Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/printk.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 * Modified to make sys_syslog() more flexible: added commands to
   8 * return the last 4k of kernel messages, regardless of whether
   9 * they've been read or not.  Added option to suppress kernel printk's
  10 * to the console.  Added hook for sending the console messages
  11 * elsewhere, in preparation for a serial line console (someday).
  12 * Ted Ts'o, 2/11/93.
  13 * Modified for sysctl support, 1/8/97, Chris Horn.
  14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  15 *     manfred@colorfullife.com
  16 * Rewrote bits to get rid of console_lock
  17 *	01Mar01 Andrew Morton
  18 */
  19
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/mm.h>
  24#include <linux/tty.h>
  25#include <linux/tty_driver.h>
  26#include <linux/console.h>
  27#include <linux/init.h>
  28#include <linux/jiffies.h>
  29#include <linux/nmi.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
  32#include <linux/delay.h>
  33#include <linux/smp.h>
  34#include <linux/security.h>
 
  35#include <linux/memblock.h>
  36#include <linux/syscalls.h>
  37#include <linux/crash_core.h>
  38#include <linux/kdb.h>
  39#include <linux/ratelimit.h>
  40#include <linux/kmsg_dump.h>
  41#include <linux/syslog.h>
  42#include <linux/cpu.h>
 
  43#include <linux/rculist.h>
  44#include <linux/poll.h>
  45#include <linux/irq_work.h>
  46#include <linux/ctype.h>
  47#include <linux/uio.h>
  48#include <linux/sched/clock.h>
  49#include <linux/sched/debug.h>
  50#include <linux/sched/task_stack.h>
  51
  52#include <linux/uaccess.h>
  53#include <asm/sections.h>
  54
  55#include <trace/events/initcall.h>
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/printk.h>
  58
  59#include "console_cmdline.h"
  60#include "braille.h"
  61#include "internal.h"
  62
  63int console_printk[4] = {
  64	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  65	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  66	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  67	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  68};
  69EXPORT_SYMBOL_GPL(console_printk);
  70
  71atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
  72EXPORT_SYMBOL(ignore_console_lock_warning);
  73
  74/*
  75 * Low level drivers may need that to know if they can schedule in
  76 * their unblank() callback or not. So let's export it.
  77 */
  78int oops_in_progress;
  79EXPORT_SYMBOL(oops_in_progress);
  80
  81/*
  82 * console_sem protects the console_drivers list, and also
  83 * provides serialisation for access to the entire console
  84 * driver system.
  85 */
  86static DEFINE_SEMAPHORE(console_sem);
  87struct console *console_drivers;
  88EXPORT_SYMBOL_GPL(console_drivers);
  89
  90/*
  91 * System may need to suppress printk message under certain
  92 * circumstances, like after kernel panic happens.
  93 */
  94int __read_mostly suppress_printk;
  95
  96#ifdef CONFIG_LOCKDEP
  97static struct lockdep_map console_lock_dep_map = {
  98	.name = "console_lock"
  99};
 100#endif
 101
 102enum devkmsg_log_bits {
 103	__DEVKMSG_LOG_BIT_ON = 0,
 104	__DEVKMSG_LOG_BIT_OFF,
 105	__DEVKMSG_LOG_BIT_LOCK,
 106};
 107
 108enum devkmsg_log_masks {
 109	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
 110	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
 111	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
 112};
 113
 114/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 115#define DEVKMSG_LOG_MASK_DEFAULT	0
 116
 117static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 118
 119static int __control_devkmsg(char *str)
 120{
 121	size_t len;
 122
 123	if (!str)
 124		return -EINVAL;
 125
 126	len = str_has_prefix(str, "on");
 127	if (len) {
 128		devkmsg_log = DEVKMSG_LOG_MASK_ON;
 129		return len;
 130	}
 131
 132	len = str_has_prefix(str, "off");
 133	if (len) {
 134		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 135		return len;
 136	}
 137
 138	len = str_has_prefix(str, "ratelimit");
 139	if (len) {
 140		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 141		return len;
 142	}
 143
 144	return -EINVAL;
 145}
 146
 147static int __init control_devkmsg(char *str)
 148{
 149	if (__control_devkmsg(str) < 0)
 150		return 1;
 151
 152	/*
 153	 * Set sysctl string accordingly:
 154	 */
 155	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
 156		strcpy(devkmsg_log_str, "on");
 157	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
 158		strcpy(devkmsg_log_str, "off");
 159	/* else "ratelimit" which is set by default. */
 160
 161	/*
 162	 * Sysctl cannot change it anymore. The kernel command line setting of
 163	 * this parameter is to force the setting to be permanent throughout the
 164	 * runtime of the system. This is a precation measure against userspace
 165	 * trying to be a smarta** and attempting to change it up on us.
 166	 */
 167	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 168
 169	return 0;
 170}
 171__setup("printk.devkmsg=", control_devkmsg);
 172
 173char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 174
 175int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 176			      void __user *buffer, size_t *lenp, loff_t *ppos)
 177{
 178	char old_str[DEVKMSG_STR_MAX_SIZE];
 179	unsigned int old;
 180	int err;
 181
 182	if (write) {
 183		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 184			return -EINVAL;
 185
 186		old = devkmsg_log;
 187		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 188	}
 189
 190	err = proc_dostring(table, write, buffer, lenp, ppos);
 191	if (err)
 192		return err;
 193
 194	if (write) {
 195		err = __control_devkmsg(devkmsg_log_str);
 196
 197		/*
 198		 * Do not accept an unknown string OR a known string with
 199		 * trailing crap...
 200		 */
 201		if (err < 0 || (err + 1 != *lenp)) {
 202
 203			/* ... and restore old setting. */
 204			devkmsg_log = old;
 205			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 206
 207			return -EINVAL;
 208		}
 209	}
 210
 211	return 0;
 212}
 213
 214/* Number of registered extended console drivers. */
 
 
 
 
 
 
 
 
 
 215static int nr_ext_console_drivers;
 216
 217/*
 218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 219 * macros instead of functions so that _RET_IP_ contains useful information.
 220 */
 221#define down_console_sem() do { \
 222	down(&console_sem);\
 223	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 224} while (0)
 225
 226static int __down_trylock_console_sem(unsigned long ip)
 227{
 228	int lock_failed;
 229	unsigned long flags;
 230
 231	/*
 232	 * Here and in __up_console_sem() we need to be in safe mode,
 233	 * because spindump/WARN/etc from under console ->lock will
 234	 * deadlock in printk()->down_trylock_console_sem() otherwise.
 235	 */
 236	printk_safe_enter_irqsave(flags);
 237	lock_failed = down_trylock(&console_sem);
 238	printk_safe_exit_irqrestore(flags);
 239
 240	if (lock_failed)
 241		return 1;
 242	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 243	return 0;
 244}
 245#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 246
 247static void __up_console_sem(unsigned long ip)
 248{
 249	unsigned long flags;
 250
 251	mutex_release(&console_lock_dep_map, 1, ip);
 252
 253	printk_safe_enter_irqsave(flags);
 254	up(&console_sem);
 255	printk_safe_exit_irqrestore(flags);
 256}
 257#define up_console_sem() __up_console_sem(_RET_IP_)
 258
 259/*
 260 * This is used for debugging the mess that is the VT code by
 261 * keeping track if we have the console semaphore held. It's
 262 * definitely not the perfect debug tool (we don't know if _WE_
 263 * hold it and are racing, but it helps tracking those weird code
 264 * paths in the console code where we end up in places I want
 265 * locked without the console sempahore held).
 266 */
 267static int console_locked, console_suspended;
 268
 269/*
 270 * If exclusive_console is non-NULL then only this console is to be printed to.
 271 */
 272static struct console *exclusive_console;
 273
 274/*
 275 *	Array of consoles built from command line options (console=)
 276 */
 277
 278#define MAX_CMDLINECONSOLES 8
 279
 280static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 281
 282static int preferred_console = -1;
 283int console_set_on_cmdline;
 284EXPORT_SYMBOL(console_set_on_cmdline);
 285
 286/* Flag: console code may call schedule() */
 287static int console_may_schedule;
 288
 289enum con_msg_format_flags {
 290	MSG_FORMAT_DEFAULT	= 0,
 291	MSG_FORMAT_SYSLOG	= (1 << 0),
 292};
 293
 294static int console_msg_format = MSG_FORMAT_DEFAULT;
 295
 296/*
 297 * The printk log buffer consists of a chain of concatenated variable
 298 * length records. Every record starts with a record header, containing
 299 * the overall length of the record.
 300 *
 301 * The heads to the first and last entry in the buffer, as well as the
 302 * sequence numbers of these entries are maintained when messages are
 303 * stored.
 304 *
 305 * If the heads indicate available messages, the length in the header
 306 * tells the start next message. A length == 0 for the next message
 307 * indicates a wrap-around to the beginning of the buffer.
 308 *
 309 * Every record carries the monotonic timestamp in microseconds, as well as
 310 * the standard userspace syslog level and syslog facility. The usual
 311 * kernel messages use LOG_KERN; userspace-injected messages always carry
 312 * a matching syslog facility, by default LOG_USER. The origin of every
 313 * message can be reliably determined that way.
 314 *
 315 * The human readable log message directly follows the message header. The
 316 * length of the message text is stored in the header, the stored message
 317 * is not terminated.
 318 *
 319 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 320 * to provide userspace with a machine-readable message context.
 321 *
 322 * Examples for well-defined, commonly used property names are:
 323 *   DEVICE=b12:8               device identifier
 324 *                                b12:8         block dev_t
 325 *                                c127:3        char dev_t
 326 *                                n8            netdev ifindex
 327 *                                +sound:card0  subsystem:devname
 328 *   SUBSYSTEM=pci              driver-core subsystem name
 329 *
 330 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 331 * follows directly after a '=' character. Every property is terminated by
 332 * a '\0' character. The last property is not terminated.
 333 *
 334 * Example of a message structure:
 335 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 336 *   0008  34 00                        record is 52 bytes long
 337 *   000a        0b 00                  text is 11 bytes long
 338 *   000c              1f 00            dictionary is 23 bytes long
 339 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 340 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 341 *         69 6e 65                     "ine"
 342 *   001b           44 45 56 49 43      "DEVIC"
 343 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 344 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 345 *         67                           "g"
 346 *   0032     00 00 00                  padding to next message header
 347 *
 348 * The 'struct printk_log' buffer header must never be directly exported to
 349 * userspace, it is a kernel-private implementation detail that might
 350 * need to be changed in the future, when the requirements change.
 351 *
 352 * /dev/kmsg exports the structured data in the following line format:
 353 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 354 *
 355 * Users of the export format should ignore possible additional values
 356 * separated by ',', and find the message after the ';' character.
 357 *
 358 * The optional key/value pairs are attached as continuation lines starting
 359 * with a space character and terminated by a newline. All possible
 360 * non-prinatable characters are escaped in the "\xff" notation.
 361 */
 362
 363enum log_flags {
 
 364	LOG_NEWLINE	= 2,	/* text ended with a newline */
 
 365	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 366};
 367
 368struct printk_log {
 369	u64 ts_nsec;		/* timestamp in nanoseconds */
 370	u16 len;		/* length of entire record */
 371	u16 text_len;		/* length of text buffer */
 372	u16 dict_len;		/* length of dictionary buffer */
 373	u8 facility;		/* syslog facility */
 374	u8 flags:5;		/* internal record flags */
 375	u8 level:3;		/* syslog level */
 376#ifdef CONFIG_PRINTK_CALLER
 377	u32 caller_id;            /* thread id or processor id */
 378#endif
 379}
 380#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 381__packed __aligned(4)
 382#endif
 383;
 384
 385/*
 386 * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
 387 * within the scheduler's rq lock. It must be released before calling
 388 * console_unlock() or anything else that might wake up a process.
 389 */
 390DEFINE_RAW_SPINLOCK(logbuf_lock);
 391
 392/*
 393 * Helper macros to lock/unlock logbuf_lock and switch between
 394 * printk-safe/unsafe modes.
 395 */
 396#define logbuf_lock_irq()				\
 397	do {						\
 398		printk_safe_enter_irq();		\
 399		raw_spin_lock(&logbuf_lock);		\
 400	} while (0)
 401
 402#define logbuf_unlock_irq()				\
 403	do {						\
 404		raw_spin_unlock(&logbuf_lock);		\
 405		printk_safe_exit_irq();			\
 406	} while (0)
 407
 408#define logbuf_lock_irqsave(flags)			\
 409	do {						\
 410		printk_safe_enter_irqsave(flags);	\
 411		raw_spin_lock(&logbuf_lock);		\
 412	} while (0)
 413
 414#define logbuf_unlock_irqrestore(flags)		\
 415	do {						\
 416		raw_spin_unlock(&logbuf_lock);		\
 417		printk_safe_exit_irqrestore(flags);	\
 418	} while (0)
 419
 420#ifdef CONFIG_PRINTK
 421DECLARE_WAIT_QUEUE_HEAD(log_wait);
 422/* the next printk record to read by syslog(READ) or /proc/kmsg */
 423static u64 syslog_seq;
 424static u32 syslog_idx;
 425static size_t syslog_partial;
 426static bool syslog_time;
 427
 428/* index and sequence number of the first record stored in the buffer */
 429static u64 log_first_seq;
 430static u32 log_first_idx;
 431
 432/* index and sequence number of the next record to store in the buffer */
 433static u64 log_next_seq;
 434static u32 log_next_idx;
 435
 436/* the next printk record to write to the console */
 437static u64 console_seq;
 438static u32 console_idx;
 439static u64 exclusive_console_stop_seq;
 440
 441/* the next printk record to read after the last 'clear' command */
 442static u64 clear_seq;
 443static u32 clear_idx;
 444
 445#ifdef CONFIG_PRINTK_CALLER
 446#define PREFIX_MAX		48
 447#else
 448#define PREFIX_MAX		32
 449#endif
 450#define LOG_LINE_MAX		(1024 - PREFIX_MAX)
 451
 452#define LOG_LEVEL(v)		((v) & 0x07)
 453#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 454
 455/* record buffer */
 456#define LOG_ALIGN __alignof__(struct printk_log)
 457#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 458#define LOG_BUF_LEN_MAX (u32)(1 << 31)
 459static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 460static char *log_buf = __log_buf;
 461static u32 log_buf_len = __LOG_BUF_LEN;
 462
 463/* Return log buffer address */
 464char *log_buf_addr_get(void)
 465{
 466	return log_buf;
 467}
 468
 469/* Return log buffer size */
 470u32 log_buf_len_get(void)
 471{
 472	return log_buf_len;
 473}
 474
 475/* human readable text of the record */
 476static char *log_text(const struct printk_log *msg)
 477{
 478	return (char *)msg + sizeof(struct printk_log);
 479}
 480
 481/* optional key/value pair dictionary attached to the record */
 482static char *log_dict(const struct printk_log *msg)
 483{
 484	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 485}
 486
 487/* get record by index; idx must point to valid msg */
 488static struct printk_log *log_from_idx(u32 idx)
 489{
 490	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 491
 492	/*
 493	 * A length == 0 record is the end of buffer marker. Wrap around and
 494	 * read the message at the start of the buffer.
 495	 */
 496	if (!msg->len)
 497		return (struct printk_log *)log_buf;
 498	return msg;
 499}
 500
 501/* get next record; idx must point to valid msg */
 502static u32 log_next(u32 idx)
 503{
 504	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 505
 506	/* length == 0 indicates the end of the buffer; wrap */
 507	/*
 508	 * A length == 0 record is the end of buffer marker. Wrap around and
 509	 * read the message at the start of the buffer as *this* one, and
 510	 * return the one after that.
 511	 */
 512	if (!msg->len) {
 513		msg = (struct printk_log *)log_buf;
 514		return msg->len;
 515	}
 516	return idx + msg->len;
 517}
 518
 519/*
 520 * Check whether there is enough free space for the given message.
 521 *
 522 * The same values of first_idx and next_idx mean that the buffer
 523 * is either empty or full.
 524 *
 525 * If the buffer is empty, we must respect the position of the indexes.
 526 * They cannot be reset to the beginning of the buffer.
 527 */
 528static int logbuf_has_space(u32 msg_size, bool empty)
 529{
 530	u32 free;
 531
 532	if (log_next_idx > log_first_idx || empty)
 533		free = max(log_buf_len - log_next_idx, log_first_idx);
 534	else
 535		free = log_first_idx - log_next_idx;
 536
 537	/*
 538	 * We need space also for an empty header that signalizes wrapping
 539	 * of the buffer.
 540	 */
 541	return free >= msg_size + sizeof(struct printk_log);
 542}
 543
 544static int log_make_free_space(u32 msg_size)
 545{
 546	while (log_first_seq < log_next_seq &&
 547	       !logbuf_has_space(msg_size, false)) {
 548		/* drop old messages until we have enough contiguous space */
 549		log_first_idx = log_next(log_first_idx);
 550		log_first_seq++;
 551	}
 552
 553	if (clear_seq < log_first_seq) {
 554		clear_seq = log_first_seq;
 555		clear_idx = log_first_idx;
 556	}
 557
 558	/* sequence numbers are equal, so the log buffer is empty */
 559	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
 560		return 0;
 561
 562	return -ENOMEM;
 563}
 564
 565/* compute the message size including the padding bytes */
 566static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
 567{
 568	u32 size;
 569
 570	size = sizeof(struct printk_log) + text_len + dict_len;
 571	*pad_len = (-size) & (LOG_ALIGN - 1);
 572	size += *pad_len;
 573
 574	return size;
 575}
 576
 577/*
 578 * Define how much of the log buffer we could take at maximum. The value
 579 * must be greater than two. Note that only half of the buffer is available
 580 * when the index points to the middle.
 581 */
 582#define MAX_LOG_TAKE_PART 4
 583static const char trunc_msg[] = "<truncated>";
 584
 585static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
 586			u16 *dict_len, u32 *pad_len)
 587{
 588	/*
 589	 * The message should not take the whole buffer. Otherwise, it might
 590	 * get removed too soon.
 591	 */
 592	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 593	if (*text_len > max_text_len)
 594		*text_len = max_text_len;
 595	/* enable the warning message */
 596	*trunc_msg_len = strlen(trunc_msg);
 597	/* disable the "dict" completely */
 598	*dict_len = 0;
 599	/* compute the size again, count also the warning message */
 600	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
 601}
 602
 603/* insert record into the buffer, discard old ones, update heads */
 604static int log_store(u32 caller_id, int facility, int level,
 605		     enum log_flags flags, u64 ts_nsec,
 606		     const char *dict, u16 dict_len,
 607		     const char *text, u16 text_len)
 608{
 609	struct printk_log *msg;
 610	u32 size, pad_len;
 611	u16 trunc_msg_len = 0;
 612
 613	/* number of '\0' padding bytes to next message */
 614	size = msg_used_size(text_len, dict_len, &pad_len);
 615
 616	if (log_make_free_space(size)) {
 617		/* truncate the message if it is too long for empty buffer */
 618		size = truncate_msg(&text_len, &trunc_msg_len,
 619				    &dict_len, &pad_len);
 620		/* survive when the log buffer is too small for trunc_msg */
 621		if (log_make_free_space(size))
 622			return 0;
 623	}
 624
 625	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 626		/*
 627		 * This message + an additional empty header does not fit
 628		 * at the end of the buffer. Add an empty header with len == 0
 629		 * to signify a wrap around.
 630		 */
 631		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 632		log_next_idx = 0;
 633	}
 634
 635	/* fill message */
 636	msg = (struct printk_log *)(log_buf + log_next_idx);
 637	memcpy(log_text(msg), text, text_len);
 638	msg->text_len = text_len;
 639	if (trunc_msg_len) {
 640		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
 641		msg->text_len += trunc_msg_len;
 642	}
 643	memcpy(log_dict(msg), dict, dict_len);
 644	msg->dict_len = dict_len;
 645	msg->facility = facility;
 646	msg->level = level & 7;
 647	msg->flags = flags & 0x1f;
 648	if (ts_nsec > 0)
 649		msg->ts_nsec = ts_nsec;
 650	else
 651		msg->ts_nsec = local_clock();
 652#ifdef CONFIG_PRINTK_CALLER
 653	msg->caller_id = caller_id;
 654#endif
 655	memset(log_dict(msg) + dict_len, 0, pad_len);
 656	msg->len = size;
 657
 658	/* insert message */
 659	log_next_idx += msg->len;
 660	log_next_seq++;
 661
 662	return msg->text_len;
 663}
 664
 665int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 666
 667static int syslog_action_restricted(int type)
 668{
 669	if (dmesg_restrict)
 670		return 1;
 671	/*
 672	 * Unless restricted, we allow "read all" and "get buffer size"
 673	 * for everybody.
 674	 */
 675	return type != SYSLOG_ACTION_READ_ALL &&
 676	       type != SYSLOG_ACTION_SIZE_BUFFER;
 677}
 678
 679static int check_syslog_permissions(int type, int source)
 680{
 681	/*
 682	 * If this is from /proc/kmsg and we've already opened it, then we've
 683	 * already done the capabilities checks at open time.
 684	 */
 685	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 686		goto ok;
 687
 688	if (syslog_action_restricted(type)) {
 689		if (capable(CAP_SYSLOG))
 690			goto ok;
 691		/*
 692		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 693		 * a warning.
 694		 */
 695		if (capable(CAP_SYS_ADMIN)) {
 696			pr_warn_once("%s (%d): Attempt to access syslog with "
 697				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 698				     "(deprecated).\n",
 699				 current->comm, task_pid_nr(current));
 700			goto ok;
 701		}
 702		return -EPERM;
 703	}
 704ok:
 705	return security_syslog(type);
 706}
 707
 708static void append_char(char **pp, char *e, char c)
 709{
 710	if (*pp < e)
 711		*(*pp)++ = c;
 712}
 713
 714static ssize_t msg_print_ext_header(char *buf, size_t size,
 715				    struct printk_log *msg, u64 seq)
 716{
 717	u64 ts_usec = msg->ts_nsec;
 718	char caller[20];
 719#ifdef CONFIG_PRINTK_CALLER
 720	u32 id = msg->caller_id;
 721
 722	snprintf(caller, sizeof(caller), ",caller=%c%u",
 723		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
 724#else
 725	caller[0] = '\0';
 726#endif
 727
 728	do_div(ts_usec, 1000);
 729
 730	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
 731			 (msg->facility << 3) | msg->level, seq, ts_usec,
 732			 msg->flags & LOG_CONT ? 'c' : '-', caller);
 733}
 734
 735static ssize_t msg_print_ext_body(char *buf, size_t size,
 736				  char *dict, size_t dict_len,
 737				  char *text, size_t text_len)
 738{
 739	char *p = buf, *e = buf + size;
 740	size_t i;
 741
 742	/* escape non-printable characters */
 743	for (i = 0; i < text_len; i++) {
 744		unsigned char c = text[i];
 745
 746		if (c < ' ' || c >= 127 || c == '\\')
 747			p += scnprintf(p, e - p, "\\x%02x", c);
 748		else
 749			append_char(&p, e, c);
 750	}
 751	append_char(&p, e, '\n');
 752
 753	if (dict_len) {
 754		bool line = true;
 755
 756		for (i = 0; i < dict_len; i++) {
 757			unsigned char c = dict[i];
 758
 759			if (line) {
 760				append_char(&p, e, ' ');
 761				line = false;
 762			}
 763
 764			if (c == '\0') {
 765				append_char(&p, e, '\n');
 766				line = true;
 767				continue;
 768			}
 769
 770			if (c < ' ' || c >= 127 || c == '\\') {
 771				p += scnprintf(p, e - p, "\\x%02x", c);
 772				continue;
 773			}
 774
 775			append_char(&p, e, c);
 776		}
 777		append_char(&p, e, '\n');
 778	}
 779
 780	return p - buf;
 781}
 782
 783/* /dev/kmsg - userspace message inject/listen interface */
 784struct devkmsg_user {
 785	u64 seq;
 786	u32 idx;
 787	struct ratelimit_state rs;
 788	struct mutex lock;
 789	char buf[CONSOLE_EXT_LOG_MAX];
 790};
 791
 792static __printf(3, 4) __cold
 793int devkmsg_emit(int facility, int level, const char *fmt, ...)
 794{
 795	va_list args;
 796	int r;
 797
 798	va_start(args, fmt);
 799	r = vprintk_emit(facility, level, NULL, 0, fmt, args);
 800	va_end(args);
 801
 802	return r;
 803}
 804
 805static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 806{
 807	char *buf, *line;
 808	int level = default_message_loglevel;
 809	int facility = 1;	/* LOG_USER */
 810	struct file *file = iocb->ki_filp;
 811	struct devkmsg_user *user = file->private_data;
 812	size_t len = iov_iter_count(from);
 813	ssize_t ret = len;
 814
 815	if (!user || len > LOG_LINE_MAX)
 816		return -EINVAL;
 817
 818	/* Ignore when user logging is disabled. */
 819	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 820		return len;
 821
 822	/* Ratelimit when not explicitly enabled. */
 823	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 824		if (!___ratelimit(&user->rs, current->comm))
 825			return ret;
 826	}
 827
 828	buf = kmalloc(len+1, GFP_KERNEL);
 829	if (buf == NULL)
 830		return -ENOMEM;
 831
 832	buf[len] = '\0';
 833	if (!copy_from_iter_full(buf, len, from)) {
 834		kfree(buf);
 835		return -EFAULT;
 836	}
 837
 838	/*
 839	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 840	 * the decimal value represents 32bit, the lower 3 bit are the log
 841	 * level, the rest are the log facility.
 842	 *
 843	 * If no prefix or no userspace facility is specified, we
 844	 * enforce LOG_USER, to be able to reliably distinguish
 845	 * kernel-generated messages from userspace-injected ones.
 846	 */
 847	line = buf;
 848	if (line[0] == '<') {
 849		char *endp = NULL;
 850		unsigned int u;
 851
 852		u = simple_strtoul(line + 1, &endp, 10);
 853		if (endp && endp[0] == '>') {
 854			level = LOG_LEVEL(u);
 855			if (LOG_FACILITY(u) != 0)
 856				facility = LOG_FACILITY(u);
 857			endp++;
 858			len -= endp - line;
 859			line = endp;
 860		}
 861	}
 862
 863	devkmsg_emit(facility, level, "%s", line);
 864	kfree(buf);
 865	return ret;
 866}
 867
 868static ssize_t devkmsg_read(struct file *file, char __user *buf,
 869			    size_t count, loff_t *ppos)
 870{
 871	struct devkmsg_user *user = file->private_data;
 872	struct printk_log *msg;
 873	size_t len;
 874	ssize_t ret;
 875
 876	if (!user)
 877		return -EBADF;
 878
 879	ret = mutex_lock_interruptible(&user->lock);
 880	if (ret)
 881		return ret;
 882
 883	logbuf_lock_irq();
 884	while (user->seq == log_next_seq) {
 885		if (file->f_flags & O_NONBLOCK) {
 886			ret = -EAGAIN;
 887			logbuf_unlock_irq();
 888			goto out;
 889		}
 890
 891		logbuf_unlock_irq();
 892		ret = wait_event_interruptible(log_wait,
 893					       user->seq != log_next_seq);
 894		if (ret)
 895			goto out;
 896		logbuf_lock_irq();
 897	}
 898
 899	if (user->seq < log_first_seq) {
 900		/* our last seen message is gone, return error and reset */
 901		user->idx = log_first_idx;
 902		user->seq = log_first_seq;
 903		ret = -EPIPE;
 904		logbuf_unlock_irq();
 905		goto out;
 906	}
 907
 908	msg = log_from_idx(user->idx);
 909	len = msg_print_ext_header(user->buf, sizeof(user->buf),
 910				   msg, user->seq);
 911	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 912				  log_dict(msg), msg->dict_len,
 913				  log_text(msg), msg->text_len);
 914
 915	user->idx = log_next(user->idx);
 916	user->seq++;
 917	logbuf_unlock_irq();
 918
 919	if (len > count) {
 920		ret = -EINVAL;
 921		goto out;
 922	}
 923
 924	if (copy_to_user(buf, user->buf, len)) {
 925		ret = -EFAULT;
 926		goto out;
 927	}
 928	ret = len;
 929out:
 930	mutex_unlock(&user->lock);
 931	return ret;
 932}
 933
 934static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 935{
 936	struct devkmsg_user *user = file->private_data;
 937	loff_t ret = 0;
 938
 939	if (!user)
 940		return -EBADF;
 941	if (offset)
 942		return -ESPIPE;
 943
 944	logbuf_lock_irq();
 945	switch (whence) {
 946	case SEEK_SET:
 947		/* the first record */
 948		user->idx = log_first_idx;
 949		user->seq = log_first_seq;
 950		break;
 951	case SEEK_DATA:
 952		/*
 953		 * The first record after the last SYSLOG_ACTION_CLEAR,
 954		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 955		 * changes no global state, and does not clear anything.
 956		 */
 957		user->idx = clear_idx;
 958		user->seq = clear_seq;
 959		break;
 960	case SEEK_END:
 961		/* after the last record */
 962		user->idx = log_next_idx;
 963		user->seq = log_next_seq;
 964		break;
 965	default:
 966		ret = -EINVAL;
 967	}
 968	logbuf_unlock_irq();
 969	return ret;
 970}
 971
 972static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
 973{
 974	struct devkmsg_user *user = file->private_data;
 975	__poll_t ret = 0;
 976
 977	if (!user)
 978		return EPOLLERR|EPOLLNVAL;
 979
 980	poll_wait(file, &log_wait, wait);
 981
 982	logbuf_lock_irq();
 983	if (user->seq < log_next_seq) {
 984		/* return error when data has vanished underneath us */
 985		if (user->seq < log_first_seq)
 986			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
 987		else
 988			ret = EPOLLIN|EPOLLRDNORM;
 989	}
 990	logbuf_unlock_irq();
 991
 992	return ret;
 993}
 994
 995static int devkmsg_open(struct inode *inode, struct file *file)
 996{
 997	struct devkmsg_user *user;
 998	int err;
 999
1000	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
1001		return -EPERM;
1002
1003	/* write-only does not need any file context */
1004	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
1005		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
1006					       SYSLOG_FROM_READER);
1007		if (err)
1008			return err;
1009	}
1010
1011	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
1012	if (!user)
1013		return -ENOMEM;
1014
1015	ratelimit_default_init(&user->rs);
1016	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1017
1018	mutex_init(&user->lock);
1019
1020	logbuf_lock_irq();
1021	user->idx = log_first_idx;
1022	user->seq = log_first_seq;
1023	logbuf_unlock_irq();
1024
1025	file->private_data = user;
1026	return 0;
1027}
1028
1029static int devkmsg_release(struct inode *inode, struct file *file)
1030{
1031	struct devkmsg_user *user = file->private_data;
1032
1033	if (!user)
1034		return 0;
1035
1036	ratelimit_state_exit(&user->rs);
1037
1038	mutex_destroy(&user->lock);
1039	kfree(user);
1040	return 0;
1041}
1042
1043const struct file_operations kmsg_fops = {
1044	.open = devkmsg_open,
1045	.read = devkmsg_read,
1046	.write_iter = devkmsg_write,
1047	.llseek = devkmsg_llseek,
1048	.poll = devkmsg_poll,
1049	.release = devkmsg_release,
1050};
1051
1052#ifdef CONFIG_CRASH_CORE
1053/*
1054 * This appends the listed symbols to /proc/vmcore
1055 *
1056 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1057 * obtain access to symbols that are otherwise very difficult to locate.  These
1058 * symbols are specifically used so that utilities can access and extract the
1059 * dmesg log from a vmcore file after a crash.
1060 */
1061void log_buf_vmcoreinfo_setup(void)
1062{
1063	VMCOREINFO_SYMBOL(log_buf);
1064	VMCOREINFO_SYMBOL(log_buf_len);
1065	VMCOREINFO_SYMBOL(log_first_idx);
1066	VMCOREINFO_SYMBOL(clear_idx);
1067	VMCOREINFO_SYMBOL(log_next_idx);
1068	/*
1069	 * Export struct printk_log size and field offsets. User space tools can
1070	 * parse it and detect any changes to structure down the line.
1071	 */
1072	VMCOREINFO_STRUCT_SIZE(printk_log);
1073	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1074	VMCOREINFO_OFFSET(printk_log, len);
1075	VMCOREINFO_OFFSET(printk_log, text_len);
1076	VMCOREINFO_OFFSET(printk_log, dict_len);
1077#ifdef CONFIG_PRINTK_CALLER
1078	VMCOREINFO_OFFSET(printk_log, caller_id);
1079#endif
1080}
1081#endif
1082
1083/* requested log_buf_len from kernel cmdline */
1084static unsigned long __initdata new_log_buf_len;
1085
1086/* we practice scaling the ring buffer by powers of 2 */
1087static void __init log_buf_len_update(u64 size)
1088{
1089	if (size > (u64)LOG_BUF_LEN_MAX) {
1090		size = (u64)LOG_BUF_LEN_MAX;
1091		pr_err("log_buf over 2G is not supported.\n");
1092	}
1093
1094	if (size)
1095		size = roundup_pow_of_two(size);
1096	if (size > log_buf_len)
1097		new_log_buf_len = (unsigned long)size;
1098}
1099
1100/* save requested log_buf_len since it's too early to process it */
1101static int __init log_buf_len_setup(char *str)
1102{
1103	u64 size;
1104
1105	if (!str)
1106		return -EINVAL;
1107
1108	size = memparse(str, &str);
1109
1110	log_buf_len_update(size);
1111
1112	return 0;
1113}
1114early_param("log_buf_len", log_buf_len_setup);
1115
1116#ifdef CONFIG_SMP
1117#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1118
1119static void __init log_buf_add_cpu(void)
1120{
1121	unsigned int cpu_extra;
1122
1123	/*
1124	 * archs should set up cpu_possible_bits properly with
1125	 * set_cpu_possible() after setup_arch() but just in
1126	 * case lets ensure this is valid.
1127	 */
1128	if (num_possible_cpus() == 1)
1129		return;
1130
1131	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1132
1133	/* by default this will only continue through for large > 64 CPUs */
1134	if (cpu_extra <= __LOG_BUF_LEN / 2)
1135		return;
1136
1137	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1138		__LOG_CPU_MAX_BUF_LEN);
1139	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1140		cpu_extra);
1141	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1142
1143	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1144}
1145#else /* !CONFIG_SMP */
1146static inline void log_buf_add_cpu(void) {}
1147#endif /* CONFIG_SMP */
1148
1149void __init setup_log_buf(int early)
1150{
1151	unsigned long flags;
1152	char *new_log_buf;
1153	unsigned int free;
1154
1155	if (log_buf != __log_buf)
1156		return;
1157
1158	if (!early && !new_log_buf_len)
1159		log_buf_add_cpu();
1160
1161	if (!new_log_buf_len)
1162		return;
1163
1164	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
 
 
 
 
 
 
 
1165	if (unlikely(!new_log_buf)) {
1166		pr_err("log_buf_len: %lu bytes not available\n",
1167			new_log_buf_len);
1168		return;
1169	}
1170
1171	logbuf_lock_irqsave(flags);
1172	log_buf_len = new_log_buf_len;
1173	log_buf = new_log_buf;
1174	new_log_buf_len = 0;
1175	free = __LOG_BUF_LEN - log_next_idx;
1176	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1177	logbuf_unlock_irqrestore(flags);
1178
1179	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1180	pr_info("early log buf free: %u(%u%%)\n",
1181		free, (free * 100) / __LOG_BUF_LEN);
1182}
1183
1184static bool __read_mostly ignore_loglevel;
1185
1186static int __init ignore_loglevel_setup(char *str)
1187{
1188	ignore_loglevel = true;
1189	pr_info("debug: ignoring loglevel setting.\n");
1190
1191	return 0;
1192}
1193
1194early_param("ignore_loglevel", ignore_loglevel_setup);
1195module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1196MODULE_PARM_DESC(ignore_loglevel,
1197		 "ignore loglevel setting (prints all kernel messages to the console)");
1198
1199static bool suppress_message_printing(int level)
1200{
1201	return (level >= console_loglevel && !ignore_loglevel);
1202}
1203
1204#ifdef CONFIG_BOOT_PRINTK_DELAY
1205
1206static int boot_delay; /* msecs delay after each printk during bootup */
1207static unsigned long long loops_per_msec;	/* based on boot_delay */
1208
1209static int __init boot_delay_setup(char *str)
1210{
1211	unsigned long lpj;
1212
1213	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1214	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1215
1216	get_option(&str, &boot_delay);
1217	if (boot_delay > 10 * 1000)
1218		boot_delay = 0;
1219
1220	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1221		"HZ: %d, loops_per_msec: %llu\n",
1222		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1223	return 0;
1224}
1225early_param("boot_delay", boot_delay_setup);
1226
1227static void boot_delay_msec(int level)
1228{
1229	unsigned long long k;
1230	unsigned long timeout;
1231
1232	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1233		|| suppress_message_printing(level)) {
1234		return;
1235	}
1236
1237	k = (unsigned long long)loops_per_msec * boot_delay;
1238
1239	timeout = jiffies + msecs_to_jiffies(boot_delay);
1240	while (k) {
1241		k--;
1242		cpu_relax();
1243		/*
1244		 * use (volatile) jiffies to prevent
1245		 * compiler reduction; loop termination via jiffies
1246		 * is secondary and may or may not happen.
1247		 */
1248		if (time_after(jiffies, timeout))
1249			break;
1250		touch_nmi_watchdog();
1251	}
1252}
1253#else
1254static inline void boot_delay_msec(int level)
1255{
1256}
1257#endif
1258
1259static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1260module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1261
1262static size_t print_syslog(unsigned int level, char *buf)
1263{
1264	return sprintf(buf, "<%u>", level);
1265}
1266
1267static size_t print_time(u64 ts, char *buf)
1268{
1269	unsigned long rem_nsec = do_div(ts, 1000000000);
1270
1271	return sprintf(buf, "[%5lu.%06lu]",
1272		       (unsigned long)ts, rem_nsec / 1000);
1273}
1274
1275#ifdef CONFIG_PRINTK_CALLER
1276static size_t print_caller(u32 id, char *buf)
1277{
1278	char caller[12];
1279
1280	snprintf(caller, sizeof(caller), "%c%u",
1281		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1282	return sprintf(buf, "[%6s]", caller);
1283}
1284#else
1285#define print_caller(id, buf) 0
1286#endif
1287
1288static size_t print_prefix(const struct printk_log *msg, bool syslog,
1289			   bool time, char *buf)
1290{
1291	size_t len = 0;
 
1292
1293	if (syslog)
1294		len = print_syslog((msg->facility << 3) | msg->level, buf);
1295
1296	if (time)
1297		len += print_time(msg->ts_nsec, buf + len);
1298
1299	len += print_caller(msg->caller_id, buf + len);
1300
1301	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1302		buf[len++] = ' ';
1303		buf[len] = '\0';
 
1304	}
1305
 
1306	return len;
1307}
1308
1309static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1310			     bool time, char *buf, size_t size)
1311{
1312	const char *text = log_text(msg);
1313	size_t text_size = msg->text_len;
1314	size_t len = 0;
1315	char prefix[PREFIX_MAX];
1316	const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1317
1318	do {
1319		const char *next = memchr(text, '\n', text_size);
1320		size_t text_len;
1321
1322		if (next) {
1323			text_len = next - text;
1324			next++;
1325			text_size -= next - text;
1326		} else {
1327			text_len = text_size;
1328		}
1329
1330		if (buf) {
1331			if (prefix_len + text_len + 1 >= size - len)
 
1332				break;
1333
1334			memcpy(buf + len, prefix, prefix_len);
1335			len += prefix_len;
1336			memcpy(buf + len, text, text_len);
1337			len += text_len;
1338			buf[len++] = '\n';
1339		} else {
1340			/* SYSLOG_ACTION_* buffer size only calculation */
1341			len += prefix_len + text_len + 1;
 
 
1342		}
1343
1344		text = next;
1345	} while (text);
1346
1347	return len;
1348}
1349
1350static int syslog_print(char __user *buf, int size)
1351{
1352	char *text;
1353	struct printk_log *msg;
1354	int len = 0;
1355
1356	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1357	if (!text)
1358		return -ENOMEM;
1359
1360	while (size > 0) {
1361		size_t n;
1362		size_t skip;
1363
1364		logbuf_lock_irq();
1365		if (syslog_seq < log_first_seq) {
1366			/* messages are gone, move to first one */
1367			syslog_seq = log_first_seq;
1368			syslog_idx = log_first_idx;
1369			syslog_partial = 0;
1370		}
1371		if (syslog_seq == log_next_seq) {
1372			logbuf_unlock_irq();
1373			break;
1374		}
1375
1376		/*
1377		 * To keep reading/counting partial line consistent,
1378		 * use printk_time value as of the beginning of a line.
1379		 */
1380		if (!syslog_partial)
1381			syslog_time = printk_time;
1382
1383		skip = syslog_partial;
1384		msg = log_from_idx(syslog_idx);
1385		n = msg_print_text(msg, true, syslog_time, text,
1386				   LOG_LINE_MAX + PREFIX_MAX);
1387		if (n - syslog_partial <= size) {
1388			/* message fits into buffer, move forward */
1389			syslog_idx = log_next(syslog_idx);
1390			syslog_seq++;
1391			n -= syslog_partial;
1392			syslog_partial = 0;
1393		} else if (!len){
1394			/* partial read(), remember position */
1395			n = size;
1396			syslog_partial += n;
1397		} else
1398			n = 0;
1399		logbuf_unlock_irq();
1400
1401		if (!n)
1402			break;
1403
1404		if (copy_to_user(buf, text + skip, n)) {
1405			if (!len)
1406				len = -EFAULT;
1407			break;
1408		}
1409
1410		len += n;
1411		size -= n;
1412		buf += n;
1413	}
1414
1415	kfree(text);
1416	return len;
1417}
1418
1419static int syslog_print_all(char __user *buf, int size, bool clear)
1420{
1421	char *text;
1422	int len = 0;
1423	u64 next_seq;
1424	u64 seq;
1425	u32 idx;
1426	bool time;
1427
1428	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1429	if (!text)
1430		return -ENOMEM;
1431
1432	time = printk_time;
1433	logbuf_lock_irq();
1434	/*
1435	 * Find first record that fits, including all following records,
1436	 * into the user-provided buffer for this dump.
1437	 */
1438	seq = clear_seq;
1439	idx = clear_idx;
1440	while (seq < log_next_seq) {
1441		struct printk_log *msg = log_from_idx(idx);
1442
1443		len += msg_print_text(msg, true, time, NULL, 0);
1444		idx = log_next(idx);
1445		seq++;
1446	}
1447
1448	/* move first record forward until length fits into the buffer */
1449	seq = clear_seq;
1450	idx = clear_idx;
1451	while (len > size && seq < log_next_seq) {
1452		struct printk_log *msg = log_from_idx(idx);
1453
1454		len -= msg_print_text(msg, true, time, NULL, 0);
1455		idx = log_next(idx);
1456		seq++;
1457	}
1458
1459	/* last message fitting into this dump */
1460	next_seq = log_next_seq;
1461
1462	len = 0;
1463	while (len >= 0 && seq < next_seq) {
1464		struct printk_log *msg = log_from_idx(idx);
1465		int textlen = msg_print_text(msg, true, time, text,
1466					     LOG_LINE_MAX + PREFIX_MAX);
1467
1468		idx = log_next(idx);
1469		seq++;
1470
1471		logbuf_unlock_irq();
1472		if (copy_to_user(buf + len, text, textlen))
1473			len = -EFAULT;
1474		else
1475			len += textlen;
1476		logbuf_lock_irq();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477
1478		if (seq < log_first_seq) {
1479			/* messages are gone, move to next one */
1480			seq = log_first_seq;
1481			idx = log_first_idx;
 
 
 
 
 
 
 
 
1482		}
1483	}
1484
1485	if (clear) {
1486		clear_seq = log_next_seq;
1487		clear_idx = log_next_idx;
1488	}
1489	logbuf_unlock_irq();
1490
1491	kfree(text);
1492	return len;
1493}
1494
1495static void syslog_clear(void)
1496{
1497	logbuf_lock_irq();
1498	clear_seq = log_next_seq;
1499	clear_idx = log_next_idx;
1500	logbuf_unlock_irq();
1501}
1502
1503int do_syslog(int type, char __user *buf, int len, int source)
1504{
1505	bool clear = false;
1506	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1507	int error;
1508
1509	error = check_syslog_permissions(type, source);
1510	if (error)
1511		return error;
1512
1513	switch (type) {
1514	case SYSLOG_ACTION_CLOSE:	/* Close log */
1515		break;
1516	case SYSLOG_ACTION_OPEN:	/* Open log */
1517		break;
1518	case SYSLOG_ACTION_READ:	/* Read from log */
1519		if (!buf || len < 0)
1520			return -EINVAL;
1521		if (!len)
1522			return 0;
1523		if (!access_ok(buf, len))
1524			return -EFAULT;
1525		error = wait_event_interruptible(log_wait,
1526						 syslog_seq != log_next_seq);
1527		if (error)
1528			return error;
1529		error = syslog_print(buf, len);
1530		break;
1531	/* Read/clear last kernel messages */
1532	case SYSLOG_ACTION_READ_CLEAR:
1533		clear = true;
1534		/* FALL THRU */
1535	/* Read last kernel messages */
1536	case SYSLOG_ACTION_READ_ALL:
1537		if (!buf || len < 0)
1538			return -EINVAL;
1539		if (!len)
1540			return 0;
1541		if (!access_ok(buf, len))
1542			return -EFAULT;
1543		error = syslog_print_all(buf, len, clear);
1544		break;
1545	/* Clear ring buffer */
1546	case SYSLOG_ACTION_CLEAR:
1547		syslog_clear();
1548		break;
1549	/* Disable logging to console */
1550	case SYSLOG_ACTION_CONSOLE_OFF:
1551		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1552			saved_console_loglevel = console_loglevel;
1553		console_loglevel = minimum_console_loglevel;
1554		break;
1555	/* Enable logging to console */
1556	case SYSLOG_ACTION_CONSOLE_ON:
1557		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1558			console_loglevel = saved_console_loglevel;
1559			saved_console_loglevel = LOGLEVEL_DEFAULT;
1560		}
1561		break;
1562	/* Set level of messages printed to console */
1563	case SYSLOG_ACTION_CONSOLE_LEVEL:
1564		if (len < 1 || len > 8)
1565			return -EINVAL;
1566		if (len < minimum_console_loglevel)
1567			len = minimum_console_loglevel;
1568		console_loglevel = len;
1569		/* Implicitly re-enable logging to console */
1570		saved_console_loglevel = LOGLEVEL_DEFAULT;
1571		break;
1572	/* Number of chars in the log buffer */
1573	case SYSLOG_ACTION_SIZE_UNREAD:
1574		logbuf_lock_irq();
1575		if (syslog_seq < log_first_seq) {
1576			/* messages are gone, move to first one */
1577			syslog_seq = log_first_seq;
1578			syslog_idx = log_first_idx;
1579			syslog_partial = 0;
1580		}
1581		if (source == SYSLOG_FROM_PROC) {
1582			/*
1583			 * Short-cut for poll(/"proc/kmsg") which simply checks
1584			 * for pending data, not the size; return the count of
1585			 * records, not the length.
1586			 */
1587			error = log_next_seq - syslog_seq;
1588		} else {
1589			u64 seq = syslog_seq;
1590			u32 idx = syslog_idx;
1591			bool time = syslog_partial ? syslog_time : printk_time;
1592
1593			while (seq < log_next_seq) {
1594				struct printk_log *msg = log_from_idx(idx);
1595
1596				error += msg_print_text(msg, true, time, NULL,
1597							0);
1598				time = printk_time;
1599				idx = log_next(idx);
1600				seq++;
1601			}
1602			error -= syslog_partial;
1603		}
1604		logbuf_unlock_irq();
1605		break;
1606	/* Size of the log buffer */
1607	case SYSLOG_ACTION_SIZE_BUFFER:
1608		error = log_buf_len;
1609		break;
1610	default:
1611		error = -EINVAL;
1612		break;
1613	}
1614
1615	return error;
1616}
1617
1618SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1619{
1620	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1621}
1622
1623/*
1624 * Special console_lock variants that help to reduce the risk of soft-lockups.
1625 * They allow to pass console_lock to another printk() call using a busy wait.
1626 */
1627
1628#ifdef CONFIG_LOCKDEP
1629static struct lockdep_map console_owner_dep_map = {
1630	.name = "console_owner"
1631};
1632#endif
1633
1634static DEFINE_RAW_SPINLOCK(console_owner_lock);
1635static struct task_struct *console_owner;
1636static bool console_waiter;
1637
1638/**
1639 * console_lock_spinning_enable - mark beginning of code where another
1640 *	thread might safely busy wait
1641 *
1642 * This basically converts console_lock into a spinlock. This marks
1643 * the section where the console_lock owner can not sleep, because
1644 * there may be a waiter spinning (like a spinlock). Also it must be
1645 * ready to hand over the lock at the end of the section.
1646 */
1647static void console_lock_spinning_enable(void)
1648{
1649	raw_spin_lock(&console_owner_lock);
1650	console_owner = current;
1651	raw_spin_unlock(&console_owner_lock);
1652
1653	/* The waiter may spin on us after setting console_owner */
1654	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1655}
1656
1657/**
1658 * console_lock_spinning_disable_and_check - mark end of code where another
1659 *	thread was able to busy wait and check if there is a waiter
1660 *
1661 * This is called at the end of the section where spinning is allowed.
1662 * It has two functions. First, it is a signal that it is no longer
1663 * safe to start busy waiting for the lock. Second, it checks if
1664 * there is a busy waiter and passes the lock rights to her.
1665 *
1666 * Important: Callers lose the lock if there was a busy waiter.
1667 *	They must not touch items synchronized by console_lock
1668 *	in this case.
1669 *
1670 * Return: 1 if the lock rights were passed, 0 otherwise.
1671 */
1672static int console_lock_spinning_disable_and_check(void)
1673{
1674	int waiter;
1675
1676	raw_spin_lock(&console_owner_lock);
1677	waiter = READ_ONCE(console_waiter);
1678	console_owner = NULL;
1679	raw_spin_unlock(&console_owner_lock);
1680
1681	if (!waiter) {
1682		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1683		return 0;
1684	}
1685
1686	/* The waiter is now free to continue */
1687	WRITE_ONCE(console_waiter, false);
1688
1689	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1690
1691	/*
1692	 * Hand off console_lock to waiter. The waiter will perform
1693	 * the up(). After this, the waiter is the console_lock owner.
1694	 */
1695	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1696	return 1;
1697}
1698
1699/**
1700 * console_trylock_spinning - try to get console_lock by busy waiting
1701 *
1702 * This allows to busy wait for the console_lock when the current
1703 * owner is running in specially marked sections. It means that
1704 * the current owner is running and cannot reschedule until it
1705 * is ready to lose the lock.
1706 *
1707 * Return: 1 if we got the lock, 0 othrewise
1708 */
1709static int console_trylock_spinning(void)
1710{
1711	struct task_struct *owner = NULL;
1712	bool waiter;
1713	bool spin = false;
1714	unsigned long flags;
1715
1716	if (console_trylock())
1717		return 1;
1718
1719	printk_safe_enter_irqsave(flags);
1720
1721	raw_spin_lock(&console_owner_lock);
1722	owner = READ_ONCE(console_owner);
1723	waiter = READ_ONCE(console_waiter);
1724	if (!waiter && owner && owner != current) {
1725		WRITE_ONCE(console_waiter, true);
1726		spin = true;
1727	}
1728	raw_spin_unlock(&console_owner_lock);
1729
1730	/*
1731	 * If there is an active printk() writing to the
1732	 * consoles, instead of having it write our data too,
1733	 * see if we can offload that load from the active
1734	 * printer, and do some printing ourselves.
1735	 * Go into a spin only if there isn't already a waiter
1736	 * spinning, and there is an active printer, and
1737	 * that active printer isn't us (recursive printk?).
1738	 */
1739	if (!spin) {
1740		printk_safe_exit_irqrestore(flags);
1741		return 0;
1742	}
1743
1744	/* We spin waiting for the owner to release us */
1745	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1746	/* Owner will clear console_waiter on hand off */
1747	while (READ_ONCE(console_waiter))
1748		cpu_relax();
1749	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1750
1751	printk_safe_exit_irqrestore(flags);
1752	/*
1753	 * The owner passed the console lock to us.
1754	 * Since we did not spin on console lock, annotate
1755	 * this as a trylock. Otherwise lockdep will
1756	 * complain.
1757	 */
1758	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1759
1760	return 1;
1761}
1762
1763/*
1764 * Call the console drivers, asking them to write out
1765 * log_buf[start] to log_buf[end - 1].
1766 * The console_lock must be held.
1767 */
1768static void call_console_drivers(const char *ext_text, size_t ext_len,
1769				 const char *text, size_t len)
1770{
1771	struct console *con;
1772
1773	trace_console_rcuidle(text, len);
1774
1775	if (!console_drivers)
1776		return;
1777
1778	for_each_console(con) {
1779		if (exclusive_console && con != exclusive_console)
1780			continue;
1781		if (!(con->flags & CON_ENABLED))
1782			continue;
1783		if (!con->write)
1784			continue;
1785		if (!cpu_online(smp_processor_id()) &&
1786		    !(con->flags & CON_ANYTIME))
1787			continue;
1788		if (con->flags & CON_EXTENDED)
1789			con->write(con, ext_text, ext_len);
1790		else
1791			con->write(con, text, len);
1792	}
1793}
1794
1795int printk_delay_msec __read_mostly;
1796
1797static inline void printk_delay(void)
1798{
1799	if (unlikely(printk_delay_msec)) {
1800		int m = printk_delay_msec;
1801
1802		while (m--) {
1803			mdelay(1);
1804			touch_nmi_watchdog();
1805		}
1806	}
1807}
1808
1809static inline u32 printk_caller_id(void)
1810{
1811	return in_task() ? task_pid_nr(current) :
1812		0x80000000 + raw_smp_processor_id();
1813}
1814
1815/*
1816 * Continuation lines are buffered, and not committed to the record buffer
1817 * until the line is complete, or a race forces it. The line fragments
1818 * though, are printed immediately to the consoles to ensure everything has
1819 * reached the console in case of a kernel crash.
1820 */
1821static struct cont {
1822	char buf[LOG_LINE_MAX];
1823	size_t len;			/* length == 0 means unused buffer */
1824	u32 caller_id;			/* printk_caller_id() of first print */
1825	u64 ts_nsec;			/* time of first print */
1826	u8 level;			/* log level of first message */
1827	u8 facility;			/* log facility of first message */
1828	enum log_flags flags;		/* prefix, newline flags */
1829} cont;
1830
1831static void cont_flush(void)
1832{
1833	if (cont.len == 0)
1834		return;
1835
1836	log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1837		  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1838	cont.len = 0;
1839}
1840
1841static bool cont_add(u32 caller_id, int facility, int level,
1842		     enum log_flags flags, const char *text, size_t len)
1843{
1844	/* If the line gets too long, split it up in separate records. */
1845	if (cont.len + len > sizeof(cont.buf)) {
 
 
 
 
1846		cont_flush();
1847		return false;
1848	}
1849
1850	if (!cont.len) {
1851		cont.facility = facility;
1852		cont.level = level;
1853		cont.caller_id = caller_id;
1854		cont.ts_nsec = local_clock();
1855		cont.flags = flags;
1856	}
1857
1858	memcpy(cont.buf + cont.len, text, len);
1859	cont.len += len;
1860
1861	// The original flags come from the first line,
1862	// but later continuations can add a newline.
1863	if (flags & LOG_NEWLINE) {
1864		cont.flags |= LOG_NEWLINE;
1865		cont_flush();
1866	}
1867
 
 
 
1868	return true;
1869}
1870
1871static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1872{
1873	const u32 caller_id = printk_caller_id();
1874
1875	/*
1876	 * If an earlier line was buffered, and we're a continuation
1877	 * write from the same context, try to add it to the buffer.
1878	 */
1879	if (cont.len) {
1880		if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1881			if (cont_add(caller_id, facility, level, lflags, text, text_len))
1882				return text_len;
1883		}
1884		/* Otherwise, make sure it's flushed */
1885		cont_flush();
1886	}
1887
1888	/* Skip empty continuation lines that couldn't be added - they just flush */
1889	if (!text_len && (lflags & LOG_CONT))
1890		return 0;
1891
1892	/* If it doesn't end in a newline, try to buffer the current line */
1893	if (!(lflags & LOG_NEWLINE)) {
1894		if (cont_add(caller_id, facility, level, lflags, text, text_len))
1895			return text_len;
1896	}
1897
1898	/* Store it in the record log */
1899	return log_store(caller_id, facility, level, lflags, 0,
1900			 dict, dictlen, text, text_len);
1901}
1902
1903/* Must be called under logbuf_lock. */
1904int vprintk_store(int facility, int level,
1905		  const char *dict, size_t dictlen,
1906		  const char *fmt, va_list args)
1907{
1908	static char textbuf[LOG_LINE_MAX];
1909	char *text = textbuf;
1910	size_t text_len;
1911	enum log_flags lflags = 0;
 
 
 
1912
 
 
 
 
 
 
 
 
 
 
1913	/*
1914	 * The printf needs to come first; we need the syslog
1915	 * prefix which might be passed-in as a parameter.
1916	 */
1917	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1918
1919	/* mark and strip a trailing newline */
1920	if (text_len && text[text_len-1] == '\n') {
1921		text_len--;
1922		lflags |= LOG_NEWLINE;
1923	}
1924
1925	/* strip kernel syslog prefix and extract log level or control flags */
1926	if (facility == 0) {
1927		int kern_level;
1928
1929		while ((kern_level = printk_get_level(text)) != 0) {
1930			switch (kern_level) {
1931			case '0' ... '7':
1932				if (level == LOGLEVEL_DEFAULT)
1933					level = kern_level - '0';
 
 
 
1934				break;
1935			case 'c':	/* KERN_CONT */
1936				lflags |= LOG_CONT;
1937			}
1938
1939			text_len -= 2;
1940			text += 2;
1941		}
1942	}
1943
1944	if (level == LOGLEVEL_DEFAULT)
1945		level = default_message_loglevel;
1946
1947	if (dict)
1948		lflags |= LOG_NEWLINE;
1949
1950	return log_output(facility, level, lflags,
1951			  dict, dictlen, text, text_len);
1952}
1953
1954asmlinkage int vprintk_emit(int facility, int level,
1955			    const char *dict, size_t dictlen,
1956			    const char *fmt, va_list args)
1957{
1958	int printed_len;
1959	bool in_sched = false, pending_output;
1960	unsigned long flags;
1961	u64 curr_log_seq;
1962
1963	/* Suppress unimportant messages after panic happens */
1964	if (unlikely(suppress_printk))
1965		return 0;
1966
1967	if (level == LOGLEVEL_SCHED) {
1968		level = LOGLEVEL_DEFAULT;
1969		in_sched = true;
1970	}
1971
1972	boot_delay_msec(level);
1973	printk_delay();
1974
1975	/* This stops the holder of console_sem just where we want him */
1976	logbuf_lock_irqsave(flags);
1977	curr_log_seq = log_next_seq;
1978	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1979	pending_output = (curr_log_seq != log_next_seq);
1980	logbuf_unlock_irqrestore(flags);
1981
1982	/* If called from the scheduler, we can not call up(). */
1983	if (!in_sched && pending_output) {
1984		/*
1985		 * Disable preemption to avoid being preempted while holding
1986		 * console_sem which would prevent anyone from printing to
1987		 * console
1988		 */
1989		preempt_disable();
1990		/*
1991		 * Try to acquire and then immediately release the console
1992		 * semaphore.  The release will print out buffers and wake up
1993		 * /dev/kmsg and syslog() users.
1994		 */
1995		if (console_trylock_spinning())
1996			console_unlock();
1997		preempt_enable();
1998	}
1999
2000	if (pending_output)
2001		wake_up_klogd();
2002	return printed_len;
2003}
2004EXPORT_SYMBOL(vprintk_emit);
2005
2006asmlinkage int vprintk(const char *fmt, va_list args)
2007{
2008	return vprintk_func(fmt, args);
2009}
2010EXPORT_SYMBOL(vprintk);
2011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2012int vprintk_default(const char *fmt, va_list args)
2013{
2014	int r;
2015
2016#ifdef CONFIG_KGDB_KDB
2017	/* Allow to pass printk() to kdb but avoid a recursion. */
2018	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
2019		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
2020		return r;
2021	}
2022#endif
2023	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2024
2025	return r;
2026}
2027EXPORT_SYMBOL_GPL(vprintk_default);
2028
2029/**
2030 * printk - print a kernel message
2031 * @fmt: format string
2032 *
2033 * This is printk(). It can be called from any context. We want it to work.
2034 *
2035 * We try to grab the console_lock. If we succeed, it's easy - we log the
2036 * output and call the console drivers.  If we fail to get the semaphore, we
2037 * place the output into the log buffer and return. The current holder of
2038 * the console_sem will notice the new output in console_unlock(); and will
2039 * send it to the consoles before releasing the lock.
2040 *
2041 * One effect of this deferred printing is that code which calls printk() and
2042 * then changes console_loglevel may break. This is because console_loglevel
2043 * is inspected when the actual printing occurs.
2044 *
2045 * See also:
2046 * printf(3)
2047 *
2048 * See the vsnprintf() documentation for format string extensions over C99.
2049 */
2050asmlinkage __visible int printk(const char *fmt, ...)
2051{
2052	va_list args;
2053	int r;
2054
2055	va_start(args, fmt);
2056	r = vprintk_func(fmt, args);
2057	va_end(args);
2058
2059	return r;
2060}
2061EXPORT_SYMBOL(printk);
2062
2063#else /* CONFIG_PRINTK */
2064
2065#define LOG_LINE_MAX		0
2066#define PREFIX_MAX		0
2067#define printk_time		false
2068
2069static u64 syslog_seq;
2070static u32 syslog_idx;
2071static u64 console_seq;
2072static u32 console_idx;
2073static u64 exclusive_console_stop_seq;
2074static u64 log_first_seq;
2075static u32 log_first_idx;
2076static u64 log_next_seq;
2077static char *log_text(const struct printk_log *msg) { return NULL; }
2078static char *log_dict(const struct printk_log *msg) { return NULL; }
2079static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2080static u32 log_next(u32 idx) { return 0; }
2081static ssize_t msg_print_ext_header(char *buf, size_t size,
2082				    struct printk_log *msg,
2083				    u64 seq) { return 0; }
2084static ssize_t msg_print_ext_body(char *buf, size_t size,
2085				  char *dict, size_t dict_len,
2086				  char *text, size_t text_len) { return 0; }
2087static void console_lock_spinning_enable(void) { }
2088static int console_lock_spinning_disable_and_check(void) { return 0; }
2089static void call_console_drivers(const char *ext_text, size_t ext_len,
2090				 const char *text, size_t len) {}
2091static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2092			     bool time, char *buf, size_t size) { return 0; }
2093static bool suppress_message_printing(int level) { return false; }
2094
2095#endif /* CONFIG_PRINTK */
2096
2097#ifdef CONFIG_EARLY_PRINTK
2098struct console *early_console;
2099
2100asmlinkage __visible void early_printk(const char *fmt, ...)
2101{
2102	va_list ap;
2103	char buf[512];
2104	int n;
2105
2106	if (!early_console)
2107		return;
2108
2109	va_start(ap, fmt);
2110	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2111	va_end(ap);
2112
2113	early_console->write(early_console, buf, n);
2114}
2115#endif
2116
2117static int __add_preferred_console(char *name, int idx, char *options,
2118				   char *brl_options)
2119{
2120	struct console_cmdline *c;
2121	int i;
2122
2123	/*
2124	 *	See if this tty is not yet registered, and
2125	 *	if we have a slot free.
2126	 */
2127	for (i = 0, c = console_cmdline;
2128	     i < MAX_CMDLINECONSOLES && c->name[0];
2129	     i++, c++) {
2130		if (strcmp(c->name, name) == 0 && c->index == idx) {
2131			if (!brl_options)
2132				preferred_console = i;
2133			return 0;
2134		}
2135	}
2136	if (i == MAX_CMDLINECONSOLES)
2137		return -E2BIG;
2138	if (!brl_options)
2139		preferred_console = i;
2140	strlcpy(c->name, name, sizeof(c->name));
2141	c->options = options;
2142	braille_set_options(c, brl_options);
2143
2144	c->index = idx;
2145	return 0;
2146}
2147
2148static int __init console_msg_format_setup(char *str)
2149{
2150	if (!strcmp(str, "syslog"))
2151		console_msg_format = MSG_FORMAT_SYSLOG;
2152	if (!strcmp(str, "default"))
2153		console_msg_format = MSG_FORMAT_DEFAULT;
2154	return 1;
2155}
2156__setup("console_msg_format=", console_msg_format_setup);
2157
2158/*
2159 * Set up a console.  Called via do_early_param() in init/main.c
2160 * for each "console=" parameter in the boot command line.
2161 */
2162static int __init console_setup(char *str)
2163{
2164	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2165	char *s, *options, *brl_options = NULL;
2166	int idx;
2167
2168	if (_braille_console_setup(&str, &brl_options))
2169		return 1;
2170
2171	/*
2172	 * Decode str into name, index, options.
2173	 */
2174	if (str[0] >= '0' && str[0] <= '9') {
2175		strcpy(buf, "ttyS");
2176		strncpy(buf + 4, str, sizeof(buf) - 5);
2177	} else {
2178		strncpy(buf, str, sizeof(buf) - 1);
2179	}
2180	buf[sizeof(buf) - 1] = 0;
2181	options = strchr(str, ',');
2182	if (options)
2183		*(options++) = 0;
2184#ifdef __sparc__
2185	if (!strcmp(str, "ttya"))
2186		strcpy(buf, "ttyS0");
2187	if (!strcmp(str, "ttyb"))
2188		strcpy(buf, "ttyS1");
2189#endif
2190	for (s = buf; *s; s++)
2191		if (isdigit(*s) || *s == ',')
2192			break;
2193	idx = simple_strtoul(s, NULL, 10);
2194	*s = 0;
2195
2196	__add_preferred_console(buf, idx, options, brl_options);
2197	console_set_on_cmdline = 1;
2198	return 1;
2199}
2200__setup("console=", console_setup);
2201
2202/**
2203 * add_preferred_console - add a device to the list of preferred consoles.
2204 * @name: device name
2205 * @idx: device index
2206 * @options: options for this console
2207 *
2208 * The last preferred console added will be used for kernel messages
2209 * and stdin/out/err for init.  Normally this is used by console_setup
2210 * above to handle user-supplied console arguments; however it can also
2211 * be used by arch-specific code either to override the user or more
2212 * commonly to provide a default console (ie from PROM variables) when
2213 * the user has not supplied one.
2214 */
2215int add_preferred_console(char *name, int idx, char *options)
2216{
2217	return __add_preferred_console(name, idx, options, NULL);
2218}
2219
2220bool console_suspend_enabled = true;
2221EXPORT_SYMBOL(console_suspend_enabled);
2222
2223static int __init console_suspend_disable(char *str)
2224{
2225	console_suspend_enabled = false;
2226	return 1;
2227}
2228__setup("no_console_suspend", console_suspend_disable);
2229module_param_named(console_suspend, console_suspend_enabled,
2230		bool, S_IRUGO | S_IWUSR);
2231MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2232	" and hibernate operations");
2233
2234/**
2235 * suspend_console - suspend the console subsystem
2236 *
2237 * This disables printk() while we go into suspend states
2238 */
2239void suspend_console(void)
2240{
2241	if (!console_suspend_enabled)
2242		return;
2243	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2244	console_lock();
2245	console_suspended = 1;
2246	up_console_sem();
2247}
2248
2249void resume_console(void)
2250{
2251	if (!console_suspend_enabled)
2252		return;
2253	down_console_sem();
2254	console_suspended = 0;
2255	console_unlock();
2256}
2257
2258/**
2259 * console_cpu_notify - print deferred console messages after CPU hotplug
2260 * @cpu: unused
2261 *
2262 * If printk() is called from a CPU that is not online yet, the messages
2263 * will be printed on the console only if there are CON_ANYTIME consoles.
2264 * This function is called when a new CPU comes online (or fails to come
2265 * up) or goes offline.
2266 */
2267static int console_cpu_notify(unsigned int cpu)
2268{
2269	if (!cpuhp_tasks_frozen) {
2270		/* If trylock fails, someone else is doing the printing */
2271		if (console_trylock())
2272			console_unlock();
2273	}
2274	return 0;
2275}
2276
2277/**
2278 * console_lock - lock the console system for exclusive use.
2279 *
2280 * Acquires a lock which guarantees that the caller has
2281 * exclusive access to the console system and the console_drivers list.
2282 *
2283 * Can sleep, returns nothing.
2284 */
2285void console_lock(void)
2286{
2287	might_sleep();
2288
2289	down_console_sem();
2290	if (console_suspended)
2291		return;
2292	console_locked = 1;
2293	console_may_schedule = 1;
2294}
2295EXPORT_SYMBOL(console_lock);
2296
2297/**
2298 * console_trylock - try to lock the console system for exclusive use.
2299 *
2300 * Try to acquire a lock which guarantees that the caller has exclusive
2301 * access to the console system and the console_drivers list.
2302 *
2303 * returns 1 on success, and 0 on failure to acquire the lock.
2304 */
2305int console_trylock(void)
2306{
2307	if (down_trylock_console_sem())
2308		return 0;
2309	if (console_suspended) {
2310		up_console_sem();
2311		return 0;
2312	}
2313	console_locked = 1;
2314	console_may_schedule = 0;
2315	return 1;
2316}
2317EXPORT_SYMBOL(console_trylock);
2318
2319int is_console_locked(void)
2320{
2321	return console_locked;
2322}
2323EXPORT_SYMBOL(is_console_locked);
2324
2325/*
2326 * Check if we have any console that is capable of printing while cpu is
2327 * booting or shutting down. Requires console_sem.
2328 */
2329static int have_callable_console(void)
2330{
2331	struct console *con;
2332
2333	for_each_console(con)
2334		if ((con->flags & CON_ENABLED) &&
2335				(con->flags & CON_ANYTIME))
2336			return 1;
2337
2338	return 0;
2339}
2340
2341/*
2342 * Can we actually use the console at this time on this cpu?
2343 *
2344 * Console drivers may assume that per-cpu resources have been allocated. So
2345 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2346 * call them until this CPU is officially up.
2347 */
2348static inline int can_use_console(void)
2349{
2350	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2351}
2352
2353/**
2354 * console_unlock - unlock the console system
2355 *
2356 * Releases the console_lock which the caller holds on the console system
2357 * and the console driver list.
2358 *
2359 * While the console_lock was held, console output may have been buffered
2360 * by printk().  If this is the case, console_unlock(); emits
2361 * the output prior to releasing the lock.
2362 *
2363 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2364 *
2365 * console_unlock(); may be called from any context.
2366 */
2367void console_unlock(void)
2368{
2369	static char ext_text[CONSOLE_EXT_LOG_MAX];
2370	static char text[LOG_LINE_MAX + PREFIX_MAX];
 
2371	unsigned long flags;
 
2372	bool do_cond_resched, retry;
2373
2374	if (console_suspended) {
2375		up_console_sem();
2376		return;
2377	}
2378
2379	/*
2380	 * Console drivers are called with interrupts disabled, so
2381	 * @console_may_schedule should be cleared before; however, we may
2382	 * end up dumping a lot of lines, for example, if called from
2383	 * console registration path, and should invoke cond_resched()
2384	 * between lines if allowable.  Not doing so can cause a very long
2385	 * scheduling stall on a slow console leading to RCU stall and
2386	 * softlockup warnings which exacerbate the issue with more
2387	 * messages practically incapacitating the system.
2388	 *
2389	 * console_trylock() is not able to detect the preemptive
2390	 * context reliably. Therefore the value must be stored before
2391	 * and cleared after the the "again" goto label.
2392	 */
2393	do_cond_resched = console_may_schedule;
2394again:
2395	console_may_schedule = 0;
2396
2397	/*
2398	 * We released the console_sem lock, so we need to recheck if
2399	 * cpu is online and (if not) is there at least one CON_ANYTIME
2400	 * console.
2401	 */
2402	if (!can_use_console()) {
2403		console_locked = 0;
2404		up_console_sem();
2405		return;
2406	}
2407
2408	for (;;) {
2409		struct printk_log *msg;
2410		size_t ext_len = 0;
2411		size_t len;
2412
2413		printk_safe_enter_irqsave(flags);
2414		raw_spin_lock(&logbuf_lock);
 
 
 
 
 
2415		if (console_seq < log_first_seq) {
2416			len = sprintf(text,
2417				      "** %llu printk messages dropped **\n",
2418				      log_first_seq - console_seq);
2419
2420			/* messages are gone, move to first one */
2421			console_seq = log_first_seq;
2422			console_idx = log_first_idx;
2423		} else {
2424			len = 0;
2425		}
2426skip:
2427		if (console_seq == log_next_seq)
2428			break;
2429
2430		msg = log_from_idx(console_idx);
2431		if (suppress_message_printing(msg->level)) {
2432			/*
2433			 * Skip record we have buffered and already printed
2434			 * directly to the console when we received it, and
2435			 * record that has level above the console loglevel.
2436			 */
2437			console_idx = log_next(console_idx);
2438			console_seq++;
2439			goto skip;
2440		}
2441
2442		/* Output to all consoles once old messages replayed. */
2443		if (unlikely(exclusive_console &&
2444			     console_seq >= exclusive_console_stop_seq)) {
2445			exclusive_console = NULL;
2446		}
2447
2448		len += msg_print_text(msg,
2449				console_msg_format & MSG_FORMAT_SYSLOG,
2450				printk_time, text + len, sizeof(text) - len);
 
2451		if (nr_ext_console_drivers) {
2452			ext_len = msg_print_ext_header(ext_text,
2453						sizeof(ext_text),
2454						msg, console_seq);
2455			ext_len += msg_print_ext_body(ext_text + ext_len,
2456						sizeof(ext_text) - ext_len,
2457						log_dict(msg), msg->dict_len,
2458						log_text(msg), msg->text_len);
2459		}
2460		console_idx = log_next(console_idx);
2461		console_seq++;
2462		raw_spin_unlock(&logbuf_lock);
2463
2464		/*
2465		 * While actively printing out messages, if another printk()
2466		 * were to occur on another CPU, it may wait for this one to
2467		 * finish. This task can not be preempted if there is a
2468		 * waiter waiting to take over.
2469		 */
2470		console_lock_spinning_enable();
2471
2472		stop_critical_timings();	/* don't trace print latency */
2473		call_console_drivers(ext_text, ext_len, text, len);
2474		start_critical_timings();
2475
2476		if (console_lock_spinning_disable_and_check()) {
2477			printk_safe_exit_irqrestore(flags);
2478			return;
2479		}
2480
2481		printk_safe_exit_irqrestore(flags);
2482
2483		if (do_cond_resched)
2484			cond_resched();
2485	}
2486
2487	console_locked = 0;
2488
 
 
 
 
2489	raw_spin_unlock(&logbuf_lock);
2490
2491	up_console_sem();
2492
2493	/*
2494	 * Someone could have filled up the buffer again, so re-check if there's
2495	 * something to flush. In case we cannot trylock the console_sem again,
2496	 * there's a new owner and the console_unlock() from them will do the
2497	 * flush, no worries.
2498	 */
2499	raw_spin_lock(&logbuf_lock);
2500	retry = console_seq != log_next_seq;
2501	raw_spin_unlock(&logbuf_lock);
2502	printk_safe_exit_irqrestore(flags);
2503
2504	if (retry && console_trylock())
2505		goto again;
 
 
 
 
2506}
2507EXPORT_SYMBOL(console_unlock);
2508
2509/**
2510 * console_conditional_schedule - yield the CPU if required
2511 *
2512 * If the console code is currently allowed to sleep, and
2513 * if this CPU should yield the CPU to another task, do
2514 * so here.
2515 *
2516 * Must be called within console_lock();.
2517 */
2518void __sched console_conditional_schedule(void)
2519{
2520	if (console_may_schedule)
2521		cond_resched();
2522}
2523EXPORT_SYMBOL(console_conditional_schedule);
2524
2525void console_unblank(void)
2526{
2527	struct console *c;
2528
2529	/*
2530	 * console_unblank can no longer be called in interrupt context unless
2531	 * oops_in_progress is set to 1..
2532	 */
2533	if (oops_in_progress) {
2534		if (down_trylock_console_sem() != 0)
2535			return;
2536	} else
2537		console_lock();
2538
2539	console_locked = 1;
2540	console_may_schedule = 0;
2541	for_each_console(c)
2542		if ((c->flags & CON_ENABLED) && c->unblank)
2543			c->unblank();
2544	console_unlock();
2545}
2546
2547/**
2548 * console_flush_on_panic - flush console content on panic
2549 * @mode: flush all messages in buffer or just the pending ones
2550 *
2551 * Immediately output all pending messages no matter what.
2552 */
2553void console_flush_on_panic(enum con_flush_mode mode)
2554{
2555	/*
2556	 * If someone else is holding the console lock, trylock will fail
2557	 * and may_schedule may be set.  Ignore and proceed to unlock so
2558	 * that messages are flushed out.  As this can be called from any
2559	 * context and we don't want to get preempted while flushing,
2560	 * ensure may_schedule is cleared.
2561	 */
2562	console_trylock();
2563	console_may_schedule = 0;
2564
2565	if (mode == CONSOLE_REPLAY_ALL) {
2566		unsigned long flags;
2567
2568		logbuf_lock_irqsave(flags);
2569		console_seq = log_first_seq;
2570		console_idx = log_first_idx;
2571		logbuf_unlock_irqrestore(flags);
2572	}
2573	console_unlock();
2574}
2575
2576/*
2577 * Return the console tty driver structure and its associated index
2578 */
2579struct tty_driver *console_device(int *index)
2580{
2581	struct console *c;
2582	struct tty_driver *driver = NULL;
2583
2584	console_lock();
2585	for_each_console(c) {
2586		if (!c->device)
2587			continue;
2588		driver = c->device(c, index);
2589		if (driver)
2590			break;
2591	}
2592	console_unlock();
2593	return driver;
2594}
2595
2596/*
2597 * Prevent further output on the passed console device so that (for example)
2598 * serial drivers can disable console output before suspending a port, and can
2599 * re-enable output afterwards.
2600 */
2601void console_stop(struct console *console)
2602{
2603	console_lock();
2604	console->flags &= ~CON_ENABLED;
2605	console_unlock();
2606}
2607EXPORT_SYMBOL(console_stop);
2608
2609void console_start(struct console *console)
2610{
2611	console_lock();
2612	console->flags |= CON_ENABLED;
2613	console_unlock();
2614}
2615EXPORT_SYMBOL(console_start);
2616
2617static int __read_mostly keep_bootcon;
2618
2619static int __init keep_bootcon_setup(char *str)
2620{
2621	keep_bootcon = 1;
2622	pr_info("debug: skip boot console de-registration.\n");
2623
2624	return 0;
2625}
2626
2627early_param("keep_bootcon", keep_bootcon_setup);
2628
2629/*
2630 * The console driver calls this routine during kernel initialization
2631 * to register the console printing procedure with printk() and to
2632 * print any messages that were printed by the kernel before the
2633 * console driver was initialized.
2634 *
2635 * This can happen pretty early during the boot process (because of
2636 * early_printk) - sometimes before setup_arch() completes - be careful
2637 * of what kernel features are used - they may not be initialised yet.
2638 *
2639 * There are two types of consoles - bootconsoles (early_printk) and
2640 * "real" consoles (everything which is not a bootconsole) which are
2641 * handled differently.
2642 *  - Any number of bootconsoles can be registered at any time.
2643 *  - As soon as a "real" console is registered, all bootconsoles
2644 *    will be unregistered automatically.
2645 *  - Once a "real" console is registered, any attempt to register a
2646 *    bootconsoles will be rejected
2647 */
2648void register_console(struct console *newcon)
2649{
2650	int i;
2651	unsigned long flags;
2652	struct console *bcon = NULL;
2653	struct console_cmdline *c;
2654	static bool has_preferred;
2655
2656	if (console_drivers)
2657		for_each_console(bcon)
2658			if (WARN(bcon == newcon,
2659					"console '%s%d' already registered\n",
2660					bcon->name, bcon->index))
2661				return;
2662
2663	/*
2664	 * before we register a new CON_BOOT console, make sure we don't
2665	 * already have a valid console
2666	 */
2667	if (console_drivers && newcon->flags & CON_BOOT) {
2668		/* find the last or real console */
2669		for_each_console(bcon) {
2670			if (!(bcon->flags & CON_BOOT)) {
2671				pr_info("Too late to register bootconsole %s%d\n",
2672					newcon->name, newcon->index);
2673				return;
2674			}
2675		}
2676	}
2677
2678	if (console_drivers && console_drivers->flags & CON_BOOT)
2679		bcon = console_drivers;
2680
2681	if (!has_preferred || bcon || !console_drivers)
2682		has_preferred = preferred_console >= 0;
2683
2684	/*
2685	 *	See if we want to use this console driver. If we
2686	 *	didn't select a console we take the first one
2687	 *	that registers here.
2688	 */
2689	if (!has_preferred) {
2690		if (newcon->index < 0)
2691			newcon->index = 0;
2692		if (newcon->setup == NULL ||
2693		    newcon->setup(newcon, NULL) == 0) {
2694			newcon->flags |= CON_ENABLED;
2695			if (newcon->device) {
2696				newcon->flags |= CON_CONSDEV;
2697				has_preferred = true;
2698			}
2699		}
2700	}
2701
2702	/*
2703	 *	See if this console matches one we selected on
2704	 *	the command line.
2705	 */
2706	for (i = 0, c = console_cmdline;
2707	     i < MAX_CMDLINECONSOLES && c->name[0];
2708	     i++, c++) {
2709		if (!newcon->match ||
2710		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2711			/* default matching */
2712			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2713			if (strcmp(c->name, newcon->name) != 0)
2714				continue;
2715			if (newcon->index >= 0 &&
2716			    newcon->index != c->index)
2717				continue;
2718			if (newcon->index < 0)
2719				newcon->index = c->index;
2720
2721			if (_braille_register_console(newcon, c))
2722				return;
2723
2724			if (newcon->setup &&
2725			    newcon->setup(newcon, c->options) != 0)
2726				break;
2727		}
2728
2729		newcon->flags |= CON_ENABLED;
2730		if (i == preferred_console) {
2731			newcon->flags |= CON_CONSDEV;
2732			has_preferred = true;
2733		}
2734		break;
2735	}
2736
2737	if (!(newcon->flags & CON_ENABLED))
2738		return;
2739
2740	/*
2741	 * If we have a bootconsole, and are switching to a real console,
2742	 * don't print everything out again, since when the boot console, and
2743	 * the real console are the same physical device, it's annoying to
2744	 * see the beginning boot messages twice
2745	 */
2746	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2747		newcon->flags &= ~CON_PRINTBUFFER;
2748
2749	/*
2750	 *	Put this console in the list - keep the
2751	 *	preferred driver at the head of the list.
2752	 */
2753	console_lock();
2754	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2755		newcon->next = console_drivers;
2756		console_drivers = newcon;
2757		if (newcon->next)
2758			newcon->next->flags &= ~CON_CONSDEV;
2759	} else {
2760		newcon->next = console_drivers->next;
2761		console_drivers->next = newcon;
2762	}
2763
2764	if (newcon->flags & CON_EXTENDED)
2765		nr_ext_console_drivers++;
 
2766
2767	if (newcon->flags & CON_PRINTBUFFER) {
2768		/*
2769		 * console_unlock(); will print out the buffered messages
2770		 * for us.
2771		 */
2772		logbuf_lock_irqsave(flags);
2773		console_seq = syslog_seq;
2774		console_idx = syslog_idx;
 
2775		/*
2776		 * We're about to replay the log buffer.  Only do this to the
2777		 * just-registered console to avoid excessive message spam to
2778		 * the already-registered consoles.
2779		 *
2780		 * Set exclusive_console with disabled interrupts to reduce
2781		 * race window with eventual console_flush_on_panic() that
2782		 * ignores console_lock.
2783		 */
2784		exclusive_console = newcon;
2785		exclusive_console_stop_seq = console_seq;
2786		logbuf_unlock_irqrestore(flags);
2787	}
2788	console_unlock();
2789	console_sysfs_notify();
2790
2791	/*
2792	 * By unregistering the bootconsoles after we enable the real console
2793	 * we get the "console xxx enabled" message on all the consoles -
2794	 * boot consoles, real consoles, etc - this is to ensure that end
2795	 * users know there might be something in the kernel's log buffer that
2796	 * went to the bootconsole (that they do not see on the real console)
2797	 */
2798	pr_info("%sconsole [%s%d] enabled\n",
2799		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2800		newcon->name, newcon->index);
2801	if (bcon &&
2802	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2803	    !keep_bootcon) {
2804		/* We need to iterate through all boot consoles, to make
2805		 * sure we print everything out, before we unregister them.
2806		 */
2807		for_each_console(bcon)
2808			if (bcon->flags & CON_BOOT)
2809				unregister_console(bcon);
2810	}
2811}
2812EXPORT_SYMBOL(register_console);
2813
2814int unregister_console(struct console *console)
2815{
2816        struct console *a, *b;
2817	int res;
2818
2819	pr_info("%sconsole [%s%d] disabled\n",
2820		(console->flags & CON_BOOT) ? "boot" : "" ,
2821		console->name, console->index);
2822
2823	res = _braille_unregister_console(console);
2824	if (res)
2825		return res;
2826
2827	res = 1;
2828	console_lock();
2829	if (console_drivers == console) {
2830		console_drivers=console->next;
2831		res = 0;
2832	} else if (console_drivers) {
2833		for (a=console_drivers->next, b=console_drivers ;
2834		     a; b=a, a=b->next) {
2835			if (a == console) {
2836				b->next = a->next;
2837				res = 0;
2838				break;
2839			}
2840		}
2841	}
2842
2843	if (!res && (console->flags & CON_EXTENDED))
2844		nr_ext_console_drivers--;
2845
2846	/*
2847	 * If this isn't the last console and it has CON_CONSDEV set, we
2848	 * need to set it on the next preferred console.
2849	 */
2850	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2851		console_drivers->flags |= CON_CONSDEV;
2852
2853	console->flags &= ~CON_ENABLED;
2854	console_unlock();
2855	console_sysfs_notify();
2856	return res;
2857}
2858EXPORT_SYMBOL(unregister_console);
2859
2860/*
2861 * Initialize the console device. This is called *early*, so
2862 * we can't necessarily depend on lots of kernel help here.
2863 * Just do some early initializations, and do the complex setup
2864 * later.
2865 */
2866void __init console_init(void)
2867{
2868	int ret;
2869	initcall_t call;
2870	initcall_entry_t *ce;
2871
2872	/* Setup the default TTY line discipline. */
2873	n_tty_init();
2874
2875	/*
2876	 * set up the console device so that later boot sequences can
2877	 * inform about problems etc..
2878	 */
2879	ce = __con_initcall_start;
2880	trace_initcall_level("console");
2881	while (ce < __con_initcall_end) {
2882		call = initcall_from_entry(ce);
2883		trace_initcall_start(call);
2884		ret = call();
2885		trace_initcall_finish(call, ret);
2886		ce++;
2887	}
2888}
2889
2890/*
2891 * Some boot consoles access data that is in the init section and which will
2892 * be discarded after the initcalls have been run. To make sure that no code
2893 * will access this data, unregister the boot consoles in a late initcall.
2894 *
2895 * If for some reason, such as deferred probe or the driver being a loadable
2896 * module, the real console hasn't registered yet at this point, there will
2897 * be a brief interval in which no messages are logged to the console, which
2898 * makes it difficult to diagnose problems that occur during this time.
2899 *
2900 * To mitigate this problem somewhat, only unregister consoles whose memory
2901 * intersects with the init section. Note that all other boot consoles will
2902 * get unregistred when the real preferred console is registered.
2903 */
2904static int __init printk_late_init(void)
2905{
2906	struct console *con;
2907	int ret;
2908
2909	for_each_console(con) {
2910		if (!(con->flags & CON_BOOT))
2911			continue;
2912
2913		/* Check addresses that might be used for enabled consoles. */
2914		if (init_section_intersects(con, sizeof(*con)) ||
2915		    init_section_contains(con->write, 0) ||
2916		    init_section_contains(con->read, 0) ||
2917		    init_section_contains(con->device, 0) ||
2918		    init_section_contains(con->unblank, 0) ||
2919		    init_section_contains(con->data, 0)) {
2920			/*
2921			 * Please, consider moving the reported consoles out
2922			 * of the init section.
2923			 */
2924			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2925				con->name, con->index);
2926			unregister_console(con);
2927		}
2928	}
2929	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2930					console_cpu_notify);
2931	WARN_ON(ret < 0);
2932	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2933					console_cpu_notify, NULL);
2934	WARN_ON(ret < 0);
2935	return 0;
2936}
2937late_initcall(printk_late_init);
2938
2939#if defined CONFIG_PRINTK
2940/*
2941 * Delayed printk version, for scheduler-internal messages:
2942 */
2943#define PRINTK_PENDING_WAKEUP	0x01
2944#define PRINTK_PENDING_OUTPUT	0x02
2945
2946static DEFINE_PER_CPU(int, printk_pending);
2947
2948static void wake_up_klogd_work_func(struct irq_work *irq_work)
2949{
2950	int pending = __this_cpu_xchg(printk_pending, 0);
2951
2952	if (pending & PRINTK_PENDING_OUTPUT) {
2953		/* If trylock fails, someone else is doing the printing */
2954		if (console_trylock())
2955			console_unlock();
2956	}
2957
2958	if (pending & PRINTK_PENDING_WAKEUP)
2959		wake_up_interruptible(&log_wait);
2960}
2961
2962static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2963	.func = wake_up_klogd_work_func,
2964	.flags = IRQ_WORK_LAZY,
2965};
2966
2967void wake_up_klogd(void)
2968{
2969	preempt_disable();
2970	if (waitqueue_active(&log_wait)) {
2971		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2972		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2973	}
2974	preempt_enable();
2975}
2976
2977void defer_console_output(void)
2978{
2979	preempt_disable();
2980	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2981	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2982	preempt_enable();
2983}
2984
2985int vprintk_deferred(const char *fmt, va_list args)
2986{
2987	int r;
2988
2989	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2990	defer_console_output();
 
 
 
 
2991
2992	return r;
2993}
2994
2995int printk_deferred(const char *fmt, ...)
2996{
2997	va_list args;
2998	int r;
2999
3000	va_start(args, fmt);
3001	r = vprintk_deferred(fmt, args);
3002	va_end(args);
3003
3004	return r;
3005}
3006
3007/*
3008 * printk rate limiting, lifted from the networking subsystem.
3009 *
3010 * This enforces a rate limit: not more than 10 kernel messages
3011 * every 5s to make a denial-of-service attack impossible.
3012 */
3013DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3014
3015int __printk_ratelimit(const char *func)
3016{
3017	return ___ratelimit(&printk_ratelimit_state, func);
3018}
3019EXPORT_SYMBOL(__printk_ratelimit);
3020
3021/**
3022 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3023 * @caller_jiffies: pointer to caller's state
3024 * @interval_msecs: minimum interval between prints
3025 *
3026 * printk_timed_ratelimit() returns true if more than @interval_msecs
3027 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3028 * returned true.
3029 */
3030bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3031			unsigned int interval_msecs)
3032{
3033	unsigned long elapsed = jiffies - *caller_jiffies;
3034
3035	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3036		return false;
3037
3038	*caller_jiffies = jiffies;
3039	return true;
3040}
3041EXPORT_SYMBOL(printk_timed_ratelimit);
3042
3043static DEFINE_SPINLOCK(dump_list_lock);
3044static LIST_HEAD(dump_list);
3045
3046/**
3047 * kmsg_dump_register - register a kernel log dumper.
3048 * @dumper: pointer to the kmsg_dumper structure
3049 *
3050 * Adds a kernel log dumper to the system. The dump callback in the
3051 * structure will be called when the kernel oopses or panics and must be
3052 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3053 */
3054int kmsg_dump_register(struct kmsg_dumper *dumper)
3055{
3056	unsigned long flags;
3057	int err = -EBUSY;
3058
3059	/* The dump callback needs to be set */
3060	if (!dumper->dump)
3061		return -EINVAL;
3062
3063	spin_lock_irqsave(&dump_list_lock, flags);
3064	/* Don't allow registering multiple times */
3065	if (!dumper->registered) {
3066		dumper->registered = 1;
3067		list_add_tail_rcu(&dumper->list, &dump_list);
3068		err = 0;
3069	}
3070	spin_unlock_irqrestore(&dump_list_lock, flags);
3071
3072	return err;
3073}
3074EXPORT_SYMBOL_GPL(kmsg_dump_register);
3075
3076/**
3077 * kmsg_dump_unregister - unregister a kmsg dumper.
3078 * @dumper: pointer to the kmsg_dumper structure
3079 *
3080 * Removes a dump device from the system. Returns zero on success and
3081 * %-EINVAL otherwise.
3082 */
3083int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3084{
3085	unsigned long flags;
3086	int err = -EINVAL;
3087
3088	spin_lock_irqsave(&dump_list_lock, flags);
3089	if (dumper->registered) {
3090		dumper->registered = 0;
3091		list_del_rcu(&dumper->list);
3092		err = 0;
3093	}
3094	spin_unlock_irqrestore(&dump_list_lock, flags);
3095	synchronize_rcu();
3096
3097	return err;
3098}
3099EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3100
3101static bool always_kmsg_dump;
3102module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3103
3104/**
3105 * kmsg_dump - dump kernel log to kernel message dumpers.
3106 * @reason: the reason (oops, panic etc) for dumping
3107 *
3108 * Call each of the registered dumper's dump() callback, which can
3109 * retrieve the kmsg records with kmsg_dump_get_line() or
3110 * kmsg_dump_get_buffer().
3111 */
3112void kmsg_dump(enum kmsg_dump_reason reason)
3113{
3114	struct kmsg_dumper *dumper;
3115	unsigned long flags;
3116
3117	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3118		return;
3119
3120	rcu_read_lock();
3121	list_for_each_entry_rcu(dumper, &dump_list, list) {
3122		if (dumper->max_reason && reason > dumper->max_reason)
3123			continue;
3124
3125		/* initialize iterator with data about the stored records */
3126		dumper->active = true;
3127
3128		logbuf_lock_irqsave(flags);
3129		dumper->cur_seq = clear_seq;
3130		dumper->cur_idx = clear_idx;
3131		dumper->next_seq = log_next_seq;
3132		dumper->next_idx = log_next_idx;
3133		logbuf_unlock_irqrestore(flags);
3134
3135		/* invoke dumper which will iterate over records */
3136		dumper->dump(dumper, reason);
3137
3138		/* reset iterator */
3139		dumper->active = false;
3140	}
3141	rcu_read_unlock();
3142}
3143
3144/**
3145 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3146 * @dumper: registered kmsg dumper
3147 * @syslog: include the "<4>" prefixes
3148 * @line: buffer to copy the line to
3149 * @size: maximum size of the buffer
3150 * @len: length of line placed into buffer
3151 *
3152 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3153 * record, and copy one record into the provided buffer.
3154 *
3155 * Consecutive calls will return the next available record moving
3156 * towards the end of the buffer with the youngest messages.
3157 *
3158 * A return value of FALSE indicates that there are no more records to
3159 * read.
3160 *
3161 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3162 */
3163bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3164			       char *line, size_t size, size_t *len)
3165{
3166	struct printk_log *msg;
3167	size_t l = 0;
3168	bool ret = false;
3169
3170	if (!dumper->active)
3171		goto out;
3172
3173	if (dumper->cur_seq < log_first_seq) {
3174		/* messages are gone, move to first available one */
3175		dumper->cur_seq = log_first_seq;
3176		dumper->cur_idx = log_first_idx;
3177	}
3178
3179	/* last entry */
3180	if (dumper->cur_seq >= log_next_seq)
3181		goto out;
3182
3183	msg = log_from_idx(dumper->cur_idx);
3184	l = msg_print_text(msg, syslog, printk_time, line, size);
3185
3186	dumper->cur_idx = log_next(dumper->cur_idx);
3187	dumper->cur_seq++;
3188	ret = true;
3189out:
3190	if (len)
3191		*len = l;
3192	return ret;
3193}
3194
3195/**
3196 * kmsg_dump_get_line - retrieve one kmsg log line
3197 * @dumper: registered kmsg dumper
3198 * @syslog: include the "<4>" prefixes
3199 * @line: buffer to copy the line to
3200 * @size: maximum size of the buffer
3201 * @len: length of line placed into buffer
3202 *
3203 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3204 * record, and copy one record into the provided buffer.
3205 *
3206 * Consecutive calls will return the next available record moving
3207 * towards the end of the buffer with the youngest messages.
3208 *
3209 * A return value of FALSE indicates that there are no more records to
3210 * read.
3211 */
3212bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3213			char *line, size_t size, size_t *len)
3214{
3215	unsigned long flags;
3216	bool ret;
3217
3218	logbuf_lock_irqsave(flags);
3219	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3220	logbuf_unlock_irqrestore(flags);
3221
3222	return ret;
3223}
3224EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3225
3226/**
3227 * kmsg_dump_get_buffer - copy kmsg log lines
3228 * @dumper: registered kmsg dumper
3229 * @syslog: include the "<4>" prefixes
3230 * @buf: buffer to copy the line to
3231 * @size: maximum size of the buffer
3232 * @len: length of line placed into buffer
3233 *
3234 * Start at the end of the kmsg buffer and fill the provided buffer
3235 * with as many of the the *youngest* kmsg records that fit into it.
3236 * If the buffer is large enough, all available kmsg records will be
3237 * copied with a single call.
3238 *
3239 * Consecutive calls will fill the buffer with the next block of
3240 * available older records, not including the earlier retrieved ones.
3241 *
3242 * A return value of FALSE indicates that there are no more records to
3243 * read.
3244 */
3245bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3246			  char *buf, size_t size, size_t *len)
3247{
3248	unsigned long flags;
3249	u64 seq;
3250	u32 idx;
3251	u64 next_seq;
3252	u32 next_idx;
3253	size_t l = 0;
3254	bool ret = false;
3255	bool time = printk_time;
3256
3257	if (!dumper->active)
3258		goto out;
3259
3260	logbuf_lock_irqsave(flags);
3261	if (dumper->cur_seq < log_first_seq) {
3262		/* messages are gone, move to first available one */
3263		dumper->cur_seq = log_first_seq;
3264		dumper->cur_idx = log_first_idx;
3265	}
3266
3267	/* last entry */
3268	if (dumper->cur_seq >= dumper->next_seq) {
3269		logbuf_unlock_irqrestore(flags);
3270		goto out;
3271	}
3272
3273	/* calculate length of entire buffer */
3274	seq = dumper->cur_seq;
3275	idx = dumper->cur_idx;
3276	while (seq < dumper->next_seq) {
3277		struct printk_log *msg = log_from_idx(idx);
3278
3279		l += msg_print_text(msg, true, time, NULL, 0);
3280		idx = log_next(idx);
3281		seq++;
3282	}
3283
3284	/* move first record forward until length fits into the buffer */
3285	seq = dumper->cur_seq;
3286	idx = dumper->cur_idx;
3287	while (l >= size && seq < dumper->next_seq) {
3288		struct printk_log *msg = log_from_idx(idx);
3289
3290		l -= msg_print_text(msg, true, time, NULL, 0);
3291		idx = log_next(idx);
3292		seq++;
3293	}
3294
3295	/* last message in next interation */
3296	next_seq = seq;
3297	next_idx = idx;
3298
3299	l = 0;
3300	while (seq < dumper->next_seq) {
3301		struct printk_log *msg = log_from_idx(idx);
3302
3303		l += msg_print_text(msg, syslog, time, buf + l, size - l);
3304		idx = log_next(idx);
3305		seq++;
3306	}
3307
3308	dumper->next_seq = next_seq;
3309	dumper->next_idx = next_idx;
3310	ret = true;
3311	logbuf_unlock_irqrestore(flags);
3312out:
3313	if (len)
3314		*len = l;
3315	return ret;
3316}
3317EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3318
3319/**
3320 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3321 * @dumper: registered kmsg dumper
3322 *
3323 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3324 * kmsg_dump_get_buffer() can be called again and used multiple
3325 * times within the same dumper.dump() callback.
3326 *
3327 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3328 */
3329void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3330{
3331	dumper->cur_seq = clear_seq;
3332	dumper->cur_idx = clear_idx;
3333	dumper->next_seq = log_next_seq;
3334	dumper->next_idx = log_next_idx;
3335}
3336
3337/**
3338 * kmsg_dump_rewind - reset the interator
3339 * @dumper: registered kmsg dumper
3340 *
3341 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3342 * kmsg_dump_get_buffer() can be called again and used multiple
3343 * times within the same dumper.dump() callback.
3344 */
3345void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3346{
3347	unsigned long flags;
3348
3349	logbuf_lock_irqsave(flags);
3350	kmsg_dump_rewind_nolock(dumper);
3351	logbuf_unlock_irqrestore(flags);
3352}
3353EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3354
3355#endif
v4.17
 
   1/*
   2 *  linux/kernel/printk.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 * Modified to make sys_syslog() more flexible: added commands to
   7 * return the last 4k of kernel messages, regardless of whether
   8 * they've been read or not.  Added option to suppress kernel printk's
   9 * to the console.  Added hook for sending the console messages
  10 * elsewhere, in preparation for a serial line console (someday).
  11 * Ted Ts'o, 2/11/93.
  12 * Modified for sysctl support, 1/8/97, Chris Horn.
  13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  14 *     manfred@colorfullife.com
  15 * Rewrote bits to get rid of console_lock
  16 *	01Mar01 Andrew Morton
  17 */
  18
 
 
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/tty.h>
  22#include <linux/tty_driver.h>
  23#include <linux/console.h>
  24#include <linux/init.h>
  25#include <linux/jiffies.h>
  26#include <linux/nmi.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/delay.h>
  30#include <linux/smp.h>
  31#include <linux/security.h>
  32#include <linux/bootmem.h>
  33#include <linux/memblock.h>
  34#include <linux/syscalls.h>
  35#include <linux/crash_core.h>
  36#include <linux/kdb.h>
  37#include <linux/ratelimit.h>
  38#include <linux/kmsg_dump.h>
  39#include <linux/syslog.h>
  40#include <linux/cpu.h>
  41#include <linux/notifier.h>
  42#include <linux/rculist.h>
  43#include <linux/poll.h>
  44#include <linux/irq_work.h>
  45#include <linux/ctype.h>
  46#include <linux/uio.h>
  47#include <linux/sched/clock.h>
  48#include <linux/sched/debug.h>
  49#include <linux/sched/task_stack.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/sections.h>
  53
  54#include <trace/events/initcall.h>
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/printk.h>
  57
  58#include "console_cmdline.h"
  59#include "braille.h"
  60#include "internal.h"
  61
  62int console_printk[4] = {
  63	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  64	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  65	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  66	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  67};
 
 
 
 
  68
  69/*
  70 * Low level drivers may need that to know if they can schedule in
  71 * their unblank() callback or not. So let's export it.
  72 */
  73int oops_in_progress;
  74EXPORT_SYMBOL(oops_in_progress);
  75
  76/*
  77 * console_sem protects the console_drivers list, and also
  78 * provides serialisation for access to the entire console
  79 * driver system.
  80 */
  81static DEFINE_SEMAPHORE(console_sem);
  82struct console *console_drivers;
  83EXPORT_SYMBOL_GPL(console_drivers);
  84
 
 
 
 
 
 
  85#ifdef CONFIG_LOCKDEP
  86static struct lockdep_map console_lock_dep_map = {
  87	.name = "console_lock"
  88};
  89#endif
  90
  91enum devkmsg_log_bits {
  92	__DEVKMSG_LOG_BIT_ON = 0,
  93	__DEVKMSG_LOG_BIT_OFF,
  94	__DEVKMSG_LOG_BIT_LOCK,
  95};
  96
  97enum devkmsg_log_masks {
  98	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
  99	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
 100	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
 101};
 102
 103/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 104#define DEVKMSG_LOG_MASK_DEFAULT	0
 105
 106static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 107
 108static int __control_devkmsg(char *str)
 109{
 
 
 110	if (!str)
 111		return -EINVAL;
 112
 113	if (!strncmp(str, "on", 2)) {
 
 114		devkmsg_log = DEVKMSG_LOG_MASK_ON;
 115		return 2;
 116	} else if (!strncmp(str, "off", 3)) {
 
 
 
 117		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 118		return 3;
 119	} else if (!strncmp(str, "ratelimit", 9)) {
 
 
 
 120		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 121		return 9;
 122	}
 
 123	return -EINVAL;
 124}
 125
 126static int __init control_devkmsg(char *str)
 127{
 128	if (__control_devkmsg(str) < 0)
 129		return 1;
 130
 131	/*
 132	 * Set sysctl string accordingly:
 133	 */
 134	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
 135		strcpy(devkmsg_log_str, "on");
 136	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
 137		strcpy(devkmsg_log_str, "off");
 138	/* else "ratelimit" which is set by default. */
 139
 140	/*
 141	 * Sysctl cannot change it anymore. The kernel command line setting of
 142	 * this parameter is to force the setting to be permanent throughout the
 143	 * runtime of the system. This is a precation measure against userspace
 144	 * trying to be a smarta** and attempting to change it up on us.
 145	 */
 146	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 147
 148	return 0;
 149}
 150__setup("printk.devkmsg=", control_devkmsg);
 151
 152char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 153
 154int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 155			      void __user *buffer, size_t *lenp, loff_t *ppos)
 156{
 157	char old_str[DEVKMSG_STR_MAX_SIZE];
 158	unsigned int old;
 159	int err;
 160
 161	if (write) {
 162		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 163			return -EINVAL;
 164
 165		old = devkmsg_log;
 166		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 167	}
 168
 169	err = proc_dostring(table, write, buffer, lenp, ppos);
 170	if (err)
 171		return err;
 172
 173	if (write) {
 174		err = __control_devkmsg(devkmsg_log_str);
 175
 176		/*
 177		 * Do not accept an unknown string OR a known string with
 178		 * trailing crap...
 179		 */
 180		if (err < 0 || (err + 1 != *lenp)) {
 181
 182			/* ... and restore old setting. */
 183			devkmsg_log = old;
 184			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 185
 186			return -EINVAL;
 187		}
 188	}
 189
 190	return 0;
 191}
 192
 193/*
 194 * Number of registered extended console drivers.
 195 *
 196 * If extended consoles are present, in-kernel cont reassembly is disabled
 197 * and each fragment is stored as a separate log entry with proper
 198 * continuation flag so that every emitted message has full metadata.  This
 199 * doesn't change the result for regular consoles or /proc/kmsg.  For
 200 * /dev/kmsg, as long as the reader concatenates messages according to
 201 * consecutive continuation flags, the end result should be the same too.
 202 */
 203static int nr_ext_console_drivers;
 204
 205/*
 206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 207 * macros instead of functions so that _RET_IP_ contains useful information.
 208 */
 209#define down_console_sem() do { \
 210	down(&console_sem);\
 211	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 212} while (0)
 213
 214static int __down_trylock_console_sem(unsigned long ip)
 215{
 216	int lock_failed;
 217	unsigned long flags;
 218
 219	/*
 220	 * Here and in __up_console_sem() we need to be in safe mode,
 221	 * because spindump/WARN/etc from under console ->lock will
 222	 * deadlock in printk()->down_trylock_console_sem() otherwise.
 223	 */
 224	printk_safe_enter_irqsave(flags);
 225	lock_failed = down_trylock(&console_sem);
 226	printk_safe_exit_irqrestore(flags);
 227
 228	if (lock_failed)
 229		return 1;
 230	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 231	return 0;
 232}
 233#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 234
 235static void __up_console_sem(unsigned long ip)
 236{
 237	unsigned long flags;
 238
 239	mutex_release(&console_lock_dep_map, 1, ip);
 240
 241	printk_safe_enter_irqsave(flags);
 242	up(&console_sem);
 243	printk_safe_exit_irqrestore(flags);
 244}
 245#define up_console_sem() __up_console_sem(_RET_IP_)
 246
 247/*
 248 * This is used for debugging the mess that is the VT code by
 249 * keeping track if we have the console semaphore held. It's
 250 * definitely not the perfect debug tool (we don't know if _WE_
 251 * hold it and are racing, but it helps tracking those weird code
 252 * paths in the console code where we end up in places I want
 253 * locked without the console sempahore held).
 254 */
 255static int console_locked, console_suspended;
 256
 257/*
 258 * If exclusive_console is non-NULL then only this console is to be printed to.
 259 */
 260static struct console *exclusive_console;
 261
 262/*
 263 *	Array of consoles built from command line options (console=)
 264 */
 265
 266#define MAX_CMDLINECONSOLES 8
 267
 268static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 269
 270static int preferred_console = -1;
 271int console_set_on_cmdline;
 272EXPORT_SYMBOL(console_set_on_cmdline);
 273
 274/* Flag: console code may call schedule() */
 275static int console_may_schedule;
 276
 277enum con_msg_format_flags {
 278	MSG_FORMAT_DEFAULT	= 0,
 279	MSG_FORMAT_SYSLOG	= (1 << 0),
 280};
 281
 282static int console_msg_format = MSG_FORMAT_DEFAULT;
 283
 284/*
 285 * The printk log buffer consists of a chain of concatenated variable
 286 * length records. Every record starts with a record header, containing
 287 * the overall length of the record.
 288 *
 289 * The heads to the first and last entry in the buffer, as well as the
 290 * sequence numbers of these entries are maintained when messages are
 291 * stored.
 292 *
 293 * If the heads indicate available messages, the length in the header
 294 * tells the start next message. A length == 0 for the next message
 295 * indicates a wrap-around to the beginning of the buffer.
 296 *
 297 * Every record carries the monotonic timestamp in microseconds, as well as
 298 * the standard userspace syslog level and syslog facility. The usual
 299 * kernel messages use LOG_KERN; userspace-injected messages always carry
 300 * a matching syslog facility, by default LOG_USER. The origin of every
 301 * message can be reliably determined that way.
 302 *
 303 * The human readable log message directly follows the message header. The
 304 * length of the message text is stored in the header, the stored message
 305 * is not terminated.
 306 *
 307 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 308 * to provide userspace with a machine-readable message context.
 309 *
 310 * Examples for well-defined, commonly used property names are:
 311 *   DEVICE=b12:8               device identifier
 312 *                                b12:8         block dev_t
 313 *                                c127:3        char dev_t
 314 *                                n8            netdev ifindex
 315 *                                +sound:card0  subsystem:devname
 316 *   SUBSYSTEM=pci              driver-core subsystem name
 317 *
 318 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 319 * follows directly after a '=' character. Every property is terminated by
 320 * a '\0' character. The last property is not terminated.
 321 *
 322 * Example of a message structure:
 323 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 324 *   0008  34 00                        record is 52 bytes long
 325 *   000a        0b 00                  text is 11 bytes long
 326 *   000c              1f 00            dictionary is 23 bytes long
 327 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 328 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 329 *         69 6e 65                     "ine"
 330 *   001b           44 45 56 49 43      "DEVIC"
 331 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 332 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 333 *         67                           "g"
 334 *   0032     00 00 00                  padding to next message header
 335 *
 336 * The 'struct printk_log' buffer header must never be directly exported to
 337 * userspace, it is a kernel-private implementation detail that might
 338 * need to be changed in the future, when the requirements change.
 339 *
 340 * /dev/kmsg exports the structured data in the following line format:
 341 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 342 *
 343 * Users of the export format should ignore possible additional values
 344 * separated by ',', and find the message after the ';' character.
 345 *
 346 * The optional key/value pairs are attached as continuation lines starting
 347 * with a space character and terminated by a newline. All possible
 348 * non-prinatable characters are escaped in the "\xff" notation.
 349 */
 350
 351enum log_flags {
 352	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
 353	LOG_NEWLINE	= 2,	/* text ended with a newline */
 354	LOG_PREFIX	= 4,	/* text started with a prefix */
 355	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 356};
 357
 358struct printk_log {
 359	u64 ts_nsec;		/* timestamp in nanoseconds */
 360	u16 len;		/* length of entire record */
 361	u16 text_len;		/* length of text buffer */
 362	u16 dict_len;		/* length of dictionary buffer */
 363	u8 facility;		/* syslog facility */
 364	u8 flags:5;		/* internal record flags */
 365	u8 level:3;		/* syslog level */
 
 
 
 366}
 367#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 368__packed __aligned(4)
 369#endif
 370;
 371
 372/*
 373 * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
 374 * within the scheduler's rq lock. It must be released before calling
 375 * console_unlock() or anything else that might wake up a process.
 376 */
 377DEFINE_RAW_SPINLOCK(logbuf_lock);
 378
 379/*
 380 * Helper macros to lock/unlock logbuf_lock and switch between
 381 * printk-safe/unsafe modes.
 382 */
 383#define logbuf_lock_irq()				\
 384	do {						\
 385		printk_safe_enter_irq();		\
 386		raw_spin_lock(&logbuf_lock);		\
 387	} while (0)
 388
 389#define logbuf_unlock_irq()				\
 390	do {						\
 391		raw_spin_unlock(&logbuf_lock);		\
 392		printk_safe_exit_irq();			\
 393	} while (0)
 394
 395#define logbuf_lock_irqsave(flags)			\
 396	do {						\
 397		printk_safe_enter_irqsave(flags);	\
 398		raw_spin_lock(&logbuf_lock);		\
 399	} while (0)
 400
 401#define logbuf_unlock_irqrestore(flags)		\
 402	do {						\
 403		raw_spin_unlock(&logbuf_lock);		\
 404		printk_safe_exit_irqrestore(flags);	\
 405	} while (0)
 406
 407#ifdef CONFIG_PRINTK
 408DECLARE_WAIT_QUEUE_HEAD(log_wait);
 409/* the next printk record to read by syslog(READ) or /proc/kmsg */
 410static u64 syslog_seq;
 411static u32 syslog_idx;
 412static size_t syslog_partial;
 
 413
 414/* index and sequence number of the first record stored in the buffer */
 415static u64 log_first_seq;
 416static u32 log_first_idx;
 417
 418/* index and sequence number of the next record to store in the buffer */
 419static u64 log_next_seq;
 420static u32 log_next_idx;
 421
 422/* the next printk record to write to the console */
 423static u64 console_seq;
 424static u32 console_idx;
 
 425
 426/* the next printk record to read after the last 'clear' command */
 427static u64 clear_seq;
 428static u32 clear_idx;
 429
 
 
 
 430#define PREFIX_MAX		32
 
 431#define LOG_LINE_MAX		(1024 - PREFIX_MAX)
 432
 433#define LOG_LEVEL(v)		((v) & 0x07)
 434#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 435
 436/* record buffer */
 437#define LOG_ALIGN __alignof__(struct printk_log)
 438#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 
 439static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 440static char *log_buf = __log_buf;
 441static u32 log_buf_len = __LOG_BUF_LEN;
 442
 443/* Return log buffer address */
 444char *log_buf_addr_get(void)
 445{
 446	return log_buf;
 447}
 448
 449/* Return log buffer size */
 450u32 log_buf_len_get(void)
 451{
 452	return log_buf_len;
 453}
 454
 455/* human readable text of the record */
 456static char *log_text(const struct printk_log *msg)
 457{
 458	return (char *)msg + sizeof(struct printk_log);
 459}
 460
 461/* optional key/value pair dictionary attached to the record */
 462static char *log_dict(const struct printk_log *msg)
 463{
 464	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 465}
 466
 467/* get record by index; idx must point to valid msg */
 468static struct printk_log *log_from_idx(u32 idx)
 469{
 470	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 471
 472	/*
 473	 * A length == 0 record is the end of buffer marker. Wrap around and
 474	 * read the message at the start of the buffer.
 475	 */
 476	if (!msg->len)
 477		return (struct printk_log *)log_buf;
 478	return msg;
 479}
 480
 481/* get next record; idx must point to valid msg */
 482static u32 log_next(u32 idx)
 483{
 484	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 485
 486	/* length == 0 indicates the end of the buffer; wrap */
 487	/*
 488	 * A length == 0 record is the end of buffer marker. Wrap around and
 489	 * read the message at the start of the buffer as *this* one, and
 490	 * return the one after that.
 491	 */
 492	if (!msg->len) {
 493		msg = (struct printk_log *)log_buf;
 494		return msg->len;
 495	}
 496	return idx + msg->len;
 497}
 498
 499/*
 500 * Check whether there is enough free space for the given message.
 501 *
 502 * The same values of first_idx and next_idx mean that the buffer
 503 * is either empty or full.
 504 *
 505 * If the buffer is empty, we must respect the position of the indexes.
 506 * They cannot be reset to the beginning of the buffer.
 507 */
 508static int logbuf_has_space(u32 msg_size, bool empty)
 509{
 510	u32 free;
 511
 512	if (log_next_idx > log_first_idx || empty)
 513		free = max(log_buf_len - log_next_idx, log_first_idx);
 514	else
 515		free = log_first_idx - log_next_idx;
 516
 517	/*
 518	 * We need space also for an empty header that signalizes wrapping
 519	 * of the buffer.
 520	 */
 521	return free >= msg_size + sizeof(struct printk_log);
 522}
 523
 524static int log_make_free_space(u32 msg_size)
 525{
 526	while (log_first_seq < log_next_seq &&
 527	       !logbuf_has_space(msg_size, false)) {
 528		/* drop old messages until we have enough contiguous space */
 529		log_first_idx = log_next(log_first_idx);
 530		log_first_seq++;
 531	}
 532
 533	if (clear_seq < log_first_seq) {
 534		clear_seq = log_first_seq;
 535		clear_idx = log_first_idx;
 536	}
 537
 538	/* sequence numbers are equal, so the log buffer is empty */
 539	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
 540		return 0;
 541
 542	return -ENOMEM;
 543}
 544
 545/* compute the message size including the padding bytes */
 546static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
 547{
 548	u32 size;
 549
 550	size = sizeof(struct printk_log) + text_len + dict_len;
 551	*pad_len = (-size) & (LOG_ALIGN - 1);
 552	size += *pad_len;
 553
 554	return size;
 555}
 556
 557/*
 558 * Define how much of the log buffer we could take at maximum. The value
 559 * must be greater than two. Note that only half of the buffer is available
 560 * when the index points to the middle.
 561 */
 562#define MAX_LOG_TAKE_PART 4
 563static const char trunc_msg[] = "<truncated>";
 564
 565static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
 566			u16 *dict_len, u32 *pad_len)
 567{
 568	/*
 569	 * The message should not take the whole buffer. Otherwise, it might
 570	 * get removed too soon.
 571	 */
 572	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 573	if (*text_len > max_text_len)
 574		*text_len = max_text_len;
 575	/* enable the warning message */
 576	*trunc_msg_len = strlen(trunc_msg);
 577	/* disable the "dict" completely */
 578	*dict_len = 0;
 579	/* compute the size again, count also the warning message */
 580	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
 581}
 582
 583/* insert record into the buffer, discard old ones, update heads */
 584static int log_store(int facility, int level,
 585		     enum log_flags flags, u64 ts_nsec,
 586		     const char *dict, u16 dict_len,
 587		     const char *text, u16 text_len)
 588{
 589	struct printk_log *msg;
 590	u32 size, pad_len;
 591	u16 trunc_msg_len = 0;
 592
 593	/* number of '\0' padding bytes to next message */
 594	size = msg_used_size(text_len, dict_len, &pad_len);
 595
 596	if (log_make_free_space(size)) {
 597		/* truncate the message if it is too long for empty buffer */
 598		size = truncate_msg(&text_len, &trunc_msg_len,
 599				    &dict_len, &pad_len);
 600		/* survive when the log buffer is too small for trunc_msg */
 601		if (log_make_free_space(size))
 602			return 0;
 603	}
 604
 605	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 606		/*
 607		 * This message + an additional empty header does not fit
 608		 * at the end of the buffer. Add an empty header with len == 0
 609		 * to signify a wrap around.
 610		 */
 611		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 612		log_next_idx = 0;
 613	}
 614
 615	/* fill message */
 616	msg = (struct printk_log *)(log_buf + log_next_idx);
 617	memcpy(log_text(msg), text, text_len);
 618	msg->text_len = text_len;
 619	if (trunc_msg_len) {
 620		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
 621		msg->text_len += trunc_msg_len;
 622	}
 623	memcpy(log_dict(msg), dict, dict_len);
 624	msg->dict_len = dict_len;
 625	msg->facility = facility;
 626	msg->level = level & 7;
 627	msg->flags = flags & 0x1f;
 628	if (ts_nsec > 0)
 629		msg->ts_nsec = ts_nsec;
 630	else
 631		msg->ts_nsec = local_clock();
 
 
 
 632	memset(log_dict(msg) + dict_len, 0, pad_len);
 633	msg->len = size;
 634
 635	/* insert message */
 636	log_next_idx += msg->len;
 637	log_next_seq++;
 638
 639	return msg->text_len;
 640}
 641
 642int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 643
 644static int syslog_action_restricted(int type)
 645{
 646	if (dmesg_restrict)
 647		return 1;
 648	/*
 649	 * Unless restricted, we allow "read all" and "get buffer size"
 650	 * for everybody.
 651	 */
 652	return type != SYSLOG_ACTION_READ_ALL &&
 653	       type != SYSLOG_ACTION_SIZE_BUFFER;
 654}
 655
 656static int check_syslog_permissions(int type, int source)
 657{
 658	/*
 659	 * If this is from /proc/kmsg and we've already opened it, then we've
 660	 * already done the capabilities checks at open time.
 661	 */
 662	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 663		goto ok;
 664
 665	if (syslog_action_restricted(type)) {
 666		if (capable(CAP_SYSLOG))
 667			goto ok;
 668		/*
 669		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 670		 * a warning.
 671		 */
 672		if (capable(CAP_SYS_ADMIN)) {
 673			pr_warn_once("%s (%d): Attempt to access syslog with "
 674				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 675				     "(deprecated).\n",
 676				 current->comm, task_pid_nr(current));
 677			goto ok;
 678		}
 679		return -EPERM;
 680	}
 681ok:
 682	return security_syslog(type);
 683}
 684
 685static void append_char(char **pp, char *e, char c)
 686{
 687	if (*pp < e)
 688		*(*pp)++ = c;
 689}
 690
 691static ssize_t msg_print_ext_header(char *buf, size_t size,
 692				    struct printk_log *msg, u64 seq)
 693{
 694	u64 ts_usec = msg->ts_nsec;
 
 
 
 
 
 
 
 
 
 695
 696	do_div(ts_usec, 1000);
 697
 698	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
 699		       (msg->facility << 3) | msg->level, seq, ts_usec,
 700		       msg->flags & LOG_CONT ? 'c' : '-');
 701}
 702
 703static ssize_t msg_print_ext_body(char *buf, size_t size,
 704				  char *dict, size_t dict_len,
 705				  char *text, size_t text_len)
 706{
 707	char *p = buf, *e = buf + size;
 708	size_t i;
 709
 710	/* escape non-printable characters */
 711	for (i = 0; i < text_len; i++) {
 712		unsigned char c = text[i];
 713
 714		if (c < ' ' || c >= 127 || c == '\\')
 715			p += scnprintf(p, e - p, "\\x%02x", c);
 716		else
 717			append_char(&p, e, c);
 718	}
 719	append_char(&p, e, '\n');
 720
 721	if (dict_len) {
 722		bool line = true;
 723
 724		for (i = 0; i < dict_len; i++) {
 725			unsigned char c = dict[i];
 726
 727			if (line) {
 728				append_char(&p, e, ' ');
 729				line = false;
 730			}
 731
 732			if (c == '\0') {
 733				append_char(&p, e, '\n');
 734				line = true;
 735				continue;
 736			}
 737
 738			if (c < ' ' || c >= 127 || c == '\\') {
 739				p += scnprintf(p, e - p, "\\x%02x", c);
 740				continue;
 741			}
 742
 743			append_char(&p, e, c);
 744		}
 745		append_char(&p, e, '\n');
 746	}
 747
 748	return p - buf;
 749}
 750
 751/* /dev/kmsg - userspace message inject/listen interface */
 752struct devkmsg_user {
 753	u64 seq;
 754	u32 idx;
 755	struct ratelimit_state rs;
 756	struct mutex lock;
 757	char buf[CONSOLE_EXT_LOG_MAX];
 758};
 759
 
 
 
 
 
 
 
 
 
 
 
 
 
 760static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 761{
 762	char *buf, *line;
 763	int level = default_message_loglevel;
 764	int facility = 1;	/* LOG_USER */
 765	struct file *file = iocb->ki_filp;
 766	struct devkmsg_user *user = file->private_data;
 767	size_t len = iov_iter_count(from);
 768	ssize_t ret = len;
 769
 770	if (!user || len > LOG_LINE_MAX)
 771		return -EINVAL;
 772
 773	/* Ignore when user logging is disabled. */
 774	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 775		return len;
 776
 777	/* Ratelimit when not explicitly enabled. */
 778	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 779		if (!___ratelimit(&user->rs, current->comm))
 780			return ret;
 781	}
 782
 783	buf = kmalloc(len+1, GFP_KERNEL);
 784	if (buf == NULL)
 785		return -ENOMEM;
 786
 787	buf[len] = '\0';
 788	if (!copy_from_iter_full(buf, len, from)) {
 789		kfree(buf);
 790		return -EFAULT;
 791	}
 792
 793	/*
 794	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 795	 * the decimal value represents 32bit, the lower 3 bit are the log
 796	 * level, the rest are the log facility.
 797	 *
 798	 * If no prefix or no userspace facility is specified, we
 799	 * enforce LOG_USER, to be able to reliably distinguish
 800	 * kernel-generated messages from userspace-injected ones.
 801	 */
 802	line = buf;
 803	if (line[0] == '<') {
 804		char *endp = NULL;
 805		unsigned int u;
 806
 807		u = simple_strtoul(line + 1, &endp, 10);
 808		if (endp && endp[0] == '>') {
 809			level = LOG_LEVEL(u);
 810			if (LOG_FACILITY(u) != 0)
 811				facility = LOG_FACILITY(u);
 812			endp++;
 813			len -= endp - line;
 814			line = endp;
 815		}
 816	}
 817
 818	printk_emit(facility, level, NULL, 0, "%s", line);
 819	kfree(buf);
 820	return ret;
 821}
 822
 823static ssize_t devkmsg_read(struct file *file, char __user *buf,
 824			    size_t count, loff_t *ppos)
 825{
 826	struct devkmsg_user *user = file->private_data;
 827	struct printk_log *msg;
 828	size_t len;
 829	ssize_t ret;
 830
 831	if (!user)
 832		return -EBADF;
 833
 834	ret = mutex_lock_interruptible(&user->lock);
 835	if (ret)
 836		return ret;
 837
 838	logbuf_lock_irq();
 839	while (user->seq == log_next_seq) {
 840		if (file->f_flags & O_NONBLOCK) {
 841			ret = -EAGAIN;
 842			logbuf_unlock_irq();
 843			goto out;
 844		}
 845
 846		logbuf_unlock_irq();
 847		ret = wait_event_interruptible(log_wait,
 848					       user->seq != log_next_seq);
 849		if (ret)
 850			goto out;
 851		logbuf_lock_irq();
 852	}
 853
 854	if (user->seq < log_first_seq) {
 855		/* our last seen message is gone, return error and reset */
 856		user->idx = log_first_idx;
 857		user->seq = log_first_seq;
 858		ret = -EPIPE;
 859		logbuf_unlock_irq();
 860		goto out;
 861	}
 862
 863	msg = log_from_idx(user->idx);
 864	len = msg_print_ext_header(user->buf, sizeof(user->buf),
 865				   msg, user->seq);
 866	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 867				  log_dict(msg), msg->dict_len,
 868				  log_text(msg), msg->text_len);
 869
 870	user->idx = log_next(user->idx);
 871	user->seq++;
 872	logbuf_unlock_irq();
 873
 874	if (len > count) {
 875		ret = -EINVAL;
 876		goto out;
 877	}
 878
 879	if (copy_to_user(buf, user->buf, len)) {
 880		ret = -EFAULT;
 881		goto out;
 882	}
 883	ret = len;
 884out:
 885	mutex_unlock(&user->lock);
 886	return ret;
 887}
 888
 889static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 890{
 891	struct devkmsg_user *user = file->private_data;
 892	loff_t ret = 0;
 893
 894	if (!user)
 895		return -EBADF;
 896	if (offset)
 897		return -ESPIPE;
 898
 899	logbuf_lock_irq();
 900	switch (whence) {
 901	case SEEK_SET:
 902		/* the first record */
 903		user->idx = log_first_idx;
 904		user->seq = log_first_seq;
 905		break;
 906	case SEEK_DATA:
 907		/*
 908		 * The first record after the last SYSLOG_ACTION_CLEAR,
 909		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 910		 * changes no global state, and does not clear anything.
 911		 */
 912		user->idx = clear_idx;
 913		user->seq = clear_seq;
 914		break;
 915	case SEEK_END:
 916		/* after the last record */
 917		user->idx = log_next_idx;
 918		user->seq = log_next_seq;
 919		break;
 920	default:
 921		ret = -EINVAL;
 922	}
 923	logbuf_unlock_irq();
 924	return ret;
 925}
 926
 927static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
 928{
 929	struct devkmsg_user *user = file->private_data;
 930	__poll_t ret = 0;
 931
 932	if (!user)
 933		return EPOLLERR|EPOLLNVAL;
 934
 935	poll_wait(file, &log_wait, wait);
 936
 937	logbuf_lock_irq();
 938	if (user->seq < log_next_seq) {
 939		/* return error when data has vanished underneath us */
 940		if (user->seq < log_first_seq)
 941			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
 942		else
 943			ret = EPOLLIN|EPOLLRDNORM;
 944	}
 945	logbuf_unlock_irq();
 946
 947	return ret;
 948}
 949
 950static int devkmsg_open(struct inode *inode, struct file *file)
 951{
 952	struct devkmsg_user *user;
 953	int err;
 954
 955	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 956		return -EPERM;
 957
 958	/* write-only does not need any file context */
 959	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
 960		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 961					       SYSLOG_FROM_READER);
 962		if (err)
 963			return err;
 964	}
 965
 966	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 967	if (!user)
 968		return -ENOMEM;
 969
 970	ratelimit_default_init(&user->rs);
 971	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
 972
 973	mutex_init(&user->lock);
 974
 975	logbuf_lock_irq();
 976	user->idx = log_first_idx;
 977	user->seq = log_first_seq;
 978	logbuf_unlock_irq();
 979
 980	file->private_data = user;
 981	return 0;
 982}
 983
 984static int devkmsg_release(struct inode *inode, struct file *file)
 985{
 986	struct devkmsg_user *user = file->private_data;
 987
 988	if (!user)
 989		return 0;
 990
 991	ratelimit_state_exit(&user->rs);
 992
 993	mutex_destroy(&user->lock);
 994	kfree(user);
 995	return 0;
 996}
 997
 998const struct file_operations kmsg_fops = {
 999	.open = devkmsg_open,
1000	.read = devkmsg_read,
1001	.write_iter = devkmsg_write,
1002	.llseek = devkmsg_llseek,
1003	.poll = devkmsg_poll,
1004	.release = devkmsg_release,
1005};
1006
1007#ifdef CONFIG_CRASH_CORE
1008/*
1009 * This appends the listed symbols to /proc/vmcore
1010 *
1011 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1012 * obtain access to symbols that are otherwise very difficult to locate.  These
1013 * symbols are specifically used so that utilities can access and extract the
1014 * dmesg log from a vmcore file after a crash.
1015 */
1016void log_buf_vmcoreinfo_setup(void)
1017{
1018	VMCOREINFO_SYMBOL(log_buf);
1019	VMCOREINFO_SYMBOL(log_buf_len);
1020	VMCOREINFO_SYMBOL(log_first_idx);
1021	VMCOREINFO_SYMBOL(clear_idx);
1022	VMCOREINFO_SYMBOL(log_next_idx);
1023	/*
1024	 * Export struct printk_log size and field offsets. User space tools can
1025	 * parse it and detect any changes to structure down the line.
1026	 */
1027	VMCOREINFO_STRUCT_SIZE(printk_log);
1028	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1029	VMCOREINFO_OFFSET(printk_log, len);
1030	VMCOREINFO_OFFSET(printk_log, text_len);
1031	VMCOREINFO_OFFSET(printk_log, dict_len);
 
 
 
1032}
1033#endif
1034
1035/* requested log_buf_len from kernel cmdline */
1036static unsigned long __initdata new_log_buf_len;
1037
1038/* we practice scaling the ring buffer by powers of 2 */
1039static void __init log_buf_len_update(unsigned size)
1040{
 
 
 
 
 
1041	if (size)
1042		size = roundup_pow_of_two(size);
1043	if (size > log_buf_len)
1044		new_log_buf_len = size;
1045}
1046
1047/* save requested log_buf_len since it's too early to process it */
1048static int __init log_buf_len_setup(char *str)
1049{
1050	unsigned size = memparse(str, &str);
 
 
 
 
 
1051
1052	log_buf_len_update(size);
1053
1054	return 0;
1055}
1056early_param("log_buf_len", log_buf_len_setup);
1057
1058#ifdef CONFIG_SMP
1059#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1060
1061static void __init log_buf_add_cpu(void)
1062{
1063	unsigned int cpu_extra;
1064
1065	/*
1066	 * archs should set up cpu_possible_bits properly with
1067	 * set_cpu_possible() after setup_arch() but just in
1068	 * case lets ensure this is valid.
1069	 */
1070	if (num_possible_cpus() == 1)
1071		return;
1072
1073	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1074
1075	/* by default this will only continue through for large > 64 CPUs */
1076	if (cpu_extra <= __LOG_BUF_LEN / 2)
1077		return;
1078
1079	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1080		__LOG_CPU_MAX_BUF_LEN);
1081	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1082		cpu_extra);
1083	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1084
1085	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1086}
1087#else /* !CONFIG_SMP */
1088static inline void log_buf_add_cpu(void) {}
1089#endif /* CONFIG_SMP */
1090
1091void __init setup_log_buf(int early)
1092{
1093	unsigned long flags;
1094	char *new_log_buf;
1095	int free;
1096
1097	if (log_buf != __log_buf)
1098		return;
1099
1100	if (!early && !new_log_buf_len)
1101		log_buf_add_cpu();
1102
1103	if (!new_log_buf_len)
1104		return;
1105
1106	if (early) {
1107		new_log_buf =
1108			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1109	} else {
1110		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1111							  LOG_ALIGN);
1112	}
1113
1114	if (unlikely(!new_log_buf)) {
1115		pr_err("log_buf_len: %ld bytes not available\n",
1116			new_log_buf_len);
1117		return;
1118	}
1119
1120	logbuf_lock_irqsave(flags);
1121	log_buf_len = new_log_buf_len;
1122	log_buf = new_log_buf;
1123	new_log_buf_len = 0;
1124	free = __LOG_BUF_LEN - log_next_idx;
1125	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1126	logbuf_unlock_irqrestore(flags);
1127
1128	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1129	pr_info("early log buf free: %d(%d%%)\n",
1130		free, (free * 100) / __LOG_BUF_LEN);
1131}
1132
1133static bool __read_mostly ignore_loglevel;
1134
1135static int __init ignore_loglevel_setup(char *str)
1136{
1137	ignore_loglevel = true;
1138	pr_info("debug: ignoring loglevel setting.\n");
1139
1140	return 0;
1141}
1142
1143early_param("ignore_loglevel", ignore_loglevel_setup);
1144module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1145MODULE_PARM_DESC(ignore_loglevel,
1146		 "ignore loglevel setting (prints all kernel messages to the console)");
1147
1148static bool suppress_message_printing(int level)
1149{
1150	return (level >= console_loglevel && !ignore_loglevel);
1151}
1152
1153#ifdef CONFIG_BOOT_PRINTK_DELAY
1154
1155static int boot_delay; /* msecs delay after each printk during bootup */
1156static unsigned long long loops_per_msec;	/* based on boot_delay */
1157
1158static int __init boot_delay_setup(char *str)
1159{
1160	unsigned long lpj;
1161
1162	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1163	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1164
1165	get_option(&str, &boot_delay);
1166	if (boot_delay > 10 * 1000)
1167		boot_delay = 0;
1168
1169	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1170		"HZ: %d, loops_per_msec: %llu\n",
1171		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1172	return 0;
1173}
1174early_param("boot_delay", boot_delay_setup);
1175
1176static void boot_delay_msec(int level)
1177{
1178	unsigned long long k;
1179	unsigned long timeout;
1180
1181	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1182		|| suppress_message_printing(level)) {
1183		return;
1184	}
1185
1186	k = (unsigned long long)loops_per_msec * boot_delay;
1187
1188	timeout = jiffies + msecs_to_jiffies(boot_delay);
1189	while (k) {
1190		k--;
1191		cpu_relax();
1192		/*
1193		 * use (volatile) jiffies to prevent
1194		 * compiler reduction; loop termination via jiffies
1195		 * is secondary and may or may not happen.
1196		 */
1197		if (time_after(jiffies, timeout))
1198			break;
1199		touch_nmi_watchdog();
1200	}
1201}
1202#else
1203static inline void boot_delay_msec(int level)
1204{
1205}
1206#endif
1207
1208static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1209module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1210
 
 
 
 
 
1211static size_t print_time(u64 ts, char *buf)
1212{
1213	unsigned long rem_nsec;
1214
1215	if (!printk_time)
1216		return 0;
 
1217
1218	rem_nsec = do_div(ts, 1000000000);
1219
1220	if (!buf)
1221		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1222
1223	return sprintf(buf, "[%5lu.%06lu] ",
1224		       (unsigned long)ts, rem_nsec / 1000);
 
1225}
 
 
 
1226
1227static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
 
1228{
1229	size_t len = 0;
1230	unsigned int prefix = (msg->facility << 3) | msg->level;
1231
1232	if (syslog) {
1233		if (buf) {
1234			len += sprintf(buf, "<%u>", prefix);
1235		} else {
1236			len += 3;
1237			if (prefix > 999)
1238				len += 3;
1239			else if (prefix > 99)
1240				len += 2;
1241			else if (prefix > 9)
1242				len++;
1243		}
1244	}
1245
1246	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1247	return len;
1248}
1249
1250static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
 
1251{
1252	const char *text = log_text(msg);
1253	size_t text_size = msg->text_len;
1254	size_t len = 0;
 
 
1255
1256	do {
1257		const char *next = memchr(text, '\n', text_size);
1258		size_t text_len;
1259
1260		if (next) {
1261			text_len = next - text;
1262			next++;
1263			text_size -= next - text;
1264		} else {
1265			text_len = text_size;
1266		}
1267
1268		if (buf) {
1269			if (print_prefix(msg, syslog, NULL) +
1270			    text_len + 1 >= size - len)
1271				break;
1272
1273			len += print_prefix(msg, syslog, buf + len);
 
1274			memcpy(buf + len, text, text_len);
1275			len += text_len;
1276			buf[len++] = '\n';
1277		} else {
1278			/* SYSLOG_ACTION_* buffer size only calculation */
1279			len += print_prefix(msg, syslog, NULL);
1280			len += text_len;
1281			len++;
1282		}
1283
1284		text = next;
1285	} while (text);
1286
1287	return len;
1288}
1289
1290static int syslog_print(char __user *buf, int size)
1291{
1292	char *text;
1293	struct printk_log *msg;
1294	int len = 0;
1295
1296	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1297	if (!text)
1298		return -ENOMEM;
1299
1300	while (size > 0) {
1301		size_t n;
1302		size_t skip;
1303
1304		logbuf_lock_irq();
1305		if (syslog_seq < log_first_seq) {
1306			/* messages are gone, move to first one */
1307			syslog_seq = log_first_seq;
1308			syslog_idx = log_first_idx;
1309			syslog_partial = 0;
1310		}
1311		if (syslog_seq == log_next_seq) {
1312			logbuf_unlock_irq();
1313			break;
1314		}
1315
 
 
 
 
 
 
 
1316		skip = syslog_partial;
1317		msg = log_from_idx(syslog_idx);
1318		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
 
1319		if (n - syslog_partial <= size) {
1320			/* message fits into buffer, move forward */
1321			syslog_idx = log_next(syslog_idx);
1322			syslog_seq++;
1323			n -= syslog_partial;
1324			syslog_partial = 0;
1325		} else if (!len){
1326			/* partial read(), remember position */
1327			n = size;
1328			syslog_partial += n;
1329		} else
1330			n = 0;
1331		logbuf_unlock_irq();
1332
1333		if (!n)
1334			break;
1335
1336		if (copy_to_user(buf, text + skip, n)) {
1337			if (!len)
1338				len = -EFAULT;
1339			break;
1340		}
1341
1342		len += n;
1343		size -= n;
1344		buf += n;
1345	}
1346
1347	kfree(text);
1348	return len;
1349}
1350
1351static int syslog_print_all(char __user *buf, int size, bool clear)
1352{
1353	char *text;
1354	int len = 0;
 
 
 
 
1355
1356	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1357	if (!text)
1358		return -ENOMEM;
1359
 
1360	logbuf_lock_irq();
1361	if (buf) {
1362		u64 next_seq;
1363		u64 seq;
1364		u32 idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365
1366		/*
1367		 * Find first record that fits, including all following records,
1368		 * into the user-provided buffer for this dump.
1369		 */
1370		seq = clear_seq;
1371		idx = clear_idx;
1372		while (seq < log_next_seq) {
1373			struct printk_log *msg = log_from_idx(idx);
1374
1375			len += msg_print_text(msg, true, NULL, 0);
1376			idx = log_next(idx);
1377			seq++;
1378		}
1379
1380		/* move first record forward until length fits into the buffer */
1381		seq = clear_seq;
1382		idx = clear_idx;
1383		while (len > size && seq < log_next_seq) {
1384			struct printk_log *msg = log_from_idx(idx);
1385
1386			len -= msg_print_text(msg, true, NULL, 0);
1387			idx = log_next(idx);
1388			seq++;
1389		}
1390
1391		/* last message fitting into this dump */
1392		next_seq = log_next_seq;
1393
1394		len = 0;
1395		while (len >= 0 && seq < next_seq) {
1396			struct printk_log *msg = log_from_idx(idx);
1397			int textlen;
1398
1399			textlen = msg_print_text(msg, true, text,
1400						 LOG_LINE_MAX + PREFIX_MAX);
1401			if (textlen < 0) {
1402				len = textlen;
1403				break;
1404			}
1405			idx = log_next(idx);
1406			seq++;
1407
1408			logbuf_unlock_irq();
1409			if (copy_to_user(buf + len, text, textlen))
1410				len = -EFAULT;
1411			else
1412				len += textlen;
1413			logbuf_lock_irq();
1414
1415			if (seq < log_first_seq) {
1416				/* messages are gone, move to next one */
1417				seq = log_first_seq;
1418				idx = log_first_idx;
1419			}
1420		}
1421	}
1422
1423	if (clear) {
1424		clear_seq = log_next_seq;
1425		clear_idx = log_next_idx;
1426	}
1427	logbuf_unlock_irq();
1428
1429	kfree(text);
1430	return len;
1431}
1432
 
 
 
 
 
 
 
 
1433int do_syslog(int type, char __user *buf, int len, int source)
1434{
1435	bool clear = false;
1436	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1437	int error;
1438
1439	error = check_syslog_permissions(type, source);
1440	if (error)
1441		return error;
1442
1443	switch (type) {
1444	case SYSLOG_ACTION_CLOSE:	/* Close log */
1445		break;
1446	case SYSLOG_ACTION_OPEN:	/* Open log */
1447		break;
1448	case SYSLOG_ACTION_READ:	/* Read from log */
1449		if (!buf || len < 0)
1450			return -EINVAL;
1451		if (!len)
1452			return 0;
1453		if (!access_ok(VERIFY_WRITE, buf, len))
1454			return -EFAULT;
1455		error = wait_event_interruptible(log_wait,
1456						 syslog_seq != log_next_seq);
1457		if (error)
1458			return error;
1459		error = syslog_print(buf, len);
1460		break;
1461	/* Read/clear last kernel messages */
1462	case SYSLOG_ACTION_READ_CLEAR:
1463		clear = true;
1464		/* FALL THRU */
1465	/* Read last kernel messages */
1466	case SYSLOG_ACTION_READ_ALL:
1467		if (!buf || len < 0)
1468			return -EINVAL;
1469		if (!len)
1470			return 0;
1471		if (!access_ok(VERIFY_WRITE, buf, len))
1472			return -EFAULT;
1473		error = syslog_print_all(buf, len, clear);
1474		break;
1475	/* Clear ring buffer */
1476	case SYSLOG_ACTION_CLEAR:
1477		syslog_print_all(NULL, 0, true);
1478		break;
1479	/* Disable logging to console */
1480	case SYSLOG_ACTION_CONSOLE_OFF:
1481		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1482			saved_console_loglevel = console_loglevel;
1483		console_loglevel = minimum_console_loglevel;
1484		break;
1485	/* Enable logging to console */
1486	case SYSLOG_ACTION_CONSOLE_ON:
1487		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1488			console_loglevel = saved_console_loglevel;
1489			saved_console_loglevel = LOGLEVEL_DEFAULT;
1490		}
1491		break;
1492	/* Set level of messages printed to console */
1493	case SYSLOG_ACTION_CONSOLE_LEVEL:
1494		if (len < 1 || len > 8)
1495			return -EINVAL;
1496		if (len < minimum_console_loglevel)
1497			len = minimum_console_loglevel;
1498		console_loglevel = len;
1499		/* Implicitly re-enable logging to console */
1500		saved_console_loglevel = LOGLEVEL_DEFAULT;
1501		break;
1502	/* Number of chars in the log buffer */
1503	case SYSLOG_ACTION_SIZE_UNREAD:
1504		logbuf_lock_irq();
1505		if (syslog_seq < log_first_seq) {
1506			/* messages are gone, move to first one */
1507			syslog_seq = log_first_seq;
1508			syslog_idx = log_first_idx;
1509			syslog_partial = 0;
1510		}
1511		if (source == SYSLOG_FROM_PROC) {
1512			/*
1513			 * Short-cut for poll(/"proc/kmsg") which simply checks
1514			 * for pending data, not the size; return the count of
1515			 * records, not the length.
1516			 */
1517			error = log_next_seq - syslog_seq;
1518		} else {
1519			u64 seq = syslog_seq;
1520			u32 idx = syslog_idx;
 
1521
1522			while (seq < log_next_seq) {
1523				struct printk_log *msg = log_from_idx(idx);
1524
1525				error += msg_print_text(msg, true, NULL, 0);
 
 
1526				idx = log_next(idx);
1527				seq++;
1528			}
1529			error -= syslog_partial;
1530		}
1531		logbuf_unlock_irq();
1532		break;
1533	/* Size of the log buffer */
1534	case SYSLOG_ACTION_SIZE_BUFFER:
1535		error = log_buf_len;
1536		break;
1537	default:
1538		error = -EINVAL;
1539		break;
1540	}
1541
1542	return error;
1543}
1544
1545SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1546{
1547	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1548}
1549
1550/*
1551 * Special console_lock variants that help to reduce the risk of soft-lockups.
1552 * They allow to pass console_lock to another printk() call using a busy wait.
1553 */
1554
1555#ifdef CONFIG_LOCKDEP
1556static struct lockdep_map console_owner_dep_map = {
1557	.name = "console_owner"
1558};
1559#endif
1560
1561static DEFINE_RAW_SPINLOCK(console_owner_lock);
1562static struct task_struct *console_owner;
1563static bool console_waiter;
1564
1565/**
1566 * console_lock_spinning_enable - mark beginning of code where another
1567 *	thread might safely busy wait
1568 *
1569 * This basically converts console_lock into a spinlock. This marks
1570 * the section where the console_lock owner can not sleep, because
1571 * there may be a waiter spinning (like a spinlock). Also it must be
1572 * ready to hand over the lock at the end of the section.
1573 */
1574static void console_lock_spinning_enable(void)
1575{
1576	raw_spin_lock(&console_owner_lock);
1577	console_owner = current;
1578	raw_spin_unlock(&console_owner_lock);
1579
1580	/* The waiter may spin on us after setting console_owner */
1581	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1582}
1583
1584/**
1585 * console_lock_spinning_disable_and_check - mark end of code where another
1586 *	thread was able to busy wait and check if there is a waiter
1587 *
1588 * This is called at the end of the section where spinning is allowed.
1589 * It has two functions. First, it is a signal that it is no longer
1590 * safe to start busy waiting for the lock. Second, it checks if
1591 * there is a busy waiter and passes the lock rights to her.
1592 *
1593 * Important: Callers lose the lock if there was a busy waiter.
1594 *	They must not touch items synchronized by console_lock
1595 *	in this case.
1596 *
1597 * Return: 1 if the lock rights were passed, 0 otherwise.
1598 */
1599static int console_lock_spinning_disable_and_check(void)
1600{
1601	int waiter;
1602
1603	raw_spin_lock(&console_owner_lock);
1604	waiter = READ_ONCE(console_waiter);
1605	console_owner = NULL;
1606	raw_spin_unlock(&console_owner_lock);
1607
1608	if (!waiter) {
1609		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1610		return 0;
1611	}
1612
1613	/* The waiter is now free to continue */
1614	WRITE_ONCE(console_waiter, false);
1615
1616	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1617
1618	/*
1619	 * Hand off console_lock to waiter. The waiter will perform
1620	 * the up(). After this, the waiter is the console_lock owner.
1621	 */
1622	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1623	return 1;
1624}
1625
1626/**
1627 * console_trylock_spinning - try to get console_lock by busy waiting
1628 *
1629 * This allows to busy wait for the console_lock when the current
1630 * owner is running in specially marked sections. It means that
1631 * the current owner is running and cannot reschedule until it
1632 * is ready to lose the lock.
1633 *
1634 * Return: 1 if we got the lock, 0 othrewise
1635 */
1636static int console_trylock_spinning(void)
1637{
1638	struct task_struct *owner = NULL;
1639	bool waiter;
1640	bool spin = false;
1641	unsigned long flags;
1642
1643	if (console_trylock())
1644		return 1;
1645
1646	printk_safe_enter_irqsave(flags);
1647
1648	raw_spin_lock(&console_owner_lock);
1649	owner = READ_ONCE(console_owner);
1650	waiter = READ_ONCE(console_waiter);
1651	if (!waiter && owner && owner != current) {
1652		WRITE_ONCE(console_waiter, true);
1653		spin = true;
1654	}
1655	raw_spin_unlock(&console_owner_lock);
1656
1657	/*
1658	 * If there is an active printk() writing to the
1659	 * consoles, instead of having it write our data too,
1660	 * see if we can offload that load from the active
1661	 * printer, and do some printing ourselves.
1662	 * Go into a spin only if there isn't already a waiter
1663	 * spinning, and there is an active printer, and
1664	 * that active printer isn't us (recursive printk?).
1665	 */
1666	if (!spin) {
1667		printk_safe_exit_irqrestore(flags);
1668		return 0;
1669	}
1670
1671	/* We spin waiting for the owner to release us */
1672	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1673	/* Owner will clear console_waiter on hand off */
1674	while (READ_ONCE(console_waiter))
1675		cpu_relax();
1676	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1677
1678	printk_safe_exit_irqrestore(flags);
1679	/*
1680	 * The owner passed the console lock to us.
1681	 * Since we did not spin on console lock, annotate
1682	 * this as a trylock. Otherwise lockdep will
1683	 * complain.
1684	 */
1685	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1686
1687	return 1;
1688}
1689
1690/*
1691 * Call the console drivers, asking them to write out
1692 * log_buf[start] to log_buf[end - 1].
1693 * The console_lock must be held.
1694 */
1695static void call_console_drivers(const char *ext_text, size_t ext_len,
1696				 const char *text, size_t len)
1697{
1698	struct console *con;
1699
1700	trace_console_rcuidle(text, len);
1701
1702	if (!console_drivers)
1703		return;
1704
1705	for_each_console(con) {
1706		if (exclusive_console && con != exclusive_console)
1707			continue;
1708		if (!(con->flags & CON_ENABLED))
1709			continue;
1710		if (!con->write)
1711			continue;
1712		if (!cpu_online(smp_processor_id()) &&
1713		    !(con->flags & CON_ANYTIME))
1714			continue;
1715		if (con->flags & CON_EXTENDED)
1716			con->write(con, ext_text, ext_len);
1717		else
1718			con->write(con, text, len);
1719	}
1720}
1721
1722int printk_delay_msec __read_mostly;
1723
1724static inline void printk_delay(void)
1725{
1726	if (unlikely(printk_delay_msec)) {
1727		int m = printk_delay_msec;
1728
1729		while (m--) {
1730			mdelay(1);
1731			touch_nmi_watchdog();
1732		}
1733	}
1734}
1735
 
 
 
 
 
 
1736/*
1737 * Continuation lines are buffered, and not committed to the record buffer
1738 * until the line is complete, or a race forces it. The line fragments
1739 * though, are printed immediately to the consoles to ensure everything has
1740 * reached the console in case of a kernel crash.
1741 */
1742static struct cont {
1743	char buf[LOG_LINE_MAX];
1744	size_t len;			/* length == 0 means unused buffer */
1745	struct task_struct *owner;	/* task of first print*/
1746	u64 ts_nsec;			/* time of first print */
1747	u8 level;			/* log level of first message */
1748	u8 facility;			/* log facility of first message */
1749	enum log_flags flags;		/* prefix, newline flags */
1750} cont;
1751
1752static void cont_flush(void)
1753{
1754	if (cont.len == 0)
1755		return;
1756
1757	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1758		  NULL, 0, cont.buf, cont.len);
1759	cont.len = 0;
1760}
1761
1762static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
 
1763{
1764	/*
1765	 * If ext consoles are present, flush and skip in-kernel
1766	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1767	 * the line gets too long, split it up in separate records.
1768	 */
1769	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1770		cont_flush();
1771		return false;
1772	}
1773
1774	if (!cont.len) {
1775		cont.facility = facility;
1776		cont.level = level;
1777		cont.owner = current;
1778		cont.ts_nsec = local_clock();
1779		cont.flags = flags;
1780	}
1781
1782	memcpy(cont.buf + cont.len, text, len);
1783	cont.len += len;
1784
1785	// The original flags come from the first line,
1786	// but later continuations can add a newline.
1787	if (flags & LOG_NEWLINE) {
1788		cont.flags |= LOG_NEWLINE;
1789		cont_flush();
1790	}
1791
1792	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1793		cont_flush();
1794
1795	return true;
1796}
1797
1798static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1799{
 
 
1800	/*
1801	 * If an earlier line was buffered, and we're a continuation
1802	 * write from the same process, try to add it to the buffer.
1803	 */
1804	if (cont.len) {
1805		if (cont.owner == current && (lflags & LOG_CONT)) {
1806			if (cont_add(facility, level, lflags, text, text_len))
1807				return text_len;
1808		}
1809		/* Otherwise, make sure it's flushed */
1810		cont_flush();
1811	}
1812
1813	/* Skip empty continuation lines that couldn't be added - they just flush */
1814	if (!text_len && (lflags & LOG_CONT))
1815		return 0;
1816
1817	/* If it doesn't end in a newline, try to buffer the current line */
1818	if (!(lflags & LOG_NEWLINE)) {
1819		if (cont_add(facility, level, lflags, text, text_len))
1820			return text_len;
1821	}
1822
1823	/* Store it in the record log */
1824	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
 
1825}
1826
1827asmlinkage int vprintk_emit(int facility, int level,
1828			    const char *dict, size_t dictlen,
1829			    const char *fmt, va_list args)
 
1830{
1831	static char textbuf[LOG_LINE_MAX];
1832	char *text = textbuf;
1833	size_t text_len;
1834	enum log_flags lflags = 0;
1835	unsigned long flags;
1836	int printed_len;
1837	bool in_sched = false;
1838
1839	if (level == LOGLEVEL_SCHED) {
1840		level = LOGLEVEL_DEFAULT;
1841		in_sched = true;
1842	}
1843
1844	boot_delay_msec(level);
1845	printk_delay();
1846
1847	/* This stops the holder of console_sem just where we want him */
1848	logbuf_lock_irqsave(flags);
1849	/*
1850	 * The printf needs to come first; we need the syslog
1851	 * prefix which might be passed-in as a parameter.
1852	 */
1853	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1854
1855	/* mark and strip a trailing newline */
1856	if (text_len && text[text_len-1] == '\n') {
1857		text_len--;
1858		lflags |= LOG_NEWLINE;
1859	}
1860
1861	/* strip kernel syslog prefix and extract log level or control flags */
1862	if (facility == 0) {
1863		int kern_level;
1864
1865		while ((kern_level = printk_get_level(text)) != 0) {
1866			switch (kern_level) {
1867			case '0' ... '7':
1868				if (level == LOGLEVEL_DEFAULT)
1869					level = kern_level - '0';
1870				/* fallthrough */
1871			case 'd':	/* KERN_DEFAULT */
1872				lflags |= LOG_PREFIX;
1873				break;
1874			case 'c':	/* KERN_CONT */
1875				lflags |= LOG_CONT;
1876			}
1877
1878			text_len -= 2;
1879			text += 2;
1880		}
1881	}
1882
1883	if (level == LOGLEVEL_DEFAULT)
1884		level = default_message_loglevel;
1885
1886	if (dict)
1887		lflags |= LOG_PREFIX|LOG_NEWLINE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888
1889	printed_len = log_output(facility, level, lflags, dict, dictlen, text, text_len);
 
1890
 
 
 
 
 
1891	logbuf_unlock_irqrestore(flags);
1892
1893	/* If called from the scheduler, we can not call up(). */
1894	if (!in_sched) {
1895		/*
1896		 * Disable preemption to avoid being preempted while holding
1897		 * console_sem which would prevent anyone from printing to
1898		 * console
1899		 */
1900		preempt_disable();
1901		/*
1902		 * Try to acquire and then immediately release the console
1903		 * semaphore.  The release will print out buffers and wake up
1904		 * /dev/kmsg and syslog() users.
1905		 */
1906		if (console_trylock_spinning())
1907			console_unlock();
1908		preempt_enable();
1909	}
1910
 
 
1911	return printed_len;
1912}
1913EXPORT_SYMBOL(vprintk_emit);
1914
1915asmlinkage int vprintk(const char *fmt, va_list args)
1916{
1917	return vprintk_func(fmt, args);
1918}
1919EXPORT_SYMBOL(vprintk);
1920
1921asmlinkage int printk_emit(int facility, int level,
1922			   const char *dict, size_t dictlen,
1923			   const char *fmt, ...)
1924{
1925	va_list args;
1926	int r;
1927
1928	va_start(args, fmt);
1929	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1930	va_end(args);
1931
1932	return r;
1933}
1934EXPORT_SYMBOL(printk_emit);
1935
1936int vprintk_default(const char *fmt, va_list args)
1937{
1938	int r;
1939
1940#ifdef CONFIG_KGDB_KDB
1941	/* Allow to pass printk() to kdb but avoid a recursion. */
1942	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1943		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1944		return r;
1945	}
1946#endif
1947	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1948
1949	return r;
1950}
1951EXPORT_SYMBOL_GPL(vprintk_default);
1952
1953/**
1954 * printk - print a kernel message
1955 * @fmt: format string
1956 *
1957 * This is printk(). It can be called from any context. We want it to work.
1958 *
1959 * We try to grab the console_lock. If we succeed, it's easy - we log the
1960 * output and call the console drivers.  If we fail to get the semaphore, we
1961 * place the output into the log buffer and return. The current holder of
1962 * the console_sem will notice the new output in console_unlock(); and will
1963 * send it to the consoles before releasing the lock.
1964 *
1965 * One effect of this deferred printing is that code which calls printk() and
1966 * then changes console_loglevel may break. This is because console_loglevel
1967 * is inspected when the actual printing occurs.
1968 *
1969 * See also:
1970 * printf(3)
1971 *
1972 * See the vsnprintf() documentation for format string extensions over C99.
1973 */
1974asmlinkage __visible int printk(const char *fmt, ...)
1975{
1976	va_list args;
1977	int r;
1978
1979	va_start(args, fmt);
1980	r = vprintk_func(fmt, args);
1981	va_end(args);
1982
1983	return r;
1984}
1985EXPORT_SYMBOL(printk);
1986
1987#else /* CONFIG_PRINTK */
1988
1989#define LOG_LINE_MAX		0
1990#define PREFIX_MAX		0
 
1991
1992static u64 syslog_seq;
1993static u32 syslog_idx;
1994static u64 console_seq;
1995static u32 console_idx;
 
1996static u64 log_first_seq;
1997static u32 log_first_idx;
1998static u64 log_next_seq;
1999static char *log_text(const struct printk_log *msg) { return NULL; }
2000static char *log_dict(const struct printk_log *msg) { return NULL; }
2001static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2002static u32 log_next(u32 idx) { return 0; }
2003static ssize_t msg_print_ext_header(char *buf, size_t size,
2004				    struct printk_log *msg,
2005				    u64 seq) { return 0; }
2006static ssize_t msg_print_ext_body(char *buf, size_t size,
2007				  char *dict, size_t dict_len,
2008				  char *text, size_t text_len) { return 0; }
2009static void console_lock_spinning_enable(void) { }
2010static int console_lock_spinning_disable_and_check(void) { return 0; }
2011static void call_console_drivers(const char *ext_text, size_t ext_len,
2012				 const char *text, size_t len) {}
2013static size_t msg_print_text(const struct printk_log *msg,
2014			     bool syslog, char *buf, size_t size) { return 0; }
2015static bool suppress_message_printing(int level) { return false; }
2016
2017#endif /* CONFIG_PRINTK */
2018
2019#ifdef CONFIG_EARLY_PRINTK
2020struct console *early_console;
2021
2022asmlinkage __visible void early_printk(const char *fmt, ...)
2023{
2024	va_list ap;
2025	char buf[512];
2026	int n;
2027
2028	if (!early_console)
2029		return;
2030
2031	va_start(ap, fmt);
2032	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2033	va_end(ap);
2034
2035	early_console->write(early_console, buf, n);
2036}
2037#endif
2038
2039static int __add_preferred_console(char *name, int idx, char *options,
2040				   char *brl_options)
2041{
2042	struct console_cmdline *c;
2043	int i;
2044
2045	/*
2046	 *	See if this tty is not yet registered, and
2047	 *	if we have a slot free.
2048	 */
2049	for (i = 0, c = console_cmdline;
2050	     i < MAX_CMDLINECONSOLES && c->name[0];
2051	     i++, c++) {
2052		if (strcmp(c->name, name) == 0 && c->index == idx) {
2053			if (!brl_options)
2054				preferred_console = i;
2055			return 0;
2056		}
2057	}
2058	if (i == MAX_CMDLINECONSOLES)
2059		return -E2BIG;
2060	if (!brl_options)
2061		preferred_console = i;
2062	strlcpy(c->name, name, sizeof(c->name));
2063	c->options = options;
2064	braille_set_options(c, brl_options);
2065
2066	c->index = idx;
2067	return 0;
2068}
2069
2070static int __init console_msg_format_setup(char *str)
2071{
2072	if (!strcmp(str, "syslog"))
2073		console_msg_format = MSG_FORMAT_SYSLOG;
2074	if (!strcmp(str, "default"))
2075		console_msg_format = MSG_FORMAT_DEFAULT;
2076	return 1;
2077}
2078__setup("console_msg_format=", console_msg_format_setup);
2079
2080/*
2081 * Set up a console.  Called via do_early_param() in init/main.c
2082 * for each "console=" parameter in the boot command line.
2083 */
2084static int __init console_setup(char *str)
2085{
2086	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2087	char *s, *options, *brl_options = NULL;
2088	int idx;
2089
2090	if (_braille_console_setup(&str, &brl_options))
2091		return 1;
2092
2093	/*
2094	 * Decode str into name, index, options.
2095	 */
2096	if (str[0] >= '0' && str[0] <= '9') {
2097		strcpy(buf, "ttyS");
2098		strncpy(buf + 4, str, sizeof(buf) - 5);
2099	} else {
2100		strncpy(buf, str, sizeof(buf) - 1);
2101	}
2102	buf[sizeof(buf) - 1] = 0;
2103	options = strchr(str, ',');
2104	if (options)
2105		*(options++) = 0;
2106#ifdef __sparc__
2107	if (!strcmp(str, "ttya"))
2108		strcpy(buf, "ttyS0");
2109	if (!strcmp(str, "ttyb"))
2110		strcpy(buf, "ttyS1");
2111#endif
2112	for (s = buf; *s; s++)
2113		if (isdigit(*s) || *s == ',')
2114			break;
2115	idx = simple_strtoul(s, NULL, 10);
2116	*s = 0;
2117
2118	__add_preferred_console(buf, idx, options, brl_options);
2119	console_set_on_cmdline = 1;
2120	return 1;
2121}
2122__setup("console=", console_setup);
2123
2124/**
2125 * add_preferred_console - add a device to the list of preferred consoles.
2126 * @name: device name
2127 * @idx: device index
2128 * @options: options for this console
2129 *
2130 * The last preferred console added will be used for kernel messages
2131 * and stdin/out/err for init.  Normally this is used by console_setup
2132 * above to handle user-supplied console arguments; however it can also
2133 * be used by arch-specific code either to override the user or more
2134 * commonly to provide a default console (ie from PROM variables) when
2135 * the user has not supplied one.
2136 */
2137int add_preferred_console(char *name, int idx, char *options)
2138{
2139	return __add_preferred_console(name, idx, options, NULL);
2140}
2141
2142bool console_suspend_enabled = true;
2143EXPORT_SYMBOL(console_suspend_enabled);
2144
2145static int __init console_suspend_disable(char *str)
2146{
2147	console_suspend_enabled = false;
2148	return 1;
2149}
2150__setup("no_console_suspend", console_suspend_disable);
2151module_param_named(console_suspend, console_suspend_enabled,
2152		bool, S_IRUGO | S_IWUSR);
2153MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2154	" and hibernate operations");
2155
2156/**
2157 * suspend_console - suspend the console subsystem
2158 *
2159 * This disables printk() while we go into suspend states
2160 */
2161void suspend_console(void)
2162{
2163	if (!console_suspend_enabled)
2164		return;
2165	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2166	console_lock();
2167	console_suspended = 1;
2168	up_console_sem();
2169}
2170
2171void resume_console(void)
2172{
2173	if (!console_suspend_enabled)
2174		return;
2175	down_console_sem();
2176	console_suspended = 0;
2177	console_unlock();
2178}
2179
2180/**
2181 * console_cpu_notify - print deferred console messages after CPU hotplug
2182 * @cpu: unused
2183 *
2184 * If printk() is called from a CPU that is not online yet, the messages
2185 * will be printed on the console only if there are CON_ANYTIME consoles.
2186 * This function is called when a new CPU comes online (or fails to come
2187 * up) or goes offline.
2188 */
2189static int console_cpu_notify(unsigned int cpu)
2190{
2191	if (!cpuhp_tasks_frozen) {
2192		/* If trylock fails, someone else is doing the printing */
2193		if (console_trylock())
2194			console_unlock();
2195	}
2196	return 0;
2197}
2198
2199/**
2200 * console_lock - lock the console system for exclusive use.
2201 *
2202 * Acquires a lock which guarantees that the caller has
2203 * exclusive access to the console system and the console_drivers list.
2204 *
2205 * Can sleep, returns nothing.
2206 */
2207void console_lock(void)
2208{
2209	might_sleep();
2210
2211	down_console_sem();
2212	if (console_suspended)
2213		return;
2214	console_locked = 1;
2215	console_may_schedule = 1;
2216}
2217EXPORT_SYMBOL(console_lock);
2218
2219/**
2220 * console_trylock - try to lock the console system for exclusive use.
2221 *
2222 * Try to acquire a lock which guarantees that the caller has exclusive
2223 * access to the console system and the console_drivers list.
2224 *
2225 * returns 1 on success, and 0 on failure to acquire the lock.
2226 */
2227int console_trylock(void)
2228{
2229	if (down_trylock_console_sem())
2230		return 0;
2231	if (console_suspended) {
2232		up_console_sem();
2233		return 0;
2234	}
2235	console_locked = 1;
2236	console_may_schedule = 0;
2237	return 1;
2238}
2239EXPORT_SYMBOL(console_trylock);
2240
2241int is_console_locked(void)
2242{
2243	return console_locked;
2244}
 
2245
2246/*
2247 * Check if we have any console that is capable of printing while cpu is
2248 * booting or shutting down. Requires console_sem.
2249 */
2250static int have_callable_console(void)
2251{
2252	struct console *con;
2253
2254	for_each_console(con)
2255		if ((con->flags & CON_ENABLED) &&
2256				(con->flags & CON_ANYTIME))
2257			return 1;
2258
2259	return 0;
2260}
2261
2262/*
2263 * Can we actually use the console at this time on this cpu?
2264 *
2265 * Console drivers may assume that per-cpu resources have been allocated. So
2266 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2267 * call them until this CPU is officially up.
2268 */
2269static inline int can_use_console(void)
2270{
2271	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2272}
2273
2274/**
2275 * console_unlock - unlock the console system
2276 *
2277 * Releases the console_lock which the caller holds on the console system
2278 * and the console driver list.
2279 *
2280 * While the console_lock was held, console output may have been buffered
2281 * by printk().  If this is the case, console_unlock(); emits
2282 * the output prior to releasing the lock.
2283 *
2284 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2285 *
2286 * console_unlock(); may be called from any context.
2287 */
2288void console_unlock(void)
2289{
2290	static char ext_text[CONSOLE_EXT_LOG_MAX];
2291	static char text[LOG_LINE_MAX + PREFIX_MAX];
2292	static u64 seen_seq;
2293	unsigned long flags;
2294	bool wake_klogd = false;
2295	bool do_cond_resched, retry;
2296
2297	if (console_suspended) {
2298		up_console_sem();
2299		return;
2300	}
2301
2302	/*
2303	 * Console drivers are called with interrupts disabled, so
2304	 * @console_may_schedule should be cleared before; however, we may
2305	 * end up dumping a lot of lines, for example, if called from
2306	 * console registration path, and should invoke cond_resched()
2307	 * between lines if allowable.  Not doing so can cause a very long
2308	 * scheduling stall on a slow console leading to RCU stall and
2309	 * softlockup warnings which exacerbate the issue with more
2310	 * messages practically incapacitating the system.
2311	 *
2312	 * console_trylock() is not able to detect the preemptive
2313	 * context reliably. Therefore the value must be stored before
2314	 * and cleared after the the "again" goto label.
2315	 */
2316	do_cond_resched = console_may_schedule;
2317again:
2318	console_may_schedule = 0;
2319
2320	/*
2321	 * We released the console_sem lock, so we need to recheck if
2322	 * cpu is online and (if not) is there at least one CON_ANYTIME
2323	 * console.
2324	 */
2325	if (!can_use_console()) {
2326		console_locked = 0;
2327		up_console_sem();
2328		return;
2329	}
2330
2331	for (;;) {
2332		struct printk_log *msg;
2333		size_t ext_len = 0;
2334		size_t len;
2335
2336		printk_safe_enter_irqsave(flags);
2337		raw_spin_lock(&logbuf_lock);
2338		if (seen_seq != log_next_seq) {
2339			wake_klogd = true;
2340			seen_seq = log_next_seq;
2341		}
2342
2343		if (console_seq < log_first_seq) {
2344			len = sprintf(text, "** %u printk messages dropped **\n",
2345				      (unsigned)(log_first_seq - console_seq));
 
2346
2347			/* messages are gone, move to first one */
2348			console_seq = log_first_seq;
2349			console_idx = log_first_idx;
2350		} else {
2351			len = 0;
2352		}
2353skip:
2354		if (console_seq == log_next_seq)
2355			break;
2356
2357		msg = log_from_idx(console_idx);
2358		if (suppress_message_printing(msg->level)) {
2359			/*
2360			 * Skip record we have buffered and already printed
2361			 * directly to the console when we received it, and
2362			 * record that has level above the console loglevel.
2363			 */
2364			console_idx = log_next(console_idx);
2365			console_seq++;
2366			goto skip;
2367		}
2368
 
 
 
 
 
 
2369		len += msg_print_text(msg,
2370				console_msg_format & MSG_FORMAT_SYSLOG,
2371				text + len,
2372				sizeof(text) - len);
2373		if (nr_ext_console_drivers) {
2374			ext_len = msg_print_ext_header(ext_text,
2375						sizeof(ext_text),
2376						msg, console_seq);
2377			ext_len += msg_print_ext_body(ext_text + ext_len,
2378						sizeof(ext_text) - ext_len,
2379						log_dict(msg), msg->dict_len,
2380						log_text(msg), msg->text_len);
2381		}
2382		console_idx = log_next(console_idx);
2383		console_seq++;
2384		raw_spin_unlock(&logbuf_lock);
2385
2386		/*
2387		 * While actively printing out messages, if another printk()
2388		 * were to occur on another CPU, it may wait for this one to
2389		 * finish. This task can not be preempted if there is a
2390		 * waiter waiting to take over.
2391		 */
2392		console_lock_spinning_enable();
2393
2394		stop_critical_timings();	/* don't trace print latency */
2395		call_console_drivers(ext_text, ext_len, text, len);
2396		start_critical_timings();
2397
2398		if (console_lock_spinning_disable_and_check()) {
2399			printk_safe_exit_irqrestore(flags);
2400			goto out;
2401		}
2402
2403		printk_safe_exit_irqrestore(flags);
2404
2405		if (do_cond_resched)
2406			cond_resched();
2407	}
2408
2409	console_locked = 0;
2410
2411	/* Release the exclusive_console once it is used */
2412	if (unlikely(exclusive_console))
2413		exclusive_console = NULL;
2414
2415	raw_spin_unlock(&logbuf_lock);
2416
2417	up_console_sem();
2418
2419	/*
2420	 * Someone could have filled up the buffer again, so re-check if there's
2421	 * something to flush. In case we cannot trylock the console_sem again,
2422	 * there's a new owner and the console_unlock() from them will do the
2423	 * flush, no worries.
2424	 */
2425	raw_spin_lock(&logbuf_lock);
2426	retry = console_seq != log_next_seq;
2427	raw_spin_unlock(&logbuf_lock);
2428	printk_safe_exit_irqrestore(flags);
2429
2430	if (retry && console_trylock())
2431		goto again;
2432
2433out:
2434	if (wake_klogd)
2435		wake_up_klogd();
2436}
2437EXPORT_SYMBOL(console_unlock);
2438
2439/**
2440 * console_conditional_schedule - yield the CPU if required
2441 *
2442 * If the console code is currently allowed to sleep, and
2443 * if this CPU should yield the CPU to another task, do
2444 * so here.
2445 *
2446 * Must be called within console_lock();.
2447 */
2448void __sched console_conditional_schedule(void)
2449{
2450	if (console_may_schedule)
2451		cond_resched();
2452}
2453EXPORT_SYMBOL(console_conditional_schedule);
2454
2455void console_unblank(void)
2456{
2457	struct console *c;
2458
2459	/*
2460	 * console_unblank can no longer be called in interrupt context unless
2461	 * oops_in_progress is set to 1..
2462	 */
2463	if (oops_in_progress) {
2464		if (down_trylock_console_sem() != 0)
2465			return;
2466	} else
2467		console_lock();
2468
2469	console_locked = 1;
2470	console_may_schedule = 0;
2471	for_each_console(c)
2472		if ((c->flags & CON_ENABLED) && c->unblank)
2473			c->unblank();
2474	console_unlock();
2475}
2476
2477/**
2478 * console_flush_on_panic - flush console content on panic
 
2479 *
2480 * Immediately output all pending messages no matter what.
2481 */
2482void console_flush_on_panic(void)
2483{
2484	/*
2485	 * If someone else is holding the console lock, trylock will fail
2486	 * and may_schedule may be set.  Ignore and proceed to unlock so
2487	 * that messages are flushed out.  As this can be called from any
2488	 * context and we don't want to get preempted while flushing,
2489	 * ensure may_schedule is cleared.
2490	 */
2491	console_trylock();
2492	console_may_schedule = 0;
 
 
 
 
 
 
 
 
 
2493	console_unlock();
2494}
2495
2496/*
2497 * Return the console tty driver structure and its associated index
2498 */
2499struct tty_driver *console_device(int *index)
2500{
2501	struct console *c;
2502	struct tty_driver *driver = NULL;
2503
2504	console_lock();
2505	for_each_console(c) {
2506		if (!c->device)
2507			continue;
2508		driver = c->device(c, index);
2509		if (driver)
2510			break;
2511	}
2512	console_unlock();
2513	return driver;
2514}
2515
2516/*
2517 * Prevent further output on the passed console device so that (for example)
2518 * serial drivers can disable console output before suspending a port, and can
2519 * re-enable output afterwards.
2520 */
2521void console_stop(struct console *console)
2522{
2523	console_lock();
2524	console->flags &= ~CON_ENABLED;
2525	console_unlock();
2526}
2527EXPORT_SYMBOL(console_stop);
2528
2529void console_start(struct console *console)
2530{
2531	console_lock();
2532	console->flags |= CON_ENABLED;
2533	console_unlock();
2534}
2535EXPORT_SYMBOL(console_start);
2536
2537static int __read_mostly keep_bootcon;
2538
2539static int __init keep_bootcon_setup(char *str)
2540{
2541	keep_bootcon = 1;
2542	pr_info("debug: skip boot console de-registration.\n");
2543
2544	return 0;
2545}
2546
2547early_param("keep_bootcon", keep_bootcon_setup);
2548
2549/*
2550 * The console driver calls this routine during kernel initialization
2551 * to register the console printing procedure with printk() and to
2552 * print any messages that were printed by the kernel before the
2553 * console driver was initialized.
2554 *
2555 * This can happen pretty early during the boot process (because of
2556 * early_printk) - sometimes before setup_arch() completes - be careful
2557 * of what kernel features are used - they may not be initialised yet.
2558 *
2559 * There are two types of consoles - bootconsoles (early_printk) and
2560 * "real" consoles (everything which is not a bootconsole) which are
2561 * handled differently.
2562 *  - Any number of bootconsoles can be registered at any time.
2563 *  - As soon as a "real" console is registered, all bootconsoles
2564 *    will be unregistered automatically.
2565 *  - Once a "real" console is registered, any attempt to register a
2566 *    bootconsoles will be rejected
2567 */
2568void register_console(struct console *newcon)
2569{
2570	int i;
2571	unsigned long flags;
2572	struct console *bcon = NULL;
2573	struct console_cmdline *c;
2574	static bool has_preferred;
2575
2576	if (console_drivers)
2577		for_each_console(bcon)
2578			if (WARN(bcon == newcon,
2579					"console '%s%d' already registered\n",
2580					bcon->name, bcon->index))
2581				return;
2582
2583	/*
2584	 * before we register a new CON_BOOT console, make sure we don't
2585	 * already have a valid console
2586	 */
2587	if (console_drivers && newcon->flags & CON_BOOT) {
2588		/* find the last or real console */
2589		for_each_console(bcon) {
2590			if (!(bcon->flags & CON_BOOT)) {
2591				pr_info("Too late to register bootconsole %s%d\n",
2592					newcon->name, newcon->index);
2593				return;
2594			}
2595		}
2596	}
2597
2598	if (console_drivers && console_drivers->flags & CON_BOOT)
2599		bcon = console_drivers;
2600
2601	if (!has_preferred || bcon || !console_drivers)
2602		has_preferred = preferred_console >= 0;
2603
2604	/*
2605	 *	See if we want to use this console driver. If we
2606	 *	didn't select a console we take the first one
2607	 *	that registers here.
2608	 */
2609	if (!has_preferred) {
2610		if (newcon->index < 0)
2611			newcon->index = 0;
2612		if (newcon->setup == NULL ||
2613		    newcon->setup(newcon, NULL) == 0) {
2614			newcon->flags |= CON_ENABLED;
2615			if (newcon->device) {
2616				newcon->flags |= CON_CONSDEV;
2617				has_preferred = true;
2618			}
2619		}
2620	}
2621
2622	/*
2623	 *	See if this console matches one we selected on
2624	 *	the command line.
2625	 */
2626	for (i = 0, c = console_cmdline;
2627	     i < MAX_CMDLINECONSOLES && c->name[0];
2628	     i++, c++) {
2629		if (!newcon->match ||
2630		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2631			/* default matching */
2632			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2633			if (strcmp(c->name, newcon->name) != 0)
2634				continue;
2635			if (newcon->index >= 0 &&
2636			    newcon->index != c->index)
2637				continue;
2638			if (newcon->index < 0)
2639				newcon->index = c->index;
2640
2641			if (_braille_register_console(newcon, c))
2642				return;
2643
2644			if (newcon->setup &&
2645			    newcon->setup(newcon, c->options) != 0)
2646				break;
2647		}
2648
2649		newcon->flags |= CON_ENABLED;
2650		if (i == preferred_console) {
2651			newcon->flags |= CON_CONSDEV;
2652			has_preferred = true;
2653		}
2654		break;
2655	}
2656
2657	if (!(newcon->flags & CON_ENABLED))
2658		return;
2659
2660	/*
2661	 * If we have a bootconsole, and are switching to a real console,
2662	 * don't print everything out again, since when the boot console, and
2663	 * the real console are the same physical device, it's annoying to
2664	 * see the beginning boot messages twice
2665	 */
2666	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2667		newcon->flags &= ~CON_PRINTBUFFER;
2668
2669	/*
2670	 *	Put this console in the list - keep the
2671	 *	preferred driver at the head of the list.
2672	 */
2673	console_lock();
2674	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2675		newcon->next = console_drivers;
2676		console_drivers = newcon;
2677		if (newcon->next)
2678			newcon->next->flags &= ~CON_CONSDEV;
2679	} else {
2680		newcon->next = console_drivers->next;
2681		console_drivers->next = newcon;
2682	}
2683
2684	if (newcon->flags & CON_EXTENDED)
2685		if (!nr_ext_console_drivers++)
2686			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2687
2688	if (newcon->flags & CON_PRINTBUFFER) {
2689		/*
2690		 * console_unlock(); will print out the buffered messages
2691		 * for us.
2692		 */
2693		logbuf_lock_irqsave(flags);
2694		console_seq = syslog_seq;
2695		console_idx = syslog_idx;
2696		logbuf_unlock_irqrestore(flags);
2697		/*
2698		 * We're about to replay the log buffer.  Only do this to the
2699		 * just-registered console to avoid excessive message spam to
2700		 * the already-registered consoles.
 
 
 
 
2701		 */
2702		exclusive_console = newcon;
 
 
2703	}
2704	console_unlock();
2705	console_sysfs_notify();
2706
2707	/*
2708	 * By unregistering the bootconsoles after we enable the real console
2709	 * we get the "console xxx enabled" message on all the consoles -
2710	 * boot consoles, real consoles, etc - this is to ensure that end
2711	 * users know there might be something in the kernel's log buffer that
2712	 * went to the bootconsole (that they do not see on the real console)
2713	 */
2714	pr_info("%sconsole [%s%d] enabled\n",
2715		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2716		newcon->name, newcon->index);
2717	if (bcon &&
2718	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2719	    !keep_bootcon) {
2720		/* We need to iterate through all boot consoles, to make
2721		 * sure we print everything out, before we unregister them.
2722		 */
2723		for_each_console(bcon)
2724			if (bcon->flags & CON_BOOT)
2725				unregister_console(bcon);
2726	}
2727}
2728EXPORT_SYMBOL(register_console);
2729
2730int unregister_console(struct console *console)
2731{
2732        struct console *a, *b;
2733	int res;
2734
2735	pr_info("%sconsole [%s%d] disabled\n",
2736		(console->flags & CON_BOOT) ? "boot" : "" ,
2737		console->name, console->index);
2738
2739	res = _braille_unregister_console(console);
2740	if (res)
2741		return res;
2742
2743	res = 1;
2744	console_lock();
2745	if (console_drivers == console) {
2746		console_drivers=console->next;
2747		res = 0;
2748	} else if (console_drivers) {
2749		for (a=console_drivers->next, b=console_drivers ;
2750		     a; b=a, a=b->next) {
2751			if (a == console) {
2752				b->next = a->next;
2753				res = 0;
2754				break;
2755			}
2756		}
2757	}
2758
2759	if (!res && (console->flags & CON_EXTENDED))
2760		nr_ext_console_drivers--;
2761
2762	/*
2763	 * If this isn't the last console and it has CON_CONSDEV set, we
2764	 * need to set it on the next preferred console.
2765	 */
2766	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2767		console_drivers->flags |= CON_CONSDEV;
2768
2769	console->flags &= ~CON_ENABLED;
2770	console_unlock();
2771	console_sysfs_notify();
2772	return res;
2773}
2774EXPORT_SYMBOL(unregister_console);
2775
2776/*
2777 * Initialize the console device. This is called *early*, so
2778 * we can't necessarily depend on lots of kernel help here.
2779 * Just do some early initializations, and do the complex setup
2780 * later.
2781 */
2782void __init console_init(void)
2783{
2784	int ret;
2785	initcall_t *call;
 
2786
2787	/* Setup the default TTY line discipline. */
2788	n_tty_init();
2789
2790	/*
2791	 * set up the console device so that later boot sequences can
2792	 * inform about problems etc..
2793	 */
2794	call = __con_initcall_start;
2795	trace_initcall_level("console");
2796	while (call < __con_initcall_end) {
2797		trace_initcall_start((*call));
2798		ret = (*call)();
2799		trace_initcall_finish((*call), ret);
2800		call++;
 
2801	}
2802}
2803
2804/*
2805 * Some boot consoles access data that is in the init section and which will
2806 * be discarded after the initcalls have been run. To make sure that no code
2807 * will access this data, unregister the boot consoles in a late initcall.
2808 *
2809 * If for some reason, such as deferred probe or the driver being a loadable
2810 * module, the real console hasn't registered yet at this point, there will
2811 * be a brief interval in which no messages are logged to the console, which
2812 * makes it difficult to diagnose problems that occur during this time.
2813 *
2814 * To mitigate this problem somewhat, only unregister consoles whose memory
2815 * intersects with the init section. Note that all other boot consoles will
2816 * get unregistred when the real preferred console is registered.
2817 */
2818static int __init printk_late_init(void)
2819{
2820	struct console *con;
2821	int ret;
2822
2823	for_each_console(con) {
2824		if (!(con->flags & CON_BOOT))
2825			continue;
2826
2827		/* Check addresses that might be used for enabled consoles. */
2828		if (init_section_intersects(con, sizeof(*con)) ||
2829		    init_section_contains(con->write, 0) ||
2830		    init_section_contains(con->read, 0) ||
2831		    init_section_contains(con->device, 0) ||
2832		    init_section_contains(con->unblank, 0) ||
2833		    init_section_contains(con->data, 0)) {
2834			/*
2835			 * Please, consider moving the reported consoles out
2836			 * of the init section.
2837			 */
2838			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2839				con->name, con->index);
2840			unregister_console(con);
2841		}
2842	}
2843	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2844					console_cpu_notify);
2845	WARN_ON(ret < 0);
2846	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2847					console_cpu_notify, NULL);
2848	WARN_ON(ret < 0);
2849	return 0;
2850}
2851late_initcall(printk_late_init);
2852
2853#if defined CONFIG_PRINTK
2854/*
2855 * Delayed printk version, for scheduler-internal messages:
2856 */
2857#define PRINTK_PENDING_WAKEUP	0x01
2858#define PRINTK_PENDING_OUTPUT	0x02
2859
2860static DEFINE_PER_CPU(int, printk_pending);
2861
2862static void wake_up_klogd_work_func(struct irq_work *irq_work)
2863{
2864	int pending = __this_cpu_xchg(printk_pending, 0);
2865
2866	if (pending & PRINTK_PENDING_OUTPUT) {
2867		/* If trylock fails, someone else is doing the printing */
2868		if (console_trylock())
2869			console_unlock();
2870	}
2871
2872	if (pending & PRINTK_PENDING_WAKEUP)
2873		wake_up_interruptible(&log_wait);
2874}
2875
2876static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2877	.func = wake_up_klogd_work_func,
2878	.flags = IRQ_WORK_LAZY,
2879};
2880
2881void wake_up_klogd(void)
2882{
2883	preempt_disable();
2884	if (waitqueue_active(&log_wait)) {
2885		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2886		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2887	}
2888	preempt_enable();
2889}
2890
 
 
 
 
 
 
 
 
2891int vprintk_deferred(const char *fmt, va_list args)
2892{
2893	int r;
2894
2895	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2896
2897	preempt_disable();
2898	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2899	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2900	preempt_enable();
2901
2902	return r;
2903}
2904
2905int printk_deferred(const char *fmt, ...)
2906{
2907	va_list args;
2908	int r;
2909
2910	va_start(args, fmt);
2911	r = vprintk_deferred(fmt, args);
2912	va_end(args);
2913
2914	return r;
2915}
2916
2917/*
2918 * printk rate limiting, lifted from the networking subsystem.
2919 *
2920 * This enforces a rate limit: not more than 10 kernel messages
2921 * every 5s to make a denial-of-service attack impossible.
2922 */
2923DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2924
2925int __printk_ratelimit(const char *func)
2926{
2927	return ___ratelimit(&printk_ratelimit_state, func);
2928}
2929EXPORT_SYMBOL(__printk_ratelimit);
2930
2931/**
2932 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2933 * @caller_jiffies: pointer to caller's state
2934 * @interval_msecs: minimum interval between prints
2935 *
2936 * printk_timed_ratelimit() returns true if more than @interval_msecs
2937 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2938 * returned true.
2939 */
2940bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2941			unsigned int interval_msecs)
2942{
2943	unsigned long elapsed = jiffies - *caller_jiffies;
2944
2945	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2946		return false;
2947
2948	*caller_jiffies = jiffies;
2949	return true;
2950}
2951EXPORT_SYMBOL(printk_timed_ratelimit);
2952
2953static DEFINE_SPINLOCK(dump_list_lock);
2954static LIST_HEAD(dump_list);
2955
2956/**
2957 * kmsg_dump_register - register a kernel log dumper.
2958 * @dumper: pointer to the kmsg_dumper structure
2959 *
2960 * Adds a kernel log dumper to the system. The dump callback in the
2961 * structure will be called when the kernel oopses or panics and must be
2962 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2963 */
2964int kmsg_dump_register(struct kmsg_dumper *dumper)
2965{
2966	unsigned long flags;
2967	int err = -EBUSY;
2968
2969	/* The dump callback needs to be set */
2970	if (!dumper->dump)
2971		return -EINVAL;
2972
2973	spin_lock_irqsave(&dump_list_lock, flags);
2974	/* Don't allow registering multiple times */
2975	if (!dumper->registered) {
2976		dumper->registered = 1;
2977		list_add_tail_rcu(&dumper->list, &dump_list);
2978		err = 0;
2979	}
2980	spin_unlock_irqrestore(&dump_list_lock, flags);
2981
2982	return err;
2983}
2984EXPORT_SYMBOL_GPL(kmsg_dump_register);
2985
2986/**
2987 * kmsg_dump_unregister - unregister a kmsg dumper.
2988 * @dumper: pointer to the kmsg_dumper structure
2989 *
2990 * Removes a dump device from the system. Returns zero on success and
2991 * %-EINVAL otherwise.
2992 */
2993int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2994{
2995	unsigned long flags;
2996	int err = -EINVAL;
2997
2998	spin_lock_irqsave(&dump_list_lock, flags);
2999	if (dumper->registered) {
3000		dumper->registered = 0;
3001		list_del_rcu(&dumper->list);
3002		err = 0;
3003	}
3004	spin_unlock_irqrestore(&dump_list_lock, flags);
3005	synchronize_rcu();
3006
3007	return err;
3008}
3009EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3010
3011static bool always_kmsg_dump;
3012module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3013
3014/**
3015 * kmsg_dump - dump kernel log to kernel message dumpers.
3016 * @reason: the reason (oops, panic etc) for dumping
3017 *
3018 * Call each of the registered dumper's dump() callback, which can
3019 * retrieve the kmsg records with kmsg_dump_get_line() or
3020 * kmsg_dump_get_buffer().
3021 */
3022void kmsg_dump(enum kmsg_dump_reason reason)
3023{
3024	struct kmsg_dumper *dumper;
3025	unsigned long flags;
3026
3027	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3028		return;
3029
3030	rcu_read_lock();
3031	list_for_each_entry_rcu(dumper, &dump_list, list) {
3032		if (dumper->max_reason && reason > dumper->max_reason)
3033			continue;
3034
3035		/* initialize iterator with data about the stored records */
3036		dumper->active = true;
3037
3038		logbuf_lock_irqsave(flags);
3039		dumper->cur_seq = clear_seq;
3040		dumper->cur_idx = clear_idx;
3041		dumper->next_seq = log_next_seq;
3042		dumper->next_idx = log_next_idx;
3043		logbuf_unlock_irqrestore(flags);
3044
3045		/* invoke dumper which will iterate over records */
3046		dumper->dump(dumper, reason);
3047
3048		/* reset iterator */
3049		dumper->active = false;
3050	}
3051	rcu_read_unlock();
3052}
3053
3054/**
3055 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3056 * @dumper: registered kmsg dumper
3057 * @syslog: include the "<4>" prefixes
3058 * @line: buffer to copy the line to
3059 * @size: maximum size of the buffer
3060 * @len: length of line placed into buffer
3061 *
3062 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3063 * record, and copy one record into the provided buffer.
3064 *
3065 * Consecutive calls will return the next available record moving
3066 * towards the end of the buffer with the youngest messages.
3067 *
3068 * A return value of FALSE indicates that there are no more records to
3069 * read.
3070 *
3071 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3072 */
3073bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3074			       char *line, size_t size, size_t *len)
3075{
3076	struct printk_log *msg;
3077	size_t l = 0;
3078	bool ret = false;
3079
3080	if (!dumper->active)
3081		goto out;
3082
3083	if (dumper->cur_seq < log_first_seq) {
3084		/* messages are gone, move to first available one */
3085		dumper->cur_seq = log_first_seq;
3086		dumper->cur_idx = log_first_idx;
3087	}
3088
3089	/* last entry */
3090	if (dumper->cur_seq >= log_next_seq)
3091		goto out;
3092
3093	msg = log_from_idx(dumper->cur_idx);
3094	l = msg_print_text(msg, syslog, line, size);
3095
3096	dumper->cur_idx = log_next(dumper->cur_idx);
3097	dumper->cur_seq++;
3098	ret = true;
3099out:
3100	if (len)
3101		*len = l;
3102	return ret;
3103}
3104
3105/**
3106 * kmsg_dump_get_line - retrieve one kmsg log line
3107 * @dumper: registered kmsg dumper
3108 * @syslog: include the "<4>" prefixes
3109 * @line: buffer to copy the line to
3110 * @size: maximum size of the buffer
3111 * @len: length of line placed into buffer
3112 *
3113 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3114 * record, and copy one record into the provided buffer.
3115 *
3116 * Consecutive calls will return the next available record moving
3117 * towards the end of the buffer with the youngest messages.
3118 *
3119 * A return value of FALSE indicates that there are no more records to
3120 * read.
3121 */
3122bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3123			char *line, size_t size, size_t *len)
3124{
3125	unsigned long flags;
3126	bool ret;
3127
3128	logbuf_lock_irqsave(flags);
3129	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3130	logbuf_unlock_irqrestore(flags);
3131
3132	return ret;
3133}
3134EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3135
3136/**
3137 * kmsg_dump_get_buffer - copy kmsg log lines
3138 * @dumper: registered kmsg dumper
3139 * @syslog: include the "<4>" prefixes
3140 * @buf: buffer to copy the line to
3141 * @size: maximum size of the buffer
3142 * @len: length of line placed into buffer
3143 *
3144 * Start at the end of the kmsg buffer and fill the provided buffer
3145 * with as many of the the *youngest* kmsg records that fit into it.
3146 * If the buffer is large enough, all available kmsg records will be
3147 * copied with a single call.
3148 *
3149 * Consecutive calls will fill the buffer with the next block of
3150 * available older records, not including the earlier retrieved ones.
3151 *
3152 * A return value of FALSE indicates that there are no more records to
3153 * read.
3154 */
3155bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3156			  char *buf, size_t size, size_t *len)
3157{
3158	unsigned long flags;
3159	u64 seq;
3160	u32 idx;
3161	u64 next_seq;
3162	u32 next_idx;
3163	size_t l = 0;
3164	bool ret = false;
 
3165
3166	if (!dumper->active)
3167		goto out;
3168
3169	logbuf_lock_irqsave(flags);
3170	if (dumper->cur_seq < log_first_seq) {
3171		/* messages are gone, move to first available one */
3172		dumper->cur_seq = log_first_seq;
3173		dumper->cur_idx = log_first_idx;
3174	}
3175
3176	/* last entry */
3177	if (dumper->cur_seq >= dumper->next_seq) {
3178		logbuf_unlock_irqrestore(flags);
3179		goto out;
3180	}
3181
3182	/* calculate length of entire buffer */
3183	seq = dumper->cur_seq;
3184	idx = dumper->cur_idx;
3185	while (seq < dumper->next_seq) {
3186		struct printk_log *msg = log_from_idx(idx);
3187
3188		l += msg_print_text(msg, true, NULL, 0);
3189		idx = log_next(idx);
3190		seq++;
3191	}
3192
3193	/* move first record forward until length fits into the buffer */
3194	seq = dumper->cur_seq;
3195	idx = dumper->cur_idx;
3196	while (l > size && seq < dumper->next_seq) {
3197		struct printk_log *msg = log_from_idx(idx);
3198
3199		l -= msg_print_text(msg, true, NULL, 0);
3200		idx = log_next(idx);
3201		seq++;
3202	}
3203
3204	/* last message in next interation */
3205	next_seq = seq;
3206	next_idx = idx;
3207
3208	l = 0;
3209	while (seq < dumper->next_seq) {
3210		struct printk_log *msg = log_from_idx(idx);
3211
3212		l += msg_print_text(msg, syslog, buf + l, size - l);
3213		idx = log_next(idx);
3214		seq++;
3215	}
3216
3217	dumper->next_seq = next_seq;
3218	dumper->next_idx = next_idx;
3219	ret = true;
3220	logbuf_unlock_irqrestore(flags);
3221out:
3222	if (len)
3223		*len = l;
3224	return ret;
3225}
3226EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3227
3228/**
3229 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3230 * @dumper: registered kmsg dumper
3231 *
3232 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3233 * kmsg_dump_get_buffer() can be called again and used multiple
3234 * times within the same dumper.dump() callback.
3235 *
3236 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3237 */
3238void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3239{
3240	dumper->cur_seq = clear_seq;
3241	dumper->cur_idx = clear_idx;
3242	dumper->next_seq = log_next_seq;
3243	dumper->next_idx = log_next_idx;
3244}
3245
3246/**
3247 * kmsg_dump_rewind - reset the interator
3248 * @dumper: registered kmsg dumper
3249 *
3250 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3251 * kmsg_dump_get_buffer() can be called again and used multiple
3252 * times within the same dumper.dump() callback.
3253 */
3254void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3255{
3256	unsigned long flags;
3257
3258	logbuf_lock_irqsave(flags);
3259	kmsg_dump_rewind_nolock(dumper);
3260	logbuf_unlock_irqrestore(flags);
3261}
3262EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3263
3264#endif