Loading...
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <linux/dma-fence-array.h>
26#include <linux/irq_work.h>
27#include <linux/prefetch.h>
28#include <linux/sched.h>
29#include <linux/sched/clock.h>
30#include <linux/sched/signal.h>
31
32#include "gem/i915_gem_context.h"
33#include "gt/intel_context.h"
34
35#include "i915_active.h"
36#include "i915_drv.h"
37#include "i915_globals.h"
38#include "i915_trace.h"
39#include "intel_pm.h"
40
41struct execute_cb {
42 struct list_head link;
43 struct irq_work work;
44 struct i915_sw_fence *fence;
45 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
46 struct i915_request *signal;
47};
48
49static struct i915_global_request {
50 struct i915_global base;
51 struct kmem_cache *slab_requests;
52 struct kmem_cache *slab_dependencies;
53 struct kmem_cache *slab_execute_cbs;
54} global;
55
56static const char *i915_fence_get_driver_name(struct dma_fence *fence)
57{
58 return "i915";
59}
60
61static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
62{
63 /*
64 * The timeline struct (as part of the ppgtt underneath a context)
65 * may be freed when the request is no longer in use by the GPU.
66 * We could extend the life of a context to beyond that of all
67 * fences, possibly keeping the hw resource around indefinitely,
68 * or we just give them a false name. Since
69 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
70 * lie seems justifiable.
71 */
72 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
73 return "signaled";
74
75 return to_request(fence)->gem_context->name ?: "[i915]";
76}
77
78static bool i915_fence_signaled(struct dma_fence *fence)
79{
80 return i915_request_completed(to_request(fence));
81}
82
83static bool i915_fence_enable_signaling(struct dma_fence *fence)
84{
85 return i915_request_enable_breadcrumb(to_request(fence));
86}
87
88static signed long i915_fence_wait(struct dma_fence *fence,
89 bool interruptible,
90 signed long timeout)
91{
92 return i915_request_wait(to_request(fence),
93 interruptible | I915_WAIT_PRIORITY,
94 timeout);
95}
96
97static void i915_fence_release(struct dma_fence *fence)
98{
99 struct i915_request *rq = to_request(fence);
100
101 /*
102 * The request is put onto a RCU freelist (i.e. the address
103 * is immediately reused), mark the fences as being freed now.
104 * Otherwise the debugobjects for the fences are only marked as
105 * freed when the slab cache itself is freed, and so we would get
106 * caught trying to reuse dead objects.
107 */
108 i915_sw_fence_fini(&rq->submit);
109 i915_sw_fence_fini(&rq->semaphore);
110
111 kmem_cache_free(global.slab_requests, rq);
112}
113
114const struct dma_fence_ops i915_fence_ops = {
115 .get_driver_name = i915_fence_get_driver_name,
116 .get_timeline_name = i915_fence_get_timeline_name,
117 .enable_signaling = i915_fence_enable_signaling,
118 .signaled = i915_fence_signaled,
119 .wait = i915_fence_wait,
120 .release = i915_fence_release,
121};
122
123static void irq_execute_cb(struct irq_work *wrk)
124{
125 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
126
127 i915_sw_fence_complete(cb->fence);
128 kmem_cache_free(global.slab_execute_cbs, cb);
129}
130
131static void irq_execute_cb_hook(struct irq_work *wrk)
132{
133 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
134
135 cb->hook(container_of(cb->fence, struct i915_request, submit),
136 &cb->signal->fence);
137 i915_request_put(cb->signal);
138
139 irq_execute_cb(wrk);
140}
141
142static void __notify_execute_cb(struct i915_request *rq)
143{
144 struct execute_cb *cb;
145
146 lockdep_assert_held(&rq->lock);
147
148 if (list_empty(&rq->execute_cb))
149 return;
150
151 list_for_each_entry(cb, &rq->execute_cb, link)
152 irq_work_queue(&cb->work);
153
154 /*
155 * XXX Rollback on __i915_request_unsubmit()
156 *
157 * In the future, perhaps when we have an active time-slicing scheduler,
158 * it will be interesting to unsubmit parallel execution and remove
159 * busywaits from the GPU until their master is restarted. This is
160 * quite hairy, we have to carefully rollback the fence and do a
161 * preempt-to-idle cycle on the target engine, all the while the
162 * master execute_cb may refire.
163 */
164 INIT_LIST_HEAD(&rq->execute_cb);
165}
166
167static inline void
168remove_from_client(struct i915_request *request)
169{
170 struct drm_i915_file_private *file_priv;
171
172 file_priv = READ_ONCE(request->file_priv);
173 if (!file_priv)
174 return;
175
176 spin_lock(&file_priv->mm.lock);
177 if (request->file_priv) {
178 list_del(&request->client_link);
179 request->file_priv = NULL;
180 }
181 spin_unlock(&file_priv->mm.lock);
182}
183
184static void free_capture_list(struct i915_request *request)
185{
186 struct i915_capture_list *capture;
187
188 capture = request->capture_list;
189 while (capture) {
190 struct i915_capture_list *next = capture->next;
191
192 kfree(capture);
193 capture = next;
194 }
195}
196
197static void remove_from_engine(struct i915_request *rq)
198{
199 struct intel_engine_cs *engine, *locked;
200
201 /*
202 * Virtual engines complicate acquiring the engine timeline lock,
203 * as their rq->engine pointer is not stable until under that
204 * engine lock. The simple ploy we use is to take the lock then
205 * check that the rq still belongs to the newly locked engine.
206 */
207 locked = READ_ONCE(rq->engine);
208 spin_lock(&locked->active.lock);
209 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
210 spin_unlock(&locked->active.lock);
211 spin_lock(&engine->active.lock);
212 locked = engine;
213 }
214 list_del(&rq->sched.link);
215 spin_unlock(&locked->active.lock);
216}
217
218static bool i915_request_retire(struct i915_request *rq)
219{
220 struct i915_active_request *active, *next;
221
222 lockdep_assert_held(&rq->timeline->mutex);
223 if (!i915_request_completed(rq))
224 return false;
225
226 GEM_TRACE("%s fence %llx:%lld, current %d\n",
227 rq->engine->name,
228 rq->fence.context, rq->fence.seqno,
229 hwsp_seqno(rq));
230
231 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
232 trace_i915_request_retire(rq);
233
234 /*
235 * We know the GPU must have read the request to have
236 * sent us the seqno + interrupt, so use the position
237 * of tail of the request to update the last known position
238 * of the GPU head.
239 *
240 * Note this requires that we are always called in request
241 * completion order.
242 */
243 GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests));
244 rq->ring->head = rq->postfix;
245
246 /*
247 * Walk through the active list, calling retire on each. This allows
248 * objects to track their GPU activity and mark themselves as idle
249 * when their *last* active request is completed (updating state
250 * tracking lists for eviction, active references for GEM, etc).
251 *
252 * As the ->retire() may free the node, we decouple it first and
253 * pass along the auxiliary information (to avoid dereferencing
254 * the node after the callback).
255 */
256 list_for_each_entry_safe(active, next, &rq->active_list, link) {
257 /*
258 * In microbenchmarks or focusing upon time inside the kernel,
259 * we may spend an inordinate amount of time simply handling
260 * the retirement of requests and processing their callbacks.
261 * Of which, this loop itself is particularly hot due to the
262 * cache misses when jumping around the list of
263 * i915_active_request. So we try to keep this loop as
264 * streamlined as possible and also prefetch the next
265 * i915_active_request to try and hide the likely cache miss.
266 */
267 prefetchw(next);
268
269 INIT_LIST_HEAD(&active->link);
270 RCU_INIT_POINTER(active->request, NULL);
271
272 active->retire(active, rq);
273 }
274
275 local_irq_disable();
276
277 /*
278 * We only loosely track inflight requests across preemption,
279 * and so we may find ourselves attempting to retire a _completed_
280 * request that we have removed from the HW and put back on a run
281 * queue.
282 */
283 remove_from_engine(rq);
284
285 spin_lock(&rq->lock);
286 i915_request_mark_complete(rq);
287 if (!i915_request_signaled(rq))
288 dma_fence_signal_locked(&rq->fence);
289 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
290 i915_request_cancel_breadcrumb(rq);
291 if (i915_request_has_waitboost(rq)) {
292 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
293 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
294 }
295 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
296 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
297 __notify_execute_cb(rq);
298 }
299 GEM_BUG_ON(!list_empty(&rq->execute_cb));
300 spin_unlock(&rq->lock);
301
302 local_irq_enable();
303
304 remove_from_client(rq);
305 list_del(&rq->link);
306
307 intel_context_exit(rq->hw_context);
308 intel_context_unpin(rq->hw_context);
309
310 free_capture_list(rq);
311 i915_sched_node_fini(&rq->sched);
312 i915_request_put(rq);
313
314 return true;
315}
316
317void i915_request_retire_upto(struct i915_request *rq)
318{
319 struct intel_timeline * const tl = rq->timeline;
320 struct i915_request *tmp;
321
322 GEM_TRACE("%s fence %llx:%lld, current %d\n",
323 rq->engine->name,
324 rq->fence.context, rq->fence.seqno,
325 hwsp_seqno(rq));
326
327 lockdep_assert_held(&tl->mutex);
328 GEM_BUG_ON(!i915_request_completed(rq));
329
330 do {
331 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
332 } while (i915_request_retire(tmp) && tmp != rq);
333}
334
335static int
336__i915_request_await_execution(struct i915_request *rq,
337 struct i915_request *signal,
338 void (*hook)(struct i915_request *rq,
339 struct dma_fence *signal),
340 gfp_t gfp)
341{
342 struct execute_cb *cb;
343
344 if (i915_request_is_active(signal)) {
345 if (hook)
346 hook(rq, &signal->fence);
347 return 0;
348 }
349
350 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
351 if (!cb)
352 return -ENOMEM;
353
354 cb->fence = &rq->submit;
355 i915_sw_fence_await(cb->fence);
356 init_irq_work(&cb->work, irq_execute_cb);
357
358 if (hook) {
359 cb->hook = hook;
360 cb->signal = i915_request_get(signal);
361 cb->work.func = irq_execute_cb_hook;
362 }
363
364 spin_lock_irq(&signal->lock);
365 if (i915_request_is_active(signal)) {
366 if (hook) {
367 hook(rq, &signal->fence);
368 i915_request_put(signal);
369 }
370 i915_sw_fence_complete(cb->fence);
371 kmem_cache_free(global.slab_execute_cbs, cb);
372 } else {
373 list_add_tail(&cb->link, &signal->execute_cb);
374 }
375 spin_unlock_irq(&signal->lock);
376
377 return 0;
378}
379
380bool __i915_request_submit(struct i915_request *request)
381{
382 struct intel_engine_cs *engine = request->engine;
383 bool result = false;
384
385 GEM_TRACE("%s fence %llx:%lld, current %d\n",
386 engine->name,
387 request->fence.context, request->fence.seqno,
388 hwsp_seqno(request));
389
390 GEM_BUG_ON(!irqs_disabled());
391 lockdep_assert_held(&engine->active.lock);
392
393 /*
394 * With the advent of preempt-to-busy, we frequently encounter
395 * requests that we have unsubmitted from HW, but left running
396 * until the next ack and so have completed in the meantime. On
397 * resubmission of that completed request, we can skip
398 * updating the payload, and execlists can even skip submitting
399 * the request.
400 *
401 * We must remove the request from the caller's priority queue,
402 * and the caller must only call us when the request is in their
403 * priority queue, under the active.lock. This ensures that the
404 * request has *not* yet been retired and we can safely move
405 * the request into the engine->active.list where it will be
406 * dropped upon retiring. (Otherwise if resubmit a *retired*
407 * request, this would be a horrible use-after-free.)
408 */
409 if (i915_request_completed(request))
410 goto xfer;
411
412 if (i915_gem_context_is_banned(request->gem_context))
413 i915_request_skip(request, -EIO);
414
415 /*
416 * Are we using semaphores when the gpu is already saturated?
417 *
418 * Using semaphores incurs a cost in having the GPU poll a
419 * memory location, busywaiting for it to change. The continual
420 * memory reads can have a noticeable impact on the rest of the
421 * system with the extra bus traffic, stalling the cpu as it too
422 * tries to access memory across the bus (perf stat -e bus-cycles).
423 *
424 * If we installed a semaphore on this request and we only submit
425 * the request after the signaler completed, that indicates the
426 * system is overloaded and using semaphores at this time only
427 * increases the amount of work we are doing. If so, we disable
428 * further use of semaphores until we are idle again, whence we
429 * optimistically try again.
430 */
431 if (request->sched.semaphores &&
432 i915_sw_fence_signaled(&request->semaphore))
433 engine->saturated |= request->sched.semaphores;
434
435 engine->emit_fini_breadcrumb(request,
436 request->ring->vaddr + request->postfix);
437
438 trace_i915_request_execute(request);
439 engine->serial++;
440 result = true;
441
442xfer: /* We may be recursing from the signal callback of another i915 fence */
443 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
444
445 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
446 list_move_tail(&request->sched.link, &engine->active.requests);
447
448 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
449 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
450 !i915_request_enable_breadcrumb(request))
451 intel_engine_queue_breadcrumbs(engine);
452
453 __notify_execute_cb(request);
454
455 spin_unlock(&request->lock);
456
457 return result;
458}
459
460void i915_request_submit(struct i915_request *request)
461{
462 struct intel_engine_cs *engine = request->engine;
463 unsigned long flags;
464
465 /* Will be called from irq-context when using foreign fences. */
466 spin_lock_irqsave(&engine->active.lock, flags);
467
468 __i915_request_submit(request);
469
470 spin_unlock_irqrestore(&engine->active.lock, flags);
471}
472
473void __i915_request_unsubmit(struct i915_request *request)
474{
475 struct intel_engine_cs *engine = request->engine;
476
477 GEM_TRACE("%s fence %llx:%lld, current %d\n",
478 engine->name,
479 request->fence.context, request->fence.seqno,
480 hwsp_seqno(request));
481
482 GEM_BUG_ON(!irqs_disabled());
483 lockdep_assert_held(&engine->active.lock);
484
485 /*
486 * Only unwind in reverse order, required so that the per-context list
487 * is kept in seqno/ring order.
488 */
489
490 /* We may be recursing from the signal callback of another i915 fence */
491 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
492
493 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
494 i915_request_cancel_breadcrumb(request);
495
496 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
497 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
498
499 spin_unlock(&request->lock);
500
501 /* We've already spun, don't charge on resubmitting. */
502 if (request->sched.semaphores && i915_request_started(request)) {
503 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
504 request->sched.semaphores = 0;
505 }
506
507 /*
508 * We don't need to wake_up any waiters on request->execute, they
509 * will get woken by any other event or us re-adding this request
510 * to the engine timeline (__i915_request_submit()). The waiters
511 * should be quite adapt at finding that the request now has a new
512 * global_seqno to the one they went to sleep on.
513 */
514}
515
516void i915_request_unsubmit(struct i915_request *request)
517{
518 struct intel_engine_cs *engine = request->engine;
519 unsigned long flags;
520
521 /* Will be called from irq-context when using foreign fences. */
522 spin_lock_irqsave(&engine->active.lock, flags);
523
524 __i915_request_unsubmit(request);
525
526 spin_unlock_irqrestore(&engine->active.lock, flags);
527}
528
529static int __i915_sw_fence_call
530submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
531{
532 struct i915_request *request =
533 container_of(fence, typeof(*request), submit);
534
535 switch (state) {
536 case FENCE_COMPLETE:
537 trace_i915_request_submit(request);
538
539 if (unlikely(fence->error))
540 i915_request_skip(request, fence->error);
541
542 /*
543 * We need to serialize use of the submit_request() callback
544 * with its hotplugging performed during an emergency
545 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
546 * critical section in order to force i915_gem_set_wedged() to
547 * wait until the submit_request() is completed before
548 * proceeding.
549 */
550 rcu_read_lock();
551 request->engine->submit_request(request);
552 rcu_read_unlock();
553 break;
554
555 case FENCE_FREE:
556 i915_request_put(request);
557 break;
558 }
559
560 return NOTIFY_DONE;
561}
562
563static int __i915_sw_fence_call
564semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
565{
566 struct i915_request *request =
567 container_of(fence, typeof(*request), semaphore);
568
569 switch (state) {
570 case FENCE_COMPLETE:
571 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
572 break;
573
574 case FENCE_FREE:
575 i915_request_put(request);
576 break;
577 }
578
579 return NOTIFY_DONE;
580}
581
582static void retire_requests(struct intel_timeline *tl)
583{
584 struct i915_request *rq, *rn;
585
586 list_for_each_entry_safe(rq, rn, &tl->requests, link)
587 if (!i915_request_retire(rq))
588 break;
589}
590
591static noinline struct i915_request *
592request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
593{
594 struct i915_request *rq;
595
596 if (list_empty(&tl->requests))
597 goto out;
598
599 if (!gfpflags_allow_blocking(gfp))
600 goto out;
601
602 /* Move our oldest request to the slab-cache (if not in use!) */
603 rq = list_first_entry(&tl->requests, typeof(*rq), link);
604 i915_request_retire(rq);
605
606 rq = kmem_cache_alloc(global.slab_requests,
607 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
608 if (rq)
609 return rq;
610
611 /* Ratelimit ourselves to prevent oom from malicious clients */
612 rq = list_last_entry(&tl->requests, typeof(*rq), link);
613 cond_synchronize_rcu(rq->rcustate);
614
615 /* Retire our old requests in the hope that we free some */
616 retire_requests(tl);
617
618out:
619 return kmem_cache_alloc(global.slab_requests, gfp);
620}
621
622struct i915_request *
623__i915_request_create(struct intel_context *ce, gfp_t gfp)
624{
625 struct intel_timeline *tl = ce->timeline;
626 struct i915_request *rq;
627 u32 seqno;
628 int ret;
629
630 might_sleep_if(gfpflags_allow_blocking(gfp));
631
632 /* Check that the caller provided an already pinned context */
633 __intel_context_pin(ce);
634
635 /*
636 * Beware: Dragons be flying overhead.
637 *
638 * We use RCU to look up requests in flight. The lookups may
639 * race with the request being allocated from the slab freelist.
640 * That is the request we are writing to here, may be in the process
641 * of being read by __i915_active_request_get_rcu(). As such,
642 * we have to be very careful when overwriting the contents. During
643 * the RCU lookup, we change chase the request->engine pointer,
644 * read the request->global_seqno and increment the reference count.
645 *
646 * The reference count is incremented atomically. If it is zero,
647 * the lookup knows the request is unallocated and complete. Otherwise,
648 * it is either still in use, or has been reallocated and reset
649 * with dma_fence_init(). This increment is safe for release as we
650 * check that the request we have a reference to and matches the active
651 * request.
652 *
653 * Before we increment the refcount, we chase the request->engine
654 * pointer. We must not call kmem_cache_zalloc() or else we set
655 * that pointer to NULL and cause a crash during the lookup. If
656 * we see the request is completed (based on the value of the
657 * old engine and seqno), the lookup is complete and reports NULL.
658 * If we decide the request is not completed (new engine or seqno),
659 * then we grab a reference and double check that it is still the
660 * active request - which it won't be and restart the lookup.
661 *
662 * Do not use kmem_cache_zalloc() here!
663 */
664 rq = kmem_cache_alloc(global.slab_requests,
665 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
666 if (unlikely(!rq)) {
667 rq = request_alloc_slow(tl, gfp);
668 if (!rq) {
669 ret = -ENOMEM;
670 goto err_unreserve;
671 }
672 }
673
674 ret = intel_timeline_get_seqno(tl, rq, &seqno);
675 if (ret)
676 goto err_free;
677
678 rq->i915 = ce->engine->i915;
679 rq->hw_context = ce;
680 rq->gem_context = ce->gem_context;
681 rq->engine = ce->engine;
682 rq->ring = ce->ring;
683 rq->timeline = tl;
684 rq->hwsp_seqno = tl->hwsp_seqno;
685 rq->hwsp_cacheline = tl->hwsp_cacheline;
686 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
687
688 spin_lock_init(&rq->lock);
689 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
690 tl->fence_context, seqno);
691
692 /* We bump the ref for the fence chain */
693 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
694 i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
695
696 i915_sched_node_init(&rq->sched);
697
698 /* No zalloc, must clear what we need by hand */
699 rq->file_priv = NULL;
700 rq->batch = NULL;
701 rq->capture_list = NULL;
702 rq->flags = 0;
703 rq->execution_mask = ALL_ENGINES;
704
705 INIT_LIST_HEAD(&rq->active_list);
706 INIT_LIST_HEAD(&rq->execute_cb);
707
708 /*
709 * Reserve space in the ring buffer for all the commands required to
710 * eventually emit this request. This is to guarantee that the
711 * i915_request_add() call can't fail. Note that the reserve may need
712 * to be redone if the request is not actually submitted straight
713 * away, e.g. because a GPU scheduler has deferred it.
714 *
715 * Note that due to how we add reserved_space to intel_ring_begin()
716 * we need to double our request to ensure that if we need to wrap
717 * around inside i915_request_add() there is sufficient space at
718 * the beginning of the ring as well.
719 */
720 rq->reserved_space =
721 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
722
723 /*
724 * Record the position of the start of the request so that
725 * should we detect the updated seqno part-way through the
726 * GPU processing the request, we never over-estimate the
727 * position of the head.
728 */
729 rq->head = rq->ring->emit;
730
731 ret = rq->engine->request_alloc(rq);
732 if (ret)
733 goto err_unwind;
734
735 rq->infix = rq->ring->emit; /* end of header; start of user payload */
736
737 intel_context_mark_active(ce);
738 return rq;
739
740err_unwind:
741 ce->ring->emit = rq->head;
742
743 /* Make sure we didn't add ourselves to external state before freeing */
744 GEM_BUG_ON(!list_empty(&rq->active_list));
745 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
746 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
747
748err_free:
749 kmem_cache_free(global.slab_requests, rq);
750err_unreserve:
751 intel_context_unpin(ce);
752 return ERR_PTR(ret);
753}
754
755struct i915_request *
756i915_request_create(struct intel_context *ce)
757{
758 struct i915_request *rq;
759 struct intel_timeline *tl;
760
761 tl = intel_context_timeline_lock(ce);
762 if (IS_ERR(tl))
763 return ERR_CAST(tl);
764
765 /* Move our oldest request to the slab-cache (if not in use!) */
766 rq = list_first_entry(&tl->requests, typeof(*rq), link);
767 if (!list_is_last(&rq->link, &tl->requests))
768 i915_request_retire(rq);
769
770 intel_context_enter(ce);
771 rq = __i915_request_create(ce, GFP_KERNEL);
772 intel_context_exit(ce); /* active reference transferred to request */
773 if (IS_ERR(rq))
774 goto err_unlock;
775
776 /* Check that we do not interrupt ourselves with a new request */
777 rq->cookie = lockdep_pin_lock(&tl->mutex);
778
779 return rq;
780
781err_unlock:
782 intel_context_timeline_unlock(tl);
783 return rq;
784}
785
786static int
787i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
788{
789 if (list_is_first(&signal->link, &signal->timeline->requests))
790 return 0;
791
792 signal = list_prev_entry(signal, link);
793 if (intel_timeline_sync_is_later(rq->timeline, &signal->fence))
794 return 0;
795
796 return i915_sw_fence_await_dma_fence(&rq->submit,
797 &signal->fence, 0,
798 I915_FENCE_GFP);
799}
800
801static intel_engine_mask_t
802already_busywaiting(struct i915_request *rq)
803{
804 /*
805 * Polling a semaphore causes bus traffic, delaying other users of
806 * both the GPU and CPU. We want to limit the impact on others,
807 * while taking advantage of early submission to reduce GPU
808 * latency. Therefore we restrict ourselves to not using more
809 * than one semaphore from each source, and not using a semaphore
810 * if we have detected the engine is saturated (i.e. would not be
811 * submitted early and cause bus traffic reading an already passed
812 * semaphore).
813 *
814 * See the are-we-too-late? check in __i915_request_submit().
815 */
816 return rq->sched.semaphores | rq->engine->saturated;
817}
818
819static int
820emit_semaphore_wait(struct i915_request *to,
821 struct i915_request *from,
822 gfp_t gfp)
823{
824 u32 hwsp_offset;
825 u32 *cs;
826 int err;
827
828 GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
829 GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
830
831 /* Just emit the first semaphore we see as request space is limited. */
832 if (already_busywaiting(to) & from->engine->mask)
833 return i915_sw_fence_await_dma_fence(&to->submit,
834 &from->fence, 0,
835 I915_FENCE_GFP);
836
837 err = i915_request_await_start(to, from);
838 if (err < 0)
839 return err;
840
841 /* Only submit our spinner after the signaler is running! */
842 err = __i915_request_await_execution(to, from, NULL, gfp);
843 if (err)
844 return err;
845
846 /* We need to pin the signaler's HWSP until we are finished reading. */
847 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
848 if (err)
849 return err;
850
851 cs = intel_ring_begin(to, 4);
852 if (IS_ERR(cs))
853 return PTR_ERR(cs);
854
855 /*
856 * Using greater-than-or-equal here means we have to worry
857 * about seqno wraparound. To side step that issue, we swap
858 * the timeline HWSP upon wrapping, so that everyone listening
859 * for the old (pre-wrap) values do not see the much smaller
860 * (post-wrap) values than they were expecting (and so wait
861 * forever).
862 */
863 *cs++ = MI_SEMAPHORE_WAIT |
864 MI_SEMAPHORE_GLOBAL_GTT |
865 MI_SEMAPHORE_POLL |
866 MI_SEMAPHORE_SAD_GTE_SDD;
867 *cs++ = from->fence.seqno;
868 *cs++ = hwsp_offset;
869 *cs++ = 0;
870
871 intel_ring_advance(to, cs);
872 to->sched.semaphores |= from->engine->mask;
873 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
874 return 0;
875}
876
877static int
878i915_request_await_request(struct i915_request *to, struct i915_request *from)
879{
880 int ret;
881
882 GEM_BUG_ON(to == from);
883 GEM_BUG_ON(to->timeline == from->timeline);
884
885 if (i915_request_completed(from))
886 return 0;
887
888 if (to->engine->schedule) {
889 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
890 if (ret < 0)
891 return ret;
892 }
893
894 if (to->engine == from->engine) {
895 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
896 &from->submit,
897 I915_FENCE_GFP);
898 } else if (intel_engine_has_semaphores(to->engine) &&
899 to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
900 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
901 } else {
902 ret = i915_sw_fence_await_dma_fence(&to->submit,
903 &from->fence, 0,
904 I915_FENCE_GFP);
905 }
906 if (ret < 0)
907 return ret;
908
909 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
910 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
911 &from->fence, 0,
912 I915_FENCE_GFP);
913 if (ret < 0)
914 return ret;
915 }
916
917 return 0;
918}
919
920int
921i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
922{
923 struct dma_fence **child = &fence;
924 unsigned int nchild = 1;
925 int ret;
926
927 /*
928 * Note that if the fence-array was created in signal-on-any mode,
929 * we should *not* decompose it into its individual fences. However,
930 * we don't currently store which mode the fence-array is operating
931 * in. Fortunately, the only user of signal-on-any is private to
932 * amdgpu and we should not see any incoming fence-array from
933 * sync-file being in signal-on-any mode.
934 */
935 if (dma_fence_is_array(fence)) {
936 struct dma_fence_array *array = to_dma_fence_array(fence);
937
938 child = array->fences;
939 nchild = array->num_fences;
940 GEM_BUG_ON(!nchild);
941 }
942
943 do {
944 fence = *child++;
945 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
946 continue;
947
948 /*
949 * Requests on the same timeline are explicitly ordered, along
950 * with their dependencies, by i915_request_add() which ensures
951 * that requests are submitted in-order through each ring.
952 */
953 if (fence->context == rq->fence.context)
954 continue;
955
956 /* Squash repeated waits to the same timelines */
957 if (fence->context &&
958 intel_timeline_sync_is_later(rq->timeline, fence))
959 continue;
960
961 if (dma_fence_is_i915(fence))
962 ret = i915_request_await_request(rq, to_request(fence));
963 else
964 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
965 I915_FENCE_TIMEOUT,
966 I915_FENCE_GFP);
967 if (ret < 0)
968 return ret;
969
970 /* Record the latest fence used against each timeline */
971 if (fence->context)
972 intel_timeline_sync_set(rq->timeline, fence);
973 } while (--nchild);
974
975 return 0;
976}
977
978int
979i915_request_await_execution(struct i915_request *rq,
980 struct dma_fence *fence,
981 void (*hook)(struct i915_request *rq,
982 struct dma_fence *signal))
983{
984 struct dma_fence **child = &fence;
985 unsigned int nchild = 1;
986 int ret;
987
988 if (dma_fence_is_array(fence)) {
989 struct dma_fence_array *array = to_dma_fence_array(fence);
990
991 /* XXX Error for signal-on-any fence arrays */
992
993 child = array->fences;
994 nchild = array->num_fences;
995 GEM_BUG_ON(!nchild);
996 }
997
998 do {
999 fence = *child++;
1000 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1001 continue;
1002
1003 /*
1004 * We don't squash repeated fence dependencies here as we
1005 * want to run our callback in all cases.
1006 */
1007
1008 if (dma_fence_is_i915(fence))
1009 ret = __i915_request_await_execution(rq,
1010 to_request(fence),
1011 hook,
1012 I915_FENCE_GFP);
1013 else
1014 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1015 I915_FENCE_TIMEOUT,
1016 GFP_KERNEL);
1017 if (ret < 0)
1018 return ret;
1019 } while (--nchild);
1020
1021 return 0;
1022}
1023
1024/**
1025 * i915_request_await_object - set this request to (async) wait upon a bo
1026 * @to: request we are wishing to use
1027 * @obj: object which may be in use on another ring.
1028 * @write: whether the wait is on behalf of a writer
1029 *
1030 * This code is meant to abstract object synchronization with the GPU.
1031 * Conceptually we serialise writes between engines inside the GPU.
1032 * We only allow one engine to write into a buffer at any time, but
1033 * multiple readers. To ensure each has a coherent view of memory, we must:
1034 *
1035 * - If there is an outstanding write request to the object, the new
1036 * request must wait for it to complete (either CPU or in hw, requests
1037 * on the same ring will be naturally ordered).
1038 *
1039 * - If we are a write request (pending_write_domain is set), the new
1040 * request must wait for outstanding read requests to complete.
1041 *
1042 * Returns 0 if successful, else propagates up the lower layer error.
1043 */
1044int
1045i915_request_await_object(struct i915_request *to,
1046 struct drm_i915_gem_object *obj,
1047 bool write)
1048{
1049 struct dma_fence *excl;
1050 int ret = 0;
1051
1052 if (write) {
1053 struct dma_fence **shared;
1054 unsigned int count, i;
1055
1056 ret = dma_resv_get_fences_rcu(obj->base.resv,
1057 &excl, &count, &shared);
1058 if (ret)
1059 return ret;
1060
1061 for (i = 0; i < count; i++) {
1062 ret = i915_request_await_dma_fence(to, shared[i]);
1063 if (ret)
1064 break;
1065
1066 dma_fence_put(shared[i]);
1067 }
1068
1069 for (; i < count; i++)
1070 dma_fence_put(shared[i]);
1071 kfree(shared);
1072 } else {
1073 excl = dma_resv_get_excl_rcu(obj->base.resv);
1074 }
1075
1076 if (excl) {
1077 if (ret == 0)
1078 ret = i915_request_await_dma_fence(to, excl);
1079
1080 dma_fence_put(excl);
1081 }
1082
1083 return ret;
1084}
1085
1086void i915_request_skip(struct i915_request *rq, int error)
1087{
1088 void *vaddr = rq->ring->vaddr;
1089 u32 head;
1090
1091 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1092 dma_fence_set_error(&rq->fence, error);
1093
1094 if (rq->infix == rq->postfix)
1095 return;
1096
1097 /*
1098 * As this request likely depends on state from the lost
1099 * context, clear out all the user operations leaving the
1100 * breadcrumb at the end (so we get the fence notifications).
1101 */
1102 head = rq->infix;
1103 if (rq->postfix < head) {
1104 memset(vaddr + head, 0, rq->ring->size - head);
1105 head = 0;
1106 }
1107 memset(vaddr + head, 0, rq->postfix - head);
1108 rq->infix = rq->postfix;
1109}
1110
1111static struct i915_request *
1112__i915_request_add_to_timeline(struct i915_request *rq)
1113{
1114 struct intel_timeline *timeline = rq->timeline;
1115 struct i915_request *prev;
1116
1117 /*
1118 * Dependency tracking and request ordering along the timeline
1119 * is special cased so that we can eliminate redundant ordering
1120 * operations while building the request (we know that the timeline
1121 * itself is ordered, and here we guarantee it).
1122 *
1123 * As we know we will need to emit tracking along the timeline,
1124 * we embed the hooks into our request struct -- at the cost of
1125 * having to have specialised no-allocation interfaces (which will
1126 * be beneficial elsewhere).
1127 *
1128 * A second benefit to open-coding i915_request_await_request is
1129 * that we can apply a slight variant of the rules specialised
1130 * for timelines that jump between engines (such as virtual engines).
1131 * If we consider the case of virtual engine, we must emit a dma-fence
1132 * to prevent scheduling of the second request until the first is
1133 * complete (to maximise our greedy late load balancing) and this
1134 * precludes optimising to use semaphores serialisation of a single
1135 * timeline across engines.
1136 */
1137 prev = rcu_dereference_protected(timeline->last_request.request,
1138 lockdep_is_held(&timeline->mutex));
1139 if (prev && !i915_request_completed(prev)) {
1140 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1141 i915_sw_fence_await_sw_fence(&rq->submit,
1142 &prev->submit,
1143 &rq->submitq);
1144 else
1145 __i915_sw_fence_await_dma_fence(&rq->submit,
1146 &prev->fence,
1147 &rq->dmaq);
1148 if (rq->engine->schedule)
1149 __i915_sched_node_add_dependency(&rq->sched,
1150 &prev->sched,
1151 &rq->dep,
1152 0);
1153 }
1154
1155 list_add_tail(&rq->link, &timeline->requests);
1156
1157 /*
1158 * Make sure that no request gazumped us - if it was allocated after
1159 * our i915_request_alloc() and called __i915_request_add() before
1160 * us, the timeline will hold its seqno which is later than ours.
1161 */
1162 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1163 __i915_active_request_set(&timeline->last_request, rq);
1164
1165 return prev;
1166}
1167
1168/*
1169 * NB: This function is not allowed to fail. Doing so would mean the the
1170 * request is not being tracked for completion but the work itself is
1171 * going to happen on the hardware. This would be a Bad Thing(tm).
1172 */
1173struct i915_request *__i915_request_commit(struct i915_request *rq)
1174{
1175 struct intel_engine_cs *engine = rq->engine;
1176 struct intel_ring *ring = rq->ring;
1177 u32 *cs;
1178
1179 GEM_TRACE("%s fence %llx:%lld\n",
1180 engine->name, rq->fence.context, rq->fence.seqno);
1181
1182 /*
1183 * To ensure that this call will not fail, space for its emissions
1184 * should already have been reserved in the ring buffer. Let the ring
1185 * know that it is time to use that space up.
1186 */
1187 GEM_BUG_ON(rq->reserved_space > ring->space);
1188 rq->reserved_space = 0;
1189 rq->emitted_jiffies = jiffies;
1190
1191 /*
1192 * Record the position of the start of the breadcrumb so that
1193 * should we detect the updated seqno part-way through the
1194 * GPU processing the request, we never over-estimate the
1195 * position of the ring's HEAD.
1196 */
1197 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1198 GEM_BUG_ON(IS_ERR(cs));
1199 rq->postfix = intel_ring_offset(rq, cs);
1200
1201 return __i915_request_add_to_timeline(rq);
1202}
1203
1204void __i915_request_queue(struct i915_request *rq,
1205 const struct i915_sched_attr *attr)
1206{
1207 /*
1208 * Let the backend know a new request has arrived that may need
1209 * to adjust the existing execution schedule due to a high priority
1210 * request - i.e. we may want to preempt the current request in order
1211 * to run a high priority dependency chain *before* we can execute this
1212 * request.
1213 *
1214 * This is called before the request is ready to run so that we can
1215 * decide whether to preempt the entire chain so that it is ready to
1216 * run at the earliest possible convenience.
1217 */
1218 i915_sw_fence_commit(&rq->semaphore);
1219 if (attr && rq->engine->schedule)
1220 rq->engine->schedule(rq, attr);
1221 i915_sw_fence_commit(&rq->submit);
1222}
1223
1224void i915_request_add(struct i915_request *rq)
1225{
1226 struct i915_sched_attr attr = rq->gem_context->sched;
1227 struct intel_timeline * const tl = rq->timeline;
1228 struct i915_request *prev;
1229
1230 lockdep_assert_held(&tl->mutex);
1231 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1232
1233 trace_i915_request_add(rq);
1234
1235 prev = __i915_request_commit(rq);
1236
1237 /*
1238 * Boost actual workloads past semaphores!
1239 *
1240 * With semaphores we spin on one engine waiting for another,
1241 * simply to reduce the latency of starting our work when
1242 * the signaler completes. However, if there is any other
1243 * work that we could be doing on this engine instead, that
1244 * is better utilisation and will reduce the overall duration
1245 * of the current work. To avoid PI boosting a semaphore
1246 * far in the distance past over useful work, we keep a history
1247 * of any semaphore use along our dependency chain.
1248 */
1249 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1250 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1251
1252 /*
1253 * Boost priorities to new clients (new request flows).
1254 *
1255 * Allow interactive/synchronous clients to jump ahead of
1256 * the bulk clients. (FQ_CODEL)
1257 */
1258 if (list_empty(&rq->sched.signalers_list))
1259 attr.priority |= I915_PRIORITY_WAIT;
1260
1261 local_bh_disable();
1262 __i915_request_queue(rq, &attr);
1263 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1264
1265 /*
1266 * In typical scenarios, we do not expect the previous request on
1267 * the timeline to be still tracked by timeline->last_request if it
1268 * has been completed. If the completed request is still here, that
1269 * implies that request retirement is a long way behind submission,
1270 * suggesting that we haven't been retiring frequently enough from
1271 * the combination of retire-before-alloc, waiters and the background
1272 * retirement worker. So if the last request on this timeline was
1273 * already completed, do a catch up pass, flushing the retirement queue
1274 * up to this client. Since we have now moved the heaviest operations
1275 * during retirement onto secondary workers, such as freeing objects
1276 * or contexts, retiring a bunch of requests is mostly list management
1277 * (and cache misses), and so we should not be overly penalizing this
1278 * client by performing excess work, though we may still performing
1279 * work on behalf of others -- but instead we should benefit from
1280 * improved resource management. (Well, that's the theory at least.)
1281 */
1282 if (prev && i915_request_completed(prev) && prev->timeline == tl)
1283 i915_request_retire_upto(prev);
1284
1285 mutex_unlock(&tl->mutex);
1286}
1287
1288static unsigned long local_clock_us(unsigned int *cpu)
1289{
1290 unsigned long t;
1291
1292 /*
1293 * Cheaply and approximately convert from nanoseconds to microseconds.
1294 * The result and subsequent calculations are also defined in the same
1295 * approximate microseconds units. The principal source of timing
1296 * error here is from the simple truncation.
1297 *
1298 * Note that local_clock() is only defined wrt to the current CPU;
1299 * the comparisons are no longer valid if we switch CPUs. Instead of
1300 * blocking preemption for the entire busywait, we can detect the CPU
1301 * switch and use that as indicator of system load and a reason to
1302 * stop busywaiting, see busywait_stop().
1303 */
1304 *cpu = get_cpu();
1305 t = local_clock() >> 10;
1306 put_cpu();
1307
1308 return t;
1309}
1310
1311static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1312{
1313 unsigned int this_cpu;
1314
1315 if (time_after(local_clock_us(&this_cpu), timeout))
1316 return true;
1317
1318 return this_cpu != cpu;
1319}
1320
1321static bool __i915_spin_request(const struct i915_request * const rq,
1322 int state, unsigned long timeout_us)
1323{
1324 unsigned int cpu;
1325
1326 /*
1327 * Only wait for the request if we know it is likely to complete.
1328 *
1329 * We don't track the timestamps around requests, nor the average
1330 * request length, so we do not have a good indicator that this
1331 * request will complete within the timeout. What we do know is the
1332 * order in which requests are executed by the context and so we can
1333 * tell if the request has been started. If the request is not even
1334 * running yet, it is a fair assumption that it will not complete
1335 * within our relatively short timeout.
1336 */
1337 if (!i915_request_is_running(rq))
1338 return false;
1339
1340 /*
1341 * When waiting for high frequency requests, e.g. during synchronous
1342 * rendering split between the CPU and GPU, the finite amount of time
1343 * required to set up the irq and wait upon it limits the response
1344 * rate. By busywaiting on the request completion for a short while we
1345 * can service the high frequency waits as quick as possible. However,
1346 * if it is a slow request, we want to sleep as quickly as possible.
1347 * The tradeoff between waiting and sleeping is roughly the time it
1348 * takes to sleep on a request, on the order of a microsecond.
1349 */
1350
1351 timeout_us += local_clock_us(&cpu);
1352 do {
1353 if (i915_request_completed(rq))
1354 return true;
1355
1356 if (signal_pending_state(state, current))
1357 break;
1358
1359 if (busywait_stop(timeout_us, cpu))
1360 break;
1361
1362 cpu_relax();
1363 } while (!need_resched());
1364
1365 return false;
1366}
1367
1368struct request_wait {
1369 struct dma_fence_cb cb;
1370 struct task_struct *tsk;
1371};
1372
1373static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1374{
1375 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1376
1377 wake_up_process(wait->tsk);
1378}
1379
1380/**
1381 * i915_request_wait - wait until execution of request has finished
1382 * @rq: the request to wait upon
1383 * @flags: how to wait
1384 * @timeout: how long to wait in jiffies
1385 *
1386 * i915_request_wait() waits for the request to be completed, for a
1387 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1388 * unbounded wait).
1389 *
1390 * Returns the remaining time (in jiffies) if the request completed, which may
1391 * be zero or -ETIME if the request is unfinished after the timeout expires.
1392 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1393 * pending before the request completes.
1394 */
1395long i915_request_wait(struct i915_request *rq,
1396 unsigned int flags,
1397 long timeout)
1398{
1399 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1400 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1401 struct request_wait wait;
1402
1403 might_sleep();
1404 GEM_BUG_ON(timeout < 0);
1405
1406 if (dma_fence_is_signaled(&rq->fence))
1407 return timeout;
1408
1409 if (!timeout)
1410 return -ETIME;
1411
1412 trace_i915_request_wait_begin(rq, flags);
1413
1414 /*
1415 * We must never wait on the GPU while holding a lock as we
1416 * may need to perform a GPU reset. So while we don't need to
1417 * serialise wait/reset with an explicit lock, we do want
1418 * lockdep to detect potential dependency cycles.
1419 */
1420 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1421
1422 /*
1423 * Optimistic spin before touching IRQs.
1424 *
1425 * We may use a rather large value here to offset the penalty of
1426 * switching away from the active task. Frequently, the client will
1427 * wait upon an old swapbuffer to throttle itself to remain within a
1428 * frame of the gpu. If the client is running in lockstep with the gpu,
1429 * then it should not be waiting long at all, and a sleep now will incur
1430 * extra scheduler latency in producing the next frame. To try to
1431 * avoid adding the cost of enabling/disabling the interrupt to the
1432 * short wait, we first spin to see if the request would have completed
1433 * in the time taken to setup the interrupt.
1434 *
1435 * We need upto 5us to enable the irq, and upto 20us to hide the
1436 * scheduler latency of a context switch, ignoring the secondary
1437 * impacts from a context switch such as cache eviction.
1438 *
1439 * The scheme used for low-latency IO is called "hybrid interrupt
1440 * polling". The suggestion there is to sleep until just before you
1441 * expect to be woken by the device interrupt and then poll for its
1442 * completion. That requires having a good predictor for the request
1443 * duration, which we currently lack.
1444 */
1445 if (CONFIG_DRM_I915_SPIN_REQUEST &&
1446 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1447 dma_fence_signal(&rq->fence);
1448 goto out;
1449 }
1450
1451 /*
1452 * This client is about to stall waiting for the GPU. In many cases
1453 * this is undesirable and limits the throughput of the system, as
1454 * many clients cannot continue processing user input/output whilst
1455 * blocked. RPS autotuning may take tens of milliseconds to respond
1456 * to the GPU load and thus incurs additional latency for the client.
1457 * We can circumvent that by promoting the GPU frequency to maximum
1458 * before we sleep. This makes the GPU throttle up much more quickly
1459 * (good for benchmarks and user experience, e.g. window animations),
1460 * but at a cost of spending more power processing the workload
1461 * (bad for battery).
1462 */
1463 if (flags & I915_WAIT_PRIORITY) {
1464 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1465 gen6_rps_boost(rq);
1466 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1467 }
1468
1469 wait.tsk = current;
1470 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1471 goto out;
1472
1473 for (;;) {
1474 set_current_state(state);
1475
1476 if (i915_request_completed(rq)) {
1477 dma_fence_signal(&rq->fence);
1478 break;
1479 }
1480
1481 if (signal_pending_state(state, current)) {
1482 timeout = -ERESTARTSYS;
1483 break;
1484 }
1485
1486 if (!timeout) {
1487 timeout = -ETIME;
1488 break;
1489 }
1490
1491 timeout = io_schedule_timeout(timeout);
1492 }
1493 __set_current_state(TASK_RUNNING);
1494
1495 dma_fence_remove_callback(&rq->fence, &wait.cb);
1496
1497out:
1498 mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
1499 trace_i915_request_wait_end(rq);
1500 return timeout;
1501}
1502
1503bool i915_retire_requests(struct drm_i915_private *i915)
1504{
1505 struct intel_gt_timelines *timelines = &i915->gt.timelines;
1506 struct intel_timeline *tl, *tn;
1507 unsigned long flags;
1508 LIST_HEAD(free);
1509
1510 spin_lock_irqsave(&timelines->lock, flags);
1511 list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
1512 if (!mutex_trylock(&tl->mutex))
1513 continue;
1514
1515 intel_timeline_get(tl);
1516 GEM_BUG_ON(!tl->active_count);
1517 tl->active_count++; /* pin the list element */
1518 spin_unlock_irqrestore(&timelines->lock, flags);
1519
1520 retire_requests(tl);
1521
1522 spin_lock_irqsave(&timelines->lock, flags);
1523
1524 /* Resume iteration after dropping lock */
1525 list_safe_reset_next(tl, tn, link);
1526 if (!--tl->active_count)
1527 list_del(&tl->link);
1528
1529 mutex_unlock(&tl->mutex);
1530
1531 /* Defer the final release to after the spinlock */
1532 if (refcount_dec_and_test(&tl->kref.refcount)) {
1533 GEM_BUG_ON(tl->active_count);
1534 list_add(&tl->link, &free);
1535 }
1536 }
1537 spin_unlock_irqrestore(&timelines->lock, flags);
1538
1539 list_for_each_entry_safe(tl, tn, &free, link)
1540 __intel_timeline_free(&tl->kref);
1541
1542 return !list_empty(&timelines->active_list);
1543}
1544
1545#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1546#include "selftests/mock_request.c"
1547#include "selftests/i915_request.c"
1548#endif
1549
1550static void i915_global_request_shrink(void)
1551{
1552 kmem_cache_shrink(global.slab_dependencies);
1553 kmem_cache_shrink(global.slab_execute_cbs);
1554 kmem_cache_shrink(global.slab_requests);
1555}
1556
1557static void i915_global_request_exit(void)
1558{
1559 kmem_cache_destroy(global.slab_dependencies);
1560 kmem_cache_destroy(global.slab_execute_cbs);
1561 kmem_cache_destroy(global.slab_requests);
1562}
1563
1564static struct i915_global_request global = { {
1565 .shrink = i915_global_request_shrink,
1566 .exit = i915_global_request_exit,
1567} };
1568
1569int __init i915_global_request_init(void)
1570{
1571 global.slab_requests = KMEM_CACHE(i915_request,
1572 SLAB_HWCACHE_ALIGN |
1573 SLAB_RECLAIM_ACCOUNT |
1574 SLAB_TYPESAFE_BY_RCU);
1575 if (!global.slab_requests)
1576 return -ENOMEM;
1577
1578 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1579 SLAB_HWCACHE_ALIGN |
1580 SLAB_RECLAIM_ACCOUNT |
1581 SLAB_TYPESAFE_BY_RCU);
1582 if (!global.slab_execute_cbs)
1583 goto err_requests;
1584
1585 global.slab_dependencies = KMEM_CACHE(i915_dependency,
1586 SLAB_HWCACHE_ALIGN |
1587 SLAB_RECLAIM_ACCOUNT);
1588 if (!global.slab_dependencies)
1589 goto err_execute_cbs;
1590
1591 i915_global_register(&global.base);
1592 return 0;
1593
1594err_execute_cbs:
1595 kmem_cache_destroy(global.slab_execute_cbs);
1596err_requests:
1597 kmem_cache_destroy(global.slab_requests);
1598 return -ENOMEM;
1599}
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <linux/prefetch.h>
26#include <linux/dma-fence-array.h>
27#include <linux/sched.h>
28#include <linux/sched/clock.h>
29#include <linux/sched/signal.h>
30
31#include "i915_drv.h"
32
33static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34{
35 return "i915";
36}
37
38static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39{
40 /*
41 * The timeline struct (as part of the ppgtt underneath a context)
42 * may be freed when the request is no longer in use by the GPU.
43 * We could extend the life of a context to beyond that of all
44 * fences, possibly keeping the hw resource around indefinitely,
45 * or we just give them a false name. Since
46 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
47 * lie seems justifiable.
48 */
49 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
50 return "signaled";
51
52 return to_request(fence)->timeline->common->name;
53}
54
55static bool i915_fence_signaled(struct dma_fence *fence)
56{
57 return i915_request_completed(to_request(fence));
58}
59
60static bool i915_fence_enable_signaling(struct dma_fence *fence)
61{
62 if (i915_fence_signaled(fence))
63 return false;
64
65 intel_engine_enable_signaling(to_request(fence), true);
66 return !i915_fence_signaled(fence);
67}
68
69static signed long i915_fence_wait(struct dma_fence *fence,
70 bool interruptible,
71 signed long timeout)
72{
73 return i915_request_wait(to_request(fence), interruptible, timeout);
74}
75
76static void i915_fence_release(struct dma_fence *fence)
77{
78 struct i915_request *rq = to_request(fence);
79
80 /*
81 * The request is put onto a RCU freelist (i.e. the address
82 * is immediately reused), mark the fences as being freed now.
83 * Otherwise the debugobjects for the fences are only marked as
84 * freed when the slab cache itself is freed, and so we would get
85 * caught trying to reuse dead objects.
86 */
87 i915_sw_fence_fini(&rq->submit);
88
89 kmem_cache_free(rq->i915->requests, rq);
90}
91
92const struct dma_fence_ops i915_fence_ops = {
93 .get_driver_name = i915_fence_get_driver_name,
94 .get_timeline_name = i915_fence_get_timeline_name,
95 .enable_signaling = i915_fence_enable_signaling,
96 .signaled = i915_fence_signaled,
97 .wait = i915_fence_wait,
98 .release = i915_fence_release,
99};
100
101static inline void
102i915_request_remove_from_client(struct i915_request *request)
103{
104 struct drm_i915_file_private *file_priv;
105
106 file_priv = request->file_priv;
107 if (!file_priv)
108 return;
109
110 spin_lock(&file_priv->mm.lock);
111 if (request->file_priv) {
112 list_del(&request->client_link);
113 request->file_priv = NULL;
114 }
115 spin_unlock(&file_priv->mm.lock);
116}
117
118static struct i915_dependency *
119i915_dependency_alloc(struct drm_i915_private *i915)
120{
121 return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
122}
123
124static void
125i915_dependency_free(struct drm_i915_private *i915,
126 struct i915_dependency *dep)
127{
128 kmem_cache_free(i915->dependencies, dep);
129}
130
131static void
132__i915_priotree_add_dependency(struct i915_priotree *pt,
133 struct i915_priotree *signal,
134 struct i915_dependency *dep,
135 unsigned long flags)
136{
137 INIT_LIST_HEAD(&dep->dfs_link);
138 list_add(&dep->wait_link, &signal->waiters_list);
139 list_add(&dep->signal_link, &pt->signalers_list);
140 dep->signaler = signal;
141 dep->flags = flags;
142}
143
144static int
145i915_priotree_add_dependency(struct drm_i915_private *i915,
146 struct i915_priotree *pt,
147 struct i915_priotree *signal)
148{
149 struct i915_dependency *dep;
150
151 dep = i915_dependency_alloc(i915);
152 if (!dep)
153 return -ENOMEM;
154
155 __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
156 return 0;
157}
158
159static void
160i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
161{
162 struct i915_dependency *dep, *next;
163
164 GEM_BUG_ON(!list_empty(&pt->link));
165
166 /*
167 * Everyone we depended upon (the fences we wait to be signaled)
168 * should retire before us and remove themselves from our list.
169 * However, retirement is run independently on each timeline and
170 * so we may be called out-of-order.
171 */
172 list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
173 GEM_BUG_ON(!i915_priotree_signaled(dep->signaler));
174 GEM_BUG_ON(!list_empty(&dep->dfs_link));
175
176 list_del(&dep->wait_link);
177 if (dep->flags & I915_DEPENDENCY_ALLOC)
178 i915_dependency_free(i915, dep);
179 }
180
181 /* Remove ourselves from everyone who depends upon us */
182 list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
183 GEM_BUG_ON(dep->signaler != pt);
184 GEM_BUG_ON(!list_empty(&dep->dfs_link));
185
186 list_del(&dep->signal_link);
187 if (dep->flags & I915_DEPENDENCY_ALLOC)
188 i915_dependency_free(i915, dep);
189 }
190}
191
192static void
193i915_priotree_init(struct i915_priotree *pt)
194{
195 INIT_LIST_HEAD(&pt->signalers_list);
196 INIT_LIST_HEAD(&pt->waiters_list);
197 INIT_LIST_HEAD(&pt->link);
198 pt->priority = I915_PRIORITY_INVALID;
199}
200
201static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
202{
203 struct intel_engine_cs *engine;
204 enum intel_engine_id id;
205 int ret;
206
207 /* Carefully retire all requests without writing to the rings */
208 ret = i915_gem_wait_for_idle(i915,
209 I915_WAIT_INTERRUPTIBLE |
210 I915_WAIT_LOCKED);
211 if (ret)
212 return ret;
213
214 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
215 for_each_engine(engine, i915, id) {
216 struct i915_gem_timeline *timeline;
217 struct intel_timeline *tl = engine->timeline;
218
219 if (!i915_seqno_passed(seqno, tl->seqno)) {
220 /* Flush any waiters before we reuse the seqno */
221 intel_engine_disarm_breadcrumbs(engine);
222 GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals));
223 }
224
225 /* Check we are idle before we fiddle with hw state! */
226 GEM_BUG_ON(!intel_engine_is_idle(engine));
227 GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request));
228
229 /* Finally reset hw state */
230 intel_engine_init_global_seqno(engine, seqno);
231 tl->seqno = seqno;
232
233 list_for_each_entry(timeline, &i915->gt.timelines, link)
234 memset(timeline->engine[id].global_sync, 0,
235 sizeof(timeline->engine[id].global_sync));
236 }
237
238 return 0;
239}
240
241int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
242{
243 struct drm_i915_private *i915 = to_i915(dev);
244
245 lockdep_assert_held(&i915->drm.struct_mutex);
246
247 if (seqno == 0)
248 return -EINVAL;
249
250 /* HWS page needs to be set less than what we will inject to ring */
251 return reset_all_global_seqno(i915, seqno - 1);
252}
253
254static void mark_busy(struct drm_i915_private *i915)
255{
256 if (i915->gt.awake)
257 return;
258
259 GEM_BUG_ON(!i915->gt.active_requests);
260
261 intel_runtime_pm_get_noresume(i915);
262
263 /*
264 * It seems that the DMC likes to transition between the DC states a lot
265 * when there are no connected displays (no active power domains) during
266 * command submission.
267 *
268 * This activity has negative impact on the performance of the chip with
269 * huge latencies observed in the interrupt handler and elsewhere.
270 *
271 * Work around it by grabbing a GT IRQ power domain whilst there is any
272 * GT activity, preventing any DC state transitions.
273 */
274 intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
275
276 i915->gt.awake = true;
277 if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
278 i915->gt.epoch = 1;
279
280 intel_enable_gt_powersave(i915);
281 i915_update_gfx_val(i915);
282 if (INTEL_GEN(i915) >= 6)
283 gen6_rps_busy(i915);
284 i915_pmu_gt_unparked(i915);
285
286 intel_engines_unpark(i915);
287
288 i915_queue_hangcheck(i915);
289
290 queue_delayed_work(i915->wq,
291 &i915->gt.retire_work,
292 round_jiffies_up_relative(HZ));
293}
294
295static int reserve_engine(struct intel_engine_cs *engine)
296{
297 struct drm_i915_private *i915 = engine->i915;
298 u32 active = ++engine->timeline->inflight_seqnos;
299 u32 seqno = engine->timeline->seqno;
300 int ret;
301
302 /* Reservation is fine until we need to wrap around */
303 if (unlikely(add_overflows(seqno, active))) {
304 ret = reset_all_global_seqno(i915, 0);
305 if (ret) {
306 engine->timeline->inflight_seqnos--;
307 return ret;
308 }
309 }
310
311 if (!i915->gt.active_requests++)
312 mark_busy(i915);
313
314 return 0;
315}
316
317static void unreserve_engine(struct intel_engine_cs *engine)
318{
319 struct drm_i915_private *i915 = engine->i915;
320
321 if (!--i915->gt.active_requests) {
322 /* Cancel the mark_busy() from our reserve_engine() */
323 GEM_BUG_ON(!i915->gt.awake);
324 mod_delayed_work(i915->wq,
325 &i915->gt.idle_work,
326 msecs_to_jiffies(100));
327 }
328
329 GEM_BUG_ON(!engine->timeline->inflight_seqnos);
330 engine->timeline->inflight_seqnos--;
331}
332
333void i915_gem_retire_noop(struct i915_gem_active *active,
334 struct i915_request *request)
335{
336 /* Space left intentionally blank */
337}
338
339static void advance_ring(struct i915_request *request)
340{
341 unsigned int tail;
342
343 /*
344 * We know the GPU must have read the request to have
345 * sent us the seqno + interrupt, so use the position
346 * of tail of the request to update the last known position
347 * of the GPU head.
348 *
349 * Note this requires that we are always called in request
350 * completion order.
351 */
352 if (list_is_last(&request->ring_link, &request->ring->request_list)) {
353 /*
354 * We may race here with execlists resubmitting this request
355 * as we retire it. The resubmission will move the ring->tail
356 * forwards (to request->wa_tail). We either read the
357 * current value that was written to hw, or the value that
358 * is just about to be. Either works, if we miss the last two
359 * noops - they are safe to be replayed on a reset.
360 */
361 tail = READ_ONCE(request->ring->tail);
362 } else {
363 tail = request->postfix;
364 }
365 list_del(&request->ring_link);
366
367 request->ring->head = tail;
368}
369
370static void free_capture_list(struct i915_request *request)
371{
372 struct i915_capture_list *capture;
373
374 capture = request->capture_list;
375 while (capture) {
376 struct i915_capture_list *next = capture->next;
377
378 kfree(capture);
379 capture = next;
380 }
381}
382
383static void i915_request_retire(struct i915_request *request)
384{
385 struct intel_engine_cs *engine = request->engine;
386 struct i915_gem_active *active, *next;
387
388 lockdep_assert_held(&request->i915->drm.struct_mutex);
389 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
390 GEM_BUG_ON(!i915_request_completed(request));
391 GEM_BUG_ON(!request->i915->gt.active_requests);
392
393 trace_i915_request_retire(request);
394
395 spin_lock_irq(&engine->timeline->lock);
396 list_del_init(&request->link);
397 spin_unlock_irq(&engine->timeline->lock);
398
399 unreserve_engine(request->engine);
400 advance_ring(request);
401
402 free_capture_list(request);
403
404 /*
405 * Walk through the active list, calling retire on each. This allows
406 * objects to track their GPU activity and mark themselves as idle
407 * when their *last* active request is completed (updating state
408 * tracking lists for eviction, active references for GEM, etc).
409 *
410 * As the ->retire() may free the node, we decouple it first and
411 * pass along the auxiliary information (to avoid dereferencing
412 * the node after the callback).
413 */
414 list_for_each_entry_safe(active, next, &request->active_list, link) {
415 /*
416 * In microbenchmarks or focusing upon time inside the kernel,
417 * we may spend an inordinate amount of time simply handling
418 * the retirement of requests and processing their callbacks.
419 * Of which, this loop itself is particularly hot due to the
420 * cache misses when jumping around the list of i915_gem_active.
421 * So we try to keep this loop as streamlined as possible and
422 * also prefetch the next i915_gem_active to try and hide
423 * the likely cache miss.
424 */
425 prefetchw(next);
426
427 INIT_LIST_HEAD(&active->link);
428 RCU_INIT_POINTER(active->request, NULL);
429
430 active->retire(active, request);
431 }
432
433 i915_request_remove_from_client(request);
434
435 /* Retirement decays the ban score as it is a sign of ctx progress */
436 atomic_dec_if_positive(&request->ctx->ban_score);
437
438 /*
439 * The backing object for the context is done after switching to the
440 * *next* context. Therefore we cannot retire the previous context until
441 * the next context has already started running. However, since we
442 * cannot take the required locks at i915_request_submit() we
443 * defer the unpinning of the active context to now, retirement of
444 * the subsequent request.
445 */
446 if (engine->last_retired_context)
447 engine->context_unpin(engine, engine->last_retired_context);
448 engine->last_retired_context = request->ctx;
449
450 spin_lock_irq(&request->lock);
451 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags))
452 dma_fence_signal_locked(&request->fence);
453 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
454 intel_engine_cancel_signaling(request);
455 if (request->waitboost) {
456 GEM_BUG_ON(!atomic_read(&request->i915->gt_pm.rps.num_waiters));
457 atomic_dec(&request->i915->gt_pm.rps.num_waiters);
458 }
459 spin_unlock_irq(&request->lock);
460
461 i915_priotree_fini(request->i915, &request->priotree);
462 i915_request_put(request);
463}
464
465void i915_request_retire_upto(struct i915_request *rq)
466{
467 struct intel_engine_cs *engine = rq->engine;
468 struct i915_request *tmp;
469
470 lockdep_assert_held(&rq->i915->drm.struct_mutex);
471 GEM_BUG_ON(!i915_request_completed(rq));
472
473 if (list_empty(&rq->link))
474 return;
475
476 do {
477 tmp = list_first_entry(&engine->timeline->requests,
478 typeof(*tmp), link);
479
480 i915_request_retire(tmp);
481 } while (tmp != rq);
482}
483
484static u32 timeline_get_seqno(struct intel_timeline *tl)
485{
486 return ++tl->seqno;
487}
488
489void __i915_request_submit(struct i915_request *request)
490{
491 struct intel_engine_cs *engine = request->engine;
492 struct intel_timeline *timeline;
493 u32 seqno;
494
495 GEM_BUG_ON(!irqs_disabled());
496 lockdep_assert_held(&engine->timeline->lock);
497
498 /* Transfer from per-context onto the global per-engine timeline */
499 timeline = engine->timeline;
500 GEM_BUG_ON(timeline == request->timeline);
501 GEM_BUG_ON(request->global_seqno);
502
503 seqno = timeline_get_seqno(timeline);
504 GEM_BUG_ON(!seqno);
505 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
506
507 /* We may be recursing from the signal callback of another i915 fence */
508 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
509 request->global_seqno = seqno;
510 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
511 intel_engine_enable_signaling(request, false);
512 spin_unlock(&request->lock);
513
514 engine->emit_breadcrumb(request,
515 request->ring->vaddr + request->postfix);
516
517 spin_lock(&request->timeline->lock);
518 list_move_tail(&request->link, &timeline->requests);
519 spin_unlock(&request->timeline->lock);
520
521 trace_i915_request_execute(request);
522
523 wake_up_all(&request->execute);
524}
525
526void i915_request_submit(struct i915_request *request)
527{
528 struct intel_engine_cs *engine = request->engine;
529 unsigned long flags;
530
531 /* Will be called from irq-context when using foreign fences. */
532 spin_lock_irqsave(&engine->timeline->lock, flags);
533
534 __i915_request_submit(request);
535
536 spin_unlock_irqrestore(&engine->timeline->lock, flags);
537}
538
539void __i915_request_unsubmit(struct i915_request *request)
540{
541 struct intel_engine_cs *engine = request->engine;
542 struct intel_timeline *timeline;
543
544 GEM_BUG_ON(!irqs_disabled());
545 lockdep_assert_held(&engine->timeline->lock);
546
547 /*
548 * Only unwind in reverse order, required so that the per-context list
549 * is kept in seqno/ring order.
550 */
551 GEM_BUG_ON(!request->global_seqno);
552 GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
553 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine),
554 request->global_seqno));
555 engine->timeline->seqno--;
556
557 /* We may be recursing from the signal callback of another i915 fence */
558 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
559 request->global_seqno = 0;
560 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
561 intel_engine_cancel_signaling(request);
562 spin_unlock(&request->lock);
563
564 /* Transfer back from the global per-engine timeline to per-context */
565 timeline = request->timeline;
566 GEM_BUG_ON(timeline == engine->timeline);
567
568 spin_lock(&timeline->lock);
569 list_move(&request->link, &timeline->requests);
570 spin_unlock(&timeline->lock);
571
572 /*
573 * We don't need to wake_up any waiters on request->execute, they
574 * will get woken by any other event or us re-adding this request
575 * to the engine timeline (__i915_request_submit()). The waiters
576 * should be quite adapt at finding that the request now has a new
577 * global_seqno to the one they went to sleep on.
578 */
579}
580
581void i915_request_unsubmit(struct i915_request *request)
582{
583 struct intel_engine_cs *engine = request->engine;
584 unsigned long flags;
585
586 /* Will be called from irq-context when using foreign fences. */
587 spin_lock_irqsave(&engine->timeline->lock, flags);
588
589 __i915_request_unsubmit(request);
590
591 spin_unlock_irqrestore(&engine->timeline->lock, flags);
592}
593
594static int __i915_sw_fence_call
595submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
596{
597 struct i915_request *request =
598 container_of(fence, typeof(*request), submit);
599
600 switch (state) {
601 case FENCE_COMPLETE:
602 trace_i915_request_submit(request);
603 /*
604 * We need to serialize use of the submit_request() callback
605 * with its hotplugging performed during an emergency
606 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
607 * critical section in order to force i915_gem_set_wedged() to
608 * wait until the submit_request() is completed before
609 * proceeding.
610 */
611 rcu_read_lock();
612 request->engine->submit_request(request);
613 rcu_read_unlock();
614 break;
615
616 case FENCE_FREE:
617 i915_request_put(request);
618 break;
619 }
620
621 return NOTIFY_DONE;
622}
623
624/**
625 * i915_request_alloc - allocate a request structure
626 *
627 * @engine: engine that we wish to issue the request on.
628 * @ctx: context that the request will be associated with.
629 *
630 * Returns a pointer to the allocated request if successful,
631 * or an error code if not.
632 */
633struct i915_request *
634i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
635{
636 struct drm_i915_private *i915 = engine->i915;
637 struct i915_request *rq;
638 struct intel_ring *ring;
639 int ret;
640
641 lockdep_assert_held(&i915->drm.struct_mutex);
642
643 /*
644 * Preempt contexts are reserved for exclusive use to inject a
645 * preemption context switch. They are never to be used for any trivial
646 * request!
647 */
648 GEM_BUG_ON(ctx == i915->preempt_context);
649
650 /*
651 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
652 * EIO if the GPU is already wedged.
653 */
654 if (i915_terminally_wedged(&i915->gpu_error))
655 return ERR_PTR(-EIO);
656
657 /*
658 * Pinning the contexts may generate requests in order to acquire
659 * GGTT space, so do this first before we reserve a seqno for
660 * ourselves.
661 */
662 ring = engine->context_pin(engine, ctx);
663 if (IS_ERR(ring))
664 return ERR_CAST(ring);
665 GEM_BUG_ON(!ring);
666
667 ret = reserve_engine(engine);
668 if (ret)
669 goto err_unpin;
670
671 ret = intel_ring_wait_for_space(ring, MIN_SPACE_FOR_ADD_REQUEST);
672 if (ret)
673 goto err_unreserve;
674
675 /* Move the oldest request to the slab-cache (if not in use!) */
676 rq = list_first_entry_or_null(&engine->timeline->requests,
677 typeof(*rq), link);
678 if (rq && i915_request_completed(rq))
679 i915_request_retire(rq);
680
681 /*
682 * Beware: Dragons be flying overhead.
683 *
684 * We use RCU to look up requests in flight. The lookups may
685 * race with the request being allocated from the slab freelist.
686 * That is the request we are writing to here, may be in the process
687 * of being read by __i915_gem_active_get_rcu(). As such,
688 * we have to be very careful when overwriting the contents. During
689 * the RCU lookup, we change chase the request->engine pointer,
690 * read the request->global_seqno and increment the reference count.
691 *
692 * The reference count is incremented atomically. If it is zero,
693 * the lookup knows the request is unallocated and complete. Otherwise,
694 * it is either still in use, or has been reallocated and reset
695 * with dma_fence_init(). This increment is safe for release as we
696 * check that the request we have a reference to and matches the active
697 * request.
698 *
699 * Before we increment the refcount, we chase the request->engine
700 * pointer. We must not call kmem_cache_zalloc() or else we set
701 * that pointer to NULL and cause a crash during the lookup. If
702 * we see the request is completed (based on the value of the
703 * old engine and seqno), the lookup is complete and reports NULL.
704 * If we decide the request is not completed (new engine or seqno),
705 * then we grab a reference and double check that it is still the
706 * active request - which it won't be and restart the lookup.
707 *
708 * Do not use kmem_cache_zalloc() here!
709 */
710 rq = kmem_cache_alloc(i915->requests,
711 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
712 if (unlikely(!rq)) {
713 /* Ratelimit ourselves to prevent oom from malicious clients */
714 ret = i915_gem_wait_for_idle(i915,
715 I915_WAIT_LOCKED |
716 I915_WAIT_INTERRUPTIBLE);
717 if (ret)
718 goto err_unreserve;
719
720 /*
721 * We've forced the client to stall and catch up with whatever
722 * backlog there might have been. As we are assuming that we
723 * caused the mempressure, now is an opportune time to
724 * recover as much memory from the request pool as is possible.
725 * Having already penalized the client to stall, we spend
726 * a little extra time to re-optimise page allocation.
727 */
728 kmem_cache_shrink(i915->requests);
729 rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */
730
731 rq = kmem_cache_alloc(i915->requests, GFP_KERNEL);
732 if (!rq) {
733 ret = -ENOMEM;
734 goto err_unreserve;
735 }
736 }
737
738 rq->timeline = i915_gem_context_lookup_timeline(ctx, engine);
739 GEM_BUG_ON(rq->timeline == engine->timeline);
740
741 spin_lock_init(&rq->lock);
742 dma_fence_init(&rq->fence,
743 &i915_fence_ops,
744 &rq->lock,
745 rq->timeline->fence_context,
746 timeline_get_seqno(rq->timeline));
747
748 /* We bump the ref for the fence chain */
749 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
750 init_waitqueue_head(&rq->execute);
751
752 i915_priotree_init(&rq->priotree);
753
754 INIT_LIST_HEAD(&rq->active_list);
755 rq->i915 = i915;
756 rq->engine = engine;
757 rq->ctx = ctx;
758 rq->ring = ring;
759
760 /* No zalloc, must clear what we need by hand */
761 rq->global_seqno = 0;
762 rq->signaling.wait.seqno = 0;
763 rq->file_priv = NULL;
764 rq->batch = NULL;
765 rq->capture_list = NULL;
766 rq->waitboost = false;
767
768 /*
769 * Reserve space in the ring buffer for all the commands required to
770 * eventually emit this request. This is to guarantee that the
771 * i915_request_add() call can't fail. Note that the reserve may need
772 * to be redone if the request is not actually submitted straight
773 * away, e.g. because a GPU scheduler has deferred it.
774 */
775 rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
776 GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz);
777
778 /*
779 * Record the position of the start of the request so that
780 * should we detect the updated seqno part-way through the
781 * GPU processing the request, we never over-estimate the
782 * position of the head.
783 */
784 rq->head = rq->ring->emit;
785
786 /* Unconditionally invalidate GPU caches and TLBs. */
787 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
788 if (ret)
789 goto err_unwind;
790
791 ret = engine->request_alloc(rq);
792 if (ret)
793 goto err_unwind;
794
795 /* Check that we didn't interrupt ourselves with a new request */
796 GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
797 return rq;
798
799err_unwind:
800 rq->ring->emit = rq->head;
801
802 /* Make sure we didn't add ourselves to external state before freeing */
803 GEM_BUG_ON(!list_empty(&rq->active_list));
804 GEM_BUG_ON(!list_empty(&rq->priotree.signalers_list));
805 GEM_BUG_ON(!list_empty(&rq->priotree.waiters_list));
806
807 kmem_cache_free(i915->requests, rq);
808err_unreserve:
809 unreserve_engine(engine);
810err_unpin:
811 engine->context_unpin(engine, ctx);
812 return ERR_PTR(ret);
813}
814
815static int
816i915_request_await_request(struct i915_request *to, struct i915_request *from)
817{
818 int ret;
819
820 GEM_BUG_ON(to == from);
821 GEM_BUG_ON(to->timeline == from->timeline);
822
823 if (i915_request_completed(from))
824 return 0;
825
826 if (to->engine->schedule) {
827 ret = i915_priotree_add_dependency(to->i915,
828 &to->priotree,
829 &from->priotree);
830 if (ret < 0)
831 return ret;
832 }
833
834 if (to->engine == from->engine) {
835 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
836 &from->submit,
837 I915_FENCE_GFP);
838 return ret < 0 ? ret : 0;
839 }
840
841 if (to->engine->semaphore.sync_to) {
842 u32 seqno;
843
844 GEM_BUG_ON(!from->engine->semaphore.signal);
845
846 seqno = i915_request_global_seqno(from);
847 if (!seqno)
848 goto await_dma_fence;
849
850 if (seqno <= to->timeline->global_sync[from->engine->id])
851 return 0;
852
853 trace_i915_gem_ring_sync_to(to, from);
854 ret = to->engine->semaphore.sync_to(to, from);
855 if (ret)
856 return ret;
857
858 to->timeline->global_sync[from->engine->id] = seqno;
859 return 0;
860 }
861
862await_dma_fence:
863 ret = i915_sw_fence_await_dma_fence(&to->submit,
864 &from->fence, 0,
865 I915_FENCE_GFP);
866 return ret < 0 ? ret : 0;
867}
868
869int
870i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
871{
872 struct dma_fence **child = &fence;
873 unsigned int nchild = 1;
874 int ret;
875
876 /*
877 * Note that if the fence-array was created in signal-on-any mode,
878 * we should *not* decompose it into its individual fences. However,
879 * we don't currently store which mode the fence-array is operating
880 * in. Fortunately, the only user of signal-on-any is private to
881 * amdgpu and we should not see any incoming fence-array from
882 * sync-file being in signal-on-any mode.
883 */
884 if (dma_fence_is_array(fence)) {
885 struct dma_fence_array *array = to_dma_fence_array(fence);
886
887 child = array->fences;
888 nchild = array->num_fences;
889 GEM_BUG_ON(!nchild);
890 }
891
892 do {
893 fence = *child++;
894 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
895 continue;
896
897 /*
898 * Requests on the same timeline are explicitly ordered, along
899 * with their dependencies, by i915_request_add() which ensures
900 * that requests are submitted in-order through each ring.
901 */
902 if (fence->context == rq->fence.context)
903 continue;
904
905 /* Squash repeated waits to the same timelines */
906 if (fence->context != rq->i915->mm.unordered_timeline &&
907 intel_timeline_sync_is_later(rq->timeline, fence))
908 continue;
909
910 if (dma_fence_is_i915(fence))
911 ret = i915_request_await_request(rq, to_request(fence));
912 else
913 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
914 I915_FENCE_TIMEOUT,
915 I915_FENCE_GFP);
916 if (ret < 0)
917 return ret;
918
919 /* Record the latest fence used against each timeline */
920 if (fence->context != rq->i915->mm.unordered_timeline)
921 intel_timeline_sync_set(rq->timeline, fence);
922 } while (--nchild);
923
924 return 0;
925}
926
927/**
928 * i915_request_await_object - set this request to (async) wait upon a bo
929 * @to: request we are wishing to use
930 * @obj: object which may be in use on another ring.
931 * @write: whether the wait is on behalf of a writer
932 *
933 * This code is meant to abstract object synchronization with the GPU.
934 * Conceptually we serialise writes between engines inside the GPU.
935 * We only allow one engine to write into a buffer at any time, but
936 * multiple readers. To ensure each has a coherent view of memory, we must:
937 *
938 * - If there is an outstanding write request to the object, the new
939 * request must wait for it to complete (either CPU or in hw, requests
940 * on the same ring will be naturally ordered).
941 *
942 * - If we are a write request (pending_write_domain is set), the new
943 * request must wait for outstanding read requests to complete.
944 *
945 * Returns 0 if successful, else propagates up the lower layer error.
946 */
947int
948i915_request_await_object(struct i915_request *to,
949 struct drm_i915_gem_object *obj,
950 bool write)
951{
952 struct dma_fence *excl;
953 int ret = 0;
954
955 if (write) {
956 struct dma_fence **shared;
957 unsigned int count, i;
958
959 ret = reservation_object_get_fences_rcu(obj->resv,
960 &excl, &count, &shared);
961 if (ret)
962 return ret;
963
964 for (i = 0; i < count; i++) {
965 ret = i915_request_await_dma_fence(to, shared[i]);
966 if (ret)
967 break;
968
969 dma_fence_put(shared[i]);
970 }
971
972 for (; i < count; i++)
973 dma_fence_put(shared[i]);
974 kfree(shared);
975 } else {
976 excl = reservation_object_get_excl_rcu(obj->resv);
977 }
978
979 if (excl) {
980 if (ret == 0)
981 ret = i915_request_await_dma_fence(to, excl);
982
983 dma_fence_put(excl);
984 }
985
986 return ret;
987}
988
989/*
990 * NB: This function is not allowed to fail. Doing so would mean the the
991 * request is not being tracked for completion but the work itself is
992 * going to happen on the hardware. This would be a Bad Thing(tm).
993 */
994void __i915_request_add(struct i915_request *request, bool flush_caches)
995{
996 struct intel_engine_cs *engine = request->engine;
997 struct intel_ring *ring = request->ring;
998 struct intel_timeline *timeline = request->timeline;
999 struct i915_request *prev;
1000 u32 *cs;
1001 int err;
1002
1003 lockdep_assert_held(&request->i915->drm.struct_mutex);
1004 trace_i915_request_add(request);
1005
1006 /*
1007 * Make sure that no request gazumped us - if it was allocated after
1008 * our i915_request_alloc() and called __i915_request_add() before
1009 * us, the timeline will hold its seqno which is later than ours.
1010 */
1011 GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1012
1013 /*
1014 * To ensure that this call will not fail, space for its emissions
1015 * should already have been reserved in the ring buffer. Let the ring
1016 * know that it is time to use that space up.
1017 */
1018 request->reserved_space = 0;
1019
1020 /*
1021 * Emit any outstanding flushes - execbuf can fail to emit the flush
1022 * after having emitted the batchbuffer command. Hence we need to fix
1023 * things up similar to emitting the lazy request. The difference here
1024 * is that the flush _must_ happen before the next request, no matter
1025 * what.
1026 */
1027 if (flush_caches) {
1028 err = engine->emit_flush(request, EMIT_FLUSH);
1029
1030 /* Not allowed to fail! */
1031 WARN(err, "engine->emit_flush() failed: %d!\n", err);
1032 }
1033
1034 /*
1035 * Record the position of the start of the breadcrumb so that
1036 * should we detect the updated seqno part-way through the
1037 * GPU processing the request, we never over-estimate the
1038 * position of the ring's HEAD.
1039 */
1040 cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
1041 GEM_BUG_ON(IS_ERR(cs));
1042 request->postfix = intel_ring_offset(request, cs);
1043
1044 /*
1045 * Seal the request and mark it as pending execution. Note that
1046 * we may inspect this state, without holding any locks, during
1047 * hangcheck. Hence we apply the barrier to ensure that we do not
1048 * see a more recent value in the hws than we are tracking.
1049 */
1050
1051 prev = i915_gem_active_raw(&timeline->last_request,
1052 &request->i915->drm.struct_mutex);
1053 if (prev && !i915_request_completed(prev)) {
1054 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
1055 &request->submitq);
1056 if (engine->schedule)
1057 __i915_priotree_add_dependency(&request->priotree,
1058 &prev->priotree,
1059 &request->dep,
1060 0);
1061 }
1062
1063 spin_lock_irq(&timeline->lock);
1064 list_add_tail(&request->link, &timeline->requests);
1065 spin_unlock_irq(&timeline->lock);
1066
1067 GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1068 i915_gem_active_set(&timeline->last_request, request);
1069
1070 list_add_tail(&request->ring_link, &ring->request_list);
1071 request->emitted_jiffies = jiffies;
1072
1073 /*
1074 * Let the backend know a new request has arrived that may need
1075 * to adjust the existing execution schedule due to a high priority
1076 * request - i.e. we may want to preempt the current request in order
1077 * to run a high priority dependency chain *before* we can execute this
1078 * request.
1079 *
1080 * This is called before the request is ready to run so that we can
1081 * decide whether to preempt the entire chain so that it is ready to
1082 * run at the earliest possible convenience.
1083 */
1084 rcu_read_lock();
1085 if (engine->schedule)
1086 engine->schedule(request, request->ctx->priority);
1087 rcu_read_unlock();
1088
1089 local_bh_disable();
1090 i915_sw_fence_commit(&request->submit);
1091 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1092
1093 /*
1094 * In typical scenarios, we do not expect the previous request on
1095 * the timeline to be still tracked by timeline->last_request if it
1096 * has been completed. If the completed request is still here, that
1097 * implies that request retirement is a long way behind submission,
1098 * suggesting that we haven't been retiring frequently enough from
1099 * the combination of retire-before-alloc, waiters and the background
1100 * retirement worker. So if the last request on this timeline was
1101 * already completed, do a catch up pass, flushing the retirement queue
1102 * up to this client. Since we have now moved the heaviest operations
1103 * during retirement onto secondary workers, such as freeing objects
1104 * or contexts, retiring a bunch of requests is mostly list management
1105 * (and cache misses), and so we should not be overly penalizing this
1106 * client by performing excess work, though we may still performing
1107 * work on behalf of others -- but instead we should benefit from
1108 * improved resource management. (Well, that's the theory at least.)
1109 */
1110 if (prev && i915_request_completed(prev))
1111 i915_request_retire_upto(prev);
1112}
1113
1114static unsigned long local_clock_us(unsigned int *cpu)
1115{
1116 unsigned long t;
1117
1118 /*
1119 * Cheaply and approximately convert from nanoseconds to microseconds.
1120 * The result and subsequent calculations are also defined in the same
1121 * approximate microseconds units. The principal source of timing
1122 * error here is from the simple truncation.
1123 *
1124 * Note that local_clock() is only defined wrt to the current CPU;
1125 * the comparisons are no longer valid if we switch CPUs. Instead of
1126 * blocking preemption for the entire busywait, we can detect the CPU
1127 * switch and use that as indicator of system load and a reason to
1128 * stop busywaiting, see busywait_stop().
1129 */
1130 *cpu = get_cpu();
1131 t = local_clock() >> 10;
1132 put_cpu();
1133
1134 return t;
1135}
1136
1137static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1138{
1139 unsigned int this_cpu;
1140
1141 if (time_after(local_clock_us(&this_cpu), timeout))
1142 return true;
1143
1144 return this_cpu != cpu;
1145}
1146
1147static bool __i915_spin_request(const struct i915_request *rq,
1148 u32 seqno, int state, unsigned long timeout_us)
1149{
1150 struct intel_engine_cs *engine = rq->engine;
1151 unsigned int irq, cpu;
1152
1153 GEM_BUG_ON(!seqno);
1154
1155 /*
1156 * Only wait for the request if we know it is likely to complete.
1157 *
1158 * We don't track the timestamps around requests, nor the average
1159 * request length, so we do not have a good indicator that this
1160 * request will complete within the timeout. What we do know is the
1161 * order in which requests are executed by the engine and so we can
1162 * tell if the request has started. If the request hasn't started yet,
1163 * it is a fair assumption that it will not complete within our
1164 * relatively short timeout.
1165 */
1166 if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
1167 return false;
1168
1169 /*
1170 * When waiting for high frequency requests, e.g. during synchronous
1171 * rendering split between the CPU and GPU, the finite amount of time
1172 * required to set up the irq and wait upon it limits the response
1173 * rate. By busywaiting on the request completion for a short while we
1174 * can service the high frequency waits as quick as possible. However,
1175 * if it is a slow request, we want to sleep as quickly as possible.
1176 * The tradeoff between waiting and sleeping is roughly the time it
1177 * takes to sleep on a request, on the order of a microsecond.
1178 */
1179
1180 irq = atomic_read(&engine->irq_count);
1181 timeout_us += local_clock_us(&cpu);
1182 do {
1183 if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
1184 return seqno == i915_request_global_seqno(rq);
1185
1186 /*
1187 * Seqno are meant to be ordered *before* the interrupt. If
1188 * we see an interrupt without a corresponding seqno advance,
1189 * assume we won't see one in the near future but require
1190 * the engine->seqno_barrier() to fixup coherency.
1191 */
1192 if (atomic_read(&engine->irq_count) != irq)
1193 break;
1194
1195 if (signal_pending_state(state, current))
1196 break;
1197
1198 if (busywait_stop(timeout_us, cpu))
1199 break;
1200
1201 cpu_relax();
1202 } while (!need_resched());
1203
1204 return false;
1205}
1206
1207static bool __i915_wait_request_check_and_reset(struct i915_request *request)
1208{
1209 if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1210 return false;
1211
1212 __set_current_state(TASK_RUNNING);
1213 i915_reset(request->i915, 0);
1214 return true;
1215}
1216
1217/**
1218 * i915_request_wait - wait until execution of request has finished
1219 * @rq: the request to wait upon
1220 * @flags: how to wait
1221 * @timeout: how long to wait in jiffies
1222 *
1223 * i915_request_wait() waits for the request to be completed, for a
1224 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1225 * unbounded wait).
1226 *
1227 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1228 * in via the flags, and vice versa if the struct_mutex is not held, the caller
1229 * must not specify that the wait is locked.
1230 *
1231 * Returns the remaining time (in jiffies) if the request completed, which may
1232 * be zero or -ETIME if the request is unfinished after the timeout expires.
1233 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1234 * pending before the request completes.
1235 */
1236long i915_request_wait(struct i915_request *rq,
1237 unsigned int flags,
1238 long timeout)
1239{
1240 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1241 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1242 wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue;
1243 DEFINE_WAIT_FUNC(reset, default_wake_function);
1244 DEFINE_WAIT_FUNC(exec, default_wake_function);
1245 struct intel_wait wait;
1246
1247 might_sleep();
1248#if IS_ENABLED(CONFIG_LOCKDEP)
1249 GEM_BUG_ON(debug_locks &&
1250 !!lockdep_is_held(&rq->i915->drm.struct_mutex) !=
1251 !!(flags & I915_WAIT_LOCKED));
1252#endif
1253 GEM_BUG_ON(timeout < 0);
1254
1255 if (i915_request_completed(rq))
1256 return timeout;
1257
1258 if (!timeout)
1259 return -ETIME;
1260
1261 trace_i915_request_wait_begin(rq, flags);
1262
1263 add_wait_queue(&rq->execute, &exec);
1264 if (flags & I915_WAIT_LOCKED)
1265 add_wait_queue(errq, &reset);
1266
1267 intel_wait_init(&wait, rq);
1268
1269restart:
1270 do {
1271 set_current_state(state);
1272 if (intel_wait_update_request(&wait, rq))
1273 break;
1274
1275 if (flags & I915_WAIT_LOCKED &&
1276 __i915_wait_request_check_and_reset(rq))
1277 continue;
1278
1279 if (signal_pending_state(state, current)) {
1280 timeout = -ERESTARTSYS;
1281 goto complete;
1282 }
1283
1284 if (!timeout) {
1285 timeout = -ETIME;
1286 goto complete;
1287 }
1288
1289 timeout = io_schedule_timeout(timeout);
1290 } while (1);
1291
1292 GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1293 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
1294
1295 /* Optimistic short spin before touching IRQs */
1296 if (__i915_spin_request(rq, wait.seqno, state, 5))
1297 goto complete;
1298
1299 set_current_state(state);
1300 if (intel_engine_add_wait(rq->engine, &wait))
1301 /*
1302 * In order to check that we haven't missed the interrupt
1303 * as we enabled it, we need to kick ourselves to do a
1304 * coherent check on the seqno before we sleep.
1305 */
1306 goto wakeup;
1307
1308 if (flags & I915_WAIT_LOCKED)
1309 __i915_wait_request_check_and_reset(rq);
1310
1311 for (;;) {
1312 if (signal_pending_state(state, current)) {
1313 timeout = -ERESTARTSYS;
1314 break;
1315 }
1316
1317 if (!timeout) {
1318 timeout = -ETIME;
1319 break;
1320 }
1321
1322 timeout = io_schedule_timeout(timeout);
1323
1324 if (intel_wait_complete(&wait) &&
1325 intel_wait_check_request(&wait, rq))
1326 break;
1327
1328 set_current_state(state);
1329
1330wakeup:
1331 /*
1332 * Carefully check if the request is complete, giving time
1333 * for the seqno to be visible following the interrupt.
1334 * We also have to check in case we are kicked by the GPU
1335 * reset in order to drop the struct_mutex.
1336 */
1337 if (__i915_request_irq_complete(rq))
1338 break;
1339
1340 /*
1341 * If the GPU is hung, and we hold the lock, reset the GPU
1342 * and then check for completion. On a full reset, the engine's
1343 * HW seqno will be advanced passed us and we are complete.
1344 * If we do a partial reset, we have to wait for the GPU to
1345 * resume and update the breadcrumb.
1346 *
1347 * If we don't hold the mutex, we can just wait for the worker
1348 * to come along and update the breadcrumb (either directly
1349 * itself, or indirectly by recovering the GPU).
1350 */
1351 if (flags & I915_WAIT_LOCKED &&
1352 __i915_wait_request_check_and_reset(rq))
1353 continue;
1354
1355 /* Only spin if we know the GPU is processing this request */
1356 if (__i915_spin_request(rq, wait.seqno, state, 2))
1357 break;
1358
1359 if (!intel_wait_check_request(&wait, rq)) {
1360 intel_engine_remove_wait(rq->engine, &wait);
1361 goto restart;
1362 }
1363 }
1364
1365 intel_engine_remove_wait(rq->engine, &wait);
1366complete:
1367 __set_current_state(TASK_RUNNING);
1368 if (flags & I915_WAIT_LOCKED)
1369 remove_wait_queue(errq, &reset);
1370 remove_wait_queue(&rq->execute, &exec);
1371 trace_i915_request_wait_end(rq);
1372
1373 return timeout;
1374}
1375
1376static void engine_retire_requests(struct intel_engine_cs *engine)
1377{
1378 struct i915_request *request, *next;
1379 u32 seqno = intel_engine_get_seqno(engine);
1380 LIST_HEAD(retire);
1381
1382 spin_lock_irq(&engine->timeline->lock);
1383 list_for_each_entry_safe(request, next,
1384 &engine->timeline->requests, link) {
1385 if (!i915_seqno_passed(seqno, request->global_seqno))
1386 break;
1387
1388 list_move_tail(&request->link, &retire);
1389 }
1390 spin_unlock_irq(&engine->timeline->lock);
1391
1392 list_for_each_entry_safe(request, next, &retire, link)
1393 i915_request_retire(request);
1394}
1395
1396void i915_retire_requests(struct drm_i915_private *i915)
1397{
1398 struct intel_engine_cs *engine;
1399 enum intel_engine_id id;
1400
1401 lockdep_assert_held(&i915->drm.struct_mutex);
1402
1403 if (!i915->gt.active_requests)
1404 return;
1405
1406 for_each_engine(engine, i915, id)
1407 engine_retire_requests(engine);
1408}
1409
1410#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1411#include "selftests/mock_request.c"
1412#include "selftests/i915_request.c"
1413#endif