Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v5.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2007 MIPS Technologies, Inc.
  7 * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
  8 */
  9#include <linux/clockchips.h>
 10#include <linux/interrupt.h>
 11#include <linux/percpu.h>
 12#include <linux/smp.h>
 13#include <linux/irq.h>
 14
 15#include <asm/time.h>
 16#include <asm/cevt-r4k.h>
 17
 18static int mips_next_event(unsigned long delta,
 19			   struct clock_event_device *evt)
 20{
 21	unsigned int cnt;
 22	int res;
 23
 24	cnt = read_c0_count();
 25	cnt += delta;
 26	write_c0_compare(cnt);
 27	res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0;
 28	return res;
 29}
 30
 31/**
 32 * calculate_min_delta() - Calculate a good minimum delta for mips_next_event().
 33 *
 34 * Running under virtualisation can introduce overhead into mips_next_event() in
 35 * the form of hypervisor emulation of CP0_Count/CP0_Compare registers,
 36 * potentially with an unnatural frequency, which makes a fixed min_delta_ns
 37 * value inappropriate as it may be too small.
 38 *
 39 * It can also introduce occasional latency from the guest being descheduled.
 40 *
 41 * This function calculates a good minimum delta based roughly on the 75th
 42 * percentile of the time taken to do the mips_next_event() sequence, in order
 43 * to handle potentially higher overhead while also eliminating outliers due to
 44 * unpredictable hypervisor latency (which can be handled by retries).
 45 *
 46 * Return:	An appropriate minimum delta for the clock event device.
 47 */
 48static unsigned int calculate_min_delta(void)
 49{
 50	unsigned int cnt, i, j, k, l;
 51	unsigned int buf1[4], buf2[3];
 52	unsigned int min_delta;
 53
 54	/*
 55	 * Calculate the median of 5 75th percentiles of 5 samples of how long
 56	 * it takes to set CP0_Compare = CP0_Count + delta.
 57	 */
 58	for (i = 0; i < 5; ++i) {
 59		for (j = 0; j < 5; ++j) {
 60			/*
 61			 * This is like the code in mips_next_event(), and
 62			 * directly measures the borderline "safe" delta.
 63			 */
 64			cnt = read_c0_count();
 65			write_c0_compare(cnt);
 66			cnt = read_c0_count() - cnt;
 67
 68			/* Sorted insert into buf1 */
 69			for (k = 0; k < j; ++k) {
 70				if (cnt < buf1[k]) {
 71					l = min_t(unsigned int,
 72						  j, ARRAY_SIZE(buf1) - 1);
 73					for (; l > k; --l)
 74						buf1[l] = buf1[l - 1];
 75					break;
 76				}
 77			}
 78			if (k < ARRAY_SIZE(buf1))
 79				buf1[k] = cnt;
 80		}
 81
 82		/* Sorted insert of 75th percentile into buf2 */
 83		for (k = 0; k < i && k < ARRAY_SIZE(buf2); ++k) {
 84			if (buf1[ARRAY_SIZE(buf1) - 1] < buf2[k]) {
 85				l = min_t(unsigned int,
 86					  i, ARRAY_SIZE(buf2) - 1);
 87				for (; l > k; --l)
 88					buf2[l] = buf2[l - 1];
 89				break;
 90			}
 91		}
 92		if (k < ARRAY_SIZE(buf2))
 93			buf2[k] = buf1[ARRAY_SIZE(buf1) - 1];
 94	}
 95
 96	/* Use 2 * median of 75th percentiles */
 97	min_delta = buf2[ARRAY_SIZE(buf2) - 1] * 2;
 98
 99	/* Don't go too low */
100	if (min_delta < 0x300)
101		min_delta = 0x300;
102
103	pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n",
104		 __func__, buf2[ARRAY_SIZE(buf2) - 1], min_delta);
105	return min_delta;
106}
107
108DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
109int cp0_timer_irq_installed;
110
111/*
112 * Possibly handle a performance counter interrupt.
113 * Return true if the timer interrupt should not be checked
114 */
115static inline int handle_perf_irq(int r2)
116{
117	/*
118	 * The performance counter overflow interrupt may be shared with the
119	 * timer interrupt (cp0_perfcount_irq < 0). If it is and a
120	 * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
121	 * and we can't reliably determine if a counter interrupt has also
122	 * happened (!r2) then don't check for a timer interrupt.
123	 */
124	return (cp0_perfcount_irq < 0) &&
125		perf_irq() == IRQ_HANDLED &&
126		!r2;
127}
128
129irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
130{
131	const int r2 = cpu_has_mips_r2_r6;
132	struct clock_event_device *cd;
133	int cpu = smp_processor_id();
134
135	/*
136	 * Suckage alert:
137	 * Before R2 of the architecture there was no way to see if a
138	 * performance counter interrupt was pending, so we have to run
139	 * the performance counter interrupt handler anyway.
140	 */
141	if (handle_perf_irq(r2))
142		return IRQ_HANDLED;
143
144	/*
145	 * The same applies to performance counter interrupts.	But with the
146	 * above we now know that the reason we got here must be a timer
147	 * interrupt.  Being the paranoiacs we are we check anyway.
148	 */
149	if (!r2 || (read_c0_cause() & CAUSEF_TI)) {
150		/* Clear Count/Compare Interrupt */
151		write_c0_compare(read_c0_compare());
152		cd = &per_cpu(mips_clockevent_device, cpu);
153		cd->event_handler(cd);
154
155		return IRQ_HANDLED;
156	}
157
158	return IRQ_NONE;
159}
160
161struct irqaction c0_compare_irqaction = {
162	.handler = c0_compare_interrupt,
163	/*
164	 * IRQF_SHARED: The timer interrupt may be shared with other interrupts
165	 * such as perf counter and FDC interrupts.
166	 */
167	.flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED,
168	.name = "timer",
169};
170
171
172void mips_event_handler(struct clock_event_device *dev)
173{
174}
175
176/*
177 * FIXME: This doesn't hold for the relocated E9000 compare interrupt.
178 */
179static int c0_compare_int_pending(void)
180{
181	/* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */
182	return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP);
183}
184
185/*
186 * Compare interrupt can be routed and latched outside the core,
187 * so wait up to worst case number of cycle counter ticks for timer interrupt
188 * changes to propagate to the cause register.
189 */
190#define COMPARE_INT_SEEN_TICKS 50
191
192int c0_compare_int_usable(void)
193{
194	unsigned int delta;
195	unsigned int cnt;
196
197#ifdef CONFIG_KVM_GUEST
198    return 1;
199#endif
200
201	/*
202	 * IP7 already pending?	 Try to clear it by acking the timer.
203	 */
204	if (c0_compare_int_pending()) {
205		cnt = read_c0_count();
206		write_c0_compare(cnt);
207		back_to_back_c0_hazard();
208		while (read_c0_count() < (cnt  + COMPARE_INT_SEEN_TICKS))
209			if (!c0_compare_int_pending())
210				break;
211		if (c0_compare_int_pending())
212			return 0;
213	}
214
215	for (delta = 0x10; delta <= 0x400000; delta <<= 1) {
216		cnt = read_c0_count();
217		cnt += delta;
218		write_c0_compare(cnt);
219		back_to_back_c0_hazard();
220		if ((int)(read_c0_count() - cnt) < 0)
221		    break;
222		/* increase delta if the timer was already expired */
223	}
224
225	while ((int)(read_c0_count() - cnt) <= 0)
226		;	/* Wait for expiry  */
227
228	while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
229		if (c0_compare_int_pending())
230			break;
231	if (!c0_compare_int_pending())
232		return 0;
233	cnt = read_c0_count();
234	write_c0_compare(cnt);
235	back_to_back_c0_hazard();
236	while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
237		if (!c0_compare_int_pending())
238			break;
239	if (c0_compare_int_pending())
240		return 0;
241
242	/*
243	 * Feels like a real count / compare timer.
244	 */
245	return 1;
246}
247
248unsigned int __weak get_c0_compare_int(void)
249{
250	return MIPS_CPU_IRQ_BASE + cp0_compare_irq;
251}
252
253int r4k_clockevent_init(void)
254{
255	unsigned int cpu = smp_processor_id();
256	struct clock_event_device *cd;
257	unsigned int irq, min_delta;
258
259	if (!cpu_has_counter || !mips_hpt_frequency)
260		return -ENXIO;
261
262	if (!c0_compare_int_usable())
263		return -ENXIO;
264
265	/*
266	 * With vectored interrupts things are getting platform specific.
267	 * get_c0_compare_int is a hook to allow a platform to return the
268	 * interrupt number of its liking.
269	 */
270	irq = get_c0_compare_int();
271
272	cd = &per_cpu(mips_clockevent_device, cpu);
273
274	cd->name		= "MIPS";
275	cd->features		= CLOCK_EVT_FEAT_ONESHOT |
276				  CLOCK_EVT_FEAT_C3STOP |
277				  CLOCK_EVT_FEAT_PERCPU;
278
279	min_delta		= calculate_min_delta();
280
281	cd->rating		= 300;
282	cd->irq			= irq;
283	cd->cpumask		= cpumask_of(cpu);
284	cd->set_next_event	= mips_next_event;
285	cd->event_handler	= mips_event_handler;
286
287	clockevents_config_and_register(cd, mips_hpt_frequency, min_delta, 0x7fffffff);
288
289	if (cp0_timer_irq_installed)
290		return 0;
291
292	cp0_timer_irq_installed = 1;
293
294	setup_irq(irq, &c0_compare_irqaction);
295
296	return 0;
297}
298
v4.17
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2007 MIPS Technologies, Inc.
  7 * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
  8 */
  9#include <linux/clockchips.h>
 10#include <linux/interrupt.h>
 11#include <linux/percpu.h>
 12#include <linux/smp.h>
 13#include <linux/irq.h>
 14
 15#include <asm/time.h>
 16#include <asm/cevt-r4k.h>
 17
 18static int mips_next_event(unsigned long delta,
 19			   struct clock_event_device *evt)
 20{
 21	unsigned int cnt;
 22	int res;
 23
 24	cnt = read_c0_count();
 25	cnt += delta;
 26	write_c0_compare(cnt);
 27	res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0;
 28	return res;
 29}
 30
 31/**
 32 * calculate_min_delta() - Calculate a good minimum delta for mips_next_event().
 33 *
 34 * Running under virtualisation can introduce overhead into mips_next_event() in
 35 * the form of hypervisor emulation of CP0_Count/CP0_Compare registers,
 36 * potentially with an unnatural frequency, which makes a fixed min_delta_ns
 37 * value inappropriate as it may be too small.
 38 *
 39 * It can also introduce occasional latency from the guest being descheduled.
 40 *
 41 * This function calculates a good minimum delta based roughly on the 75th
 42 * percentile of the time taken to do the mips_next_event() sequence, in order
 43 * to handle potentially higher overhead while also eliminating outliers due to
 44 * unpredictable hypervisor latency (which can be handled by retries).
 45 *
 46 * Return:	An appropriate minimum delta for the clock event device.
 47 */
 48static unsigned int calculate_min_delta(void)
 49{
 50	unsigned int cnt, i, j, k, l;
 51	unsigned int buf1[4], buf2[3];
 52	unsigned int min_delta;
 53
 54	/*
 55	 * Calculate the median of 5 75th percentiles of 5 samples of how long
 56	 * it takes to set CP0_Compare = CP0_Count + delta.
 57	 */
 58	for (i = 0; i < 5; ++i) {
 59		for (j = 0; j < 5; ++j) {
 60			/*
 61			 * This is like the code in mips_next_event(), and
 62			 * directly measures the borderline "safe" delta.
 63			 */
 64			cnt = read_c0_count();
 65			write_c0_compare(cnt);
 66			cnt = read_c0_count() - cnt;
 67
 68			/* Sorted insert into buf1 */
 69			for (k = 0; k < j; ++k) {
 70				if (cnt < buf1[k]) {
 71					l = min_t(unsigned int,
 72						  j, ARRAY_SIZE(buf1) - 1);
 73					for (; l > k; --l)
 74						buf1[l] = buf1[l - 1];
 75					break;
 76				}
 77			}
 78			if (k < ARRAY_SIZE(buf1))
 79				buf1[k] = cnt;
 80		}
 81
 82		/* Sorted insert of 75th percentile into buf2 */
 83		for (k = 0; k < i && k < ARRAY_SIZE(buf2); ++k) {
 84			if (buf1[ARRAY_SIZE(buf1) - 1] < buf2[k]) {
 85				l = min_t(unsigned int,
 86					  i, ARRAY_SIZE(buf2) - 1);
 87				for (; l > k; --l)
 88					buf2[l] = buf2[l - 1];
 89				break;
 90			}
 91		}
 92		if (k < ARRAY_SIZE(buf2))
 93			buf2[k] = buf1[ARRAY_SIZE(buf1) - 1];
 94	}
 95
 96	/* Use 2 * median of 75th percentiles */
 97	min_delta = buf2[ARRAY_SIZE(buf2) - 1] * 2;
 98
 99	/* Don't go too low */
100	if (min_delta < 0x300)
101		min_delta = 0x300;
102
103	pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n",
104		 __func__, buf2[ARRAY_SIZE(buf2) - 1], min_delta);
105	return min_delta;
106}
107
108DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
109int cp0_timer_irq_installed;
110
111/*
112 * Possibly handle a performance counter interrupt.
113 * Return true if the timer interrupt should not be checked
114 */
115static inline int handle_perf_irq(int r2)
116{
117	/*
118	 * The performance counter overflow interrupt may be shared with the
119	 * timer interrupt (cp0_perfcount_irq < 0). If it is and a
120	 * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
121	 * and we can't reliably determine if a counter interrupt has also
122	 * happened (!r2) then don't check for a timer interrupt.
123	 */
124	return (cp0_perfcount_irq < 0) &&
125		perf_irq() == IRQ_HANDLED &&
126		!r2;
127}
128
129irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
130{
131	const int r2 = cpu_has_mips_r2_r6;
132	struct clock_event_device *cd;
133	int cpu = smp_processor_id();
134
135	/*
136	 * Suckage alert:
137	 * Before R2 of the architecture there was no way to see if a
138	 * performance counter interrupt was pending, so we have to run
139	 * the performance counter interrupt handler anyway.
140	 */
141	if (handle_perf_irq(r2))
142		return IRQ_HANDLED;
143
144	/*
145	 * The same applies to performance counter interrupts.	But with the
146	 * above we now know that the reason we got here must be a timer
147	 * interrupt.  Being the paranoiacs we are we check anyway.
148	 */
149	if (!r2 || (read_c0_cause() & CAUSEF_TI)) {
150		/* Clear Count/Compare Interrupt */
151		write_c0_compare(read_c0_compare());
152		cd = &per_cpu(mips_clockevent_device, cpu);
153		cd->event_handler(cd);
154
155		return IRQ_HANDLED;
156	}
157
158	return IRQ_NONE;
159}
160
161struct irqaction c0_compare_irqaction = {
162	.handler = c0_compare_interrupt,
163	/*
164	 * IRQF_SHARED: The timer interrupt may be shared with other interrupts
165	 * such as perf counter and FDC interrupts.
166	 */
167	.flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED,
168	.name = "timer",
169};
170
171
172void mips_event_handler(struct clock_event_device *dev)
173{
174}
175
176/*
177 * FIXME: This doesn't hold for the relocated E9000 compare interrupt.
178 */
179static int c0_compare_int_pending(void)
180{
181	/* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */
182	return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP);
183}
184
185/*
186 * Compare interrupt can be routed and latched outside the core,
187 * so wait up to worst case number of cycle counter ticks for timer interrupt
188 * changes to propagate to the cause register.
189 */
190#define COMPARE_INT_SEEN_TICKS 50
191
192int c0_compare_int_usable(void)
193{
194	unsigned int delta;
195	unsigned int cnt;
196
197#ifdef CONFIG_KVM_GUEST
198    return 1;
199#endif
200
201	/*
202	 * IP7 already pending?	 Try to clear it by acking the timer.
203	 */
204	if (c0_compare_int_pending()) {
205		cnt = read_c0_count();
206		write_c0_compare(cnt);
207		back_to_back_c0_hazard();
208		while (read_c0_count() < (cnt  + COMPARE_INT_SEEN_TICKS))
209			if (!c0_compare_int_pending())
210				break;
211		if (c0_compare_int_pending())
212			return 0;
213	}
214
215	for (delta = 0x10; delta <= 0x400000; delta <<= 1) {
216		cnt = read_c0_count();
217		cnt += delta;
218		write_c0_compare(cnt);
219		back_to_back_c0_hazard();
220		if ((int)(read_c0_count() - cnt) < 0)
221		    break;
222		/* increase delta if the timer was already expired */
223	}
224
225	while ((int)(read_c0_count() - cnt) <= 0)
226		;	/* Wait for expiry  */
227
228	while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
229		if (c0_compare_int_pending())
230			break;
231	if (!c0_compare_int_pending())
232		return 0;
233	cnt = read_c0_count();
234	write_c0_compare(cnt);
235	back_to_back_c0_hazard();
236	while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
237		if (!c0_compare_int_pending())
238			break;
239	if (c0_compare_int_pending())
240		return 0;
241
242	/*
243	 * Feels like a real count / compare timer.
244	 */
245	return 1;
246}
247
248unsigned int __weak get_c0_compare_int(void)
249{
250	return MIPS_CPU_IRQ_BASE + cp0_compare_irq;
251}
252
253int r4k_clockevent_init(void)
254{
255	unsigned int cpu = smp_processor_id();
256	struct clock_event_device *cd;
257	unsigned int irq, min_delta;
258
259	if (!cpu_has_counter || !mips_hpt_frequency)
260		return -ENXIO;
261
262	if (!c0_compare_int_usable())
263		return -ENXIO;
264
265	/*
266	 * With vectored interrupts things are getting platform specific.
267	 * get_c0_compare_int is a hook to allow a platform to return the
268	 * interrupt number of its liking.
269	 */
270	irq = get_c0_compare_int();
271
272	cd = &per_cpu(mips_clockevent_device, cpu);
273
274	cd->name		= "MIPS";
275	cd->features		= CLOCK_EVT_FEAT_ONESHOT |
276				  CLOCK_EVT_FEAT_C3STOP |
277				  CLOCK_EVT_FEAT_PERCPU;
278
279	min_delta		= calculate_min_delta();
280
281	cd->rating		= 300;
282	cd->irq			= irq;
283	cd->cpumask		= cpumask_of(cpu);
284	cd->set_next_event	= mips_next_event;
285	cd->event_handler	= mips_event_handler;
286
287	clockevents_config_and_register(cd, mips_hpt_frequency, min_delta, 0x7fffffff);
288
289	if (cp0_timer_irq_installed)
290		return 0;
291
292	cp0_timer_irq_installed = 1;
293
294	setup_irq(irq, &c0_compare_irqaction);
295
296	return 0;
297}
298