound_pool(pool);
3590		return NULL;
3591	}
3592
3593	init_pwq(pwq, wq, pool);
3594	return pwq;
3595}
3596
3597/**
3598 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3599 * @attrs: the wq_attrs of the default pwq of the target workqueue
3600 * @node: the target NUMA node
3601 * @cpu_going_down: if >= 0, the CPU to consider as offline
3602 * @cpumask: outarg, the resulting cpumask
3603 *
3604 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3605 * @cpu_going_down is >= 0, that cpu is considered offline during
3606 * calculation.  The result is stored in @cpumask.
3607 *
3608 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3609 * enabled and @node has online CPUs requested by @attrs, the returned
3610 * cpumask is the intersection of the possible CPUs of @node and
3611 * @attrs->cpumask.
3612 *
3613 * The caller is responsible for ensuring that the cpumask of @node stays
3614 * stable.
3615 *
3616 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3617 * %false if equal.
3618 */
3619static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3620				 int cpu_going_down, cpumask_t *cpumask)
3621{
3622	if (!wq_numa_enabled || attrs->no_numa)
3623		goto use_dfl;
3624
3625	/* does @node have any online CPUs @attrs wants? */
3626	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3627	if (cpu_going_down >= 0)
3628		cpumask_clear_cpu(cpu_going_down, cpumask);
3629
3630	if (cpumask_empty(cpumask))
3631		goto use_dfl;
3632
3633	/* yeap, return possible CPUs in @node that @attrs wants */
3634	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3635
3636	if (cpumask_empty(cpumask)) {
3637		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3638				"possible intersect\n");
3639		return false;
3640	}
3641
3642	return !cpumask_equal(cpumask, attrs->cpumask);
3643
3644use_dfl:
3645	cpumask_copy(cpumask, attrs->cpumask);
3646	return false;
3647}
3648
3649/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3650static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3651						   int node,
3652						   struct pool_workqueue *pwq)
3653{
3654	struct pool_workqueue *old_pwq;
3655
3656	lockdep_assert_held(&wq_pool_mutex);
3657	lockdep_assert_held(&wq->mutex);
3658
3659	/* link_pwq() can handle duplicate calls */
3660	link_pwq(pwq);
3661
3662	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3663	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3664	return old_pwq;
3665}
3666
3667/* context to store the prepared attrs & pwqs before applying */
3668struct apply_wqattrs_ctx {
3669	struct workqueue_struct	*wq;		/* target workqueue */
3670	struct workqueue_attrs	*attrs;		/* attrs to apply */
3671	struct list_head	list;		/* queued for batching commit */
3672	struct pool_workqueue	*dfl_pwq;
3673	struct pool_workqueue	*pwq_tbl[];
3674};
3675
3676/* free the resources after success or abort */
3677static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3678{
3679	if (ctx) {
3680		int node;
3681
3682		for_each_node(node)
3683			put_pwq_unlocked(ctx->pwq_tbl[node]);
3684		put_pwq_unlocked(ctx->dfl_pwq);
3685
3686		free_workqueue_attrs(ctx->attrs);
3687
3688		kfree(ctx);
3689	}
3690}
3691
3692/* allocate the attrs and pwqs for later installation */
3693static struct apply_wqattrs_ctx *
3694apply_wqattrs_prepare(struct workqueue_struct *wq,
3695		      const struct workqueue_attrs *attrs)
3696{
3697	struct apply_wqattrs_ctx *ctx;
3698	struct workqueue_attrs *new_attrs, *tmp_attrs;
3699	int node;
3700
3701	lockdep_assert_held(&wq_pool_mutex);
3702
3703	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3704		      GFP_KERNEL);
3705
3706	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3707	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3708	if (!ctx || !new_attrs || !tmp_attrs)
3709		goto out_free;
3710
3711	/*
3712	 * Calculate the attrs of the default pwq.
3713	 * If the user configured cpumask doesn't overlap with the
3714	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3715	 */
3716	copy_workqueue_attrs(new_attrs, attrs);
3717	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3718	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3719		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3720
3721	/*
3722	 * We may create multiple pwqs with differing cpumasks.  Make a
3723	 * copy of @new_attrs which will be modified and used to obtain
3724	 * pools.
3725	 */
3726	copy_workqueue_attrs(tmp_attrs, new_attrs);
3727
3728	/*
3729	 * If something goes wrong during CPU up/down, we'll fall back to
3730	 * the default pwq covering whole @attrs->cpumask.  Always create
3731	 * it even if we don't use it immediately.
3732	 */
3733	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3734	if (!ctx->dfl_pwq)
3735		goto out_free;
3736
3737	for_each_node(node) {
3738		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3739			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3740			if (!ctx->pwq_tbl[node])
3741				goto out_free;
3742		} else {
3743			ctx->dfl_pwq->refcnt++;
3744			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3745		}
3746	}
3747
3748	/* save the user configured attrs and sanitize it. */
3749	copy_workqueue_attrs(new_attrs, attrs);
3750	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3751	ctx->attrs = new_attrs;
3752
3753	ctx->wq = wq;
3754	free_workqueue_attrs(tmp_attrs);
3755	return ctx;
3756
3757out_free:
3758	free_workqueue_attrs(tmp_attrs);
3759	free_workqueue_attrs(new_attrs);
3760	apply_wqattrs_cleanup(ctx);
3761	return NULL;
3762}
3763
3764/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3765static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3766{
3767	int node;
3768
3769	/* all pwqs have been created successfully, let's install'em */
3770	mutex_lock(&ctx->wq->mutex);
3771
3772	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3773
3774	/* save the previous pwq and install the new one */
3775	for_each_node(node)
3776		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3777							  ctx->pwq_tbl[node]);
3778
3779	/* @dfl_pwq might not have been used, ensure it's linked */
3780	link_pwq(ctx->dfl_pwq);
3781	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3782
3783	mutex_unlock(&ctx->wq->mutex);
3784}
3785
3786static void apply_wqattrs_lock(void)
3787{
3788	/* CPUs should stay stable across pwq creations and installations */
3789	get_online_cpus();
3790	mutex_lock(&wq_pool_mutex);
3791}
3792
3793static void apply_wqattrs_unlock(void)
3794{
3795	mutex_unlock(&wq_pool_mutex);
3796	put_online_cpus();
3797}
3798
3799static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3800					const struct workqueue_attrs *attrs)
3801{
3802	struct apply_wqattrs_ctx *ctx;
3803
3804	/* only unbound workqueues can change attributes */
3805	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3806		return -EINVAL;
3807
3808	/* creating multiple pwqs breaks ordering guarantee */
3809	if (!list_empty(&wq->pwqs)) {
3810		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3811			return -EINVAL;
3812
3813		wq->flags &= ~__WQ_ORDERED;
3814	}
3815
3816	ctx = apply_wqattrs_prepare(wq, attrs);
3817	if (!ctx)
3818		return -ENOMEM;
3819
3820	/* the ctx has been prepared successfully, let's commit it */
3821	apply_wqattrs_commit(ctx);
3822	apply_wqattrs_cleanup(ctx);
3823
3824	return 0;
3825}
3826
3827/**
3828 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3829 * @wq: the target workqueue
3830 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3831 *
3832 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3833 * machines, this function maps a separate pwq to each NUMA node with
3834 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3835 * NUMA node it was issued on.  Older pwqs are released as in-flight work
3836 * items finish.  Note that a work item which repeatedly requeues itself
3837 * back-to-back will stay on its current pwq.
3838 *
3839 * Performs GFP_KERNEL allocations.
3840 *
 
 
3841 * Return: 0 on success and -errno on failure.
3842 */
3843int apply_workqueue_attrs(struct workqueue_struct *wq,
3844			  const struct workqueue_attrs *attrs)
3845{
3846	int ret;
3847
3848	apply_wqattrs_lock();
 
 
3849	ret = apply_workqueue_attrs_locked(wq, attrs);
3850	apply_wqattrs_unlock();
3851
3852	return ret;
3853}
3854EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
3855
3856/**
3857 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3858 * @wq: the target workqueue
3859 * @cpu: the CPU coming up or going down
3860 * @online: whether @cpu is coming up or going down
3861 *
3862 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3863 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3864 * @wq accordingly.
3865 *
3866 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3867 * falls back to @wq->dfl_pwq which may not be optimal but is always
3868 * correct.
3869 *
3870 * Note that when the last allowed CPU of a NUMA node goes offline for a
3871 * workqueue with a cpumask spanning multiple nodes, the workers which were
3872 * already executing the work items for the workqueue will lose their CPU
3873 * affinity and may execute on any CPU.  This is similar to how per-cpu
3874 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3875 * affinity, it's the user's responsibility to flush the work item from
3876 * CPU_DOWN_PREPARE.
3877 */
3878static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3879				   bool online)
3880{
3881	int node = cpu_to_node(cpu);
3882	int cpu_off = online ? -1 : cpu;
3883	struct pool_workqueue *old_pwq = NULL, *pwq;
3884	struct workqueue_attrs *target_attrs;
3885	cpumask_t *cpumask;
3886
3887	lockdep_assert_held(&wq_pool_mutex);
3888
3889	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3890	    wq->unbound_attrs->no_numa)
3891		return;
3892
3893	/*
3894	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3895	 * Let's use a preallocated one.  The following buf is protected by
3896	 * CPU hotplug exclusion.
3897	 */
3898	target_attrs = wq_update_unbound_numa_attrs_buf;
3899	cpumask = target_attrs->cpumask;
3900
3901	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3902	pwq = unbound_pwq_by_node(wq, node);
3903
3904	/*
3905	 * Let's determine what needs to be done.  If the target cpumask is
3906	 * different from the default pwq's, we need to compare it to @pwq's
3907	 * and create a new one if they don't match.  If the target cpumask
3908	 * equals the default pwq's, the default pwq should be used.
3909	 */
3910	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3911		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3912			return;
3913	} else {
3914		goto use_dfl_pwq;
3915	}
3916
3917	/* create a new pwq */
3918	pwq = alloc_unbound_pwq(wq, target_attrs);
3919	if (!pwq) {
3920		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3921			wq->name);
3922		goto use_dfl_pwq;
3923	}
3924
3925	/* Install the new pwq. */
3926	mutex_lock(&wq->mutex);
3927	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3928	goto out_unlock;
3929
3930use_dfl_pwq:
3931	mutex_lock(&wq->mutex);
3932	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3933	get_pwq(wq->dfl_pwq);
3934	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3935	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3936out_unlock:
3937	mutex_unlock(&wq->mutex);
3938	put_pwq_unlocked(old_pwq);
3939}
3940
3941static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3942{
3943	bool highpri = wq->flags & WQ_HIGHPRI;
3944	int cpu, ret;
3945
3946	if (!(wq->flags & WQ_UNBOUND)) {
3947		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3948		if (!wq->cpu_pwqs)
3949			return -ENOMEM;
3950
3951		for_each_possible_cpu(cpu) {
3952			struct pool_workqueue *pwq =
3953				per_cpu_ptr(wq->cpu_pwqs, cpu);
3954			struct worker_pool *cpu_pools =
3955				per_cpu(cpu_worker_pools, cpu);
3956
3957			init_pwq(pwq, wq, &cpu_pools[highpri]);
3958
3959			mutex_lock(&wq->mutex);
3960			link_pwq(pwq);
3961			mutex_unlock(&wq->mutex);
3962		}
3963		return 0;
3964	} else if (wq->flags & __WQ_ORDERED) {
 
 
 
3965		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3966		/* there should only be single pwq for ordering guarantee */
3967		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3968			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3969		     "ordering guarantee broken for workqueue %s\n", wq->name);
3970		return ret;
3971	} else {
3972		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3973	}
 
 
 
3974}
3975
3976static int wq_clamp_max_active(int max_active, unsigned int flags,
3977			       const char *name)
3978{
3979	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3980
3981	if (max_active < 1 || max_active > lim)
3982		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3983			max_active, name, 1, lim);
3984
3985	return clamp_val(max_active, 1, lim);
3986}
3987
3988/*
3989 * Workqueues which may be used during memory reclaim should have a rescuer
3990 * to guarantee forward progress.
3991 */
3992static int init_rescuer(struct workqueue_struct *wq)
3993{
3994	struct worker *rescuer;
3995	int ret;
3996
3997	if (!(wq->flags & WQ_MEM_RECLAIM))
3998		return 0;
3999
4000	rescuer = alloc_worker(NUMA_NO_NODE);
4001	if (!rescuer)
4002		return -ENOMEM;
4003
4004	rescuer->rescue_wq = wq;
4005	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4006	ret = PTR_ERR_OR_ZERO(rescuer->task);
4007	if (ret) {
4008		kfree(rescuer);
4009		return ret;
4010	}
4011
4012	wq->rescuer = rescuer;
4013	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4014	wake_up_process(rescuer->task);
4015
4016	return 0;
4017}
4018
4019struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4020					       unsigned int flags,
4021					       int max_active,
4022					       struct lock_class_key *key,
4023					       const char *lock_name, ...)
4024{
4025	size_t tbl_size = 0;
4026	va_list args;
4027	struct workqueue_struct *wq;
4028	struct pool_workqueue *pwq;
4029
4030	/*
4031	 * Unbound && max_active == 1 used to imply ordered, which is no
4032	 * longer the case on NUMA machines due to per-node pools.  While
4033	 * alloc_ordered_workqueue() is the right way to create an ordered
4034	 * workqueue, keep the previous behavior to avoid subtle breakages
4035	 * on NUMA.
4036	 */
4037	if ((flags & WQ_UNBOUND) && max_active == 1)
4038		flags |= __WQ_ORDERED;
4039
4040	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4041	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4042		flags |= WQ_UNBOUND;
4043
4044	/* allocate wq and format name */
4045	if (flags & WQ_UNBOUND)
4046		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4047
4048	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4049	if (!wq)
4050		return NULL;
4051
4052	if (flags & WQ_UNBOUND) {
4053		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4054		if (!wq->unbound_attrs)
4055			goto err_free_wq;
4056	}
4057
4058	va_start(args, lock_name);
4059	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4060	va_end(args);
4061
4062	max_active = max_active ?: WQ_DFL_ACTIVE;
4063	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4064
4065	/* init wq */
4066	wq->flags = flags;
4067	wq->saved_max_active = max_active;
4068	mutex_init(&wq->mutex);
4069	atomic_set(&wq->nr_pwqs_to_flush, 0);
4070	INIT_LIST_HEAD(&wq->pwqs);
4071	INIT_LIST_HEAD(&wq->flusher_queue);
4072	INIT_LIST_HEAD(&wq->flusher_overflow);
4073	INIT_LIST_HEAD(&wq->maydays);
4074
4075	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4076	INIT_LIST_HEAD(&wq->list);
4077
4078	if (alloc_and_link_pwqs(wq) < 0)
4079		goto err_free_wq;
4080
4081	if (wq_online && init_rescuer(wq) < 0)
4082		goto err_destroy;
4083
4084	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4085		goto err_destroy;
4086
4087	/*
4088	 * wq_pool_mutex protects global freeze state and workqueues list.
4089	 * Grab it, adjust max_active and add the new @wq to workqueues
4090	 * list.
4091	 */
4092	mutex_lock(&wq_pool_mutex);
4093
4094	mutex_lock(&wq->mutex);
4095	for_each_pwq(pwq, wq)
4096		pwq_adjust_max_active(pwq);
4097	mutex_unlock(&wq->mutex);
4098
4099	list_add_tail_rcu(&wq->list, &workqueues);
4100
4101	mutex_unlock(&wq_pool_mutex);
4102
4103	return wq;
4104
 
 
 
4105err_free_wq:
4106	free_workqueue_attrs(wq->unbound_attrs);
4107	kfree(wq);
4108	return NULL;
4109err_destroy:
4110	destroy_workqueue(wq);
4111	return NULL;
4112}
4113EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4114
4115/**
4116 * destroy_workqueue - safely terminate a workqueue
4117 * @wq: target workqueue
4118 *
4119 * Safely destroy a workqueue. All work currently pending will be done first.
4120 */
4121void destroy_workqueue(struct workqueue_struct *wq)
4122{
4123	struct pool_workqueue *pwq;
4124	int node;
4125
4126	/* drain it before proceeding with destruction */
4127	drain_workqueue(wq);
4128
4129	/* sanity checks */
4130	mutex_lock(&wq->mutex);
4131	for_each_pwq(pwq, wq) {
4132		int i;
4133
4134		for (i = 0; i < WORK_NR_COLORS; i++) {
4135			if (WARN_ON(pwq->nr_in_flight[i])) {
4136				mutex_unlock(&wq->mutex);
4137				show_workqueue_state();
4138				return;
4139			}
4140		}
4141
4142		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4143		    WARN_ON(pwq->nr_active) ||
4144		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4145			mutex_unlock(&wq->mutex);
4146			show_workqueue_state();
4147			return;
4148		}
4149	}
4150	mutex_unlock(&wq->mutex);
4151
4152	/*
4153	 * wq list is used to freeze wq, remove from list after
4154	 * flushing is complete in case freeze races us.
4155	 */
4156	mutex_lock(&wq_pool_mutex);
4157	list_del_rcu(&wq->list);
4158	mutex_unlock(&wq_pool_mutex);
4159
4160	workqueue_sysfs_unregister(wq);
4161
4162	if (wq->rescuer)
4163		kthread_stop(wq->rescuer->task);
4164
4165	if (!(wq->flags & WQ_UNBOUND)) {
 
4166		/*
4167		 * The base ref is never dropped on per-cpu pwqs.  Directly
4168		 * schedule RCU free.
4169		 */
4170		call_rcu_sched(&wq->rcu, rcu_free_wq);
4171	} else {
4172		/*
4173		 * We're the sole accessor of @wq at this point.  Directly
4174		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4175		 * @wq will be freed when the last pwq is released.
4176		 */
4177		for_each_node(node) {
4178			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4179			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4180			put_pwq_unlocked(pwq);
4181		}
4182
4183		/*
4184		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4185		 * put.  Don't access it afterwards.
4186		 */
4187		pwq = wq->dfl_pwq;
4188		wq->dfl_pwq = NULL;
4189		put_pwq_unlocked(pwq);
4190	}
4191}
4192EXPORT_SYMBOL_GPL(destroy_workqueue);
4193
4194/**
4195 * workqueue_set_max_active - adjust max_active of a workqueue
4196 * @wq: target workqueue
4197 * @max_active: new max_active value.
4198 *
4199 * Set max_active of @wq to @max_active.
4200 *
4201 * CONTEXT:
4202 * Don't call from IRQ context.
4203 */
4204void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4205{
4206	struct pool_workqueue *pwq;
4207
4208	/* disallow meddling with max_active for ordered workqueues */
4209	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4210		return;
4211
4212	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4213
4214	mutex_lock(&wq->mutex);
4215
4216	wq->flags &= ~__WQ_ORDERED;
4217	wq->saved_max_active = max_active;
4218
4219	for_each_pwq(pwq, wq)
4220		pwq_adjust_max_active(pwq);
4221
4222	mutex_unlock(&wq->mutex);
4223}
4224EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4225
4226/**
4227 * current_work - retrieve %current task's work struct
4228 *
4229 * Determine if %current task is a workqueue worker and what it's working on.
4230 * Useful to find out the context that the %current task is running in.
4231 *
4232 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4233 */
4234struct work_struct *current_work(void)
4235{
4236	struct worker *worker = current_wq_worker();
4237
4238	return worker ? worker->current_work : NULL;
4239}
4240EXPORT_SYMBOL(current_work);
4241
4242/**
4243 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4244 *
4245 * Determine whether %current is a workqueue rescuer.  Can be used from
4246 * work functions to determine whether it's being run off the rescuer task.
4247 *
4248 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4249 */
4250bool current_is_workqueue_rescuer(void)
4251{
4252	struct worker *worker = current_wq_worker();
4253
4254	return worker && worker->rescue_wq;
4255}
4256
4257/**
4258 * workqueue_congested - test whether a workqueue is congested
4259 * @cpu: CPU in question
4260 * @wq: target workqueue
4261 *
4262 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4263 * no synchronization around this function and the test result is
4264 * unreliable and only useful as advisory hints or for debugging.
4265 *
4266 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4267 * Note that both per-cpu and unbound workqueues may be associated with
4268 * multiple pool_workqueues which have separate congested states.  A
4269 * workqueue being congested on one CPU doesn't mean the workqueue is also
4270 * contested on other CPUs / NUMA nodes.
4271 *
4272 * Return:
4273 * %true if congested, %false otherwise.
4274 */
4275bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4276{
4277	struct pool_workqueue *pwq;
4278	bool ret;
4279
4280	rcu_read_lock_sched();
 
4281
4282	if (cpu == WORK_CPU_UNBOUND)
4283		cpu = smp_processor_id();
4284
4285	if (!(wq->flags & WQ_UNBOUND))
4286		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4287	else
4288		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4289
4290	ret = !list_empty(&pwq->delayed_works);
4291	rcu_read_unlock_sched();
 
4292
4293	return ret;
4294}
4295EXPORT_SYMBOL_GPL(workqueue_congested);
4296
4297/**
4298 * work_busy - test whether a work is currently pending or running
4299 * @work: the work to be tested
4300 *
4301 * Test whether @work is currently pending or running.  There is no
4302 * synchronization around this function and the test result is
4303 * unreliable and only useful as advisory hints or for debugging.
4304 *
4305 * Return:
4306 * OR'd bitmask of WORK_BUSY_* bits.
4307 */
4308unsigned int work_busy(struct work_struct *work)
4309{
4310	struct worker_pool *pool;
4311	unsigned long flags;
4312	unsigned int ret = 0;
4313
4314	if (work_pending(work))
4315		ret |= WORK_BUSY_PENDING;
4316
4317	local_irq_save(flags);
4318	pool = get_work_pool(work);
4319	if (pool) {
4320		spin_lock(&pool->lock);
4321		if (find_worker_executing_work(pool, work))
4322			ret |= WORK_BUSY_RUNNING;
4323		spin_unlock(&pool->lock);
4324	}
4325	local_irq_restore(flags);
4326
4327	return ret;
4328}
4329EXPORT_SYMBOL_GPL(work_busy);
4330
4331/**
4332 * set_worker_desc - set description for the current work item
4333 * @fmt: printf-style format string
4334 * @...: arguments for the format string
4335 *
4336 * This function can be called by a running work function to describe what
4337 * the work item is about.  If the worker task gets dumped, this
4338 * information will be printed out together to help debugging.  The
4339 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4340 */
4341void set_worker_desc(const char *fmt, ...)
4342{
4343	struct worker *worker = current_wq_worker();
4344	va_list args;
4345
4346	if (worker) {
4347		va_start(args, fmt);
4348		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4349		va_end(args);
4350		worker->desc_valid = true;
4351	}
4352}
 
4353
4354/**
4355 * print_worker_info - print out worker information and description
4356 * @log_lvl: the log level to use when printing
4357 * @task: target task
4358 *
4359 * If @task is a worker and currently executing a work item, print out the
4360 * name of the workqueue being serviced and worker description set with
4361 * set_worker_desc() by the currently executing work item.
4362 *
4363 * This function can be safely called on any task as long as the
4364 * task_struct itself is accessible.  While safe, this function isn't
4365 * synchronized and may print out mixups or garbages of limited length.
4366 */
4367void print_worker_info(const char *log_lvl, struct task_struct *task)
4368{
4369	work_func_t *fn = NULL;
4370	char name[WQ_NAME_LEN] = { };
4371	char desc[WORKER_DESC_LEN] = { };
4372	struct pool_workqueue *pwq = NULL;
4373	struct workqueue_struct *wq = NULL;
4374	bool desc_valid = false;
4375	struct worker *worker;
4376
4377	if (!(task->flags & PF_WQ_WORKER))
4378		return;
4379
4380	/*
4381	 * This function is called without any synchronization and @task
4382	 * could be in any state.  Be careful with dereferences.
4383	 */
4384	worker = kthread_probe_data(task);
4385
4386	/*
4387	 * Carefully copy the associated workqueue's workfn and name.  Keep
4388	 * the original last '\0' in case the original contains garbage.
4389	 */
4390	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4391	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4392	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4393	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4394
4395	/* copy worker description */
4396	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4397	if (desc_valid)
4398		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4399
4400	if (fn || name[0] || desc[0]) {
4401		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4402		if (desc[0])
4403			pr_cont(" (%s)", desc);
4404		pr_cont("\n");
4405	}
4406}
4407
4408static void pr_cont_pool_info(struct worker_pool *pool)
4409{
4410	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4411	if (pool->node != NUMA_NO_NODE)
4412		pr_cont(" node=%d", pool->node);
4413	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4414}
4415
4416static void pr_cont_work(bool comma, struct work_struct *work)
4417{
4418	if (work->func == wq_barrier_func) {
4419		struct wq_barrier *barr;
4420
4421		barr = container_of(work, struct wq_barrier, work);
4422
4423		pr_cont("%s BAR(%d)", comma ? "," : "",
4424			task_pid_nr(barr->task));
4425	} else {
4426		pr_cont("%s %pf", comma ? "," : "", work->func);
4427	}
4428}
4429
4430static void show_pwq(struct pool_workqueue *pwq)
4431{
4432	struct worker_pool *pool = pwq->pool;
4433	struct work_struct *work;
4434	struct worker *worker;
4435	bool has_in_flight = false, has_pending = false;
4436	int bkt;
4437
4438	pr_info("  pwq %d:", pool->id);
4439	pr_cont_pool_info(pool);
4440
4441	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4442		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4443
4444	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4445		if (worker->current_pwq == pwq) {
4446			has_in_flight = true;
4447			break;
4448		}
4449	}
4450	if (has_in_flight) {
4451		bool comma = false;
4452
4453		pr_info("    in-flight:");
4454		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4455			if (worker->current_pwq != pwq)
4456				continue;
4457
4458			pr_cont("%s %d%s:%pf", comma ? "," : "",
4459				task_pid_nr(worker->task),
4460				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4461				worker->current_func);
4462			list_for_each_entry(work, &worker->scheduled, entry)
4463				pr_cont_work(false, work);
4464			comma = true;
4465		}
4466		pr_cont("\n");
4467	}
4468
4469	list_for_each_entry(work, &pool->worklist, entry) {
4470		if (get_work_pwq(work) == pwq) {
4471			has_pending = true;
4472			break;
4473		}
4474	}
4475	if (has_pending) {
4476		bool comma = false;
4477
4478		pr_info("    pending:");
4479		list_for_each_entry(work, &pool->worklist, entry) {
4480			if (get_work_pwq(work) != pwq)
4481				continue;
4482
4483			pr_cont_work(comma, work);
4484			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4485		}
4486		pr_cont("\n");
4487	}
4488
4489	if (!list_empty(&pwq->delayed_works)) {
4490		bool comma = false;
4491
4492		pr_info("    delayed:");
4493		list_for_each_entry(work, &pwq->delayed_works, entry) {
4494			pr_cont_work(comma, work);
4495			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4496		}
4497		pr_cont("\n");
4498	}
4499}
4500
4501/**
4502 * show_workqueue_state - dump workqueue state
4503 *
4504 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4505 * all busy workqueues and pools.
4506 */
4507void show_workqueue_state(void)
4508{
4509	struct workqueue_struct *wq;
4510	struct worker_pool *pool;
4511	unsigned long flags;
4512	int pi;
4513
4514	rcu_read_lock_sched();
4515
4516	pr_info("Showing busy workqueues and worker pools:\n");
4517
4518	list_for_each_entry_rcu(wq, &workqueues, list) {
4519		struct pool_workqueue *pwq;
4520		bool idle = true;
4521
4522		for_each_pwq(pwq, wq) {
4523			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4524				idle = false;
4525				break;
4526			}
4527		}
4528		if (idle)
4529			continue;
4530
4531		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4532
4533		for_each_pwq(pwq, wq) {
4534			spin_lock_irqsave(&pwq->pool->lock, flags);
4535			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4536				show_pwq(pwq);
4537			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4538			/*
4539			 * We could be printing a lot from atomic context, e.g.
4540			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4541			 * hard lockup.
4542			 */
4543			touch_nmi_watchdog();
4544		}
4545	}
4546
4547	for_each_pool(pool, pi) {
4548		struct worker *worker;
4549		bool first = true;
4550
4551		spin_lock_irqsave(&pool->lock, flags);
4552		if (pool->nr_workers == pool->nr_idle)
4553			goto next_pool;
4554
4555		pr_info("pool %d:", pool->id);
4556		pr_cont_pool_info(pool);
4557		pr_cont(" hung=%us workers=%d",
4558			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4559			pool->nr_workers);
4560		if (pool->manager)
4561			pr_cont(" manager: %d",
4562				task_pid_nr(pool->manager->task));
4563		list_for_each_entry(worker, &pool->idle_list, entry) {
4564			pr_cont(" %s%d", first ? "idle: " : "",
4565				task_pid_nr(worker->task));
4566			first = false;
4567		}
4568		pr_cont("\n");
4569	next_pool:
4570		spin_unlock_irqrestore(&pool->lock, flags);
4571		/*
4572		 * We could be printing a lot from atomic context, e.g.
4573		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4574		 * hard lockup.
4575		 */
4576		touch_nmi_watchdog();
4577	}
4578
4579	rcu_read_unlock_sched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4580}
4581
 
 
4582/*
4583 * CPU hotplug.
4584 *
4585 * There are two challenges in supporting CPU hotplug.  Firstly, there
4586 * are a lot of assumptions on strong associations among work, pwq and
4587 * pool which make migrating pending and scheduled works very
4588 * difficult to implement without impacting hot paths.  Secondly,
4589 * worker pools serve mix of short, long and very long running works making
4590 * blocked draining impractical.
4591 *
4592 * This is solved by allowing the pools to be disassociated from the CPU
4593 * running as an unbound one and allowing it to be reattached later if the
4594 * cpu comes back online.
4595 */
4596
4597static void unbind_workers(int cpu)
4598{
4599	struct worker_pool *pool;
4600	struct worker *worker;
4601
4602	for_each_cpu_worker_pool(pool, cpu) {
4603		mutex_lock(&pool->attach_mutex);
4604		spin_lock_irq(&pool->lock);
4605
4606		/*
4607		 * We've blocked all attach/detach operations. Make all workers
4608		 * unbound and set DISASSOCIATED.  Before this, all workers
4609		 * except for the ones which are still executing works from
4610		 * before the last CPU down must be on the cpu.  After
4611		 * this, they may become diasporas.
4612		 */
4613		for_each_pool_worker(worker, pool)
4614			worker->flags |= WORKER_UNBOUND;
4615
4616		pool->flags |= POOL_DISASSOCIATED;
4617
4618		spin_unlock_irq(&pool->lock);
4619		mutex_unlock(&pool->attach_mutex);
4620
4621		/*
4622		 * Call schedule() so that we cross rq->lock and thus can
4623		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4624		 * This is necessary as scheduler callbacks may be invoked
4625		 * from other cpus.
4626		 */
4627		schedule();
4628
4629		/*
4630		 * Sched callbacks are disabled now.  Zap nr_running.
4631		 * After this, nr_running stays zero and need_more_worker()
4632		 * and keep_working() are always true as long as the
4633		 * worklist is not empty.  This pool now behaves as an
4634		 * unbound (in terms of concurrency management) pool which
4635		 * are served by workers tied to the pool.
4636		 */
4637		atomic_set(&pool->nr_running, 0);
4638
4639		/*
4640		 * With concurrency management just turned off, a busy
4641		 * worker blocking could lead to lengthy stalls.  Kick off
4642		 * unbound chain execution of currently pending work items.
4643		 */
4644		spin_lock_irq(&pool->lock);
4645		wake_up_worker(pool);
4646		spin_unlock_irq(&pool->lock);
4647	}
4648}
4649
4650/**
4651 * rebind_workers - rebind all workers of a pool to the associated CPU
4652 * @pool: pool of interest
4653 *
4654 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4655 */
4656static void rebind_workers(struct worker_pool *pool)
4657{
4658	struct worker *worker;
4659
4660	lockdep_assert_held(&pool->attach_mutex);
4661
4662	/*
4663	 * Restore CPU affinity of all workers.  As all idle workers should
4664	 * be on the run-queue of the associated CPU before any local
4665	 * wake-ups for concurrency management happen, restore CPU affinity
4666	 * of all workers first and then clear UNBOUND.  As we're called
4667	 * from CPU_ONLINE, the following shouldn't fail.
4668	 */
4669	for_each_pool_worker(worker, pool)
4670		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4671						  pool->attrs->cpumask) < 0);
4672
4673	spin_lock_irq(&pool->lock);
4674
4675	pool->flags &= ~POOL_DISASSOCIATED;
4676
4677	for_each_pool_worker(worker, pool) {
4678		unsigned int worker_flags = worker->flags;
4679
4680		/*
4681		 * A bound idle worker should actually be on the runqueue
4682		 * of the associated CPU for local wake-ups targeting it to
4683		 * work.  Kick all idle workers so that they migrate to the
4684		 * associated CPU.  Doing this in the same loop as
4685		 * replacing UNBOUND with REBOUND is safe as no worker will
4686		 * be bound before @pool->lock is released.
4687		 */
4688		if (worker_flags & WORKER_IDLE)
4689			wake_up_process(worker->task);
4690
4691		/*
4692		 * We want to clear UNBOUND but can't directly call
4693		 * worker_clr_flags() or adjust nr_running.  Atomically
4694		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4695		 * @worker will clear REBOUND using worker_clr_flags() when
4696		 * it initiates the next execution cycle thus restoring
4697		 * concurrency management.  Note that when or whether
4698		 * @worker clears REBOUND doesn't affect correctness.
4699		 *
4700		 * WRITE_ONCE() is necessary because @worker->flags may be
4701		 * tested without holding any lock in
4702		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4703		 * fail incorrectly leading to premature concurrency
4704		 * management operations.
4705		 */
4706		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4707		worker_flags |= WORKER_REBOUND;
4708		worker_flags &= ~WORKER_UNBOUND;
4709		WRITE_ONCE(worker->flags, worker_flags);
4710	}
4711
4712	spin_unlock_irq(&pool->lock);
4713}
4714
4715/**
4716 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4717 * @pool: unbound pool of interest
4718 * @cpu: the CPU which is coming up
4719 *
4720 * An unbound pool may end up with a cpumask which doesn't have any online
4721 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4722 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4723 * online CPU before, cpus_allowed of all its workers should be restored.
4724 */
4725static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4726{
4727	static cpumask_t cpumask;
4728	struct worker *worker;
4729
4730	lockdep_assert_held(&pool->attach_mutex);
4731
4732	/* is @cpu allowed for @pool? */
4733	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4734		return;
4735
4736	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4737
4738	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4739	for_each_pool_worker(worker, pool)
4740		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4741}
4742
4743int workqueue_prepare_cpu(unsigned int cpu)
4744{
4745	struct worker_pool *pool;
4746
4747	for_each_cpu_worker_pool(pool, cpu) {
4748		if (pool->nr_workers)
4749			continue;
4750		if (!create_worker(pool))
4751			return -ENOMEM;
4752	}
4753	return 0;
4754}
4755
4756int workqueue_online_cpu(unsigned int cpu)
4757{
4758	struct worker_pool *pool;
4759	struct workqueue_struct *wq;
4760	int pi;
4761
4762	mutex_lock(&wq_pool_mutex);
4763
4764	for_each_pool(pool, pi) {
4765		mutex_lock(&pool->attach_mutex);
4766
4767		if (pool->cpu == cpu)
4768			rebind_workers(pool);
4769		else if (pool->cpu < 0)
4770			restore_unbound_workers_cpumask(pool, cpu);
4771
4772		mutex_unlock(&pool->attach_mutex);
4773	}
4774
4775	/* update NUMA affinity of unbound workqueues */
4776	list_for_each_entry(wq, &workqueues, list)
4777		wq_update_unbound_numa(wq, cpu, true);
4778
4779	mutex_unlock(&wq_pool_mutex);
4780	return 0;
4781}
4782
4783int workqueue_offline_cpu(unsigned int cpu)
4784{
4785	struct workqueue_struct *wq;
4786
4787	/* unbinding per-cpu workers should happen on the local CPU */
4788	if (WARN_ON(cpu != smp_processor_id()))
4789		return -1;
4790
4791	unbind_workers(cpu);
4792
4793	/* update NUMA affinity of unbound workqueues */
4794	mutex_lock(&wq_pool_mutex);
4795	list_for_each_entry(wq, &workqueues, list)
4796		wq_update_unbound_numa(wq, cpu, false);
4797	mutex_unlock(&wq_pool_mutex);
4798
4799	return 0;
4800}
4801
4802#ifdef CONFIG_SMP
4803
4804struct work_for_cpu {
4805	struct work_struct work;
4806	long (*fn)(void *);
4807	void *arg;
4808	long ret;
4809};
4810
4811static void work_for_cpu_fn(struct work_struct *work)
4812{
4813	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4814
4815	wfc->ret = wfc->fn(wfc->arg);
4816}
4817
4818/**
4819 * work_on_cpu - run a function in thread context on a particular cpu
4820 * @cpu: the cpu to run on
4821 * @fn: the function to run
4822 * @arg: the function arg
4823 *
4824 * It is up to the caller to ensure that the cpu doesn't go offline.
4825 * The caller must not hold any locks which would prevent @fn from completing.
4826 *
4827 * Return: The value @fn returns.
4828 */
4829long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4830{
4831	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4832
4833	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4834	schedule_work_on(cpu, &wfc.work);
4835	flush_work(&wfc.work);
4836	destroy_work_on_stack(&wfc.work);
4837	return wfc.ret;
4838}
4839EXPORT_SYMBOL_GPL(work_on_cpu);
4840
4841/**
4842 * work_on_cpu_safe - run a function in thread context on a particular cpu
4843 * @cpu: the cpu to run on
4844 * @fn:  the function to run
4845 * @arg: the function argument
4846 *
4847 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4848 * any locks which would prevent @fn from completing.
4849 *
4850 * Return: The value @fn returns.
4851 */
4852long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4853{
4854	long ret = -ENODEV;
4855
4856	get_online_cpus();
4857	if (cpu_online(cpu))
4858		ret = work_on_cpu(cpu, fn, arg);
4859	put_online_cpus();
4860	return ret;
4861}
4862EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4863#endif /* CONFIG_SMP */
4864
4865#ifdef CONFIG_FREEZER
4866
4867/**
4868 * freeze_workqueues_begin - begin freezing workqueues
4869 *
4870 * Start freezing workqueues.  After this function returns, all freezable
4871 * workqueues will queue new works to their delayed_works list instead of
4872 * pool->worklist.
4873 *
4874 * CONTEXT:
4875 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4876 */
4877void freeze_workqueues_begin(void)
4878{
4879	struct workqueue_struct *wq;
4880	struct pool_workqueue *pwq;
4881
4882	mutex_lock(&wq_pool_mutex);
4883
4884	WARN_ON_ONCE(workqueue_freezing);
4885	workqueue_freezing = true;
4886
4887	list_for_each_entry(wq, &workqueues, list) {
4888		mutex_lock(&wq->mutex);
4889		for_each_pwq(pwq, wq)
4890			pwq_adjust_max_active(pwq);
4891		mutex_unlock(&wq->mutex);
4892	}
4893
4894	mutex_unlock(&wq_pool_mutex);
4895}
4896
4897/**
4898 * freeze_workqueues_busy - are freezable workqueues still busy?
4899 *
4900 * Check whether freezing is complete.  This function must be called
4901 * between freeze_workqueues_begin() and thaw_workqueues().
4902 *
4903 * CONTEXT:
4904 * Grabs and releases wq_pool_mutex.
4905 *
4906 * Return:
4907 * %true if some freezable workqueues are still busy.  %false if freezing
4908 * is complete.
4909 */
4910bool freeze_workqueues_busy(void)
4911{
4912	bool busy = false;
4913	struct workqueue_struct *wq;
4914	struct pool_workqueue *pwq;
4915
4916	mutex_lock(&wq_pool_mutex);
4917
4918	WARN_ON_ONCE(!workqueue_freezing);
4919
4920	list_for_each_entry(wq, &workqueues, list) {
4921		if (!(wq->flags & WQ_FREEZABLE))
4922			continue;
4923		/*
4924		 * nr_active is monotonically decreasing.  It's safe
4925		 * to peek without lock.
4926		 */
4927		rcu_read_lock_sched();
4928		for_each_pwq(pwq, wq) {
4929			WARN_ON_ONCE(pwq->nr_active < 0);
4930			if (pwq->nr_active) {
4931				busy = true;
4932				rcu_read_unlock_sched();
4933				goto out_unlock;
4934			}
4935		}
4936		rcu_read_unlock_sched();
4937	}
4938out_unlock:
4939	mutex_unlock(&wq_pool_mutex);
4940	return busy;
4941}
4942
4943/**
4944 * thaw_workqueues - thaw workqueues
4945 *
4946 * Thaw workqueues.  Normal queueing is restored and all collected
4947 * frozen works are transferred to their respective pool worklists.
4948 *
4949 * CONTEXT:
4950 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4951 */
4952void thaw_workqueues(void)
4953{
4954	struct workqueue_struct *wq;
4955	struct pool_workqueue *pwq;
4956
4957	mutex_lock(&wq_pool_mutex);
4958
4959	if (!workqueue_freezing)
4960		goto out_unlock;
4961
4962	workqueue_freezing = false;
4963
4964	/* restore max_active and repopulate worklist */
4965	list_for_each_entry(wq, &workqueues, list) {
4966		mutex_lock(&wq->mutex);
4967		for_each_pwq(pwq, wq)
4968			pwq_adjust_max_active(pwq);
4969		mutex_unlock(&wq->mutex);
4970	}
4971
4972out_unlock:
4973	mutex_unlock(&wq_pool_mutex);
4974}
4975#endif /* CONFIG_FREEZER */
4976
4977static int workqueue_apply_unbound_cpumask(void)
4978{
4979	LIST_HEAD(ctxs);
4980	int ret = 0;
4981	struct workqueue_struct *wq;
4982	struct apply_wqattrs_ctx *ctx, *n;
4983
4984	lockdep_assert_held(&wq_pool_mutex);
4985
4986	list_for_each_entry(wq, &workqueues, list) {
4987		if (!(wq->flags & WQ_UNBOUND))
4988			continue;
4989		/* creating multiple pwqs breaks ordering guarantee */
4990		if (wq->flags & __WQ_ORDERED)
4991			continue;
4992
4993		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4994		if (!ctx) {
4995			ret = -ENOMEM;
4996			break;
4997		}
4998
4999		list_add_tail(&ctx->list, &ctxs);
5000	}
5001
5002	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5003		if (!ret)
5004			apply_wqattrs_commit(ctx);
5005		apply_wqattrs_cleanup(ctx);
5006	}
5007
5008	return ret;
5009}
5010
5011/**
5012 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5013 *  @cpumask: the cpumask to set
5014 *
5015 *  The low-level workqueues cpumask is a global cpumask that limits
5016 *  the affinity of all unbound workqueues.  This function check the @cpumask
5017 *  and apply it to all unbound workqueues and updates all pwqs of them.
5018 *
5019 *  Retun:	0	- Success
5020 *  		-EINVAL	- Invalid @cpumask
5021 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5022 */
5023int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5024{
5025	int ret = -EINVAL;
5026	cpumask_var_t saved_cpumask;
5027
5028	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5029		return -ENOMEM;
5030
5031	/*
5032	 * Not excluding isolated cpus on purpose.
5033	 * If the user wishes to include them, we allow that.
5034	 */
5035	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5036	if (!cpumask_empty(cpumask)) {
5037		apply_wqattrs_lock();
5038
5039		/* save the old wq_unbound_cpumask. */
5040		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5041
5042		/* update wq_unbound_cpumask at first and apply it to wqs. */
5043		cpumask_copy(wq_unbound_cpumask, cpumask);
5044		ret = workqueue_apply_unbound_cpumask();
5045
5046		/* restore the wq_unbound_cpumask when failed. */
5047		if (ret < 0)
5048			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5049
5050		apply_wqattrs_unlock();
5051	}
5052
5053	free_cpumask_var(saved_cpumask);
5054	return ret;
5055}
5056
5057#ifdef CONFIG_SYSFS
5058/*
5059 * Workqueues with WQ_SYSFS flag set is visible to userland via
5060 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5061 * following attributes.
5062 *
5063 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5064 *  max_active	RW int	: maximum number of in-flight work items
5065 *
5066 * Unbound workqueues have the following extra attributes.
5067 *
5068 *  pool_ids	RO int	: the associated pool IDs for each node
5069 *  nice	RW int	: nice value of the workers
5070 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5071 *  numa	RW bool	: whether enable NUMA affinity
5072 */
5073struct wq_device {
5074	struct workqueue_struct		*wq;
5075	struct device			dev;
5076};
5077
5078static struct workqueue_struct *dev_to_wq(struct device *dev)
5079{
5080	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5081
5082	return wq_dev->wq;
5083}
5084
5085static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5086			    char *buf)
5087{
5088	struct workqueue_struct *wq = dev_to_wq(dev);
5089
5090	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5091}
5092static DEVICE_ATTR_RO(per_cpu);
5093
5094static ssize_t max_active_show(struct device *dev,
5095			       struct device_attribute *attr, char *buf)
5096{
5097	struct workqueue_struct *wq = dev_to_wq(dev);
5098
5099	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5100}
5101
5102static ssize_t max_active_store(struct device *dev,
5103				struct device_attribute *attr, const char *buf,
5104				size_t count)
5105{
5106	struct workqueue_struct *wq = dev_to_wq(dev);
5107	int val;
5108
5109	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5110		return -EINVAL;
5111
5112	workqueue_set_max_active(wq, val);
5113	return count;
5114}
5115static DEVICE_ATTR_RW(max_active);
5116
5117static struct attribute *wq_sysfs_attrs[] = {
5118	&dev_attr_per_cpu.attr,
5119	&dev_attr_max_active.attr,
5120	NULL,
5121};
5122ATTRIBUTE_GROUPS(wq_sysfs);
5123
5124static ssize_t wq_pool_ids_show(struct device *dev,
5125				struct device_attribute *attr, char *buf)
5126{
5127	struct workqueue_struct *wq = dev_to_wq(dev);
5128	const char *delim = "";
5129	int node, written = 0;
5130
5131	rcu_read_lock_sched();
 
5132	for_each_node(node) {
5133		written += scnprintf(buf + written, PAGE_SIZE - written,
5134				     "%s%d:%d", delim, node,
5135				     unbound_pwq_by_node(wq, node)->pool->id);
5136		delim = " ";
5137	}
5138	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5139	rcu_read_unlock_sched();
 
5140
5141	return written;
5142}
5143
5144static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5145			    char *buf)
5146{
5147	struct workqueue_struct *wq = dev_to_wq(dev);
5148	int written;
5149
5150	mutex_lock(&wq->mutex);
5151	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5152	mutex_unlock(&wq->mutex);
5153
5154	return written;
5155}
5156
5157/* prepare workqueue_attrs for sysfs store operations */
5158static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5159{
5160	struct workqueue_attrs *attrs;
5161
5162	lockdep_assert_held(&wq_pool_mutex);
5163
5164	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5165	if (!attrs)
5166		return NULL;
5167
5168	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5169	return attrs;
5170}
5171
5172static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5173			     const char *buf, size_t count)
5174{
5175	struct workqueue_struct *wq = dev_to_wq(dev);
5176	struct workqueue_attrs *attrs;
5177	int ret = -ENOMEM;
5178
5179	apply_wqattrs_lock();
5180
5181	attrs = wq_sysfs_prep_attrs(wq);
5182	if (!attrs)
5183		goto out_unlock;
5184
5185	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5186	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5187		ret = apply_workqueue_attrs_locked(wq, attrs);
5188	else
5189		ret = -EINVAL;
5190
5191out_unlock:
5192	apply_wqattrs_unlock();
5193	free_workqueue_attrs(attrs);
5194	return ret ?: count;
5195}
5196
5197static ssize_t wq_cpumask_show(struct device *dev,
5198			       struct device_attribute *attr, char *buf)
5199{
5200	struct workqueue_struct *wq = dev_to_wq(dev);
5201	int written;
5202
5203	mutex_lock(&wq->mutex);
5204	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5205			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5206	mutex_unlock(&wq->mutex);
5207	return written;
5208}
5209
5210static ssize_t wq_cpumask_store(struct device *dev,
5211				struct device_attribute *attr,
5212				const char *buf, size_t count)
5213{
5214	struct workqueue_struct *wq = dev_to_wq(dev);
5215	struct workqueue_attrs *attrs;
5216	int ret = -ENOMEM;
5217
5218	apply_wqattrs_lock();
5219
5220	attrs = wq_sysfs_prep_attrs(wq);
5221	if (!attrs)
5222		goto out_unlock;
5223
5224	ret = cpumask_parse(buf, attrs->cpumask);
5225	if (!ret)
5226		ret = apply_workqueue_attrs_locked(wq, attrs);
5227
5228out_unlock:
5229	apply_wqattrs_unlock();
5230	free_workqueue_attrs(attrs);
5231	return ret ?: count;
5232}
5233
5234static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5235			    char *buf)
5236{
5237	struct workqueue_struct *wq = dev_to_wq(dev);
5238	int written;
5239
5240	mutex_lock(&wq->mutex);
5241	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5242			    !wq->unbound_attrs->no_numa);
5243	mutex_unlock(&wq->mutex);
5244
5245	return written;
5246}
5247
5248static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5249			     const char *buf, size_t count)
5250{
5251	struct workqueue_struct *wq = dev_to_wq(dev);
5252	struct workqueue_attrs *attrs;
5253	int v, ret = -ENOMEM;
5254
5255	apply_wqattrs_lock();
5256
5257	attrs = wq_sysfs_prep_attrs(wq);
5258	if (!attrs)
5259		goto out_unlock;
5260
5261	ret = -EINVAL;
5262	if (sscanf(buf, "%d", &v) == 1) {
5263		attrs->no_numa = !v;
5264		ret = apply_workqueue_attrs_locked(wq, attrs);
5265	}
5266
5267out_unlock:
5268	apply_wqattrs_unlock();
5269	free_workqueue_attrs(attrs);
5270	return ret ?: count;
5271}
5272
5273static struct device_attribute wq_sysfs_unbound_attrs[] = {
5274	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5275	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5276	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5277	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5278	__ATTR_NULL,
5279};
5280
5281static struct bus_type wq_subsys = {
5282	.name				= "workqueue",
5283	.dev_groups			= wq_sysfs_groups,
5284};
5285
5286static ssize_t wq_unbound_cpumask_show(struct device *dev,
5287		struct device_attribute *attr, char *buf)
5288{
5289	int written;
5290
5291	mutex_lock(&wq_pool_mutex);
5292	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5293			    cpumask_pr_args(wq_unbound_cpumask));
5294	mutex_unlock(&wq_pool_mutex);
5295
5296	return written;
5297}
5298
5299static ssize_t wq_unbound_cpumask_store(struct device *dev,
5300		struct device_attribute *attr, const char *buf, size_t count)
5301{
5302	cpumask_var_t cpumask;
5303	int ret;
5304
5305	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5306		return -ENOMEM;
5307
5308	ret = cpumask_parse(buf, cpumask);
5309	if (!ret)
5310		ret = workqueue_set_unbound_cpumask(cpumask);
5311
5312	free_cpumask_var(cpumask);
5313	return ret ? ret : count;
5314}
5315
5316static struct device_attribute wq_sysfs_cpumask_attr =
5317	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5318	       wq_unbound_cpumask_store);
5319
5320static int __init wq_sysfs_init(void)
5321{
5322	int err;
5323
5324	err = subsys_virtual_register(&wq_subsys, NULL);
5325	if (err)
5326		return err;
5327
5328	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5329}
5330core_initcall(wq_sysfs_init);
5331
5332static void wq_device_release(struct device *dev)
5333{
5334	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5335
5336	kfree(wq_dev);
5337}
5338
5339/**
5340 * workqueue_sysfs_register - make a workqueue visible in sysfs
5341 * @wq: the workqueue to register
5342 *
5343 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5344 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5345 * which is the preferred method.
5346 *
5347 * Workqueue user should use this function directly iff it wants to apply
5348 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5349 * apply_workqueue_attrs() may race against userland updating the
5350 * attributes.
5351 *
5352 * Return: 0 on success, -errno on failure.
5353 */
5354int workqueue_sysfs_register(struct workqueue_struct *wq)
5355{
5356	struct wq_device *wq_dev;
5357	int ret;
5358
5359	/*
5360	 * Adjusting max_active or creating new pwqs by applying
5361	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5362	 * workqueues.
5363	 */
5364	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5365		return -EINVAL;
5366
5367	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5368	if (!wq_dev)
5369		return -ENOMEM;
5370
5371	wq_dev->wq = wq;
5372	wq_dev->dev.bus = &wq_subsys;
5373	wq_dev->dev.release = wq_device_release;
5374	dev_set_name(&wq_dev->dev, "%s", wq->name);
5375
5376	/*
5377	 * unbound_attrs are created separately.  Suppress uevent until
5378	 * everything is ready.
5379	 */
5380	dev_set_uevent_suppress(&wq_dev->dev, true);
5381
5382	ret = device_register(&wq_dev->dev);
5383	if (ret) {
5384		put_device(&wq_dev->dev);
5385		wq->wq_dev = NULL;
5386		return ret;
5387	}
5388
5389	if (wq->flags & WQ_UNBOUND) {
5390		struct device_attribute *attr;
5391
5392		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5393			ret = device_create_file(&wq_dev->dev, attr);
5394			if (ret) {
5395				device_unregister(&wq_dev->dev);
5396				wq->wq_dev = NULL;
5397				return ret;
5398			}
5399		}
5400	}
5401
5402	dev_set_uevent_suppress(&wq_dev->dev, false);
5403	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5404	return 0;
5405}
5406
5407/**
5408 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5409 * @wq: the workqueue to unregister
5410 *
5411 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5412 */
5413static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5414{
5415	struct wq_device *wq_dev = wq->wq_dev;
5416
5417	if (!wq->wq_dev)
5418		return;
5419
5420	wq->wq_dev = NULL;
5421	device_unregister(&wq_dev->dev);
5422}
5423#else	/* CONFIG_SYSFS */
5424static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5425#endif	/* CONFIG_SYSFS */
5426
5427/*
5428 * Workqueue watchdog.
5429 *
5430 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5431 * flush dependency, a concurrency managed work item which stays RUNNING
5432 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5433 * usual warning mechanisms don't trigger and internal workqueue state is
5434 * largely opaque.
5435 *
5436 * Workqueue watchdog monitors all worker pools periodically and dumps
5437 * state if some pools failed to make forward progress for a while where
5438 * forward progress is defined as the first item on ->worklist changing.
5439 *
5440 * This mechanism is controlled through the kernel parameter
5441 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5442 * corresponding sysfs parameter file.
5443 */
5444#ifdef CONFIG_WQ_WATCHDOG
5445
5446static unsigned long wq_watchdog_thresh = 30;
5447static struct timer_list wq_watchdog_timer;
5448
5449static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5450static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5451
5452static void wq_watchdog_reset_touched(void)
5453{
5454	int cpu;
5455
5456	wq_watchdog_touched = jiffies;
5457	for_each_possible_cpu(cpu)
5458		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5459}
5460
5461static void wq_watchdog_timer_fn(struct timer_list *unused)
5462{
5463	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5464	bool lockup_detected = false;
5465	struct worker_pool *pool;
5466	int pi;
5467
5468	if (!thresh)
5469		return;
5470
5471	rcu_read_lock();
5472
5473	for_each_pool(pool, pi) {
5474		unsigned long pool_ts, touched, ts;
5475
5476		if (list_empty(&pool->worklist))
5477			continue;
5478
5479		/* get the latest of pool and touched timestamps */
5480		pool_ts = READ_ONCE(pool->watchdog_ts);
5481		touched = READ_ONCE(wq_watchdog_touched);
5482
5483		if (time_after(pool_ts, touched))
5484			ts = pool_ts;
5485		else
5486			ts = touched;
5487
5488		if (pool->cpu >= 0) {
5489			unsigned long cpu_touched =
5490				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5491						  pool->cpu));
5492			if (time_after(cpu_touched, ts))
5493				ts = cpu_touched;
5494		}
5495
5496		/* did we stall? */
5497		if (time_after(jiffies, ts + thresh)) {
5498			lockup_detected = true;
5499			pr_emerg("BUG: workqueue lockup - pool");
5500			pr_cont_pool_info(pool);
5501			pr_cont(" stuck for %us!\n",
5502				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5503		}
5504	}
5505
5506	rcu_read_unlock();
5507
5508	if (lockup_detected)
5509		show_workqueue_state();
5510
5511	wq_watchdog_reset_touched();
5512	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5513}
5514
5515void wq_watchdog_touch(int cpu)
5516{
5517	if (cpu >= 0)
5518		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5519	else
5520		wq_watchdog_touched = jiffies;
5521}
5522
5523static void wq_watchdog_set_thresh(unsigned long thresh)
5524{
5525	wq_watchdog_thresh = 0;
5526	del_timer_sync(&wq_watchdog_timer);
5527
5528	if (thresh) {
5529		wq_watchdog_thresh = thresh;
5530		wq_watchdog_reset_touched();
5531		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5532	}
5533}
5534
5535static int wq_watchdog_param_set_thresh(const char *val,
5536					const struct kernel_param *kp)
5537{
5538	unsigned long thresh;
5539	int ret;
5540
5541	ret = kstrtoul(val, 0, &thresh);
5542	if (ret)
5543		return ret;
5544
5545	if (system_wq)
5546		wq_watchdog_set_thresh(thresh);
5547	else
5548		wq_watchdog_thresh = thresh;
5549
5550	return 0;
5551}
5552
5553static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5554	.set	= wq_watchdog_param_set_thresh,
5555	.get	= param_get_ulong,
5556};
5557
5558module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5559		0644);
5560
5561static void wq_watchdog_init(void)
5562{
5563	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5564	wq_watchdog_set_thresh(wq_watchdog_thresh);
5565}
5566
5567#else	/* CONFIG_WQ_WATCHDOG */
5568
5569static inline void wq_watchdog_init(void) { }
5570
5571#endif	/* CONFIG_WQ_WATCHDOG */
5572
5573static void __init wq_numa_init(void)
5574{
5575	cpumask_var_t *tbl;
5576	int node, cpu;
5577
5578	if (num_possible_nodes() <= 1)
5579		return;
5580
5581	if (wq_disable_numa) {
5582		pr_info("workqueue: NUMA affinity support disabled\n");
5583		return;
5584	}
5585
5586	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5587	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5588
5589	/*
5590	 * We want masks of possible CPUs of each node which isn't readily
5591	 * available.  Build one from cpu_to_node() which should have been
5592	 * fully initialized by now.
5593	 */
5594	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5595	BUG_ON(!tbl);
5596
5597	for_each_node(node)
5598		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5599				node_online(node) ? node : NUMA_NO_NODE));
5600
5601	for_each_possible_cpu(cpu) {
5602		node = cpu_to_node(cpu);
5603		if (WARN_ON(node == NUMA_NO_NODE)) {
5604			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5605			/* happens iff arch is bonkers, let's just proceed */
5606			return;
5607		}
5608		cpumask_set_cpu(cpu, tbl[node]);
5609	}
5610
5611	wq_numa_possible_cpumask = tbl;
5612	wq_numa_enabled = true;
5613}
5614
5615/**
5616 * workqueue_init_early - early init for workqueue subsystem
5617 *
5618 * This is the first half of two-staged workqueue subsystem initialization
5619 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5620 * idr are up.  It sets up all the data structures and system workqueues
5621 * and allows early boot code to create workqueues and queue/cancel work
5622 * items.  Actual work item execution starts only after kthreads can be
5623 * created and scheduled right before early initcalls.
5624 */
5625int __init workqueue_init_early(void)
5626{
5627	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5628	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5629	int i, cpu;
5630
5631	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5632
5633	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5634	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5635
5636	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5637
5638	/* initialize CPU pools */
5639	for_each_possible_cpu(cpu) {
5640		struct worker_pool *pool;
5641
5642		i = 0;
5643		for_each_cpu_worker_pool(pool, cpu) {
5644			BUG_ON(init_worker_pool(pool));
5645			pool->cpu = cpu;
5646			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5647			pool->attrs->nice = std_nice[i++];
5648			pool->node = cpu_to_node(cpu);
5649
5650			/* alloc pool ID */
5651			mutex_lock(&wq_pool_mutex);
5652			BUG_ON(worker_pool_assign_id(pool));
5653			mutex_unlock(&wq_pool_mutex);
5654		}
5655	}
5656
5657	/* create default unbound and ordered wq attrs */
5658	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5659		struct workqueue_attrs *attrs;
5660
5661		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5662		attrs->nice = std_nice[i];
5663		unbound_std_wq_attrs[i] = attrs;
5664
5665		/*
5666		 * An ordered wq should have only one pwq as ordering is
5667		 * guaranteed by max_active which is enforced by pwqs.
5668		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5669		 */
5670		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5671		attrs->nice = std_nice[i];
5672		attrs->no_numa = true;
5673		ordered_wq_attrs[i] = attrs;
5674	}
5675
5676	system_wq = alloc_workqueue("events", 0, 0);
5677	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5678	system_long_wq = alloc_workqueue("events_long", 0, 0);
5679	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5680					    WQ_UNBOUND_MAX_ACTIVE);
5681	system_freezable_wq = alloc_workqueue("events_freezable",
5682					      WQ_FREEZABLE, 0);
5683	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5684					      WQ_POWER_EFFICIENT, 0);
5685	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5686					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5687					      0);
5688	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5689	       !system_unbound_wq || !system_freezable_wq ||
5690	       !system_power_efficient_wq ||
5691	       !system_freezable_power_efficient_wq);
5692
5693	return 0;
5694}
5695
5696/**
5697 * workqueue_init - bring workqueue subsystem fully online
5698 *
5699 * This is the latter half of two-staged workqueue subsystem initialization
5700 * and invoked as soon as kthreads can be created and scheduled.
5701 * Workqueues have been created and work items queued on them, but there
5702 * are no kworkers executing the work items yet.  Populate the worker pools
5703 * with the initial workers and enable future kworker creations.
5704 */
5705int __init workqueue_init(void)
5706{
5707	struct workqueue_struct *wq;
5708	struct worker_pool *pool;
5709	int cpu, bkt;
5710
5711	/*
5712	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5713	 * CPU to node mapping may not be available that early on some
5714	 * archs such as power and arm64.  As per-cpu pools created
5715	 * previously could be missing node hint and unbound pools NUMA
5716	 * affinity, fix them up.
5717	 *
5718	 * Also, while iterating workqueues, create rescuers if requested.
5719	 */
5720	wq_numa_init();
5721
5722	mutex_lock(&wq_pool_mutex);
5723
5724	for_each_possible_cpu(cpu) {
5725		for_each_cpu_worker_pool(pool, cpu) {
5726			pool->node = cpu_to_node(cpu);
5727		}
5728	}
5729
5730	list_for_each_entry(wq, &workqueues, list) {
5731		wq_update_unbound_numa(wq, smp_processor_id(), true);
5732		WARN(init_rescuer(wq),
5733		     "workqueue: failed to create early rescuer for %s",
5734		     wq->name);
5735	}
5736
5737	mutex_unlock(&wq_pool_mutex);
5738
5739	/* create the initial workers */
5740	for_each_online_cpu(cpu) {
5741		for_each_cpu_worker_pool(pool, cpu) {
5742			pool->flags &= ~POOL_DISASSOCIATED;
5743			BUG_ON(!create_worker(pool));
5744		}
5745	}
5746
5747	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5748		BUG_ON(!create_worker(pool));
5749
5750	wq_online = true;
5751	wq_watchdog_init();
5752
5753	return 0;
5754}