Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Kernel Probes (KProbes)
  4 *  arch/mips/kernel/kprobes.c
  5 *
  6 *  Copyright 2006 Sony Corp.
  7 *  Copyright 2010 Cavium Networks
  8 *
  9 *  Some portions copied from the powerpc version.
 10 *
 11 *   Copyright (C) IBM Corporation, 2002, 2004
 
 
 
 
 
 
 
 
 
 
 
 
 
 12 */
 13
 14#include <linux/kprobes.h>
 15#include <linux/preempt.h>
 16#include <linux/uaccess.h>
 17#include <linux/kdebug.h>
 18#include <linux/slab.h>
 19
 20#include <asm/ptrace.h>
 21#include <asm/branch.h>
 22#include <asm/break.h>
 23
 24#include "probes-common.h"
 25
 26static const union mips_instruction breakpoint_insn = {
 27	.b_format = {
 28		.opcode = spec_op,
 29		.code = BRK_KPROBE_BP,
 30		.func = break_op
 31	}
 32};
 33
 34static const union mips_instruction breakpoint2_insn = {
 35	.b_format = {
 36		.opcode = spec_op,
 37		.code = BRK_KPROBE_SSTEPBP,
 38		.func = break_op
 39	}
 40};
 41
 42DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 43DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 44
 45static int __kprobes insn_has_delayslot(union mips_instruction insn)
 46{
 47	return __insn_has_delay_slot(insn);
 48}
 49
 50/*
 51 * insn_has_ll_or_sc function checks whether instruction is ll or sc
 52 * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
 53 * so we need to prevent it and refuse kprobes insertion for such
 54 * instructions; cannot do much about breakpoint in the middle of
 55 * ll/sc pair; it is upto user to avoid those places
 56 */
 57static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
 58{
 59	int ret = 0;
 60
 61	switch (insn.i_format.opcode) {
 62	case ll_op:
 63	case lld_op:
 64	case sc_op:
 65	case scd_op:
 66		ret = 1;
 67		break;
 68	default:
 69		break;
 70	}
 71	return ret;
 72}
 73
 74int __kprobes arch_prepare_kprobe(struct kprobe *p)
 75{
 76	union mips_instruction insn;
 77	union mips_instruction prev_insn;
 78	int ret = 0;
 79
 80	insn = p->addr[0];
 81
 82	if (insn_has_ll_or_sc(insn)) {
 83		pr_notice("Kprobes for ll and sc instructions are not"
 84			  "supported\n");
 85		ret = -EINVAL;
 86		goto out;
 87	}
 88
 89	if ((probe_kernel_read(&prev_insn, p->addr - 1,
 90				sizeof(mips_instruction)) == 0) &&
 91				insn_has_delayslot(prev_insn)) {
 92		pr_notice("Kprobes for branch delayslot are not supported\n");
 93		ret = -EINVAL;
 94		goto out;
 95	}
 96
 97	if (__insn_is_compact_branch(insn)) {
 98		pr_notice("Kprobes for compact branches are not supported\n");
 99		ret = -EINVAL;
100		goto out;
101	}
102
103	/* insn: must be on special executable page on mips. */
104	p->ainsn.insn = get_insn_slot();
105	if (!p->ainsn.insn) {
106		ret = -ENOMEM;
107		goto out;
108	}
109
110	/*
111	 * In the kprobe->ainsn.insn[] array we store the original
112	 * instruction at index zero and a break trap instruction at
113	 * index one.
114	 *
115	 * On MIPS arch if the instruction at probed address is a
116	 * branch instruction, we need to execute the instruction at
117	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
118	 * doesn't have single stepping support, the BD instruction can
119	 * not be executed in-line and it would be executed on SSOL slot
120	 * using a normal breakpoint instruction in the next slot.
121	 * So, read the instruction and save it for later execution.
122	 */
123	if (insn_has_delayslot(insn))
124		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
125	else
126		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
127
128	p->ainsn.insn[1] = breakpoint2_insn;
129	p->opcode = *p->addr;
130
131out:
132	return ret;
133}
134
135void __kprobes arch_arm_kprobe(struct kprobe *p)
136{
137	*p->addr = breakpoint_insn;
138	flush_insn_slot(p);
139}
140
141void __kprobes arch_disarm_kprobe(struct kprobe *p)
142{
143	*p->addr = p->opcode;
144	flush_insn_slot(p);
145}
146
147void __kprobes arch_remove_kprobe(struct kprobe *p)
148{
149	if (p->ainsn.insn) {
150		free_insn_slot(p->ainsn.insn, 0);
151		p->ainsn.insn = NULL;
152	}
153}
154
155static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
156{
157	kcb->prev_kprobe.kp = kprobe_running();
158	kcb->prev_kprobe.status = kcb->kprobe_status;
159	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
160	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
161	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
162}
163
164static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
165{
166	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
167	kcb->kprobe_status = kcb->prev_kprobe.status;
168	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
169	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
170	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
171}
172
173static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
174			       struct kprobe_ctlblk *kcb)
175{
176	__this_cpu_write(current_kprobe, p);
177	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
178	kcb->kprobe_saved_epc = regs->cp0_epc;
179}
180
181/**
182 * evaluate_branch_instrucion -
183 *
184 * Evaluate the branch instruction at probed address during probe hit. The
185 * result of evaluation would be the updated epc. The insturction in delayslot
186 * would actually be single stepped using a normal breakpoint) on SSOL slot.
187 *
188 * The result is also saved in the kprobe control block for later use,
189 * in case we need to execute the delayslot instruction. The latter will be
190 * false for NOP instruction in dealyslot and the branch-likely instructions
191 * when the branch is taken. And for those cases we set a flag as
192 * SKIP_DELAYSLOT in the kprobe control block
193 */
194static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
195					struct kprobe_ctlblk *kcb)
196{
197	union mips_instruction insn = p->opcode;
198	long epc;
199	int ret = 0;
200
201	epc = regs->cp0_epc;
202	if (epc & 3)
203		goto unaligned;
204
205	if (p->ainsn.insn->word == 0)
206		kcb->flags |= SKIP_DELAYSLOT;
207	else
208		kcb->flags &= ~SKIP_DELAYSLOT;
209
210	ret = __compute_return_epc_for_insn(regs, insn);
211	if (ret < 0)
212		return ret;
213
214	if (ret == BRANCH_LIKELY_TAKEN)
215		kcb->flags |= SKIP_DELAYSLOT;
216
217	kcb->target_epc = regs->cp0_epc;
218
219	return 0;
220
221unaligned:
222	pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
223	force_sig(SIGBUS);
224	return -EFAULT;
225
226}
227
228static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
229						struct kprobe_ctlblk *kcb)
230{
231	int ret = 0;
232
233	regs->cp0_status &= ~ST0_IE;
234
235	/* single step inline if the instruction is a break */
236	if (p->opcode.word == breakpoint_insn.word ||
237	    p->opcode.word == breakpoint2_insn.word)
238		regs->cp0_epc = (unsigned long)p->addr;
239	else if (insn_has_delayslot(p->opcode)) {
240		ret = evaluate_branch_instruction(p, regs, kcb);
241		if (ret < 0) {
242			pr_notice("Kprobes: Error in evaluating branch\n");
243			return;
244		}
245	}
246	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
247}
248
249/*
250 * Called after single-stepping.  p->addr is the address of the
251 * instruction whose first byte has been replaced by the "break 0"
252 * instruction.	 To avoid the SMP problems that can occur when we
253 * temporarily put back the original opcode to single-step, we
254 * single-stepped a copy of the instruction.  The address of this
255 * copy is p->ainsn.insn.
256 *
257 * This function prepares to return from the post-single-step
258 * breakpoint trap. In case of branch instructions, the target
259 * epc to be restored.
260 */
261static void __kprobes resume_execution(struct kprobe *p,
262				       struct pt_regs *regs,
263				       struct kprobe_ctlblk *kcb)
264{
265	if (insn_has_delayslot(p->opcode))
266		regs->cp0_epc = kcb->target_epc;
267	else {
268		unsigned long orig_epc = kcb->kprobe_saved_epc;
269		regs->cp0_epc = orig_epc + 4;
270	}
271}
272
273static int __kprobes kprobe_handler(struct pt_regs *regs)
274{
275	struct kprobe *p;
276	int ret = 0;
277	kprobe_opcode_t *addr;
278	struct kprobe_ctlblk *kcb;
279
280	addr = (kprobe_opcode_t *) regs->cp0_epc;
281
282	/*
283	 * We don't want to be preempted for the entire
284	 * duration of kprobe processing
285	 */
286	preempt_disable();
287	kcb = get_kprobe_ctlblk();
288
289	/* Check we're not actually recursing */
290	if (kprobe_running()) {
291		p = get_kprobe(addr);
292		if (p) {
293			if (kcb->kprobe_status == KPROBE_HIT_SS &&
294			    p->ainsn.insn->word == breakpoint_insn.word) {
295				regs->cp0_status &= ~ST0_IE;
296				regs->cp0_status |= kcb->kprobe_saved_SR;
297				goto no_kprobe;
298			}
299			/*
300			 * We have reentered the kprobe_handler(), since
301			 * another probe was hit while within the handler.
302			 * We here save the original kprobes variables and
303			 * just single step on the instruction of the new probe
304			 * without calling any user handlers.
305			 */
306			save_previous_kprobe(kcb);
307			set_current_kprobe(p, regs, kcb);
308			kprobes_inc_nmissed_count(p);
309			prepare_singlestep(p, regs, kcb);
310			kcb->kprobe_status = KPROBE_REENTER;
311			if (kcb->flags & SKIP_DELAYSLOT) {
312				resume_execution(p, regs, kcb);
313				restore_previous_kprobe(kcb);
314				preempt_enable_no_resched();
315			}
316			return 1;
317		} else if (addr->word != breakpoint_insn.word) {
318			/*
319			 * The breakpoint instruction was removed by
320			 * another cpu right after we hit, no further
321			 * handling of this interrupt is appropriate
322			 */
323			ret = 1;
 
 
 
 
 
 
324		}
325		goto no_kprobe;
326	}
327
328	p = get_kprobe(addr);
329	if (!p) {
330		if (addr->word != breakpoint_insn.word) {
331			/*
332			 * The breakpoint instruction was removed right
333			 * after we hit it.  Another cpu has removed
334			 * either a probepoint or a debugger breakpoint
335			 * at this address.  In either case, no further
336			 * handling of this interrupt is appropriate.
337			 */
338			ret = 1;
339		}
340		/* Not one of ours: let kernel handle it */
341		goto no_kprobe;
342	}
343
344	set_current_kprobe(p, regs, kcb);
345	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
346
347	if (p->pre_handler && p->pre_handler(p, regs)) {
348		/* handler has already set things up, so skip ss setup */
349		reset_current_kprobe();
350		preempt_enable_no_resched();
351		return 1;
352	}
353
 
354	prepare_singlestep(p, regs, kcb);
355	if (kcb->flags & SKIP_DELAYSLOT) {
356		kcb->kprobe_status = KPROBE_HIT_SSDONE;
357		if (p->post_handler)
358			p->post_handler(p, regs, 0);
359		resume_execution(p, regs, kcb);
360		preempt_enable_no_resched();
361	} else
362		kcb->kprobe_status = KPROBE_HIT_SS;
363
364	return 1;
365
366no_kprobe:
367	preempt_enable_no_resched();
368	return ret;
369
370}
371
372static inline int post_kprobe_handler(struct pt_regs *regs)
373{
374	struct kprobe *cur = kprobe_running();
375	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
376
377	if (!cur)
378		return 0;
379
380	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
381		kcb->kprobe_status = KPROBE_HIT_SSDONE;
382		cur->post_handler(cur, regs, 0);
383	}
384
385	resume_execution(cur, regs, kcb);
386
387	regs->cp0_status |= kcb->kprobe_saved_SR;
388
389	/* Restore back the original saved kprobes variables and continue. */
390	if (kcb->kprobe_status == KPROBE_REENTER) {
391		restore_previous_kprobe(kcb);
392		goto out;
393	}
394	reset_current_kprobe();
395out:
396	preempt_enable_no_resched();
397
398	return 1;
399}
400
401int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
402{
403	struct kprobe *cur = kprobe_running();
404	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
405
406	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
407		return 1;
408
409	if (kcb->kprobe_status & KPROBE_HIT_SS) {
410		resume_execution(cur, regs, kcb);
411		regs->cp0_status |= kcb->kprobe_old_SR;
412
413		reset_current_kprobe();
414		preempt_enable_no_resched();
415	}
416	return 0;
417}
418
419/*
420 * Wrapper routine for handling exceptions.
421 */
422int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
423				       unsigned long val, void *data)
424{
425
426	struct die_args *args = (struct die_args *)data;
427	int ret = NOTIFY_DONE;
428
429	switch (val) {
430	case DIE_BREAK:
431		if (kprobe_handler(args->regs))
432			ret = NOTIFY_STOP;
433		break;
434	case DIE_SSTEPBP:
435		if (post_kprobe_handler(args->regs))
436			ret = NOTIFY_STOP;
437		break;
438
439	case DIE_PAGE_FAULT:
440		/* kprobe_running() needs smp_processor_id() */
441		preempt_disable();
442
443		if (kprobe_running()
444		    && kprobe_fault_handler(args->regs, args->trapnr))
445			ret = NOTIFY_STOP;
446		preempt_enable();
447		break;
448	default:
449		break;
450	}
451	return ret;
452}
453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454/*
455 * Function return probe trampoline:
456 *	- init_kprobes() establishes a probepoint here
457 *	- When the probed function returns, this probe causes the
458 *	  handlers to fire
459 */
460static void __used kretprobe_trampoline_holder(void)
461{
462	asm volatile(
463		".set push\n\t"
464		/* Keep the assembler from reordering and placing JR here. */
465		".set noreorder\n\t"
466		"nop\n\t"
467		".global kretprobe_trampoline\n"
468		"kretprobe_trampoline:\n\t"
469		"nop\n\t"
470		".set pop"
471		: : : "memory");
472}
473
474void kretprobe_trampoline(void);
475
476void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
477				      struct pt_regs *regs)
478{
479	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
480
481	/* Replace the return addr with trampoline addr */
482	regs->regs[31] = (unsigned long)kretprobe_trampoline;
483}
484
485/*
486 * Called when the probe at kretprobe trampoline is hit
487 */
488static int __kprobes trampoline_probe_handler(struct kprobe *p,
489						struct pt_regs *regs)
490{
491	struct kretprobe_instance *ri = NULL;
492	struct hlist_head *head, empty_rp;
493	struct hlist_node *tmp;
494	unsigned long flags, orig_ret_address = 0;
495	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
496
497	INIT_HLIST_HEAD(&empty_rp);
498	kretprobe_hash_lock(current, &head, &flags);
499
500	/*
501	 * It is possible to have multiple instances associated with a given
502	 * task either because an multiple functions in the call path
503	 * have a return probe installed on them, and/or more than one return
504	 * return probe was registered for a target function.
505	 *
506	 * We can handle this because:
507	 *     - instances are always inserted at the head of the list
508	 *     - when multiple return probes are registered for the same
509	 *	 function, the first instance's ret_addr will point to the
510	 *	 real return address, and all the rest will point to
511	 *	 kretprobe_trampoline
512	 */
513	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
514		if (ri->task != current)
515			/* another task is sharing our hash bucket */
516			continue;
517
518		if (ri->rp && ri->rp->handler)
519			ri->rp->handler(ri, regs);
520
521		orig_ret_address = (unsigned long)ri->ret_addr;
522		recycle_rp_inst(ri, &empty_rp);
523
524		if (orig_ret_address != trampoline_address)
525			/*
526			 * This is the real return address. Any other
527			 * instances associated with this task are for
528			 * other calls deeper on the call stack
529			 */
530			break;
531	}
532
533	kretprobe_assert(ri, orig_ret_address, trampoline_address);
534	instruction_pointer(regs) = orig_ret_address;
535
 
536	kretprobe_hash_unlock(current, &flags);
 
537
538	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
539		hlist_del(&ri->hlist);
540		kfree(ri);
541	}
542	/*
543	 * By returning a non-zero value, we are telling
544	 * kprobe_handler() that we don't want the post_handler
545	 * to run (and have re-enabled preemption)
546	 */
547	return 1;
548}
549
550int __kprobes arch_trampoline_kprobe(struct kprobe *p)
551{
552	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
553		return 1;
554
555	return 0;
556}
557
558static struct kprobe trampoline_p = {
559	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
560	.pre_handler = trampoline_probe_handler
561};
562
563int __init arch_init_kprobes(void)
564{
565	return register_kprobe(&trampoline_p);
566}
v4.17
 
  1/*
  2 *  Kernel Probes (KProbes)
  3 *  arch/mips/kernel/kprobes.c
  4 *
  5 *  Copyright 2006 Sony Corp.
  6 *  Copyright 2010 Cavium Networks
  7 *
  8 *  Some portions copied from the powerpc version.
  9 *
 10 *   Copyright (C) IBM Corporation, 2002, 2004
 11 *
 12 *  This program is free software; you can redistribute it and/or modify
 13 *  it under the terms of the GNU General Public License as published by
 14 *  the Free Software Foundation; version 2 of the License.
 15 *
 16 *  This program is distributed in the hope that it will be useful,
 17 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 19 *  GNU General Public License for more details.
 20 *
 21 *  You should have received a copy of the GNU General Public License
 22 *  along with this program; if not, write to the Free Software
 23 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 24 */
 25
 26#include <linux/kprobes.h>
 27#include <linux/preempt.h>
 28#include <linux/uaccess.h>
 29#include <linux/kdebug.h>
 30#include <linux/slab.h>
 31
 32#include <asm/ptrace.h>
 33#include <asm/branch.h>
 34#include <asm/break.h>
 35
 36#include "probes-common.h"
 37
 38static const union mips_instruction breakpoint_insn = {
 39	.b_format = {
 40		.opcode = spec_op,
 41		.code = BRK_KPROBE_BP,
 42		.func = break_op
 43	}
 44};
 45
 46static const union mips_instruction breakpoint2_insn = {
 47	.b_format = {
 48		.opcode = spec_op,
 49		.code = BRK_KPROBE_SSTEPBP,
 50		.func = break_op
 51	}
 52};
 53
 54DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 55DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 56
 57static int __kprobes insn_has_delayslot(union mips_instruction insn)
 58{
 59	return __insn_has_delay_slot(insn);
 60}
 61
 62/*
 63 * insn_has_ll_or_sc function checks whether instruction is ll or sc
 64 * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
 65 * so we need to prevent it and refuse kprobes insertion for such
 66 * instructions; cannot do much about breakpoint in the middle of
 67 * ll/sc pair; it is upto user to avoid those places
 68 */
 69static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
 70{
 71	int ret = 0;
 72
 73	switch (insn.i_format.opcode) {
 74	case ll_op:
 75	case lld_op:
 76	case sc_op:
 77	case scd_op:
 78		ret = 1;
 79		break;
 80	default:
 81		break;
 82	}
 83	return ret;
 84}
 85
 86int __kprobes arch_prepare_kprobe(struct kprobe *p)
 87{
 88	union mips_instruction insn;
 89	union mips_instruction prev_insn;
 90	int ret = 0;
 91
 92	insn = p->addr[0];
 93
 94	if (insn_has_ll_or_sc(insn)) {
 95		pr_notice("Kprobes for ll and sc instructions are not"
 96			  "supported\n");
 97		ret = -EINVAL;
 98		goto out;
 99	}
100
101	if ((probe_kernel_read(&prev_insn, p->addr - 1,
102				sizeof(mips_instruction)) == 0) &&
103				insn_has_delayslot(prev_insn)) {
104		pr_notice("Kprobes for branch delayslot are not supported\n");
105		ret = -EINVAL;
106		goto out;
107	}
108
109	if (__insn_is_compact_branch(insn)) {
110		pr_notice("Kprobes for compact branches are not supported\n");
111		ret = -EINVAL;
112		goto out;
113	}
114
115	/* insn: must be on special executable page on mips. */
116	p->ainsn.insn = get_insn_slot();
117	if (!p->ainsn.insn) {
118		ret = -ENOMEM;
119		goto out;
120	}
121
122	/*
123	 * In the kprobe->ainsn.insn[] array we store the original
124	 * instruction at index zero and a break trap instruction at
125	 * index one.
126	 *
127	 * On MIPS arch if the instruction at probed address is a
128	 * branch instruction, we need to execute the instruction at
129	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
130	 * doesn't have single stepping support, the BD instruction can
131	 * not be executed in-line and it would be executed on SSOL slot
132	 * using a normal breakpoint instruction in the next slot.
133	 * So, read the instruction and save it for later execution.
134	 */
135	if (insn_has_delayslot(insn))
136		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
137	else
138		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
139
140	p->ainsn.insn[1] = breakpoint2_insn;
141	p->opcode = *p->addr;
142
143out:
144	return ret;
145}
146
147void __kprobes arch_arm_kprobe(struct kprobe *p)
148{
149	*p->addr = breakpoint_insn;
150	flush_insn_slot(p);
151}
152
153void __kprobes arch_disarm_kprobe(struct kprobe *p)
154{
155	*p->addr = p->opcode;
156	flush_insn_slot(p);
157}
158
159void __kprobes arch_remove_kprobe(struct kprobe *p)
160{
161	if (p->ainsn.insn) {
162		free_insn_slot(p->ainsn.insn, 0);
163		p->ainsn.insn = NULL;
164	}
165}
166
167static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
168{
169	kcb->prev_kprobe.kp = kprobe_running();
170	kcb->prev_kprobe.status = kcb->kprobe_status;
171	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
172	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
173	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
174}
175
176static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
177{
178	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
179	kcb->kprobe_status = kcb->prev_kprobe.status;
180	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
181	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
182	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
183}
184
185static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
186			       struct kprobe_ctlblk *kcb)
187{
188	__this_cpu_write(current_kprobe, p);
189	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
190	kcb->kprobe_saved_epc = regs->cp0_epc;
191}
192
193/**
194 * evaluate_branch_instrucion -
195 *
196 * Evaluate the branch instruction at probed address during probe hit. The
197 * result of evaluation would be the updated epc. The insturction in delayslot
198 * would actually be single stepped using a normal breakpoint) on SSOL slot.
199 *
200 * The result is also saved in the kprobe control block for later use,
201 * in case we need to execute the delayslot instruction. The latter will be
202 * false for NOP instruction in dealyslot and the branch-likely instructions
203 * when the branch is taken. And for those cases we set a flag as
204 * SKIP_DELAYSLOT in the kprobe control block
205 */
206static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
207					struct kprobe_ctlblk *kcb)
208{
209	union mips_instruction insn = p->opcode;
210	long epc;
211	int ret = 0;
212
213	epc = regs->cp0_epc;
214	if (epc & 3)
215		goto unaligned;
216
217	if (p->ainsn.insn->word == 0)
218		kcb->flags |= SKIP_DELAYSLOT;
219	else
220		kcb->flags &= ~SKIP_DELAYSLOT;
221
222	ret = __compute_return_epc_for_insn(regs, insn);
223	if (ret < 0)
224		return ret;
225
226	if (ret == BRANCH_LIKELY_TAKEN)
227		kcb->flags |= SKIP_DELAYSLOT;
228
229	kcb->target_epc = regs->cp0_epc;
230
231	return 0;
232
233unaligned:
234	pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
235	force_sig(SIGBUS, current);
236	return -EFAULT;
237
238}
239
240static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
241						struct kprobe_ctlblk *kcb)
242{
243	int ret = 0;
244
245	regs->cp0_status &= ~ST0_IE;
246
247	/* single step inline if the instruction is a break */
248	if (p->opcode.word == breakpoint_insn.word ||
249	    p->opcode.word == breakpoint2_insn.word)
250		regs->cp0_epc = (unsigned long)p->addr;
251	else if (insn_has_delayslot(p->opcode)) {
252		ret = evaluate_branch_instruction(p, regs, kcb);
253		if (ret < 0) {
254			pr_notice("Kprobes: Error in evaluating branch\n");
255			return;
256		}
257	}
258	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
259}
260
261/*
262 * Called after single-stepping.  p->addr is the address of the
263 * instruction whose first byte has been replaced by the "break 0"
264 * instruction.	 To avoid the SMP problems that can occur when we
265 * temporarily put back the original opcode to single-step, we
266 * single-stepped a copy of the instruction.  The address of this
267 * copy is p->ainsn.insn.
268 *
269 * This function prepares to return from the post-single-step
270 * breakpoint trap. In case of branch instructions, the target
271 * epc to be restored.
272 */
273static void __kprobes resume_execution(struct kprobe *p,
274				       struct pt_regs *regs,
275				       struct kprobe_ctlblk *kcb)
276{
277	if (insn_has_delayslot(p->opcode))
278		regs->cp0_epc = kcb->target_epc;
279	else {
280		unsigned long orig_epc = kcb->kprobe_saved_epc;
281		regs->cp0_epc = orig_epc + 4;
282	}
283}
284
285static int __kprobes kprobe_handler(struct pt_regs *regs)
286{
287	struct kprobe *p;
288	int ret = 0;
289	kprobe_opcode_t *addr;
290	struct kprobe_ctlblk *kcb;
291
292	addr = (kprobe_opcode_t *) regs->cp0_epc;
293
294	/*
295	 * We don't want to be preempted for the entire
296	 * duration of kprobe processing
297	 */
298	preempt_disable();
299	kcb = get_kprobe_ctlblk();
300
301	/* Check we're not actually recursing */
302	if (kprobe_running()) {
303		p = get_kprobe(addr);
304		if (p) {
305			if (kcb->kprobe_status == KPROBE_HIT_SS &&
306			    p->ainsn.insn->word == breakpoint_insn.word) {
307				regs->cp0_status &= ~ST0_IE;
308				regs->cp0_status |= kcb->kprobe_saved_SR;
309				goto no_kprobe;
310			}
311			/*
312			 * We have reentered the kprobe_handler(), since
313			 * another probe was hit while within the handler.
314			 * We here save the original kprobes variables and
315			 * just single step on the instruction of the new probe
316			 * without calling any user handlers.
317			 */
318			save_previous_kprobe(kcb);
319			set_current_kprobe(p, regs, kcb);
320			kprobes_inc_nmissed_count(p);
321			prepare_singlestep(p, regs, kcb);
322			kcb->kprobe_status = KPROBE_REENTER;
323			if (kcb->flags & SKIP_DELAYSLOT) {
324				resume_execution(p, regs, kcb);
325				restore_previous_kprobe(kcb);
326				preempt_enable_no_resched();
327			}
328			return 1;
329		} else {
330			if (addr->word != breakpoint_insn.word) {
331				/*
332				 * The breakpoint instruction was removed by
333				 * another cpu right after we hit, no further
334				 * handling of this interrupt is appropriate
335				 */
336				ret = 1;
337				goto no_kprobe;
338			}
339			p = __this_cpu_read(current_kprobe);
340			if (p->break_handler && p->break_handler(p, regs))
341				goto ss_probe;
342		}
343		goto no_kprobe;
344	}
345
346	p = get_kprobe(addr);
347	if (!p) {
348		if (addr->word != breakpoint_insn.word) {
349			/*
350			 * The breakpoint instruction was removed right
351			 * after we hit it.  Another cpu has removed
352			 * either a probepoint or a debugger breakpoint
353			 * at this address.  In either case, no further
354			 * handling of this interrupt is appropriate.
355			 */
356			ret = 1;
357		}
358		/* Not one of ours: let kernel handle it */
359		goto no_kprobe;
360	}
361
362	set_current_kprobe(p, regs, kcb);
363	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
364
365	if (p->pre_handler && p->pre_handler(p, regs)) {
366		/* handler has already set things up, so skip ss setup */
 
 
367		return 1;
368	}
369
370ss_probe:
371	prepare_singlestep(p, regs, kcb);
372	if (kcb->flags & SKIP_DELAYSLOT) {
373		kcb->kprobe_status = KPROBE_HIT_SSDONE;
374		if (p->post_handler)
375			p->post_handler(p, regs, 0);
376		resume_execution(p, regs, kcb);
377		preempt_enable_no_resched();
378	} else
379		kcb->kprobe_status = KPROBE_HIT_SS;
380
381	return 1;
382
383no_kprobe:
384	preempt_enable_no_resched();
385	return ret;
386
387}
388
389static inline int post_kprobe_handler(struct pt_regs *regs)
390{
391	struct kprobe *cur = kprobe_running();
392	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
393
394	if (!cur)
395		return 0;
396
397	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
398		kcb->kprobe_status = KPROBE_HIT_SSDONE;
399		cur->post_handler(cur, regs, 0);
400	}
401
402	resume_execution(cur, regs, kcb);
403
404	regs->cp0_status |= kcb->kprobe_saved_SR;
405
406	/* Restore back the original saved kprobes variables and continue. */
407	if (kcb->kprobe_status == KPROBE_REENTER) {
408		restore_previous_kprobe(kcb);
409		goto out;
410	}
411	reset_current_kprobe();
412out:
413	preempt_enable_no_resched();
414
415	return 1;
416}
417
418static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
419{
420	struct kprobe *cur = kprobe_running();
421	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
422
423	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
424		return 1;
425
426	if (kcb->kprobe_status & KPROBE_HIT_SS) {
427		resume_execution(cur, regs, kcb);
428		regs->cp0_status |= kcb->kprobe_old_SR;
429
430		reset_current_kprobe();
431		preempt_enable_no_resched();
432	}
433	return 0;
434}
435
436/*
437 * Wrapper routine for handling exceptions.
438 */
439int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
440				       unsigned long val, void *data)
441{
442
443	struct die_args *args = (struct die_args *)data;
444	int ret = NOTIFY_DONE;
445
446	switch (val) {
447	case DIE_BREAK:
448		if (kprobe_handler(args->regs))
449			ret = NOTIFY_STOP;
450		break;
451	case DIE_SSTEPBP:
452		if (post_kprobe_handler(args->regs))
453			ret = NOTIFY_STOP;
454		break;
455
456	case DIE_PAGE_FAULT:
457		/* kprobe_running() needs smp_processor_id() */
458		preempt_disable();
459
460		if (kprobe_running()
461		    && kprobe_fault_handler(args->regs, args->trapnr))
462			ret = NOTIFY_STOP;
463		preempt_enable();
464		break;
465	default:
466		break;
467	}
468	return ret;
469}
470
471int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
472{
473	struct jprobe *jp = container_of(p, struct jprobe, kp);
474	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
475
476	kcb->jprobe_saved_regs = *regs;
477	kcb->jprobe_saved_sp = regs->regs[29];
478
479	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
480	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
481
482	regs->cp0_epc = (unsigned long)(jp->entry);
483
484	return 1;
485}
486
487/* Defined in the inline asm below. */
488void jprobe_return_end(void);
489
490void __kprobes jprobe_return(void)
491{
492	/* Assembler quirk necessitates this '0,code' business.	 */
493	asm volatile(
494		"break 0,%0\n\t"
495		".globl jprobe_return_end\n"
496		"jprobe_return_end:\n"
497		: : "n" (BRK_KPROBE_BP) : "memory");
498}
499
500int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
501{
502	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
503
504	if (regs->cp0_epc >= (unsigned long)jprobe_return &&
505	    regs->cp0_epc <= (unsigned long)jprobe_return_end) {
506		*regs = kcb->jprobe_saved_regs;
507		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
508		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
509		preempt_enable_no_resched();
510
511		return 1;
512	}
513	return 0;
514}
515
516/*
517 * Function return probe trampoline:
518 *	- init_kprobes() establishes a probepoint here
519 *	- When the probed function returns, this probe causes the
520 *	  handlers to fire
521 */
522static void __used kretprobe_trampoline_holder(void)
523{
524	asm volatile(
525		".set push\n\t"
526		/* Keep the assembler from reordering and placing JR here. */
527		".set noreorder\n\t"
528		"nop\n\t"
529		".global kretprobe_trampoline\n"
530		"kretprobe_trampoline:\n\t"
531		"nop\n\t"
532		".set pop"
533		: : : "memory");
534}
535
536void kretprobe_trampoline(void);
537
538void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
539				      struct pt_regs *regs)
540{
541	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
542
543	/* Replace the return addr with trampoline addr */
544	regs->regs[31] = (unsigned long)kretprobe_trampoline;
545}
546
547/*
548 * Called when the probe at kretprobe trampoline is hit
549 */
550static int __kprobes trampoline_probe_handler(struct kprobe *p,
551						struct pt_regs *regs)
552{
553	struct kretprobe_instance *ri = NULL;
554	struct hlist_head *head, empty_rp;
555	struct hlist_node *tmp;
556	unsigned long flags, orig_ret_address = 0;
557	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
558
559	INIT_HLIST_HEAD(&empty_rp);
560	kretprobe_hash_lock(current, &head, &flags);
561
562	/*
563	 * It is possible to have multiple instances associated with a given
564	 * task either because an multiple functions in the call path
565	 * have a return probe installed on them, and/or more than one return
566	 * return probe was registered for a target function.
567	 *
568	 * We can handle this because:
569	 *     - instances are always inserted at the head of the list
570	 *     - when multiple return probes are registered for the same
571	 *	 function, the first instance's ret_addr will point to the
572	 *	 real return address, and all the rest will point to
573	 *	 kretprobe_trampoline
574	 */
575	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
576		if (ri->task != current)
577			/* another task is sharing our hash bucket */
578			continue;
579
580		if (ri->rp && ri->rp->handler)
581			ri->rp->handler(ri, regs);
582
583		orig_ret_address = (unsigned long)ri->ret_addr;
584		recycle_rp_inst(ri, &empty_rp);
585
586		if (orig_ret_address != trampoline_address)
587			/*
588			 * This is the real return address. Any other
589			 * instances associated with this task are for
590			 * other calls deeper on the call stack
591			 */
592			break;
593	}
594
595	kretprobe_assert(ri, orig_ret_address, trampoline_address);
596	instruction_pointer(regs) = orig_ret_address;
597
598	reset_current_kprobe();
599	kretprobe_hash_unlock(current, &flags);
600	preempt_enable_no_resched();
601
602	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
603		hlist_del(&ri->hlist);
604		kfree(ri);
605	}
606	/*
607	 * By returning a non-zero value, we are telling
608	 * kprobe_handler() that we don't want the post_handler
609	 * to run (and have re-enabled preemption)
610	 */
611	return 1;
612}
613
614int __kprobes arch_trampoline_kprobe(struct kprobe *p)
615{
616	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
617		return 1;
618
619	return 0;
620}
621
622static struct kprobe trampoline_p = {
623	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
624	.pre_handler = trampoline_probe_handler
625};
626
627int __init arch_init_kprobes(void)
628{
629	return register_kprobe(&trampoline_p);
630}