Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225			/* Unforce SMBus mode in PHY */
 226			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 227			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 228			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 229
 230			/* Unforce SMBus mode in MAC */
 231			mac_reg = er32(CTRL_EXT);
 232			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 233			ew32(CTRL_EXT, mac_reg);
 234		}
 235	}
 236
 237	return true;
 238}
 239
 240/**
 241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 242 *  @hw: pointer to the HW structure
 243 *
 244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 245 *  used to reset the PHY to a quiescent state when necessary.
 246 **/
 247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 248{
 249	u32 mac_reg;
 250
 251	/* Set Phy Config Counter to 50msec */
 252	mac_reg = er32(FEXTNVM3);
 253	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 254	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 255	ew32(FEXTNVM3, mac_reg);
 256
 257	/* Toggle LANPHYPC Value bit */
 258	mac_reg = er32(CTRL);
 259	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 260	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 261	ew32(CTRL, mac_reg);
 262	e1e_flush();
 263	usleep_range(10, 20);
 264	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 265	ew32(CTRL, mac_reg);
 266	e1e_flush();
 267
 268	if (hw->mac.type < e1000_pch_lpt) {
 269		msleep(50);
 270	} else {
 271		u16 count = 20;
 272
 273		do {
 274			usleep_range(5000, 6000);
 275		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 276
 277		msleep(30);
 278	}
 279}
 280
 281/**
 282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 283 *  @hw: pointer to the HW structure
 284 *
 285 *  Workarounds/flow necessary for PHY initialization during driver load
 286 *  and resume paths.
 287 **/
 288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 289{
 290	struct e1000_adapter *adapter = hw->adapter;
 291	u32 mac_reg, fwsm = er32(FWSM);
 292	s32 ret_val;
 293
 294	/* Gate automatic PHY configuration by hardware on managed and
 295	 * non-managed 82579 and newer adapters.
 296	 */
 297	e1000_gate_hw_phy_config_ich8lan(hw, true);
 298
 299	/* It is not possible to be certain of the current state of ULP
 300	 * so forcibly disable it.
 301	 */
 302	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 303	e1000_disable_ulp_lpt_lp(hw, true);
 304
 305	ret_val = hw->phy.ops.acquire(hw);
 306	if (ret_val) {
 307		e_dbg("Failed to initialize PHY flow\n");
 308		goto out;
 309	}
 310
 311	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 312	 * inaccessible and resetting the PHY is not blocked, toggle the
 313	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 314	 */
 315	switch (hw->mac.type) {
 316	case e1000_pch_lpt:
 317	case e1000_pch_spt:
 318	case e1000_pch_cnp:
 319		if (e1000_phy_is_accessible_pchlan(hw))
 320			break;
 321
 322		/* Before toggling LANPHYPC, see if PHY is accessible by
 323		 * forcing MAC to SMBus mode first.
 324		 */
 325		mac_reg = er32(CTRL_EXT);
 326		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 327		ew32(CTRL_EXT, mac_reg);
 328
 329		/* Wait 50 milliseconds for MAC to finish any retries
 330		 * that it might be trying to perform from previous
 331		 * attempts to acknowledge any phy read requests.
 332		 */
 333		msleep(50);
 334
 335		/* fall-through */
 336	case e1000_pch2lan:
 337		if (e1000_phy_is_accessible_pchlan(hw))
 338			break;
 339
 340		/* fall-through */
 341	case e1000_pchlan:
 342		if ((hw->mac.type == e1000_pchlan) &&
 343		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 344			break;
 345
 346		if (hw->phy.ops.check_reset_block(hw)) {
 347			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 348			ret_val = -E1000_ERR_PHY;
 349			break;
 350		}
 351
 352		/* Toggle LANPHYPC Value bit */
 353		e1000_toggle_lanphypc_pch_lpt(hw);
 354		if (hw->mac.type >= e1000_pch_lpt) {
 355			if (e1000_phy_is_accessible_pchlan(hw))
 356				break;
 357
 358			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 359			 * so ensure that the MAC is also out of SMBus mode
 360			 */
 361			mac_reg = er32(CTRL_EXT);
 362			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 363			ew32(CTRL_EXT, mac_reg);
 364
 365			if (e1000_phy_is_accessible_pchlan(hw))
 366				break;
 367
 368			ret_val = -E1000_ERR_PHY;
 369		}
 370		break;
 371	default:
 372		break;
 373	}
 374
 375	hw->phy.ops.release(hw);
 376	if (!ret_val) {
 377
 378		/* Check to see if able to reset PHY.  Print error if not */
 379		if (hw->phy.ops.check_reset_block(hw)) {
 380			e_err("Reset blocked by ME\n");
 381			goto out;
 382		}
 383
 384		/* Reset the PHY before any access to it.  Doing so, ensures
 385		 * that the PHY is in a known good state before we read/write
 386		 * PHY registers.  The generic reset is sufficient here,
 387		 * because we haven't determined the PHY type yet.
 388		 */
 389		ret_val = e1000e_phy_hw_reset_generic(hw);
 390		if (ret_val)
 391			goto out;
 392
 393		/* On a successful reset, possibly need to wait for the PHY
 394		 * to quiesce to an accessible state before returning control
 395		 * to the calling function.  If the PHY does not quiesce, then
 396		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 397		 *  the PHY is in.
 398		 */
 399		ret_val = hw->phy.ops.check_reset_block(hw);
 400		if (ret_val)
 401			e_err("ME blocked access to PHY after reset\n");
 402	}
 403
 404out:
 405	/* Ungate automatic PHY configuration on non-managed 82579 */
 406	if ((hw->mac.type == e1000_pch2lan) &&
 407	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 408		usleep_range(10000, 11000);
 409		e1000_gate_hw_phy_config_ich8lan(hw, false);
 410	}
 411
 412	return ret_val;
 413}
 414
 415/**
 416 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 417 *  @hw: pointer to the HW structure
 418 *
 419 *  Initialize family-specific PHY parameters and function pointers.
 420 **/
 421static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 422{
 423	struct e1000_phy_info *phy = &hw->phy;
 424	s32 ret_val;
 425
 426	phy->addr = 1;
 427	phy->reset_delay_us = 100;
 428
 429	phy->ops.set_page = e1000_set_page_igp;
 430	phy->ops.read_reg = e1000_read_phy_reg_hv;
 431	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 432	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 433	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 434	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 435	phy->ops.write_reg = e1000_write_phy_reg_hv;
 436	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 437	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 438	phy->ops.power_up = e1000_power_up_phy_copper;
 439	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 440	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 441
 442	phy->id = e1000_phy_unknown;
 443
 444	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 445	if (ret_val)
 446		return ret_val;
 447
 448	if (phy->id == e1000_phy_unknown)
 449		switch (hw->mac.type) {
 450		default:
 451			ret_val = e1000e_get_phy_id(hw);
 452			if (ret_val)
 453				return ret_val;
 454			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 455				break;
 456			/* fall-through */
 457		case e1000_pch2lan:
 458		case e1000_pch_lpt:
 459		case e1000_pch_spt:
 460		case e1000_pch_cnp:
 461			/* In case the PHY needs to be in mdio slow mode,
 462			 * set slow mode and try to get the PHY id again.
 463			 */
 464			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 465			if (ret_val)
 466				return ret_val;
 467			ret_val = e1000e_get_phy_id(hw);
 468			if (ret_val)
 469				return ret_val;
 470			break;
 471		}
 472	phy->type = e1000e_get_phy_type_from_id(phy->id);
 473
 474	switch (phy->type) {
 475	case e1000_phy_82577:
 476	case e1000_phy_82579:
 477	case e1000_phy_i217:
 478		phy->ops.check_polarity = e1000_check_polarity_82577;
 479		phy->ops.force_speed_duplex =
 480		    e1000_phy_force_speed_duplex_82577;
 481		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 482		phy->ops.get_info = e1000_get_phy_info_82577;
 483		phy->ops.commit = e1000e_phy_sw_reset;
 484		break;
 485	case e1000_phy_82578:
 486		phy->ops.check_polarity = e1000_check_polarity_m88;
 487		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 488		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 489		phy->ops.get_info = e1000e_get_phy_info_m88;
 490		break;
 491	default:
 492		ret_val = -E1000_ERR_PHY;
 493		break;
 494	}
 495
 496	return ret_val;
 497}
 498
 499/**
 500 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 501 *  @hw: pointer to the HW structure
 502 *
 503 *  Initialize family-specific PHY parameters and function pointers.
 504 **/
 505static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 506{
 507	struct e1000_phy_info *phy = &hw->phy;
 508	s32 ret_val;
 509	u16 i = 0;
 510
 511	phy->addr = 1;
 512	phy->reset_delay_us = 100;
 513
 514	phy->ops.power_up = e1000_power_up_phy_copper;
 515	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 516
 517	/* We may need to do this twice - once for IGP and if that fails,
 518	 * we'll set BM func pointers and try again
 519	 */
 520	ret_val = e1000e_determine_phy_address(hw);
 521	if (ret_val) {
 522		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 523		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 524		ret_val = e1000e_determine_phy_address(hw);
 525		if (ret_val) {
 526			e_dbg("Cannot determine PHY addr. Erroring out\n");
 527			return ret_val;
 528		}
 529	}
 530
 531	phy->id = 0;
 532	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 533	       (i++ < 100)) {
 534		usleep_range(1000, 1100);
 535		ret_val = e1000e_get_phy_id(hw);
 536		if (ret_val)
 537			return ret_val;
 538	}
 539
 540	/* Verify phy id */
 541	switch (phy->id) {
 542	case IGP03E1000_E_PHY_ID:
 543		phy->type = e1000_phy_igp_3;
 544		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 545		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 546		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 547		phy->ops.get_info = e1000e_get_phy_info_igp;
 548		phy->ops.check_polarity = e1000_check_polarity_igp;
 549		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 550		break;
 551	case IFE_E_PHY_ID:
 552	case IFE_PLUS_E_PHY_ID:
 553	case IFE_C_E_PHY_ID:
 554		phy->type = e1000_phy_ife;
 555		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 556		phy->ops.get_info = e1000_get_phy_info_ife;
 557		phy->ops.check_polarity = e1000_check_polarity_ife;
 558		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 559		break;
 560	case BME1000_E_PHY_ID:
 561		phy->type = e1000_phy_bm;
 562		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 563		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 564		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 565		phy->ops.commit = e1000e_phy_sw_reset;
 566		phy->ops.get_info = e1000e_get_phy_info_m88;
 567		phy->ops.check_polarity = e1000_check_polarity_m88;
 568		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 569		break;
 570	default:
 571		return -E1000_ERR_PHY;
 572	}
 573
 574	return 0;
 575}
 576
 577/**
 578 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 579 *  @hw: pointer to the HW structure
 580 *
 581 *  Initialize family-specific NVM parameters and function
 582 *  pointers.
 583 **/
 584static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 585{
 586	struct e1000_nvm_info *nvm = &hw->nvm;
 587	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 588	u32 gfpreg, sector_base_addr, sector_end_addr;
 589	u16 i;
 590	u32 nvm_size;
 591
 592	nvm->type = e1000_nvm_flash_sw;
 593
 594	if (hw->mac.type >= e1000_pch_spt) {
 595		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 596		 * STRAP register. This is because in SPT the GbE Flash region
 597		 * is no longer accessed through the flash registers. Instead,
 598		 * the mechanism has changed, and the Flash region access
 599		 * registers are now implemented in GbE memory space.
 600		 */
 601		nvm->flash_base_addr = 0;
 602		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 603		    * NVM_SIZE_MULTIPLIER;
 604		nvm->flash_bank_size = nvm_size / 2;
 605		/* Adjust to word count */
 606		nvm->flash_bank_size /= sizeof(u16);
 607		/* Set the base address for flash register access */
 608		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 609	} else {
 610		/* Can't read flash registers if register set isn't mapped. */
 611		if (!hw->flash_address) {
 612			e_dbg("ERROR: Flash registers not mapped\n");
 613			return -E1000_ERR_CONFIG;
 614		}
 615
 616		gfpreg = er32flash(ICH_FLASH_GFPREG);
 617
 618		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 619		 * Add 1 to sector_end_addr since this sector is included in
 620		 * the overall size.
 621		 */
 622		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 623		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 624
 625		/* flash_base_addr is byte-aligned */
 626		nvm->flash_base_addr = sector_base_addr
 627		    << FLASH_SECTOR_ADDR_SHIFT;
 628
 629		/* find total size of the NVM, then cut in half since the total
 630		 * size represents two separate NVM banks.
 631		 */
 632		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 633					<< FLASH_SECTOR_ADDR_SHIFT);
 634		nvm->flash_bank_size /= 2;
 635		/* Adjust to word count */
 636		nvm->flash_bank_size /= sizeof(u16);
 637	}
 638
 639	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 640
 641	/* Clear shadow ram */
 642	for (i = 0; i < nvm->word_size; i++) {
 643		dev_spec->shadow_ram[i].modified = false;
 644		dev_spec->shadow_ram[i].value = 0xFFFF;
 645	}
 646
 647	return 0;
 648}
 649
 650/**
 651 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 652 *  @hw: pointer to the HW structure
 653 *
 654 *  Initialize family-specific MAC parameters and function
 655 *  pointers.
 656 **/
 657static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 658{
 659	struct e1000_mac_info *mac = &hw->mac;
 660
 661	/* Set media type function pointer */
 662	hw->phy.media_type = e1000_media_type_copper;
 663
 664	/* Set mta register count */
 665	mac->mta_reg_count = 32;
 666	/* Set rar entry count */
 667	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 668	if (mac->type == e1000_ich8lan)
 669		mac->rar_entry_count--;
 670	/* FWSM register */
 671	mac->has_fwsm = true;
 672	/* ARC subsystem not supported */
 673	mac->arc_subsystem_valid = false;
 674	/* Adaptive IFS supported */
 675	mac->adaptive_ifs = true;
 676
 677	/* LED and other operations */
 678	switch (mac->type) {
 679	case e1000_ich8lan:
 680	case e1000_ich9lan:
 681	case e1000_ich10lan:
 682		/* check management mode */
 683		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 684		/* ID LED init */
 685		mac->ops.id_led_init = e1000e_id_led_init_generic;
 686		/* blink LED */
 687		mac->ops.blink_led = e1000e_blink_led_generic;
 688		/* setup LED */
 689		mac->ops.setup_led = e1000e_setup_led_generic;
 690		/* cleanup LED */
 691		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 692		/* turn on/off LED */
 693		mac->ops.led_on = e1000_led_on_ich8lan;
 694		mac->ops.led_off = e1000_led_off_ich8lan;
 695		break;
 696	case e1000_pch2lan:
 697		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 698		mac->ops.rar_set = e1000_rar_set_pch2lan;
 699		/* fall-through */
 700	case e1000_pch_lpt:
 701	case e1000_pch_spt:
 702	case e1000_pch_cnp:
 703	case e1000_pchlan:
 704		/* check management mode */
 705		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 706		/* ID LED init */
 707		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 708		/* setup LED */
 709		mac->ops.setup_led = e1000_setup_led_pchlan;
 710		/* cleanup LED */
 711		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 712		/* turn on/off LED */
 713		mac->ops.led_on = e1000_led_on_pchlan;
 714		mac->ops.led_off = e1000_led_off_pchlan;
 715		break;
 716	default:
 717		break;
 718	}
 719
 720	if (mac->type >= e1000_pch_lpt) {
 721		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 722		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 723		mac->ops.setup_physical_interface =
 724		    e1000_setup_copper_link_pch_lpt;
 725		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 726	}
 727
 728	/* Enable PCS Lock-loss workaround for ICH8 */
 729	if (mac->type == e1000_ich8lan)
 730		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 731
 732	return 0;
 733}
 734
 735/**
 736 *  __e1000_access_emi_reg_locked - Read/write EMI register
 737 *  @hw: pointer to the HW structure
 738 *  @addr: EMI address to program
 739 *  @data: pointer to value to read/write from/to the EMI address
 740 *  @read: boolean flag to indicate read or write
 741 *
 742 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 743 **/
 744static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 745					 u16 *data, bool read)
 746{
 747	s32 ret_val;
 748
 749	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 750	if (ret_val)
 751		return ret_val;
 752
 753	if (read)
 754		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 755	else
 756		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 757
 758	return ret_val;
 759}
 760
 761/**
 762 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 763 *  @hw: pointer to the HW structure
 764 *  @addr: EMI address to program
 765 *  @data: value to be read from the EMI address
 766 *
 767 *  Assumes the SW/FW/HW Semaphore is already acquired.
 768 **/
 769s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 770{
 771	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 772}
 773
 774/**
 775 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 776 *  @hw: pointer to the HW structure
 777 *  @addr: EMI address to program
 778 *  @data: value to be written to the EMI address
 779 *
 780 *  Assumes the SW/FW/HW Semaphore is already acquired.
 781 **/
 782s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 783{
 784	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 785}
 786
 787/**
 788 *  e1000_set_eee_pchlan - Enable/disable EEE support
 789 *  @hw: pointer to the HW structure
 790 *
 791 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 792 *  the link and the EEE capabilities of the link partner.  The LPI Control
 793 *  register bits will remain set only if/when link is up.
 794 *
 795 *  EEE LPI must not be asserted earlier than one second after link is up.
 796 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 797 *  can be link issues with some switches.  Other devices can have EEE LPI
 798 *  enabled immediately upon link up since they have a timer in hardware which
 799 *  prevents LPI from being asserted too early.
 800 **/
 801s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 802{
 803	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 804	s32 ret_val;
 805	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 806
 807	switch (hw->phy.type) {
 808	case e1000_phy_82579:
 809		lpa = I82579_EEE_LP_ABILITY;
 810		pcs_status = I82579_EEE_PCS_STATUS;
 811		adv_addr = I82579_EEE_ADVERTISEMENT;
 812		break;
 813	case e1000_phy_i217:
 814		lpa = I217_EEE_LP_ABILITY;
 815		pcs_status = I217_EEE_PCS_STATUS;
 816		adv_addr = I217_EEE_ADVERTISEMENT;
 817		break;
 818	default:
 819		return 0;
 820	}
 821
 822	ret_val = hw->phy.ops.acquire(hw);
 823	if (ret_val)
 824		return ret_val;
 825
 826	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 827	if (ret_val)
 828		goto release;
 829
 830	/* Clear bits that enable EEE in various speeds */
 831	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 832
 833	/* Enable EEE if not disabled by user */
 834	if (!dev_spec->eee_disable) {
 835		/* Save off link partner's EEE ability */
 836		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 837						    &dev_spec->eee_lp_ability);
 838		if (ret_val)
 839			goto release;
 840
 841		/* Read EEE advertisement */
 842		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 843		if (ret_val)
 844			goto release;
 845
 846		/* Enable EEE only for speeds in which the link partner is
 847		 * EEE capable and for which we advertise EEE.
 848		 */
 849		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 850			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 851
 852		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 853			e1e_rphy_locked(hw, MII_LPA, &data);
 854			if (data & LPA_100FULL)
 855				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 856			else
 857				/* EEE is not supported in 100Half, so ignore
 858				 * partner's EEE in 100 ability if full-duplex
 859				 * is not advertised.
 860				 */
 861				dev_spec->eee_lp_ability &=
 862				    ~I82579_EEE_100_SUPPORTED;
 863		}
 864	}
 865
 866	if (hw->phy.type == e1000_phy_82579) {
 867		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 868						    &data);
 869		if (ret_val)
 870			goto release;
 871
 872		data &= ~I82579_LPI_100_PLL_SHUT;
 873		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 874						     data);
 875	}
 876
 877	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 878	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 879	if (ret_val)
 880		goto release;
 881
 882	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 883release:
 884	hw->phy.ops.release(hw);
 885
 886	return ret_val;
 887}
 888
 889/**
 890 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 891 *  @hw:   pointer to the HW structure
 892 *  @link: link up bool flag
 893 *
 894 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 895 *  preventing further DMA write requests.  Workaround the issue by disabling
 896 *  the de-assertion of the clock request when in 1Gpbs mode.
 897 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 898 *  speeds in order to avoid Tx hangs.
 899 **/
 900static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 901{
 902	u32 fextnvm6 = er32(FEXTNVM6);
 903	u32 status = er32(STATUS);
 904	s32 ret_val = 0;
 905	u16 reg;
 906
 907	if (link && (status & E1000_STATUS_SPEED_1000)) {
 908		ret_val = hw->phy.ops.acquire(hw);
 909		if (ret_val)
 910			return ret_val;
 911
 912		ret_val =
 913		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 914						&reg);
 915		if (ret_val)
 916			goto release;
 917
 918		ret_val =
 919		    e1000e_write_kmrn_reg_locked(hw,
 920						 E1000_KMRNCTRLSTA_K1_CONFIG,
 921						 reg &
 922						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 923		if (ret_val)
 924			goto release;
 925
 926		usleep_range(10, 20);
 927
 928		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 929
 930		ret_val =
 931		    e1000e_write_kmrn_reg_locked(hw,
 932						 E1000_KMRNCTRLSTA_K1_CONFIG,
 933						 reg);
 934release:
 935		hw->phy.ops.release(hw);
 936	} else {
 937		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 938		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 939
 940		if ((hw->phy.revision > 5) || !link ||
 941		    ((status & E1000_STATUS_SPEED_100) &&
 942		     (status & E1000_STATUS_FD)))
 943			goto update_fextnvm6;
 944
 945		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 946		if (ret_val)
 947			return ret_val;
 948
 949		/* Clear link status transmit timeout */
 950		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 951
 952		if (status & E1000_STATUS_SPEED_100) {
 953			/* Set inband Tx timeout to 5x10us for 100Half */
 954			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 955
 956			/* Do not extend the K1 entry latency for 100Half */
 957			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 958		} else {
 959			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 960			reg |= 50 <<
 961			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 962
 963			/* Extend the K1 entry latency for 10 Mbps */
 964			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 965		}
 966
 967		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 968		if (ret_val)
 969			return ret_val;
 970
 971update_fextnvm6:
 972		ew32(FEXTNVM6, fextnvm6);
 973	}
 974
 975	return ret_val;
 976}
 977
 978/**
 979 *  e1000_platform_pm_pch_lpt - Set platform power management values
 980 *  @hw: pointer to the HW structure
 981 *  @link: bool indicating link status
 982 *
 983 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 984 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
 985 *  when link is up (which must not exceed the maximum latency supported
 986 *  by the platform), otherwise specify there is no LTR requirement.
 987 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
 988 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
 989 *  Capability register set, on this device LTR is set by writing the
 990 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
 991 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
 992 *  message to the PMC.
 993 **/
 994static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
 995{
 996	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
 997	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
 998	u16 lat_enc = 0;	/* latency encoded */
 999
1000	if (link) {
1001		u16 speed, duplex, scale = 0;
1002		u16 max_snoop, max_nosnoop;
1003		u16 max_ltr_enc;	/* max LTR latency encoded */
1004		u64 value;
1005		u32 rxa;
1006
1007		if (!hw->adapter->max_frame_size) {
1008			e_dbg("max_frame_size not set.\n");
1009			return -E1000_ERR_CONFIG;
1010		}
1011
1012		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1013		if (!speed) {
1014			e_dbg("Speed not set.\n");
1015			return -E1000_ERR_CONFIG;
1016		}
1017
1018		/* Rx Packet Buffer Allocation size (KB) */
1019		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1020
1021		/* Determine the maximum latency tolerated by the device.
1022		 *
1023		 * Per the PCIe spec, the tolerated latencies are encoded as
1024		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1025		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1026		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1027		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1028		 */
1029		rxa *= 512;
1030		value = (rxa > hw->adapter->max_frame_size) ?
1031			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1032			0;
1033
1034		while (value > PCI_LTR_VALUE_MASK) {
1035			scale++;
1036			value = DIV_ROUND_UP(value, BIT(5));
1037		}
1038		if (scale > E1000_LTRV_SCALE_MAX) {
1039			e_dbg("Invalid LTR latency scale %d\n", scale);
1040			return -E1000_ERR_CONFIG;
1041		}
1042		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1043
1044		/* Determine the maximum latency tolerated by the platform */
1045		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1046				     &max_snoop);
1047		pci_read_config_word(hw->adapter->pdev,
1048				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1049		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1050
1051		if (lat_enc > max_ltr_enc)
1052			lat_enc = max_ltr_enc;
1053	}
1054
1055	/* Set Snoop and No-Snoop latencies the same */
1056	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1057	ew32(LTRV, reg);
1058
1059	return 0;
1060}
1061
1062/**
1063 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1064 *  @hw: pointer to the HW structure
1065 *  @to_sx: boolean indicating a system power state transition to Sx
1066 *
1067 *  When link is down, configure ULP mode to significantly reduce the power
1068 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1069 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1070 *  system, configure the ULP mode by software.
1071 */
1072s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1073{
1074	u32 mac_reg;
1075	s32 ret_val = 0;
1076	u16 phy_reg;
1077	u16 oem_reg = 0;
1078
1079	if ((hw->mac.type < e1000_pch_lpt) ||
1080	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1081	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1082	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1083	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1084	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1085		return 0;
1086
1087	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1088		/* Request ME configure ULP mode in the PHY */
1089		mac_reg = er32(H2ME);
1090		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1091		ew32(H2ME, mac_reg);
1092
1093		goto out;
1094	}
1095
1096	if (!to_sx) {
1097		int i = 0;
1098
1099		/* Poll up to 5 seconds for Cable Disconnected indication */
1100		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1101			/* Bail if link is re-acquired */
1102			if (er32(STATUS) & E1000_STATUS_LU)
1103				return -E1000_ERR_PHY;
1104
1105			if (i++ == 100)
1106				break;
1107
1108			msleep(50);
1109		}
1110		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1111		      (er32(FEXT) &
1112		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1113	}
1114
1115	ret_val = hw->phy.ops.acquire(hw);
1116	if (ret_val)
1117		goto out;
1118
1119	/* Force SMBus mode in PHY */
1120	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1121	if (ret_val)
1122		goto release;
1123	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1124	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1125
1126	/* Force SMBus mode in MAC */
1127	mac_reg = er32(CTRL_EXT);
1128	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1129	ew32(CTRL_EXT, mac_reg);
1130
1131	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1132	 * LPLU and disable Gig speed when entering ULP
1133	 */
1134	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1135		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1136						       &oem_reg);
1137		if (ret_val)
1138			goto release;
1139
1140		phy_reg = oem_reg;
1141		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1142
1143		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1144							phy_reg);
1145
1146		if (ret_val)
1147			goto release;
1148	}
1149
1150	/* Set Inband ULP Exit, Reset to SMBus mode and
1151	 * Disable SMBus Release on PERST# in PHY
1152	 */
1153	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1154	if (ret_val)
1155		goto release;
1156	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1157		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1158	if (to_sx) {
1159		if (er32(WUFC) & E1000_WUFC_LNKC)
1160			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1161		else
1162			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1163
1164		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1165		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1166	} else {
1167		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1168		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1169		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1170	}
1171	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1172
1173	/* Set Disable SMBus Release on PERST# in MAC */
1174	mac_reg = er32(FEXTNVM7);
1175	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1176	ew32(FEXTNVM7, mac_reg);
1177
1178	/* Commit ULP changes in PHY by starting auto ULP configuration */
1179	phy_reg |= I218_ULP_CONFIG1_START;
1180	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1181
1182	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1183	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1184		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1185							oem_reg);
1186		if (ret_val)
1187			goto release;
1188	}
1189
1190release:
1191	hw->phy.ops.release(hw);
1192out:
1193	if (ret_val)
1194		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1195	else
1196		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1197
1198	return ret_val;
1199}
1200
1201/**
1202 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1203 *  @hw: pointer to the HW structure
1204 *  @force: boolean indicating whether or not to force disabling ULP
1205 *
1206 *  Un-configure ULP mode when link is up, the system is transitioned from
1207 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1208 *  system, poll for an indication from ME that ULP has been un-configured.
1209 *  If not on an ME enabled system, un-configure the ULP mode by software.
1210 *
1211 *  During nominal operation, this function is called when link is acquired
1212 *  to disable ULP mode (force=false); otherwise, for example when unloading
1213 *  the driver or during Sx->S0 transitions, this is called with force=true
1214 *  to forcibly disable ULP.
1215 */
1216static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1217{
1218	s32 ret_val = 0;
1219	u32 mac_reg;
1220	u16 phy_reg;
1221	int i = 0;
1222
1223	if ((hw->mac.type < e1000_pch_lpt) ||
1224	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1225	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1226	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1227	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1228	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1229		return 0;
1230
1231	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1232		if (force) {
1233			/* Request ME un-configure ULP mode in the PHY */
1234			mac_reg = er32(H2ME);
1235			mac_reg &= ~E1000_H2ME_ULP;
1236			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1237			ew32(H2ME, mac_reg);
1238		}
1239
1240		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1241		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1242			if (i++ == 30) {
1243				ret_val = -E1000_ERR_PHY;
1244				goto out;
1245			}
1246
1247			usleep_range(10000, 11000);
1248		}
1249		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1250
1251		if (force) {
1252			mac_reg = er32(H2ME);
1253			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1254			ew32(H2ME, mac_reg);
1255		} else {
1256			/* Clear H2ME.ULP after ME ULP configuration */
1257			mac_reg = er32(H2ME);
1258			mac_reg &= ~E1000_H2ME_ULP;
1259			ew32(H2ME, mac_reg);
1260		}
1261
1262		goto out;
1263	}
1264
1265	ret_val = hw->phy.ops.acquire(hw);
1266	if (ret_val)
1267		goto out;
1268
1269	if (force)
1270		/* Toggle LANPHYPC Value bit */
1271		e1000_toggle_lanphypc_pch_lpt(hw);
1272
1273	/* Unforce SMBus mode in PHY */
1274	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1275	if (ret_val) {
1276		/* The MAC might be in PCIe mode, so temporarily force to
1277		 * SMBus mode in order to access the PHY.
1278		 */
1279		mac_reg = er32(CTRL_EXT);
1280		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1281		ew32(CTRL_EXT, mac_reg);
1282
1283		msleep(50);
1284
1285		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1286						       &phy_reg);
1287		if (ret_val)
1288			goto release;
1289	}
1290	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1291	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1292
1293	/* Unforce SMBus mode in MAC */
1294	mac_reg = er32(CTRL_EXT);
1295	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1296	ew32(CTRL_EXT, mac_reg);
1297
1298	/* When ULP mode was previously entered, K1 was disabled by the
1299	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1300	 */
1301	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1302	if (ret_val)
1303		goto release;
1304	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1305	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1306
1307	/* Clear ULP enabled configuration */
1308	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1309	if (ret_val)
1310		goto release;
1311	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1312		     I218_ULP_CONFIG1_STICKY_ULP |
1313		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1314		     I218_ULP_CONFIG1_WOL_HOST |
1315		     I218_ULP_CONFIG1_INBAND_EXIT |
1316		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1317		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1318		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1319	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1320
1321	/* Commit ULP changes by starting auto ULP configuration */
1322	phy_reg |= I218_ULP_CONFIG1_START;
1323	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1324
1325	/* Clear Disable SMBus Release on PERST# in MAC */
1326	mac_reg = er32(FEXTNVM7);
1327	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1328	ew32(FEXTNVM7, mac_reg);
1329
1330release:
1331	hw->phy.ops.release(hw);
1332	if (force) {
1333		e1000_phy_hw_reset(hw);
1334		msleep(50);
1335	}
1336out:
1337	if (ret_val)
1338		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1339	else
1340		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1341
1342	return ret_val;
1343}
1344
1345/**
1346 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1347 *  @hw: pointer to the HW structure
1348 *
1349 *  Checks to see of the link status of the hardware has changed.  If a
1350 *  change in link status has been detected, then we read the PHY registers
1351 *  to get the current speed/duplex if link exists.
1352 **/
1353static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1354{
1355	struct e1000_mac_info *mac = &hw->mac;
1356	s32 ret_val, tipg_reg = 0;
1357	u16 emi_addr, emi_val = 0;
1358	bool link;
1359	u16 phy_reg;
1360
1361	/* We only want to go out to the PHY registers to see if Auto-Neg
1362	 * has completed and/or if our link status has changed.  The
1363	 * get_link_status flag is set upon receiving a Link Status
1364	 * Change or Rx Sequence Error interrupt.
1365	 */
1366	if (!mac->get_link_status)
1367		return 0;
1368	mac->get_link_status = false;
1369
1370	/* First we want to see if the MII Status Register reports
1371	 * link.  If so, then we want to get the current speed/duplex
1372	 * of the PHY.
1373	 */
1374	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1375	if (ret_val)
1376		goto out;
1377
1378	if (hw->mac.type == e1000_pchlan) {
1379		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1380		if (ret_val)
1381			goto out;
1382	}
1383
1384	/* When connected at 10Mbps half-duplex, some parts are excessively
1385	 * aggressive resulting in many collisions. To avoid this, increase
1386	 * the IPG and reduce Rx latency in the PHY.
1387	 */
1388	if ((hw->mac.type >= e1000_pch2lan) && link) {
1389		u16 speed, duplex;
1390
1391		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1392		tipg_reg = er32(TIPG);
1393		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1394
1395		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1396			tipg_reg |= 0xFF;
1397			/* Reduce Rx latency in analog PHY */
1398			emi_val = 0;
1399		} else if (hw->mac.type >= e1000_pch_spt &&
1400			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1401			tipg_reg |= 0xC;
1402			emi_val = 1;
1403		} else {
1404
1405			/* Roll back the default values */
1406			tipg_reg |= 0x08;
1407			emi_val = 1;
1408		}
1409
1410		ew32(TIPG, tipg_reg);
1411
1412		ret_val = hw->phy.ops.acquire(hw);
1413		if (ret_val)
1414			goto out;
1415
1416		if (hw->mac.type == e1000_pch2lan)
1417			emi_addr = I82579_RX_CONFIG;
1418		else
1419			emi_addr = I217_RX_CONFIG;
1420		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1421
1422		if (hw->mac.type >= e1000_pch_lpt) {
1423			u16 phy_reg;
1424
1425			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1426			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1427			if (speed == SPEED_100 || speed == SPEED_10)
1428				phy_reg |= 0x3E8;
1429			else
1430				phy_reg |= 0xFA;
1431			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1432
1433			if (speed == SPEED_1000) {
1434				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1435							    &phy_reg);
1436
1437				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1438
1439				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1440							     phy_reg);
1441			}
1442		}
1443		hw->phy.ops.release(hw);
1444
1445		if (ret_val)
1446			goto out;
1447
1448		if (hw->mac.type >= e1000_pch_spt) {
1449			u16 data;
1450			u16 ptr_gap;
1451
1452			if (speed == SPEED_1000) {
1453				ret_val = hw->phy.ops.acquire(hw);
1454				if (ret_val)
1455					goto out;
1456
1457				ret_val = e1e_rphy_locked(hw,
1458							  PHY_REG(776, 20),
1459							  &data);
1460				if (ret_val) {
1461					hw->phy.ops.release(hw);
1462					goto out;
1463				}
1464
1465				ptr_gap = (data & (0x3FF << 2)) >> 2;
1466				if (ptr_gap < 0x18) {
1467					data &= ~(0x3FF << 2);
1468					data |= (0x18 << 2);
1469					ret_val =
1470					    e1e_wphy_locked(hw,
1471							    PHY_REG(776, 20),
1472							    data);
1473				}
1474				hw->phy.ops.release(hw);
1475				if (ret_val)
1476					goto out;
1477			} else {
1478				ret_val = hw->phy.ops.acquire(hw);
1479				if (ret_val)
1480					goto out;
1481
1482				ret_val = e1e_wphy_locked(hw,
1483							  PHY_REG(776, 20),
1484							  0xC023);
1485				hw->phy.ops.release(hw);
1486				if (ret_val)
1487					goto out;
1488
1489			}
1490		}
1491	}
1492
1493	/* I217 Packet Loss issue:
1494	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1495	 * on power up.
1496	 * Set the Beacon Duration for I217 to 8 usec
1497	 */
1498	if (hw->mac.type >= e1000_pch_lpt) {
1499		u32 mac_reg;
1500
1501		mac_reg = er32(FEXTNVM4);
1502		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1503		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1504		ew32(FEXTNVM4, mac_reg);
1505	}
1506
1507	/* Work-around I218 hang issue */
1508	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1509	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1510	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1511	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1512		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1513		if (ret_val)
1514			goto out;
1515	}
1516	if (hw->mac.type >= e1000_pch_lpt) {
1517		/* Set platform power management values for
1518		 * Latency Tolerance Reporting (LTR)
1519		 */
1520		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1521		if (ret_val)
1522			goto out;
1523	}
1524
1525	/* Clear link partner's EEE ability */
1526	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1527
1528	if (hw->mac.type >= e1000_pch_lpt) {
1529		u32 fextnvm6 = er32(FEXTNVM6);
1530
1531		if (hw->mac.type == e1000_pch_spt) {
1532			/* FEXTNVM6 K1-off workaround - for SPT only */
1533			u32 pcieanacfg = er32(PCIEANACFG);
1534
1535			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1536				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1537			else
1538				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1539		}
1540
1541		ew32(FEXTNVM6, fextnvm6);
1542	}
1543
1544	if (!link)
1545		goto out;
1546
1547	switch (hw->mac.type) {
1548	case e1000_pch2lan:
1549		ret_val = e1000_k1_workaround_lv(hw);
1550		if (ret_val)
1551			return ret_val;
1552		/* fall-thru */
1553	case e1000_pchlan:
1554		if (hw->phy.type == e1000_phy_82578) {
1555			ret_val = e1000_link_stall_workaround_hv(hw);
1556			if (ret_val)
1557				return ret_val;
1558		}
1559
1560		/* Workaround for PCHx parts in half-duplex:
1561		 * Set the number of preambles removed from the packet
1562		 * when it is passed from the PHY to the MAC to prevent
1563		 * the MAC from misinterpreting the packet type.
1564		 */
1565		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1566		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1567
1568		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1569			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1570
1571		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1572		break;
1573	default:
1574		break;
1575	}
1576
1577	/* Check if there was DownShift, must be checked
1578	 * immediately after link-up
1579	 */
1580	e1000e_check_downshift(hw);
1581
1582	/* Enable/Disable EEE after link up */
1583	if (hw->phy.type > e1000_phy_82579) {
1584		ret_val = e1000_set_eee_pchlan(hw);
1585		if (ret_val)
1586			return ret_val;
1587	}
1588
1589	/* If we are forcing speed/duplex, then we simply return since
1590	 * we have already determined whether we have link or not.
1591	 */
1592	if (!mac->autoneg)
1593		return -E1000_ERR_CONFIG;
1594
1595	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1596	 * of MAC speed/duplex configuration.  So we only need to
1597	 * configure Collision Distance in the MAC.
1598	 */
1599	mac->ops.config_collision_dist(hw);
1600
1601	/* Configure Flow Control now that Auto-Neg has completed.
1602	 * First, we need to restore the desired flow control
1603	 * settings because we may have had to re-autoneg with a
1604	 * different link partner.
1605	 */
1606	ret_val = e1000e_config_fc_after_link_up(hw);
1607	if (ret_val)
1608		e_dbg("Error configuring flow control\n");
1609
1610	return ret_val;
1611
1612out:
1613	mac->get_link_status = true;
1614	return ret_val;
1615}
1616
1617static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1618{
1619	struct e1000_hw *hw = &adapter->hw;
1620	s32 rc;
1621
1622	rc = e1000_init_mac_params_ich8lan(hw);
1623	if (rc)
1624		return rc;
1625
1626	rc = e1000_init_nvm_params_ich8lan(hw);
1627	if (rc)
1628		return rc;
1629
1630	switch (hw->mac.type) {
1631	case e1000_ich8lan:
1632	case e1000_ich9lan:
1633	case e1000_ich10lan:
1634		rc = e1000_init_phy_params_ich8lan(hw);
1635		break;
1636	case e1000_pchlan:
1637	case e1000_pch2lan:
1638	case e1000_pch_lpt:
1639	case e1000_pch_spt:
1640	case e1000_pch_cnp:
1641		rc = e1000_init_phy_params_pchlan(hw);
1642		break;
1643	default:
1644		break;
1645	}
1646	if (rc)
1647		return rc;
1648
1649	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1650	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1651	 */
1652	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1653	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1654	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1655		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1656		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1657
1658		hw->mac.ops.blink_led = NULL;
1659	}
1660
1661	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1662	    (adapter->hw.phy.type != e1000_phy_ife))
1663		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1664
1665	/* Enable workaround for 82579 w/ ME enabled */
1666	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1667	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1668		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1669
1670	return 0;
1671}
1672
1673static DEFINE_MUTEX(nvm_mutex);
1674
1675/**
1676 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1677 *  @hw: pointer to the HW structure
1678 *
1679 *  Acquires the mutex for performing NVM operations.
1680 **/
1681static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1682{
1683	mutex_lock(&nvm_mutex);
1684
1685	return 0;
1686}
1687
1688/**
1689 *  e1000_release_nvm_ich8lan - Release NVM mutex
1690 *  @hw: pointer to the HW structure
1691 *
1692 *  Releases the mutex used while performing NVM operations.
1693 **/
1694static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1695{
1696	mutex_unlock(&nvm_mutex);
1697}
1698
1699/**
1700 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1701 *  @hw: pointer to the HW structure
1702 *
1703 *  Acquires the software control flag for performing PHY and select
1704 *  MAC CSR accesses.
1705 **/
1706static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1707{
1708	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1709	s32 ret_val = 0;
1710
1711	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1712			     &hw->adapter->state)) {
1713		e_dbg("contention for Phy access\n");
1714		return -E1000_ERR_PHY;
1715	}
1716
1717	while (timeout) {
1718		extcnf_ctrl = er32(EXTCNF_CTRL);
1719		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1720			break;
1721
1722		mdelay(1);
1723		timeout--;
1724	}
1725
1726	if (!timeout) {
1727		e_dbg("SW has already locked the resource.\n");
1728		ret_val = -E1000_ERR_CONFIG;
1729		goto out;
1730	}
1731
1732	timeout = SW_FLAG_TIMEOUT;
1733
1734	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1735	ew32(EXTCNF_CTRL, extcnf_ctrl);
1736
1737	while (timeout) {
1738		extcnf_ctrl = er32(EXTCNF_CTRL);
1739		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1740			break;
1741
1742		mdelay(1);
1743		timeout--;
1744	}
1745
1746	if (!timeout) {
1747		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1748		      er32(FWSM), extcnf_ctrl);
1749		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1750		ew32(EXTCNF_CTRL, extcnf_ctrl);
1751		ret_val = -E1000_ERR_CONFIG;
1752		goto out;
1753	}
1754
1755out:
1756	if (ret_val)
1757		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1758
1759	return ret_val;
1760}
1761
1762/**
1763 *  e1000_release_swflag_ich8lan - Release software control flag
1764 *  @hw: pointer to the HW structure
1765 *
1766 *  Releases the software control flag for performing PHY and select
1767 *  MAC CSR accesses.
1768 **/
1769static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1770{
1771	u32 extcnf_ctrl;
1772
1773	extcnf_ctrl = er32(EXTCNF_CTRL);
1774
1775	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1776		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1777		ew32(EXTCNF_CTRL, extcnf_ctrl);
1778	} else {
1779		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1780	}
1781
1782	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1783}
1784
1785/**
1786 *  e1000_check_mng_mode_ich8lan - Checks management mode
1787 *  @hw: pointer to the HW structure
1788 *
1789 *  This checks if the adapter has any manageability enabled.
1790 *  This is a function pointer entry point only called by read/write
1791 *  routines for the PHY and NVM parts.
1792 **/
1793static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1794{
1795	u32 fwsm;
1796
1797	fwsm = er32(FWSM);
1798	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1799		((fwsm & E1000_FWSM_MODE_MASK) ==
1800		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1801}
1802
1803/**
1804 *  e1000_check_mng_mode_pchlan - Checks management mode
1805 *  @hw: pointer to the HW structure
1806 *
1807 *  This checks if the adapter has iAMT enabled.
1808 *  This is a function pointer entry point only called by read/write
1809 *  routines for the PHY and NVM parts.
1810 **/
1811static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1812{
1813	u32 fwsm;
1814
1815	fwsm = er32(FWSM);
1816	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1817	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1818}
1819
1820/**
1821 *  e1000_rar_set_pch2lan - Set receive address register
1822 *  @hw: pointer to the HW structure
1823 *  @addr: pointer to the receive address
1824 *  @index: receive address array register
1825 *
1826 *  Sets the receive address array register at index to the address passed
1827 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1828 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1829 *  Use SHRA[0-3] in place of those reserved for ME.
1830 **/
1831static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1832{
1833	u32 rar_low, rar_high;
1834
1835	/* HW expects these in little endian so we reverse the byte order
1836	 * from network order (big endian) to little endian
1837	 */
1838	rar_low = ((u32)addr[0] |
1839		   ((u32)addr[1] << 8) |
1840		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1841
1842	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1843
1844	/* If MAC address zero, no need to set the AV bit */
1845	if (rar_low || rar_high)
1846		rar_high |= E1000_RAH_AV;
1847
1848	if (index == 0) {
1849		ew32(RAL(index), rar_low);
1850		e1e_flush();
1851		ew32(RAH(index), rar_high);
1852		e1e_flush();
1853		return 0;
1854	}
1855
1856	/* RAR[1-6] are owned by manageability.  Skip those and program the
1857	 * next address into the SHRA register array.
1858	 */
1859	if (index < (u32)(hw->mac.rar_entry_count)) {
1860		s32 ret_val;
1861
1862		ret_val = e1000_acquire_swflag_ich8lan(hw);
1863		if (ret_val)
1864			goto out;
1865
1866		ew32(SHRAL(index - 1), rar_low);
1867		e1e_flush();
1868		ew32(SHRAH(index - 1), rar_high);
1869		e1e_flush();
1870
1871		e1000_release_swflag_ich8lan(hw);
1872
1873		/* verify the register updates */
1874		if ((er32(SHRAL(index - 1)) == rar_low) &&
1875		    (er32(SHRAH(index - 1)) == rar_high))
1876			return 0;
1877
1878		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1879		      (index - 1), er32(FWSM));
1880	}
1881
1882out:
1883	e_dbg("Failed to write receive address at index %d\n", index);
1884	return -E1000_ERR_CONFIG;
1885}
1886
1887/**
1888 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1889 *  @hw: pointer to the HW structure
1890 *
1891 *  Get the number of available receive registers that the Host can
1892 *  program. SHRA[0-10] are the shared receive address registers
1893 *  that are shared between the Host and manageability engine (ME).
1894 *  ME can reserve any number of addresses and the host needs to be
1895 *  able to tell how many available registers it has access to.
1896 **/
1897static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1898{
1899	u32 wlock_mac;
1900	u32 num_entries;
1901
1902	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1903	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1904
1905	switch (wlock_mac) {
1906	case 0:
1907		/* All SHRA[0..10] and RAR[0] available */
1908		num_entries = hw->mac.rar_entry_count;
1909		break;
1910	case 1:
1911		/* Only RAR[0] available */
1912		num_entries = 1;
1913		break;
1914	default:
1915		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1916		num_entries = wlock_mac + 1;
1917		break;
1918	}
1919
1920	return num_entries;
1921}
1922
1923/**
1924 *  e1000_rar_set_pch_lpt - Set receive address registers
1925 *  @hw: pointer to the HW structure
1926 *  @addr: pointer to the receive address
1927 *  @index: receive address array register
1928 *
1929 *  Sets the receive address register array at index to the address passed
1930 *  in by addr. For LPT, RAR[0] is the base address register that is to
1931 *  contain the MAC address. SHRA[0-10] are the shared receive address
1932 *  registers that are shared between the Host and manageability engine (ME).
1933 **/
1934static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1935{
1936	u32 rar_low, rar_high;
1937	u32 wlock_mac;
1938
1939	/* HW expects these in little endian so we reverse the byte order
1940	 * from network order (big endian) to little endian
1941	 */
1942	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1943		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1944
1945	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1946
1947	/* If MAC address zero, no need to set the AV bit */
1948	if (rar_low || rar_high)
1949		rar_high |= E1000_RAH_AV;
1950
1951	if (index == 0) {
1952		ew32(RAL(index), rar_low);
1953		e1e_flush();
1954		ew32(RAH(index), rar_high);
1955		e1e_flush();
1956		return 0;
1957	}
1958
1959	/* The manageability engine (ME) can lock certain SHRAR registers that
1960	 * it is using - those registers are unavailable for use.
1961	 */
1962	if (index < hw->mac.rar_entry_count) {
1963		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1964		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1965
1966		/* Check if all SHRAR registers are locked */
1967		if (wlock_mac == 1)
1968			goto out;
1969
1970		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1971			s32 ret_val;
1972
1973			ret_val = e1000_acquire_swflag_ich8lan(hw);
1974
1975			if (ret_val)
1976				goto out;
1977
1978			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1979			e1e_flush();
1980			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1981			e1e_flush();
1982
1983			e1000_release_swflag_ich8lan(hw);
1984
1985			/* verify the register updates */
1986			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1987			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1988				return 0;
1989		}
1990	}
1991
1992out:
1993	e_dbg("Failed to write receive address at index %d\n", index);
1994	return -E1000_ERR_CONFIG;
1995}
1996
1997/**
1998 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1999 *  @hw: pointer to the HW structure
2000 *
2001 *  Checks if firmware is blocking the reset of the PHY.
2002 *  This is a function pointer entry point only called by
2003 *  reset routines.
2004 **/
2005static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2006{
2007	bool blocked = false;
2008	int i = 0;
2009
2010	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2011	       (i++ < 30))
2012		usleep_range(10000, 11000);
2013	return blocked ? E1000_BLK_PHY_RESET : 0;
2014}
2015
2016/**
2017 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2018 *  @hw: pointer to the HW structure
2019 *
2020 *  Assumes semaphore already acquired.
2021 *
2022 **/
2023static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2024{
2025	u16 phy_data;
2026	u32 strap = er32(STRAP);
2027	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2028	    E1000_STRAP_SMT_FREQ_SHIFT;
2029	s32 ret_val;
2030
2031	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2032
2033	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2034	if (ret_val)
2035		return ret_val;
2036
2037	phy_data &= ~HV_SMB_ADDR_MASK;
2038	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2039	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2040
2041	if (hw->phy.type == e1000_phy_i217) {
2042		/* Restore SMBus frequency */
2043		if (freq--) {
2044			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2045			phy_data |= (freq & BIT(0)) <<
2046			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2047			phy_data |= (freq & BIT(1)) <<
2048			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2049		} else {
2050			e_dbg("Unsupported SMB frequency in PHY\n");
2051		}
2052	}
2053
2054	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2055}
2056
2057/**
2058 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2059 *  @hw:   pointer to the HW structure
2060 *
2061 *  SW should configure the LCD from the NVM extended configuration region
2062 *  as a workaround for certain parts.
2063 **/
2064static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2065{
2066	struct e1000_phy_info *phy = &hw->phy;
2067	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2068	s32 ret_val = 0;
2069	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2070
2071	/* Initialize the PHY from the NVM on ICH platforms.  This
2072	 * is needed due to an issue where the NVM configuration is
2073	 * not properly autoloaded after power transitions.
2074	 * Therefore, after each PHY reset, we will load the
2075	 * configuration data out of the NVM manually.
2076	 */
2077	switch (hw->mac.type) {
2078	case e1000_ich8lan:
2079		if (phy->type != e1000_phy_igp_3)
2080			return ret_val;
2081
2082		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2083		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2084			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2085			break;
2086		}
2087		/* Fall-thru */
2088	case e1000_pchlan:
2089	case e1000_pch2lan:
2090	case e1000_pch_lpt:
2091	case e1000_pch_spt:
2092	case e1000_pch_cnp:
2093		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2094		break;
2095	default:
2096		return ret_val;
2097	}
2098
2099	ret_val = hw->phy.ops.acquire(hw);
2100	if (ret_val)
2101		return ret_val;
2102
2103	data = er32(FEXTNVM);
2104	if (!(data & sw_cfg_mask))
2105		goto release;
2106
2107	/* Make sure HW does not configure LCD from PHY
2108	 * extended configuration before SW configuration
2109	 */
2110	data = er32(EXTCNF_CTRL);
2111	if ((hw->mac.type < e1000_pch2lan) &&
2112	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2113		goto release;
2114
2115	cnf_size = er32(EXTCNF_SIZE);
2116	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2117	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2118	if (!cnf_size)
2119		goto release;
2120
2121	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2122	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2123
2124	if (((hw->mac.type == e1000_pchlan) &&
2125	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2126	    (hw->mac.type > e1000_pchlan)) {
2127		/* HW configures the SMBus address and LEDs when the
2128		 * OEM and LCD Write Enable bits are set in the NVM.
2129		 * When both NVM bits are cleared, SW will configure
2130		 * them instead.
2131		 */
2132		ret_val = e1000_write_smbus_addr(hw);
2133		if (ret_val)
2134			goto release;
2135
2136		data = er32(LEDCTL);
2137		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2138							(u16)data);
2139		if (ret_val)
2140			goto release;
2141	}
2142
2143	/* Configure LCD from extended configuration region. */
2144
2145	/* cnf_base_addr is in DWORD */
2146	word_addr = (u16)(cnf_base_addr << 1);
2147
2148	for (i = 0; i < cnf_size; i++) {
2149		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2150		if (ret_val)
2151			goto release;
2152
2153		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2154					 1, &reg_addr);
2155		if (ret_val)
2156			goto release;
2157
2158		/* Save off the PHY page for future writes. */
2159		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2160			phy_page = reg_data;
2161			continue;
2162		}
2163
2164		reg_addr &= PHY_REG_MASK;
2165		reg_addr |= phy_page;
2166
2167		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2168		if (ret_val)
2169			goto release;
2170	}
2171
2172release:
2173	hw->phy.ops.release(hw);
2174	return ret_val;
2175}
2176
2177/**
2178 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2179 *  @hw:   pointer to the HW structure
2180 *  @link: link up bool flag
2181 *
2182 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2183 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2184 *  If link is down, the function will restore the default K1 setting located
2185 *  in the NVM.
2186 **/
2187static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2188{
2189	s32 ret_val = 0;
2190	u16 status_reg = 0;
2191	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2192
2193	if (hw->mac.type != e1000_pchlan)
2194		return 0;
2195
2196	/* Wrap the whole flow with the sw flag */
2197	ret_val = hw->phy.ops.acquire(hw);
2198	if (ret_val)
2199		return ret_val;
2200
2201	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2202	if (link) {
2203		if (hw->phy.type == e1000_phy_82578) {
2204			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2205						  &status_reg);
2206			if (ret_val)
2207				goto release;
2208
2209			status_reg &= (BM_CS_STATUS_LINK_UP |
2210				       BM_CS_STATUS_RESOLVED |
2211				       BM_CS_STATUS_SPEED_MASK);
2212
2213			if (status_reg == (BM_CS_STATUS_LINK_UP |
2214					   BM_CS_STATUS_RESOLVED |
2215					   BM_CS_STATUS_SPEED_1000))
2216				k1_enable = false;
2217		}
2218
2219		if (hw->phy.type == e1000_phy_82577) {
2220			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2221			if (ret_val)
2222				goto release;
2223
2224			status_reg &= (HV_M_STATUS_LINK_UP |
2225				       HV_M_STATUS_AUTONEG_COMPLETE |
2226				       HV_M_STATUS_SPEED_MASK);
2227
2228			if (status_reg == (HV_M_STATUS_LINK_UP |
2229					   HV_M_STATUS_AUTONEG_COMPLETE |
2230					   HV_M_STATUS_SPEED_1000))
2231				k1_enable = false;
2232		}
2233
2234		/* Link stall fix for link up */
2235		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2236		if (ret_val)
2237			goto release;
2238
2239	} else {
2240		/* Link stall fix for link down */
2241		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2242		if (ret_val)
2243			goto release;
2244	}
2245
2246	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2247
2248release:
2249	hw->phy.ops.release(hw);
2250
2251	return ret_val;
2252}
2253
2254/**
2255 *  e1000_configure_k1_ich8lan - Configure K1 power state
2256 *  @hw: pointer to the HW structure
2257 *  @enable: K1 state to configure
2258 *
2259 *  Configure the K1 power state based on the provided parameter.
2260 *  Assumes semaphore already acquired.
2261 *
2262 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2263 **/
2264s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2265{
2266	s32 ret_val;
2267	u32 ctrl_reg = 0;
2268	u32 ctrl_ext = 0;
2269	u32 reg = 0;
2270	u16 kmrn_reg = 0;
2271
2272	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2273					      &kmrn_reg);
2274	if (ret_val)
2275		return ret_val;
2276
2277	if (k1_enable)
2278		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2279	else
2280		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2281
2282	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2283					       kmrn_reg);
2284	if (ret_val)
2285		return ret_val;
2286
2287	usleep_range(20, 40);
2288	ctrl_ext = er32(CTRL_EXT);
2289	ctrl_reg = er32(CTRL);
2290
2291	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2292	reg |= E1000_CTRL_FRCSPD;
2293	ew32(CTRL, reg);
2294
2295	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2296	e1e_flush();
2297	usleep_range(20, 40);
2298	ew32(CTRL, ctrl_reg);
2299	ew32(CTRL_EXT, ctrl_ext);
2300	e1e_flush();
2301	usleep_range(20, 40);
2302
2303	return 0;
2304}
2305
2306/**
2307 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2308 *  @hw:       pointer to the HW structure
2309 *  @d0_state: boolean if entering d0 or d3 device state
2310 *
2311 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2312 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2313 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2314 **/
2315static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2316{
2317	s32 ret_val = 0;
2318	u32 mac_reg;
2319	u16 oem_reg;
2320
2321	if (hw->mac.type < e1000_pchlan)
2322		return ret_val;
2323
2324	ret_val = hw->phy.ops.acquire(hw);
2325	if (ret_val)
2326		return ret_val;
2327
2328	if (hw->mac.type == e1000_pchlan) {
2329		mac_reg = er32(EXTCNF_CTRL);
2330		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2331			goto release;
2332	}
2333
2334	mac_reg = er32(FEXTNVM);
2335	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2336		goto release;
2337
2338	mac_reg = er32(PHY_CTRL);
2339
2340	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2341	if (ret_val)
2342		goto release;
2343
2344	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2345
2346	if (d0_state) {
2347		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2348			oem_reg |= HV_OEM_BITS_GBE_DIS;
2349
2350		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2351			oem_reg |= HV_OEM_BITS_LPLU;
2352	} else {
2353		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2354			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2355			oem_reg |= HV_OEM_BITS_GBE_DIS;
2356
2357		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2358			       E1000_PHY_CTRL_NOND0A_LPLU))
2359			oem_reg |= HV_OEM_BITS_LPLU;
2360	}
2361
2362	/* Set Restart auto-neg to activate the bits */
2363	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2364	    !hw->phy.ops.check_reset_block(hw))
2365		oem_reg |= HV_OEM_BITS_RESTART_AN;
2366
2367	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2368
2369release:
2370	hw->phy.ops.release(hw);
2371
2372	return ret_val;
2373}
2374
2375/**
2376 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2377 *  @hw:   pointer to the HW structure
2378 **/
2379static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2380{
2381	s32 ret_val;
2382	u16 data;
2383
2384	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2385	if (ret_val)
2386		return ret_val;
2387
2388	data |= HV_KMRN_MDIO_SLOW;
2389
2390	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2391
2392	return ret_val;
2393}
2394
2395/**
2396 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2397 *  done after every PHY reset.
2398 **/
2399static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2400{
2401	s32 ret_val = 0;
2402	u16 phy_data;
2403
2404	if (hw->mac.type != e1000_pchlan)
2405		return 0;
2406
2407	/* Set MDIO slow mode before any other MDIO access */
2408	if (hw->phy.type == e1000_phy_82577) {
2409		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2410		if (ret_val)
2411			return ret_val;
2412	}
2413
2414	if (((hw->phy.type == e1000_phy_82577) &&
2415	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2416	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2417		/* Disable generation of early preamble */
2418		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2419		if (ret_val)
2420			return ret_val;
2421
2422		/* Preamble tuning for SSC */
2423		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2424		if (ret_val)
2425			return ret_val;
2426	}
2427
2428	if (hw->phy.type == e1000_phy_82578) {
2429		/* Return registers to default by doing a soft reset then
2430		 * writing 0x3140 to the control register.
2431		 */
2432		if (hw->phy.revision < 2) {
2433			e1000e_phy_sw_reset(hw);
2434			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2435			if (ret_val)
2436				return ret_val;
2437		}
2438	}
2439
2440	/* Select page 0 */
2441	ret_val = hw->phy.ops.acquire(hw);
2442	if (ret_val)
2443		return ret_val;
2444
2445	hw->phy.addr = 1;
2446	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2447	hw->phy.ops.release(hw);
2448	if (ret_val)
2449		return ret_val;
2450
2451	/* Configure the K1 Si workaround during phy reset assuming there is
2452	 * link so that it disables K1 if link is in 1Gbps.
2453	 */
2454	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2455	if (ret_val)
2456		return ret_val;
2457
2458	/* Workaround for link disconnects on a busy hub in half duplex */
2459	ret_val = hw->phy.ops.acquire(hw);
2460	if (ret_val)
2461		return ret_val;
2462	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2463	if (ret_val)
2464		goto release;
2465	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2466	if (ret_val)
2467		goto release;
2468
2469	/* set MSE higher to enable link to stay up when noise is high */
2470	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2471release:
2472	hw->phy.ops.release(hw);
2473
2474	return ret_val;
2475}
2476
2477/**
2478 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2479 *  @hw:   pointer to the HW structure
2480 **/
2481void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2482{
2483	u32 mac_reg;
2484	u16 i, phy_reg = 0;
2485	s32 ret_val;
2486
2487	ret_val = hw->phy.ops.acquire(hw);
2488	if (ret_val)
2489		return;
2490	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2491	if (ret_val)
2492		goto release;
2493
2494	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2495	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2496		mac_reg = er32(RAL(i));
2497		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2498					   (u16)(mac_reg & 0xFFFF));
2499		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2500					   (u16)((mac_reg >> 16) & 0xFFFF));
2501
2502		mac_reg = er32(RAH(i));
2503		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2504					   (u16)(mac_reg & 0xFFFF));
2505		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2506					   (u16)((mac_reg & E1000_RAH_AV)
2507						 >> 16));
2508	}
2509
2510	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2511
2512release:
2513	hw->phy.ops.release(hw);
2514}
2515
2516/**
2517 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2518 *  with 82579 PHY
2519 *  @hw: pointer to the HW structure
2520 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2521 **/
2522s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2523{
2524	s32 ret_val = 0;
2525	u16 phy_reg, data;
2526	u32 mac_reg;
2527	u16 i;
2528
2529	if (hw->mac.type < e1000_pch2lan)
2530		return 0;
2531
2532	/* disable Rx path while enabling/disabling workaround */
2533	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2534	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2535	if (ret_val)
2536		return ret_val;
2537
2538	if (enable) {
2539		/* Write Rx addresses (rar_entry_count for RAL/H, and
2540		 * SHRAL/H) and initial CRC values to the MAC
2541		 */
2542		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2543			u8 mac_addr[ETH_ALEN] = { 0 };
2544			u32 addr_high, addr_low;
2545
2546			addr_high = er32(RAH(i));
2547			if (!(addr_high & E1000_RAH_AV))
2548				continue;
2549			addr_low = er32(RAL(i));
2550			mac_addr[0] = (addr_low & 0xFF);
2551			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2552			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2553			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2554			mac_addr[4] = (addr_high & 0xFF);
2555			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2556
2557			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2558		}
2559
2560		/* Write Rx addresses to the PHY */
2561		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2562
2563		/* Enable jumbo frame workaround in the MAC */
2564		mac_reg = er32(FFLT_DBG);
2565		mac_reg &= ~BIT(14);
2566		mac_reg |= (7 << 15);
2567		ew32(FFLT_DBG, mac_reg);
2568
2569		mac_reg = er32(RCTL);
2570		mac_reg |= E1000_RCTL_SECRC;
2571		ew32(RCTL, mac_reg);
2572
2573		ret_val = e1000e_read_kmrn_reg(hw,
2574					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2575					       &data);
2576		if (ret_val)
2577			return ret_val;
2578		ret_val = e1000e_write_kmrn_reg(hw,
2579						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2580						data | BIT(0));
2581		if (ret_val)
2582			return ret_val;
2583		ret_val = e1000e_read_kmrn_reg(hw,
2584					       E1000_KMRNCTRLSTA_HD_CTRL,
2585					       &data);
2586		if (ret_val)
2587			return ret_val;
2588		data &= ~(0xF << 8);
2589		data |= (0xB << 8);
2590		ret_val = e1000e_write_kmrn_reg(hw,
2591						E1000_KMRNCTRLSTA_HD_CTRL,
2592						data);
2593		if (ret_val)
2594			return ret_val;
2595
2596		/* Enable jumbo frame workaround in the PHY */
2597		e1e_rphy(hw, PHY_REG(769, 23), &data);
2598		data &= ~(0x7F << 5);
2599		data |= (0x37 << 5);
2600		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2601		if (ret_val)
2602			return ret_val;
2603		e1e_rphy(hw, PHY_REG(769, 16), &data);
2604		data &= ~BIT(13);
2605		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2606		if (ret_val)
2607			return ret_val;
2608		e1e_rphy(hw, PHY_REG(776, 20), &data);
2609		data &= ~(0x3FF << 2);
2610		data |= (E1000_TX_PTR_GAP << 2);
2611		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2612		if (ret_val)
2613			return ret_val;
2614		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2615		if (ret_val)
2616			return ret_val;
2617		e1e_rphy(hw, HV_PM_CTRL, &data);
2618		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2619		if (ret_val)
2620			return ret_val;
2621	} else {
2622		/* Write MAC register values back to h/w defaults */
2623		mac_reg = er32(FFLT_DBG);
2624		mac_reg &= ~(0xF << 14);
2625		ew32(FFLT_DBG, mac_reg);
2626
2627		mac_reg = er32(RCTL);
2628		mac_reg &= ~E1000_RCTL_SECRC;
2629		ew32(RCTL, mac_reg);
2630
2631		ret_val = e1000e_read_kmrn_reg(hw,
2632					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2633					       &data);
2634		if (ret_val)
2635			return ret_val;
2636		ret_val = e1000e_write_kmrn_reg(hw,
2637						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638						data & ~BIT(0));
2639		if (ret_val)
2640			return ret_val;
2641		ret_val = e1000e_read_kmrn_reg(hw,
2642					       E1000_KMRNCTRLSTA_HD_CTRL,
2643					       &data);
2644		if (ret_val)
2645			return ret_val;
2646		data &= ~(0xF << 8);
2647		data |= (0xB << 8);
2648		ret_val = e1000e_write_kmrn_reg(hw,
2649						E1000_KMRNCTRLSTA_HD_CTRL,
2650						data);
2651		if (ret_val)
2652			return ret_val;
2653
2654		/* Write PHY register values back to h/w defaults */
2655		e1e_rphy(hw, PHY_REG(769, 23), &data);
2656		data &= ~(0x7F << 5);
2657		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2658		if (ret_val)
2659			return ret_val;
2660		e1e_rphy(hw, PHY_REG(769, 16), &data);
2661		data |= BIT(13);
2662		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2663		if (ret_val)
2664			return ret_val;
2665		e1e_rphy(hw, PHY_REG(776, 20), &data);
2666		data &= ~(0x3FF << 2);
2667		data |= (0x8 << 2);
2668		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2669		if (ret_val)
2670			return ret_val;
2671		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2672		if (ret_val)
2673			return ret_val;
2674		e1e_rphy(hw, HV_PM_CTRL, &data);
2675		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2676		if (ret_val)
2677			return ret_val;
2678	}
2679
2680	/* re-enable Rx path after enabling/disabling workaround */
2681	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2682}
2683
2684/**
2685 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2686 *  done after every PHY reset.
2687 **/
2688static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2689{
2690	s32 ret_val = 0;
2691
2692	if (hw->mac.type != e1000_pch2lan)
2693		return 0;
2694
2695	/* Set MDIO slow mode before any other MDIO access */
2696	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2697	if (ret_val)
2698		return ret_val;
2699
2700	ret_val = hw->phy.ops.acquire(hw);
2701	if (ret_val)
2702		return ret_val;
2703	/* set MSE higher to enable link to stay up when noise is high */
2704	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2705	if (ret_val)
2706		goto release;
2707	/* drop link after 5 times MSE threshold was reached */
2708	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2709release:
2710	hw->phy.ops.release(hw);
2711
2712	return ret_val;
2713}
2714
2715/**
2716 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2717 *  @hw:   pointer to the HW structure
2718 *
2719 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2720 *  Disable K1 in 1000Mbps and 100Mbps
2721 **/
2722static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2723{
2724	s32 ret_val = 0;
2725	u16 status_reg = 0;
2726
2727	if (hw->mac.type != e1000_pch2lan)
2728		return 0;
2729
2730	/* Set K1 beacon duration based on 10Mbs speed */
2731	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2732	if (ret_val)
2733		return ret_val;
2734
2735	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2736	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2737		if (status_reg &
2738		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2739			u16 pm_phy_reg;
2740
2741			/* LV 1G/100 Packet drop issue wa  */
2742			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2743			if (ret_val)
2744				return ret_val;
2745			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2746			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2747			if (ret_val)
2748				return ret_val;
2749		} else {
2750			u32 mac_reg;
2751
2752			mac_reg = er32(FEXTNVM4);
2753			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2754			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2755			ew32(FEXTNVM4, mac_reg);
2756		}
2757	}
2758
2759	return ret_val;
2760}
2761
2762/**
2763 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2764 *  @hw:   pointer to the HW structure
2765 *  @gate: boolean set to true to gate, false to ungate
2766 *
2767 *  Gate/ungate the automatic PHY configuration via hardware; perform
2768 *  the configuration via software instead.
2769 **/
2770static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2771{
2772	u32 extcnf_ctrl;
2773
2774	if (hw->mac.type < e1000_pch2lan)
2775		return;
2776
2777	extcnf_ctrl = er32(EXTCNF_CTRL);
2778
2779	if (gate)
2780		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2781	else
2782		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2783
2784	ew32(EXTCNF_CTRL, extcnf_ctrl);
2785}
2786
2787/**
2788 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2789 *  @hw: pointer to the HW structure
2790 *
2791 *  Check the appropriate indication the MAC has finished configuring the
2792 *  PHY after a software reset.
2793 **/
2794static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2795{
2796	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2797
2798	/* Wait for basic configuration completes before proceeding */
2799	do {
2800		data = er32(STATUS);
2801		data &= E1000_STATUS_LAN_INIT_DONE;
2802		usleep_range(100, 200);
2803	} while ((!data) && --loop);
2804
2805	/* If basic configuration is incomplete before the above loop
2806	 * count reaches 0, loading the configuration from NVM will
2807	 * leave the PHY in a bad state possibly resulting in no link.
2808	 */
2809	if (loop == 0)
2810		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2811
2812	/* Clear the Init Done bit for the next init event */
2813	data = er32(STATUS);
2814	data &= ~E1000_STATUS_LAN_INIT_DONE;
2815	ew32(STATUS, data);
2816}
2817
2818/**
2819 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2820 *  @hw: pointer to the HW structure
2821 **/
2822static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2823{
2824	s32 ret_val = 0;
2825	u16 reg;
2826
2827	if (hw->phy.ops.check_reset_block(hw))
2828		return 0;
2829
2830	/* Allow time for h/w to get to quiescent state after reset */
2831	usleep_range(10000, 11000);
2832
2833	/* Perform any necessary post-reset workarounds */
2834	switch (hw->mac.type) {
2835	case e1000_pchlan:
2836		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2837		if (ret_val)
2838			return ret_val;
2839		break;
2840	case e1000_pch2lan:
2841		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2842		if (ret_val)
2843			return ret_val;
2844		break;
2845	default:
2846		break;
2847	}
2848
2849	/* Clear the host wakeup bit after lcd reset */
2850	if (hw->mac.type >= e1000_pchlan) {
2851		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2852		reg &= ~BM_WUC_HOST_WU_BIT;
2853		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2854	}
2855
2856	/* Configure the LCD with the extended configuration region in NVM */
2857	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2858	if (ret_val)
2859		return ret_val;
2860
2861	/* Configure the LCD with the OEM bits in NVM */
2862	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2863
2864	if (hw->mac.type == e1000_pch2lan) {
2865		/* Ungate automatic PHY configuration on non-managed 82579 */
2866		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2867			usleep_range(10000, 11000);
2868			e1000_gate_hw_phy_config_ich8lan(hw, false);
2869		}
2870
2871		/* Set EEE LPI Update Timer to 200usec */
2872		ret_val = hw->phy.ops.acquire(hw);
2873		if (ret_val)
2874			return ret_val;
2875		ret_val = e1000_write_emi_reg_locked(hw,
2876						     I82579_LPI_UPDATE_TIMER,
2877						     0x1387);
2878		hw->phy.ops.release(hw);
2879	}
2880
2881	return ret_val;
2882}
2883
2884/**
2885 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2886 *  @hw: pointer to the HW structure
2887 *
2888 *  Resets the PHY
2889 *  This is a function pointer entry point called by drivers
2890 *  or other shared routines.
2891 **/
2892static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2893{
2894	s32 ret_val = 0;
2895
2896	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2897	if ((hw->mac.type == e1000_pch2lan) &&
2898	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2899		e1000_gate_hw_phy_config_ich8lan(hw, true);
2900
2901	ret_val = e1000e_phy_hw_reset_generic(hw);
2902	if (ret_val)
2903		return ret_val;
2904
2905	return e1000_post_phy_reset_ich8lan(hw);
2906}
2907
2908/**
2909 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2910 *  @hw: pointer to the HW structure
2911 *  @active: true to enable LPLU, false to disable
2912 *
2913 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2914 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2915 *  the phy speed. This function will manually set the LPLU bit and restart
2916 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2917 *  since it configures the same bit.
2918 **/
2919static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2920{
2921	s32 ret_val;
2922	u16 oem_reg;
2923
2924	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2925	if (ret_val)
2926		return ret_val;
2927
2928	if (active)
2929		oem_reg |= HV_OEM_BITS_LPLU;
2930	else
2931		oem_reg &= ~HV_OEM_BITS_LPLU;
2932
2933	if (!hw->phy.ops.check_reset_block(hw))
2934		oem_reg |= HV_OEM_BITS_RESTART_AN;
2935
2936	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2937}
2938
2939/**
2940 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2941 *  @hw: pointer to the HW structure
2942 *  @active: true to enable LPLU, false to disable
2943 *
2944 *  Sets the LPLU D0 state according to the active flag.  When
2945 *  activating LPLU this function also disables smart speed
2946 *  and vice versa.  LPLU will not be activated unless the
2947 *  device autonegotiation advertisement meets standards of
2948 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2949 *  This is a function pointer entry point only called by
2950 *  PHY setup routines.
2951 **/
2952static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2953{
2954	struct e1000_phy_info *phy = &hw->phy;
2955	u32 phy_ctrl;
2956	s32 ret_val = 0;
2957	u16 data;
2958
2959	if (phy->type == e1000_phy_ife)
2960		return 0;
2961
2962	phy_ctrl = er32(PHY_CTRL);
2963
2964	if (active) {
2965		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2966		ew32(PHY_CTRL, phy_ctrl);
2967
2968		if (phy->type != e1000_phy_igp_3)
2969			return 0;
2970
2971		/* Call gig speed drop workaround on LPLU before accessing
2972		 * any PHY registers
2973		 */
2974		if (hw->mac.type == e1000_ich8lan)
2975			e1000e_gig_downshift_workaround_ich8lan(hw);
2976
2977		/* When LPLU is enabled, we should disable SmartSpeed */
2978		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2979		if (ret_val)
2980			return ret_val;
2981		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2982		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2983		if (ret_val)
2984			return ret_val;
2985	} else {
2986		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2987		ew32(PHY_CTRL, phy_ctrl);
2988
2989		if (phy->type != e1000_phy_igp_3)
2990			return 0;
2991
2992		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2993		 * during Dx states where the power conservation is most
2994		 * important.  During driver activity we should enable
2995		 * SmartSpeed, so performance is maintained.
2996		 */
2997		if (phy->smart_speed == e1000_smart_speed_on) {
2998			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2999					   &data);
3000			if (ret_val)
3001				return ret_val;
3002
3003			data |= IGP01E1000_PSCFR_SMART_SPEED;
3004			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3005					   data);
3006			if (ret_val)
3007				return ret_val;
3008		} else if (phy->smart_speed == e1000_smart_speed_off) {
3009			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3010					   &data);
3011			if (ret_val)
3012				return ret_val;
3013
3014			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3015			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3016					   data);
3017			if (ret_val)
3018				return ret_val;
3019		}
3020	}
3021
3022	return 0;
3023}
3024
3025/**
3026 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3027 *  @hw: pointer to the HW structure
3028 *  @active: true to enable LPLU, false to disable
3029 *
3030 *  Sets the LPLU D3 state according to the active flag.  When
3031 *  activating LPLU this function also disables smart speed
3032 *  and vice versa.  LPLU will not be activated unless the
3033 *  device autonegotiation advertisement meets standards of
3034 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3035 *  This is a function pointer entry point only called by
3036 *  PHY setup routines.
3037 **/
3038static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3039{
3040	struct e1000_phy_info *phy = &hw->phy;
3041	u32 phy_ctrl;
3042	s32 ret_val = 0;
3043	u16 data;
3044
3045	phy_ctrl = er32(PHY_CTRL);
3046
3047	if (!active) {
3048		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3049		ew32(PHY_CTRL, phy_ctrl);
3050
3051		if (phy->type != e1000_phy_igp_3)
3052			return 0;
3053
3054		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3055		 * during Dx states where the power conservation is most
3056		 * important.  During driver activity we should enable
3057		 * SmartSpeed, so performance is maintained.
3058		 */
3059		if (phy->smart_speed == e1000_smart_speed_on) {
3060			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3061					   &data);
3062			if (ret_val)
3063				return ret_val;
3064
3065			data |= IGP01E1000_PSCFR_SMART_SPEED;
3066			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067					   data);
3068			if (ret_val)
3069				return ret_val;
3070		} else if (phy->smart_speed == e1000_smart_speed_off) {
3071			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3072					   &data);
3073			if (ret_val)
3074				return ret_val;
3075
3076			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3077			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3078					   data);
3079			if (ret_val)
3080				return ret_val;
3081		}
3082	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3083		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3084		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3085		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3086		ew32(PHY_CTRL, phy_ctrl);
3087
3088		if (phy->type != e1000_phy_igp_3)
3089			return 0;
3090
3091		/* Call gig speed drop workaround on LPLU before accessing
3092		 * any PHY registers
3093		 */
3094		if (hw->mac.type == e1000_ich8lan)
3095			e1000e_gig_downshift_workaround_ich8lan(hw);
3096
3097		/* When LPLU is enabled, we should disable SmartSpeed */
3098		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3099		if (ret_val)
3100			return ret_val;
3101
3102		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3103		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3104	}
3105
3106	return ret_val;
3107}
3108
3109/**
3110 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3111 *  @hw: pointer to the HW structure
3112 *  @bank:  pointer to the variable that returns the active bank
3113 *
3114 *  Reads signature byte from the NVM using the flash access registers.
3115 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3116 **/
3117static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3118{
3119	u32 eecd;
3120	struct e1000_nvm_info *nvm = &hw->nvm;
3121	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3122	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3123	u32 nvm_dword = 0;
3124	u8 sig_byte = 0;
3125	s32 ret_val;
3126
3127	switch (hw->mac.type) {
3128	case e1000_pch_spt:
3129	case e1000_pch_cnp:
3130		bank1_offset = nvm->flash_bank_size;
3131		act_offset = E1000_ICH_NVM_SIG_WORD;
3132
3133		/* set bank to 0 in case flash read fails */
3134		*bank = 0;
3135
3136		/* Check bank 0 */
3137		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3138							 &nvm_dword);
3139		if (ret_val)
3140			return ret_val;
3141		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3142		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3143		    E1000_ICH_NVM_SIG_VALUE) {
3144			*bank = 0;
3145			return 0;
3146		}
3147
3148		/* Check bank 1 */
3149		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3150							 bank1_offset,
3151							 &nvm_dword);
3152		if (ret_val)
3153			return ret_val;
3154		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3155		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3156		    E1000_ICH_NVM_SIG_VALUE) {
3157			*bank = 1;
3158			return 0;
3159		}
3160
3161		e_dbg("ERROR: No valid NVM bank present\n");
3162		return -E1000_ERR_NVM;
3163	case e1000_ich8lan:
3164	case e1000_ich9lan:
3165		eecd = er32(EECD);
3166		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3167		    E1000_EECD_SEC1VAL_VALID_MASK) {
3168			if (eecd & E1000_EECD_SEC1VAL)
3169				*bank = 1;
3170			else
3171				*bank = 0;
3172
3173			return 0;
3174		}
3175		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3176		/* fall-thru */
3177	default:
3178		/* set bank to 0 in case flash read fails */
3179		*bank = 0;
3180
3181		/* Check bank 0 */
3182		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3183							&sig_byte);
3184		if (ret_val)
3185			return ret_val;
3186		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3187		    E1000_ICH_NVM_SIG_VALUE) {
3188			*bank = 0;
3189			return 0;
3190		}
3191
3192		/* Check bank 1 */
3193		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3194							bank1_offset,
3195							&sig_byte);
3196		if (ret_val)
3197			return ret_val;
3198		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3199		    E1000_ICH_NVM_SIG_VALUE) {
3200			*bank = 1;
3201			return 0;
3202		}
3203
3204		e_dbg("ERROR: No valid NVM bank present\n");
3205		return -E1000_ERR_NVM;
3206	}
3207}
3208
3209/**
3210 *  e1000_read_nvm_spt - NVM access for SPT
3211 *  @hw: pointer to the HW structure
3212 *  @offset: The offset (in bytes) of the word(s) to read.
3213 *  @words: Size of data to read in words.
3214 *  @data: pointer to the word(s) to read at offset.
3215 *
3216 *  Reads a word(s) from the NVM
3217 **/
3218static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3219			      u16 *data)
3220{
3221	struct e1000_nvm_info *nvm = &hw->nvm;
3222	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3223	u32 act_offset;
3224	s32 ret_val = 0;
3225	u32 bank = 0;
3226	u32 dword = 0;
3227	u16 offset_to_read;
3228	u16 i;
3229
3230	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3231	    (words == 0)) {
3232		e_dbg("nvm parameter(s) out of bounds\n");
3233		ret_val = -E1000_ERR_NVM;
3234		goto out;
3235	}
3236
3237	nvm->ops.acquire(hw);
3238
3239	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3240	if (ret_val) {
3241		e_dbg("Could not detect valid bank, assuming bank 0\n");
3242		bank = 0;
3243	}
3244
3245	act_offset = (bank) ? nvm->flash_bank_size : 0;
3246	act_offset += offset;
3247
3248	ret_val = 0;
3249
3250	for (i = 0; i < words; i += 2) {
3251		if (words - i == 1) {
3252			if (dev_spec->shadow_ram[offset + i].modified) {
3253				data[i] =
3254				    dev_spec->shadow_ram[offset + i].value;
3255			} else {
3256				offset_to_read = act_offset + i -
3257				    ((act_offset + i) % 2);
3258				ret_val =
3259				  e1000_read_flash_dword_ich8lan(hw,
3260								 offset_to_read,
3261								 &dword);
3262				if (ret_val)
3263					break;
3264				if ((act_offset + i) % 2 == 0)
3265					data[i] = (u16)(dword & 0xFFFF);
3266				else
3267					data[i] = (u16)((dword >> 16) & 0xFFFF);
3268			}
3269		} else {
3270			offset_to_read = act_offset + i;
3271			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3272			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3273				ret_val =
3274				  e1000_read_flash_dword_ich8lan(hw,
3275								 offset_to_read,
3276								 &dword);
3277				if (ret_val)
3278					break;
3279			}
3280			if (dev_spec->shadow_ram[offset + i].modified)
3281				data[i] =
3282				    dev_spec->shadow_ram[offset + i].value;
3283			else
3284				data[i] = (u16)(dword & 0xFFFF);
3285			if (dev_spec->shadow_ram[offset + i].modified)
3286				data[i + 1] =
3287				    dev_spec->shadow_ram[offset + i + 1].value;
3288			else
3289				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3290		}
3291	}
3292
3293	nvm->ops.release(hw);
3294
3295out:
3296	if (ret_val)
3297		e_dbg("NVM read error: %d\n", ret_val);
3298
3299	return ret_val;
3300}
3301
3302/**
3303 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3304 *  @hw: pointer to the HW structure
3305 *  @offset: The offset (in bytes) of the word(s) to read.
3306 *  @words: Size of data to read in words
3307 *  @data: Pointer to the word(s) to read at offset.
3308 *
3309 *  Reads a word(s) from the NVM using the flash access registers.
3310 **/
3311static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3312				  u16 *data)
3313{
3314	struct e1000_nvm_info *nvm = &hw->nvm;
3315	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3316	u32 act_offset;
3317	s32 ret_val = 0;
3318	u32 bank = 0;
3319	u16 i, word;
3320
3321	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3322	    (words == 0)) {
3323		e_dbg("nvm parameter(s) out of bounds\n");
3324		ret_val = -E1000_ERR_NVM;
3325		goto out;
3326	}
3327
3328	nvm->ops.acquire(hw);
3329
3330	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3331	if (ret_val) {
3332		e_dbg("Could not detect valid bank, assuming bank 0\n");
3333		bank = 0;
3334	}
3335
3336	act_offset = (bank) ? nvm->flash_bank_size : 0;
3337	act_offset += offset;
3338
3339	ret_val = 0;
3340	for (i = 0; i < words; i++) {
3341		if (dev_spec->shadow_ram[offset + i].modified) {
3342			data[i] = dev_spec->shadow_ram[offset + i].value;
3343		} else {
3344			ret_val = e1000_read_flash_word_ich8lan(hw,
3345								act_offset + i,
3346								&word);
3347			if (ret_val)
3348				break;
3349			data[i] = word;
3350		}
3351	}
3352
3353	nvm->ops.release(hw);
3354
3355out:
3356	if (ret_val)
3357		e_dbg("NVM read error: %d\n", ret_val);
3358
3359	return ret_val;
3360}
3361
3362/**
3363 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3364 *  @hw: pointer to the HW structure
3365 *
3366 *  This function does initial flash setup so that a new read/write/erase cycle
3367 *  can be started.
3368 **/
3369static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3370{
3371	union ich8_hws_flash_status hsfsts;
3372	s32 ret_val = -E1000_ERR_NVM;
3373
3374	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3375
3376	/* Check if the flash descriptor is valid */
3377	if (!hsfsts.hsf_status.fldesvalid) {
3378		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3379		return -E1000_ERR_NVM;
3380	}
3381
3382	/* Clear FCERR and DAEL in hw status by writing 1 */
3383	hsfsts.hsf_status.flcerr = 1;
3384	hsfsts.hsf_status.dael = 1;
3385	if (hw->mac.type >= e1000_pch_spt)
3386		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3387	else
3388		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3389
3390	/* Either we should have a hardware SPI cycle in progress
3391	 * bit to check against, in order to start a new cycle or
3392	 * FDONE bit should be changed in the hardware so that it
3393	 * is 1 after hardware reset, which can then be used as an
3394	 * indication whether a cycle is in progress or has been
3395	 * completed.
3396	 */
3397
3398	if (!hsfsts.hsf_status.flcinprog) {
3399		/* There is no cycle running at present,
3400		 * so we can start a cycle.
3401		 * Begin by setting Flash Cycle Done.
3402		 */
3403		hsfsts.hsf_status.flcdone = 1;
3404		if (hw->mac.type >= e1000_pch_spt)
3405			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3406		else
3407			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3408		ret_val = 0;
3409	} else {
3410		s32 i;
3411
3412		/* Otherwise poll for sometime so the current
3413		 * cycle has a chance to end before giving up.
3414		 */
3415		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3416			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3417			if (!hsfsts.hsf_status.flcinprog) {
3418				ret_val = 0;
3419				break;
3420			}
3421			udelay(1);
3422		}
3423		if (!ret_val) {
3424			/* Successful in waiting for previous cycle to timeout,
3425			 * now set the Flash Cycle Done.
3426			 */
3427			hsfsts.hsf_status.flcdone = 1;
3428			if (hw->mac.type >= e1000_pch_spt)
3429				ew32flash(ICH_FLASH_HSFSTS,
3430					  hsfsts.regval & 0xFFFF);
3431			else
3432				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3433		} else {
3434			e_dbg("Flash controller busy, cannot get access\n");
3435		}
3436	}
3437
3438	return ret_val;
3439}
3440
3441/**
3442 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3443 *  @hw: pointer to the HW structure
3444 *  @timeout: maximum time to wait for completion
3445 *
3446 *  This function starts a flash cycle and waits for its completion.
3447 **/
3448static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3449{
3450	union ich8_hws_flash_ctrl hsflctl;
3451	union ich8_hws_flash_status hsfsts;
3452	u32 i = 0;
3453
3454	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3455	if (hw->mac.type >= e1000_pch_spt)
3456		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3457	else
3458		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3459	hsflctl.hsf_ctrl.flcgo = 1;
3460
3461	if (hw->mac.type >= e1000_pch_spt)
3462		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3463	else
3464		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3465
3466	/* wait till FDONE bit is set to 1 */
3467	do {
3468		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3469		if (hsfsts.hsf_status.flcdone)
3470			break;
3471		udelay(1);
3472	} while (i++ < timeout);
3473
3474	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3475		return 0;
3476
3477	return -E1000_ERR_NVM;
3478}
3479
3480/**
3481 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3482 *  @hw: pointer to the HW structure
3483 *  @offset: offset to data location
3484 *  @data: pointer to the location for storing the data
3485 *
3486 *  Reads the flash dword at offset into data.  Offset is converted
3487 *  to bytes before read.
3488 **/
3489static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3490					  u32 *data)
3491{
3492	/* Must convert word offset into bytes. */
3493	offset <<= 1;
3494	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3495}
3496
3497/**
3498 *  e1000_read_flash_word_ich8lan - Read word from flash
3499 *  @hw: pointer to the HW structure
3500 *  @offset: offset to data location
3501 *  @data: pointer to the location for storing the data
3502 *
3503 *  Reads the flash word at offset into data.  Offset is converted
3504 *  to bytes before read.
3505 **/
3506static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3507					 u16 *data)
3508{
3509	/* Must convert offset into bytes. */
3510	offset <<= 1;
3511
3512	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3513}
3514
3515/**
3516 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3517 *  @hw: pointer to the HW structure
3518 *  @offset: The offset of the byte to read.
3519 *  @data: Pointer to a byte to store the value read.
3520 *
3521 *  Reads a single byte from the NVM using the flash access registers.
3522 **/
3523static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3524					 u8 *data)
3525{
3526	s32 ret_val;
3527	u16 word = 0;
3528
3529	/* In SPT, only 32 bits access is supported,
3530	 * so this function should not be called.
3531	 */
3532	if (hw->mac.type >= e1000_pch_spt)
3533		return -E1000_ERR_NVM;
3534	else
3535		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3536
3537	if (ret_val)
3538		return ret_val;
3539
3540	*data = (u8)word;
3541
3542	return 0;
3543}
3544
3545/**
3546 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3547 *  @hw: pointer to the HW structure
3548 *  @offset: The offset (in bytes) of the byte or word to read.
3549 *  @size: Size of data to read, 1=byte 2=word
3550 *  @data: Pointer to the word to store the value read.
3551 *
3552 *  Reads a byte or word from the NVM using the flash access registers.
3553 **/
3554static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3555					 u8 size, u16 *data)
3556{
3557	union ich8_hws_flash_status hsfsts;
3558	union ich8_hws_flash_ctrl hsflctl;
3559	u32 flash_linear_addr;
3560	u32 flash_data = 0;
3561	s32 ret_val = -E1000_ERR_NVM;
3562	u8 count = 0;
3563
3564	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3565		return -E1000_ERR_NVM;
3566
3567	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3568			     hw->nvm.flash_base_addr);
3569
3570	do {
3571		udelay(1);
3572		/* Steps */
3573		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3574		if (ret_val)
3575			break;
3576
3577		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3578		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3579		hsflctl.hsf_ctrl.fldbcount = size - 1;
3580		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3581		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3582
3583		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3584
3585		ret_val =
3586		    e1000_flash_cycle_ich8lan(hw,
3587					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3588
3589		/* Check if FCERR is set to 1, if set to 1, clear it
3590		 * and try the whole sequence a few more times, else
3591		 * read in (shift in) the Flash Data0, the order is
3592		 * least significant byte first msb to lsb
3593		 */
3594		if (!ret_val) {
3595			flash_data = er32flash(ICH_FLASH_FDATA0);
3596			if (size == 1)
3597				*data = (u8)(flash_data & 0x000000FF);
3598			else if (size == 2)
3599				*data = (u16)(flash_data & 0x0000FFFF);
3600			break;
3601		} else {
3602			/* If we've gotten here, then things are probably
3603			 * completely hosed, but if the error condition is
3604			 * detected, it won't hurt to give it another try...
3605			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3606			 */
3607			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3608			if (hsfsts.hsf_status.flcerr) {
3609				/* Repeat for some time before giving up. */
3610				continue;
3611			} else if (!hsfsts.hsf_status.flcdone) {
3612				e_dbg("Timeout error - flash cycle did not complete.\n");
3613				break;
3614			}
3615		}
3616	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3617
3618	return ret_val;
3619}
3620
3621/**
3622 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3623 *  @hw: pointer to the HW structure
3624 *  @offset: The offset (in bytes) of the dword to read.
3625 *  @data: Pointer to the dword to store the value read.
3626 *
3627 *  Reads a byte or word from the NVM using the flash access registers.
3628 **/
3629
3630static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3631					   u32 *data)
3632{
3633	union ich8_hws_flash_status hsfsts;
3634	union ich8_hws_flash_ctrl hsflctl;
3635	u32 flash_linear_addr;
3636	s32 ret_val = -E1000_ERR_NVM;
3637	u8 count = 0;
3638
3639	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3640		return -E1000_ERR_NVM;
3641	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3642			     hw->nvm.flash_base_addr);
3643
3644	do {
3645		udelay(1);
3646		/* Steps */
3647		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3648		if (ret_val)
3649			break;
3650		/* In SPT, This register is in Lan memory space, not flash.
3651		 * Therefore, only 32 bit access is supported
3652		 */
3653		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3654
3655		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3656		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3657		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3658		/* In SPT, This register is in Lan memory space, not flash.
3659		 * Therefore, only 32 bit access is supported
3660		 */
3661		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3662		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3663
3664		ret_val =
3665		   e1000_flash_cycle_ich8lan(hw,
3666					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3667
3668		/* Check if FCERR is set to 1, if set to 1, clear it
3669		 * and try the whole sequence a few more times, else
3670		 * read in (shift in) the Flash Data0, the order is
3671		 * least significant byte first msb to lsb
3672		 */
3673		if (!ret_val) {
3674			*data = er32flash(ICH_FLASH_FDATA0);
3675			break;
3676		} else {
3677			/* If we've gotten here, then things are probably
3678			 * completely hosed, but if the error condition is
3679			 * detected, it won't hurt to give it another try...
3680			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3681			 */
3682			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3683			if (hsfsts.hsf_status.flcerr) {
3684				/* Repeat for some time before giving up. */
3685				continue;
3686			} else if (!hsfsts.hsf_status.flcdone) {
3687				e_dbg("Timeout error - flash cycle did not complete.\n");
3688				break;
3689			}
3690		}
3691	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3692
3693	return ret_val;
3694}
3695
3696/**
3697 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3698 *  @hw: pointer to the HW structure
3699 *  @offset: The offset (in bytes) of the word(s) to write.
3700 *  @words: Size of data to write in words
3701 *  @data: Pointer to the word(s) to write at offset.
3702 *
3703 *  Writes a byte or word to the NVM using the flash access registers.
3704 **/
3705static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3706				   u16 *data)
3707{
3708	struct e1000_nvm_info *nvm = &hw->nvm;
3709	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3710	u16 i;
3711
3712	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3713	    (words == 0)) {
3714		e_dbg("nvm parameter(s) out of bounds\n");
3715		return -E1000_ERR_NVM;
3716	}
3717
3718	nvm->ops.acquire(hw);
3719
3720	for (i = 0; i < words; i++) {
3721		dev_spec->shadow_ram[offset + i].modified = true;
3722		dev_spec->shadow_ram[offset + i].value = data[i];
3723	}
3724
3725	nvm->ops.release(hw);
3726
3727	return 0;
3728}
3729
3730/**
3731 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3732 *  @hw: pointer to the HW structure
3733 *
3734 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3735 *  which writes the checksum to the shadow ram.  The changes in the shadow
3736 *  ram are then committed to the EEPROM by processing each bank at a time
3737 *  checking for the modified bit and writing only the pending changes.
3738 *  After a successful commit, the shadow ram is cleared and is ready for
3739 *  future writes.
3740 **/
3741static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3742{
3743	struct e1000_nvm_info *nvm = &hw->nvm;
3744	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3745	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3746	s32 ret_val;
3747	u32 dword = 0;
3748
3749	ret_val = e1000e_update_nvm_checksum_generic(hw);
3750	if (ret_val)
3751		goto out;
3752
3753	if (nvm->type != e1000_nvm_flash_sw)
3754		goto out;
3755
3756	nvm->ops.acquire(hw);
3757
3758	/* We're writing to the opposite bank so if we're on bank 1,
3759	 * write to bank 0 etc.  We also need to erase the segment that
3760	 * is going to be written
3761	 */
3762	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3763	if (ret_val) {
3764		e_dbg("Could not detect valid bank, assuming bank 0\n");
3765		bank = 0;
3766	}
3767
3768	if (bank == 0) {
3769		new_bank_offset = nvm->flash_bank_size;
3770		old_bank_offset = 0;
3771		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3772		if (ret_val)
3773			goto release;
3774	} else {
3775		old_bank_offset = nvm->flash_bank_size;
3776		new_bank_offset = 0;
3777		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3778		if (ret_val)
3779			goto release;
3780	}
3781	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3782		/* Determine whether to write the value stored
3783		 * in the other NVM bank or a modified value stored
3784		 * in the shadow RAM
3785		 */
3786		ret_val = e1000_read_flash_dword_ich8lan(hw,
3787							 i + old_bank_offset,
3788							 &dword);
3789
3790		if (dev_spec->shadow_ram[i].modified) {
3791			dword &= 0xffff0000;
3792			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3793		}
3794		if (dev_spec->shadow_ram[i + 1].modified) {
3795			dword &= 0x0000ffff;
3796			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3797				  << 16);
3798		}
3799		if (ret_val)
3800			break;
3801
3802		/* If the word is 0x13, then make sure the signature bits
3803		 * (15:14) are 11b until the commit has completed.
3804		 * This will allow us to write 10b which indicates the
3805		 * signature is valid.  We want to do this after the write
3806		 * has completed so that we don't mark the segment valid
3807		 * while the write is still in progress
3808		 */
3809		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3810			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3811
3812		/* Convert offset to bytes. */
3813		act_offset = (i + new_bank_offset) << 1;
3814
3815		usleep_range(100, 200);
3816
3817		/* Write the data to the new bank. Offset in words */
3818		act_offset = i + new_bank_offset;
3819		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3820								dword);
3821		if (ret_val)
3822			break;
3823	}
3824
3825	/* Don't bother writing the segment valid bits if sector
3826	 * programming failed.
3827	 */
3828	if (ret_val) {
3829		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3830		e_dbg("Flash commit failed.\n");
3831		goto release;
3832	}
3833
3834	/* Finally validate the new segment by setting bit 15:14
3835	 * to 10b in word 0x13 , this can be done without an
3836	 * erase as well since these bits are 11 to start with
3837	 * and we need to change bit 14 to 0b
3838	 */
3839	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3840
3841	/*offset in words but we read dword */
3842	--act_offset;
3843	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3844
3845	if (ret_val)
3846		goto release;
3847
3848	dword &= 0xBFFFFFFF;
3849	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3850
3851	if (ret_val)
3852		goto release;
3853
3854	/* And invalidate the previously valid segment by setting
3855	 * its signature word (0x13) high_byte to 0b. This can be
3856	 * done without an erase because flash erase sets all bits
3857	 * to 1's. We can write 1's to 0's without an erase
3858	 */
3859	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3860
3861	/* offset in words but we read dword */
3862	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3863	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3864
3865	if (ret_val)
3866		goto release;
3867
3868	dword &= 0x00FFFFFF;
3869	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3870
3871	if (ret_val)
3872		goto release;
3873
3874	/* Great!  Everything worked, we can now clear the cached entries. */
3875	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3876		dev_spec->shadow_ram[i].modified = false;
3877		dev_spec->shadow_ram[i].value = 0xFFFF;
3878	}
3879
3880release:
3881	nvm->ops.release(hw);
3882
3883	/* Reload the EEPROM, or else modifications will not appear
3884	 * until after the next adapter reset.
3885	 */
3886	if (!ret_val) {
3887		nvm->ops.reload(hw);
3888		usleep_range(10000, 11000);
3889	}
3890
3891out:
3892	if (ret_val)
3893		e_dbg("NVM update error: %d\n", ret_val);
3894
3895	return ret_val;
3896}
3897
3898/**
3899 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3900 *  @hw: pointer to the HW structure
3901 *
3902 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3903 *  which writes the checksum to the shadow ram.  The changes in the shadow
3904 *  ram are then committed to the EEPROM by processing each bank at a time
3905 *  checking for the modified bit and writing only the pending changes.
3906 *  After a successful commit, the shadow ram is cleared and is ready for
3907 *  future writes.
3908 **/
3909static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3910{
3911	struct e1000_nvm_info *nvm = &hw->nvm;
3912	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3913	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3914	s32 ret_val;
3915	u16 data = 0;
3916
3917	ret_val = e1000e_update_nvm_checksum_generic(hw);
3918	if (ret_val)
3919		goto out;
3920
3921	if (nvm->type != e1000_nvm_flash_sw)
3922		goto out;
3923
3924	nvm->ops.acquire(hw);
3925
3926	/* We're writing to the opposite bank so if we're on bank 1,
3927	 * write to bank 0 etc.  We also need to erase the segment that
3928	 * is going to be written
3929	 */
3930	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3931	if (ret_val) {
3932		e_dbg("Could not detect valid bank, assuming bank 0\n");
3933		bank = 0;
3934	}
3935
3936	if (bank == 0) {
3937		new_bank_offset = nvm->flash_bank_size;
3938		old_bank_offset = 0;
3939		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3940		if (ret_val)
3941			goto release;
3942	} else {
3943		old_bank_offset = nvm->flash_bank_size;
3944		new_bank_offset = 0;
3945		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3946		if (ret_val)
3947			goto release;
3948	}
3949	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3950		if (dev_spec->shadow_ram[i].modified) {
3951			data = dev_spec->shadow_ram[i].value;
3952		} else {
3953			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3954								old_bank_offset,
3955								&data);
3956			if (ret_val)
3957				break;
3958		}
3959
3960		/* If the word is 0x13, then make sure the signature bits
3961		 * (15:14) are 11b until the commit has completed.
3962		 * This will allow us to write 10b which indicates the
3963		 * signature is valid.  We want to do this after the write
3964		 * has completed so that we don't mark the segment valid
3965		 * while the write is still in progress
3966		 */
3967		if (i == E1000_ICH_NVM_SIG_WORD)
3968			data |= E1000_ICH_NVM_SIG_MASK;
3969
3970		/* Convert offset to bytes. */
3971		act_offset = (i + new_bank_offset) << 1;
3972
3973		usleep_range(100, 200);
3974		/* Write the bytes to the new bank. */
3975		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3976							       act_offset,
3977							       (u8)data);
3978		if (ret_val)
3979			break;
3980
3981		usleep_range(100, 200);
3982		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3983							       act_offset + 1,
3984							       (u8)(data >> 8));
3985		if (ret_val)
3986			break;
3987	}
3988
3989	/* Don't bother writing the segment valid bits if sector
3990	 * programming failed.
3991	 */
3992	if (ret_val) {
3993		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3994		e_dbg("Flash commit failed.\n");
3995		goto release;
3996	}
3997
3998	/* Finally validate the new segment by setting bit 15:14
3999	 * to 10b in word 0x13 , this can be done without an
4000	 * erase as well since these bits are 11 to start with
4001	 * and we need to change bit 14 to 0b
4002	 */
4003	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4004	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4005	if (ret_val)
4006		goto release;
4007
4008	data &= 0xBFFF;
4009	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4010						       act_offset * 2 + 1,
4011						       (u8)(data >> 8));
4012	if (ret_val)
4013		goto release;
4014
4015	/* And invalidate the previously valid segment by setting
4016	 * its signature word (0x13) high_byte to 0b. This can be
4017	 * done without an erase because flash erase sets all bits
4018	 * to 1's. We can write 1's to 0's without an erase
4019	 */
4020	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4021	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4022	if (ret_val)
4023		goto release;
4024
4025	/* Great!  Everything worked, we can now clear the cached entries. */
4026	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4027		dev_spec->shadow_ram[i].modified = false;
4028		dev_spec->shadow_ram[i].value = 0xFFFF;
4029	}
4030
4031release:
4032	nvm->ops.release(hw);
4033
4034	/* Reload the EEPROM, or else modifications will not appear
4035	 * until after the next adapter reset.
4036	 */
4037	if (!ret_val) {
4038		nvm->ops.reload(hw);
4039		usleep_range(10000, 11000);
4040	}
4041
4042out:
4043	if (ret_val)
4044		e_dbg("NVM update error: %d\n", ret_val);
4045
4046	return ret_val;
4047}
4048
4049/**
4050 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4051 *  @hw: pointer to the HW structure
4052 *
4053 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4054 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4055 *  calculated, in which case we need to calculate the checksum and set bit 6.
4056 **/
4057static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4058{
4059	s32 ret_val;
4060	u16 data;
4061	u16 word;
4062	u16 valid_csum_mask;
4063
4064	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4065	 * the checksum needs to be fixed.  This bit is an indication that
4066	 * the NVM was prepared by OEM software and did not calculate
4067	 * the checksum...a likely scenario.
4068	 */
4069	switch (hw->mac.type) {
4070	case e1000_pch_lpt:
4071	case e1000_pch_spt:
4072	case e1000_pch_cnp:
4073		word = NVM_COMPAT;
4074		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4075		break;
4076	default:
4077		word = NVM_FUTURE_INIT_WORD1;
4078		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4079		break;
4080	}
4081
4082	ret_val = e1000_read_nvm(hw, word, 1, &data);
4083	if (ret_val)
4084		return ret_val;
4085
4086	if (!(data & valid_csum_mask)) {
4087		data |= valid_csum_mask;
4088		ret_val = e1000_write_nvm(hw, word, 1, &data);
4089		if (ret_val)
4090			return ret_val;
4091		ret_val = e1000e_update_nvm_checksum(hw);
4092		if (ret_val)
4093			return ret_val;
4094	}
4095
4096	return e1000e_validate_nvm_checksum_generic(hw);
4097}
4098
4099/**
4100 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4101 *  @hw: pointer to the HW structure
4102 *
4103 *  To prevent malicious write/erase of the NVM, set it to be read-only
4104 *  so that the hardware ignores all write/erase cycles of the NVM via
4105 *  the flash control registers.  The shadow-ram copy of the NVM will
4106 *  still be updated, however any updates to this copy will not stick
4107 *  across driver reloads.
4108 **/
4109void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4110{
4111	struct e1000_nvm_info *nvm = &hw->nvm;
4112	union ich8_flash_protected_range pr0;
4113	union ich8_hws_flash_status hsfsts;
4114	u32 gfpreg;
4115
4116	nvm->ops.acquire(hw);
4117
4118	gfpreg = er32flash(ICH_FLASH_GFPREG);
4119
4120	/* Write-protect GbE Sector of NVM */
4121	pr0.regval = er32flash(ICH_FLASH_PR0);
4122	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4123	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4124	pr0.range.wpe = true;
4125	ew32flash(ICH_FLASH_PR0, pr0.regval);
4126
4127	/* Lock down a subset of GbE Flash Control Registers, e.g.
4128	 * PR0 to prevent the write-protection from being lifted.
4129	 * Once FLOCKDN is set, the registers protected by it cannot
4130	 * be written until FLOCKDN is cleared by a hardware reset.
4131	 */
4132	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4133	hsfsts.hsf_status.flockdn = true;
4134	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4135
4136	nvm->ops.release(hw);
4137}
4138
4139/**
4140 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4141 *  @hw: pointer to the HW structure
4142 *  @offset: The offset (in bytes) of the byte/word to read.
4143 *  @size: Size of data to read, 1=byte 2=word
4144 *  @data: The byte(s) to write to the NVM.
4145 *
4146 *  Writes one/two bytes to the NVM using the flash access registers.
4147 **/
4148static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4149					  u8 size, u16 data)
4150{
4151	union ich8_hws_flash_status hsfsts;
4152	union ich8_hws_flash_ctrl hsflctl;
4153	u32 flash_linear_addr;
4154	u32 flash_data = 0;
4155	s32 ret_val;
4156	u8 count = 0;
4157
4158	if (hw->mac.type >= e1000_pch_spt) {
4159		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4160			return -E1000_ERR_NVM;
4161	} else {
4162		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4163			return -E1000_ERR_NVM;
4164	}
4165
4166	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4167			     hw->nvm.flash_base_addr);
4168
4169	do {
4170		udelay(1);
4171		/* Steps */
4172		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4173		if (ret_val)
4174			break;
4175		/* In SPT, This register is in Lan memory space, not
4176		 * flash.  Therefore, only 32 bit access is supported
4177		 */
4178		if (hw->mac.type >= e1000_pch_spt)
4179			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4180		else
4181			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4182
4183		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4184		hsflctl.hsf_ctrl.fldbcount = size - 1;
4185		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4186		/* In SPT, This register is in Lan memory space,
4187		 * not flash.  Therefore, only 32 bit access is
4188		 * supported
4189		 */
4190		if (hw->mac.type >= e1000_pch_spt)
4191			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4192		else
4193			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4194
4195		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4196
4197		if (size == 1)
4198			flash_data = (u32)data & 0x00FF;
4199		else
4200			flash_data = (u32)data;
4201
4202		ew32flash(ICH_FLASH_FDATA0, flash_data);
4203
4204		/* check if FCERR is set to 1 , if set to 1, clear it
4205		 * and try the whole sequence a few more times else done
4206		 */
4207		ret_val =
4208		    e1000_flash_cycle_ich8lan(hw,
4209					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4210		if (!ret_val)
4211			break;
4212
4213		/* If we're here, then things are most likely
4214		 * completely hosed, but if the error condition
4215		 * is detected, it won't hurt to give it another
4216		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4217		 */
4218		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4219		if (hsfsts.hsf_status.flcerr)
4220			/* Repeat for some time before giving up. */
4221			continue;
4222		if (!hsfsts.hsf_status.flcdone) {
4223			e_dbg("Timeout error - flash cycle did not complete.\n");
4224			break;
4225		}
4226	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4227
4228	return ret_val;
4229}
4230
4231/**
4232*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4233*  @hw: pointer to the HW structure
4234*  @offset: The offset (in bytes) of the dwords to read.
4235*  @data: The 4 bytes to write to the NVM.
4236*
4237*  Writes one/two/four bytes to the NVM using the flash access registers.
4238**/
4239static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4240					    u32 data)
4241{
4242	union ich8_hws_flash_status hsfsts;
4243	union ich8_hws_flash_ctrl hsflctl;
4244	u32 flash_linear_addr;
4245	s32 ret_val;
4246	u8 count = 0;
4247
4248	if (hw->mac.type >= e1000_pch_spt) {
4249		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4250			return -E1000_ERR_NVM;
4251	}
4252	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4253			     hw->nvm.flash_base_addr);
4254	do {
4255		udelay(1);
4256		/* Steps */
4257		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4258		if (ret_val)
4259			break;
4260
4261		/* In SPT, This register is in Lan memory space, not
4262		 * flash.  Therefore, only 32 bit access is supported
4263		 */
4264		if (hw->mac.type >= e1000_pch_spt)
4265			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4266			    >> 16;
4267		else
4268			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4269
4270		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4271		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4272
4273		/* In SPT, This register is in Lan memory space,
4274		 * not flash.  Therefore, only 32 bit access is
4275		 * supported
4276		 */
4277		if (hw->mac.type >= e1000_pch_spt)
4278			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4279		else
4280			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4281
4282		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4283
4284		ew32flash(ICH_FLASH_FDATA0, data);
4285
4286		/* check if FCERR is set to 1 , if set to 1, clear it
4287		 * and try the whole sequence a few more times else done
4288		 */
4289		ret_val =
4290		   e1000_flash_cycle_ich8lan(hw,
4291					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4292
4293		if (!ret_val)
4294			break;
4295
4296		/* If we're here, then things are most likely
4297		 * completely hosed, but if the error condition
4298		 * is detected, it won't hurt to give it another
4299		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4300		 */
4301		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4302
4303		if (hsfsts.hsf_status.flcerr)
4304			/* Repeat for some time before giving up. */
4305			continue;
4306		if (!hsfsts.hsf_status.flcdone) {
4307			e_dbg("Timeout error - flash cycle did not complete.\n");
4308			break;
4309		}
4310	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4311
4312	return ret_val;
4313}
4314
4315/**
4316 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4317 *  @hw: pointer to the HW structure
4318 *  @offset: The index of the byte to read.
4319 *  @data: The byte to write to the NVM.
4320 *
4321 *  Writes a single byte to the NVM using the flash access registers.
4322 **/
4323static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4324					  u8 data)
4325{
4326	u16 word = (u16)data;
4327
4328	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4329}
4330
4331/**
4332*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4333*  @hw: pointer to the HW structure
4334*  @offset: The offset of the word to write.
4335*  @dword: The dword to write to the NVM.
4336*
4337*  Writes a single dword to the NVM using the flash access registers.
4338*  Goes through a retry algorithm before giving up.
4339**/
4340static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4341						 u32 offset, u32 dword)
4342{
4343	s32 ret_val;
4344	u16 program_retries;
4345
4346	/* Must convert word offset into bytes. */
4347	offset <<= 1;
4348	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4349
4350	if (!ret_val)
4351		return ret_val;
4352	for (program_retries = 0; program_retries < 100; program_retries++) {
4353		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4354		usleep_range(100, 200);
4355		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4356		if (!ret_val)
4357			break;
4358	}
4359	if (program_retries == 100)
4360		return -E1000_ERR_NVM;
4361
4362	return 0;
4363}
4364
4365/**
4366 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4367 *  @hw: pointer to the HW structure
4368 *  @offset: The offset of the byte to write.
4369 *  @byte: The byte to write to the NVM.
4370 *
4371 *  Writes a single byte to the NVM using the flash access registers.
4372 *  Goes through a retry algorithm before giving up.
4373 **/
4374static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4375						u32 offset, u8 byte)
4376{
4377	s32 ret_val;
4378	u16 program_retries;
4379
4380	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4381	if (!ret_val)
4382		return ret_val;
4383
4384	for (program_retries = 0; program_retries < 100; program_retries++) {
4385		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4386		usleep_range(100, 200);
4387		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4388		if (!ret_val)
4389			break;
4390	}
4391	if (program_retries == 100)
4392		return -E1000_ERR_NVM;
4393
4394	return 0;
4395}
4396
4397/**
4398 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4399 *  @hw: pointer to the HW structure
4400 *  @bank: 0 for first bank, 1 for second bank, etc.
4401 *
4402 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4403 *  bank N is 4096 * N + flash_reg_addr.
4404 **/
4405static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4406{
4407	struct e1000_nvm_info *nvm = &hw->nvm;
4408	union ich8_hws_flash_status hsfsts;
4409	union ich8_hws_flash_ctrl hsflctl;
4410	u32 flash_linear_addr;
4411	/* bank size is in 16bit words - adjust to bytes */
4412	u32 flash_bank_size = nvm->flash_bank_size * 2;
4413	s32 ret_val;
4414	s32 count = 0;
4415	s32 j, iteration, sector_size;
4416
4417	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4418
4419	/* Determine HW Sector size: Read BERASE bits of hw flash status
4420	 * register
4421	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4422	 *     consecutive sectors.  The start index for the nth Hw sector
4423	 *     can be calculated as = bank * 4096 + n * 256
4424	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4425	 *     The start index for the nth Hw sector can be calculated
4426	 *     as = bank * 4096
4427	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4428	 *     (ich9 only, otherwise error condition)
4429	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4430	 */
4431	switch (hsfsts.hsf_status.berasesz) {
4432	case 0:
4433		/* Hw sector size 256 */
4434		sector_size = ICH_FLASH_SEG_SIZE_256;
4435		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4436		break;
4437	case 1:
4438		sector_size = ICH_FLASH_SEG_SIZE_4K;
4439		iteration = 1;
4440		break;
4441	case 2:
4442		sector_size = ICH_FLASH_SEG_SIZE_8K;
4443		iteration = 1;
4444		break;
4445	case 3:
4446		sector_size = ICH_FLASH_SEG_SIZE_64K;
4447		iteration = 1;
4448		break;
4449	default:
4450		return -E1000_ERR_NVM;
4451	}
4452
4453	/* Start with the base address, then add the sector offset. */
4454	flash_linear_addr = hw->nvm.flash_base_addr;
4455	flash_linear_addr += (bank) ? flash_bank_size : 0;
4456
4457	for (j = 0; j < iteration; j++) {
4458		do {
4459			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4460
4461			/* Steps */
4462			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4463			if (ret_val)
4464				return ret_val;
4465
4466			/* Write a value 11 (block Erase) in Flash
4467			 * Cycle field in hw flash control
4468			 */
4469			if (hw->mac.type >= e1000_pch_spt)
4470				hsflctl.regval =
4471				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4472			else
4473				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4474
4475			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4476			if (hw->mac.type >= e1000_pch_spt)
4477				ew32flash(ICH_FLASH_HSFSTS,
4478					  hsflctl.regval << 16);
4479			else
4480				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4481
4482			/* Write the last 24 bits of an index within the
4483			 * block into Flash Linear address field in Flash
4484			 * Address.
4485			 */
4486			flash_linear_addr += (j * sector_size);
4487			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4488
4489			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4490			if (!ret_val)
4491				break;
4492
4493			/* Check if FCERR is set to 1.  If 1,
4494			 * clear it and try the whole sequence
4495			 * a few more times else Done
4496			 */
4497			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4498			if (hsfsts.hsf_status.flcerr)
4499				/* repeat for some time before giving up */
4500				continue;
4501			else if (!hsfsts.hsf_status.flcdone)
4502				return ret_val;
4503		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4504	}
4505
4506	return 0;
4507}
4508
4509/**
4510 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4511 *  @hw: pointer to the HW structure
4512 *  @data: Pointer to the LED settings
4513 *
4514 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4515 *  settings is all 0's or F's, set the LED default to a valid LED default
4516 *  setting.
4517 **/
4518static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4519{
4520	s32 ret_val;
4521
4522	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4523	if (ret_val) {
4524		e_dbg("NVM Read Error\n");
4525		return ret_val;
4526	}
4527
4528	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4529		*data = ID_LED_DEFAULT_ICH8LAN;
4530
4531	return 0;
4532}
4533
4534/**
4535 *  e1000_id_led_init_pchlan - store LED configurations
4536 *  @hw: pointer to the HW structure
4537 *
4538 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4539 *  the PHY LED configuration register.
4540 *
4541 *  PCH also does not have an "always on" or "always off" mode which
4542 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4543 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4544 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4545 *  link based on logic in e1000_led_[on|off]_pchlan().
4546 **/
4547static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4548{
4549	struct e1000_mac_info *mac = &hw->mac;
4550	s32 ret_val;
4551	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4552	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4553	u16 data, i, temp, shift;
4554
4555	/* Get default ID LED modes */
4556	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4557	if (ret_val)
4558		return ret_val;
4559
4560	mac->ledctl_default = er32(LEDCTL);
4561	mac->ledctl_mode1 = mac->ledctl_default;
4562	mac->ledctl_mode2 = mac->ledctl_default;
4563
4564	for (i = 0; i < 4; i++) {
4565		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4566		shift = (i * 5);
4567		switch (temp) {
4568		case ID_LED_ON1_DEF2:
4569		case ID_LED_ON1_ON2:
4570		case ID_LED_ON1_OFF2:
4571			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4572			mac->ledctl_mode1 |= (ledctl_on << shift);
4573			break;
4574		case ID_LED_OFF1_DEF2:
4575		case ID_LED_OFF1_ON2:
4576		case ID_LED_OFF1_OFF2:
4577			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4578			mac->ledctl_mode1 |= (ledctl_off << shift);
4579			break;
4580		default:
4581			/* Do nothing */
4582			break;
4583		}
4584		switch (temp) {
4585		case ID_LED_DEF1_ON2:
4586		case ID_LED_ON1_ON2:
4587		case ID_LED_OFF1_ON2:
4588			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4589			mac->ledctl_mode2 |= (ledctl_on << shift);
4590			break;
4591		case ID_LED_DEF1_OFF2:
4592		case ID_LED_ON1_OFF2:
4593		case ID_LED_OFF1_OFF2:
4594			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4595			mac->ledctl_mode2 |= (ledctl_off << shift);
4596			break;
4597		default:
4598			/* Do nothing */
4599			break;
4600		}
4601	}
4602
4603	return 0;
4604}
4605
4606/**
4607 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4608 *  @hw: pointer to the HW structure
4609 *
4610 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4611 *  register, so the the bus width is hard coded.
4612 **/
4613static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4614{
4615	struct e1000_bus_info *bus = &hw->bus;
4616	s32 ret_val;
4617
4618	ret_val = e1000e_get_bus_info_pcie(hw);
4619
4620	/* ICH devices are "PCI Express"-ish.  They have
4621	 * a configuration space, but do not contain
4622	 * PCI Express Capability registers, so bus width
4623	 * must be hardcoded.
4624	 */
4625	if (bus->width == e1000_bus_width_unknown)
4626		bus->width = e1000_bus_width_pcie_x1;
4627
4628	return ret_val;
4629}
4630
4631/**
4632 *  e1000_reset_hw_ich8lan - Reset the hardware
4633 *  @hw: pointer to the HW structure
4634 *
4635 *  Does a full reset of the hardware which includes a reset of the PHY and
4636 *  MAC.
4637 **/
4638static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4639{
4640	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4641	u16 kum_cfg;
4642	u32 ctrl, reg;
4643	s32 ret_val;
4644
4645	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4646	 * on the last TLP read/write transaction when MAC is reset.
4647	 */
4648	ret_val = e1000e_disable_pcie_master(hw);
4649	if (ret_val)
4650		e_dbg("PCI-E Master disable polling has failed.\n");
4651
4652	e_dbg("Masking off all interrupts\n");
4653	ew32(IMC, 0xffffffff);
4654
4655	/* Disable the Transmit and Receive units.  Then delay to allow
4656	 * any pending transactions to complete before we hit the MAC
4657	 * with the global reset.
4658	 */
4659	ew32(RCTL, 0);
4660	ew32(TCTL, E1000_TCTL_PSP);
4661	e1e_flush();
4662
4663	usleep_range(10000, 11000);
4664
4665	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4666	if (hw->mac.type == e1000_ich8lan) {
4667		/* Set Tx and Rx buffer allocation to 8k apiece. */
4668		ew32(PBA, E1000_PBA_8K);
4669		/* Set Packet Buffer Size to 16k. */
4670		ew32(PBS, E1000_PBS_16K);
4671	}
4672
4673	if (hw->mac.type == e1000_pchlan) {
4674		/* Save the NVM K1 bit setting */
4675		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4676		if (ret_val)
4677			return ret_val;
4678
4679		if (kum_cfg & E1000_NVM_K1_ENABLE)
4680			dev_spec->nvm_k1_enabled = true;
4681		else
4682			dev_spec->nvm_k1_enabled = false;
4683	}
4684
4685	ctrl = er32(CTRL);
4686
4687	if (!hw->phy.ops.check_reset_block(hw)) {
4688		/* Full-chip reset requires MAC and PHY reset at the same
4689		 * time to make sure the interface between MAC and the
4690		 * external PHY is reset.
4691		 */
4692		ctrl |= E1000_CTRL_PHY_RST;
4693
4694		/* Gate automatic PHY configuration by hardware on
4695		 * non-managed 82579
4696		 */
4697		if ((hw->mac.type == e1000_pch2lan) &&
4698		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4699			e1000_gate_hw_phy_config_ich8lan(hw, true);
4700	}
4701	ret_val = e1000_acquire_swflag_ich8lan(hw);
4702	e_dbg("Issuing a global reset to ich8lan\n");
4703	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4704	/* cannot issue a flush here because it hangs the hardware */
4705	msleep(20);
4706
4707	/* Set Phy Config Counter to 50msec */
4708	if (hw->mac.type == e1000_pch2lan) {
4709		reg = er32(FEXTNVM3);
4710		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4711		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4712		ew32(FEXTNVM3, reg);
4713	}
4714
4715	if (!ret_val)
4716		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4717
4718	if (ctrl & E1000_CTRL_PHY_RST) {
4719		ret_val = hw->phy.ops.get_cfg_done(hw);
4720		if (ret_val)
4721			return ret_val;
4722
4723		ret_val = e1000_post_phy_reset_ich8lan(hw);
4724		if (ret_val)
4725			return ret_val;
4726	}
4727
4728	/* For PCH, this write will make sure that any noise
4729	 * will be detected as a CRC error and be dropped rather than show up
4730	 * as a bad packet to the DMA engine.
4731	 */
4732	if (hw->mac.type == e1000_pchlan)
4733		ew32(CRC_OFFSET, 0x65656565);
4734
4735	ew32(IMC, 0xffffffff);
4736	er32(ICR);
4737
4738	reg = er32(KABGTXD);
4739	reg |= E1000_KABGTXD_BGSQLBIAS;
4740	ew32(KABGTXD, reg);
4741
4742	return 0;
4743}
4744
4745/**
4746 *  e1000_init_hw_ich8lan - Initialize the hardware
4747 *  @hw: pointer to the HW structure
4748 *
4749 *  Prepares the hardware for transmit and receive by doing the following:
4750 *   - initialize hardware bits
4751 *   - initialize LED identification
4752 *   - setup receive address registers
4753 *   - setup flow control
4754 *   - setup transmit descriptors
4755 *   - clear statistics
4756 **/
4757static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4758{
4759	struct e1000_mac_info *mac = &hw->mac;
4760	u32 ctrl_ext, txdctl, snoop;
4761	s32 ret_val;
4762	u16 i;
4763
4764	e1000_initialize_hw_bits_ich8lan(hw);
4765
4766	/* Initialize identification LED */
4767	ret_val = mac->ops.id_led_init(hw);
4768	/* An error is not fatal and we should not stop init due to this */
4769	if (ret_val)
4770		e_dbg("Error initializing identification LED\n");
4771
4772	/* Setup the receive address. */
4773	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4774
4775	/* Zero out the Multicast HASH table */
4776	e_dbg("Zeroing the MTA\n");
4777	for (i = 0; i < mac->mta_reg_count; i++)
4778		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4779
4780	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4781	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4782	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4783	 */
4784	if (hw->phy.type == e1000_phy_82578) {
4785		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4786		i &= ~BM_WUC_HOST_WU_BIT;
4787		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4788		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4789		if (ret_val)
4790			return ret_val;
4791	}
4792
4793	/* Setup link and flow control */
4794	ret_val = mac->ops.setup_link(hw);
4795
4796	/* Set the transmit descriptor write-back policy for both queues */
4797	txdctl = er32(TXDCTL(0));
4798	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4799		  E1000_TXDCTL_FULL_TX_DESC_WB);
4800	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4801		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4802	ew32(TXDCTL(0), txdctl);
4803	txdctl = er32(TXDCTL(1));
4804	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4805		  E1000_TXDCTL_FULL_TX_DESC_WB);
4806	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4807		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4808	ew32(TXDCTL(1), txdctl);
4809
4810	/* ICH8 has opposite polarity of no_snoop bits.
4811	 * By default, we should use snoop behavior.
4812	 */
4813	if (mac->type == e1000_ich8lan)
4814		snoop = PCIE_ICH8_SNOOP_ALL;
4815	else
4816		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4817	e1000e_set_pcie_no_snoop(hw, snoop);
4818
4819	ctrl_ext = er32(CTRL_EXT);
4820	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4821	ew32(CTRL_EXT, ctrl_ext);
4822
4823	/* Clear all of the statistics registers (clear on read).  It is
4824	 * important that we do this after we have tried to establish link
4825	 * because the symbol error count will increment wildly if there
4826	 * is no link.
4827	 */
4828	e1000_clear_hw_cntrs_ich8lan(hw);
4829
4830	return ret_val;
4831}
4832
4833/**
4834 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4835 *  @hw: pointer to the HW structure
4836 *
4837 *  Sets/Clears required hardware bits necessary for correctly setting up the
4838 *  hardware for transmit and receive.
4839 **/
4840static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4841{
4842	u32 reg;
4843
4844	/* Extended Device Control */
4845	reg = er32(CTRL_EXT);
4846	reg |= BIT(22);
4847	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4848	if (hw->mac.type >= e1000_pchlan)
4849		reg |= E1000_CTRL_EXT_PHYPDEN;
4850	ew32(CTRL_EXT, reg);
4851
4852	/* Transmit Descriptor Control 0 */
4853	reg = er32(TXDCTL(0));
4854	reg |= BIT(22);
4855	ew32(TXDCTL(0), reg);
4856
4857	/* Transmit Descriptor Control 1 */
4858	reg = er32(TXDCTL(1));
4859	reg |= BIT(22);
4860	ew32(TXDCTL(1), reg);
4861
4862	/* Transmit Arbitration Control 0 */
4863	reg = er32(TARC(0));
4864	if (hw->mac.type == e1000_ich8lan)
4865		reg |= BIT(28) | BIT(29);
4866	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4867	ew32(TARC(0), reg);
4868
4869	/* Transmit Arbitration Control 1 */
4870	reg = er32(TARC(1));
4871	if (er32(TCTL) & E1000_TCTL_MULR)
4872		reg &= ~BIT(28);
4873	else
4874		reg |= BIT(28);
4875	reg |= BIT(24) | BIT(26) | BIT(30);
4876	ew32(TARC(1), reg);
4877
4878	/* Device Status */
4879	if (hw->mac.type == e1000_ich8lan) {
4880		reg = er32(STATUS);
4881		reg &= ~BIT(31);
4882		ew32(STATUS, reg);
4883	}
4884
4885	/* work-around descriptor data corruption issue during nfs v2 udp
4886	 * traffic, just disable the nfs filtering capability
4887	 */
4888	reg = er32(RFCTL);
4889	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4890
4891	/* Disable IPv6 extension header parsing because some malformed
4892	 * IPv6 headers can hang the Rx.
4893	 */
4894	if (hw->mac.type == e1000_ich8lan)
4895		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4896	ew32(RFCTL, reg);
4897
4898	/* Enable ECC on Lynxpoint */
4899	if (hw->mac.type >= e1000_pch_lpt) {
4900		reg = er32(PBECCSTS);
4901		reg |= E1000_PBECCSTS_ECC_ENABLE;
4902		ew32(PBECCSTS, reg);
4903
4904		reg = er32(CTRL);
4905		reg |= E1000_CTRL_MEHE;
4906		ew32(CTRL, reg);
4907	}
4908}
4909
4910/**
4911 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4912 *  @hw: pointer to the HW structure
4913 *
4914 *  Determines which flow control settings to use, then configures flow
4915 *  control.  Calls the appropriate media-specific link configuration
4916 *  function.  Assuming the adapter has a valid link partner, a valid link
4917 *  should be established.  Assumes the hardware has previously been reset
4918 *  and the transmitter and receiver are not enabled.
4919 **/
4920static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4921{
4922	s32 ret_val;
4923
4924	if (hw->phy.ops.check_reset_block(hw))
4925		return 0;
4926
4927	/* ICH parts do not have a word in the NVM to determine
4928	 * the default flow control setting, so we explicitly
4929	 * set it to full.
4930	 */
4931	if (hw->fc.requested_mode == e1000_fc_default) {
4932		/* Workaround h/w hang when Tx flow control enabled */
4933		if (hw->mac.type == e1000_pchlan)
4934			hw->fc.requested_mode = e1000_fc_rx_pause;
4935		else
4936			hw->fc.requested_mode = e1000_fc_full;
4937	}
4938
4939	/* Save off the requested flow control mode for use later.  Depending
4940	 * on the link partner's capabilities, we may or may not use this mode.
4941	 */
4942	hw->fc.current_mode = hw->fc.requested_mode;
4943
4944	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4945
4946	/* Continue to configure the copper link. */
4947	ret_val = hw->mac.ops.setup_physical_interface(hw);
4948	if (ret_val)
4949		return ret_val;
4950
4951	ew32(FCTTV, hw->fc.pause_time);
4952	if ((hw->phy.type == e1000_phy_82578) ||
4953	    (hw->phy.type == e1000_phy_82579) ||
4954	    (hw->phy.type == e1000_phy_i217) ||
4955	    (hw->phy.type == e1000_phy_82577)) {
4956		ew32(FCRTV_PCH, hw->fc.refresh_time);
4957
4958		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4959				   hw->fc.pause_time);
4960		if (ret_val)
4961			return ret_val;
4962	}
4963
4964	return e1000e_set_fc_watermarks(hw);
4965}
4966
4967/**
4968 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4969 *  @hw: pointer to the HW structure
4970 *
4971 *  Configures the kumeran interface to the PHY to wait the appropriate time
4972 *  when polling the PHY, then call the generic setup_copper_link to finish
4973 *  configuring the copper link.
4974 **/
4975static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4976{
4977	u32 ctrl;
4978	s32 ret_val;
4979	u16 reg_data;
4980
4981	ctrl = er32(CTRL);
4982	ctrl |= E1000_CTRL_SLU;
4983	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4984	ew32(CTRL, ctrl);
4985
4986	/* Set the mac to wait the maximum time between each iteration
4987	 * and increase the max iterations when polling the phy;
4988	 * this fixes erroneous timeouts at 10Mbps.
4989	 */
4990	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4991	if (ret_val)
4992		return ret_val;
4993	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4994				       &reg_data);
4995	if (ret_val)
4996		return ret_val;
4997	reg_data |= 0x3F;
4998	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4999					reg_data);
5000	if (ret_val)
5001		return ret_val;
5002
5003	switch (hw->phy.type) {
5004	case e1000_phy_igp_3:
5005		ret_val = e1000e_copper_link_setup_igp(hw);
5006		if (ret_val)
5007			return ret_val;
5008		break;
5009	case e1000_phy_bm:
5010	case e1000_phy_82578:
5011		ret_val = e1000e_copper_link_setup_m88(hw);
5012		if (ret_val)
5013			return ret_val;
5014		break;
5015	case e1000_phy_82577:
5016	case e1000_phy_82579:
5017		ret_val = e1000_copper_link_setup_82577(hw);
5018		if (ret_val)
5019			return ret_val;
5020		break;
5021	case e1000_phy_ife:
5022		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5023		if (ret_val)
5024			return ret_val;
5025
5026		reg_data &= ~IFE_PMC_AUTO_MDIX;
5027
5028		switch (hw->phy.mdix) {
5029		case 1:
5030			reg_data &= ~IFE_PMC_FORCE_MDIX;
5031			break;
5032		case 2:
5033			reg_data |= IFE_PMC_FORCE_MDIX;
5034			break;
5035		case 0:
5036		default:
5037			reg_data |= IFE_PMC_AUTO_MDIX;
5038			break;
5039		}
5040		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5041		if (ret_val)
5042			return ret_val;
5043		break;
5044	default:
5045		break;
5046	}
5047
5048	return e1000e_setup_copper_link(hw);
5049}
5050
5051/**
5052 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5053 *  @hw: pointer to the HW structure
5054 *
5055 *  Calls the PHY specific link setup function and then calls the
5056 *  generic setup_copper_link to finish configuring the link for
5057 *  Lynxpoint PCH devices
5058 **/
5059static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5060{
5061	u32 ctrl;
5062	s32 ret_val;
5063
5064	ctrl = er32(CTRL);
5065	ctrl |= E1000_CTRL_SLU;
5066	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5067	ew32(CTRL, ctrl);
5068
5069	ret_val = e1000_copper_link_setup_82577(hw);
5070	if (ret_val)
5071		return ret_val;
5072
5073	return e1000e_setup_copper_link(hw);
5074}
5075
5076/**
5077 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5078 *  @hw: pointer to the HW structure
5079 *  @speed: pointer to store current link speed
5080 *  @duplex: pointer to store the current link duplex
5081 *
5082 *  Calls the generic get_speed_and_duplex to retrieve the current link
5083 *  information and then calls the Kumeran lock loss workaround for links at
5084 *  gigabit speeds.
5085 **/
5086static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5087					  u16 *duplex)
5088{
5089	s32 ret_val;
5090
5091	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5092	if (ret_val)
5093		return ret_val;
5094
5095	if ((hw->mac.type == e1000_ich8lan) &&
5096	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5097		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5098	}
5099
5100	return ret_val;
5101}
5102
5103/**
5104 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5105 *  @hw: pointer to the HW structure
5106 *
5107 *  Work-around for 82566 Kumeran PCS lock loss:
5108 *  On link status change (i.e. PCI reset, speed change) and link is up and
5109 *  speed is gigabit-
5110 *    0) if workaround is optionally disabled do nothing
5111 *    1) wait 1ms for Kumeran link to come up
5112 *    2) check Kumeran Diagnostic register PCS lock loss bit
5113 *    3) if not set the link is locked (all is good), otherwise...
5114 *    4) reset the PHY
5115 *    5) repeat up to 10 times
5116 *  Note: this is only called for IGP3 copper when speed is 1gb.
5117 **/
5118static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5119{
5120	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5121	u32 phy_ctrl;
5122	s32 ret_val;
5123	u16 i, data;
5124	bool link;
5125
5126	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5127		return 0;
5128
5129	/* Make sure link is up before proceeding.  If not just return.
5130	 * Attempting this while link is negotiating fouled up link
5131	 * stability
5132	 */
5133	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5134	if (!link)
5135		return 0;
5136
5137	for (i = 0; i < 10; i++) {
5138		/* read once to clear */
5139		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5140		if (ret_val)
5141			return ret_val;
5142		/* and again to get new status */
5143		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5144		if (ret_val)
5145			return ret_val;
5146
5147		/* check for PCS lock */
5148		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5149			return 0;
5150
5151		/* Issue PHY reset */
5152		e1000_phy_hw_reset(hw);
5153		mdelay(5);
5154	}
5155	/* Disable GigE link negotiation */
5156	phy_ctrl = er32(PHY_CTRL);
5157	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5158		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5159	ew32(PHY_CTRL, phy_ctrl);
5160
5161	/* Call gig speed drop workaround on Gig disable before accessing
5162	 * any PHY registers
5163	 */
5164	e1000e_gig_downshift_workaround_ich8lan(hw);
5165
5166	/* unable to acquire PCS lock */
5167	return -E1000_ERR_PHY;
5168}
5169
5170/**
5171 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5172 *  @hw: pointer to the HW structure
5173 *  @state: boolean value used to set the current Kumeran workaround state
5174 *
5175 *  If ICH8, set the current Kumeran workaround state (enabled - true
5176 *  /disabled - false).
5177 **/
5178void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5179						  bool state)
5180{
5181	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5182
5183	if (hw->mac.type != e1000_ich8lan) {
5184		e_dbg("Workaround applies to ICH8 only.\n");
5185		return;
5186	}
5187
5188	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5189}
5190
5191/**
5192 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5193 *  @hw: pointer to the HW structure
5194 *
5195 *  Workaround for 82566 power-down on D3 entry:
5196 *    1) disable gigabit link
5197 *    2) write VR power-down enable
5198 *    3) read it back
5199 *  Continue if successful, else issue LCD reset and repeat
5200 **/
5201void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5202{
5203	u32 reg;
5204	u16 data;
5205	u8 retry = 0;
5206
5207	if (hw->phy.type != e1000_phy_igp_3)
5208		return;
5209
5210	/* Try the workaround twice (if needed) */
5211	do {
5212		/* Disable link */
5213		reg = er32(PHY_CTRL);
5214		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5215			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5216		ew32(PHY_CTRL, reg);
5217
5218		/* Call gig speed drop workaround on Gig disable before
5219		 * accessing any PHY registers
5220		 */
5221		if (hw->mac.type == e1000_ich8lan)
5222			e1000e_gig_downshift_workaround_ich8lan(hw);
5223
5224		/* Write VR power-down enable */
5225		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5226		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5227		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5228
5229		/* Read it back and test */
5230		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5231		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5232		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5233			break;
5234
5235		/* Issue PHY reset and repeat at most one more time */
5236		reg = er32(CTRL);
5237		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5238		retry++;
5239	} while (retry);
5240}
5241
5242/**
5243 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5244 *  @hw: pointer to the HW structure
5245 *
5246 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5247 *  LPLU, Gig disable, MDIC PHY reset):
5248 *    1) Set Kumeran Near-end loopback
5249 *    2) Clear Kumeran Near-end loopback
5250 *  Should only be called for ICH8[m] devices with any 1G Phy.
5251 **/
5252void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5253{
5254	s32 ret_val;
5255	u16 reg_data;
5256
5257	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5258		return;
5259
5260	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5261				       &reg_data);
5262	if (ret_val)
5263		return;
5264	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5265	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5266					reg_data);
5267	if (ret_val)
5268		return;
5269	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5270	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5271}
5272
5273/**
5274 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5275 *  @hw: pointer to the HW structure
5276 *
5277 *  During S0 to Sx transition, it is possible the link remains at gig
5278 *  instead of negotiating to a lower speed.  Before going to Sx, set
5279 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5280 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5281 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5282 *  needs to be written.
5283 *  Parts that support (and are linked to a partner which support) EEE in
5284 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5285 *  than 10Mbps w/o EEE.
5286 **/
5287void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5288{
5289	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5290	u32 phy_ctrl;
5291	s32 ret_val;
5292
5293	phy_ctrl = er32(PHY_CTRL);
5294	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5295
5296	if (hw->phy.type == e1000_phy_i217) {
5297		u16 phy_reg, device_id = hw->adapter->pdev->device;
5298
5299		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5300		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5301		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5302		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5303		    (hw->mac.type >= e1000_pch_spt)) {
5304			u32 fextnvm6 = er32(FEXTNVM6);
5305
5306			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5307		}
5308
5309		ret_val = hw->phy.ops.acquire(hw);
5310		if (ret_val)
5311			goto out;
5312
5313		if (!dev_spec->eee_disable) {
5314			u16 eee_advert;
5315
5316			ret_val =
5317			    e1000_read_emi_reg_locked(hw,
5318						      I217_EEE_ADVERTISEMENT,
5319						      &eee_advert);
5320			if (ret_val)
5321				goto release;
5322
5323			/* Disable LPLU if both link partners support 100BaseT
5324			 * EEE and 100Full is advertised on both ends of the
5325			 * link, and enable Auto Enable LPI since there will
5326			 * be no driver to enable LPI while in Sx.
5327			 */
5328			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5329			    (dev_spec->eee_lp_ability &
5330			     I82579_EEE_100_SUPPORTED) &&
5331			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5332				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5333					      E1000_PHY_CTRL_NOND0A_LPLU);
5334
5335				/* Set Auto Enable LPI after link up */
5336				e1e_rphy_locked(hw,
5337						I217_LPI_GPIO_CTRL, &phy_reg);
5338				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5339				e1e_wphy_locked(hw,
5340						I217_LPI_GPIO_CTRL, phy_reg);
5341			}
5342		}
5343
5344		/* For i217 Intel Rapid Start Technology support,
5345		 * when the system is going into Sx and no manageability engine
5346		 * is present, the driver must configure proxy to reset only on
5347		 * power good.  LPI (Low Power Idle) state must also reset only
5348		 * on power good, as well as the MTA (Multicast table array).
5349		 * The SMBus release must also be disabled on LCD reset.
5350		 */
5351		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5352			/* Enable proxy to reset only on power good. */
5353			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5354			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5355			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5356
5357			/* Set bit enable LPI (EEE) to reset only on
5358			 * power good.
5359			 */
5360			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5361			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5362			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5363
5364			/* Disable the SMB release on LCD reset. */
5365			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5366			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5367			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5368		}
5369
5370		/* Enable MTA to reset for Intel Rapid Start Technology
5371		 * Support
5372		 */
5373		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5374		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5375		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5376
5377release:
5378		hw->phy.ops.release(hw);
5379	}
5380out:
5381	ew32(PHY_CTRL, phy_ctrl);
5382
5383	if (hw->mac.type == e1000_ich8lan)
5384		e1000e_gig_downshift_workaround_ich8lan(hw);
5385
5386	if (hw->mac.type >= e1000_pchlan) {
5387		e1000_oem_bits_config_ich8lan(hw, false);
5388
5389		/* Reset PHY to activate OEM bits on 82577/8 */
5390		if (hw->mac.type == e1000_pchlan)
5391			e1000e_phy_hw_reset_generic(hw);
5392
5393		ret_val = hw->phy.ops.acquire(hw);
5394		if (ret_val)
5395			return;
5396		e1000_write_smbus_addr(hw);
5397		hw->phy.ops.release(hw);
5398	}
5399}
5400
5401/**
5402 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5403 *  @hw: pointer to the HW structure
5404 *
5405 *  During Sx to S0 transitions on non-managed devices or managed devices
5406 *  on which PHY resets are not blocked, if the PHY registers cannot be
5407 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5408 *  the PHY.
5409 *  On i217, setup Intel Rapid Start Technology.
5410 **/
5411void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5412{
5413	s32 ret_val;
5414
5415	if (hw->mac.type < e1000_pch2lan)
5416		return;
5417
5418	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5419	if (ret_val) {
5420		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5421		return;
5422	}
5423
5424	/* For i217 Intel Rapid Start Technology support when the system
5425	 * is transitioning from Sx and no manageability engine is present
5426	 * configure SMBus to restore on reset, disable proxy, and enable
5427	 * the reset on MTA (Multicast table array).
5428	 */
5429	if (hw->phy.type == e1000_phy_i217) {
5430		u16 phy_reg;
5431
5432		ret_val = hw->phy.ops.acquire(hw);
5433		if (ret_val) {
5434			e_dbg("Failed to setup iRST\n");
5435			return;
5436		}
5437
5438		/* Clear Auto Enable LPI after link up */
5439		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5440		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5441		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5442
5443		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5444			/* Restore clear on SMB if no manageability engine
5445			 * is present
5446			 */
5447			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5448			if (ret_val)
5449				goto release;
5450			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5451			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5452
5453			/* Disable Proxy */
5454			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5455		}
5456		/* Enable reset on MTA */
5457		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5458		if (ret_val)
5459			goto release;
5460		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5461		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5462release:
5463		if (ret_val)
5464			e_dbg("Error %d in resume workarounds\n", ret_val);
5465		hw->phy.ops.release(hw);
5466	}
5467}
5468
5469/**
5470 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5471 *  @hw: pointer to the HW structure
5472 *
5473 *  Return the LED back to the default configuration.
5474 **/
5475static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5476{
5477	if (hw->phy.type == e1000_phy_ife)
5478		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5479
5480	ew32(LEDCTL, hw->mac.ledctl_default);
5481	return 0;
5482}
5483
5484/**
5485 *  e1000_led_on_ich8lan - Turn LEDs on
5486 *  @hw: pointer to the HW structure
5487 *
5488 *  Turn on the LEDs.
5489 **/
5490static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5491{
5492	if (hw->phy.type == e1000_phy_ife)
5493		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5494				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5495
5496	ew32(LEDCTL, hw->mac.ledctl_mode2);
5497	return 0;
5498}
5499
5500/**
5501 *  e1000_led_off_ich8lan - Turn LEDs off
5502 *  @hw: pointer to the HW structure
5503 *
5504 *  Turn off the LEDs.
5505 **/
5506static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5507{
5508	if (hw->phy.type == e1000_phy_ife)
5509		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5510				(IFE_PSCL_PROBE_MODE |
5511				 IFE_PSCL_PROBE_LEDS_OFF));
5512
5513	ew32(LEDCTL, hw->mac.ledctl_mode1);
5514	return 0;
5515}
5516
5517/**
5518 *  e1000_setup_led_pchlan - Configures SW controllable LED
5519 *  @hw: pointer to the HW structure
5520 *
5521 *  This prepares the SW controllable LED for use.
5522 **/
5523static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5524{
5525	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5526}
5527
5528/**
5529 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5530 *  @hw: pointer to the HW structure
5531 *
5532 *  Return the LED back to the default configuration.
5533 **/
5534static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5535{
5536	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5537}
5538
5539/**
5540 *  e1000_led_on_pchlan - Turn LEDs on
5541 *  @hw: pointer to the HW structure
5542 *
5543 *  Turn on the LEDs.
5544 **/
5545static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5546{
5547	u16 data = (u16)hw->mac.ledctl_mode2;
5548	u32 i, led;
5549
5550	/* If no link, then turn LED on by setting the invert bit
5551	 * for each LED that's mode is "link_up" in ledctl_mode2.
5552	 */
5553	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5554		for (i = 0; i < 3; i++) {
5555			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5556			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5557			    E1000_LEDCTL_MODE_LINK_UP)
5558				continue;
5559			if (led & E1000_PHY_LED0_IVRT)
5560				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5561			else
5562				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5563		}
5564	}
5565
5566	return e1e_wphy(hw, HV_LED_CONFIG, data);
5567}
5568
5569/**
5570 *  e1000_led_off_pchlan - Turn LEDs off
5571 *  @hw: pointer to the HW structure
5572 *
5573 *  Turn off the LEDs.
5574 **/
5575static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5576{
5577	u16 data = (u16)hw->mac.ledctl_mode1;
5578	u32 i, led;
5579
5580	/* If no link, then turn LED off by clearing the invert bit
5581	 * for each LED that's mode is "link_up" in ledctl_mode1.
5582	 */
5583	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5584		for (i = 0; i < 3; i++) {
5585			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5586			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5587			    E1000_LEDCTL_MODE_LINK_UP)
5588				continue;
5589			if (led & E1000_PHY_LED0_IVRT)
5590				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5591			else
5592				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5593		}
5594	}
5595
5596	return e1e_wphy(hw, HV_LED_CONFIG, data);
5597}
5598
5599/**
5600 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5601 *  @hw: pointer to the HW structure
5602 *
5603 *  Read appropriate register for the config done bit for completion status
5604 *  and configure the PHY through s/w for EEPROM-less parts.
5605 *
5606 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5607 *  config done bit, so only an error is logged and continues.  If we were
5608 *  to return with error, EEPROM-less silicon would not be able to be reset
5609 *  or change link.
5610 **/
5611static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5612{
5613	s32 ret_val = 0;
5614	u32 bank = 0;
5615	u32 status;
5616
5617	e1000e_get_cfg_done_generic(hw);
5618
5619	/* Wait for indication from h/w that it has completed basic config */
5620	if (hw->mac.type >= e1000_ich10lan) {
5621		e1000_lan_init_done_ich8lan(hw);
5622	} else {
5623		ret_val = e1000e_get_auto_rd_done(hw);
5624		if (ret_val) {
5625			/* When auto config read does not complete, do not
5626			 * return with an error. This can happen in situations
5627			 * where there is no eeprom and prevents getting link.
5628			 */
5629			e_dbg("Auto Read Done did not complete\n");
5630			ret_val = 0;
5631		}
5632	}
5633
5634	/* Clear PHY Reset Asserted bit */
5635	status = er32(STATUS);
5636	if (status & E1000_STATUS_PHYRA)
5637		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5638	else
5639		e_dbg("PHY Reset Asserted not set - needs delay\n");
5640
5641	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5642	if (hw->mac.type <= e1000_ich9lan) {
5643		if (!(er32(EECD) & E1000_EECD_PRES) &&
5644		    (hw->phy.type == e1000_phy_igp_3)) {
5645			e1000e_phy_init_script_igp3(hw);
5646		}
5647	} else {
5648		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5649			/* Maybe we should do a basic PHY config */
5650			e_dbg("EEPROM not present\n");
5651			ret_val = -E1000_ERR_CONFIG;
5652		}
5653	}
5654
5655	return ret_val;
5656}
5657
5658/**
5659 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5660 * @hw: pointer to the HW structure
5661 *
5662 * In the case of a PHY power down to save power, or to turn off link during a
5663 * driver unload, or wake on lan is not enabled, remove the link.
5664 **/
5665static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5666{
5667	/* If the management interface is not enabled, then power down */
5668	if (!(hw->mac.ops.check_mng_mode(hw) ||
5669	      hw->phy.ops.check_reset_block(hw)))
5670		e1000_power_down_phy_copper(hw);
5671}
5672
5673/**
5674 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5675 *  @hw: pointer to the HW structure
5676 *
5677 *  Clears hardware counters specific to the silicon family and calls
5678 *  clear_hw_cntrs_generic to clear all general purpose counters.
5679 **/
5680static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5681{
5682	u16 phy_data;
5683	s32 ret_val;
5684
5685	e1000e_clear_hw_cntrs_base(hw);
5686
5687	er32(ALGNERRC);
5688	er32(RXERRC);
5689	er32(TNCRS);
5690	er32(CEXTERR);
5691	er32(TSCTC);
5692	er32(TSCTFC);
5693
5694	er32(MGTPRC);
5695	er32(MGTPDC);
5696	er32(MGTPTC);
5697
5698	er32(IAC);
5699	er32(ICRXOC);
5700
5701	/* Clear PHY statistics registers */
5702	if ((hw->phy.type == e1000_phy_82578) ||
5703	    (hw->phy.type == e1000_phy_82579) ||
5704	    (hw->phy.type == e1000_phy_i217) ||
5705	    (hw->phy.type == e1000_phy_82577)) {
5706		ret_val = hw->phy.ops.acquire(hw);
5707		if (ret_val)
5708			return;
5709		ret_val = hw->phy.ops.set_page(hw,
5710					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5711		if (ret_val)
5712			goto release;
5713		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5714		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5715		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5716		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5717		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5718		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5719		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5720		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5721		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5722		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5723		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5724		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5725		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5726		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5727release:
5728		hw->phy.ops.release(hw);
5729	}
5730}
5731
5732static const struct e1000_mac_operations ich8_mac_ops = {
5733	/* check_mng_mode dependent on mac type */
5734	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5735	/* cleanup_led dependent on mac type */
5736	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5737	.get_bus_info		= e1000_get_bus_info_ich8lan,
5738	.set_lan_id		= e1000_set_lan_id_single_port,
5739	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5740	/* led_on dependent on mac type */
5741	/* led_off dependent on mac type */
5742	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5743	.reset_hw		= e1000_reset_hw_ich8lan,
5744	.init_hw		= e1000_init_hw_ich8lan,
5745	.setup_link		= e1000_setup_link_ich8lan,
5746	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5747	/* id_led_init dependent on mac type */
5748	.config_collision_dist	= e1000e_config_collision_dist_generic,
5749	.rar_set		= e1000e_rar_set_generic,
5750	.rar_get_count		= e1000e_rar_get_count_generic,
5751};
5752
5753static const struct e1000_phy_operations ich8_phy_ops = {
5754	.acquire		= e1000_acquire_swflag_ich8lan,
5755	.check_reset_block	= e1000_check_reset_block_ich8lan,
5756	.commit			= NULL,
5757	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5758	.get_cable_length	= e1000e_get_cable_length_igp_2,
5759	.read_reg		= e1000e_read_phy_reg_igp,
5760	.release		= e1000_release_swflag_ich8lan,
5761	.reset			= e1000_phy_hw_reset_ich8lan,
5762	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5763	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5764	.write_reg		= e1000e_write_phy_reg_igp,
5765};
5766
5767static const struct e1000_nvm_operations ich8_nvm_ops = {
5768	.acquire		= e1000_acquire_nvm_ich8lan,
5769	.read			= e1000_read_nvm_ich8lan,
5770	.release		= e1000_release_nvm_ich8lan,
5771	.reload			= e1000e_reload_nvm_generic,
5772	.update			= e1000_update_nvm_checksum_ich8lan,
5773	.valid_led_default	= e1000_valid_led_default_ich8lan,
5774	.validate		= e1000_validate_nvm_checksum_ich8lan,
5775	.write			= e1000_write_nvm_ich8lan,
5776};
5777
5778static const struct e1000_nvm_operations spt_nvm_ops = {
5779	.acquire		= e1000_acquire_nvm_ich8lan,
5780	.release		= e1000_release_nvm_ich8lan,
5781	.read			= e1000_read_nvm_spt,
5782	.update			= e1000_update_nvm_checksum_spt,
5783	.reload			= e1000e_reload_nvm_generic,
5784	.valid_led_default	= e1000_valid_led_default_ich8lan,
5785	.validate		= e1000_validate_nvm_checksum_ich8lan,
5786	.write			= e1000_write_nvm_ich8lan,
5787};
5788
5789const struct e1000_info e1000_ich8_info = {
5790	.mac			= e1000_ich8lan,
5791	.flags			= FLAG_HAS_WOL
5792				  | FLAG_IS_ICH
5793				  | FLAG_HAS_CTRLEXT_ON_LOAD
5794				  | FLAG_HAS_AMT
5795				  | FLAG_HAS_FLASH
5796				  | FLAG_APME_IN_WUC,
5797	.pba			= 8,
5798	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5799	.get_variants		= e1000_get_variants_ich8lan,
5800	.mac_ops		= &ich8_mac_ops,
5801	.phy_ops		= &ich8_phy_ops,
5802	.nvm_ops		= &ich8_nvm_ops,
5803};
5804
5805const struct e1000_info e1000_ich9_info = {
5806	.mac			= e1000_ich9lan,
5807	.flags			= FLAG_HAS_JUMBO_FRAMES
5808				  | FLAG_IS_ICH
5809				  | FLAG_HAS_WOL
5810				  | FLAG_HAS_CTRLEXT_ON_LOAD
5811				  | FLAG_HAS_AMT
5812				  | FLAG_HAS_FLASH
5813				  | FLAG_APME_IN_WUC,
5814	.pba			= 18,
5815	.max_hw_frame_size	= DEFAULT_JUMBO,
5816	.get_variants		= e1000_get_variants_ich8lan,
5817	.mac_ops		= &ich8_mac_ops,
5818	.phy_ops		= &ich8_phy_ops,
5819	.nvm_ops		= &ich8_nvm_ops,
5820};
5821
5822const struct e1000_info e1000_ich10_info = {
5823	.mac			= e1000_ich10lan,
5824	.flags			= FLAG_HAS_JUMBO_FRAMES
5825				  | FLAG_IS_ICH
5826				  | FLAG_HAS_WOL
5827				  | FLAG_HAS_CTRLEXT_ON_LOAD
5828				  | FLAG_HAS_AMT
5829				  | FLAG_HAS_FLASH
5830				  | FLAG_APME_IN_WUC,
5831	.pba			= 18,
5832	.max_hw_frame_size	= DEFAULT_JUMBO,
5833	.get_variants		= e1000_get_variants_ich8lan,
5834	.mac_ops		= &ich8_mac_ops,
5835	.phy_ops		= &ich8_phy_ops,
5836	.nvm_ops		= &ich8_nvm_ops,
5837};
5838
5839const struct e1000_info e1000_pch_info = {
5840	.mac			= e1000_pchlan,
5841	.flags			= FLAG_IS_ICH
5842				  | FLAG_HAS_WOL
5843				  | FLAG_HAS_CTRLEXT_ON_LOAD
5844				  | FLAG_HAS_AMT
5845				  | FLAG_HAS_FLASH
5846				  | FLAG_HAS_JUMBO_FRAMES
5847				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5848				  | FLAG_APME_IN_WUC,
5849	.flags2			= FLAG2_HAS_PHY_STATS,
5850	.pba			= 26,
5851	.max_hw_frame_size	= 4096,
5852	.get_variants		= e1000_get_variants_ich8lan,
5853	.mac_ops		= &ich8_mac_ops,
5854	.phy_ops		= &ich8_phy_ops,
5855	.nvm_ops		= &ich8_nvm_ops,
5856};
5857
5858const struct e1000_info e1000_pch2_info = {
5859	.mac			= e1000_pch2lan,
5860	.flags			= FLAG_IS_ICH
5861				  | FLAG_HAS_WOL
5862				  | FLAG_HAS_HW_TIMESTAMP
5863				  | FLAG_HAS_CTRLEXT_ON_LOAD
5864				  | FLAG_HAS_AMT
5865				  | FLAG_HAS_FLASH
5866				  | FLAG_HAS_JUMBO_FRAMES
5867				  | FLAG_APME_IN_WUC,
5868	.flags2			= FLAG2_HAS_PHY_STATS
5869				  | FLAG2_HAS_EEE
5870				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5871	.pba			= 26,
5872	.max_hw_frame_size	= 9022,
5873	.get_variants		= e1000_get_variants_ich8lan,
5874	.mac_ops		= &ich8_mac_ops,
5875	.phy_ops		= &ich8_phy_ops,
5876	.nvm_ops		= &ich8_nvm_ops,
5877};
5878
5879const struct e1000_info e1000_pch_lpt_info = {
5880	.mac			= e1000_pch_lpt,
5881	.flags			= FLAG_IS_ICH
5882				  | FLAG_HAS_WOL
5883				  | FLAG_HAS_HW_TIMESTAMP
5884				  | FLAG_HAS_CTRLEXT_ON_LOAD
5885				  | FLAG_HAS_AMT
5886				  | FLAG_HAS_FLASH
5887				  | FLAG_HAS_JUMBO_FRAMES
5888				  | FLAG_APME_IN_WUC,
5889	.flags2			= FLAG2_HAS_PHY_STATS
5890				  | FLAG2_HAS_EEE
5891				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5892	.pba			= 26,
5893	.max_hw_frame_size	= 9022,
5894	.get_variants		= e1000_get_variants_ich8lan,
5895	.mac_ops		= &ich8_mac_ops,
5896	.phy_ops		= &ich8_phy_ops,
5897	.nvm_ops		= &ich8_nvm_ops,
5898};
5899
5900const struct e1000_info e1000_pch_spt_info = {
5901	.mac			= e1000_pch_spt,
5902	.flags			= FLAG_IS_ICH
5903				  | FLAG_HAS_WOL
5904				  | FLAG_HAS_HW_TIMESTAMP
5905				  | FLAG_HAS_CTRLEXT_ON_LOAD
5906				  | FLAG_HAS_AMT
5907				  | FLAG_HAS_FLASH
5908				  | FLAG_HAS_JUMBO_FRAMES
5909				  | FLAG_APME_IN_WUC,
5910	.flags2			= FLAG2_HAS_PHY_STATS
5911				  | FLAG2_HAS_EEE,
5912	.pba			= 26,
5913	.max_hw_frame_size	= 9022,
5914	.get_variants		= e1000_get_variants_ich8lan,
5915	.mac_ops		= &ich8_mac_ops,
5916	.phy_ops		= &ich8_phy_ops,
5917	.nvm_ops		= &spt_nvm_ops,
5918};
5919
5920const struct e1000_info e1000_pch_cnp_info = {
5921	.mac			= e1000_pch_cnp,
5922	.flags			= FLAG_IS_ICH
5923				  | FLAG_HAS_WOL
5924				  | FLAG_HAS_HW_TIMESTAMP
5925				  | FLAG_HAS_CTRLEXT_ON_LOAD
5926				  | FLAG_HAS_AMT
5927				  | FLAG_HAS_FLASH
5928				  | FLAG_HAS_JUMBO_FRAMES
5929				  | FLAG_APME_IN_WUC,
5930	.flags2			= FLAG2_HAS_PHY_STATS
5931				  | FLAG2_HAS_EEE,
5932	.pba			= 26,
5933	.max_hw_frame_size	= 9022,
5934	.get_variants		= e1000_get_variants_ich8lan,
5935	.mac_ops		= &ich8_mac_ops,
5936	.phy_ops		= &ich8_phy_ops,
5937	.nvm_ops		= &spt_nvm_ops,
5938};
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
  22
  23/* 82562G 10/100 Network Connection
  24 * 82562G-2 10/100 Network Connection
  25 * 82562GT 10/100 Network Connection
  26 * 82562GT-2 10/100 Network Connection
  27 * 82562V 10/100 Network Connection
  28 * 82562V-2 10/100 Network Connection
  29 * 82566DC-2 Gigabit Network Connection
  30 * 82566DC Gigabit Network Connection
  31 * 82566DM-2 Gigabit Network Connection
  32 * 82566DM Gigabit Network Connection
  33 * 82566MC Gigabit Network Connection
  34 * 82566MM Gigabit Network Connection
  35 * 82567LM Gigabit Network Connection
  36 * 82567LF Gigabit Network Connection
  37 * 82567V Gigabit Network Connection
  38 * 82567LM-2 Gigabit Network Connection
  39 * 82567LF-2 Gigabit Network Connection
  40 * 82567V-2 Gigabit Network Connection
  41 * 82567LF-3 Gigabit Network Connection
  42 * 82567LM-3 Gigabit Network Connection
  43 * 82567LM-4 Gigabit Network Connection
  44 * 82577LM Gigabit Network Connection
  45 * 82577LC Gigabit Network Connection
  46 * 82578DM Gigabit Network Connection
  47 * 82578DC Gigabit Network Connection
  48 * 82579LM Gigabit Network Connection
  49 * 82579V Gigabit Network Connection
  50 * Ethernet Connection I217-LM
  51 * Ethernet Connection I217-V
  52 * Ethernet Connection I218-V
  53 * Ethernet Connection I218-LM
  54 * Ethernet Connection (2) I218-LM
  55 * Ethernet Connection (2) I218-V
  56 * Ethernet Connection (3) I218-LM
  57 * Ethernet Connection (3) I218-V
  58 */
  59
  60#include "e1000.h"
  61
  62/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  63/* Offset 04h HSFSTS */
  64union ich8_hws_flash_status {
  65	struct ich8_hsfsts {
  66		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  67		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  68		u16 dael:1;	/* bit 2 Direct Access error Log */
  69		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  70		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  71		u16 reserved1:2;	/* bit 13:6 Reserved */
  72		u16 reserved2:6;	/* bit 13:6 Reserved */
  73		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  74		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  75	} hsf_status;
  76	u16 regval;
  77};
  78
  79/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  80/* Offset 06h FLCTL */
  81union ich8_hws_flash_ctrl {
  82	struct ich8_hsflctl {
  83		u16 flcgo:1;	/* 0 Flash Cycle Go */
  84		u16 flcycle:2;	/* 2:1 Flash Cycle */
  85		u16 reserved:5;	/* 7:3 Reserved  */
  86		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  87		u16 flockdn:6;	/* 15:10 Reserved */
  88	} hsf_ctrl;
  89	u16 regval;
  90};
  91
  92/* ICH Flash Region Access Permissions */
  93union ich8_hws_flash_regacc {
  94	struct ich8_flracc {
  95		u32 grra:8;	/* 0:7 GbE region Read Access */
  96		u32 grwa:8;	/* 8:15 GbE region Write Access */
  97		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  98		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  99	} hsf_flregacc;
 100	u16 regval;
 101};
 102
 103/* ICH Flash Protected Region */
 104union ich8_flash_protected_range {
 105	struct ich8_pr {
 106		u32 base:13;	/* 0:12 Protected Range Base */
 107		u32 reserved1:2;	/* 13:14 Reserved */
 108		u32 rpe:1;	/* 15 Read Protection Enable */
 109		u32 limit:13;	/* 16:28 Protected Range Limit */
 110		u32 reserved2:2;	/* 29:30 Reserved */
 111		u32 wpe:1;	/* 31 Write Protection Enable */
 112	} range;
 113	u32 regval;
 114};
 115
 116static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 117static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 119static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 120						u32 offset, u8 byte);
 121static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 122					 u8 *data);
 123static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 124					 u16 *data);
 125static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 126					 u8 size, u16 *data);
 127static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 128					   u32 *data);
 129static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 130					  u32 offset, u32 *data);
 131static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 132					    u32 offset, u32 data);
 133static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 134						 u32 offset, u32 dword);
 135static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 136static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 137static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 138static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 139static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 140static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 141static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 142static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 143static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 144static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 145static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 146static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 147static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 148static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 149static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 150static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 151static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 152static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 153static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 154static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 155static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 156static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 157static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 158static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 159
 160static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 161{
 162	return readw(hw->flash_address + reg);
 163}
 164
 165static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 166{
 167	return readl(hw->flash_address + reg);
 168}
 169
 170static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 171{
 172	writew(val, hw->flash_address + reg);
 173}
 174
 175static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 176{
 177	writel(val, hw->flash_address + reg);
 178}
 179
 180#define er16flash(reg)		__er16flash(hw, (reg))
 181#define er32flash(reg)		__er32flash(hw, (reg))
 182#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 183#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 184
 185/**
 186 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 187 *  @hw: pointer to the HW structure
 188 *
 189 *  Test access to the PHY registers by reading the PHY ID registers.  If
 190 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 191 *  otherwise assume the read PHY ID is correct if it is valid.
 192 *
 193 *  Assumes the sw/fw/hw semaphore is already acquired.
 194 **/
 195static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 196{
 197	u16 phy_reg = 0;
 198	u32 phy_id = 0;
 199	s32 ret_val = 0;
 200	u16 retry_count;
 201	u32 mac_reg = 0;
 202
 203	for (retry_count = 0; retry_count < 2; retry_count++) {
 204		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 205		if (ret_val || (phy_reg == 0xFFFF))
 206			continue;
 207		phy_id = (u32)(phy_reg << 16);
 208
 209		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 210		if (ret_val || (phy_reg == 0xFFFF)) {
 211			phy_id = 0;
 212			continue;
 213		}
 214		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 215		break;
 216	}
 217
 218	if (hw->phy.id) {
 219		if (hw->phy.id == phy_id)
 220			goto out;
 221	} else if (phy_id) {
 222		hw->phy.id = phy_id;
 223		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 224		goto out;
 225	}
 226
 227	/* In case the PHY needs to be in mdio slow mode,
 228	 * set slow mode and try to get the PHY id again.
 229	 */
 230	if (hw->mac.type < e1000_pch_lpt) {
 231		hw->phy.ops.release(hw);
 232		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 233		if (!ret_val)
 234			ret_val = e1000e_get_phy_id(hw);
 235		hw->phy.ops.acquire(hw);
 236	}
 237
 238	if (ret_val)
 239		return false;
 240out:
 241	if (hw->mac.type >= e1000_pch_lpt) {
 242		/* Only unforce SMBus if ME is not active */
 243		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 244			/* Unforce SMBus mode in PHY */
 245			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 246			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 247			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 248
 249			/* Unforce SMBus mode in MAC */
 250			mac_reg = er32(CTRL_EXT);
 251			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 252			ew32(CTRL_EXT, mac_reg);
 253		}
 254	}
 255
 256	return true;
 257}
 258
 259/**
 260 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 261 *  @hw: pointer to the HW structure
 262 *
 263 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 264 *  used to reset the PHY to a quiescent state when necessary.
 265 **/
 266static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 267{
 268	u32 mac_reg;
 269
 270	/* Set Phy Config Counter to 50msec */
 271	mac_reg = er32(FEXTNVM3);
 272	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 273	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 274	ew32(FEXTNVM3, mac_reg);
 275
 276	/* Toggle LANPHYPC Value bit */
 277	mac_reg = er32(CTRL);
 278	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 279	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 280	ew32(CTRL, mac_reg);
 281	e1e_flush();
 282	usleep_range(10, 20);
 283	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 284	ew32(CTRL, mac_reg);
 285	e1e_flush();
 286
 287	if (hw->mac.type < e1000_pch_lpt) {
 288		msleep(50);
 289	} else {
 290		u16 count = 20;
 291
 292		do {
 293			usleep_range(5000, 10000);
 294		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 295
 296		msleep(30);
 297	}
 298}
 299
 300/**
 301 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 302 *  @hw: pointer to the HW structure
 303 *
 304 *  Workarounds/flow necessary for PHY initialization during driver load
 305 *  and resume paths.
 306 **/
 307static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 308{
 309	struct e1000_adapter *adapter = hw->adapter;
 310	u32 mac_reg, fwsm = er32(FWSM);
 311	s32 ret_val;
 312
 313	/* Gate automatic PHY configuration by hardware on managed and
 314	 * non-managed 82579 and newer adapters.
 315	 */
 316	e1000_gate_hw_phy_config_ich8lan(hw, true);
 317
 318	/* It is not possible to be certain of the current state of ULP
 319	 * so forcibly disable it.
 320	 */
 321	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 322	e1000_disable_ulp_lpt_lp(hw, true);
 323
 324	ret_val = hw->phy.ops.acquire(hw);
 325	if (ret_val) {
 326		e_dbg("Failed to initialize PHY flow\n");
 327		goto out;
 328	}
 329
 330	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 331	 * inaccessible and resetting the PHY is not blocked, toggle the
 332	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 333	 */
 334	switch (hw->mac.type) {
 335	case e1000_pch_lpt:
 336	case e1000_pch_spt:
 337	case e1000_pch_cnp:
 338		if (e1000_phy_is_accessible_pchlan(hw))
 339			break;
 340
 341		/* Before toggling LANPHYPC, see if PHY is accessible by
 342		 * forcing MAC to SMBus mode first.
 343		 */
 344		mac_reg = er32(CTRL_EXT);
 345		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 346		ew32(CTRL_EXT, mac_reg);
 347
 348		/* Wait 50 milliseconds for MAC to finish any retries
 349		 * that it might be trying to perform from previous
 350		 * attempts to acknowledge any phy read requests.
 351		 */
 352		msleep(50);
 353
 354		/* fall-through */
 355	case e1000_pch2lan:
 356		if (e1000_phy_is_accessible_pchlan(hw))
 357			break;
 358
 359		/* fall-through */
 360	case e1000_pchlan:
 361		if ((hw->mac.type == e1000_pchlan) &&
 362		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 363			break;
 364
 365		if (hw->phy.ops.check_reset_block(hw)) {
 366			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 367			ret_val = -E1000_ERR_PHY;
 368			break;
 369		}
 370
 371		/* Toggle LANPHYPC Value bit */
 372		e1000_toggle_lanphypc_pch_lpt(hw);
 373		if (hw->mac.type >= e1000_pch_lpt) {
 374			if (e1000_phy_is_accessible_pchlan(hw))
 375				break;
 376
 377			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 378			 * so ensure that the MAC is also out of SMBus mode
 379			 */
 380			mac_reg = er32(CTRL_EXT);
 381			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 382			ew32(CTRL_EXT, mac_reg);
 383
 384			if (e1000_phy_is_accessible_pchlan(hw))
 385				break;
 386
 387			ret_val = -E1000_ERR_PHY;
 388		}
 389		break;
 390	default:
 391		break;
 392	}
 393
 394	hw->phy.ops.release(hw);
 395	if (!ret_val) {
 396
 397		/* Check to see if able to reset PHY.  Print error if not */
 398		if (hw->phy.ops.check_reset_block(hw)) {
 399			e_err("Reset blocked by ME\n");
 400			goto out;
 401		}
 402
 403		/* Reset the PHY before any access to it.  Doing so, ensures
 404		 * that the PHY is in a known good state before we read/write
 405		 * PHY registers.  The generic reset is sufficient here,
 406		 * because we haven't determined the PHY type yet.
 407		 */
 408		ret_val = e1000e_phy_hw_reset_generic(hw);
 409		if (ret_val)
 410			goto out;
 411
 412		/* On a successful reset, possibly need to wait for the PHY
 413		 * to quiesce to an accessible state before returning control
 414		 * to the calling function.  If the PHY does not quiesce, then
 415		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 416		 *  the PHY is in.
 417		 */
 418		ret_val = hw->phy.ops.check_reset_block(hw);
 419		if (ret_val)
 420			e_err("ME blocked access to PHY after reset\n");
 421	}
 422
 423out:
 424	/* Ungate automatic PHY configuration on non-managed 82579 */
 425	if ((hw->mac.type == e1000_pch2lan) &&
 426	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 427		usleep_range(10000, 20000);
 428		e1000_gate_hw_phy_config_ich8lan(hw, false);
 429	}
 430
 431	return ret_val;
 432}
 433
 434/**
 435 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 436 *  @hw: pointer to the HW structure
 437 *
 438 *  Initialize family-specific PHY parameters and function pointers.
 439 **/
 440static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 441{
 442	struct e1000_phy_info *phy = &hw->phy;
 443	s32 ret_val;
 444
 445	phy->addr = 1;
 446	phy->reset_delay_us = 100;
 447
 448	phy->ops.set_page = e1000_set_page_igp;
 449	phy->ops.read_reg = e1000_read_phy_reg_hv;
 450	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 451	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 452	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 453	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 454	phy->ops.write_reg = e1000_write_phy_reg_hv;
 455	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 456	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 457	phy->ops.power_up = e1000_power_up_phy_copper;
 458	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 459	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 460
 461	phy->id = e1000_phy_unknown;
 462
 463	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 464	if (ret_val)
 465		return ret_val;
 466
 467	if (phy->id == e1000_phy_unknown)
 468		switch (hw->mac.type) {
 469		default:
 470			ret_val = e1000e_get_phy_id(hw);
 471			if (ret_val)
 472				return ret_val;
 473			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 474				break;
 475			/* fall-through */
 476		case e1000_pch2lan:
 477		case e1000_pch_lpt:
 478		case e1000_pch_spt:
 479		case e1000_pch_cnp:
 480			/* In case the PHY needs to be in mdio slow mode,
 481			 * set slow mode and try to get the PHY id again.
 482			 */
 483			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 484			if (ret_val)
 485				return ret_val;
 486			ret_val = e1000e_get_phy_id(hw);
 487			if (ret_val)
 488				return ret_val;
 489			break;
 490		}
 491	phy->type = e1000e_get_phy_type_from_id(phy->id);
 492
 493	switch (phy->type) {
 494	case e1000_phy_82577:
 495	case e1000_phy_82579:
 496	case e1000_phy_i217:
 497		phy->ops.check_polarity = e1000_check_polarity_82577;
 498		phy->ops.force_speed_duplex =
 499		    e1000_phy_force_speed_duplex_82577;
 500		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 501		phy->ops.get_info = e1000_get_phy_info_82577;
 502		phy->ops.commit = e1000e_phy_sw_reset;
 503		break;
 504	case e1000_phy_82578:
 505		phy->ops.check_polarity = e1000_check_polarity_m88;
 506		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 507		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 508		phy->ops.get_info = e1000e_get_phy_info_m88;
 509		break;
 510	default:
 511		ret_val = -E1000_ERR_PHY;
 512		break;
 513	}
 514
 515	return ret_val;
 516}
 517
 518/**
 519 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 520 *  @hw: pointer to the HW structure
 521 *
 522 *  Initialize family-specific PHY parameters and function pointers.
 523 **/
 524static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 525{
 526	struct e1000_phy_info *phy = &hw->phy;
 527	s32 ret_val;
 528	u16 i = 0;
 529
 530	phy->addr = 1;
 531	phy->reset_delay_us = 100;
 532
 533	phy->ops.power_up = e1000_power_up_phy_copper;
 534	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 535
 536	/* We may need to do this twice - once for IGP and if that fails,
 537	 * we'll set BM func pointers and try again
 538	 */
 539	ret_val = e1000e_determine_phy_address(hw);
 540	if (ret_val) {
 541		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 542		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 543		ret_val = e1000e_determine_phy_address(hw);
 544		if (ret_val) {
 545			e_dbg("Cannot determine PHY addr. Erroring out\n");
 546			return ret_val;
 547		}
 548	}
 549
 550	phy->id = 0;
 551	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 552	       (i++ < 100)) {
 553		usleep_range(1000, 2000);
 554		ret_val = e1000e_get_phy_id(hw);
 555		if (ret_val)
 556			return ret_val;
 557	}
 558
 559	/* Verify phy id */
 560	switch (phy->id) {
 561	case IGP03E1000_E_PHY_ID:
 562		phy->type = e1000_phy_igp_3;
 563		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 564		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 565		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 566		phy->ops.get_info = e1000e_get_phy_info_igp;
 567		phy->ops.check_polarity = e1000_check_polarity_igp;
 568		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 569		break;
 570	case IFE_E_PHY_ID:
 571	case IFE_PLUS_E_PHY_ID:
 572	case IFE_C_E_PHY_ID:
 573		phy->type = e1000_phy_ife;
 574		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 575		phy->ops.get_info = e1000_get_phy_info_ife;
 576		phy->ops.check_polarity = e1000_check_polarity_ife;
 577		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 578		break;
 579	case BME1000_E_PHY_ID:
 580		phy->type = e1000_phy_bm;
 581		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 582		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 583		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 584		phy->ops.commit = e1000e_phy_sw_reset;
 585		phy->ops.get_info = e1000e_get_phy_info_m88;
 586		phy->ops.check_polarity = e1000_check_polarity_m88;
 587		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 588		break;
 589	default:
 590		return -E1000_ERR_PHY;
 591	}
 592
 593	return 0;
 594}
 595
 596/**
 597 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 598 *  @hw: pointer to the HW structure
 599 *
 600 *  Initialize family-specific NVM parameters and function
 601 *  pointers.
 602 **/
 603static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 604{
 605	struct e1000_nvm_info *nvm = &hw->nvm;
 606	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 607	u32 gfpreg, sector_base_addr, sector_end_addr;
 608	u16 i;
 609	u32 nvm_size;
 610
 611	nvm->type = e1000_nvm_flash_sw;
 612
 613	if (hw->mac.type >= e1000_pch_spt) {
 614		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 615		 * STRAP register. This is because in SPT the GbE Flash region
 616		 * is no longer accessed through the flash registers. Instead,
 617		 * the mechanism has changed, and the Flash region access
 618		 * registers are now implemented in GbE memory space.
 619		 */
 620		nvm->flash_base_addr = 0;
 621		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 622		    * NVM_SIZE_MULTIPLIER;
 623		nvm->flash_bank_size = nvm_size / 2;
 624		/* Adjust to word count */
 625		nvm->flash_bank_size /= sizeof(u16);
 626		/* Set the base address for flash register access */
 627		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 628	} else {
 629		/* Can't read flash registers if register set isn't mapped. */
 630		if (!hw->flash_address) {
 631			e_dbg("ERROR: Flash registers not mapped\n");
 632			return -E1000_ERR_CONFIG;
 633		}
 634
 635		gfpreg = er32flash(ICH_FLASH_GFPREG);
 636
 637		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 638		 * Add 1 to sector_end_addr since this sector is included in
 639		 * the overall size.
 640		 */
 641		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 642		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 643
 644		/* flash_base_addr is byte-aligned */
 645		nvm->flash_base_addr = sector_base_addr
 646		    << FLASH_SECTOR_ADDR_SHIFT;
 647
 648		/* find total size of the NVM, then cut in half since the total
 649		 * size represents two separate NVM banks.
 650		 */
 651		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 652					<< FLASH_SECTOR_ADDR_SHIFT);
 653		nvm->flash_bank_size /= 2;
 654		/* Adjust to word count */
 655		nvm->flash_bank_size /= sizeof(u16);
 656	}
 657
 658	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 659
 660	/* Clear shadow ram */
 661	for (i = 0; i < nvm->word_size; i++) {
 662		dev_spec->shadow_ram[i].modified = false;
 663		dev_spec->shadow_ram[i].value = 0xFFFF;
 664	}
 665
 666	return 0;
 667}
 668
 669/**
 670 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 671 *  @hw: pointer to the HW structure
 672 *
 673 *  Initialize family-specific MAC parameters and function
 674 *  pointers.
 675 **/
 676static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 677{
 678	struct e1000_mac_info *mac = &hw->mac;
 679
 680	/* Set media type function pointer */
 681	hw->phy.media_type = e1000_media_type_copper;
 682
 683	/* Set mta register count */
 684	mac->mta_reg_count = 32;
 685	/* Set rar entry count */
 686	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 687	if (mac->type == e1000_ich8lan)
 688		mac->rar_entry_count--;
 689	/* FWSM register */
 690	mac->has_fwsm = true;
 691	/* ARC subsystem not supported */
 692	mac->arc_subsystem_valid = false;
 693	/* Adaptive IFS supported */
 694	mac->adaptive_ifs = true;
 695
 696	/* LED and other operations */
 697	switch (mac->type) {
 698	case e1000_ich8lan:
 699	case e1000_ich9lan:
 700	case e1000_ich10lan:
 701		/* check management mode */
 702		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 703		/* ID LED init */
 704		mac->ops.id_led_init = e1000e_id_led_init_generic;
 705		/* blink LED */
 706		mac->ops.blink_led = e1000e_blink_led_generic;
 707		/* setup LED */
 708		mac->ops.setup_led = e1000e_setup_led_generic;
 709		/* cleanup LED */
 710		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 711		/* turn on/off LED */
 712		mac->ops.led_on = e1000_led_on_ich8lan;
 713		mac->ops.led_off = e1000_led_off_ich8lan;
 714		break;
 715	case e1000_pch2lan:
 716		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 717		mac->ops.rar_set = e1000_rar_set_pch2lan;
 718		/* fall-through */
 719	case e1000_pch_lpt:
 720	case e1000_pch_spt:
 721	case e1000_pch_cnp:
 722	case e1000_pchlan:
 723		/* check management mode */
 724		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 725		/* ID LED init */
 726		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 727		/* setup LED */
 728		mac->ops.setup_led = e1000_setup_led_pchlan;
 729		/* cleanup LED */
 730		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 731		/* turn on/off LED */
 732		mac->ops.led_on = e1000_led_on_pchlan;
 733		mac->ops.led_off = e1000_led_off_pchlan;
 734		break;
 735	default:
 736		break;
 737	}
 738
 739	if (mac->type >= e1000_pch_lpt) {
 740		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 741		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 742		mac->ops.setup_physical_interface =
 743		    e1000_setup_copper_link_pch_lpt;
 744		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 745	}
 746
 747	/* Enable PCS Lock-loss workaround for ICH8 */
 748	if (mac->type == e1000_ich8lan)
 749		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 750
 751	return 0;
 752}
 753
 754/**
 755 *  __e1000_access_emi_reg_locked - Read/write EMI register
 756 *  @hw: pointer to the HW structure
 757 *  @addr: EMI address to program
 758 *  @data: pointer to value to read/write from/to the EMI address
 759 *  @read: boolean flag to indicate read or write
 760 *
 761 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 762 **/
 763static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 764					 u16 *data, bool read)
 765{
 766	s32 ret_val;
 767
 768	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 769	if (ret_val)
 770		return ret_val;
 771
 772	if (read)
 773		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 774	else
 775		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 776
 777	return ret_val;
 778}
 779
 780/**
 781 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 782 *  @hw: pointer to the HW structure
 783 *  @addr: EMI address to program
 784 *  @data: value to be read from the EMI address
 785 *
 786 *  Assumes the SW/FW/HW Semaphore is already acquired.
 787 **/
 788s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 789{
 790	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 791}
 792
 793/**
 794 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 795 *  @hw: pointer to the HW structure
 796 *  @addr: EMI address to program
 797 *  @data: value to be written to the EMI address
 798 *
 799 *  Assumes the SW/FW/HW Semaphore is already acquired.
 800 **/
 801s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 802{
 803	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 804}
 805
 806/**
 807 *  e1000_set_eee_pchlan - Enable/disable EEE support
 808 *  @hw: pointer to the HW structure
 809 *
 810 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 811 *  the link and the EEE capabilities of the link partner.  The LPI Control
 812 *  register bits will remain set only if/when link is up.
 813 *
 814 *  EEE LPI must not be asserted earlier than one second after link is up.
 815 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 816 *  can be link issues with some switches.  Other devices can have EEE LPI
 817 *  enabled immediately upon link up since they have a timer in hardware which
 818 *  prevents LPI from being asserted too early.
 819 **/
 820s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 821{
 822	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 823	s32 ret_val;
 824	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 825
 826	switch (hw->phy.type) {
 827	case e1000_phy_82579:
 828		lpa = I82579_EEE_LP_ABILITY;
 829		pcs_status = I82579_EEE_PCS_STATUS;
 830		adv_addr = I82579_EEE_ADVERTISEMENT;
 831		break;
 832	case e1000_phy_i217:
 833		lpa = I217_EEE_LP_ABILITY;
 834		pcs_status = I217_EEE_PCS_STATUS;
 835		adv_addr = I217_EEE_ADVERTISEMENT;
 836		break;
 837	default:
 838		return 0;
 839	}
 840
 841	ret_val = hw->phy.ops.acquire(hw);
 842	if (ret_val)
 843		return ret_val;
 844
 845	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 846	if (ret_val)
 847		goto release;
 848
 849	/* Clear bits that enable EEE in various speeds */
 850	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 851
 852	/* Enable EEE if not disabled by user */
 853	if (!dev_spec->eee_disable) {
 854		/* Save off link partner's EEE ability */
 855		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 856						    &dev_spec->eee_lp_ability);
 857		if (ret_val)
 858			goto release;
 859
 860		/* Read EEE advertisement */
 861		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 862		if (ret_val)
 863			goto release;
 864
 865		/* Enable EEE only for speeds in which the link partner is
 866		 * EEE capable and for which we advertise EEE.
 867		 */
 868		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 869			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 870
 871		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 872			e1e_rphy_locked(hw, MII_LPA, &data);
 873			if (data & LPA_100FULL)
 874				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 875			else
 876				/* EEE is not supported in 100Half, so ignore
 877				 * partner's EEE in 100 ability if full-duplex
 878				 * is not advertised.
 879				 */
 880				dev_spec->eee_lp_ability &=
 881				    ~I82579_EEE_100_SUPPORTED;
 882		}
 883	}
 884
 885	if (hw->phy.type == e1000_phy_82579) {
 886		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 887						    &data);
 888		if (ret_val)
 889			goto release;
 890
 891		data &= ~I82579_LPI_100_PLL_SHUT;
 892		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 893						     data);
 894	}
 895
 896	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 897	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 898	if (ret_val)
 899		goto release;
 900
 901	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 902release:
 903	hw->phy.ops.release(hw);
 904
 905	return ret_val;
 906}
 907
 908/**
 909 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 910 *  @hw:   pointer to the HW structure
 911 *  @link: link up bool flag
 912 *
 913 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 914 *  preventing further DMA write requests.  Workaround the issue by disabling
 915 *  the de-assertion of the clock request when in 1Gpbs mode.
 916 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 917 *  speeds in order to avoid Tx hangs.
 918 **/
 919static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 920{
 921	u32 fextnvm6 = er32(FEXTNVM6);
 922	u32 status = er32(STATUS);
 923	s32 ret_val = 0;
 924	u16 reg;
 925
 926	if (link && (status & E1000_STATUS_SPEED_1000)) {
 927		ret_val = hw->phy.ops.acquire(hw);
 928		if (ret_val)
 929			return ret_val;
 930
 931		ret_val =
 932		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 933						&reg);
 934		if (ret_val)
 935			goto release;
 936
 937		ret_val =
 938		    e1000e_write_kmrn_reg_locked(hw,
 939						 E1000_KMRNCTRLSTA_K1_CONFIG,
 940						 reg &
 941						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 942		if (ret_val)
 943			goto release;
 944
 945		usleep_range(10, 20);
 946
 947		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 948
 949		ret_val =
 950		    e1000e_write_kmrn_reg_locked(hw,
 951						 E1000_KMRNCTRLSTA_K1_CONFIG,
 952						 reg);
 953release:
 954		hw->phy.ops.release(hw);
 955	} else {
 956		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 957		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 958
 959		if ((hw->phy.revision > 5) || !link ||
 960		    ((status & E1000_STATUS_SPEED_100) &&
 961		     (status & E1000_STATUS_FD)))
 962			goto update_fextnvm6;
 963
 964		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 965		if (ret_val)
 966			return ret_val;
 967
 968		/* Clear link status transmit timeout */
 969		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 970
 971		if (status & E1000_STATUS_SPEED_100) {
 972			/* Set inband Tx timeout to 5x10us for 100Half */
 973			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 974
 975			/* Do not extend the K1 entry latency for 100Half */
 976			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 977		} else {
 978			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 979			reg |= 50 <<
 980			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 981
 982			/* Extend the K1 entry latency for 10 Mbps */
 983			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 984		}
 985
 986		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 987		if (ret_val)
 988			return ret_val;
 989
 990update_fextnvm6:
 991		ew32(FEXTNVM6, fextnvm6);
 992	}
 993
 994	return ret_val;
 995}
 996
 997/**
 998 *  e1000_platform_pm_pch_lpt - Set platform power management values
 999 *  @hw: pointer to the HW structure
1000 *  @link: bool indicating link status
1001 *
1002 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1003 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1004 *  when link is up (which must not exceed the maximum latency supported
1005 *  by the platform), otherwise specify there is no LTR requirement.
1006 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1007 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1008 *  Capability register set, on this device LTR is set by writing the
1009 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1010 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1011 *  message to the PMC.
1012 **/
1013static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1014{
1015	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1016	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1017	u16 lat_enc = 0;	/* latency encoded */
1018
1019	if (link) {
1020		u16 speed, duplex, scale = 0;
1021		u16 max_snoop, max_nosnoop;
1022		u16 max_ltr_enc;	/* max LTR latency encoded */
1023		u64 value;
1024		u32 rxa;
1025
1026		if (!hw->adapter->max_frame_size) {
1027			e_dbg("max_frame_size not set.\n");
1028			return -E1000_ERR_CONFIG;
1029		}
1030
1031		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1032		if (!speed) {
1033			e_dbg("Speed not set.\n");
1034			return -E1000_ERR_CONFIG;
1035		}
1036
1037		/* Rx Packet Buffer Allocation size (KB) */
1038		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1039
1040		/* Determine the maximum latency tolerated by the device.
1041		 *
1042		 * Per the PCIe spec, the tolerated latencies are encoded as
1043		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1044		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1045		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1046		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1047		 */
1048		rxa *= 512;
1049		value = (rxa > hw->adapter->max_frame_size) ?
1050			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1051			0;
1052
1053		while (value > PCI_LTR_VALUE_MASK) {
1054			scale++;
1055			value = DIV_ROUND_UP(value, BIT(5));
1056		}
1057		if (scale > E1000_LTRV_SCALE_MAX) {
1058			e_dbg("Invalid LTR latency scale %d\n", scale);
1059			return -E1000_ERR_CONFIG;
1060		}
1061		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1062
1063		/* Determine the maximum latency tolerated by the platform */
1064		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1065				     &max_snoop);
1066		pci_read_config_word(hw->adapter->pdev,
1067				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1068		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1069
1070		if (lat_enc > max_ltr_enc)
1071			lat_enc = max_ltr_enc;
1072	}
1073
1074	/* Set Snoop and No-Snoop latencies the same */
1075	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1076	ew32(LTRV, reg);
1077
1078	return 0;
1079}
1080
1081/**
1082 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1083 *  @hw: pointer to the HW structure
1084 *  @to_sx: boolean indicating a system power state transition to Sx
1085 *
1086 *  When link is down, configure ULP mode to significantly reduce the power
1087 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1088 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1089 *  system, configure the ULP mode by software.
1090 */
1091s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1092{
1093	u32 mac_reg;
1094	s32 ret_val = 0;
1095	u16 phy_reg;
1096	u16 oem_reg = 0;
1097
1098	if ((hw->mac.type < e1000_pch_lpt) ||
1099	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1100	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1101	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1102	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1103	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1104		return 0;
1105
1106	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1107		/* Request ME configure ULP mode in the PHY */
1108		mac_reg = er32(H2ME);
1109		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1110		ew32(H2ME, mac_reg);
1111
1112		goto out;
1113	}
1114
1115	if (!to_sx) {
1116		int i = 0;
1117
1118		/* Poll up to 5 seconds for Cable Disconnected indication */
1119		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1120			/* Bail if link is re-acquired */
1121			if (er32(STATUS) & E1000_STATUS_LU)
1122				return -E1000_ERR_PHY;
1123
1124			if (i++ == 100)
1125				break;
1126
1127			msleep(50);
1128		}
1129		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1130		      (er32(FEXT) &
1131		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1132	}
1133
1134	ret_val = hw->phy.ops.acquire(hw);
1135	if (ret_val)
1136		goto out;
1137
1138	/* Force SMBus mode in PHY */
1139	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1140	if (ret_val)
1141		goto release;
1142	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1143	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1144
1145	/* Force SMBus mode in MAC */
1146	mac_reg = er32(CTRL_EXT);
1147	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1148	ew32(CTRL_EXT, mac_reg);
1149
1150	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1151	 * LPLU and disable Gig speed when entering ULP
1152	 */
1153	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1154		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1155						       &oem_reg);
1156		if (ret_val)
1157			goto release;
1158
1159		phy_reg = oem_reg;
1160		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1161
1162		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1163							phy_reg);
1164
1165		if (ret_val)
1166			goto release;
1167	}
1168
1169	/* Set Inband ULP Exit, Reset to SMBus mode and
1170	 * Disable SMBus Release on PERST# in PHY
1171	 */
1172	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1173	if (ret_val)
1174		goto release;
1175	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1176		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1177	if (to_sx) {
1178		if (er32(WUFC) & E1000_WUFC_LNKC)
1179			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1180		else
1181			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1182
1183		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1184		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1185	} else {
1186		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1187		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1188		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1189	}
1190	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1191
1192	/* Set Disable SMBus Release on PERST# in MAC */
1193	mac_reg = er32(FEXTNVM7);
1194	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1195	ew32(FEXTNVM7, mac_reg);
1196
1197	/* Commit ULP changes in PHY by starting auto ULP configuration */
1198	phy_reg |= I218_ULP_CONFIG1_START;
1199	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1200
1201	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1202	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1203		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1204							oem_reg);
1205		if (ret_val)
1206			goto release;
1207	}
1208
1209release:
1210	hw->phy.ops.release(hw);
1211out:
1212	if (ret_val)
1213		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1214	else
1215		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1216
1217	return ret_val;
1218}
1219
1220/**
1221 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1222 *  @hw: pointer to the HW structure
1223 *  @force: boolean indicating whether or not to force disabling ULP
1224 *
1225 *  Un-configure ULP mode when link is up, the system is transitioned from
1226 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1227 *  system, poll for an indication from ME that ULP has been un-configured.
1228 *  If not on an ME enabled system, un-configure the ULP mode by software.
1229 *
1230 *  During nominal operation, this function is called when link is acquired
1231 *  to disable ULP mode (force=false); otherwise, for example when unloading
1232 *  the driver or during Sx->S0 transitions, this is called with force=true
1233 *  to forcibly disable ULP.
1234 */
1235static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1236{
1237	s32 ret_val = 0;
1238	u32 mac_reg;
1239	u16 phy_reg;
1240	int i = 0;
1241
1242	if ((hw->mac.type < e1000_pch_lpt) ||
1243	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1244	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1245	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1246	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1247	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1248		return 0;
1249
1250	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1251		if (force) {
1252			/* Request ME un-configure ULP mode in the PHY */
1253			mac_reg = er32(H2ME);
1254			mac_reg &= ~E1000_H2ME_ULP;
1255			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1256			ew32(H2ME, mac_reg);
1257		}
1258
1259		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1260		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1261			if (i++ == 30) {
1262				ret_val = -E1000_ERR_PHY;
1263				goto out;
1264			}
1265
1266			usleep_range(10000, 20000);
1267		}
1268		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1269
1270		if (force) {
1271			mac_reg = er32(H2ME);
1272			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1273			ew32(H2ME, mac_reg);
1274		} else {
1275			/* Clear H2ME.ULP after ME ULP configuration */
1276			mac_reg = er32(H2ME);
1277			mac_reg &= ~E1000_H2ME_ULP;
1278			ew32(H2ME, mac_reg);
1279		}
1280
1281		goto out;
1282	}
1283
1284	ret_val = hw->phy.ops.acquire(hw);
1285	if (ret_val)
1286		goto out;
1287
1288	if (force)
1289		/* Toggle LANPHYPC Value bit */
1290		e1000_toggle_lanphypc_pch_lpt(hw);
1291
1292	/* Unforce SMBus mode in PHY */
1293	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1294	if (ret_val) {
1295		/* The MAC might be in PCIe mode, so temporarily force to
1296		 * SMBus mode in order to access the PHY.
1297		 */
1298		mac_reg = er32(CTRL_EXT);
1299		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1300		ew32(CTRL_EXT, mac_reg);
1301
1302		msleep(50);
1303
1304		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1305						       &phy_reg);
1306		if (ret_val)
1307			goto release;
1308	}
1309	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1310	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1311
1312	/* Unforce SMBus mode in MAC */
1313	mac_reg = er32(CTRL_EXT);
1314	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1315	ew32(CTRL_EXT, mac_reg);
1316
1317	/* When ULP mode was previously entered, K1 was disabled by the
1318	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1319	 */
1320	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1321	if (ret_val)
1322		goto release;
1323	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1324	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1325
1326	/* Clear ULP enabled configuration */
1327	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1328	if (ret_val)
1329		goto release;
1330	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1331		     I218_ULP_CONFIG1_STICKY_ULP |
1332		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1333		     I218_ULP_CONFIG1_WOL_HOST |
1334		     I218_ULP_CONFIG1_INBAND_EXIT |
1335		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1336		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1337		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1338	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1339
1340	/* Commit ULP changes by starting auto ULP configuration */
1341	phy_reg |= I218_ULP_CONFIG1_START;
1342	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1343
1344	/* Clear Disable SMBus Release on PERST# in MAC */
1345	mac_reg = er32(FEXTNVM7);
1346	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1347	ew32(FEXTNVM7, mac_reg);
1348
1349release:
1350	hw->phy.ops.release(hw);
1351	if (force) {
1352		e1000_phy_hw_reset(hw);
1353		msleep(50);
1354	}
1355out:
1356	if (ret_val)
1357		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1358	else
1359		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1360
1361	return ret_val;
1362}
1363
1364/**
1365 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1366 *  @hw: pointer to the HW structure
1367 *
1368 *  Checks to see of the link status of the hardware has changed.  If a
1369 *  change in link status has been detected, then we read the PHY registers
1370 *  to get the current speed/duplex if link exists.
1371 **/
1372static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1373{
1374	struct e1000_mac_info *mac = &hw->mac;
1375	s32 ret_val, tipg_reg = 0;
1376	u16 emi_addr, emi_val = 0;
1377	bool link;
1378	u16 phy_reg;
1379
1380	/* We only want to go out to the PHY registers to see if Auto-Neg
1381	 * has completed and/or if our link status has changed.  The
1382	 * get_link_status flag is set upon receiving a Link Status
1383	 * Change or Rx Sequence Error interrupt.
1384	 */
1385	if (!mac->get_link_status)
1386		return 0;
1387	mac->get_link_status = false;
1388
1389	/* First we want to see if the MII Status Register reports
1390	 * link.  If so, then we want to get the current speed/duplex
1391	 * of the PHY.
1392	 */
1393	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1394	if (ret_val)
1395		goto out;
1396
1397	if (hw->mac.type == e1000_pchlan) {
1398		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1399		if (ret_val)
1400			goto out;
1401	}
1402
1403	/* When connected at 10Mbps half-duplex, some parts are excessively
1404	 * aggressive resulting in many collisions. To avoid this, increase
1405	 * the IPG and reduce Rx latency in the PHY.
1406	 */
1407	if ((hw->mac.type >= e1000_pch2lan) && link) {
1408		u16 speed, duplex;
1409
1410		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1411		tipg_reg = er32(TIPG);
1412		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1413
1414		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1415			tipg_reg |= 0xFF;
1416			/* Reduce Rx latency in analog PHY */
1417			emi_val = 0;
1418		} else if (hw->mac.type >= e1000_pch_spt &&
1419			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1420			tipg_reg |= 0xC;
1421			emi_val = 1;
1422		} else {
1423
1424			/* Roll back the default values */
1425			tipg_reg |= 0x08;
1426			emi_val = 1;
1427		}
1428
1429		ew32(TIPG, tipg_reg);
1430
1431		ret_val = hw->phy.ops.acquire(hw);
1432		if (ret_val)
1433			goto out;
1434
1435		if (hw->mac.type == e1000_pch2lan)
1436			emi_addr = I82579_RX_CONFIG;
1437		else
1438			emi_addr = I217_RX_CONFIG;
1439		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1440
1441		if (hw->mac.type >= e1000_pch_lpt) {
1442			u16 phy_reg;
1443
1444			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1445			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1446			if (speed == SPEED_100 || speed == SPEED_10)
1447				phy_reg |= 0x3E8;
1448			else
1449				phy_reg |= 0xFA;
1450			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
 
 
 
 
 
 
 
 
 
 
1451		}
1452		hw->phy.ops.release(hw);
1453
1454		if (ret_val)
1455			goto out;
1456
1457		if (hw->mac.type >= e1000_pch_spt) {
1458			u16 data;
1459			u16 ptr_gap;
1460
1461			if (speed == SPEED_1000) {
1462				ret_val = hw->phy.ops.acquire(hw);
1463				if (ret_val)
1464					goto out;
1465
1466				ret_val = e1e_rphy_locked(hw,
1467							  PHY_REG(776, 20),
1468							  &data);
1469				if (ret_val) {
1470					hw->phy.ops.release(hw);
1471					goto out;
1472				}
1473
1474				ptr_gap = (data & (0x3FF << 2)) >> 2;
1475				if (ptr_gap < 0x18) {
1476					data &= ~(0x3FF << 2);
1477					data |= (0x18 << 2);
1478					ret_val =
1479					    e1e_wphy_locked(hw,
1480							    PHY_REG(776, 20),
1481							    data);
1482				}
1483				hw->phy.ops.release(hw);
1484				if (ret_val)
1485					goto out;
1486			} else {
1487				ret_val = hw->phy.ops.acquire(hw);
1488				if (ret_val)
1489					goto out;
1490
1491				ret_val = e1e_wphy_locked(hw,
1492							  PHY_REG(776, 20),
1493							  0xC023);
1494				hw->phy.ops.release(hw);
1495				if (ret_val)
1496					goto out;
1497
1498			}
1499		}
1500	}
1501
1502	/* I217 Packet Loss issue:
1503	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1504	 * on power up.
1505	 * Set the Beacon Duration for I217 to 8 usec
1506	 */
1507	if (hw->mac.type >= e1000_pch_lpt) {
1508		u32 mac_reg;
1509
1510		mac_reg = er32(FEXTNVM4);
1511		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1512		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1513		ew32(FEXTNVM4, mac_reg);
1514	}
1515
1516	/* Work-around I218 hang issue */
1517	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1518	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1519	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1520	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1521		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1522		if (ret_val)
1523			goto out;
1524	}
1525	if (hw->mac.type >= e1000_pch_lpt) {
1526		/* Set platform power management values for
1527		 * Latency Tolerance Reporting (LTR)
1528		 */
1529		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1530		if (ret_val)
1531			goto out;
1532	}
1533
1534	/* Clear link partner's EEE ability */
1535	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1536
1537	if (hw->mac.type >= e1000_pch_lpt) {
1538		u32 fextnvm6 = er32(FEXTNVM6);
1539
1540		if (hw->mac.type == e1000_pch_spt) {
1541			/* FEXTNVM6 K1-off workaround - for SPT only */
1542			u32 pcieanacfg = er32(PCIEANACFG);
1543
1544			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1545				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1546			else
1547				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1548		}
1549
1550		ew32(FEXTNVM6, fextnvm6);
1551	}
1552
1553	if (!link)
1554		goto out;
1555
1556	switch (hw->mac.type) {
1557	case e1000_pch2lan:
1558		ret_val = e1000_k1_workaround_lv(hw);
1559		if (ret_val)
1560			return ret_val;
1561		/* fall-thru */
1562	case e1000_pchlan:
1563		if (hw->phy.type == e1000_phy_82578) {
1564			ret_val = e1000_link_stall_workaround_hv(hw);
1565			if (ret_val)
1566				return ret_val;
1567		}
1568
1569		/* Workaround for PCHx parts in half-duplex:
1570		 * Set the number of preambles removed from the packet
1571		 * when it is passed from the PHY to the MAC to prevent
1572		 * the MAC from misinterpreting the packet type.
1573		 */
1574		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1575		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1576
1577		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1578			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1579
1580		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1581		break;
1582	default:
1583		break;
1584	}
1585
1586	/* Check if there was DownShift, must be checked
1587	 * immediately after link-up
1588	 */
1589	e1000e_check_downshift(hw);
1590
1591	/* Enable/Disable EEE after link up */
1592	if (hw->phy.type > e1000_phy_82579) {
1593		ret_val = e1000_set_eee_pchlan(hw);
1594		if (ret_val)
1595			return ret_val;
1596	}
1597
1598	/* If we are forcing speed/duplex, then we simply return since
1599	 * we have already determined whether we have link or not.
1600	 */
1601	if (!mac->autoneg)
1602		return -E1000_ERR_CONFIG;
1603
1604	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1605	 * of MAC speed/duplex configuration.  So we only need to
1606	 * configure Collision Distance in the MAC.
1607	 */
1608	mac->ops.config_collision_dist(hw);
1609
1610	/* Configure Flow Control now that Auto-Neg has completed.
1611	 * First, we need to restore the desired flow control
1612	 * settings because we may have had to re-autoneg with a
1613	 * different link partner.
1614	 */
1615	ret_val = e1000e_config_fc_after_link_up(hw);
1616	if (ret_val)
1617		e_dbg("Error configuring flow control\n");
1618
1619	return ret_val;
1620
1621out:
1622	mac->get_link_status = true;
1623	return ret_val;
1624}
1625
1626static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1627{
1628	struct e1000_hw *hw = &adapter->hw;
1629	s32 rc;
1630
1631	rc = e1000_init_mac_params_ich8lan(hw);
1632	if (rc)
1633		return rc;
1634
1635	rc = e1000_init_nvm_params_ich8lan(hw);
1636	if (rc)
1637		return rc;
1638
1639	switch (hw->mac.type) {
1640	case e1000_ich8lan:
1641	case e1000_ich9lan:
1642	case e1000_ich10lan:
1643		rc = e1000_init_phy_params_ich8lan(hw);
1644		break;
1645	case e1000_pchlan:
1646	case e1000_pch2lan:
1647	case e1000_pch_lpt:
1648	case e1000_pch_spt:
1649	case e1000_pch_cnp:
1650		rc = e1000_init_phy_params_pchlan(hw);
1651		break;
1652	default:
1653		break;
1654	}
1655	if (rc)
1656		return rc;
1657
1658	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1659	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1660	 */
1661	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1662	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1663	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1664		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1665		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1666
1667		hw->mac.ops.blink_led = NULL;
1668	}
1669
1670	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1671	    (adapter->hw.phy.type != e1000_phy_ife))
1672		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1673
1674	/* Enable workaround for 82579 w/ ME enabled */
1675	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1676	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1677		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1678
1679	return 0;
1680}
1681
1682static DEFINE_MUTEX(nvm_mutex);
1683
1684/**
1685 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1686 *  @hw: pointer to the HW structure
1687 *
1688 *  Acquires the mutex for performing NVM operations.
1689 **/
1690static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1691{
1692	mutex_lock(&nvm_mutex);
1693
1694	return 0;
1695}
1696
1697/**
1698 *  e1000_release_nvm_ich8lan - Release NVM mutex
1699 *  @hw: pointer to the HW structure
1700 *
1701 *  Releases the mutex used while performing NVM operations.
1702 **/
1703static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1704{
1705	mutex_unlock(&nvm_mutex);
1706}
1707
1708/**
1709 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1710 *  @hw: pointer to the HW structure
1711 *
1712 *  Acquires the software control flag for performing PHY and select
1713 *  MAC CSR accesses.
1714 **/
1715static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1716{
1717	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1718	s32 ret_val = 0;
1719
1720	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1721			     &hw->adapter->state)) {
1722		e_dbg("contention for Phy access\n");
1723		return -E1000_ERR_PHY;
1724	}
1725
1726	while (timeout) {
1727		extcnf_ctrl = er32(EXTCNF_CTRL);
1728		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1729			break;
1730
1731		mdelay(1);
1732		timeout--;
1733	}
1734
1735	if (!timeout) {
1736		e_dbg("SW has already locked the resource.\n");
1737		ret_val = -E1000_ERR_CONFIG;
1738		goto out;
1739	}
1740
1741	timeout = SW_FLAG_TIMEOUT;
1742
1743	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1744	ew32(EXTCNF_CTRL, extcnf_ctrl);
1745
1746	while (timeout) {
1747		extcnf_ctrl = er32(EXTCNF_CTRL);
1748		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1749			break;
1750
1751		mdelay(1);
1752		timeout--;
1753	}
1754
1755	if (!timeout) {
1756		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1757		      er32(FWSM), extcnf_ctrl);
1758		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1759		ew32(EXTCNF_CTRL, extcnf_ctrl);
1760		ret_val = -E1000_ERR_CONFIG;
1761		goto out;
1762	}
1763
1764out:
1765	if (ret_val)
1766		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1767
1768	return ret_val;
1769}
1770
1771/**
1772 *  e1000_release_swflag_ich8lan - Release software control flag
1773 *  @hw: pointer to the HW structure
1774 *
1775 *  Releases the software control flag for performing PHY and select
1776 *  MAC CSR accesses.
1777 **/
1778static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1779{
1780	u32 extcnf_ctrl;
1781
1782	extcnf_ctrl = er32(EXTCNF_CTRL);
1783
1784	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1785		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1786		ew32(EXTCNF_CTRL, extcnf_ctrl);
1787	} else {
1788		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1789	}
1790
1791	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1792}
1793
1794/**
1795 *  e1000_check_mng_mode_ich8lan - Checks management mode
1796 *  @hw: pointer to the HW structure
1797 *
1798 *  This checks if the adapter has any manageability enabled.
1799 *  This is a function pointer entry point only called by read/write
1800 *  routines for the PHY and NVM parts.
1801 **/
1802static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1803{
1804	u32 fwsm;
1805
1806	fwsm = er32(FWSM);
1807	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1808		((fwsm & E1000_FWSM_MODE_MASK) ==
1809		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1810}
1811
1812/**
1813 *  e1000_check_mng_mode_pchlan - Checks management mode
1814 *  @hw: pointer to the HW structure
1815 *
1816 *  This checks if the adapter has iAMT enabled.
1817 *  This is a function pointer entry point only called by read/write
1818 *  routines for the PHY and NVM parts.
1819 **/
1820static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1821{
1822	u32 fwsm;
1823
1824	fwsm = er32(FWSM);
1825	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1826	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1827}
1828
1829/**
1830 *  e1000_rar_set_pch2lan - Set receive address register
1831 *  @hw: pointer to the HW structure
1832 *  @addr: pointer to the receive address
1833 *  @index: receive address array register
1834 *
1835 *  Sets the receive address array register at index to the address passed
1836 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1837 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1838 *  Use SHRA[0-3] in place of those reserved for ME.
1839 **/
1840static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1841{
1842	u32 rar_low, rar_high;
1843
1844	/* HW expects these in little endian so we reverse the byte order
1845	 * from network order (big endian) to little endian
1846	 */
1847	rar_low = ((u32)addr[0] |
1848		   ((u32)addr[1] << 8) |
1849		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1850
1851	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1852
1853	/* If MAC address zero, no need to set the AV bit */
1854	if (rar_low || rar_high)
1855		rar_high |= E1000_RAH_AV;
1856
1857	if (index == 0) {
1858		ew32(RAL(index), rar_low);
1859		e1e_flush();
1860		ew32(RAH(index), rar_high);
1861		e1e_flush();
1862		return 0;
1863	}
1864
1865	/* RAR[1-6] are owned by manageability.  Skip those and program the
1866	 * next address into the SHRA register array.
1867	 */
1868	if (index < (u32)(hw->mac.rar_entry_count)) {
1869		s32 ret_val;
1870
1871		ret_val = e1000_acquire_swflag_ich8lan(hw);
1872		if (ret_val)
1873			goto out;
1874
1875		ew32(SHRAL(index - 1), rar_low);
1876		e1e_flush();
1877		ew32(SHRAH(index - 1), rar_high);
1878		e1e_flush();
1879
1880		e1000_release_swflag_ich8lan(hw);
1881
1882		/* verify the register updates */
1883		if ((er32(SHRAL(index - 1)) == rar_low) &&
1884		    (er32(SHRAH(index - 1)) == rar_high))
1885			return 0;
1886
1887		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1888		      (index - 1), er32(FWSM));
1889	}
1890
1891out:
1892	e_dbg("Failed to write receive address at index %d\n", index);
1893	return -E1000_ERR_CONFIG;
1894}
1895
1896/**
1897 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1898 *  @hw: pointer to the HW structure
1899 *
1900 *  Get the number of available receive registers that the Host can
1901 *  program. SHRA[0-10] are the shared receive address registers
1902 *  that are shared between the Host and manageability engine (ME).
1903 *  ME can reserve any number of addresses and the host needs to be
1904 *  able to tell how many available registers it has access to.
1905 **/
1906static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1907{
1908	u32 wlock_mac;
1909	u32 num_entries;
1910
1911	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1912	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1913
1914	switch (wlock_mac) {
1915	case 0:
1916		/* All SHRA[0..10] and RAR[0] available */
1917		num_entries = hw->mac.rar_entry_count;
1918		break;
1919	case 1:
1920		/* Only RAR[0] available */
1921		num_entries = 1;
1922		break;
1923	default:
1924		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1925		num_entries = wlock_mac + 1;
1926		break;
1927	}
1928
1929	return num_entries;
1930}
1931
1932/**
1933 *  e1000_rar_set_pch_lpt - Set receive address registers
1934 *  @hw: pointer to the HW structure
1935 *  @addr: pointer to the receive address
1936 *  @index: receive address array register
1937 *
1938 *  Sets the receive address register array at index to the address passed
1939 *  in by addr. For LPT, RAR[0] is the base address register that is to
1940 *  contain the MAC address. SHRA[0-10] are the shared receive address
1941 *  registers that are shared between the Host and manageability engine (ME).
1942 **/
1943static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1944{
1945	u32 rar_low, rar_high;
1946	u32 wlock_mac;
1947
1948	/* HW expects these in little endian so we reverse the byte order
1949	 * from network order (big endian) to little endian
1950	 */
1951	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1952		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1953
1954	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1955
1956	/* If MAC address zero, no need to set the AV bit */
1957	if (rar_low || rar_high)
1958		rar_high |= E1000_RAH_AV;
1959
1960	if (index == 0) {
1961		ew32(RAL(index), rar_low);
1962		e1e_flush();
1963		ew32(RAH(index), rar_high);
1964		e1e_flush();
1965		return 0;
1966	}
1967
1968	/* The manageability engine (ME) can lock certain SHRAR registers that
1969	 * it is using - those registers are unavailable for use.
1970	 */
1971	if (index < hw->mac.rar_entry_count) {
1972		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1973		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1974
1975		/* Check if all SHRAR registers are locked */
1976		if (wlock_mac == 1)
1977			goto out;
1978
1979		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1980			s32 ret_val;
1981
1982			ret_val = e1000_acquire_swflag_ich8lan(hw);
1983
1984			if (ret_val)
1985				goto out;
1986
1987			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1988			e1e_flush();
1989			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1990			e1e_flush();
1991
1992			e1000_release_swflag_ich8lan(hw);
1993
1994			/* verify the register updates */
1995			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1996			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1997				return 0;
1998		}
1999	}
2000
2001out:
2002	e_dbg("Failed to write receive address at index %d\n", index);
2003	return -E1000_ERR_CONFIG;
2004}
2005
2006/**
2007 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2008 *  @hw: pointer to the HW structure
2009 *
2010 *  Checks if firmware is blocking the reset of the PHY.
2011 *  This is a function pointer entry point only called by
2012 *  reset routines.
2013 **/
2014static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2015{
2016	bool blocked = false;
2017	int i = 0;
2018
2019	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2020	       (i++ < 30))
2021		usleep_range(10000, 20000);
2022	return blocked ? E1000_BLK_PHY_RESET : 0;
2023}
2024
2025/**
2026 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2027 *  @hw: pointer to the HW structure
2028 *
2029 *  Assumes semaphore already acquired.
2030 *
2031 **/
2032static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2033{
2034	u16 phy_data;
2035	u32 strap = er32(STRAP);
2036	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2037	    E1000_STRAP_SMT_FREQ_SHIFT;
2038	s32 ret_val;
2039
2040	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2041
2042	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2043	if (ret_val)
2044		return ret_val;
2045
2046	phy_data &= ~HV_SMB_ADDR_MASK;
2047	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2048	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2049
2050	if (hw->phy.type == e1000_phy_i217) {
2051		/* Restore SMBus frequency */
2052		if (freq--) {
2053			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2054			phy_data |= (freq & BIT(0)) <<
2055			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2056			phy_data |= (freq & BIT(1)) <<
2057			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2058		} else {
2059			e_dbg("Unsupported SMB frequency in PHY\n");
2060		}
2061	}
2062
2063	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2064}
2065
2066/**
2067 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2068 *  @hw:   pointer to the HW structure
2069 *
2070 *  SW should configure the LCD from the NVM extended configuration region
2071 *  as a workaround for certain parts.
2072 **/
2073static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2074{
2075	struct e1000_phy_info *phy = &hw->phy;
2076	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2077	s32 ret_val = 0;
2078	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2079
2080	/* Initialize the PHY from the NVM on ICH platforms.  This
2081	 * is needed due to an issue where the NVM configuration is
2082	 * not properly autoloaded after power transitions.
2083	 * Therefore, after each PHY reset, we will load the
2084	 * configuration data out of the NVM manually.
2085	 */
2086	switch (hw->mac.type) {
2087	case e1000_ich8lan:
2088		if (phy->type != e1000_phy_igp_3)
2089			return ret_val;
2090
2091		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2092		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2093			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2094			break;
2095		}
2096		/* Fall-thru */
2097	case e1000_pchlan:
2098	case e1000_pch2lan:
2099	case e1000_pch_lpt:
2100	case e1000_pch_spt:
2101	case e1000_pch_cnp:
2102		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2103		break;
2104	default:
2105		return ret_val;
2106	}
2107
2108	ret_val = hw->phy.ops.acquire(hw);
2109	if (ret_val)
2110		return ret_val;
2111
2112	data = er32(FEXTNVM);
2113	if (!(data & sw_cfg_mask))
2114		goto release;
2115
2116	/* Make sure HW does not configure LCD from PHY
2117	 * extended configuration before SW configuration
2118	 */
2119	data = er32(EXTCNF_CTRL);
2120	if ((hw->mac.type < e1000_pch2lan) &&
2121	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2122		goto release;
2123
2124	cnf_size = er32(EXTCNF_SIZE);
2125	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2126	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2127	if (!cnf_size)
2128		goto release;
2129
2130	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2131	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2132
2133	if (((hw->mac.type == e1000_pchlan) &&
2134	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2135	    (hw->mac.type > e1000_pchlan)) {
2136		/* HW configures the SMBus address and LEDs when the
2137		 * OEM and LCD Write Enable bits are set in the NVM.
2138		 * When both NVM bits are cleared, SW will configure
2139		 * them instead.
2140		 */
2141		ret_val = e1000_write_smbus_addr(hw);
2142		if (ret_val)
2143			goto release;
2144
2145		data = er32(LEDCTL);
2146		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2147							(u16)data);
2148		if (ret_val)
2149			goto release;
2150	}
2151
2152	/* Configure LCD from extended configuration region. */
2153
2154	/* cnf_base_addr is in DWORD */
2155	word_addr = (u16)(cnf_base_addr << 1);
2156
2157	for (i = 0; i < cnf_size; i++) {
2158		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2159		if (ret_val)
2160			goto release;
2161
2162		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2163					 1, &reg_addr);
2164		if (ret_val)
2165			goto release;
2166
2167		/* Save off the PHY page for future writes. */
2168		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2169			phy_page = reg_data;
2170			continue;
2171		}
2172
2173		reg_addr &= PHY_REG_MASK;
2174		reg_addr |= phy_page;
2175
2176		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2177		if (ret_val)
2178			goto release;
2179	}
2180
2181release:
2182	hw->phy.ops.release(hw);
2183	return ret_val;
2184}
2185
2186/**
2187 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2188 *  @hw:   pointer to the HW structure
2189 *  @link: link up bool flag
2190 *
2191 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2192 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2193 *  If link is down, the function will restore the default K1 setting located
2194 *  in the NVM.
2195 **/
2196static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2197{
2198	s32 ret_val = 0;
2199	u16 status_reg = 0;
2200	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2201
2202	if (hw->mac.type != e1000_pchlan)
2203		return 0;
2204
2205	/* Wrap the whole flow with the sw flag */
2206	ret_val = hw->phy.ops.acquire(hw);
2207	if (ret_val)
2208		return ret_val;
2209
2210	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2211	if (link) {
2212		if (hw->phy.type == e1000_phy_82578) {
2213			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2214						  &status_reg);
2215			if (ret_val)
2216				goto release;
2217
2218			status_reg &= (BM_CS_STATUS_LINK_UP |
2219				       BM_CS_STATUS_RESOLVED |
2220				       BM_CS_STATUS_SPEED_MASK);
2221
2222			if (status_reg == (BM_CS_STATUS_LINK_UP |
2223					   BM_CS_STATUS_RESOLVED |
2224					   BM_CS_STATUS_SPEED_1000))
2225				k1_enable = false;
2226		}
2227
2228		if (hw->phy.type == e1000_phy_82577) {
2229			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2230			if (ret_val)
2231				goto release;
2232
2233			status_reg &= (HV_M_STATUS_LINK_UP |
2234				       HV_M_STATUS_AUTONEG_COMPLETE |
2235				       HV_M_STATUS_SPEED_MASK);
2236
2237			if (status_reg == (HV_M_STATUS_LINK_UP |
2238					   HV_M_STATUS_AUTONEG_COMPLETE |
2239					   HV_M_STATUS_SPEED_1000))
2240				k1_enable = false;
2241		}
2242
2243		/* Link stall fix for link up */
2244		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2245		if (ret_val)
2246			goto release;
2247
2248	} else {
2249		/* Link stall fix for link down */
2250		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2251		if (ret_val)
2252			goto release;
2253	}
2254
2255	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2256
2257release:
2258	hw->phy.ops.release(hw);
2259
2260	return ret_val;
2261}
2262
2263/**
2264 *  e1000_configure_k1_ich8lan - Configure K1 power state
2265 *  @hw: pointer to the HW structure
2266 *  @enable: K1 state to configure
2267 *
2268 *  Configure the K1 power state based on the provided parameter.
2269 *  Assumes semaphore already acquired.
2270 *
2271 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2272 **/
2273s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2274{
2275	s32 ret_val;
2276	u32 ctrl_reg = 0;
2277	u32 ctrl_ext = 0;
2278	u32 reg = 0;
2279	u16 kmrn_reg = 0;
2280
2281	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2282					      &kmrn_reg);
2283	if (ret_val)
2284		return ret_val;
2285
2286	if (k1_enable)
2287		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2288	else
2289		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2290
2291	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2292					       kmrn_reg);
2293	if (ret_val)
2294		return ret_val;
2295
2296	usleep_range(20, 40);
2297	ctrl_ext = er32(CTRL_EXT);
2298	ctrl_reg = er32(CTRL);
2299
2300	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2301	reg |= E1000_CTRL_FRCSPD;
2302	ew32(CTRL, reg);
2303
2304	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2305	e1e_flush();
2306	usleep_range(20, 40);
2307	ew32(CTRL, ctrl_reg);
2308	ew32(CTRL_EXT, ctrl_ext);
2309	e1e_flush();
2310	usleep_range(20, 40);
2311
2312	return 0;
2313}
2314
2315/**
2316 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2317 *  @hw:       pointer to the HW structure
2318 *  @d0_state: boolean if entering d0 or d3 device state
2319 *
2320 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2321 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2322 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2323 **/
2324static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2325{
2326	s32 ret_val = 0;
2327	u32 mac_reg;
2328	u16 oem_reg;
2329
2330	if (hw->mac.type < e1000_pchlan)
2331		return ret_val;
2332
2333	ret_val = hw->phy.ops.acquire(hw);
2334	if (ret_val)
2335		return ret_val;
2336
2337	if (hw->mac.type == e1000_pchlan) {
2338		mac_reg = er32(EXTCNF_CTRL);
2339		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2340			goto release;
2341	}
2342
2343	mac_reg = er32(FEXTNVM);
2344	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2345		goto release;
2346
2347	mac_reg = er32(PHY_CTRL);
2348
2349	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2350	if (ret_val)
2351		goto release;
2352
2353	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2354
2355	if (d0_state) {
2356		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2357			oem_reg |= HV_OEM_BITS_GBE_DIS;
2358
2359		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2360			oem_reg |= HV_OEM_BITS_LPLU;
2361	} else {
2362		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2363			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2364			oem_reg |= HV_OEM_BITS_GBE_DIS;
2365
2366		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2367			       E1000_PHY_CTRL_NOND0A_LPLU))
2368			oem_reg |= HV_OEM_BITS_LPLU;
2369	}
2370
2371	/* Set Restart auto-neg to activate the bits */
2372	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2373	    !hw->phy.ops.check_reset_block(hw))
2374		oem_reg |= HV_OEM_BITS_RESTART_AN;
2375
2376	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2377
2378release:
2379	hw->phy.ops.release(hw);
2380
2381	return ret_val;
2382}
2383
2384/**
2385 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2386 *  @hw:   pointer to the HW structure
2387 **/
2388static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2389{
2390	s32 ret_val;
2391	u16 data;
2392
2393	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2394	if (ret_val)
2395		return ret_val;
2396
2397	data |= HV_KMRN_MDIO_SLOW;
2398
2399	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2400
2401	return ret_val;
2402}
2403
2404/**
2405 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2406 *  done after every PHY reset.
2407 **/
2408static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2409{
2410	s32 ret_val = 0;
2411	u16 phy_data;
2412
2413	if (hw->mac.type != e1000_pchlan)
2414		return 0;
2415
2416	/* Set MDIO slow mode before any other MDIO access */
2417	if (hw->phy.type == e1000_phy_82577) {
2418		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2419		if (ret_val)
2420			return ret_val;
2421	}
2422
2423	if (((hw->phy.type == e1000_phy_82577) &&
2424	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2425	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2426		/* Disable generation of early preamble */
2427		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2428		if (ret_val)
2429			return ret_val;
2430
2431		/* Preamble tuning for SSC */
2432		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2433		if (ret_val)
2434			return ret_val;
2435	}
2436
2437	if (hw->phy.type == e1000_phy_82578) {
2438		/* Return registers to default by doing a soft reset then
2439		 * writing 0x3140 to the control register.
2440		 */
2441		if (hw->phy.revision < 2) {
2442			e1000e_phy_sw_reset(hw);
2443			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2444			if (ret_val)
2445				return ret_val;
2446		}
2447	}
2448
2449	/* Select page 0 */
2450	ret_val = hw->phy.ops.acquire(hw);
2451	if (ret_val)
2452		return ret_val;
2453
2454	hw->phy.addr = 1;
2455	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2456	hw->phy.ops.release(hw);
2457	if (ret_val)
2458		return ret_val;
2459
2460	/* Configure the K1 Si workaround during phy reset assuming there is
2461	 * link so that it disables K1 if link is in 1Gbps.
2462	 */
2463	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2464	if (ret_val)
2465		return ret_val;
2466
2467	/* Workaround for link disconnects on a busy hub in half duplex */
2468	ret_val = hw->phy.ops.acquire(hw);
2469	if (ret_val)
2470		return ret_val;
2471	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2472	if (ret_val)
2473		goto release;
2474	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2475	if (ret_val)
2476		goto release;
2477
2478	/* set MSE higher to enable link to stay up when noise is high */
2479	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2480release:
2481	hw->phy.ops.release(hw);
2482
2483	return ret_val;
2484}
2485
2486/**
2487 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2488 *  @hw:   pointer to the HW structure
2489 **/
2490void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2491{
2492	u32 mac_reg;
2493	u16 i, phy_reg = 0;
2494	s32 ret_val;
2495
2496	ret_val = hw->phy.ops.acquire(hw);
2497	if (ret_val)
2498		return;
2499	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2500	if (ret_val)
2501		goto release;
2502
2503	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2504	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2505		mac_reg = er32(RAL(i));
2506		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2507					   (u16)(mac_reg & 0xFFFF));
2508		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2509					   (u16)((mac_reg >> 16) & 0xFFFF));
2510
2511		mac_reg = er32(RAH(i));
2512		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2513					   (u16)(mac_reg & 0xFFFF));
2514		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2515					   (u16)((mac_reg & E1000_RAH_AV)
2516						 >> 16));
2517	}
2518
2519	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2520
2521release:
2522	hw->phy.ops.release(hw);
2523}
2524
2525/**
2526 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2527 *  with 82579 PHY
2528 *  @hw: pointer to the HW structure
2529 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2530 **/
2531s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2532{
2533	s32 ret_val = 0;
2534	u16 phy_reg, data;
2535	u32 mac_reg;
2536	u16 i;
2537
2538	if (hw->mac.type < e1000_pch2lan)
2539		return 0;
2540
2541	/* disable Rx path while enabling/disabling workaround */
2542	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2543	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2544	if (ret_val)
2545		return ret_val;
2546
2547	if (enable) {
2548		/* Write Rx addresses (rar_entry_count for RAL/H, and
2549		 * SHRAL/H) and initial CRC values to the MAC
2550		 */
2551		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2552			u8 mac_addr[ETH_ALEN] = { 0 };
2553			u32 addr_high, addr_low;
2554
2555			addr_high = er32(RAH(i));
2556			if (!(addr_high & E1000_RAH_AV))
2557				continue;
2558			addr_low = er32(RAL(i));
2559			mac_addr[0] = (addr_low & 0xFF);
2560			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2561			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2562			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2563			mac_addr[4] = (addr_high & 0xFF);
2564			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2565
2566			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2567		}
2568
2569		/* Write Rx addresses to the PHY */
2570		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2571
2572		/* Enable jumbo frame workaround in the MAC */
2573		mac_reg = er32(FFLT_DBG);
2574		mac_reg &= ~BIT(14);
2575		mac_reg |= (7 << 15);
2576		ew32(FFLT_DBG, mac_reg);
2577
2578		mac_reg = er32(RCTL);
2579		mac_reg |= E1000_RCTL_SECRC;
2580		ew32(RCTL, mac_reg);
2581
2582		ret_val = e1000e_read_kmrn_reg(hw,
2583					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2584					       &data);
2585		if (ret_val)
2586			return ret_val;
2587		ret_val = e1000e_write_kmrn_reg(hw,
2588						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2589						data | BIT(0));
2590		if (ret_val)
2591			return ret_val;
2592		ret_val = e1000e_read_kmrn_reg(hw,
2593					       E1000_KMRNCTRLSTA_HD_CTRL,
2594					       &data);
2595		if (ret_val)
2596			return ret_val;
2597		data &= ~(0xF << 8);
2598		data |= (0xB << 8);
2599		ret_val = e1000e_write_kmrn_reg(hw,
2600						E1000_KMRNCTRLSTA_HD_CTRL,
2601						data);
2602		if (ret_val)
2603			return ret_val;
2604
2605		/* Enable jumbo frame workaround in the PHY */
2606		e1e_rphy(hw, PHY_REG(769, 23), &data);
2607		data &= ~(0x7F << 5);
2608		data |= (0x37 << 5);
2609		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2610		if (ret_val)
2611			return ret_val;
2612		e1e_rphy(hw, PHY_REG(769, 16), &data);
2613		data &= ~BIT(13);
2614		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2615		if (ret_val)
2616			return ret_val;
2617		e1e_rphy(hw, PHY_REG(776, 20), &data);
2618		data &= ~(0x3FF << 2);
2619		data |= (E1000_TX_PTR_GAP << 2);
2620		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2621		if (ret_val)
2622			return ret_val;
2623		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2624		if (ret_val)
2625			return ret_val;
2626		e1e_rphy(hw, HV_PM_CTRL, &data);
2627		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2628		if (ret_val)
2629			return ret_val;
2630	} else {
2631		/* Write MAC register values back to h/w defaults */
2632		mac_reg = er32(FFLT_DBG);
2633		mac_reg &= ~(0xF << 14);
2634		ew32(FFLT_DBG, mac_reg);
2635
2636		mac_reg = er32(RCTL);
2637		mac_reg &= ~E1000_RCTL_SECRC;
2638		ew32(RCTL, mac_reg);
2639
2640		ret_val = e1000e_read_kmrn_reg(hw,
2641					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2642					       &data);
2643		if (ret_val)
2644			return ret_val;
2645		ret_val = e1000e_write_kmrn_reg(hw,
2646						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2647						data & ~BIT(0));
2648		if (ret_val)
2649			return ret_val;
2650		ret_val = e1000e_read_kmrn_reg(hw,
2651					       E1000_KMRNCTRLSTA_HD_CTRL,
2652					       &data);
2653		if (ret_val)
2654			return ret_val;
2655		data &= ~(0xF << 8);
2656		data |= (0xB << 8);
2657		ret_val = e1000e_write_kmrn_reg(hw,
2658						E1000_KMRNCTRLSTA_HD_CTRL,
2659						data);
2660		if (ret_val)
2661			return ret_val;
2662
2663		/* Write PHY register values back to h/w defaults */
2664		e1e_rphy(hw, PHY_REG(769, 23), &data);
2665		data &= ~(0x7F << 5);
2666		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2667		if (ret_val)
2668			return ret_val;
2669		e1e_rphy(hw, PHY_REG(769, 16), &data);
2670		data |= BIT(13);
2671		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2672		if (ret_val)
2673			return ret_val;
2674		e1e_rphy(hw, PHY_REG(776, 20), &data);
2675		data &= ~(0x3FF << 2);
2676		data |= (0x8 << 2);
2677		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2678		if (ret_val)
2679			return ret_val;
2680		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2681		if (ret_val)
2682			return ret_val;
2683		e1e_rphy(hw, HV_PM_CTRL, &data);
2684		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2685		if (ret_val)
2686			return ret_val;
2687	}
2688
2689	/* re-enable Rx path after enabling/disabling workaround */
2690	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2691}
2692
2693/**
2694 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2695 *  done after every PHY reset.
2696 **/
2697static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2698{
2699	s32 ret_val = 0;
2700
2701	if (hw->mac.type != e1000_pch2lan)
2702		return 0;
2703
2704	/* Set MDIO slow mode before any other MDIO access */
2705	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2706	if (ret_val)
2707		return ret_val;
2708
2709	ret_val = hw->phy.ops.acquire(hw);
2710	if (ret_val)
2711		return ret_val;
2712	/* set MSE higher to enable link to stay up when noise is high */
2713	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2714	if (ret_val)
2715		goto release;
2716	/* drop link after 5 times MSE threshold was reached */
2717	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2718release:
2719	hw->phy.ops.release(hw);
2720
2721	return ret_val;
2722}
2723
2724/**
2725 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2726 *  @hw:   pointer to the HW structure
2727 *
2728 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2729 *  Disable K1 in 1000Mbps and 100Mbps
2730 **/
2731static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2732{
2733	s32 ret_val = 0;
2734	u16 status_reg = 0;
2735
2736	if (hw->mac.type != e1000_pch2lan)
2737		return 0;
2738
2739	/* Set K1 beacon duration based on 10Mbs speed */
2740	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2741	if (ret_val)
2742		return ret_val;
2743
2744	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2745	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2746		if (status_reg &
2747		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2748			u16 pm_phy_reg;
2749
2750			/* LV 1G/100 Packet drop issue wa  */
2751			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2752			if (ret_val)
2753				return ret_val;
2754			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2755			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2756			if (ret_val)
2757				return ret_val;
2758		} else {
2759			u32 mac_reg;
2760
2761			mac_reg = er32(FEXTNVM4);
2762			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2763			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2764			ew32(FEXTNVM4, mac_reg);
2765		}
2766	}
2767
2768	return ret_val;
2769}
2770
2771/**
2772 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2773 *  @hw:   pointer to the HW structure
2774 *  @gate: boolean set to true to gate, false to ungate
2775 *
2776 *  Gate/ungate the automatic PHY configuration via hardware; perform
2777 *  the configuration via software instead.
2778 **/
2779static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2780{
2781	u32 extcnf_ctrl;
2782
2783	if (hw->mac.type < e1000_pch2lan)
2784		return;
2785
2786	extcnf_ctrl = er32(EXTCNF_CTRL);
2787
2788	if (gate)
2789		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2790	else
2791		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2792
2793	ew32(EXTCNF_CTRL, extcnf_ctrl);
2794}
2795
2796/**
2797 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2798 *  @hw: pointer to the HW structure
2799 *
2800 *  Check the appropriate indication the MAC has finished configuring the
2801 *  PHY after a software reset.
2802 **/
2803static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2804{
2805	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2806
2807	/* Wait for basic configuration completes before proceeding */
2808	do {
2809		data = er32(STATUS);
2810		data &= E1000_STATUS_LAN_INIT_DONE;
2811		usleep_range(100, 200);
2812	} while ((!data) && --loop);
2813
2814	/* If basic configuration is incomplete before the above loop
2815	 * count reaches 0, loading the configuration from NVM will
2816	 * leave the PHY in a bad state possibly resulting in no link.
2817	 */
2818	if (loop == 0)
2819		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2820
2821	/* Clear the Init Done bit for the next init event */
2822	data = er32(STATUS);
2823	data &= ~E1000_STATUS_LAN_INIT_DONE;
2824	ew32(STATUS, data);
2825}
2826
2827/**
2828 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2829 *  @hw: pointer to the HW structure
2830 **/
2831static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2832{
2833	s32 ret_val = 0;
2834	u16 reg;
2835
2836	if (hw->phy.ops.check_reset_block(hw))
2837		return 0;
2838
2839	/* Allow time for h/w to get to quiescent state after reset */
2840	usleep_range(10000, 20000);
2841
2842	/* Perform any necessary post-reset workarounds */
2843	switch (hw->mac.type) {
2844	case e1000_pchlan:
2845		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2846		if (ret_val)
2847			return ret_val;
2848		break;
2849	case e1000_pch2lan:
2850		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2851		if (ret_val)
2852			return ret_val;
2853		break;
2854	default:
2855		break;
2856	}
2857
2858	/* Clear the host wakeup bit after lcd reset */
2859	if (hw->mac.type >= e1000_pchlan) {
2860		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2861		reg &= ~BM_WUC_HOST_WU_BIT;
2862		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2863	}
2864
2865	/* Configure the LCD with the extended configuration region in NVM */
2866	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2867	if (ret_val)
2868		return ret_val;
2869
2870	/* Configure the LCD with the OEM bits in NVM */
2871	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2872
2873	if (hw->mac.type == e1000_pch2lan) {
2874		/* Ungate automatic PHY configuration on non-managed 82579 */
2875		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2876			usleep_range(10000, 20000);
2877			e1000_gate_hw_phy_config_ich8lan(hw, false);
2878		}
2879
2880		/* Set EEE LPI Update Timer to 200usec */
2881		ret_val = hw->phy.ops.acquire(hw);
2882		if (ret_val)
2883			return ret_val;
2884		ret_val = e1000_write_emi_reg_locked(hw,
2885						     I82579_LPI_UPDATE_TIMER,
2886						     0x1387);
2887		hw->phy.ops.release(hw);
2888	}
2889
2890	return ret_val;
2891}
2892
2893/**
2894 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2895 *  @hw: pointer to the HW structure
2896 *
2897 *  Resets the PHY
2898 *  This is a function pointer entry point called by drivers
2899 *  or other shared routines.
2900 **/
2901static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2902{
2903	s32 ret_val = 0;
2904
2905	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2906	if ((hw->mac.type == e1000_pch2lan) &&
2907	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2908		e1000_gate_hw_phy_config_ich8lan(hw, true);
2909
2910	ret_val = e1000e_phy_hw_reset_generic(hw);
2911	if (ret_val)
2912		return ret_val;
2913
2914	return e1000_post_phy_reset_ich8lan(hw);
2915}
2916
2917/**
2918 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2919 *  @hw: pointer to the HW structure
2920 *  @active: true to enable LPLU, false to disable
2921 *
2922 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2923 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2924 *  the phy speed. This function will manually set the LPLU bit and restart
2925 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2926 *  since it configures the same bit.
2927 **/
2928static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2929{
2930	s32 ret_val;
2931	u16 oem_reg;
2932
2933	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2934	if (ret_val)
2935		return ret_val;
2936
2937	if (active)
2938		oem_reg |= HV_OEM_BITS_LPLU;
2939	else
2940		oem_reg &= ~HV_OEM_BITS_LPLU;
2941
2942	if (!hw->phy.ops.check_reset_block(hw))
2943		oem_reg |= HV_OEM_BITS_RESTART_AN;
2944
2945	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2946}
2947
2948/**
2949 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2950 *  @hw: pointer to the HW structure
2951 *  @active: true to enable LPLU, false to disable
2952 *
2953 *  Sets the LPLU D0 state according to the active flag.  When
2954 *  activating LPLU this function also disables smart speed
2955 *  and vice versa.  LPLU will not be activated unless the
2956 *  device autonegotiation advertisement meets standards of
2957 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2958 *  This is a function pointer entry point only called by
2959 *  PHY setup routines.
2960 **/
2961static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2962{
2963	struct e1000_phy_info *phy = &hw->phy;
2964	u32 phy_ctrl;
2965	s32 ret_val = 0;
2966	u16 data;
2967
2968	if (phy->type == e1000_phy_ife)
2969		return 0;
2970
2971	phy_ctrl = er32(PHY_CTRL);
2972
2973	if (active) {
2974		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2975		ew32(PHY_CTRL, phy_ctrl);
2976
2977		if (phy->type != e1000_phy_igp_3)
2978			return 0;
2979
2980		/* Call gig speed drop workaround on LPLU before accessing
2981		 * any PHY registers
2982		 */
2983		if (hw->mac.type == e1000_ich8lan)
2984			e1000e_gig_downshift_workaround_ich8lan(hw);
2985
2986		/* When LPLU is enabled, we should disable SmartSpeed */
2987		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2988		if (ret_val)
2989			return ret_val;
2990		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2991		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2992		if (ret_val)
2993			return ret_val;
2994	} else {
2995		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2996		ew32(PHY_CTRL, phy_ctrl);
2997
2998		if (phy->type != e1000_phy_igp_3)
2999			return 0;
3000
3001		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3002		 * during Dx states where the power conservation is most
3003		 * important.  During driver activity we should enable
3004		 * SmartSpeed, so performance is maintained.
3005		 */
3006		if (phy->smart_speed == e1000_smart_speed_on) {
3007			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3008					   &data);
3009			if (ret_val)
3010				return ret_val;
3011
3012			data |= IGP01E1000_PSCFR_SMART_SPEED;
3013			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3014					   data);
3015			if (ret_val)
3016				return ret_val;
3017		} else if (phy->smart_speed == e1000_smart_speed_off) {
3018			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3019					   &data);
3020			if (ret_val)
3021				return ret_val;
3022
3023			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3024			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3025					   data);
3026			if (ret_val)
3027				return ret_val;
3028		}
3029	}
3030
3031	return 0;
3032}
3033
3034/**
3035 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3036 *  @hw: pointer to the HW structure
3037 *  @active: true to enable LPLU, false to disable
3038 *
3039 *  Sets the LPLU D3 state according to the active flag.  When
3040 *  activating LPLU this function also disables smart speed
3041 *  and vice versa.  LPLU will not be activated unless the
3042 *  device autonegotiation advertisement meets standards of
3043 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3044 *  This is a function pointer entry point only called by
3045 *  PHY setup routines.
3046 **/
3047static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3048{
3049	struct e1000_phy_info *phy = &hw->phy;
3050	u32 phy_ctrl;
3051	s32 ret_val = 0;
3052	u16 data;
3053
3054	phy_ctrl = er32(PHY_CTRL);
3055
3056	if (!active) {
3057		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3058		ew32(PHY_CTRL, phy_ctrl);
3059
3060		if (phy->type != e1000_phy_igp_3)
3061			return 0;
3062
3063		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3064		 * during Dx states where the power conservation is most
3065		 * important.  During driver activity we should enable
3066		 * SmartSpeed, so performance is maintained.
3067		 */
3068		if (phy->smart_speed == e1000_smart_speed_on) {
3069			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3070					   &data);
3071			if (ret_val)
3072				return ret_val;
3073
3074			data |= IGP01E1000_PSCFR_SMART_SPEED;
3075			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3076					   data);
3077			if (ret_val)
3078				return ret_val;
3079		} else if (phy->smart_speed == e1000_smart_speed_off) {
3080			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3081					   &data);
3082			if (ret_val)
3083				return ret_val;
3084
3085			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3086			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3087					   data);
3088			if (ret_val)
3089				return ret_val;
3090		}
3091	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3092		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3093		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3094		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3095		ew32(PHY_CTRL, phy_ctrl);
3096
3097		if (phy->type != e1000_phy_igp_3)
3098			return 0;
3099
3100		/* Call gig speed drop workaround on LPLU before accessing
3101		 * any PHY registers
3102		 */
3103		if (hw->mac.type == e1000_ich8lan)
3104			e1000e_gig_downshift_workaround_ich8lan(hw);
3105
3106		/* When LPLU is enabled, we should disable SmartSpeed */
3107		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3108		if (ret_val)
3109			return ret_val;
3110
3111		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3112		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3113	}
3114
3115	return ret_val;
3116}
3117
3118/**
3119 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3120 *  @hw: pointer to the HW structure
3121 *  @bank:  pointer to the variable that returns the active bank
3122 *
3123 *  Reads signature byte from the NVM using the flash access registers.
3124 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3125 **/
3126static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3127{
3128	u32 eecd;
3129	struct e1000_nvm_info *nvm = &hw->nvm;
3130	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3131	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3132	u32 nvm_dword = 0;
3133	u8 sig_byte = 0;
3134	s32 ret_val;
3135
3136	switch (hw->mac.type) {
3137	case e1000_pch_spt:
3138	case e1000_pch_cnp:
3139		bank1_offset = nvm->flash_bank_size;
3140		act_offset = E1000_ICH_NVM_SIG_WORD;
3141
3142		/* set bank to 0 in case flash read fails */
3143		*bank = 0;
3144
3145		/* Check bank 0 */
3146		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3147							 &nvm_dword);
3148		if (ret_val)
3149			return ret_val;
3150		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3151		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3152		    E1000_ICH_NVM_SIG_VALUE) {
3153			*bank = 0;
3154			return 0;
3155		}
3156
3157		/* Check bank 1 */
3158		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3159							 bank1_offset,
3160							 &nvm_dword);
3161		if (ret_val)
3162			return ret_val;
3163		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3164		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3165		    E1000_ICH_NVM_SIG_VALUE) {
3166			*bank = 1;
3167			return 0;
3168		}
3169
3170		e_dbg("ERROR: No valid NVM bank present\n");
3171		return -E1000_ERR_NVM;
3172	case e1000_ich8lan:
3173	case e1000_ich9lan:
3174		eecd = er32(EECD);
3175		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3176		    E1000_EECD_SEC1VAL_VALID_MASK) {
3177			if (eecd & E1000_EECD_SEC1VAL)
3178				*bank = 1;
3179			else
3180				*bank = 0;
3181
3182			return 0;
3183		}
3184		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3185		/* fall-thru */
3186	default:
3187		/* set bank to 0 in case flash read fails */
3188		*bank = 0;
3189
3190		/* Check bank 0 */
3191		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3192							&sig_byte);
3193		if (ret_val)
3194			return ret_val;
3195		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3196		    E1000_ICH_NVM_SIG_VALUE) {
3197			*bank = 0;
3198			return 0;
3199		}
3200
3201		/* Check bank 1 */
3202		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3203							bank1_offset,
3204							&sig_byte);
3205		if (ret_val)
3206			return ret_val;
3207		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3208		    E1000_ICH_NVM_SIG_VALUE) {
3209			*bank = 1;
3210			return 0;
3211		}
3212
3213		e_dbg("ERROR: No valid NVM bank present\n");
3214		return -E1000_ERR_NVM;
3215	}
3216}
3217
3218/**
3219 *  e1000_read_nvm_spt - NVM access for SPT
3220 *  @hw: pointer to the HW structure
3221 *  @offset: The offset (in bytes) of the word(s) to read.
3222 *  @words: Size of data to read in words.
3223 *  @data: pointer to the word(s) to read at offset.
3224 *
3225 *  Reads a word(s) from the NVM
3226 **/
3227static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3228			      u16 *data)
3229{
3230	struct e1000_nvm_info *nvm = &hw->nvm;
3231	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3232	u32 act_offset;
3233	s32 ret_val = 0;
3234	u32 bank = 0;
3235	u32 dword = 0;
3236	u16 offset_to_read;
3237	u16 i;
3238
3239	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3240	    (words == 0)) {
3241		e_dbg("nvm parameter(s) out of bounds\n");
3242		ret_val = -E1000_ERR_NVM;
3243		goto out;
3244	}
3245
3246	nvm->ops.acquire(hw);
3247
3248	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3249	if (ret_val) {
3250		e_dbg("Could not detect valid bank, assuming bank 0\n");
3251		bank = 0;
3252	}
3253
3254	act_offset = (bank) ? nvm->flash_bank_size : 0;
3255	act_offset += offset;
3256
3257	ret_val = 0;
3258
3259	for (i = 0; i < words; i += 2) {
3260		if (words - i == 1) {
3261			if (dev_spec->shadow_ram[offset + i].modified) {
3262				data[i] =
3263				    dev_spec->shadow_ram[offset + i].value;
3264			} else {
3265				offset_to_read = act_offset + i -
3266				    ((act_offset + i) % 2);
3267				ret_val =
3268				  e1000_read_flash_dword_ich8lan(hw,
3269								 offset_to_read,
3270								 &dword);
3271				if (ret_val)
3272					break;
3273				if ((act_offset + i) % 2 == 0)
3274					data[i] = (u16)(dword & 0xFFFF);
3275				else
3276					data[i] = (u16)((dword >> 16) & 0xFFFF);
3277			}
3278		} else {
3279			offset_to_read = act_offset + i;
3280			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3281			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3282				ret_val =
3283				  e1000_read_flash_dword_ich8lan(hw,
3284								 offset_to_read,
3285								 &dword);
3286				if (ret_val)
3287					break;
3288			}
3289			if (dev_spec->shadow_ram[offset + i].modified)
3290				data[i] =
3291				    dev_spec->shadow_ram[offset + i].value;
3292			else
3293				data[i] = (u16)(dword & 0xFFFF);
3294			if (dev_spec->shadow_ram[offset + i].modified)
3295				data[i + 1] =
3296				    dev_spec->shadow_ram[offset + i + 1].value;
3297			else
3298				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3299		}
3300	}
3301
3302	nvm->ops.release(hw);
3303
3304out:
3305	if (ret_val)
3306		e_dbg("NVM read error: %d\n", ret_val);
3307
3308	return ret_val;
3309}
3310
3311/**
3312 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3313 *  @hw: pointer to the HW structure
3314 *  @offset: The offset (in bytes) of the word(s) to read.
3315 *  @words: Size of data to read in words
3316 *  @data: Pointer to the word(s) to read at offset.
3317 *
3318 *  Reads a word(s) from the NVM using the flash access registers.
3319 **/
3320static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3321				  u16 *data)
3322{
3323	struct e1000_nvm_info *nvm = &hw->nvm;
3324	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3325	u32 act_offset;
3326	s32 ret_val = 0;
3327	u32 bank = 0;
3328	u16 i, word;
3329
3330	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3331	    (words == 0)) {
3332		e_dbg("nvm parameter(s) out of bounds\n");
3333		ret_val = -E1000_ERR_NVM;
3334		goto out;
3335	}
3336
3337	nvm->ops.acquire(hw);
3338
3339	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3340	if (ret_val) {
3341		e_dbg("Could not detect valid bank, assuming bank 0\n");
3342		bank = 0;
3343	}
3344
3345	act_offset = (bank) ? nvm->flash_bank_size : 0;
3346	act_offset += offset;
3347
3348	ret_val = 0;
3349	for (i = 0; i < words; i++) {
3350		if (dev_spec->shadow_ram[offset + i].modified) {
3351			data[i] = dev_spec->shadow_ram[offset + i].value;
3352		} else {
3353			ret_val = e1000_read_flash_word_ich8lan(hw,
3354								act_offset + i,
3355								&word);
3356			if (ret_val)
3357				break;
3358			data[i] = word;
3359		}
3360	}
3361
3362	nvm->ops.release(hw);
3363
3364out:
3365	if (ret_val)
3366		e_dbg("NVM read error: %d\n", ret_val);
3367
3368	return ret_val;
3369}
3370
3371/**
3372 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3373 *  @hw: pointer to the HW structure
3374 *
3375 *  This function does initial flash setup so that a new read/write/erase cycle
3376 *  can be started.
3377 **/
3378static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3379{
3380	union ich8_hws_flash_status hsfsts;
3381	s32 ret_val = -E1000_ERR_NVM;
3382
3383	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3384
3385	/* Check if the flash descriptor is valid */
3386	if (!hsfsts.hsf_status.fldesvalid) {
3387		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3388		return -E1000_ERR_NVM;
3389	}
3390
3391	/* Clear FCERR and DAEL in hw status by writing 1 */
3392	hsfsts.hsf_status.flcerr = 1;
3393	hsfsts.hsf_status.dael = 1;
3394	if (hw->mac.type >= e1000_pch_spt)
3395		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3396	else
3397		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3398
3399	/* Either we should have a hardware SPI cycle in progress
3400	 * bit to check against, in order to start a new cycle or
3401	 * FDONE bit should be changed in the hardware so that it
3402	 * is 1 after hardware reset, which can then be used as an
3403	 * indication whether a cycle is in progress or has been
3404	 * completed.
3405	 */
3406
3407	if (!hsfsts.hsf_status.flcinprog) {
3408		/* There is no cycle running at present,
3409		 * so we can start a cycle.
3410		 * Begin by setting Flash Cycle Done.
3411		 */
3412		hsfsts.hsf_status.flcdone = 1;
3413		if (hw->mac.type >= e1000_pch_spt)
3414			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3415		else
3416			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3417		ret_val = 0;
3418	} else {
3419		s32 i;
3420
3421		/* Otherwise poll for sometime so the current
3422		 * cycle has a chance to end before giving up.
3423		 */
3424		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3425			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3426			if (!hsfsts.hsf_status.flcinprog) {
3427				ret_val = 0;
3428				break;
3429			}
3430			udelay(1);
3431		}
3432		if (!ret_val) {
3433			/* Successful in waiting for previous cycle to timeout,
3434			 * now set the Flash Cycle Done.
3435			 */
3436			hsfsts.hsf_status.flcdone = 1;
3437			if (hw->mac.type >= e1000_pch_spt)
3438				ew32flash(ICH_FLASH_HSFSTS,
3439					  hsfsts.regval & 0xFFFF);
3440			else
3441				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3442		} else {
3443			e_dbg("Flash controller busy, cannot get access\n");
3444		}
3445	}
3446
3447	return ret_val;
3448}
3449
3450/**
3451 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3452 *  @hw: pointer to the HW structure
3453 *  @timeout: maximum time to wait for completion
3454 *
3455 *  This function starts a flash cycle and waits for its completion.
3456 **/
3457static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3458{
3459	union ich8_hws_flash_ctrl hsflctl;
3460	union ich8_hws_flash_status hsfsts;
3461	u32 i = 0;
3462
3463	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3464	if (hw->mac.type >= e1000_pch_spt)
3465		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3466	else
3467		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3468	hsflctl.hsf_ctrl.flcgo = 1;
3469
3470	if (hw->mac.type >= e1000_pch_spt)
3471		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3472	else
3473		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3474
3475	/* wait till FDONE bit is set to 1 */
3476	do {
3477		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3478		if (hsfsts.hsf_status.flcdone)
3479			break;
3480		udelay(1);
3481	} while (i++ < timeout);
3482
3483	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3484		return 0;
3485
3486	return -E1000_ERR_NVM;
3487}
3488
3489/**
3490 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3491 *  @hw: pointer to the HW structure
3492 *  @offset: offset to data location
3493 *  @data: pointer to the location for storing the data
3494 *
3495 *  Reads the flash dword at offset into data.  Offset is converted
3496 *  to bytes before read.
3497 **/
3498static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3499					  u32 *data)
3500{
3501	/* Must convert word offset into bytes. */
3502	offset <<= 1;
3503	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3504}
3505
3506/**
3507 *  e1000_read_flash_word_ich8lan - Read word from flash
3508 *  @hw: pointer to the HW structure
3509 *  @offset: offset to data location
3510 *  @data: pointer to the location for storing the data
3511 *
3512 *  Reads the flash word at offset into data.  Offset is converted
3513 *  to bytes before read.
3514 **/
3515static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3516					 u16 *data)
3517{
3518	/* Must convert offset into bytes. */
3519	offset <<= 1;
3520
3521	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3522}
3523
3524/**
3525 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3526 *  @hw: pointer to the HW structure
3527 *  @offset: The offset of the byte to read.
3528 *  @data: Pointer to a byte to store the value read.
3529 *
3530 *  Reads a single byte from the NVM using the flash access registers.
3531 **/
3532static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3533					 u8 *data)
3534{
3535	s32 ret_val;
3536	u16 word = 0;
3537
3538	/* In SPT, only 32 bits access is supported,
3539	 * so this function should not be called.
3540	 */
3541	if (hw->mac.type >= e1000_pch_spt)
3542		return -E1000_ERR_NVM;
3543	else
3544		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3545
3546	if (ret_val)
3547		return ret_val;
3548
3549	*data = (u8)word;
3550
3551	return 0;
3552}
3553
3554/**
3555 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3556 *  @hw: pointer to the HW structure
3557 *  @offset: The offset (in bytes) of the byte or word to read.
3558 *  @size: Size of data to read, 1=byte 2=word
3559 *  @data: Pointer to the word to store the value read.
3560 *
3561 *  Reads a byte or word from the NVM using the flash access registers.
3562 **/
3563static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3564					 u8 size, u16 *data)
3565{
3566	union ich8_hws_flash_status hsfsts;
3567	union ich8_hws_flash_ctrl hsflctl;
3568	u32 flash_linear_addr;
3569	u32 flash_data = 0;
3570	s32 ret_val = -E1000_ERR_NVM;
3571	u8 count = 0;
3572
3573	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3574		return -E1000_ERR_NVM;
3575
3576	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3577			     hw->nvm.flash_base_addr);
3578
3579	do {
3580		udelay(1);
3581		/* Steps */
3582		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3583		if (ret_val)
3584			break;
3585
3586		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3587		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3588		hsflctl.hsf_ctrl.fldbcount = size - 1;
3589		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3590		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3591
3592		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3593
3594		ret_val =
3595		    e1000_flash_cycle_ich8lan(hw,
3596					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3597
3598		/* Check if FCERR is set to 1, if set to 1, clear it
3599		 * and try the whole sequence a few more times, else
3600		 * read in (shift in) the Flash Data0, the order is
3601		 * least significant byte first msb to lsb
3602		 */
3603		if (!ret_val) {
3604			flash_data = er32flash(ICH_FLASH_FDATA0);
3605			if (size == 1)
3606				*data = (u8)(flash_data & 0x000000FF);
3607			else if (size == 2)
3608				*data = (u16)(flash_data & 0x0000FFFF);
3609			break;
3610		} else {
3611			/* If we've gotten here, then things are probably
3612			 * completely hosed, but if the error condition is
3613			 * detected, it won't hurt to give it another try...
3614			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3615			 */
3616			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3617			if (hsfsts.hsf_status.flcerr) {
3618				/* Repeat for some time before giving up. */
3619				continue;
3620			} else if (!hsfsts.hsf_status.flcdone) {
3621				e_dbg("Timeout error - flash cycle did not complete.\n");
3622				break;
3623			}
3624		}
3625	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3626
3627	return ret_val;
3628}
3629
3630/**
3631 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3632 *  @hw: pointer to the HW structure
3633 *  @offset: The offset (in bytes) of the dword to read.
3634 *  @data: Pointer to the dword to store the value read.
3635 *
3636 *  Reads a byte or word from the NVM using the flash access registers.
3637 **/
3638
3639static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3640					   u32 *data)
3641{
3642	union ich8_hws_flash_status hsfsts;
3643	union ich8_hws_flash_ctrl hsflctl;
3644	u32 flash_linear_addr;
3645	s32 ret_val = -E1000_ERR_NVM;
3646	u8 count = 0;
3647
3648	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3649		return -E1000_ERR_NVM;
3650	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3651			     hw->nvm.flash_base_addr);
3652
3653	do {
3654		udelay(1);
3655		/* Steps */
3656		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3657		if (ret_val)
3658			break;
3659		/* In SPT, This register is in Lan memory space, not flash.
3660		 * Therefore, only 32 bit access is supported
3661		 */
3662		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3663
3664		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3665		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3666		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3667		/* In SPT, This register is in Lan memory space, not flash.
3668		 * Therefore, only 32 bit access is supported
3669		 */
3670		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3671		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3672
3673		ret_val =
3674		   e1000_flash_cycle_ich8lan(hw,
3675					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3676
3677		/* Check if FCERR is set to 1, if set to 1, clear it
3678		 * and try the whole sequence a few more times, else
3679		 * read in (shift in) the Flash Data0, the order is
3680		 * least significant byte first msb to lsb
3681		 */
3682		if (!ret_val) {
3683			*data = er32flash(ICH_FLASH_FDATA0);
3684			break;
3685		} else {
3686			/* If we've gotten here, then things are probably
3687			 * completely hosed, but if the error condition is
3688			 * detected, it won't hurt to give it another try...
3689			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3690			 */
3691			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3692			if (hsfsts.hsf_status.flcerr) {
3693				/* Repeat for some time before giving up. */
3694				continue;
3695			} else if (!hsfsts.hsf_status.flcdone) {
3696				e_dbg("Timeout error - flash cycle did not complete.\n");
3697				break;
3698			}
3699		}
3700	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3701
3702	return ret_val;
3703}
3704
3705/**
3706 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3707 *  @hw: pointer to the HW structure
3708 *  @offset: The offset (in bytes) of the word(s) to write.
3709 *  @words: Size of data to write in words
3710 *  @data: Pointer to the word(s) to write at offset.
3711 *
3712 *  Writes a byte or word to the NVM using the flash access registers.
3713 **/
3714static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3715				   u16 *data)
3716{
3717	struct e1000_nvm_info *nvm = &hw->nvm;
3718	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3719	u16 i;
3720
3721	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3722	    (words == 0)) {
3723		e_dbg("nvm parameter(s) out of bounds\n");
3724		return -E1000_ERR_NVM;
3725	}
3726
3727	nvm->ops.acquire(hw);
3728
3729	for (i = 0; i < words; i++) {
3730		dev_spec->shadow_ram[offset + i].modified = true;
3731		dev_spec->shadow_ram[offset + i].value = data[i];
3732	}
3733
3734	nvm->ops.release(hw);
3735
3736	return 0;
3737}
3738
3739/**
3740 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3741 *  @hw: pointer to the HW structure
3742 *
3743 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3744 *  which writes the checksum to the shadow ram.  The changes in the shadow
3745 *  ram are then committed to the EEPROM by processing each bank at a time
3746 *  checking for the modified bit and writing only the pending changes.
3747 *  After a successful commit, the shadow ram is cleared and is ready for
3748 *  future writes.
3749 **/
3750static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3751{
3752	struct e1000_nvm_info *nvm = &hw->nvm;
3753	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3754	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3755	s32 ret_val;
3756	u32 dword = 0;
3757
3758	ret_val = e1000e_update_nvm_checksum_generic(hw);
3759	if (ret_val)
3760		goto out;
3761
3762	if (nvm->type != e1000_nvm_flash_sw)
3763		goto out;
3764
3765	nvm->ops.acquire(hw);
3766
3767	/* We're writing to the opposite bank so if we're on bank 1,
3768	 * write to bank 0 etc.  We also need to erase the segment that
3769	 * is going to be written
3770	 */
3771	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3772	if (ret_val) {
3773		e_dbg("Could not detect valid bank, assuming bank 0\n");
3774		bank = 0;
3775	}
3776
3777	if (bank == 0) {
3778		new_bank_offset = nvm->flash_bank_size;
3779		old_bank_offset = 0;
3780		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3781		if (ret_val)
3782			goto release;
3783	} else {
3784		old_bank_offset = nvm->flash_bank_size;
3785		new_bank_offset = 0;
3786		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3787		if (ret_val)
3788			goto release;
3789	}
3790	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3791		/* Determine whether to write the value stored
3792		 * in the other NVM bank or a modified value stored
3793		 * in the shadow RAM
3794		 */
3795		ret_val = e1000_read_flash_dword_ich8lan(hw,
3796							 i + old_bank_offset,
3797							 &dword);
3798
3799		if (dev_spec->shadow_ram[i].modified) {
3800			dword &= 0xffff0000;
3801			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3802		}
3803		if (dev_spec->shadow_ram[i + 1].modified) {
3804			dword &= 0x0000ffff;
3805			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3806				  << 16);
3807		}
3808		if (ret_val)
3809			break;
3810
3811		/* If the word is 0x13, then make sure the signature bits
3812		 * (15:14) are 11b until the commit has completed.
3813		 * This will allow us to write 10b which indicates the
3814		 * signature is valid.  We want to do this after the write
3815		 * has completed so that we don't mark the segment valid
3816		 * while the write is still in progress
3817		 */
3818		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3819			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3820
3821		/* Convert offset to bytes. */
3822		act_offset = (i + new_bank_offset) << 1;
3823
3824		usleep_range(100, 200);
3825
3826		/* Write the data to the new bank. Offset in words */
3827		act_offset = i + new_bank_offset;
3828		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3829								dword);
3830		if (ret_val)
3831			break;
3832	}
3833
3834	/* Don't bother writing the segment valid bits if sector
3835	 * programming failed.
3836	 */
3837	if (ret_val) {
3838		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3839		e_dbg("Flash commit failed.\n");
3840		goto release;
3841	}
3842
3843	/* Finally validate the new segment by setting bit 15:14
3844	 * to 10b in word 0x13 , this can be done without an
3845	 * erase as well since these bits are 11 to start with
3846	 * and we need to change bit 14 to 0b
3847	 */
3848	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3849
3850	/*offset in words but we read dword */
3851	--act_offset;
3852	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3853
3854	if (ret_val)
3855		goto release;
3856
3857	dword &= 0xBFFFFFFF;
3858	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3859
3860	if (ret_val)
3861		goto release;
3862
3863	/* And invalidate the previously valid segment by setting
3864	 * its signature word (0x13) high_byte to 0b. This can be
3865	 * done without an erase because flash erase sets all bits
3866	 * to 1's. We can write 1's to 0's without an erase
3867	 */
3868	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3869
3870	/* offset in words but we read dword */
3871	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3872	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3873
3874	if (ret_val)
3875		goto release;
3876
3877	dword &= 0x00FFFFFF;
3878	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3879
3880	if (ret_val)
3881		goto release;
3882
3883	/* Great!  Everything worked, we can now clear the cached entries. */
3884	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3885		dev_spec->shadow_ram[i].modified = false;
3886		dev_spec->shadow_ram[i].value = 0xFFFF;
3887	}
3888
3889release:
3890	nvm->ops.release(hw);
3891
3892	/* Reload the EEPROM, or else modifications will not appear
3893	 * until after the next adapter reset.
3894	 */
3895	if (!ret_val) {
3896		nvm->ops.reload(hw);
3897		usleep_range(10000, 20000);
3898	}
3899
3900out:
3901	if (ret_val)
3902		e_dbg("NVM update error: %d\n", ret_val);
3903
3904	return ret_val;
3905}
3906
3907/**
3908 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3909 *  @hw: pointer to the HW structure
3910 *
3911 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3912 *  which writes the checksum to the shadow ram.  The changes in the shadow
3913 *  ram are then committed to the EEPROM by processing each bank at a time
3914 *  checking for the modified bit and writing only the pending changes.
3915 *  After a successful commit, the shadow ram is cleared and is ready for
3916 *  future writes.
3917 **/
3918static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3919{
3920	struct e1000_nvm_info *nvm = &hw->nvm;
3921	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3922	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3923	s32 ret_val;
3924	u16 data = 0;
3925
3926	ret_val = e1000e_update_nvm_checksum_generic(hw);
3927	if (ret_val)
3928		goto out;
3929
3930	if (nvm->type != e1000_nvm_flash_sw)
3931		goto out;
3932
3933	nvm->ops.acquire(hw);
3934
3935	/* We're writing to the opposite bank so if we're on bank 1,
3936	 * write to bank 0 etc.  We also need to erase the segment that
3937	 * is going to be written
3938	 */
3939	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3940	if (ret_val) {
3941		e_dbg("Could not detect valid bank, assuming bank 0\n");
3942		bank = 0;
3943	}
3944
3945	if (bank == 0) {
3946		new_bank_offset = nvm->flash_bank_size;
3947		old_bank_offset = 0;
3948		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3949		if (ret_val)
3950			goto release;
3951	} else {
3952		old_bank_offset = nvm->flash_bank_size;
3953		new_bank_offset = 0;
3954		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3955		if (ret_val)
3956			goto release;
3957	}
3958	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3959		if (dev_spec->shadow_ram[i].modified) {
3960			data = dev_spec->shadow_ram[i].value;
3961		} else {
3962			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3963								old_bank_offset,
3964								&data);
3965			if (ret_val)
3966				break;
3967		}
3968
3969		/* If the word is 0x13, then make sure the signature bits
3970		 * (15:14) are 11b until the commit has completed.
3971		 * This will allow us to write 10b which indicates the
3972		 * signature is valid.  We want to do this after the write
3973		 * has completed so that we don't mark the segment valid
3974		 * while the write is still in progress
3975		 */
3976		if (i == E1000_ICH_NVM_SIG_WORD)
3977			data |= E1000_ICH_NVM_SIG_MASK;
3978
3979		/* Convert offset to bytes. */
3980		act_offset = (i + new_bank_offset) << 1;
3981
3982		usleep_range(100, 200);
3983		/* Write the bytes to the new bank. */
3984		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3985							       act_offset,
3986							       (u8)data);
3987		if (ret_val)
3988			break;
3989
3990		usleep_range(100, 200);
3991		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3992							       act_offset + 1,
3993							       (u8)(data >> 8));
3994		if (ret_val)
3995			break;
3996	}
3997
3998	/* Don't bother writing the segment valid bits if sector
3999	 * programming failed.
4000	 */
4001	if (ret_val) {
4002		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4003		e_dbg("Flash commit failed.\n");
4004		goto release;
4005	}
4006
4007	/* Finally validate the new segment by setting bit 15:14
4008	 * to 10b in word 0x13 , this can be done without an
4009	 * erase as well since these bits are 11 to start with
4010	 * and we need to change bit 14 to 0b
4011	 */
4012	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4013	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4014	if (ret_val)
4015		goto release;
4016
4017	data &= 0xBFFF;
4018	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4019						       act_offset * 2 + 1,
4020						       (u8)(data >> 8));
4021	if (ret_val)
4022		goto release;
4023
4024	/* And invalidate the previously valid segment by setting
4025	 * its signature word (0x13) high_byte to 0b. This can be
4026	 * done without an erase because flash erase sets all bits
4027	 * to 1's. We can write 1's to 0's without an erase
4028	 */
4029	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4030	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4031	if (ret_val)
4032		goto release;
4033
4034	/* Great!  Everything worked, we can now clear the cached entries. */
4035	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4036		dev_spec->shadow_ram[i].modified = false;
4037		dev_spec->shadow_ram[i].value = 0xFFFF;
4038	}
4039
4040release:
4041	nvm->ops.release(hw);
4042
4043	/* Reload the EEPROM, or else modifications will not appear
4044	 * until after the next adapter reset.
4045	 */
4046	if (!ret_val) {
4047		nvm->ops.reload(hw);
4048		usleep_range(10000, 20000);
4049	}
4050
4051out:
4052	if (ret_val)
4053		e_dbg("NVM update error: %d\n", ret_val);
4054
4055	return ret_val;
4056}
4057
4058/**
4059 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4060 *  @hw: pointer to the HW structure
4061 *
4062 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4063 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4064 *  calculated, in which case we need to calculate the checksum and set bit 6.
4065 **/
4066static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4067{
4068	s32 ret_val;
4069	u16 data;
4070	u16 word;
4071	u16 valid_csum_mask;
4072
4073	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4074	 * the checksum needs to be fixed.  This bit is an indication that
4075	 * the NVM was prepared by OEM software and did not calculate
4076	 * the checksum...a likely scenario.
4077	 */
4078	switch (hw->mac.type) {
4079	case e1000_pch_lpt:
4080	case e1000_pch_spt:
4081	case e1000_pch_cnp:
4082		word = NVM_COMPAT;
4083		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4084		break;
4085	default:
4086		word = NVM_FUTURE_INIT_WORD1;
4087		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4088		break;
4089	}
4090
4091	ret_val = e1000_read_nvm(hw, word, 1, &data);
4092	if (ret_val)
4093		return ret_val;
4094
4095	if (!(data & valid_csum_mask)) {
4096		data |= valid_csum_mask;
4097		ret_val = e1000_write_nvm(hw, word, 1, &data);
4098		if (ret_val)
4099			return ret_val;
4100		ret_val = e1000e_update_nvm_checksum(hw);
4101		if (ret_val)
4102			return ret_val;
4103	}
4104
4105	return e1000e_validate_nvm_checksum_generic(hw);
4106}
4107
4108/**
4109 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4110 *  @hw: pointer to the HW structure
4111 *
4112 *  To prevent malicious write/erase of the NVM, set it to be read-only
4113 *  so that the hardware ignores all write/erase cycles of the NVM via
4114 *  the flash control registers.  The shadow-ram copy of the NVM will
4115 *  still be updated, however any updates to this copy will not stick
4116 *  across driver reloads.
4117 **/
4118void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4119{
4120	struct e1000_nvm_info *nvm = &hw->nvm;
4121	union ich8_flash_protected_range pr0;
4122	union ich8_hws_flash_status hsfsts;
4123	u32 gfpreg;
4124
4125	nvm->ops.acquire(hw);
4126
4127	gfpreg = er32flash(ICH_FLASH_GFPREG);
4128
4129	/* Write-protect GbE Sector of NVM */
4130	pr0.regval = er32flash(ICH_FLASH_PR0);
4131	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4132	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4133	pr0.range.wpe = true;
4134	ew32flash(ICH_FLASH_PR0, pr0.regval);
4135
4136	/* Lock down a subset of GbE Flash Control Registers, e.g.
4137	 * PR0 to prevent the write-protection from being lifted.
4138	 * Once FLOCKDN is set, the registers protected by it cannot
4139	 * be written until FLOCKDN is cleared by a hardware reset.
4140	 */
4141	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4142	hsfsts.hsf_status.flockdn = true;
4143	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4144
4145	nvm->ops.release(hw);
4146}
4147
4148/**
4149 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4150 *  @hw: pointer to the HW structure
4151 *  @offset: The offset (in bytes) of the byte/word to read.
4152 *  @size: Size of data to read, 1=byte 2=word
4153 *  @data: The byte(s) to write to the NVM.
4154 *
4155 *  Writes one/two bytes to the NVM using the flash access registers.
4156 **/
4157static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4158					  u8 size, u16 data)
4159{
4160	union ich8_hws_flash_status hsfsts;
4161	union ich8_hws_flash_ctrl hsflctl;
4162	u32 flash_linear_addr;
4163	u32 flash_data = 0;
4164	s32 ret_val;
4165	u8 count = 0;
4166
4167	if (hw->mac.type >= e1000_pch_spt) {
4168		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4169			return -E1000_ERR_NVM;
4170	} else {
4171		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4172			return -E1000_ERR_NVM;
4173	}
4174
4175	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4176			     hw->nvm.flash_base_addr);
4177
4178	do {
4179		udelay(1);
4180		/* Steps */
4181		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4182		if (ret_val)
4183			break;
4184		/* In SPT, This register is in Lan memory space, not
4185		 * flash.  Therefore, only 32 bit access is supported
4186		 */
4187		if (hw->mac.type >= e1000_pch_spt)
4188			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4189		else
4190			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4191
4192		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4193		hsflctl.hsf_ctrl.fldbcount = size - 1;
4194		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4195		/* In SPT, This register is in Lan memory space,
4196		 * not flash.  Therefore, only 32 bit access is
4197		 * supported
4198		 */
4199		if (hw->mac.type >= e1000_pch_spt)
4200			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4201		else
4202			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4203
4204		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4205
4206		if (size == 1)
4207			flash_data = (u32)data & 0x00FF;
4208		else
4209			flash_data = (u32)data;
4210
4211		ew32flash(ICH_FLASH_FDATA0, flash_data);
4212
4213		/* check if FCERR is set to 1 , if set to 1, clear it
4214		 * and try the whole sequence a few more times else done
4215		 */
4216		ret_val =
4217		    e1000_flash_cycle_ich8lan(hw,
4218					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4219		if (!ret_val)
4220			break;
4221
4222		/* If we're here, then things are most likely
4223		 * completely hosed, but if the error condition
4224		 * is detected, it won't hurt to give it another
4225		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4226		 */
4227		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4228		if (hsfsts.hsf_status.flcerr)
4229			/* Repeat for some time before giving up. */
4230			continue;
4231		if (!hsfsts.hsf_status.flcdone) {
4232			e_dbg("Timeout error - flash cycle did not complete.\n");
4233			break;
4234		}
4235	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4236
4237	return ret_val;
4238}
4239
4240/**
4241*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4242*  @hw: pointer to the HW structure
4243*  @offset: The offset (in bytes) of the dwords to read.
4244*  @data: The 4 bytes to write to the NVM.
4245*
4246*  Writes one/two/four bytes to the NVM using the flash access registers.
4247**/
4248static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4249					    u32 data)
4250{
4251	union ich8_hws_flash_status hsfsts;
4252	union ich8_hws_flash_ctrl hsflctl;
4253	u32 flash_linear_addr;
4254	s32 ret_val;
4255	u8 count = 0;
4256
4257	if (hw->mac.type >= e1000_pch_spt) {
4258		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4259			return -E1000_ERR_NVM;
4260	}
4261	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4262			     hw->nvm.flash_base_addr);
4263	do {
4264		udelay(1);
4265		/* Steps */
4266		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4267		if (ret_val)
4268			break;
4269
4270		/* In SPT, This register is in Lan memory space, not
4271		 * flash.  Therefore, only 32 bit access is supported
4272		 */
4273		if (hw->mac.type >= e1000_pch_spt)
4274			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4275			    >> 16;
4276		else
4277			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4278
4279		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4280		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4281
4282		/* In SPT, This register is in Lan memory space,
4283		 * not flash.  Therefore, only 32 bit access is
4284		 * supported
4285		 */
4286		if (hw->mac.type >= e1000_pch_spt)
4287			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4288		else
4289			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4290
4291		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4292
4293		ew32flash(ICH_FLASH_FDATA0, data);
4294
4295		/* check if FCERR is set to 1 , if set to 1, clear it
4296		 * and try the whole sequence a few more times else done
4297		 */
4298		ret_val =
4299		   e1000_flash_cycle_ich8lan(hw,
4300					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4301
4302		if (!ret_val)
4303			break;
4304
4305		/* If we're here, then things are most likely
4306		 * completely hosed, but if the error condition
4307		 * is detected, it won't hurt to give it another
4308		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4309		 */
4310		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4311
4312		if (hsfsts.hsf_status.flcerr)
4313			/* Repeat for some time before giving up. */
4314			continue;
4315		if (!hsfsts.hsf_status.flcdone) {
4316			e_dbg("Timeout error - flash cycle did not complete.\n");
4317			break;
4318		}
4319	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4320
4321	return ret_val;
4322}
4323
4324/**
4325 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4326 *  @hw: pointer to the HW structure
4327 *  @offset: The index of the byte to read.
4328 *  @data: The byte to write to the NVM.
4329 *
4330 *  Writes a single byte to the NVM using the flash access registers.
4331 **/
4332static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4333					  u8 data)
4334{
4335	u16 word = (u16)data;
4336
4337	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4338}
4339
4340/**
4341*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4342*  @hw: pointer to the HW structure
4343*  @offset: The offset of the word to write.
4344*  @dword: The dword to write to the NVM.
4345*
4346*  Writes a single dword to the NVM using the flash access registers.
4347*  Goes through a retry algorithm before giving up.
4348**/
4349static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4350						 u32 offset, u32 dword)
4351{
4352	s32 ret_val;
4353	u16 program_retries;
4354
4355	/* Must convert word offset into bytes. */
4356	offset <<= 1;
4357	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4358
4359	if (!ret_val)
4360		return ret_val;
4361	for (program_retries = 0; program_retries < 100; program_retries++) {
4362		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4363		usleep_range(100, 200);
4364		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4365		if (!ret_val)
4366			break;
4367	}
4368	if (program_retries == 100)
4369		return -E1000_ERR_NVM;
4370
4371	return 0;
4372}
4373
4374/**
4375 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4376 *  @hw: pointer to the HW structure
4377 *  @offset: The offset of the byte to write.
4378 *  @byte: The byte to write to the NVM.
4379 *
4380 *  Writes a single byte to the NVM using the flash access registers.
4381 *  Goes through a retry algorithm before giving up.
4382 **/
4383static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4384						u32 offset, u8 byte)
4385{
4386	s32 ret_val;
4387	u16 program_retries;
4388
4389	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4390	if (!ret_val)
4391		return ret_val;
4392
4393	for (program_retries = 0; program_retries < 100; program_retries++) {
4394		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4395		usleep_range(100, 200);
4396		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4397		if (!ret_val)
4398			break;
4399	}
4400	if (program_retries == 100)
4401		return -E1000_ERR_NVM;
4402
4403	return 0;
4404}
4405
4406/**
4407 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4408 *  @hw: pointer to the HW structure
4409 *  @bank: 0 for first bank, 1 for second bank, etc.
4410 *
4411 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4412 *  bank N is 4096 * N + flash_reg_addr.
4413 **/
4414static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4415{
4416	struct e1000_nvm_info *nvm = &hw->nvm;
4417	union ich8_hws_flash_status hsfsts;
4418	union ich8_hws_flash_ctrl hsflctl;
4419	u32 flash_linear_addr;
4420	/* bank size is in 16bit words - adjust to bytes */
4421	u32 flash_bank_size = nvm->flash_bank_size * 2;
4422	s32 ret_val;
4423	s32 count = 0;
4424	s32 j, iteration, sector_size;
4425
4426	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4427
4428	/* Determine HW Sector size: Read BERASE bits of hw flash status
4429	 * register
4430	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4431	 *     consecutive sectors.  The start index for the nth Hw sector
4432	 *     can be calculated as = bank * 4096 + n * 256
4433	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4434	 *     The start index for the nth Hw sector can be calculated
4435	 *     as = bank * 4096
4436	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4437	 *     (ich9 only, otherwise error condition)
4438	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4439	 */
4440	switch (hsfsts.hsf_status.berasesz) {
4441	case 0:
4442		/* Hw sector size 256 */
4443		sector_size = ICH_FLASH_SEG_SIZE_256;
4444		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4445		break;
4446	case 1:
4447		sector_size = ICH_FLASH_SEG_SIZE_4K;
4448		iteration = 1;
4449		break;
4450	case 2:
4451		sector_size = ICH_FLASH_SEG_SIZE_8K;
4452		iteration = 1;
4453		break;
4454	case 3:
4455		sector_size = ICH_FLASH_SEG_SIZE_64K;
4456		iteration = 1;
4457		break;
4458	default:
4459		return -E1000_ERR_NVM;
4460	}
4461
4462	/* Start with the base address, then add the sector offset. */
4463	flash_linear_addr = hw->nvm.flash_base_addr;
4464	flash_linear_addr += (bank) ? flash_bank_size : 0;
4465
4466	for (j = 0; j < iteration; j++) {
4467		do {
4468			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4469
4470			/* Steps */
4471			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4472			if (ret_val)
4473				return ret_val;
4474
4475			/* Write a value 11 (block Erase) in Flash
4476			 * Cycle field in hw flash control
4477			 */
4478			if (hw->mac.type >= e1000_pch_spt)
4479				hsflctl.regval =
4480				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4481			else
4482				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4483
4484			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4485			if (hw->mac.type >= e1000_pch_spt)
4486				ew32flash(ICH_FLASH_HSFSTS,
4487					  hsflctl.regval << 16);
4488			else
4489				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4490
4491			/* Write the last 24 bits of an index within the
4492			 * block into Flash Linear address field in Flash
4493			 * Address.
4494			 */
4495			flash_linear_addr += (j * sector_size);
4496			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4497
4498			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4499			if (!ret_val)
4500				break;
4501
4502			/* Check if FCERR is set to 1.  If 1,
4503			 * clear it and try the whole sequence
4504			 * a few more times else Done
4505			 */
4506			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4507			if (hsfsts.hsf_status.flcerr)
4508				/* repeat for some time before giving up */
4509				continue;
4510			else if (!hsfsts.hsf_status.flcdone)
4511				return ret_val;
4512		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4513	}
4514
4515	return 0;
4516}
4517
4518/**
4519 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4520 *  @hw: pointer to the HW structure
4521 *  @data: Pointer to the LED settings
4522 *
4523 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4524 *  settings is all 0's or F's, set the LED default to a valid LED default
4525 *  setting.
4526 **/
4527static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4528{
4529	s32 ret_val;
4530
4531	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4532	if (ret_val) {
4533		e_dbg("NVM Read Error\n");
4534		return ret_val;
4535	}
4536
4537	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4538		*data = ID_LED_DEFAULT_ICH8LAN;
4539
4540	return 0;
4541}
4542
4543/**
4544 *  e1000_id_led_init_pchlan - store LED configurations
4545 *  @hw: pointer to the HW structure
4546 *
4547 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4548 *  the PHY LED configuration register.
4549 *
4550 *  PCH also does not have an "always on" or "always off" mode which
4551 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4552 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4553 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4554 *  link based on logic in e1000_led_[on|off]_pchlan().
4555 **/
4556static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4557{
4558	struct e1000_mac_info *mac = &hw->mac;
4559	s32 ret_val;
4560	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4561	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4562	u16 data, i, temp, shift;
4563
4564	/* Get default ID LED modes */
4565	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4566	if (ret_val)
4567		return ret_val;
4568
4569	mac->ledctl_default = er32(LEDCTL);
4570	mac->ledctl_mode1 = mac->ledctl_default;
4571	mac->ledctl_mode2 = mac->ledctl_default;
4572
4573	for (i = 0; i < 4; i++) {
4574		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4575		shift = (i * 5);
4576		switch (temp) {
4577		case ID_LED_ON1_DEF2:
4578		case ID_LED_ON1_ON2:
4579		case ID_LED_ON1_OFF2:
4580			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4581			mac->ledctl_mode1 |= (ledctl_on << shift);
4582			break;
4583		case ID_LED_OFF1_DEF2:
4584		case ID_LED_OFF1_ON2:
4585		case ID_LED_OFF1_OFF2:
4586			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4587			mac->ledctl_mode1 |= (ledctl_off << shift);
4588			break;
4589		default:
4590			/* Do nothing */
4591			break;
4592		}
4593		switch (temp) {
4594		case ID_LED_DEF1_ON2:
4595		case ID_LED_ON1_ON2:
4596		case ID_LED_OFF1_ON2:
4597			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4598			mac->ledctl_mode2 |= (ledctl_on << shift);
4599			break;
4600		case ID_LED_DEF1_OFF2:
4601		case ID_LED_ON1_OFF2:
4602		case ID_LED_OFF1_OFF2:
4603			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4604			mac->ledctl_mode2 |= (ledctl_off << shift);
4605			break;
4606		default:
4607			/* Do nothing */
4608			break;
4609		}
4610	}
4611
4612	return 0;
4613}
4614
4615/**
4616 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4617 *  @hw: pointer to the HW structure
4618 *
4619 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4620 *  register, so the the bus width is hard coded.
4621 **/
4622static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4623{
4624	struct e1000_bus_info *bus = &hw->bus;
4625	s32 ret_val;
4626
4627	ret_val = e1000e_get_bus_info_pcie(hw);
4628
4629	/* ICH devices are "PCI Express"-ish.  They have
4630	 * a configuration space, but do not contain
4631	 * PCI Express Capability registers, so bus width
4632	 * must be hardcoded.
4633	 */
4634	if (bus->width == e1000_bus_width_unknown)
4635		bus->width = e1000_bus_width_pcie_x1;
4636
4637	return ret_val;
4638}
4639
4640/**
4641 *  e1000_reset_hw_ich8lan - Reset the hardware
4642 *  @hw: pointer to the HW structure
4643 *
4644 *  Does a full reset of the hardware which includes a reset of the PHY and
4645 *  MAC.
4646 **/
4647static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4648{
4649	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4650	u16 kum_cfg;
4651	u32 ctrl, reg;
4652	s32 ret_val;
4653
4654	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4655	 * on the last TLP read/write transaction when MAC is reset.
4656	 */
4657	ret_val = e1000e_disable_pcie_master(hw);
4658	if (ret_val)
4659		e_dbg("PCI-E Master disable polling has failed.\n");
4660
4661	e_dbg("Masking off all interrupts\n");
4662	ew32(IMC, 0xffffffff);
4663
4664	/* Disable the Transmit and Receive units.  Then delay to allow
4665	 * any pending transactions to complete before we hit the MAC
4666	 * with the global reset.
4667	 */
4668	ew32(RCTL, 0);
4669	ew32(TCTL, E1000_TCTL_PSP);
4670	e1e_flush();
4671
4672	usleep_range(10000, 20000);
4673
4674	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4675	if (hw->mac.type == e1000_ich8lan) {
4676		/* Set Tx and Rx buffer allocation to 8k apiece. */
4677		ew32(PBA, E1000_PBA_8K);
4678		/* Set Packet Buffer Size to 16k. */
4679		ew32(PBS, E1000_PBS_16K);
4680	}
4681
4682	if (hw->mac.type == e1000_pchlan) {
4683		/* Save the NVM K1 bit setting */
4684		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4685		if (ret_val)
4686			return ret_val;
4687
4688		if (kum_cfg & E1000_NVM_K1_ENABLE)
4689			dev_spec->nvm_k1_enabled = true;
4690		else
4691			dev_spec->nvm_k1_enabled = false;
4692	}
4693
4694	ctrl = er32(CTRL);
4695
4696	if (!hw->phy.ops.check_reset_block(hw)) {
4697		/* Full-chip reset requires MAC and PHY reset at the same
4698		 * time to make sure the interface between MAC and the
4699		 * external PHY is reset.
4700		 */
4701		ctrl |= E1000_CTRL_PHY_RST;
4702
4703		/* Gate automatic PHY configuration by hardware on
4704		 * non-managed 82579
4705		 */
4706		if ((hw->mac.type == e1000_pch2lan) &&
4707		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4708			e1000_gate_hw_phy_config_ich8lan(hw, true);
4709	}
4710	ret_val = e1000_acquire_swflag_ich8lan(hw);
4711	e_dbg("Issuing a global reset to ich8lan\n");
4712	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4713	/* cannot issue a flush here because it hangs the hardware */
4714	msleep(20);
4715
4716	/* Set Phy Config Counter to 50msec */
4717	if (hw->mac.type == e1000_pch2lan) {
4718		reg = er32(FEXTNVM3);
4719		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4720		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4721		ew32(FEXTNVM3, reg);
4722	}
4723
4724	if (!ret_val)
4725		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4726
4727	if (ctrl & E1000_CTRL_PHY_RST) {
4728		ret_val = hw->phy.ops.get_cfg_done(hw);
4729		if (ret_val)
4730			return ret_val;
4731
4732		ret_val = e1000_post_phy_reset_ich8lan(hw);
4733		if (ret_val)
4734			return ret_val;
4735	}
4736
4737	/* For PCH, this write will make sure that any noise
4738	 * will be detected as a CRC error and be dropped rather than show up
4739	 * as a bad packet to the DMA engine.
4740	 */
4741	if (hw->mac.type == e1000_pchlan)
4742		ew32(CRC_OFFSET, 0x65656565);
4743
4744	ew32(IMC, 0xffffffff);
4745	er32(ICR);
4746
4747	reg = er32(KABGTXD);
4748	reg |= E1000_KABGTXD_BGSQLBIAS;
4749	ew32(KABGTXD, reg);
4750
4751	return 0;
4752}
4753
4754/**
4755 *  e1000_init_hw_ich8lan - Initialize the hardware
4756 *  @hw: pointer to the HW structure
4757 *
4758 *  Prepares the hardware for transmit and receive by doing the following:
4759 *   - initialize hardware bits
4760 *   - initialize LED identification
4761 *   - setup receive address registers
4762 *   - setup flow control
4763 *   - setup transmit descriptors
4764 *   - clear statistics
4765 **/
4766static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4767{
4768	struct e1000_mac_info *mac = &hw->mac;
4769	u32 ctrl_ext, txdctl, snoop;
4770	s32 ret_val;
4771	u16 i;
4772
4773	e1000_initialize_hw_bits_ich8lan(hw);
4774
4775	/* Initialize identification LED */
4776	ret_val = mac->ops.id_led_init(hw);
4777	/* An error is not fatal and we should not stop init due to this */
4778	if (ret_val)
4779		e_dbg("Error initializing identification LED\n");
4780
4781	/* Setup the receive address. */
4782	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4783
4784	/* Zero out the Multicast HASH table */
4785	e_dbg("Zeroing the MTA\n");
4786	for (i = 0; i < mac->mta_reg_count; i++)
4787		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4788
4789	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4790	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4791	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4792	 */
4793	if (hw->phy.type == e1000_phy_82578) {
4794		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4795		i &= ~BM_WUC_HOST_WU_BIT;
4796		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4797		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4798		if (ret_val)
4799			return ret_val;
4800	}
4801
4802	/* Setup link and flow control */
4803	ret_val = mac->ops.setup_link(hw);
4804
4805	/* Set the transmit descriptor write-back policy for both queues */
4806	txdctl = er32(TXDCTL(0));
4807	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4808		  E1000_TXDCTL_FULL_TX_DESC_WB);
4809	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4810		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4811	ew32(TXDCTL(0), txdctl);
4812	txdctl = er32(TXDCTL(1));
4813	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4814		  E1000_TXDCTL_FULL_TX_DESC_WB);
4815	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4816		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4817	ew32(TXDCTL(1), txdctl);
4818
4819	/* ICH8 has opposite polarity of no_snoop bits.
4820	 * By default, we should use snoop behavior.
4821	 */
4822	if (mac->type == e1000_ich8lan)
4823		snoop = PCIE_ICH8_SNOOP_ALL;
4824	else
4825		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4826	e1000e_set_pcie_no_snoop(hw, snoop);
4827
4828	ctrl_ext = er32(CTRL_EXT);
4829	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4830	ew32(CTRL_EXT, ctrl_ext);
4831
4832	/* Clear all of the statistics registers (clear on read).  It is
4833	 * important that we do this after we have tried to establish link
4834	 * because the symbol error count will increment wildly if there
4835	 * is no link.
4836	 */
4837	e1000_clear_hw_cntrs_ich8lan(hw);
4838
4839	return ret_val;
4840}
4841
4842/**
4843 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4844 *  @hw: pointer to the HW structure
4845 *
4846 *  Sets/Clears required hardware bits necessary for correctly setting up the
4847 *  hardware for transmit and receive.
4848 **/
4849static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4850{
4851	u32 reg;
4852
4853	/* Extended Device Control */
4854	reg = er32(CTRL_EXT);
4855	reg |= BIT(22);
4856	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4857	if (hw->mac.type >= e1000_pchlan)
4858		reg |= E1000_CTRL_EXT_PHYPDEN;
4859	ew32(CTRL_EXT, reg);
4860
4861	/* Transmit Descriptor Control 0 */
4862	reg = er32(TXDCTL(0));
4863	reg |= BIT(22);
4864	ew32(TXDCTL(0), reg);
4865
4866	/* Transmit Descriptor Control 1 */
4867	reg = er32(TXDCTL(1));
4868	reg |= BIT(22);
4869	ew32(TXDCTL(1), reg);
4870
4871	/* Transmit Arbitration Control 0 */
4872	reg = er32(TARC(0));
4873	if (hw->mac.type == e1000_ich8lan)
4874		reg |= BIT(28) | BIT(29);
4875	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4876	ew32(TARC(0), reg);
4877
4878	/* Transmit Arbitration Control 1 */
4879	reg = er32(TARC(1));
4880	if (er32(TCTL) & E1000_TCTL_MULR)
4881		reg &= ~BIT(28);
4882	else
4883		reg |= BIT(28);
4884	reg |= BIT(24) | BIT(26) | BIT(30);
4885	ew32(TARC(1), reg);
4886
4887	/* Device Status */
4888	if (hw->mac.type == e1000_ich8lan) {
4889		reg = er32(STATUS);
4890		reg &= ~BIT(31);
4891		ew32(STATUS, reg);
4892	}
4893
4894	/* work-around descriptor data corruption issue during nfs v2 udp
4895	 * traffic, just disable the nfs filtering capability
4896	 */
4897	reg = er32(RFCTL);
4898	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4899
4900	/* Disable IPv6 extension header parsing because some malformed
4901	 * IPv6 headers can hang the Rx.
4902	 */
4903	if (hw->mac.type == e1000_ich8lan)
4904		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4905	ew32(RFCTL, reg);
4906
4907	/* Enable ECC on Lynxpoint */
4908	if (hw->mac.type >= e1000_pch_lpt) {
4909		reg = er32(PBECCSTS);
4910		reg |= E1000_PBECCSTS_ECC_ENABLE;
4911		ew32(PBECCSTS, reg);
4912
4913		reg = er32(CTRL);
4914		reg |= E1000_CTRL_MEHE;
4915		ew32(CTRL, reg);
4916	}
4917}
4918
4919/**
4920 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4921 *  @hw: pointer to the HW structure
4922 *
4923 *  Determines which flow control settings to use, then configures flow
4924 *  control.  Calls the appropriate media-specific link configuration
4925 *  function.  Assuming the adapter has a valid link partner, a valid link
4926 *  should be established.  Assumes the hardware has previously been reset
4927 *  and the transmitter and receiver are not enabled.
4928 **/
4929static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4930{
4931	s32 ret_val;
4932
4933	if (hw->phy.ops.check_reset_block(hw))
4934		return 0;
4935
4936	/* ICH parts do not have a word in the NVM to determine
4937	 * the default flow control setting, so we explicitly
4938	 * set it to full.
4939	 */
4940	if (hw->fc.requested_mode == e1000_fc_default) {
4941		/* Workaround h/w hang when Tx flow control enabled */
4942		if (hw->mac.type == e1000_pchlan)
4943			hw->fc.requested_mode = e1000_fc_rx_pause;
4944		else
4945			hw->fc.requested_mode = e1000_fc_full;
4946	}
4947
4948	/* Save off the requested flow control mode for use later.  Depending
4949	 * on the link partner's capabilities, we may or may not use this mode.
4950	 */
4951	hw->fc.current_mode = hw->fc.requested_mode;
4952
4953	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4954
4955	/* Continue to configure the copper link. */
4956	ret_val = hw->mac.ops.setup_physical_interface(hw);
4957	if (ret_val)
4958		return ret_val;
4959
4960	ew32(FCTTV, hw->fc.pause_time);
4961	if ((hw->phy.type == e1000_phy_82578) ||
4962	    (hw->phy.type == e1000_phy_82579) ||
4963	    (hw->phy.type == e1000_phy_i217) ||
4964	    (hw->phy.type == e1000_phy_82577)) {
4965		ew32(FCRTV_PCH, hw->fc.refresh_time);
4966
4967		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4968				   hw->fc.pause_time);
4969		if (ret_val)
4970			return ret_val;
4971	}
4972
4973	return e1000e_set_fc_watermarks(hw);
4974}
4975
4976/**
4977 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4978 *  @hw: pointer to the HW structure
4979 *
4980 *  Configures the kumeran interface to the PHY to wait the appropriate time
4981 *  when polling the PHY, then call the generic setup_copper_link to finish
4982 *  configuring the copper link.
4983 **/
4984static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4985{
4986	u32 ctrl;
4987	s32 ret_val;
4988	u16 reg_data;
4989
4990	ctrl = er32(CTRL);
4991	ctrl |= E1000_CTRL_SLU;
4992	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4993	ew32(CTRL, ctrl);
4994
4995	/* Set the mac to wait the maximum time between each iteration
4996	 * and increase the max iterations when polling the phy;
4997	 * this fixes erroneous timeouts at 10Mbps.
4998	 */
4999	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5000	if (ret_val)
5001		return ret_val;
5002	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5003				       &reg_data);
5004	if (ret_val)
5005		return ret_val;
5006	reg_data |= 0x3F;
5007	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5008					reg_data);
5009	if (ret_val)
5010		return ret_val;
5011
5012	switch (hw->phy.type) {
5013	case e1000_phy_igp_3:
5014		ret_val = e1000e_copper_link_setup_igp(hw);
5015		if (ret_val)
5016			return ret_val;
5017		break;
5018	case e1000_phy_bm:
5019	case e1000_phy_82578:
5020		ret_val = e1000e_copper_link_setup_m88(hw);
5021		if (ret_val)
5022			return ret_val;
5023		break;
5024	case e1000_phy_82577:
5025	case e1000_phy_82579:
5026		ret_val = e1000_copper_link_setup_82577(hw);
5027		if (ret_val)
5028			return ret_val;
5029		break;
5030	case e1000_phy_ife:
5031		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5032		if (ret_val)
5033			return ret_val;
5034
5035		reg_data &= ~IFE_PMC_AUTO_MDIX;
5036
5037		switch (hw->phy.mdix) {
5038		case 1:
5039			reg_data &= ~IFE_PMC_FORCE_MDIX;
5040			break;
5041		case 2:
5042			reg_data |= IFE_PMC_FORCE_MDIX;
5043			break;
5044		case 0:
5045		default:
5046			reg_data |= IFE_PMC_AUTO_MDIX;
5047			break;
5048		}
5049		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5050		if (ret_val)
5051			return ret_val;
5052		break;
5053	default:
5054		break;
5055	}
5056
5057	return e1000e_setup_copper_link(hw);
5058}
5059
5060/**
5061 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5062 *  @hw: pointer to the HW structure
5063 *
5064 *  Calls the PHY specific link setup function and then calls the
5065 *  generic setup_copper_link to finish configuring the link for
5066 *  Lynxpoint PCH devices
5067 **/
5068static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5069{
5070	u32 ctrl;
5071	s32 ret_val;
5072
5073	ctrl = er32(CTRL);
5074	ctrl |= E1000_CTRL_SLU;
5075	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5076	ew32(CTRL, ctrl);
5077
5078	ret_val = e1000_copper_link_setup_82577(hw);
5079	if (ret_val)
5080		return ret_val;
5081
5082	return e1000e_setup_copper_link(hw);
5083}
5084
5085/**
5086 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5087 *  @hw: pointer to the HW structure
5088 *  @speed: pointer to store current link speed
5089 *  @duplex: pointer to store the current link duplex
5090 *
5091 *  Calls the generic get_speed_and_duplex to retrieve the current link
5092 *  information and then calls the Kumeran lock loss workaround for links at
5093 *  gigabit speeds.
5094 **/
5095static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5096					  u16 *duplex)
5097{
5098	s32 ret_val;
5099
5100	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5101	if (ret_val)
5102		return ret_val;
5103
5104	if ((hw->mac.type == e1000_ich8lan) &&
5105	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5106		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5107	}
5108
5109	return ret_val;
5110}
5111
5112/**
5113 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5114 *  @hw: pointer to the HW structure
5115 *
5116 *  Work-around for 82566 Kumeran PCS lock loss:
5117 *  On link status change (i.e. PCI reset, speed change) and link is up and
5118 *  speed is gigabit-
5119 *    0) if workaround is optionally disabled do nothing
5120 *    1) wait 1ms for Kumeran link to come up
5121 *    2) check Kumeran Diagnostic register PCS lock loss bit
5122 *    3) if not set the link is locked (all is good), otherwise...
5123 *    4) reset the PHY
5124 *    5) repeat up to 10 times
5125 *  Note: this is only called for IGP3 copper when speed is 1gb.
5126 **/
5127static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5128{
5129	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5130	u32 phy_ctrl;
5131	s32 ret_val;
5132	u16 i, data;
5133	bool link;
5134
5135	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5136		return 0;
5137
5138	/* Make sure link is up before proceeding.  If not just return.
5139	 * Attempting this while link is negotiating fouled up link
5140	 * stability
5141	 */
5142	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5143	if (!link)
5144		return 0;
5145
5146	for (i = 0; i < 10; i++) {
5147		/* read once to clear */
5148		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5149		if (ret_val)
5150			return ret_val;
5151		/* and again to get new status */
5152		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5153		if (ret_val)
5154			return ret_val;
5155
5156		/* check for PCS lock */
5157		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5158			return 0;
5159
5160		/* Issue PHY reset */
5161		e1000_phy_hw_reset(hw);
5162		mdelay(5);
5163	}
5164	/* Disable GigE link negotiation */
5165	phy_ctrl = er32(PHY_CTRL);
5166	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5167		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5168	ew32(PHY_CTRL, phy_ctrl);
5169
5170	/* Call gig speed drop workaround on Gig disable before accessing
5171	 * any PHY registers
5172	 */
5173	e1000e_gig_downshift_workaround_ich8lan(hw);
5174
5175	/* unable to acquire PCS lock */
5176	return -E1000_ERR_PHY;
5177}
5178
5179/**
5180 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5181 *  @hw: pointer to the HW structure
5182 *  @state: boolean value used to set the current Kumeran workaround state
5183 *
5184 *  If ICH8, set the current Kumeran workaround state (enabled - true
5185 *  /disabled - false).
5186 **/
5187void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5188						  bool state)
5189{
5190	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5191
5192	if (hw->mac.type != e1000_ich8lan) {
5193		e_dbg("Workaround applies to ICH8 only.\n");
5194		return;
5195	}
5196
5197	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5198}
5199
5200/**
5201 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5202 *  @hw: pointer to the HW structure
5203 *
5204 *  Workaround for 82566 power-down on D3 entry:
5205 *    1) disable gigabit link
5206 *    2) write VR power-down enable
5207 *    3) read it back
5208 *  Continue if successful, else issue LCD reset and repeat
5209 **/
5210void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5211{
5212	u32 reg;
5213	u16 data;
5214	u8 retry = 0;
5215
5216	if (hw->phy.type != e1000_phy_igp_3)
5217		return;
5218
5219	/* Try the workaround twice (if needed) */
5220	do {
5221		/* Disable link */
5222		reg = er32(PHY_CTRL);
5223		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5224			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5225		ew32(PHY_CTRL, reg);
5226
5227		/* Call gig speed drop workaround on Gig disable before
5228		 * accessing any PHY registers
5229		 */
5230		if (hw->mac.type == e1000_ich8lan)
5231			e1000e_gig_downshift_workaround_ich8lan(hw);
5232
5233		/* Write VR power-down enable */
5234		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5235		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5236		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5237
5238		/* Read it back and test */
5239		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5240		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5241		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5242			break;
5243
5244		/* Issue PHY reset and repeat at most one more time */
5245		reg = er32(CTRL);
5246		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5247		retry++;
5248	} while (retry);
5249}
5250
5251/**
5252 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5253 *  @hw: pointer to the HW structure
5254 *
5255 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5256 *  LPLU, Gig disable, MDIC PHY reset):
5257 *    1) Set Kumeran Near-end loopback
5258 *    2) Clear Kumeran Near-end loopback
5259 *  Should only be called for ICH8[m] devices with any 1G Phy.
5260 **/
5261void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5262{
5263	s32 ret_val;
5264	u16 reg_data;
5265
5266	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5267		return;
5268
5269	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5270				       &reg_data);
5271	if (ret_val)
5272		return;
5273	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5274	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5275					reg_data);
5276	if (ret_val)
5277		return;
5278	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5279	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5280}
5281
5282/**
5283 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5284 *  @hw: pointer to the HW structure
5285 *
5286 *  During S0 to Sx transition, it is possible the link remains at gig
5287 *  instead of negotiating to a lower speed.  Before going to Sx, set
5288 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5289 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5290 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5291 *  needs to be written.
5292 *  Parts that support (and are linked to a partner which support) EEE in
5293 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5294 *  than 10Mbps w/o EEE.
5295 **/
5296void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5297{
5298	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5299	u32 phy_ctrl;
5300	s32 ret_val;
5301
5302	phy_ctrl = er32(PHY_CTRL);
5303	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5304
5305	if (hw->phy.type == e1000_phy_i217) {
5306		u16 phy_reg, device_id = hw->adapter->pdev->device;
5307
5308		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5309		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5310		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5311		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5312		    (hw->mac.type >= e1000_pch_spt)) {
5313			u32 fextnvm6 = er32(FEXTNVM6);
5314
5315			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5316		}
5317
5318		ret_val = hw->phy.ops.acquire(hw);
5319		if (ret_val)
5320			goto out;
5321
5322		if (!dev_spec->eee_disable) {
5323			u16 eee_advert;
5324
5325			ret_val =
5326			    e1000_read_emi_reg_locked(hw,
5327						      I217_EEE_ADVERTISEMENT,
5328						      &eee_advert);
5329			if (ret_val)
5330				goto release;
5331
5332			/* Disable LPLU if both link partners support 100BaseT
5333			 * EEE and 100Full is advertised on both ends of the
5334			 * link, and enable Auto Enable LPI since there will
5335			 * be no driver to enable LPI while in Sx.
5336			 */
5337			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5338			    (dev_spec->eee_lp_ability &
5339			     I82579_EEE_100_SUPPORTED) &&
5340			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5341				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5342					      E1000_PHY_CTRL_NOND0A_LPLU);
5343
5344				/* Set Auto Enable LPI after link up */
5345				e1e_rphy_locked(hw,
5346						I217_LPI_GPIO_CTRL, &phy_reg);
5347				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5348				e1e_wphy_locked(hw,
5349						I217_LPI_GPIO_CTRL, phy_reg);
5350			}
5351		}
5352
5353		/* For i217 Intel Rapid Start Technology support,
5354		 * when the system is going into Sx and no manageability engine
5355		 * is present, the driver must configure proxy to reset only on
5356		 * power good.  LPI (Low Power Idle) state must also reset only
5357		 * on power good, as well as the MTA (Multicast table array).
5358		 * The SMBus release must also be disabled on LCD reset.
5359		 */
5360		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5361			/* Enable proxy to reset only on power good. */
5362			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5363			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5364			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5365
5366			/* Set bit enable LPI (EEE) to reset only on
5367			 * power good.
5368			 */
5369			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5370			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5371			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5372
5373			/* Disable the SMB release on LCD reset. */
5374			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5375			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5376			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5377		}
5378
5379		/* Enable MTA to reset for Intel Rapid Start Technology
5380		 * Support
5381		 */
5382		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5383		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5384		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5385
5386release:
5387		hw->phy.ops.release(hw);
5388	}
5389out:
5390	ew32(PHY_CTRL, phy_ctrl);
5391
5392	if (hw->mac.type == e1000_ich8lan)
5393		e1000e_gig_downshift_workaround_ich8lan(hw);
5394
5395	if (hw->mac.type >= e1000_pchlan) {
5396		e1000_oem_bits_config_ich8lan(hw, false);
5397
5398		/* Reset PHY to activate OEM bits on 82577/8 */
5399		if (hw->mac.type == e1000_pchlan)
5400			e1000e_phy_hw_reset_generic(hw);
5401
5402		ret_val = hw->phy.ops.acquire(hw);
5403		if (ret_val)
5404			return;
5405		e1000_write_smbus_addr(hw);
5406		hw->phy.ops.release(hw);
5407	}
5408}
5409
5410/**
5411 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5412 *  @hw: pointer to the HW structure
5413 *
5414 *  During Sx to S0 transitions on non-managed devices or managed devices
5415 *  on which PHY resets are not blocked, if the PHY registers cannot be
5416 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5417 *  the PHY.
5418 *  On i217, setup Intel Rapid Start Technology.
5419 **/
5420void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5421{
5422	s32 ret_val;
5423
5424	if (hw->mac.type < e1000_pch2lan)
5425		return;
5426
5427	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5428	if (ret_val) {
5429		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5430		return;
5431	}
5432
5433	/* For i217 Intel Rapid Start Technology support when the system
5434	 * is transitioning from Sx and no manageability engine is present
5435	 * configure SMBus to restore on reset, disable proxy, and enable
5436	 * the reset on MTA (Multicast table array).
5437	 */
5438	if (hw->phy.type == e1000_phy_i217) {
5439		u16 phy_reg;
5440
5441		ret_val = hw->phy.ops.acquire(hw);
5442		if (ret_val) {
5443			e_dbg("Failed to setup iRST\n");
5444			return;
5445		}
5446
5447		/* Clear Auto Enable LPI after link up */
5448		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5449		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5450		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5451
5452		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5453			/* Restore clear on SMB if no manageability engine
5454			 * is present
5455			 */
5456			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5457			if (ret_val)
5458				goto release;
5459			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5460			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5461
5462			/* Disable Proxy */
5463			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5464		}
5465		/* Enable reset on MTA */
5466		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5467		if (ret_val)
5468			goto release;
5469		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5470		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5471release:
5472		if (ret_val)
5473			e_dbg("Error %d in resume workarounds\n", ret_val);
5474		hw->phy.ops.release(hw);
5475	}
5476}
5477
5478/**
5479 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5480 *  @hw: pointer to the HW structure
5481 *
5482 *  Return the LED back to the default configuration.
5483 **/
5484static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5485{
5486	if (hw->phy.type == e1000_phy_ife)
5487		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5488
5489	ew32(LEDCTL, hw->mac.ledctl_default);
5490	return 0;
5491}
5492
5493/**
5494 *  e1000_led_on_ich8lan - Turn LEDs on
5495 *  @hw: pointer to the HW structure
5496 *
5497 *  Turn on the LEDs.
5498 **/
5499static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5500{
5501	if (hw->phy.type == e1000_phy_ife)
5502		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5503				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5504
5505	ew32(LEDCTL, hw->mac.ledctl_mode2);
5506	return 0;
5507}
5508
5509/**
5510 *  e1000_led_off_ich8lan - Turn LEDs off
5511 *  @hw: pointer to the HW structure
5512 *
5513 *  Turn off the LEDs.
5514 **/
5515static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5516{
5517	if (hw->phy.type == e1000_phy_ife)
5518		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5519				(IFE_PSCL_PROBE_MODE |
5520				 IFE_PSCL_PROBE_LEDS_OFF));
5521
5522	ew32(LEDCTL, hw->mac.ledctl_mode1);
5523	return 0;
5524}
5525
5526/**
5527 *  e1000_setup_led_pchlan - Configures SW controllable LED
5528 *  @hw: pointer to the HW structure
5529 *
5530 *  This prepares the SW controllable LED for use.
5531 **/
5532static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5533{
5534	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5535}
5536
5537/**
5538 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5539 *  @hw: pointer to the HW structure
5540 *
5541 *  Return the LED back to the default configuration.
5542 **/
5543static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5544{
5545	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5546}
5547
5548/**
5549 *  e1000_led_on_pchlan - Turn LEDs on
5550 *  @hw: pointer to the HW structure
5551 *
5552 *  Turn on the LEDs.
5553 **/
5554static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5555{
5556	u16 data = (u16)hw->mac.ledctl_mode2;
5557	u32 i, led;
5558
5559	/* If no link, then turn LED on by setting the invert bit
5560	 * for each LED that's mode is "link_up" in ledctl_mode2.
5561	 */
5562	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5563		for (i = 0; i < 3; i++) {
5564			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5565			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5566			    E1000_LEDCTL_MODE_LINK_UP)
5567				continue;
5568			if (led & E1000_PHY_LED0_IVRT)
5569				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5570			else
5571				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5572		}
5573	}
5574
5575	return e1e_wphy(hw, HV_LED_CONFIG, data);
5576}
5577
5578/**
5579 *  e1000_led_off_pchlan - Turn LEDs off
5580 *  @hw: pointer to the HW structure
5581 *
5582 *  Turn off the LEDs.
5583 **/
5584static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5585{
5586	u16 data = (u16)hw->mac.ledctl_mode1;
5587	u32 i, led;
5588
5589	/* If no link, then turn LED off by clearing the invert bit
5590	 * for each LED that's mode is "link_up" in ledctl_mode1.
5591	 */
5592	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5593		for (i = 0; i < 3; i++) {
5594			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5595			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5596			    E1000_LEDCTL_MODE_LINK_UP)
5597				continue;
5598			if (led & E1000_PHY_LED0_IVRT)
5599				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5600			else
5601				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5602		}
5603	}
5604
5605	return e1e_wphy(hw, HV_LED_CONFIG, data);
5606}
5607
5608/**
5609 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5610 *  @hw: pointer to the HW structure
5611 *
5612 *  Read appropriate register for the config done bit for completion status
5613 *  and configure the PHY through s/w for EEPROM-less parts.
5614 *
5615 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5616 *  config done bit, so only an error is logged and continues.  If we were
5617 *  to return with error, EEPROM-less silicon would not be able to be reset
5618 *  or change link.
5619 **/
5620static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5621{
5622	s32 ret_val = 0;
5623	u32 bank = 0;
5624	u32 status;
5625
5626	e1000e_get_cfg_done_generic(hw);
5627
5628	/* Wait for indication from h/w that it has completed basic config */
5629	if (hw->mac.type >= e1000_ich10lan) {
5630		e1000_lan_init_done_ich8lan(hw);
5631	} else {
5632		ret_val = e1000e_get_auto_rd_done(hw);
5633		if (ret_val) {
5634			/* When auto config read does not complete, do not
5635			 * return with an error. This can happen in situations
5636			 * where there is no eeprom and prevents getting link.
5637			 */
5638			e_dbg("Auto Read Done did not complete\n");
5639			ret_val = 0;
5640		}
5641	}
5642
5643	/* Clear PHY Reset Asserted bit */
5644	status = er32(STATUS);
5645	if (status & E1000_STATUS_PHYRA)
5646		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5647	else
5648		e_dbg("PHY Reset Asserted not set - needs delay\n");
5649
5650	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5651	if (hw->mac.type <= e1000_ich9lan) {
5652		if (!(er32(EECD) & E1000_EECD_PRES) &&
5653		    (hw->phy.type == e1000_phy_igp_3)) {
5654			e1000e_phy_init_script_igp3(hw);
5655		}
5656	} else {
5657		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5658			/* Maybe we should do a basic PHY config */
5659			e_dbg("EEPROM not present\n");
5660			ret_val = -E1000_ERR_CONFIG;
5661		}
5662	}
5663
5664	return ret_val;
5665}
5666
5667/**
5668 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5669 * @hw: pointer to the HW structure
5670 *
5671 * In the case of a PHY power down to save power, or to turn off link during a
5672 * driver unload, or wake on lan is not enabled, remove the link.
5673 **/
5674static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5675{
5676	/* If the management interface is not enabled, then power down */
5677	if (!(hw->mac.ops.check_mng_mode(hw) ||
5678	      hw->phy.ops.check_reset_block(hw)))
5679		e1000_power_down_phy_copper(hw);
5680}
5681
5682/**
5683 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5684 *  @hw: pointer to the HW structure
5685 *
5686 *  Clears hardware counters specific to the silicon family and calls
5687 *  clear_hw_cntrs_generic to clear all general purpose counters.
5688 **/
5689static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5690{
5691	u16 phy_data;
5692	s32 ret_val;
5693
5694	e1000e_clear_hw_cntrs_base(hw);
5695
5696	er32(ALGNERRC);
5697	er32(RXERRC);
5698	er32(TNCRS);
5699	er32(CEXTERR);
5700	er32(TSCTC);
5701	er32(TSCTFC);
5702
5703	er32(MGTPRC);
5704	er32(MGTPDC);
5705	er32(MGTPTC);
5706
5707	er32(IAC);
5708	er32(ICRXOC);
5709
5710	/* Clear PHY statistics registers */
5711	if ((hw->phy.type == e1000_phy_82578) ||
5712	    (hw->phy.type == e1000_phy_82579) ||
5713	    (hw->phy.type == e1000_phy_i217) ||
5714	    (hw->phy.type == e1000_phy_82577)) {
5715		ret_val = hw->phy.ops.acquire(hw);
5716		if (ret_val)
5717			return;
5718		ret_val = hw->phy.ops.set_page(hw,
5719					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5720		if (ret_val)
5721			goto release;
5722		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5723		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5724		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5725		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5726		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5727		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5728		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5729		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5730		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5731		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5732		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5733		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5734		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5735		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5736release:
5737		hw->phy.ops.release(hw);
5738	}
5739}
5740
5741static const struct e1000_mac_operations ich8_mac_ops = {
5742	/* check_mng_mode dependent on mac type */
5743	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5744	/* cleanup_led dependent on mac type */
5745	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5746	.get_bus_info		= e1000_get_bus_info_ich8lan,
5747	.set_lan_id		= e1000_set_lan_id_single_port,
5748	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5749	/* led_on dependent on mac type */
5750	/* led_off dependent on mac type */
5751	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5752	.reset_hw		= e1000_reset_hw_ich8lan,
5753	.init_hw		= e1000_init_hw_ich8lan,
5754	.setup_link		= e1000_setup_link_ich8lan,
5755	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5756	/* id_led_init dependent on mac type */
5757	.config_collision_dist	= e1000e_config_collision_dist_generic,
5758	.rar_set		= e1000e_rar_set_generic,
5759	.rar_get_count		= e1000e_rar_get_count_generic,
5760};
5761
5762static const struct e1000_phy_operations ich8_phy_ops = {
5763	.acquire		= e1000_acquire_swflag_ich8lan,
5764	.check_reset_block	= e1000_check_reset_block_ich8lan,
5765	.commit			= NULL,
5766	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5767	.get_cable_length	= e1000e_get_cable_length_igp_2,
5768	.read_reg		= e1000e_read_phy_reg_igp,
5769	.release		= e1000_release_swflag_ich8lan,
5770	.reset			= e1000_phy_hw_reset_ich8lan,
5771	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5772	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5773	.write_reg		= e1000e_write_phy_reg_igp,
5774};
5775
5776static const struct e1000_nvm_operations ich8_nvm_ops = {
5777	.acquire		= e1000_acquire_nvm_ich8lan,
5778	.read			= e1000_read_nvm_ich8lan,
5779	.release		= e1000_release_nvm_ich8lan,
5780	.reload			= e1000e_reload_nvm_generic,
5781	.update			= e1000_update_nvm_checksum_ich8lan,
5782	.valid_led_default	= e1000_valid_led_default_ich8lan,
5783	.validate		= e1000_validate_nvm_checksum_ich8lan,
5784	.write			= e1000_write_nvm_ich8lan,
5785};
5786
5787static const struct e1000_nvm_operations spt_nvm_ops = {
5788	.acquire		= e1000_acquire_nvm_ich8lan,
5789	.release		= e1000_release_nvm_ich8lan,
5790	.read			= e1000_read_nvm_spt,
5791	.update			= e1000_update_nvm_checksum_spt,
5792	.reload			= e1000e_reload_nvm_generic,
5793	.valid_led_default	= e1000_valid_led_default_ich8lan,
5794	.validate		= e1000_validate_nvm_checksum_ich8lan,
5795	.write			= e1000_write_nvm_ich8lan,
5796};
5797
5798const struct e1000_info e1000_ich8_info = {
5799	.mac			= e1000_ich8lan,
5800	.flags			= FLAG_HAS_WOL
5801				  | FLAG_IS_ICH
5802				  | FLAG_HAS_CTRLEXT_ON_LOAD
5803				  | FLAG_HAS_AMT
5804				  | FLAG_HAS_FLASH
5805				  | FLAG_APME_IN_WUC,
5806	.pba			= 8,
5807	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5808	.get_variants		= e1000_get_variants_ich8lan,
5809	.mac_ops		= &ich8_mac_ops,
5810	.phy_ops		= &ich8_phy_ops,
5811	.nvm_ops		= &ich8_nvm_ops,
5812};
5813
5814const struct e1000_info e1000_ich9_info = {
5815	.mac			= e1000_ich9lan,
5816	.flags			= FLAG_HAS_JUMBO_FRAMES
5817				  | FLAG_IS_ICH
5818				  | FLAG_HAS_WOL
5819				  | FLAG_HAS_CTRLEXT_ON_LOAD
5820				  | FLAG_HAS_AMT
5821				  | FLAG_HAS_FLASH
5822				  | FLAG_APME_IN_WUC,
5823	.pba			= 18,
5824	.max_hw_frame_size	= DEFAULT_JUMBO,
5825	.get_variants		= e1000_get_variants_ich8lan,
5826	.mac_ops		= &ich8_mac_ops,
5827	.phy_ops		= &ich8_phy_ops,
5828	.nvm_ops		= &ich8_nvm_ops,
5829};
5830
5831const struct e1000_info e1000_ich10_info = {
5832	.mac			= e1000_ich10lan,
5833	.flags			= FLAG_HAS_JUMBO_FRAMES
5834				  | FLAG_IS_ICH
5835				  | FLAG_HAS_WOL
5836				  | FLAG_HAS_CTRLEXT_ON_LOAD
5837				  | FLAG_HAS_AMT
5838				  | FLAG_HAS_FLASH
5839				  | FLAG_APME_IN_WUC,
5840	.pba			= 18,
5841	.max_hw_frame_size	= DEFAULT_JUMBO,
5842	.get_variants		= e1000_get_variants_ich8lan,
5843	.mac_ops		= &ich8_mac_ops,
5844	.phy_ops		= &ich8_phy_ops,
5845	.nvm_ops		= &ich8_nvm_ops,
5846};
5847
5848const struct e1000_info e1000_pch_info = {
5849	.mac			= e1000_pchlan,
5850	.flags			= FLAG_IS_ICH
5851				  | FLAG_HAS_WOL
5852				  | FLAG_HAS_CTRLEXT_ON_LOAD
5853				  | FLAG_HAS_AMT
5854				  | FLAG_HAS_FLASH
5855				  | FLAG_HAS_JUMBO_FRAMES
5856				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5857				  | FLAG_APME_IN_WUC,
5858	.flags2			= FLAG2_HAS_PHY_STATS,
5859	.pba			= 26,
5860	.max_hw_frame_size	= 4096,
5861	.get_variants		= e1000_get_variants_ich8lan,
5862	.mac_ops		= &ich8_mac_ops,
5863	.phy_ops		= &ich8_phy_ops,
5864	.nvm_ops		= &ich8_nvm_ops,
5865};
5866
5867const struct e1000_info e1000_pch2_info = {
5868	.mac			= e1000_pch2lan,
5869	.flags			= FLAG_IS_ICH
5870				  | FLAG_HAS_WOL
5871				  | FLAG_HAS_HW_TIMESTAMP
5872				  | FLAG_HAS_CTRLEXT_ON_LOAD
5873				  | FLAG_HAS_AMT
5874				  | FLAG_HAS_FLASH
5875				  | FLAG_HAS_JUMBO_FRAMES
5876				  | FLAG_APME_IN_WUC,
5877	.flags2			= FLAG2_HAS_PHY_STATS
5878				  | FLAG2_HAS_EEE
5879				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5880	.pba			= 26,
5881	.max_hw_frame_size	= 9022,
5882	.get_variants		= e1000_get_variants_ich8lan,
5883	.mac_ops		= &ich8_mac_ops,
5884	.phy_ops		= &ich8_phy_ops,
5885	.nvm_ops		= &ich8_nvm_ops,
5886};
5887
5888const struct e1000_info e1000_pch_lpt_info = {
5889	.mac			= e1000_pch_lpt,
5890	.flags			= FLAG_IS_ICH
5891				  | FLAG_HAS_WOL
5892				  | FLAG_HAS_HW_TIMESTAMP
5893				  | FLAG_HAS_CTRLEXT_ON_LOAD
5894				  | FLAG_HAS_AMT
5895				  | FLAG_HAS_FLASH
5896				  | FLAG_HAS_JUMBO_FRAMES
5897				  | FLAG_APME_IN_WUC,
5898	.flags2			= FLAG2_HAS_PHY_STATS
5899				  | FLAG2_HAS_EEE
5900				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5901	.pba			= 26,
5902	.max_hw_frame_size	= 9022,
5903	.get_variants		= e1000_get_variants_ich8lan,
5904	.mac_ops		= &ich8_mac_ops,
5905	.phy_ops		= &ich8_phy_ops,
5906	.nvm_ops		= &ich8_nvm_ops,
5907};
5908
5909const struct e1000_info e1000_pch_spt_info = {
5910	.mac			= e1000_pch_spt,
5911	.flags			= FLAG_IS_ICH
5912				  | FLAG_HAS_WOL
5913				  | FLAG_HAS_HW_TIMESTAMP
5914				  | FLAG_HAS_CTRLEXT_ON_LOAD
5915				  | FLAG_HAS_AMT
5916				  | FLAG_HAS_FLASH
5917				  | FLAG_HAS_JUMBO_FRAMES
5918				  | FLAG_APME_IN_WUC,
5919	.flags2			= FLAG2_HAS_PHY_STATS
5920				  | FLAG2_HAS_EEE,
5921	.pba			= 26,
5922	.max_hw_frame_size	= 9022,
5923	.get_variants		= e1000_get_variants_ich8lan,
5924	.mac_ops		= &ich8_mac_ops,
5925	.phy_ops		= &ich8_phy_ops,
5926	.nvm_ops		= &spt_nvm_ops,
5927};
5928
5929const struct e1000_info e1000_pch_cnp_info = {
5930	.mac			= e1000_pch_cnp,
5931	.flags			= FLAG_IS_ICH
5932				  | FLAG_HAS_WOL
5933				  | FLAG_HAS_HW_TIMESTAMP
5934				  | FLAG_HAS_CTRLEXT_ON_LOAD
5935				  | FLAG_HAS_AMT
5936				  | FLAG_HAS_FLASH
5937				  | FLAG_HAS_JUMBO_FRAMES
5938				  | FLAG_APME_IN_WUC,
5939	.flags2			= FLAG2_HAS_PHY_STATS
5940				  | FLAG2_HAS_EEE,
5941	.pba			= 26,
5942	.max_hw_frame_size	= 9022,
5943	.get_variants		= e1000_get_variants_ich8lan,
5944	.mac_ops		= &ich8_mac_ops,
5945	.phy_ops		= &ich8_phy_ops,
5946	.nvm_ops		= &spt_nvm_ops,
5947};