Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "request.h"
14#include "writeback.h"
15
16#include <linux/module.h>
17#include <linux/hash.h>
18#include <linux/random.h>
19#include <linux/backing-dev.h>
20
21#include <trace/events/bcache.h>
22
23#define CUTOFF_CACHE_ADD 95
24#define CUTOFF_CACHE_READA 90
25
26struct kmem_cache *bch_search_cache;
27
28static void bch_data_insert_start(struct closure *cl);
29
30static unsigned int cache_mode(struct cached_dev *dc)
31{
32 return BDEV_CACHE_MODE(&dc->sb);
33}
34
35static bool verify(struct cached_dev *dc)
36{
37 return dc->verify;
38}
39
40static void bio_csum(struct bio *bio, struct bkey *k)
41{
42 struct bio_vec bv;
43 struct bvec_iter iter;
44 uint64_t csum = 0;
45
46 bio_for_each_segment(bv, bio, iter) {
47 void *d = kmap(bv.bv_page) + bv.bv_offset;
48
49 csum = bch_crc64_update(csum, d, bv.bv_len);
50 kunmap(bv.bv_page);
51 }
52
53 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
54}
55
56/* Insert data into cache */
57
58static void bch_data_insert_keys(struct closure *cl)
59{
60 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
61 atomic_t *journal_ref = NULL;
62 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
63 int ret;
64
65 /*
66 * If we're looping, might already be waiting on
67 * another journal write - can't wait on more than one journal write at
68 * a time
69 *
70 * XXX: this looks wrong
71 */
72#if 0
73 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
74 closure_sync(&s->cl);
75#endif
76
77 if (!op->replace)
78 journal_ref = bch_journal(op->c, &op->insert_keys,
79 op->flush_journal ? cl : NULL);
80
81 ret = bch_btree_insert(op->c, &op->insert_keys,
82 journal_ref, replace_key);
83 if (ret == -ESRCH) {
84 op->replace_collision = true;
85 } else if (ret) {
86 op->status = BLK_STS_RESOURCE;
87 op->insert_data_done = true;
88 }
89
90 if (journal_ref)
91 atomic_dec_bug(journal_ref);
92
93 if (!op->insert_data_done) {
94 continue_at(cl, bch_data_insert_start, op->wq);
95 return;
96 }
97
98 bch_keylist_free(&op->insert_keys);
99 closure_return(cl);
100}
101
102static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
103 struct cache_set *c)
104{
105 size_t oldsize = bch_keylist_nkeys(l);
106 size_t newsize = oldsize + u64s;
107
108 /*
109 * The journalling code doesn't handle the case where the keys to insert
110 * is bigger than an empty write: If we just return -ENOMEM here,
111 * bch_data_insert_keys() will insert the keys created so far
112 * and finish the rest when the keylist is empty.
113 */
114 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
115 return -ENOMEM;
116
117 return __bch_keylist_realloc(l, u64s);
118}
119
120static void bch_data_invalidate(struct closure *cl)
121{
122 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
123 struct bio *bio = op->bio;
124
125 pr_debug("invalidating %i sectors from %llu",
126 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
127
128 while (bio_sectors(bio)) {
129 unsigned int sectors = min(bio_sectors(bio),
130 1U << (KEY_SIZE_BITS - 1));
131
132 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
133 goto out;
134
135 bio->bi_iter.bi_sector += sectors;
136 bio->bi_iter.bi_size -= sectors << 9;
137
138 bch_keylist_add(&op->insert_keys,
139 &KEY(op->inode,
140 bio->bi_iter.bi_sector,
141 sectors));
142 }
143
144 op->insert_data_done = true;
145 /* get in bch_data_insert() */
146 bio_put(bio);
147out:
148 continue_at(cl, bch_data_insert_keys, op->wq);
149}
150
151static void bch_data_insert_error(struct closure *cl)
152{
153 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
154
155 /*
156 * Our data write just errored, which means we've got a bunch of keys to
157 * insert that point to data that wasn't successfully written.
158 *
159 * We don't have to insert those keys but we still have to invalidate
160 * that region of the cache - so, if we just strip off all the pointers
161 * from the keys we'll accomplish just that.
162 */
163
164 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
165
166 while (src != op->insert_keys.top) {
167 struct bkey *n = bkey_next(src);
168
169 SET_KEY_PTRS(src, 0);
170 memmove(dst, src, bkey_bytes(src));
171
172 dst = bkey_next(dst);
173 src = n;
174 }
175
176 op->insert_keys.top = dst;
177
178 bch_data_insert_keys(cl);
179}
180
181static void bch_data_insert_endio(struct bio *bio)
182{
183 struct closure *cl = bio->bi_private;
184 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
185
186 if (bio->bi_status) {
187 /* TODO: We could try to recover from this. */
188 if (op->writeback)
189 op->status = bio->bi_status;
190 else if (!op->replace)
191 set_closure_fn(cl, bch_data_insert_error, op->wq);
192 else
193 set_closure_fn(cl, NULL, NULL);
194 }
195
196 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
197}
198
199static void bch_data_insert_start(struct closure *cl)
200{
201 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
202 struct bio *bio = op->bio, *n;
203
204 if (op->bypass)
205 return bch_data_invalidate(cl);
206
207 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
208 wake_up_gc(op->c);
209
210 /*
211 * Journal writes are marked REQ_PREFLUSH; if the original write was a
212 * flush, it'll wait on the journal write.
213 */
214 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
215
216 do {
217 unsigned int i;
218 struct bkey *k;
219 struct bio_set *split = &op->c->bio_split;
220
221 /* 1 for the device pointer and 1 for the chksum */
222 if (bch_keylist_realloc(&op->insert_keys,
223 3 + (op->csum ? 1 : 0),
224 op->c)) {
225 continue_at(cl, bch_data_insert_keys, op->wq);
226 return;
227 }
228
229 k = op->insert_keys.top;
230 bkey_init(k);
231 SET_KEY_INODE(k, op->inode);
232 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
233
234 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
235 op->write_point, op->write_prio,
236 op->writeback))
237 goto err;
238
239 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
240
241 n->bi_end_io = bch_data_insert_endio;
242 n->bi_private = cl;
243
244 if (op->writeback) {
245 SET_KEY_DIRTY(k, true);
246
247 for (i = 0; i < KEY_PTRS(k); i++)
248 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
249 GC_MARK_DIRTY);
250 }
251
252 SET_KEY_CSUM(k, op->csum);
253 if (KEY_CSUM(k))
254 bio_csum(n, k);
255
256 trace_bcache_cache_insert(k);
257 bch_keylist_push(&op->insert_keys);
258
259 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
260 bch_submit_bbio(n, op->c, k, 0);
261 } while (n != bio);
262
263 op->insert_data_done = true;
264 continue_at(cl, bch_data_insert_keys, op->wq);
265 return;
266err:
267 /* bch_alloc_sectors() blocks if s->writeback = true */
268 BUG_ON(op->writeback);
269
270 /*
271 * But if it's not a writeback write we'd rather just bail out if
272 * there aren't any buckets ready to write to - it might take awhile and
273 * we might be starving btree writes for gc or something.
274 */
275
276 if (!op->replace) {
277 /*
278 * Writethrough write: We can't complete the write until we've
279 * updated the index. But we don't want to delay the write while
280 * we wait for buckets to be freed up, so just invalidate the
281 * rest of the write.
282 */
283 op->bypass = true;
284 return bch_data_invalidate(cl);
285 } else {
286 /*
287 * From a cache miss, we can just insert the keys for the data
288 * we have written or bail out if we didn't do anything.
289 */
290 op->insert_data_done = true;
291 bio_put(bio);
292
293 if (!bch_keylist_empty(&op->insert_keys))
294 continue_at(cl, bch_data_insert_keys, op->wq);
295 else
296 closure_return(cl);
297 }
298}
299
300/**
301 * bch_data_insert - stick some data in the cache
302 * @cl: closure pointer.
303 *
304 * This is the starting point for any data to end up in a cache device; it could
305 * be from a normal write, or a writeback write, or a write to a flash only
306 * volume - it's also used by the moving garbage collector to compact data in
307 * mostly empty buckets.
308 *
309 * It first writes the data to the cache, creating a list of keys to be inserted
310 * (if the data had to be fragmented there will be multiple keys); after the
311 * data is written it calls bch_journal, and after the keys have been added to
312 * the next journal write they're inserted into the btree.
313 *
314 * It inserts the data in op->bio; bi_sector is used for the key offset,
315 * and op->inode is used for the key inode.
316 *
317 * If op->bypass is true, instead of inserting the data it invalidates the
318 * region of the cache represented by op->bio and op->inode.
319 */
320void bch_data_insert(struct closure *cl)
321{
322 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
323
324 trace_bcache_write(op->c, op->inode, op->bio,
325 op->writeback, op->bypass);
326
327 bch_keylist_init(&op->insert_keys);
328 bio_get(op->bio);
329 bch_data_insert_start(cl);
330}
331
332/*
333 * Congested? Return 0 (not congested) or the limit (in sectors)
334 * beyond which we should bypass the cache due to congestion.
335 */
336unsigned int bch_get_congested(const struct cache_set *c)
337{
338 int i;
339
340 if (!c->congested_read_threshold_us &&
341 !c->congested_write_threshold_us)
342 return 0;
343
344 i = (local_clock_us() - c->congested_last_us) / 1024;
345 if (i < 0)
346 return 0;
347
348 i += atomic_read(&c->congested);
349 if (i >= 0)
350 return 0;
351
352 i += CONGESTED_MAX;
353
354 if (i > 0)
355 i = fract_exp_two(i, 6);
356
357 i -= hweight32(get_random_u32());
358
359 return i > 0 ? i : 1;
360}
361
362static void add_sequential(struct task_struct *t)
363{
364 ewma_add(t->sequential_io_avg,
365 t->sequential_io, 8, 0);
366
367 t->sequential_io = 0;
368}
369
370static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
371{
372 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
373}
374
375static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
376{
377 struct cache_set *c = dc->disk.c;
378 unsigned int mode = cache_mode(dc);
379 unsigned int sectors, congested;
380 struct task_struct *task = current;
381 struct io *i;
382
383 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
384 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
385 (bio_op(bio) == REQ_OP_DISCARD))
386 goto skip;
387
388 if (mode == CACHE_MODE_NONE ||
389 (mode == CACHE_MODE_WRITEAROUND &&
390 op_is_write(bio_op(bio))))
391 goto skip;
392
393 /*
394 * Flag for bypass if the IO is for read-ahead or background,
395 * unless the read-ahead request is for metadata
396 * (eg, for gfs2 or xfs).
397 */
398 if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
399 !(bio->bi_opf & (REQ_META|REQ_PRIO)))
400 goto skip;
401
402 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
403 bio_sectors(bio) & (c->sb.block_size - 1)) {
404 pr_debug("skipping unaligned io");
405 goto skip;
406 }
407
408 if (bypass_torture_test(dc)) {
409 if ((get_random_int() & 3) == 3)
410 goto skip;
411 else
412 goto rescale;
413 }
414
415 congested = bch_get_congested(c);
416 if (!congested && !dc->sequential_cutoff)
417 goto rescale;
418
419 spin_lock(&dc->io_lock);
420
421 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
422 if (i->last == bio->bi_iter.bi_sector &&
423 time_before(jiffies, i->jiffies))
424 goto found;
425
426 i = list_first_entry(&dc->io_lru, struct io, lru);
427
428 add_sequential(task);
429 i->sequential = 0;
430found:
431 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
432 i->sequential += bio->bi_iter.bi_size;
433
434 i->last = bio_end_sector(bio);
435 i->jiffies = jiffies + msecs_to_jiffies(5000);
436 task->sequential_io = i->sequential;
437
438 hlist_del(&i->hash);
439 hlist_add_head(&i->hash, iohash(dc, i->last));
440 list_move_tail(&i->lru, &dc->io_lru);
441
442 spin_unlock(&dc->io_lock);
443
444 sectors = max(task->sequential_io,
445 task->sequential_io_avg) >> 9;
446
447 if (dc->sequential_cutoff &&
448 sectors >= dc->sequential_cutoff >> 9) {
449 trace_bcache_bypass_sequential(bio);
450 goto skip;
451 }
452
453 if (congested && sectors >= congested) {
454 trace_bcache_bypass_congested(bio);
455 goto skip;
456 }
457
458rescale:
459 bch_rescale_priorities(c, bio_sectors(bio));
460 return false;
461skip:
462 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
463 return true;
464}
465
466/* Cache lookup */
467
468struct search {
469 /* Stack frame for bio_complete */
470 struct closure cl;
471
472 struct bbio bio;
473 struct bio *orig_bio;
474 struct bio *cache_miss;
475 struct bcache_device *d;
476
477 unsigned int insert_bio_sectors;
478 unsigned int recoverable:1;
479 unsigned int write:1;
480 unsigned int read_dirty_data:1;
481 unsigned int cache_missed:1;
482
483 unsigned long start_time;
484
485 struct btree_op op;
486 struct data_insert_op iop;
487};
488
489static void bch_cache_read_endio(struct bio *bio)
490{
491 struct bbio *b = container_of(bio, struct bbio, bio);
492 struct closure *cl = bio->bi_private;
493 struct search *s = container_of(cl, struct search, cl);
494
495 /*
496 * If the bucket was reused while our bio was in flight, we might have
497 * read the wrong data. Set s->error but not error so it doesn't get
498 * counted against the cache device, but we'll still reread the data
499 * from the backing device.
500 */
501
502 if (bio->bi_status)
503 s->iop.status = bio->bi_status;
504 else if (!KEY_DIRTY(&b->key) &&
505 ptr_stale(s->iop.c, &b->key, 0)) {
506 atomic_long_inc(&s->iop.c->cache_read_races);
507 s->iop.status = BLK_STS_IOERR;
508 }
509
510 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
511}
512
513/*
514 * Read from a single key, handling the initial cache miss if the key starts in
515 * the middle of the bio
516 */
517static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
518{
519 struct search *s = container_of(op, struct search, op);
520 struct bio *n, *bio = &s->bio.bio;
521 struct bkey *bio_key;
522 unsigned int ptr;
523
524 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
525 return MAP_CONTINUE;
526
527 if (KEY_INODE(k) != s->iop.inode ||
528 KEY_START(k) > bio->bi_iter.bi_sector) {
529 unsigned int bio_sectors = bio_sectors(bio);
530 unsigned int sectors = KEY_INODE(k) == s->iop.inode
531 ? min_t(uint64_t, INT_MAX,
532 KEY_START(k) - bio->bi_iter.bi_sector)
533 : INT_MAX;
534 int ret = s->d->cache_miss(b, s, bio, sectors);
535
536 if (ret != MAP_CONTINUE)
537 return ret;
538
539 /* if this was a complete miss we shouldn't get here */
540 BUG_ON(bio_sectors <= sectors);
541 }
542
543 if (!KEY_SIZE(k))
544 return MAP_CONTINUE;
545
546 /* XXX: figure out best pointer - for multiple cache devices */
547 ptr = 0;
548
549 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
550
551 if (KEY_DIRTY(k))
552 s->read_dirty_data = true;
553
554 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
555 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
556 GFP_NOIO, &s->d->bio_split);
557
558 bio_key = &container_of(n, struct bbio, bio)->key;
559 bch_bkey_copy_single_ptr(bio_key, k, ptr);
560
561 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
562 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
563
564 n->bi_end_io = bch_cache_read_endio;
565 n->bi_private = &s->cl;
566
567 /*
568 * The bucket we're reading from might be reused while our bio
569 * is in flight, and we could then end up reading the wrong
570 * data.
571 *
572 * We guard against this by checking (in cache_read_endio()) if
573 * the pointer is stale again; if so, we treat it as an error
574 * and reread from the backing device (but we don't pass that
575 * error up anywhere).
576 */
577
578 __bch_submit_bbio(n, b->c);
579 return n == bio ? MAP_DONE : MAP_CONTINUE;
580}
581
582static void cache_lookup(struct closure *cl)
583{
584 struct search *s = container_of(cl, struct search, iop.cl);
585 struct bio *bio = &s->bio.bio;
586 struct cached_dev *dc;
587 int ret;
588
589 bch_btree_op_init(&s->op, -1);
590
591 ret = bch_btree_map_keys(&s->op, s->iop.c,
592 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
593 cache_lookup_fn, MAP_END_KEY);
594 if (ret == -EAGAIN) {
595 continue_at(cl, cache_lookup, bcache_wq);
596 return;
597 }
598
599 /*
600 * We might meet err when searching the btree, If that happens, we will
601 * get negative ret, in this scenario we should not recover data from
602 * backing device (when cache device is dirty) because we don't know
603 * whether bkeys the read request covered are all clean.
604 *
605 * And after that happened, s->iop.status is still its initial value
606 * before we submit s->bio.bio
607 */
608 if (ret < 0) {
609 BUG_ON(ret == -EINTR);
610 if (s->d && s->d->c &&
611 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
612 dc = container_of(s->d, struct cached_dev, disk);
613 if (dc && atomic_read(&dc->has_dirty))
614 s->recoverable = false;
615 }
616 if (!s->iop.status)
617 s->iop.status = BLK_STS_IOERR;
618 }
619
620 closure_return(cl);
621}
622
623/* Common code for the make_request functions */
624
625static void request_endio(struct bio *bio)
626{
627 struct closure *cl = bio->bi_private;
628
629 if (bio->bi_status) {
630 struct search *s = container_of(cl, struct search, cl);
631
632 s->iop.status = bio->bi_status;
633 /* Only cache read errors are recoverable */
634 s->recoverable = false;
635 }
636
637 bio_put(bio);
638 closure_put(cl);
639}
640
641static void backing_request_endio(struct bio *bio)
642{
643 struct closure *cl = bio->bi_private;
644
645 if (bio->bi_status) {
646 struct search *s = container_of(cl, struct search, cl);
647 struct cached_dev *dc = container_of(s->d,
648 struct cached_dev, disk);
649 /*
650 * If a bio has REQ_PREFLUSH for writeback mode, it is
651 * speically assembled in cached_dev_write() for a non-zero
652 * write request which has REQ_PREFLUSH. we don't set
653 * s->iop.status by this failure, the status will be decided
654 * by result of bch_data_insert() operation.
655 */
656 if (unlikely(s->iop.writeback &&
657 bio->bi_opf & REQ_PREFLUSH)) {
658 pr_err("Can't flush %s: returned bi_status %i",
659 dc->backing_dev_name, bio->bi_status);
660 } else {
661 /* set to orig_bio->bi_status in bio_complete() */
662 s->iop.status = bio->bi_status;
663 }
664 s->recoverable = false;
665 /* should count I/O error for backing device here */
666 bch_count_backing_io_errors(dc, bio);
667 }
668
669 bio_put(bio);
670 closure_put(cl);
671}
672
673static void bio_complete(struct search *s)
674{
675 if (s->orig_bio) {
676 generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio),
677 &s->d->disk->part0, s->start_time);
678
679 trace_bcache_request_end(s->d, s->orig_bio);
680 s->orig_bio->bi_status = s->iop.status;
681 bio_endio(s->orig_bio);
682 s->orig_bio = NULL;
683 }
684}
685
686static void do_bio_hook(struct search *s,
687 struct bio *orig_bio,
688 bio_end_io_t *end_io_fn)
689{
690 struct bio *bio = &s->bio.bio;
691
692 bio_init(bio, NULL, 0);
693 __bio_clone_fast(bio, orig_bio);
694 /*
695 * bi_end_io can be set separately somewhere else, e.g. the
696 * variants in,
697 * - cache_bio->bi_end_io from cached_dev_cache_miss()
698 * - n->bi_end_io from cache_lookup_fn()
699 */
700 bio->bi_end_io = end_io_fn;
701 bio->bi_private = &s->cl;
702
703 bio_cnt_set(bio, 3);
704}
705
706static void search_free(struct closure *cl)
707{
708 struct search *s = container_of(cl, struct search, cl);
709
710 atomic_dec(&s->iop.c->search_inflight);
711
712 if (s->iop.bio)
713 bio_put(s->iop.bio);
714
715 bio_complete(s);
716 closure_debug_destroy(cl);
717 mempool_free(s, &s->iop.c->search);
718}
719
720static inline struct search *search_alloc(struct bio *bio,
721 struct bcache_device *d)
722{
723 struct search *s;
724
725 s = mempool_alloc(&d->c->search, GFP_NOIO);
726
727 closure_init(&s->cl, NULL);
728 do_bio_hook(s, bio, request_endio);
729 atomic_inc(&d->c->search_inflight);
730
731 s->orig_bio = bio;
732 s->cache_miss = NULL;
733 s->cache_missed = 0;
734 s->d = d;
735 s->recoverable = 1;
736 s->write = op_is_write(bio_op(bio));
737 s->read_dirty_data = 0;
738 s->start_time = jiffies;
739
740 s->iop.c = d->c;
741 s->iop.bio = NULL;
742 s->iop.inode = d->id;
743 s->iop.write_point = hash_long((unsigned long) current, 16);
744 s->iop.write_prio = 0;
745 s->iop.status = 0;
746 s->iop.flags = 0;
747 s->iop.flush_journal = op_is_flush(bio->bi_opf);
748 s->iop.wq = bcache_wq;
749
750 return s;
751}
752
753/* Cached devices */
754
755static void cached_dev_bio_complete(struct closure *cl)
756{
757 struct search *s = container_of(cl, struct search, cl);
758 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
759
760 cached_dev_put(dc);
761 search_free(cl);
762}
763
764/* Process reads */
765
766static void cached_dev_read_error_done(struct closure *cl)
767{
768 struct search *s = container_of(cl, struct search, cl);
769
770 if (s->iop.replace_collision)
771 bch_mark_cache_miss_collision(s->iop.c, s->d);
772
773 if (s->iop.bio)
774 bio_free_pages(s->iop.bio);
775
776 cached_dev_bio_complete(cl);
777}
778
779static void cached_dev_read_error(struct closure *cl)
780{
781 struct search *s = container_of(cl, struct search, cl);
782 struct bio *bio = &s->bio.bio;
783
784 /*
785 * If read request hit dirty data (s->read_dirty_data is true),
786 * then recovery a failed read request from cached device may
787 * get a stale data back. So read failure recovery is only
788 * permitted when read request hit clean data in cache device,
789 * or when cache read race happened.
790 */
791 if (s->recoverable && !s->read_dirty_data) {
792 /* Retry from the backing device: */
793 trace_bcache_read_retry(s->orig_bio);
794
795 s->iop.status = 0;
796 do_bio_hook(s, s->orig_bio, backing_request_endio);
797
798 /* XXX: invalidate cache */
799
800 /* I/O request sent to backing device */
801 closure_bio_submit(s->iop.c, bio, cl);
802 }
803
804 continue_at(cl, cached_dev_read_error_done, NULL);
805}
806
807static void cached_dev_cache_miss_done(struct closure *cl)
808{
809 struct search *s = container_of(cl, struct search, cl);
810 struct bcache_device *d = s->d;
811
812 if (s->iop.replace_collision)
813 bch_mark_cache_miss_collision(s->iop.c, s->d);
814
815 if (s->iop.bio)
816 bio_free_pages(s->iop.bio);
817
818 cached_dev_bio_complete(cl);
819 closure_put(&d->cl);
820}
821
822static void cached_dev_read_done(struct closure *cl)
823{
824 struct search *s = container_of(cl, struct search, cl);
825 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
826
827 /*
828 * We had a cache miss; cache_bio now contains data ready to be inserted
829 * into the cache.
830 *
831 * First, we copy the data we just read from cache_bio's bounce buffers
832 * to the buffers the original bio pointed to:
833 */
834
835 if (s->iop.bio) {
836 bio_reset(s->iop.bio);
837 s->iop.bio->bi_iter.bi_sector =
838 s->cache_miss->bi_iter.bi_sector;
839 bio_copy_dev(s->iop.bio, s->cache_miss);
840 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
841 bch_bio_map(s->iop.bio, NULL);
842
843 bio_copy_data(s->cache_miss, s->iop.bio);
844
845 bio_put(s->cache_miss);
846 s->cache_miss = NULL;
847 }
848
849 if (verify(dc) && s->recoverable && !s->read_dirty_data)
850 bch_data_verify(dc, s->orig_bio);
851
852 closure_get(&dc->disk.cl);
853 bio_complete(s);
854
855 if (s->iop.bio &&
856 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
857 BUG_ON(!s->iop.replace);
858 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
859 }
860
861 continue_at(cl, cached_dev_cache_miss_done, NULL);
862}
863
864static void cached_dev_read_done_bh(struct closure *cl)
865{
866 struct search *s = container_of(cl, struct search, cl);
867 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
868
869 bch_mark_cache_accounting(s->iop.c, s->d,
870 !s->cache_missed, s->iop.bypass);
871 trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
872
873 if (s->iop.status)
874 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
875 else if (s->iop.bio || verify(dc))
876 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
877 else
878 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
879}
880
881static int cached_dev_cache_miss(struct btree *b, struct search *s,
882 struct bio *bio, unsigned int sectors)
883{
884 int ret = MAP_CONTINUE;
885 unsigned int reada = 0;
886 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
887 struct bio *miss, *cache_bio;
888
889 s->cache_missed = 1;
890
891 if (s->cache_miss || s->iop.bypass) {
892 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
893 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
894 goto out_submit;
895 }
896
897 if (!(bio->bi_opf & REQ_RAHEAD) &&
898 !(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
899 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
900 reada = min_t(sector_t, dc->readahead >> 9,
901 get_capacity(bio->bi_disk) - bio_end_sector(bio));
902
903 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
904
905 s->iop.replace_key = KEY(s->iop.inode,
906 bio->bi_iter.bi_sector + s->insert_bio_sectors,
907 s->insert_bio_sectors);
908
909 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
910 if (ret)
911 return ret;
912
913 s->iop.replace = true;
914
915 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
916
917 /* btree_search_recurse()'s btree iterator is no good anymore */
918 ret = miss == bio ? MAP_DONE : -EINTR;
919
920 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
921 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
922 &dc->disk.bio_split);
923 if (!cache_bio)
924 goto out_submit;
925
926 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
927 bio_copy_dev(cache_bio, miss);
928 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
929
930 cache_bio->bi_end_io = backing_request_endio;
931 cache_bio->bi_private = &s->cl;
932
933 bch_bio_map(cache_bio, NULL);
934 if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
935 goto out_put;
936
937 if (reada)
938 bch_mark_cache_readahead(s->iop.c, s->d);
939
940 s->cache_miss = miss;
941 s->iop.bio = cache_bio;
942 bio_get(cache_bio);
943 /* I/O request sent to backing device */
944 closure_bio_submit(s->iop.c, cache_bio, &s->cl);
945
946 return ret;
947out_put:
948 bio_put(cache_bio);
949out_submit:
950 miss->bi_end_io = backing_request_endio;
951 miss->bi_private = &s->cl;
952 /* I/O request sent to backing device */
953 closure_bio_submit(s->iop.c, miss, &s->cl);
954 return ret;
955}
956
957static void cached_dev_read(struct cached_dev *dc, struct search *s)
958{
959 struct closure *cl = &s->cl;
960
961 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
962 continue_at(cl, cached_dev_read_done_bh, NULL);
963}
964
965/* Process writes */
966
967static void cached_dev_write_complete(struct closure *cl)
968{
969 struct search *s = container_of(cl, struct search, cl);
970 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
971
972 up_read_non_owner(&dc->writeback_lock);
973 cached_dev_bio_complete(cl);
974}
975
976static void cached_dev_write(struct cached_dev *dc, struct search *s)
977{
978 struct closure *cl = &s->cl;
979 struct bio *bio = &s->bio.bio;
980 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
981 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
982
983 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
984
985 down_read_non_owner(&dc->writeback_lock);
986 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
987 /*
988 * We overlap with some dirty data undergoing background
989 * writeback, force this write to writeback
990 */
991 s->iop.bypass = false;
992 s->iop.writeback = true;
993 }
994
995 /*
996 * Discards aren't _required_ to do anything, so skipping if
997 * check_overlapping returned true is ok
998 *
999 * But check_overlapping drops dirty keys for which io hasn't started,
1000 * so we still want to call it.
1001 */
1002 if (bio_op(bio) == REQ_OP_DISCARD)
1003 s->iop.bypass = true;
1004
1005 if (should_writeback(dc, s->orig_bio,
1006 cache_mode(dc),
1007 s->iop.bypass)) {
1008 s->iop.bypass = false;
1009 s->iop.writeback = true;
1010 }
1011
1012 if (s->iop.bypass) {
1013 s->iop.bio = s->orig_bio;
1014 bio_get(s->iop.bio);
1015
1016 if (bio_op(bio) == REQ_OP_DISCARD &&
1017 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1018 goto insert_data;
1019
1020 /* I/O request sent to backing device */
1021 bio->bi_end_io = backing_request_endio;
1022 closure_bio_submit(s->iop.c, bio, cl);
1023
1024 } else if (s->iop.writeback) {
1025 bch_writeback_add(dc);
1026 s->iop.bio = bio;
1027
1028 if (bio->bi_opf & REQ_PREFLUSH) {
1029 /*
1030 * Also need to send a flush to the backing
1031 * device.
1032 */
1033 struct bio *flush;
1034
1035 flush = bio_alloc_bioset(GFP_NOIO, 0,
1036 &dc->disk.bio_split);
1037 if (!flush) {
1038 s->iop.status = BLK_STS_RESOURCE;
1039 goto insert_data;
1040 }
1041 bio_copy_dev(flush, bio);
1042 flush->bi_end_io = backing_request_endio;
1043 flush->bi_private = cl;
1044 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1045 /* I/O request sent to backing device */
1046 closure_bio_submit(s->iop.c, flush, cl);
1047 }
1048 } else {
1049 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
1050 /* I/O request sent to backing device */
1051 bio->bi_end_io = backing_request_endio;
1052 closure_bio_submit(s->iop.c, bio, cl);
1053 }
1054
1055insert_data:
1056 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1057 continue_at(cl, cached_dev_write_complete, NULL);
1058}
1059
1060static void cached_dev_nodata(struct closure *cl)
1061{
1062 struct search *s = container_of(cl, struct search, cl);
1063 struct bio *bio = &s->bio.bio;
1064
1065 if (s->iop.flush_journal)
1066 bch_journal_meta(s->iop.c, cl);
1067
1068 /* If it's a flush, we send the flush to the backing device too */
1069 bio->bi_end_io = backing_request_endio;
1070 closure_bio_submit(s->iop.c, bio, cl);
1071
1072 continue_at(cl, cached_dev_bio_complete, NULL);
1073}
1074
1075struct detached_dev_io_private {
1076 struct bcache_device *d;
1077 unsigned long start_time;
1078 bio_end_io_t *bi_end_io;
1079 void *bi_private;
1080};
1081
1082static void detached_dev_end_io(struct bio *bio)
1083{
1084 struct detached_dev_io_private *ddip;
1085
1086 ddip = bio->bi_private;
1087 bio->bi_end_io = ddip->bi_end_io;
1088 bio->bi_private = ddip->bi_private;
1089
1090 generic_end_io_acct(ddip->d->disk->queue, bio_op(bio),
1091 &ddip->d->disk->part0, ddip->start_time);
1092
1093 if (bio->bi_status) {
1094 struct cached_dev *dc = container_of(ddip->d,
1095 struct cached_dev, disk);
1096 /* should count I/O error for backing device here */
1097 bch_count_backing_io_errors(dc, bio);
1098 }
1099
1100 kfree(ddip);
1101 bio->bi_end_io(bio);
1102}
1103
1104static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1105{
1106 struct detached_dev_io_private *ddip;
1107 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1108
1109 /*
1110 * no need to call closure_get(&dc->disk.cl),
1111 * because upper layer had already opened bcache device,
1112 * which would call closure_get(&dc->disk.cl)
1113 */
1114 ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1115 ddip->d = d;
1116 ddip->start_time = jiffies;
1117 ddip->bi_end_io = bio->bi_end_io;
1118 ddip->bi_private = bio->bi_private;
1119 bio->bi_end_io = detached_dev_end_io;
1120 bio->bi_private = ddip;
1121
1122 if ((bio_op(bio) == REQ_OP_DISCARD) &&
1123 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1124 bio->bi_end_io(bio);
1125 else
1126 generic_make_request(bio);
1127}
1128
1129static void quit_max_writeback_rate(struct cache_set *c,
1130 struct cached_dev *this_dc)
1131{
1132 int i;
1133 struct bcache_device *d;
1134 struct cached_dev *dc;
1135
1136 /*
1137 * mutex bch_register_lock may compete with other parallel requesters,
1138 * or attach/detach operations on other backing device. Waiting to
1139 * the mutex lock may increase I/O request latency for seconds or more.
1140 * To avoid such situation, if mutext_trylock() failed, only writeback
1141 * rate of current cached device is set to 1, and __update_write_back()
1142 * will decide writeback rate of other cached devices (remember now
1143 * c->idle_counter is 0 already).
1144 */
1145 if (mutex_trylock(&bch_register_lock)) {
1146 for (i = 0; i < c->devices_max_used; i++) {
1147 if (!c->devices[i])
1148 continue;
1149
1150 if (UUID_FLASH_ONLY(&c->uuids[i]))
1151 continue;
1152
1153 d = c->devices[i];
1154 dc = container_of(d, struct cached_dev, disk);
1155 /*
1156 * set writeback rate to default minimum value,
1157 * then let update_writeback_rate() to decide the
1158 * upcoming rate.
1159 */
1160 atomic_long_set(&dc->writeback_rate.rate, 1);
1161 }
1162 mutex_unlock(&bch_register_lock);
1163 } else
1164 atomic_long_set(&this_dc->writeback_rate.rate, 1);
1165}
1166
1167/* Cached devices - read & write stuff */
1168
1169static blk_qc_t cached_dev_make_request(struct request_queue *q,
1170 struct bio *bio)
1171{
1172 struct search *s;
1173 struct bcache_device *d = bio->bi_disk->private_data;
1174 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1175 int rw = bio_data_dir(bio);
1176
1177 if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1178 dc->io_disable)) {
1179 bio->bi_status = BLK_STS_IOERR;
1180 bio_endio(bio);
1181 return BLK_QC_T_NONE;
1182 }
1183
1184 if (likely(d->c)) {
1185 if (atomic_read(&d->c->idle_counter))
1186 atomic_set(&d->c->idle_counter, 0);
1187 /*
1188 * If at_max_writeback_rate of cache set is true and new I/O
1189 * comes, quit max writeback rate of all cached devices
1190 * attached to this cache set, and set at_max_writeback_rate
1191 * to false.
1192 */
1193 if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1194 atomic_set(&d->c->at_max_writeback_rate, 0);
1195 quit_max_writeback_rate(d->c, dc);
1196 }
1197 }
1198
1199 generic_start_io_acct(q,
1200 bio_op(bio),
1201 bio_sectors(bio),
1202 &d->disk->part0);
1203
1204 bio_set_dev(bio, dc->bdev);
1205 bio->bi_iter.bi_sector += dc->sb.data_offset;
1206
1207 if (cached_dev_get(dc)) {
1208 s = search_alloc(bio, d);
1209 trace_bcache_request_start(s->d, bio);
1210
1211 if (!bio->bi_iter.bi_size) {
1212 /*
1213 * can't call bch_journal_meta from under
1214 * generic_make_request
1215 */
1216 continue_at_nobarrier(&s->cl,
1217 cached_dev_nodata,
1218 bcache_wq);
1219 } else {
1220 s->iop.bypass = check_should_bypass(dc, bio);
1221
1222 if (rw)
1223 cached_dev_write(dc, s);
1224 else
1225 cached_dev_read(dc, s);
1226 }
1227 } else
1228 /* I/O request sent to backing device */
1229 detached_dev_do_request(d, bio);
1230
1231 return BLK_QC_T_NONE;
1232}
1233
1234static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1235 unsigned int cmd, unsigned long arg)
1236{
1237 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1238
1239 if (dc->io_disable)
1240 return -EIO;
1241
1242 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1243}
1244
1245static int cached_dev_congested(void *data, int bits)
1246{
1247 struct bcache_device *d = data;
1248 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1249 struct request_queue *q = bdev_get_queue(dc->bdev);
1250 int ret = 0;
1251
1252 if (bdi_congested(q->backing_dev_info, bits))
1253 return 1;
1254
1255 if (cached_dev_get(dc)) {
1256 unsigned int i;
1257 struct cache *ca;
1258
1259 for_each_cache(ca, d->c, i) {
1260 q = bdev_get_queue(ca->bdev);
1261 ret |= bdi_congested(q->backing_dev_info, bits);
1262 }
1263
1264 cached_dev_put(dc);
1265 }
1266
1267 return ret;
1268}
1269
1270void bch_cached_dev_request_init(struct cached_dev *dc)
1271{
1272 struct gendisk *g = dc->disk.disk;
1273
1274 g->queue->make_request_fn = cached_dev_make_request;
1275 g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1276 dc->disk.cache_miss = cached_dev_cache_miss;
1277 dc->disk.ioctl = cached_dev_ioctl;
1278}
1279
1280/* Flash backed devices */
1281
1282static int flash_dev_cache_miss(struct btree *b, struct search *s,
1283 struct bio *bio, unsigned int sectors)
1284{
1285 unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1286
1287 swap(bio->bi_iter.bi_size, bytes);
1288 zero_fill_bio(bio);
1289 swap(bio->bi_iter.bi_size, bytes);
1290
1291 bio_advance(bio, bytes);
1292
1293 if (!bio->bi_iter.bi_size)
1294 return MAP_DONE;
1295
1296 return MAP_CONTINUE;
1297}
1298
1299static void flash_dev_nodata(struct closure *cl)
1300{
1301 struct search *s = container_of(cl, struct search, cl);
1302
1303 if (s->iop.flush_journal)
1304 bch_journal_meta(s->iop.c, cl);
1305
1306 continue_at(cl, search_free, NULL);
1307}
1308
1309static blk_qc_t flash_dev_make_request(struct request_queue *q,
1310 struct bio *bio)
1311{
1312 struct search *s;
1313 struct closure *cl;
1314 struct bcache_device *d = bio->bi_disk->private_data;
1315
1316 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1317 bio->bi_status = BLK_STS_IOERR;
1318 bio_endio(bio);
1319 return BLK_QC_T_NONE;
1320 }
1321
1322 generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0);
1323
1324 s = search_alloc(bio, d);
1325 cl = &s->cl;
1326 bio = &s->bio.bio;
1327
1328 trace_bcache_request_start(s->d, bio);
1329
1330 if (!bio->bi_iter.bi_size) {
1331 /*
1332 * can't call bch_journal_meta from under
1333 * generic_make_request
1334 */
1335 continue_at_nobarrier(&s->cl,
1336 flash_dev_nodata,
1337 bcache_wq);
1338 return BLK_QC_T_NONE;
1339 } else if (bio_data_dir(bio)) {
1340 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1341 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1342 &KEY(d->id, bio_end_sector(bio), 0));
1343
1344 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1345 s->iop.writeback = true;
1346 s->iop.bio = bio;
1347
1348 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1349 } else {
1350 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1351 }
1352
1353 continue_at(cl, search_free, NULL);
1354 return BLK_QC_T_NONE;
1355}
1356
1357static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1358 unsigned int cmd, unsigned long arg)
1359{
1360 return -ENOTTY;
1361}
1362
1363static int flash_dev_congested(void *data, int bits)
1364{
1365 struct bcache_device *d = data;
1366 struct request_queue *q;
1367 struct cache *ca;
1368 unsigned int i;
1369 int ret = 0;
1370
1371 for_each_cache(ca, d->c, i) {
1372 q = bdev_get_queue(ca->bdev);
1373 ret |= bdi_congested(q->backing_dev_info, bits);
1374 }
1375
1376 return ret;
1377}
1378
1379void bch_flash_dev_request_init(struct bcache_device *d)
1380{
1381 struct gendisk *g = d->disk;
1382
1383 g->queue->make_request_fn = flash_dev_make_request;
1384 g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1385 d->cache_miss = flash_dev_cache_miss;
1386 d->ioctl = flash_dev_ioctl;
1387}
1388
1389void bch_request_exit(void)
1390{
1391 kmem_cache_destroy(bch_search_cache);
1392}
1393
1394int __init bch_request_init(void)
1395{
1396 bch_search_cache = KMEM_CACHE(search, 0);
1397 if (!bch_search_cache)
1398 return -ENOMEM;
1399
1400 return 0;
1401}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "request.h"
14#include "writeback.h"
15
16#include <linux/module.h>
17#include <linux/hash.h>
18#include <linux/random.h>
19#include <linux/backing-dev.h>
20
21#include <trace/events/bcache.h>
22
23#define CUTOFF_CACHE_ADD 95
24#define CUTOFF_CACHE_READA 90
25
26struct kmem_cache *bch_search_cache;
27
28static void bch_data_insert_start(struct closure *);
29
30static unsigned cache_mode(struct cached_dev *dc)
31{
32 return BDEV_CACHE_MODE(&dc->sb);
33}
34
35static bool verify(struct cached_dev *dc)
36{
37 return dc->verify;
38}
39
40static void bio_csum(struct bio *bio, struct bkey *k)
41{
42 struct bio_vec bv;
43 struct bvec_iter iter;
44 uint64_t csum = 0;
45
46 bio_for_each_segment(bv, bio, iter) {
47 void *d = kmap(bv.bv_page) + bv.bv_offset;
48 csum = bch_crc64_update(csum, d, bv.bv_len);
49 kunmap(bv.bv_page);
50 }
51
52 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
53}
54
55/* Insert data into cache */
56
57static void bch_data_insert_keys(struct closure *cl)
58{
59 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
60 atomic_t *journal_ref = NULL;
61 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
62 int ret;
63
64 /*
65 * If we're looping, might already be waiting on
66 * another journal write - can't wait on more than one journal write at
67 * a time
68 *
69 * XXX: this looks wrong
70 */
71#if 0
72 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
73 closure_sync(&s->cl);
74#endif
75
76 if (!op->replace)
77 journal_ref = bch_journal(op->c, &op->insert_keys,
78 op->flush_journal ? cl : NULL);
79
80 ret = bch_btree_insert(op->c, &op->insert_keys,
81 journal_ref, replace_key);
82 if (ret == -ESRCH) {
83 op->replace_collision = true;
84 } else if (ret) {
85 op->status = BLK_STS_RESOURCE;
86 op->insert_data_done = true;
87 }
88
89 if (journal_ref)
90 atomic_dec_bug(journal_ref);
91
92 if (!op->insert_data_done) {
93 continue_at(cl, bch_data_insert_start, op->wq);
94 return;
95 }
96
97 bch_keylist_free(&op->insert_keys);
98 closure_return(cl);
99}
100
101static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
102 struct cache_set *c)
103{
104 size_t oldsize = bch_keylist_nkeys(l);
105 size_t newsize = oldsize + u64s;
106
107 /*
108 * The journalling code doesn't handle the case where the keys to insert
109 * is bigger than an empty write: If we just return -ENOMEM here,
110 * bio_insert() and bio_invalidate() will insert the keys created so far
111 * and finish the rest when the keylist is empty.
112 */
113 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
114 return -ENOMEM;
115
116 return __bch_keylist_realloc(l, u64s);
117}
118
119static void bch_data_invalidate(struct closure *cl)
120{
121 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
122 struct bio *bio = op->bio;
123
124 pr_debug("invalidating %i sectors from %llu",
125 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
126
127 while (bio_sectors(bio)) {
128 unsigned sectors = min(bio_sectors(bio),
129 1U << (KEY_SIZE_BITS - 1));
130
131 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
132 goto out;
133
134 bio->bi_iter.bi_sector += sectors;
135 bio->bi_iter.bi_size -= sectors << 9;
136
137 bch_keylist_add(&op->insert_keys,
138 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
139 }
140
141 op->insert_data_done = true;
142 /* get in bch_data_insert() */
143 bio_put(bio);
144out:
145 continue_at(cl, bch_data_insert_keys, op->wq);
146}
147
148static void bch_data_insert_error(struct closure *cl)
149{
150 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
151
152 /*
153 * Our data write just errored, which means we've got a bunch of keys to
154 * insert that point to data that wasn't succesfully written.
155 *
156 * We don't have to insert those keys but we still have to invalidate
157 * that region of the cache - so, if we just strip off all the pointers
158 * from the keys we'll accomplish just that.
159 */
160
161 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
162
163 while (src != op->insert_keys.top) {
164 struct bkey *n = bkey_next(src);
165
166 SET_KEY_PTRS(src, 0);
167 memmove(dst, src, bkey_bytes(src));
168
169 dst = bkey_next(dst);
170 src = n;
171 }
172
173 op->insert_keys.top = dst;
174
175 bch_data_insert_keys(cl);
176}
177
178static void bch_data_insert_endio(struct bio *bio)
179{
180 struct closure *cl = bio->bi_private;
181 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
182
183 if (bio->bi_status) {
184 /* TODO: We could try to recover from this. */
185 if (op->writeback)
186 op->status = bio->bi_status;
187 else if (!op->replace)
188 set_closure_fn(cl, bch_data_insert_error, op->wq);
189 else
190 set_closure_fn(cl, NULL, NULL);
191 }
192
193 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
194}
195
196static void bch_data_insert_start(struct closure *cl)
197{
198 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
199 struct bio *bio = op->bio, *n;
200
201 if (op->bypass)
202 return bch_data_invalidate(cl);
203
204 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
205 wake_up_gc(op->c);
206
207 /*
208 * Journal writes are marked REQ_PREFLUSH; if the original write was a
209 * flush, it'll wait on the journal write.
210 */
211 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
212
213 do {
214 unsigned i;
215 struct bkey *k;
216 struct bio_set *split = op->c->bio_split;
217
218 /* 1 for the device pointer and 1 for the chksum */
219 if (bch_keylist_realloc(&op->insert_keys,
220 3 + (op->csum ? 1 : 0),
221 op->c)) {
222 continue_at(cl, bch_data_insert_keys, op->wq);
223 return;
224 }
225
226 k = op->insert_keys.top;
227 bkey_init(k);
228 SET_KEY_INODE(k, op->inode);
229 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
230
231 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
232 op->write_point, op->write_prio,
233 op->writeback))
234 goto err;
235
236 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
237
238 n->bi_end_io = bch_data_insert_endio;
239 n->bi_private = cl;
240
241 if (op->writeback) {
242 SET_KEY_DIRTY(k, true);
243
244 for (i = 0; i < KEY_PTRS(k); i++)
245 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
246 GC_MARK_DIRTY);
247 }
248
249 SET_KEY_CSUM(k, op->csum);
250 if (KEY_CSUM(k))
251 bio_csum(n, k);
252
253 trace_bcache_cache_insert(k);
254 bch_keylist_push(&op->insert_keys);
255
256 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
257 bch_submit_bbio(n, op->c, k, 0);
258 } while (n != bio);
259
260 op->insert_data_done = true;
261 continue_at(cl, bch_data_insert_keys, op->wq);
262 return;
263err:
264 /* bch_alloc_sectors() blocks if s->writeback = true */
265 BUG_ON(op->writeback);
266
267 /*
268 * But if it's not a writeback write we'd rather just bail out if
269 * there aren't any buckets ready to write to - it might take awhile and
270 * we might be starving btree writes for gc or something.
271 */
272
273 if (!op->replace) {
274 /*
275 * Writethrough write: We can't complete the write until we've
276 * updated the index. But we don't want to delay the write while
277 * we wait for buckets to be freed up, so just invalidate the
278 * rest of the write.
279 */
280 op->bypass = true;
281 return bch_data_invalidate(cl);
282 } else {
283 /*
284 * From a cache miss, we can just insert the keys for the data
285 * we have written or bail out if we didn't do anything.
286 */
287 op->insert_data_done = true;
288 bio_put(bio);
289
290 if (!bch_keylist_empty(&op->insert_keys))
291 continue_at(cl, bch_data_insert_keys, op->wq);
292 else
293 closure_return(cl);
294 }
295}
296
297/**
298 * bch_data_insert - stick some data in the cache
299 * @cl: closure pointer.
300 *
301 * This is the starting point for any data to end up in a cache device; it could
302 * be from a normal write, or a writeback write, or a write to a flash only
303 * volume - it's also used by the moving garbage collector to compact data in
304 * mostly empty buckets.
305 *
306 * It first writes the data to the cache, creating a list of keys to be inserted
307 * (if the data had to be fragmented there will be multiple keys); after the
308 * data is written it calls bch_journal, and after the keys have been added to
309 * the next journal write they're inserted into the btree.
310 *
311 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
312 * and op->inode is used for the key inode.
313 *
314 * If s->bypass is true, instead of inserting the data it invalidates the
315 * region of the cache represented by s->cache_bio and op->inode.
316 */
317void bch_data_insert(struct closure *cl)
318{
319 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
320
321 trace_bcache_write(op->c, op->inode, op->bio,
322 op->writeback, op->bypass);
323
324 bch_keylist_init(&op->insert_keys);
325 bio_get(op->bio);
326 bch_data_insert_start(cl);
327}
328
329/* Congested? */
330
331unsigned bch_get_congested(struct cache_set *c)
332{
333 int i;
334 long rand;
335
336 if (!c->congested_read_threshold_us &&
337 !c->congested_write_threshold_us)
338 return 0;
339
340 i = (local_clock_us() - c->congested_last_us) / 1024;
341 if (i < 0)
342 return 0;
343
344 i += atomic_read(&c->congested);
345 if (i >= 0)
346 return 0;
347
348 i += CONGESTED_MAX;
349
350 if (i > 0)
351 i = fract_exp_two(i, 6);
352
353 rand = get_random_int();
354 i -= bitmap_weight(&rand, BITS_PER_LONG);
355
356 return i > 0 ? i : 1;
357}
358
359static void add_sequential(struct task_struct *t)
360{
361 ewma_add(t->sequential_io_avg,
362 t->sequential_io, 8, 0);
363
364 t->sequential_io = 0;
365}
366
367static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
368{
369 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
370}
371
372static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
373{
374 struct cache_set *c = dc->disk.c;
375 unsigned mode = cache_mode(dc);
376 unsigned sectors, congested = bch_get_congested(c);
377 struct task_struct *task = current;
378 struct io *i;
379
380 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
381 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
382 (bio_op(bio) == REQ_OP_DISCARD))
383 goto skip;
384
385 if (mode == CACHE_MODE_NONE ||
386 (mode == CACHE_MODE_WRITEAROUND &&
387 op_is_write(bio_op(bio))))
388 goto skip;
389
390 /*
391 * Flag for bypass if the IO is for read-ahead or background,
392 * unless the read-ahead request is for metadata (eg, for gfs2).
393 */
394 if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
395 !(bio->bi_opf & REQ_META))
396 goto skip;
397
398 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
399 bio_sectors(bio) & (c->sb.block_size - 1)) {
400 pr_debug("skipping unaligned io");
401 goto skip;
402 }
403
404 if (bypass_torture_test(dc)) {
405 if ((get_random_int() & 3) == 3)
406 goto skip;
407 else
408 goto rescale;
409 }
410
411 if (!congested && !dc->sequential_cutoff)
412 goto rescale;
413
414 spin_lock(&dc->io_lock);
415
416 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
417 if (i->last == bio->bi_iter.bi_sector &&
418 time_before(jiffies, i->jiffies))
419 goto found;
420
421 i = list_first_entry(&dc->io_lru, struct io, lru);
422
423 add_sequential(task);
424 i->sequential = 0;
425found:
426 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
427 i->sequential += bio->bi_iter.bi_size;
428
429 i->last = bio_end_sector(bio);
430 i->jiffies = jiffies + msecs_to_jiffies(5000);
431 task->sequential_io = i->sequential;
432
433 hlist_del(&i->hash);
434 hlist_add_head(&i->hash, iohash(dc, i->last));
435 list_move_tail(&i->lru, &dc->io_lru);
436
437 spin_unlock(&dc->io_lock);
438
439 sectors = max(task->sequential_io,
440 task->sequential_io_avg) >> 9;
441
442 if (dc->sequential_cutoff &&
443 sectors >= dc->sequential_cutoff >> 9) {
444 trace_bcache_bypass_sequential(bio);
445 goto skip;
446 }
447
448 if (congested && sectors >= congested) {
449 trace_bcache_bypass_congested(bio);
450 goto skip;
451 }
452
453rescale:
454 bch_rescale_priorities(c, bio_sectors(bio));
455 return false;
456skip:
457 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
458 return true;
459}
460
461/* Cache lookup */
462
463struct search {
464 /* Stack frame for bio_complete */
465 struct closure cl;
466
467 struct bbio bio;
468 struct bio *orig_bio;
469 struct bio *cache_miss;
470 struct bcache_device *d;
471
472 unsigned insert_bio_sectors;
473 unsigned recoverable:1;
474 unsigned write:1;
475 unsigned read_dirty_data:1;
476 unsigned cache_missed:1;
477
478 unsigned long start_time;
479
480 struct btree_op op;
481 struct data_insert_op iop;
482};
483
484static void bch_cache_read_endio(struct bio *bio)
485{
486 struct bbio *b = container_of(bio, struct bbio, bio);
487 struct closure *cl = bio->bi_private;
488 struct search *s = container_of(cl, struct search, cl);
489
490 /*
491 * If the bucket was reused while our bio was in flight, we might have
492 * read the wrong data. Set s->error but not error so it doesn't get
493 * counted against the cache device, but we'll still reread the data
494 * from the backing device.
495 */
496
497 if (bio->bi_status)
498 s->iop.status = bio->bi_status;
499 else if (!KEY_DIRTY(&b->key) &&
500 ptr_stale(s->iop.c, &b->key, 0)) {
501 atomic_long_inc(&s->iop.c->cache_read_races);
502 s->iop.status = BLK_STS_IOERR;
503 }
504
505 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
506}
507
508/*
509 * Read from a single key, handling the initial cache miss if the key starts in
510 * the middle of the bio
511 */
512static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
513{
514 struct search *s = container_of(op, struct search, op);
515 struct bio *n, *bio = &s->bio.bio;
516 struct bkey *bio_key;
517 unsigned ptr;
518
519 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
520 return MAP_CONTINUE;
521
522 if (KEY_INODE(k) != s->iop.inode ||
523 KEY_START(k) > bio->bi_iter.bi_sector) {
524 unsigned bio_sectors = bio_sectors(bio);
525 unsigned sectors = KEY_INODE(k) == s->iop.inode
526 ? min_t(uint64_t, INT_MAX,
527 KEY_START(k) - bio->bi_iter.bi_sector)
528 : INT_MAX;
529
530 int ret = s->d->cache_miss(b, s, bio, sectors);
531 if (ret != MAP_CONTINUE)
532 return ret;
533
534 /* if this was a complete miss we shouldn't get here */
535 BUG_ON(bio_sectors <= sectors);
536 }
537
538 if (!KEY_SIZE(k))
539 return MAP_CONTINUE;
540
541 /* XXX: figure out best pointer - for multiple cache devices */
542 ptr = 0;
543
544 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
545
546 if (KEY_DIRTY(k))
547 s->read_dirty_data = true;
548
549 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
550 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
551 GFP_NOIO, s->d->bio_split);
552
553 bio_key = &container_of(n, struct bbio, bio)->key;
554 bch_bkey_copy_single_ptr(bio_key, k, ptr);
555
556 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
557 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
558
559 n->bi_end_io = bch_cache_read_endio;
560 n->bi_private = &s->cl;
561
562 /*
563 * The bucket we're reading from might be reused while our bio
564 * is in flight, and we could then end up reading the wrong
565 * data.
566 *
567 * We guard against this by checking (in cache_read_endio()) if
568 * the pointer is stale again; if so, we treat it as an error
569 * and reread from the backing device (but we don't pass that
570 * error up anywhere).
571 */
572
573 __bch_submit_bbio(n, b->c);
574 return n == bio ? MAP_DONE : MAP_CONTINUE;
575}
576
577static void cache_lookup(struct closure *cl)
578{
579 struct search *s = container_of(cl, struct search, iop.cl);
580 struct bio *bio = &s->bio.bio;
581 struct cached_dev *dc;
582 int ret;
583
584 bch_btree_op_init(&s->op, -1);
585
586 ret = bch_btree_map_keys(&s->op, s->iop.c,
587 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
588 cache_lookup_fn, MAP_END_KEY);
589 if (ret == -EAGAIN) {
590 continue_at(cl, cache_lookup, bcache_wq);
591 return;
592 }
593
594 /*
595 * We might meet err when searching the btree, If that happens, we will
596 * get negative ret, in this scenario we should not recover data from
597 * backing device (when cache device is dirty) because we don't know
598 * whether bkeys the read request covered are all clean.
599 *
600 * And after that happened, s->iop.status is still its initial value
601 * before we submit s->bio.bio
602 */
603 if (ret < 0) {
604 BUG_ON(ret == -EINTR);
605 if (s->d && s->d->c &&
606 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
607 dc = container_of(s->d, struct cached_dev, disk);
608 if (dc && atomic_read(&dc->has_dirty))
609 s->recoverable = false;
610 }
611 if (!s->iop.status)
612 s->iop.status = BLK_STS_IOERR;
613 }
614
615 closure_return(cl);
616}
617
618/* Common code for the make_request functions */
619
620static void request_endio(struct bio *bio)
621{
622 struct closure *cl = bio->bi_private;
623
624 if (bio->bi_status) {
625 struct search *s = container_of(cl, struct search, cl);
626 s->iop.status = bio->bi_status;
627 /* Only cache read errors are recoverable */
628 s->recoverable = false;
629 }
630
631 bio_put(bio);
632 closure_put(cl);
633}
634
635static void backing_request_endio(struct bio *bio)
636{
637 struct closure *cl = bio->bi_private;
638
639 if (bio->bi_status) {
640 struct search *s = container_of(cl, struct search, cl);
641 struct cached_dev *dc = container_of(s->d,
642 struct cached_dev, disk);
643 /*
644 * If a bio has REQ_PREFLUSH for writeback mode, it is
645 * speically assembled in cached_dev_write() for a non-zero
646 * write request which has REQ_PREFLUSH. we don't set
647 * s->iop.status by this failure, the status will be decided
648 * by result of bch_data_insert() operation.
649 */
650 if (unlikely(s->iop.writeback &&
651 bio->bi_opf & REQ_PREFLUSH)) {
652 pr_err("Can't flush %s: returned bi_status %i",
653 dc->backing_dev_name, bio->bi_status);
654 } else {
655 /* set to orig_bio->bi_status in bio_complete() */
656 s->iop.status = bio->bi_status;
657 }
658 s->recoverable = false;
659 /* should count I/O error for backing device here */
660 bch_count_backing_io_errors(dc, bio);
661 }
662
663 bio_put(bio);
664 closure_put(cl);
665}
666
667static void bio_complete(struct search *s)
668{
669 if (s->orig_bio) {
670 generic_end_io_acct(s->d->disk->queue,
671 bio_data_dir(s->orig_bio),
672 &s->d->disk->part0, s->start_time);
673
674 trace_bcache_request_end(s->d, s->orig_bio);
675 s->orig_bio->bi_status = s->iop.status;
676 bio_endio(s->orig_bio);
677 s->orig_bio = NULL;
678 }
679}
680
681static void do_bio_hook(struct search *s,
682 struct bio *orig_bio,
683 bio_end_io_t *end_io_fn)
684{
685 struct bio *bio = &s->bio.bio;
686
687 bio_init(bio, NULL, 0);
688 __bio_clone_fast(bio, orig_bio);
689 /*
690 * bi_end_io can be set separately somewhere else, e.g. the
691 * variants in,
692 * - cache_bio->bi_end_io from cached_dev_cache_miss()
693 * - n->bi_end_io from cache_lookup_fn()
694 */
695 bio->bi_end_io = end_io_fn;
696 bio->bi_private = &s->cl;
697
698 bio_cnt_set(bio, 3);
699}
700
701static void search_free(struct closure *cl)
702{
703 struct search *s = container_of(cl, struct search, cl);
704
705 if (s->iop.bio)
706 bio_put(s->iop.bio);
707
708 bio_complete(s);
709 closure_debug_destroy(cl);
710 mempool_free(s, s->d->c->search);
711}
712
713static inline struct search *search_alloc(struct bio *bio,
714 struct bcache_device *d)
715{
716 struct search *s;
717
718 s = mempool_alloc(d->c->search, GFP_NOIO);
719
720 closure_init(&s->cl, NULL);
721 do_bio_hook(s, bio, request_endio);
722
723 s->orig_bio = bio;
724 s->cache_miss = NULL;
725 s->cache_missed = 0;
726 s->d = d;
727 s->recoverable = 1;
728 s->write = op_is_write(bio_op(bio));
729 s->read_dirty_data = 0;
730 s->start_time = jiffies;
731
732 s->iop.c = d->c;
733 s->iop.bio = NULL;
734 s->iop.inode = d->id;
735 s->iop.write_point = hash_long((unsigned long) current, 16);
736 s->iop.write_prio = 0;
737 s->iop.status = 0;
738 s->iop.flags = 0;
739 s->iop.flush_journal = op_is_flush(bio->bi_opf);
740 s->iop.wq = bcache_wq;
741
742 return s;
743}
744
745/* Cached devices */
746
747static void cached_dev_bio_complete(struct closure *cl)
748{
749 struct search *s = container_of(cl, struct search, cl);
750 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
751
752 search_free(cl);
753 cached_dev_put(dc);
754}
755
756/* Process reads */
757
758static void cached_dev_cache_miss_done(struct closure *cl)
759{
760 struct search *s = container_of(cl, struct search, cl);
761
762 if (s->iop.replace_collision)
763 bch_mark_cache_miss_collision(s->iop.c, s->d);
764
765 if (s->iop.bio)
766 bio_free_pages(s->iop.bio);
767
768 cached_dev_bio_complete(cl);
769}
770
771static void cached_dev_read_error(struct closure *cl)
772{
773 struct search *s = container_of(cl, struct search, cl);
774 struct bio *bio = &s->bio.bio;
775
776 /*
777 * If read request hit dirty data (s->read_dirty_data is true),
778 * then recovery a failed read request from cached device may
779 * get a stale data back. So read failure recovery is only
780 * permitted when read request hit clean data in cache device,
781 * or when cache read race happened.
782 */
783 if (s->recoverable && !s->read_dirty_data) {
784 /* Retry from the backing device: */
785 trace_bcache_read_retry(s->orig_bio);
786
787 s->iop.status = 0;
788 do_bio_hook(s, s->orig_bio, backing_request_endio);
789
790 /* XXX: invalidate cache */
791
792 /* I/O request sent to backing device */
793 closure_bio_submit(s->iop.c, bio, cl);
794 }
795
796 continue_at(cl, cached_dev_cache_miss_done, NULL);
797}
798
799static void cached_dev_read_done(struct closure *cl)
800{
801 struct search *s = container_of(cl, struct search, cl);
802 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
803
804 /*
805 * We had a cache miss; cache_bio now contains data ready to be inserted
806 * into the cache.
807 *
808 * First, we copy the data we just read from cache_bio's bounce buffers
809 * to the buffers the original bio pointed to:
810 */
811
812 if (s->iop.bio) {
813 bio_reset(s->iop.bio);
814 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
815 bio_copy_dev(s->iop.bio, s->cache_miss);
816 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
817 bch_bio_map(s->iop.bio, NULL);
818
819 bio_copy_data(s->cache_miss, s->iop.bio);
820
821 bio_put(s->cache_miss);
822 s->cache_miss = NULL;
823 }
824
825 if (verify(dc) && s->recoverable && !s->read_dirty_data)
826 bch_data_verify(dc, s->orig_bio);
827
828 bio_complete(s);
829
830 if (s->iop.bio &&
831 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
832 BUG_ON(!s->iop.replace);
833 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
834 }
835
836 continue_at(cl, cached_dev_cache_miss_done, NULL);
837}
838
839static void cached_dev_read_done_bh(struct closure *cl)
840{
841 struct search *s = container_of(cl, struct search, cl);
842 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
843
844 bch_mark_cache_accounting(s->iop.c, s->d,
845 !s->cache_missed, s->iop.bypass);
846 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
847
848 if (s->iop.status)
849 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
850 else if (s->iop.bio || verify(dc))
851 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
852 else
853 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
854}
855
856static int cached_dev_cache_miss(struct btree *b, struct search *s,
857 struct bio *bio, unsigned sectors)
858{
859 int ret = MAP_CONTINUE;
860 unsigned reada = 0;
861 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
862 struct bio *miss, *cache_bio;
863
864 s->cache_missed = 1;
865
866 if (s->cache_miss || s->iop.bypass) {
867 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
868 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
869 goto out_submit;
870 }
871
872 if (!(bio->bi_opf & REQ_RAHEAD) &&
873 !(bio->bi_opf & REQ_META) &&
874 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
875 reada = min_t(sector_t, dc->readahead >> 9,
876 get_capacity(bio->bi_disk) - bio_end_sector(bio));
877
878 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
879
880 s->iop.replace_key = KEY(s->iop.inode,
881 bio->bi_iter.bi_sector + s->insert_bio_sectors,
882 s->insert_bio_sectors);
883
884 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
885 if (ret)
886 return ret;
887
888 s->iop.replace = true;
889
890 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
891
892 /* btree_search_recurse()'s btree iterator is no good anymore */
893 ret = miss == bio ? MAP_DONE : -EINTR;
894
895 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
896 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
897 dc->disk.bio_split);
898 if (!cache_bio)
899 goto out_submit;
900
901 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
902 bio_copy_dev(cache_bio, miss);
903 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
904
905 cache_bio->bi_end_io = backing_request_endio;
906 cache_bio->bi_private = &s->cl;
907
908 bch_bio_map(cache_bio, NULL);
909 if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
910 goto out_put;
911
912 if (reada)
913 bch_mark_cache_readahead(s->iop.c, s->d);
914
915 s->cache_miss = miss;
916 s->iop.bio = cache_bio;
917 bio_get(cache_bio);
918 /* I/O request sent to backing device */
919 closure_bio_submit(s->iop.c, cache_bio, &s->cl);
920
921 return ret;
922out_put:
923 bio_put(cache_bio);
924out_submit:
925 miss->bi_end_io = backing_request_endio;
926 miss->bi_private = &s->cl;
927 /* I/O request sent to backing device */
928 closure_bio_submit(s->iop.c, miss, &s->cl);
929 return ret;
930}
931
932static void cached_dev_read(struct cached_dev *dc, struct search *s)
933{
934 struct closure *cl = &s->cl;
935
936 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
937 continue_at(cl, cached_dev_read_done_bh, NULL);
938}
939
940/* Process writes */
941
942static void cached_dev_write_complete(struct closure *cl)
943{
944 struct search *s = container_of(cl, struct search, cl);
945 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
946
947 up_read_non_owner(&dc->writeback_lock);
948 cached_dev_bio_complete(cl);
949}
950
951static void cached_dev_write(struct cached_dev *dc, struct search *s)
952{
953 struct closure *cl = &s->cl;
954 struct bio *bio = &s->bio.bio;
955 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
956 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
957
958 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
959
960 down_read_non_owner(&dc->writeback_lock);
961 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
962 /*
963 * We overlap with some dirty data undergoing background
964 * writeback, force this write to writeback
965 */
966 s->iop.bypass = false;
967 s->iop.writeback = true;
968 }
969
970 /*
971 * Discards aren't _required_ to do anything, so skipping if
972 * check_overlapping returned true is ok
973 *
974 * But check_overlapping drops dirty keys for which io hasn't started,
975 * so we still want to call it.
976 */
977 if (bio_op(bio) == REQ_OP_DISCARD)
978 s->iop.bypass = true;
979
980 if (should_writeback(dc, s->orig_bio,
981 cache_mode(dc),
982 s->iop.bypass)) {
983 s->iop.bypass = false;
984 s->iop.writeback = true;
985 }
986
987 if (s->iop.bypass) {
988 s->iop.bio = s->orig_bio;
989 bio_get(s->iop.bio);
990
991 if (bio_op(bio) == REQ_OP_DISCARD &&
992 !blk_queue_discard(bdev_get_queue(dc->bdev)))
993 goto insert_data;
994
995 /* I/O request sent to backing device */
996 bio->bi_end_io = backing_request_endio;
997 closure_bio_submit(s->iop.c, bio, cl);
998
999 } else if (s->iop.writeback) {
1000 bch_writeback_add(dc);
1001 s->iop.bio = bio;
1002
1003 if (bio->bi_opf & REQ_PREFLUSH) {
1004 /*
1005 * Also need to send a flush to the backing
1006 * device.
1007 */
1008 struct bio *flush;
1009
1010 flush = bio_alloc_bioset(GFP_NOIO, 0,
1011 dc->disk.bio_split);
1012 if (!flush) {
1013 s->iop.status = BLK_STS_RESOURCE;
1014 goto insert_data;
1015 }
1016 bio_copy_dev(flush, bio);
1017 flush->bi_end_io = backing_request_endio;
1018 flush->bi_private = cl;
1019 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1020 /* I/O request sent to backing device */
1021 closure_bio_submit(s->iop.c, flush, cl);
1022 }
1023 } else {
1024 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
1025 /* I/O request sent to backing device */
1026 bio->bi_end_io = backing_request_endio;
1027 closure_bio_submit(s->iop.c, bio, cl);
1028 }
1029
1030insert_data:
1031 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1032 continue_at(cl, cached_dev_write_complete, NULL);
1033}
1034
1035static void cached_dev_nodata(struct closure *cl)
1036{
1037 struct search *s = container_of(cl, struct search, cl);
1038 struct bio *bio = &s->bio.bio;
1039
1040 if (s->iop.flush_journal)
1041 bch_journal_meta(s->iop.c, cl);
1042
1043 /* If it's a flush, we send the flush to the backing device too */
1044 bio->bi_end_io = backing_request_endio;
1045 closure_bio_submit(s->iop.c, bio, cl);
1046
1047 continue_at(cl, cached_dev_bio_complete, NULL);
1048}
1049
1050struct detached_dev_io_private {
1051 struct bcache_device *d;
1052 unsigned long start_time;
1053 bio_end_io_t *bi_end_io;
1054 void *bi_private;
1055};
1056
1057static void detached_dev_end_io(struct bio *bio)
1058{
1059 struct detached_dev_io_private *ddip;
1060
1061 ddip = bio->bi_private;
1062 bio->bi_end_io = ddip->bi_end_io;
1063 bio->bi_private = ddip->bi_private;
1064
1065 generic_end_io_acct(ddip->d->disk->queue,
1066 bio_data_dir(bio),
1067 &ddip->d->disk->part0, ddip->start_time);
1068
1069 if (bio->bi_status) {
1070 struct cached_dev *dc = container_of(ddip->d,
1071 struct cached_dev, disk);
1072 /* should count I/O error for backing device here */
1073 bch_count_backing_io_errors(dc, bio);
1074 }
1075
1076 kfree(ddip);
1077 bio->bi_end_io(bio);
1078}
1079
1080static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1081{
1082 struct detached_dev_io_private *ddip;
1083 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1084
1085 /*
1086 * no need to call closure_get(&dc->disk.cl),
1087 * because upper layer had already opened bcache device,
1088 * which would call closure_get(&dc->disk.cl)
1089 */
1090 ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1091 ddip->d = d;
1092 ddip->start_time = jiffies;
1093 ddip->bi_end_io = bio->bi_end_io;
1094 ddip->bi_private = bio->bi_private;
1095 bio->bi_end_io = detached_dev_end_io;
1096 bio->bi_private = ddip;
1097
1098 if ((bio_op(bio) == REQ_OP_DISCARD) &&
1099 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1100 bio->bi_end_io(bio);
1101 else
1102 generic_make_request(bio);
1103}
1104
1105/* Cached devices - read & write stuff */
1106
1107static blk_qc_t cached_dev_make_request(struct request_queue *q,
1108 struct bio *bio)
1109{
1110 struct search *s;
1111 struct bcache_device *d = bio->bi_disk->private_data;
1112 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1113 int rw = bio_data_dir(bio);
1114
1115 if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1116 dc->io_disable)) {
1117 bio->bi_status = BLK_STS_IOERR;
1118 bio_endio(bio);
1119 return BLK_QC_T_NONE;
1120 }
1121
1122 atomic_set(&dc->backing_idle, 0);
1123 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
1124
1125 bio_set_dev(bio, dc->bdev);
1126 bio->bi_iter.bi_sector += dc->sb.data_offset;
1127
1128 if (cached_dev_get(dc)) {
1129 s = search_alloc(bio, d);
1130 trace_bcache_request_start(s->d, bio);
1131
1132 if (!bio->bi_iter.bi_size) {
1133 /*
1134 * can't call bch_journal_meta from under
1135 * generic_make_request
1136 */
1137 continue_at_nobarrier(&s->cl,
1138 cached_dev_nodata,
1139 bcache_wq);
1140 } else {
1141 s->iop.bypass = check_should_bypass(dc, bio);
1142
1143 if (rw)
1144 cached_dev_write(dc, s);
1145 else
1146 cached_dev_read(dc, s);
1147 }
1148 } else
1149 /* I/O request sent to backing device */
1150 detached_dev_do_request(d, bio);
1151
1152 return BLK_QC_T_NONE;
1153}
1154
1155static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1156 unsigned int cmd, unsigned long arg)
1157{
1158 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1159 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1160}
1161
1162static int cached_dev_congested(void *data, int bits)
1163{
1164 struct bcache_device *d = data;
1165 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1166 struct request_queue *q = bdev_get_queue(dc->bdev);
1167 int ret = 0;
1168
1169 if (bdi_congested(q->backing_dev_info, bits))
1170 return 1;
1171
1172 if (cached_dev_get(dc)) {
1173 unsigned i;
1174 struct cache *ca;
1175
1176 for_each_cache(ca, d->c, i) {
1177 q = bdev_get_queue(ca->bdev);
1178 ret |= bdi_congested(q->backing_dev_info, bits);
1179 }
1180
1181 cached_dev_put(dc);
1182 }
1183
1184 return ret;
1185}
1186
1187void bch_cached_dev_request_init(struct cached_dev *dc)
1188{
1189 struct gendisk *g = dc->disk.disk;
1190
1191 g->queue->make_request_fn = cached_dev_make_request;
1192 g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1193 dc->disk.cache_miss = cached_dev_cache_miss;
1194 dc->disk.ioctl = cached_dev_ioctl;
1195}
1196
1197/* Flash backed devices */
1198
1199static int flash_dev_cache_miss(struct btree *b, struct search *s,
1200 struct bio *bio, unsigned sectors)
1201{
1202 unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1203
1204 swap(bio->bi_iter.bi_size, bytes);
1205 zero_fill_bio(bio);
1206 swap(bio->bi_iter.bi_size, bytes);
1207
1208 bio_advance(bio, bytes);
1209
1210 if (!bio->bi_iter.bi_size)
1211 return MAP_DONE;
1212
1213 return MAP_CONTINUE;
1214}
1215
1216static void flash_dev_nodata(struct closure *cl)
1217{
1218 struct search *s = container_of(cl, struct search, cl);
1219
1220 if (s->iop.flush_journal)
1221 bch_journal_meta(s->iop.c, cl);
1222
1223 continue_at(cl, search_free, NULL);
1224}
1225
1226static blk_qc_t flash_dev_make_request(struct request_queue *q,
1227 struct bio *bio)
1228{
1229 struct search *s;
1230 struct closure *cl;
1231 struct bcache_device *d = bio->bi_disk->private_data;
1232 int rw = bio_data_dir(bio);
1233
1234 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1235 bio->bi_status = BLK_STS_IOERR;
1236 bio_endio(bio);
1237 return BLK_QC_T_NONE;
1238 }
1239
1240 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
1241
1242 s = search_alloc(bio, d);
1243 cl = &s->cl;
1244 bio = &s->bio.bio;
1245
1246 trace_bcache_request_start(s->d, bio);
1247
1248 if (!bio->bi_iter.bi_size) {
1249 /*
1250 * can't call bch_journal_meta from under
1251 * generic_make_request
1252 */
1253 continue_at_nobarrier(&s->cl,
1254 flash_dev_nodata,
1255 bcache_wq);
1256 return BLK_QC_T_NONE;
1257 } else if (rw) {
1258 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1259 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1260 &KEY(d->id, bio_end_sector(bio), 0));
1261
1262 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1263 s->iop.writeback = true;
1264 s->iop.bio = bio;
1265
1266 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1267 } else {
1268 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1269 }
1270
1271 continue_at(cl, search_free, NULL);
1272 return BLK_QC_T_NONE;
1273}
1274
1275static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1276 unsigned int cmd, unsigned long arg)
1277{
1278 return -ENOTTY;
1279}
1280
1281static int flash_dev_congested(void *data, int bits)
1282{
1283 struct bcache_device *d = data;
1284 struct request_queue *q;
1285 struct cache *ca;
1286 unsigned i;
1287 int ret = 0;
1288
1289 for_each_cache(ca, d->c, i) {
1290 q = bdev_get_queue(ca->bdev);
1291 ret |= bdi_congested(q->backing_dev_info, bits);
1292 }
1293
1294 return ret;
1295}
1296
1297void bch_flash_dev_request_init(struct bcache_device *d)
1298{
1299 struct gendisk *g = d->disk;
1300
1301 g->queue->make_request_fn = flash_dev_make_request;
1302 g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1303 d->cache_miss = flash_dev_cache_miss;
1304 d->ioctl = flash_dev_ioctl;
1305}
1306
1307void bch_request_exit(void)
1308{
1309 if (bch_search_cache)
1310 kmem_cache_destroy(bch_search_cache);
1311}
1312
1313int __init bch_request_init(void)
1314{
1315 bch_search_cache = KMEM_CACHE(search, 0);
1316 if (!bch_search_cache)
1317 return -ENOMEM;
1318
1319 return 0;
1320}