Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3**  IA64 System Bus Adapter (SBA) I/O MMU manager
   4**
   5**	(c) Copyright 2002-2005 Alex Williamson
   6**	(c) Copyright 2002-2003 Grant Grundler
   7**	(c) Copyright 2002-2005 Hewlett-Packard Company
   8**
   9**	Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
  10**	Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
  11**
 
 
 
 
  12**
  13**
  14** This module initializes the IOC (I/O Controller) found on HP
  15** McKinley machines and their successors.
  16**
  17*/
  18
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/slab.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/string.h>
  27#include <linux/pci.h>
  28#include <linux/proc_fs.h>
  29#include <linux/seq_file.h>
  30#include <linux/acpi.h>
  31#include <linux/efi.h>
  32#include <linux/nodemask.h>
  33#include <linux/bitops.h>         /* hweight64() */
  34#include <linux/crash_dump.h>
  35#include <linux/iommu-helper.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/prefetch.h>
  38#include <linux/swiotlb.h>
  39
  40#include <asm/delay.h>		/* ia64_get_itc() */
  41#include <asm/io.h>
  42#include <asm/page.h>		/* PAGE_OFFSET */
  43#include <asm/dma.h>
  44
  45#include <asm/acpi-ext.h>
  46
 
 
  47#define PFX "IOC: "
  48
  49/*
  50** Enabling timing search of the pdir resource map.  Output in /proc.
  51** Disabled by default to optimize performance.
  52*/
  53#undef PDIR_SEARCH_TIMING
  54
  55/*
  56** This option allows cards capable of 64bit DMA to bypass the IOMMU.  If
  57** not defined, all DMA will be 32bit and go through the TLB.
  58** There's potentially a conflict in the bio merge code with us
  59** advertising an iommu, but then bypassing it.  Since I/O MMU bypassing
  60** appears to give more performance than bio-level virtual merging, we'll
  61** do the former for now.  NOTE: BYPASS_SG also needs to be undef'd to
  62** completely restrict DMA to the IOMMU.
  63*/
  64#define ALLOW_IOV_BYPASS
  65
  66/*
  67** This option specifically allows/disallows bypassing scatterlists with
  68** multiple entries.  Coalescing these entries can allow better DMA streaming
  69** and in some cases shows better performance than entirely bypassing the
  70** IOMMU.  Performance increase on the order of 1-2% sequential output/input
  71** using bonnie++ on a RAID0 MD device (sym2 & mpt).
  72*/
  73#undef ALLOW_IOV_BYPASS_SG
  74
  75/*
  76** If a device prefetches beyond the end of a valid pdir entry, it will cause
  77** a hard failure, ie. MCA.  Version 3.0 and later of the zx1 LBA should
  78** disconnect on 4k boundaries and prevent such issues.  If the device is
  79** particularly aggressive, this option will keep the entire pdir valid such
  80** that prefetching will hit a valid address.  This could severely impact
  81** error containment, and is therefore off by default.  The page that is
  82** used for spill-over is poisoned, so that should help debugging somewhat.
  83*/
  84#undef FULL_VALID_PDIR
  85
  86#define ENABLE_MARK_CLEAN
  87
  88/*
  89** The number of debug flags is a clue - this code is fragile.  NOTE: since
  90** tightening the use of res_lock the resource bitmap and actual pdir are no
  91** longer guaranteed to stay in sync.  The sanity checking code isn't going to
  92** like that.
  93*/
  94#undef DEBUG_SBA_INIT
  95#undef DEBUG_SBA_RUN
  96#undef DEBUG_SBA_RUN_SG
  97#undef DEBUG_SBA_RESOURCE
  98#undef ASSERT_PDIR_SANITY
  99#undef DEBUG_LARGE_SG_ENTRIES
 100#undef DEBUG_BYPASS
 101
 102#if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
 103#error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
 104#endif
 105
 106#define SBA_INLINE	__inline__
 107/* #define SBA_INLINE */
 108
 109#ifdef DEBUG_SBA_INIT
 110#define DBG_INIT(x...)	printk(x)
 111#else
 112#define DBG_INIT(x...)
 113#endif
 114
 115#ifdef DEBUG_SBA_RUN
 116#define DBG_RUN(x...)	printk(x)
 117#else
 118#define DBG_RUN(x...)
 119#endif
 120
 121#ifdef DEBUG_SBA_RUN_SG
 122#define DBG_RUN_SG(x...)	printk(x)
 123#else
 124#define DBG_RUN_SG(x...)
 125#endif
 126
 127
 128#ifdef DEBUG_SBA_RESOURCE
 129#define DBG_RES(x...)	printk(x)
 130#else
 131#define DBG_RES(x...)
 132#endif
 133
 134#ifdef DEBUG_BYPASS
 135#define DBG_BYPASS(x...)	printk(x)
 136#else
 137#define DBG_BYPASS(x...)
 138#endif
 139
 140#ifdef ASSERT_PDIR_SANITY
 141#define ASSERT(expr) \
 142        if(!(expr)) { \
 143                printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
 144                panic(#expr); \
 145        }
 146#else
 147#define ASSERT(expr)
 148#endif
 149
 150/*
 151** The number of pdir entries to "free" before issuing
 152** a read to PCOM register to flush out PCOM writes.
 153** Interacts with allocation granularity (ie 4 or 8 entries
 154** allocated and free'd/purged at a time might make this
 155** less interesting).
 156*/
 157#define DELAYED_RESOURCE_CNT	64
 158
 159#define PCI_DEVICE_ID_HP_SX2000_IOC	0x12ec
 160
 161#define ZX1_IOC_ID	((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
 162#define ZX2_IOC_ID	((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
 163#define REO_IOC_ID	((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
 164#define SX1000_IOC_ID	((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
 165#define SX2000_IOC_ID	((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
 166
 167#define ZX1_IOC_OFFSET	0x1000	/* ACPI reports SBA, we want IOC */
 168
 169#define IOC_FUNC_ID	0x000
 170#define IOC_FCLASS	0x008	/* function class, bist, header, rev... */
 171#define IOC_IBASE	0x300	/* IO TLB */
 172#define IOC_IMASK	0x308
 173#define IOC_PCOM	0x310
 174#define IOC_TCNFG	0x318
 175#define IOC_PDIR_BASE	0x320
 176
 177#define IOC_ROPE0_CFG	0x500
 178#define   IOC_ROPE_AO	  0x10	/* Allow "Relaxed Ordering" */
 179
 180
 181/* AGP GART driver looks for this */
 182#define ZX1_SBA_IOMMU_COOKIE	0x0000badbadc0ffeeUL
 183
 184/*
 185** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
 186**
 187** Some IOCs (sx1000) can run at the above pages sizes, but are
 188** really only supported using the IOC at a 4k page size.
 189**
 190** iovp_size could only be greater than PAGE_SIZE if we are
 191** confident the drivers really only touch the next physical
 192** page iff that driver instance owns it.
 193*/
 194static unsigned long iovp_size;
 195static unsigned long iovp_shift;
 196static unsigned long iovp_mask;
 197
 198struct ioc {
 199	void __iomem	*ioc_hpa;	/* I/O MMU base address */
 200	char		*res_map;	/* resource map, bit == pdir entry */
 201	u64		*pdir_base;	/* physical base address */
 202	unsigned long	ibase;		/* pdir IOV Space base */
 203	unsigned long	imask;		/* pdir IOV Space mask */
 204
 205	unsigned long	*res_hint;	/* next avail IOVP - circular search */
 206	unsigned long	dma_mask;
 207	spinlock_t	res_lock;	/* protects the resource bitmap, but must be held when */
 208					/* clearing pdir to prevent races with allocations. */
 209	unsigned int	res_bitshift;	/* from the RIGHT! */
 210	unsigned int	res_size;	/* size of resource map in bytes */
 211#ifdef CONFIG_NUMA
 212	unsigned int	node;		/* node where this IOC lives */
 213#endif
 214#if DELAYED_RESOURCE_CNT > 0
 215	spinlock_t	saved_lock;	/* may want to try to get this on a separate cacheline */
 216					/* than res_lock for bigger systems. */
 217	int		saved_cnt;
 218	struct sba_dma_pair {
 219		dma_addr_t	iova;
 220		size_t		size;
 221	} saved[DELAYED_RESOURCE_CNT];
 222#endif
 223
 224#ifdef PDIR_SEARCH_TIMING
 225#define SBA_SEARCH_SAMPLE	0x100
 226	unsigned long avg_search[SBA_SEARCH_SAMPLE];
 227	unsigned long avg_idx;	/* current index into avg_search */
 228#endif
 229
 230	/* Stuff we don't need in performance path */
 231	struct ioc	*next;		/* list of IOC's in system */
 232	acpi_handle	handle;		/* for multiple IOC's */
 233	const char 	*name;
 234	unsigned int	func_id;
 235	unsigned int	rev;		/* HW revision of chip */
 236	u32		iov_size;
 237	unsigned int	pdir_size;	/* in bytes, determined by IOV Space size */
 238	struct pci_dev	*sac_only_dev;
 239};
 240
 241static struct ioc *ioc_list, *ioc_found;
 242static int reserve_sba_gart = 1;
 243
 244static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
 245static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
 246
 247#define sba_sg_address(sg)	sg_virt((sg))
 248
 249#ifdef FULL_VALID_PDIR
 250static u64 prefetch_spill_page;
 251#endif
 252
 253#define GET_IOC(dev)	((dev_is_pci(dev))						\
 
 254			 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
 
 
 
 255
 256/*
 257** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
 258** (or rather not merge) DMAs into manageable chunks.
 259** On parisc, this is more of the software/tuning constraint
 260** rather than the HW. I/O MMU allocation algorithms can be
 261** faster with smaller sizes (to some degree).
 262*/
 263#define DMA_CHUNK_SIZE  (BITS_PER_LONG*iovp_size)
 264
 265#define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
 266
 267/************************************
 268** SBA register read and write support
 269**
 270** BE WARNED: register writes are posted.
 271**  (ie follow writes which must reach HW with a read)
 272**
 273*/
 274#define READ_REG(addr)       __raw_readq(addr)
 275#define WRITE_REG(val, addr) __raw_writeq(val, addr)
 276
 277#ifdef DEBUG_SBA_INIT
 278
 279/**
 280 * sba_dump_tlb - debugging only - print IOMMU operating parameters
 281 * @hpa: base address of the IOMMU
 282 *
 283 * Print the size/location of the IO MMU PDIR.
 284 */
 285static void
 286sba_dump_tlb(char *hpa)
 287{
 288	DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
 289	DBG_INIT("IOC_IBASE    : %016lx\n", READ_REG(hpa+IOC_IBASE));
 290	DBG_INIT("IOC_IMASK    : %016lx\n", READ_REG(hpa+IOC_IMASK));
 291	DBG_INIT("IOC_TCNFG    : %016lx\n", READ_REG(hpa+IOC_TCNFG));
 292	DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
 293	DBG_INIT("\n");
 294}
 295#endif
 296
 297
 298#ifdef ASSERT_PDIR_SANITY
 299
 300/**
 301 * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
 302 * @ioc: IO MMU structure which owns the pdir we are interested in.
 303 * @msg: text to print ont the output line.
 304 * @pide: pdir index.
 305 *
 306 * Print one entry of the IO MMU PDIR in human readable form.
 307 */
 308static void
 309sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
 310{
 311	/* start printing from lowest pde in rval */
 312	u64 *ptr = &ioc->pdir_base[pide  & ~(BITS_PER_LONG - 1)];
 313	unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
 314	uint rcnt;
 315
 316	printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
 317		 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
 318
 319	rcnt = 0;
 320	while (rcnt < BITS_PER_LONG) {
 321		printk(KERN_DEBUG "%s %2d %p %016Lx\n",
 322		       (rcnt == (pide & (BITS_PER_LONG - 1)))
 323		       ? "    -->" : "       ",
 324		       rcnt, ptr, (unsigned long long) *ptr );
 325		rcnt++;
 326		ptr++;
 327	}
 328	printk(KERN_DEBUG "%s", msg);
 329}
 330
 331
 332/**
 333 * sba_check_pdir - debugging only - consistency checker
 334 * @ioc: IO MMU structure which owns the pdir we are interested in.
 335 * @msg: text to print ont the output line.
 336 *
 337 * Verify the resource map and pdir state is consistent
 338 */
 339static int
 340sba_check_pdir(struct ioc *ioc, char *msg)
 341{
 342	u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
 343	u64 *rptr = (u64 *) ioc->res_map;	/* resource map ptr */
 344	u64 *pptr = ioc->pdir_base;	/* pdir ptr */
 345	uint pide = 0;
 346
 347	while (rptr < rptr_end) {
 348		u64 rval;
 349		int rcnt; /* number of bits we might check */
 350
 351		rval = *rptr;
 352		rcnt = 64;
 353
 354		while (rcnt) {
 355			/* Get last byte and highest bit from that */
 356			u32 pde = ((u32)((*pptr >> (63)) & 0x1));
 357			if ((rval & 0x1) ^ pde)
 358			{
 359				/*
 360				** BUMMER!  -- res_map != pdir --
 361				** Dump rval and matching pdir entries
 362				*/
 363				sba_dump_pdir_entry(ioc, msg, pide);
 364				return(1);
 365			}
 366			rcnt--;
 367			rval >>= 1;	/* try the next bit */
 368			pptr++;
 369			pide++;
 370		}
 371		rptr++;	/* look at next word of res_map */
 372	}
 373	/* It'd be nice if we always got here :^) */
 374	return 0;
 375}
 376
 377
 378/**
 379 * sba_dump_sg - debugging only - print Scatter-Gather list
 380 * @ioc: IO MMU structure which owns the pdir we are interested in.
 381 * @startsg: head of the SG list
 382 * @nents: number of entries in SG list
 383 *
 384 * print the SG list so we can verify it's correct by hand.
 385 */
 386static void
 387sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
 388{
 389	while (nents-- > 0) {
 390		printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
 391		       startsg->dma_address, startsg->dma_length,
 392		       sba_sg_address(startsg));
 393		startsg = sg_next(startsg);
 394	}
 395}
 396
 397static void
 398sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
 399{
 400	struct scatterlist *the_sg = startsg;
 401	int the_nents = nents;
 402
 403	while (the_nents-- > 0) {
 404		if (sba_sg_address(the_sg) == 0x0UL)
 405			sba_dump_sg(NULL, startsg, nents);
 406		the_sg = sg_next(the_sg);
 407	}
 408}
 409
 410#endif /* ASSERT_PDIR_SANITY */
 411
 412
 413
 414
 415/**************************************************************
 416*
 417*   I/O Pdir Resource Management
 418*
 419*   Bits set in the resource map are in use.
 420*   Each bit can represent a number of pages.
 421*   LSbs represent lower addresses (IOVA's).
 422*
 423***************************************************************/
 424#define PAGES_PER_RANGE 1	/* could increase this to 4 or 8 if needed */
 425
 426/* Convert from IOVP to IOVA and vice versa. */
 427#define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
 428#define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
 429
 430#define PDIR_ENTRY_SIZE	sizeof(u64)
 431
 432#define PDIR_INDEX(iovp)   ((iovp)>>iovp_shift)
 433
 434#define RESMAP_MASK(n)    ~(~0UL << (n))
 435#define RESMAP_IDX_MASK   (sizeof(unsigned long) - 1)
 436
 437
 438/**
 439 * For most cases the normal get_order is sufficient, however it limits us
 440 * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity.
 441 * It only incurs about 1 clock cycle to use this one with the static variable
 442 * and makes the code more intuitive.
 443 */
 444static SBA_INLINE int
 445get_iovp_order (unsigned long size)
 446{
 447	long double d = size - 1;
 448	long order;
 449
 450	order = ia64_getf_exp(d);
 451	order = order - iovp_shift - 0xffff + 1;
 452	if (order < 0)
 453		order = 0;
 454	return order;
 455}
 456
 457static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
 458				 unsigned int bitshiftcnt)
 459{
 460	return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
 461		+ bitshiftcnt;
 462}
 463
 464/**
 465 * sba_search_bitmap - find free space in IO PDIR resource bitmap
 466 * @ioc: IO MMU structure which owns the pdir we are interested in.
 467 * @bits_wanted: number of entries we need.
 468 * @use_hint: use res_hint to indicate where to start looking
 469 *
 470 * Find consecutive free bits in resource bitmap.
 471 * Each bit represents one entry in the IO Pdir.
 472 * Cool perf optimization: search for log2(size) bits at a time.
 473 */
 474static SBA_INLINE unsigned long
 475sba_search_bitmap(struct ioc *ioc, struct device *dev,
 476		  unsigned long bits_wanted, int use_hint)
 477{
 478	unsigned long *res_ptr;
 479	unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
 480	unsigned long flags, pide = ~0UL, tpide;
 481	unsigned long boundary_size;
 482	unsigned long shift;
 483	int ret;
 484
 485	ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
 486	ASSERT(res_ptr < res_end);
 487
 488	boundary_size = (unsigned long long)dma_get_seg_boundary(dev) + 1;
 489	boundary_size = ALIGN(boundary_size, 1ULL << iovp_shift) >> iovp_shift;
 490
 491	BUG_ON(ioc->ibase & ~iovp_mask);
 492	shift = ioc->ibase >> iovp_shift;
 493
 494	spin_lock_irqsave(&ioc->res_lock, flags);
 495
 496	/* Allow caller to force a search through the entire resource space */
 497	if (likely(use_hint)) {
 498		res_ptr = ioc->res_hint;
 499	} else {
 500		res_ptr = (ulong *)ioc->res_map;
 501		ioc->res_bitshift = 0;
 502	}
 503
 504	/*
 505	 * N.B.  REO/Grande defect AR2305 can cause TLB fetch timeouts
 506	 * if a TLB entry is purged while in use.  sba_mark_invalid()
 507	 * purges IOTLB entries in power-of-two sizes, so we also
 508	 * allocate IOVA space in power-of-two sizes.
 509	 */
 510	bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
 511
 512	if (likely(bits_wanted == 1)) {
 513		unsigned int bitshiftcnt;
 514		for(; res_ptr < res_end ; res_ptr++) {
 515			if (likely(*res_ptr != ~0UL)) {
 516				bitshiftcnt = ffz(*res_ptr);
 517				*res_ptr |= (1UL << bitshiftcnt);
 518				pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
 519				ioc->res_bitshift = bitshiftcnt + bits_wanted;
 520				goto found_it;
 521			}
 522		}
 523		goto not_found;
 524
 525	}
 526	
 527	if (likely(bits_wanted <= BITS_PER_LONG/2)) {
 528		/*
 529		** Search the resource bit map on well-aligned values.
 530		** "o" is the alignment.
 531		** We need the alignment to invalidate I/O TLB using
 532		** SBA HW features in the unmap path.
 533		*/
 534		unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
 535		uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
 536		unsigned long mask, base_mask;
 537
 538		base_mask = RESMAP_MASK(bits_wanted);
 539		mask = base_mask << bitshiftcnt;
 540
 541		DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
 542		for(; res_ptr < res_end ; res_ptr++)
 543		{ 
 544			DBG_RES("    %p %lx %lx\n", res_ptr, mask, *res_ptr);
 545			ASSERT(0 != mask);
 546			for (; mask ; mask <<= o, bitshiftcnt += o) {
 547				tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
 548				ret = iommu_is_span_boundary(tpide, bits_wanted,
 549							     shift,
 550							     boundary_size);
 551				if ((0 == ((*res_ptr) & mask)) && !ret) {
 552					*res_ptr |= mask;     /* mark resources busy! */
 553					pide = tpide;
 554					ioc->res_bitshift = bitshiftcnt + bits_wanted;
 555					goto found_it;
 556				}
 557			}
 558
 559			bitshiftcnt = 0;
 560			mask = base_mask;
 561
 562		}
 563
 564	} else {
 565		int qwords, bits, i;
 566		unsigned long *end;
 567
 568		qwords = bits_wanted >> 6; /* /64 */
 569		bits = bits_wanted - (qwords * BITS_PER_LONG);
 570
 571		end = res_end - qwords;
 572
 573		for (; res_ptr < end; res_ptr++) {
 574			tpide = ptr_to_pide(ioc, res_ptr, 0);
 575			ret = iommu_is_span_boundary(tpide, bits_wanted,
 576						     shift, boundary_size);
 577			if (ret)
 578				goto next_ptr;
 579			for (i = 0 ; i < qwords ; i++) {
 580				if (res_ptr[i] != 0)
 581					goto next_ptr;
 582			}
 583			if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
 584				continue;
 585
 586			/* Found it, mark it */
 587			for (i = 0 ; i < qwords ; i++)
 588				res_ptr[i] = ~0UL;
 589			res_ptr[i] |= RESMAP_MASK(bits);
 590
 591			pide = tpide;
 592			res_ptr += qwords;
 593			ioc->res_bitshift = bits;
 594			goto found_it;
 595next_ptr:
 596			;
 597		}
 598	}
 599
 600not_found:
 601	prefetch(ioc->res_map);
 602	ioc->res_hint = (unsigned long *) ioc->res_map;
 603	ioc->res_bitshift = 0;
 604	spin_unlock_irqrestore(&ioc->res_lock, flags);
 605	return (pide);
 606
 607found_it:
 608	ioc->res_hint = res_ptr;
 609	spin_unlock_irqrestore(&ioc->res_lock, flags);
 610	return (pide);
 611}
 612
 613
 614/**
 615 * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
 616 * @ioc: IO MMU structure which owns the pdir we are interested in.
 617 * @size: number of bytes to create a mapping for
 618 *
 619 * Given a size, find consecutive unmarked and then mark those bits in the
 620 * resource bit map.
 621 */
 622static int
 623sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
 624{
 625	unsigned int pages_needed = size >> iovp_shift;
 626#ifdef PDIR_SEARCH_TIMING
 627	unsigned long itc_start;
 628#endif
 629	unsigned long pide;
 630
 631	ASSERT(pages_needed);
 632	ASSERT(0 == (size & ~iovp_mask));
 633
 634#ifdef PDIR_SEARCH_TIMING
 635	itc_start = ia64_get_itc();
 636#endif
 637	/*
 638	** "seek and ye shall find"...praying never hurts either...
 639	*/
 640	pide = sba_search_bitmap(ioc, dev, pages_needed, 1);
 641	if (unlikely(pide >= (ioc->res_size << 3))) {
 642		pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
 643		if (unlikely(pide >= (ioc->res_size << 3))) {
 644#if DELAYED_RESOURCE_CNT > 0
 645			unsigned long flags;
 646
 647			/*
 648			** With delayed resource freeing, we can give this one more shot.  We're
 649			** getting close to being in trouble here, so do what we can to make this
 650			** one count.
 651			*/
 652			spin_lock_irqsave(&ioc->saved_lock, flags);
 653			if (ioc->saved_cnt > 0) {
 654				struct sba_dma_pair *d;
 655				int cnt = ioc->saved_cnt;
 656
 657				d = &(ioc->saved[ioc->saved_cnt - 1]);
 658
 659				spin_lock(&ioc->res_lock);
 660				while (cnt--) {
 661					sba_mark_invalid(ioc, d->iova, d->size);
 662					sba_free_range(ioc, d->iova, d->size);
 663					d--;
 664				}
 665				ioc->saved_cnt = 0;
 666				READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
 667				spin_unlock(&ioc->res_lock);
 668			}
 669			spin_unlock_irqrestore(&ioc->saved_lock, flags);
 670
 671			pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
 672			if (unlikely(pide >= (ioc->res_size << 3))) {
 673				printk(KERN_WARNING "%s: I/O MMU @ %p is"
 674				       "out of mapping resources, %u %u %lx\n",
 675				       __func__, ioc->ioc_hpa, ioc->res_size,
 676				       pages_needed, dma_get_seg_boundary(dev));
 677				return -1;
 678			}
 679#else
 680			printk(KERN_WARNING "%s: I/O MMU @ %p is"
 681			       "out of mapping resources, %u %u %lx\n",
 682			       __func__, ioc->ioc_hpa, ioc->res_size,
 683			       pages_needed, dma_get_seg_boundary(dev));
 684			return -1;
 685#endif
 686		}
 687	}
 688
 689#ifdef PDIR_SEARCH_TIMING
 690	ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
 691	ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
 692#endif
 693
 694	prefetchw(&(ioc->pdir_base[pide]));
 695
 696#ifdef ASSERT_PDIR_SANITY
 697	/* verify the first enable bit is clear */
 698	if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
 699		sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
 700	}
 701#endif
 702
 703	DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
 704		__func__, size, pages_needed, pide,
 705		(uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
 706		ioc->res_bitshift );
 707
 708	return (pide);
 709}
 710
 711
 712/**
 713 * sba_free_range - unmark bits in IO PDIR resource bitmap
 714 * @ioc: IO MMU structure which owns the pdir we are interested in.
 715 * @iova: IO virtual address which was previously allocated.
 716 * @size: number of bytes to create a mapping for
 717 *
 718 * clear bits in the ioc's resource map
 719 */
 720static SBA_INLINE void
 721sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
 722{
 723	unsigned long iovp = SBA_IOVP(ioc, iova);
 724	unsigned int pide = PDIR_INDEX(iovp);
 725	unsigned int ridx = pide >> 3;	/* convert bit to byte address */
 726	unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
 727	int bits_not_wanted = size >> iovp_shift;
 728	unsigned long m;
 729
 730	/* Round up to power-of-two size: see AR2305 note above */
 731	bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
 732	for (; bits_not_wanted > 0 ; res_ptr++) {
 733		
 734		if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
 735
 736			/* these mappings start 64bit aligned */
 737			*res_ptr = 0UL;
 738			bits_not_wanted -= BITS_PER_LONG;
 739			pide += BITS_PER_LONG;
 740
 741		} else {
 742
 743			/* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
 744			m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
 745			bits_not_wanted = 0;
 746
 747			DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size,
 748			        bits_not_wanted, m, pide, res_ptr, *res_ptr);
 749
 750			ASSERT(m != 0);
 751			ASSERT(bits_not_wanted);
 752			ASSERT((*res_ptr & m) == m); /* verify same bits are set */
 753			*res_ptr &= ~m;
 754		}
 755	}
 756}
 757
 758
 759/**************************************************************
 760*
 761*   "Dynamic DMA Mapping" support (aka "Coherent I/O")
 762*
 763***************************************************************/
 764
 765/**
 766 * sba_io_pdir_entry - fill in one IO PDIR entry
 767 * @pdir_ptr:  pointer to IO PDIR entry
 768 * @vba: Virtual CPU address of buffer to map
 769 *
 770 * SBA Mapping Routine
 771 *
 772 * Given a virtual address (vba, arg1) sba_io_pdir_entry()
 773 * loads the I/O PDIR entry pointed to by pdir_ptr (arg0).
 774 * Each IO Pdir entry consists of 8 bytes as shown below
 775 * (LSB == bit 0):
 776 *
 777 *  63                    40                                 11    7        0
 778 * +-+---------------------+----------------------------------+----+--------+
 779 * |V|        U            |            PPN[39:12]            | U  |   FF   |
 780 * +-+---------------------+----------------------------------+----+--------+
 781 *
 782 *  V  == Valid Bit
 783 *  U  == Unused
 784 * PPN == Physical Page Number
 785 *
 786 * The physical address fields are filled with the results of virt_to_phys()
 787 * on the vba.
 788 */
 789
 790#if 1
 791#define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL)	\
 792						      | 0x8000000000000000ULL)
 793#else
 794void SBA_INLINE
 795sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
 796{
 797	*pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
 798}
 799#endif
 800
 801#ifdef ENABLE_MARK_CLEAN
 802/**
 803 * Since DMA is i-cache coherent, any (complete) pages that were written via
 804 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
 805 * flush them when they get mapped into an executable vm-area.
 806 */
 807static void
 808mark_clean (void *addr, size_t size)
 809{
 810	unsigned long pg_addr, end;
 811
 812	pg_addr = PAGE_ALIGN((unsigned long) addr);
 813	end = (unsigned long) addr + size;
 814	while (pg_addr + PAGE_SIZE <= end) {
 815		struct page *page = virt_to_page((void *)pg_addr);
 816		set_bit(PG_arch_1, &page->flags);
 817		pg_addr += PAGE_SIZE;
 818	}
 819}
 820#endif
 821
 822/**
 823 * sba_mark_invalid - invalidate one or more IO PDIR entries
 824 * @ioc: IO MMU structure which owns the pdir we are interested in.
 825 * @iova:  IO Virtual Address mapped earlier
 826 * @byte_cnt:  number of bytes this mapping covers.
 827 *
 828 * Marking the IO PDIR entry(ies) as Invalid and invalidate
 829 * corresponding IO TLB entry. The PCOM (Purge Command Register)
 830 * is to purge stale entries in the IO TLB when unmapping entries.
 831 *
 832 * The PCOM register supports purging of multiple pages, with a minium
 833 * of 1 page and a maximum of 2GB. Hardware requires the address be
 834 * aligned to the size of the range being purged. The size of the range
 835 * must be a power of 2. The "Cool perf optimization" in the
 836 * allocation routine helps keep that true.
 837 */
 838static SBA_INLINE void
 839sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
 840{
 841	u32 iovp = (u32) SBA_IOVP(ioc,iova);
 842
 843	int off = PDIR_INDEX(iovp);
 844
 845	/* Must be non-zero and rounded up */
 846	ASSERT(byte_cnt > 0);
 847	ASSERT(0 == (byte_cnt & ~iovp_mask));
 848
 849#ifdef ASSERT_PDIR_SANITY
 850	/* Assert first pdir entry is set */
 851	if (!(ioc->pdir_base[off] >> 60)) {
 852		sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
 853	}
 854#endif
 855
 856	if (byte_cnt <= iovp_size)
 857	{
 858		ASSERT(off < ioc->pdir_size);
 859
 860		iovp |= iovp_shift;     /* set "size" field for PCOM */
 861
 862#ifndef FULL_VALID_PDIR
 863		/*
 864		** clear I/O PDIR entry "valid" bit
 865		** Do NOT clear the rest - save it for debugging.
 866		** We should only clear bits that have previously
 867		** been enabled.
 868		*/
 869		ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
 870#else
 871		/*
 872  		** If we want to maintain the PDIR as valid, put in
 873		** the spill page so devices prefetching won't
 874		** cause a hard fail.
 875		*/
 876		ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
 877#endif
 878	} else {
 879		u32 t = get_iovp_order(byte_cnt) + iovp_shift;
 880
 881		iovp |= t;
 882		ASSERT(t <= 31);   /* 2GB! Max value of "size" field */
 883
 884		do {
 885			/* verify this pdir entry is enabled */
 886			ASSERT(ioc->pdir_base[off]  >> 63);
 887#ifndef FULL_VALID_PDIR
 888			/* clear I/O Pdir entry "valid" bit first */
 889			ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
 890#else
 891			ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
 892#endif
 893			off++;
 894			byte_cnt -= iovp_size;
 895		} while (byte_cnt > 0);
 896	}
 897
 898	WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
 899}
 900
 901/**
 902 * sba_map_page - map one buffer and return IOVA for DMA
 903 * @dev: instance of PCI owned by the driver that's asking.
 904 * @page: page to map
 905 * @poff: offset into page
 906 * @size: number of bytes to map
 907 * @dir: dma direction
 908 * @attrs: optional dma attributes
 909 *
 910 * See Documentation/DMA-API-HOWTO.txt
 911 */
 912static dma_addr_t sba_map_page(struct device *dev, struct page *page,
 913			       unsigned long poff, size_t size,
 914			       enum dma_data_direction dir,
 915			       unsigned long attrs)
 916{
 917	struct ioc *ioc;
 918	void *addr = page_address(page) + poff;
 919	dma_addr_t iovp;
 920	dma_addr_t offset;
 921	u64 *pdir_start;
 922	int pide;
 923#ifdef ASSERT_PDIR_SANITY
 924	unsigned long flags;
 925#endif
 926#ifdef ALLOW_IOV_BYPASS
 927	unsigned long pci_addr = virt_to_phys(addr);
 928#endif
 929
 930#ifdef ALLOW_IOV_BYPASS
 931	ASSERT(to_pci_dev(dev)->dma_mask);
 932	/*
 933 	** Check if the PCI device can DMA to ptr... if so, just return ptr
 934 	*/
 935	if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
 936		/*
 937 		** Device is bit capable of DMA'ing to the buffer...
 938		** just return the PCI address of ptr
 939 		*/
 940		DBG_BYPASS("sba_map_page() bypass mask/addr: "
 941			   "0x%lx/0x%lx\n",
 942		           to_pci_dev(dev)->dma_mask, pci_addr);
 943		return pci_addr;
 944	}
 945#endif
 946	ioc = GET_IOC(dev);
 947	ASSERT(ioc);
 948
 949	prefetch(ioc->res_hint);
 950
 951	ASSERT(size > 0);
 952	ASSERT(size <= DMA_CHUNK_SIZE);
 953
 954	/* save offset bits */
 955	offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
 956
 957	/* round up to nearest iovp_size */
 958	size = (size + offset + ~iovp_mask) & iovp_mask;
 959
 960#ifdef ASSERT_PDIR_SANITY
 961	spin_lock_irqsave(&ioc->res_lock, flags);
 962	if (sba_check_pdir(ioc,"Check before sba_map_page()"))
 963		panic("Sanity check failed");
 964	spin_unlock_irqrestore(&ioc->res_lock, flags);
 965#endif
 966
 967	pide = sba_alloc_range(ioc, dev, size);
 968	if (pide < 0)
 969		return DMA_MAPPING_ERROR;
 970
 971	iovp = (dma_addr_t) pide << iovp_shift;
 972
 973	DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset);
 974
 975	pdir_start = &(ioc->pdir_base[pide]);
 976
 977	while (size > 0) {
 978		ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
 979		sba_io_pdir_entry(pdir_start, (unsigned long) addr);
 980
 981		DBG_RUN("     pdir 0x%p %lx\n", pdir_start, *pdir_start);
 982
 983		addr += iovp_size;
 984		size -= iovp_size;
 985		pdir_start++;
 986	}
 987	/* force pdir update */
 988	wmb();
 989
 990	/* form complete address */
 991#ifdef ASSERT_PDIR_SANITY
 992	spin_lock_irqsave(&ioc->res_lock, flags);
 993	sba_check_pdir(ioc,"Check after sba_map_page()");
 994	spin_unlock_irqrestore(&ioc->res_lock, flags);
 995#endif
 996	return SBA_IOVA(ioc, iovp, offset);
 997}
 998
 
 
 
 
 
 
 
 
 999#ifdef ENABLE_MARK_CLEAN
1000static SBA_INLINE void
1001sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
1002{
1003	u32	iovp = (u32) SBA_IOVP(ioc,iova);
1004	int	off = PDIR_INDEX(iovp);
1005	void	*addr;
1006
1007	if (size <= iovp_size) {
1008		addr = phys_to_virt(ioc->pdir_base[off] &
1009		                    ~0xE000000000000FFFULL);
1010		mark_clean(addr, size);
1011	} else {
1012		do {
1013			addr = phys_to_virt(ioc->pdir_base[off] &
1014			                    ~0xE000000000000FFFULL);
1015			mark_clean(addr, min(size, iovp_size));
1016			off++;
1017			size -= iovp_size;
1018		} while (size > 0);
1019	}
1020}
1021#endif
1022
1023/**
1024 * sba_unmap_page - unmap one IOVA and free resources
1025 * @dev: instance of PCI owned by the driver that's asking.
1026 * @iova:  IOVA of driver buffer previously mapped.
1027 * @size:  number of bytes mapped in driver buffer.
1028 * @dir:  R/W or both.
1029 * @attrs: optional dma attributes
1030 *
1031 * See Documentation/DMA-API-HOWTO.txt
1032 */
1033static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
1034			   enum dma_data_direction dir, unsigned long attrs)
1035{
1036	struct ioc *ioc;
1037#if DELAYED_RESOURCE_CNT > 0
1038	struct sba_dma_pair *d;
1039#endif
1040	unsigned long flags;
1041	dma_addr_t offset;
1042
1043	ioc = GET_IOC(dev);
1044	ASSERT(ioc);
1045
1046#ifdef ALLOW_IOV_BYPASS
1047	if (likely((iova & ioc->imask) != ioc->ibase)) {
1048		/*
1049		** Address does not fall w/in IOVA, must be bypassing
1050		*/
1051		DBG_BYPASS("sba_unmap_page() bypass addr: 0x%lx\n",
1052			   iova);
1053
1054#ifdef ENABLE_MARK_CLEAN
1055		if (dir == DMA_FROM_DEVICE) {
1056			mark_clean(phys_to_virt(iova), size);
1057		}
1058#endif
1059		return;
1060	}
1061#endif
1062	offset = iova & ~iovp_mask;
1063
1064	DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
1065
1066	iova ^= offset;        /* clear offset bits */
1067	size += offset;
1068	size = ROUNDUP(size, iovp_size);
1069
1070#ifdef ENABLE_MARK_CLEAN
1071	if (dir == DMA_FROM_DEVICE)
1072		sba_mark_clean(ioc, iova, size);
1073#endif
1074
1075#if DELAYED_RESOURCE_CNT > 0
1076	spin_lock_irqsave(&ioc->saved_lock, flags);
1077	d = &(ioc->saved[ioc->saved_cnt]);
1078	d->iova = iova;
1079	d->size = size;
1080	if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
1081		int cnt = ioc->saved_cnt;
1082		spin_lock(&ioc->res_lock);
1083		while (cnt--) {
1084			sba_mark_invalid(ioc, d->iova, d->size);
1085			sba_free_range(ioc, d->iova, d->size);
1086			d--;
1087		}
1088		ioc->saved_cnt = 0;
1089		READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
1090		spin_unlock(&ioc->res_lock);
1091	}
1092	spin_unlock_irqrestore(&ioc->saved_lock, flags);
1093#else /* DELAYED_RESOURCE_CNT == 0 */
1094	spin_lock_irqsave(&ioc->res_lock, flags);
1095	sba_mark_invalid(ioc, iova, size);
1096	sba_free_range(ioc, iova, size);
1097	READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
1098	spin_unlock_irqrestore(&ioc->res_lock, flags);
1099#endif /* DELAYED_RESOURCE_CNT == 0 */
1100}
1101
 
 
 
 
 
 
1102/**
1103 * sba_alloc_coherent - allocate/map shared mem for DMA
1104 * @dev: instance of PCI owned by the driver that's asking.
1105 * @size:  number of bytes mapped in driver buffer.
1106 * @dma_handle:  IOVA of new buffer.
1107 *
1108 * See Documentation/DMA-API-HOWTO.txt
1109 */
1110static void *
1111sba_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1112		   gfp_t flags, unsigned long attrs)
1113{
1114	struct page *page;
1115	struct ioc *ioc;
1116	int node = -1;
1117	void *addr;
1118
1119	ioc = GET_IOC(dev);
1120	ASSERT(ioc);
 
1121#ifdef CONFIG_NUMA
1122	node = ioc->node;
1123#endif
1124
1125	page = alloc_pages_node(node, flags, get_order(size));
1126	if (unlikely(!page))
 
 
 
 
 
 
 
 
1127		return NULL;
1128
1129	addr = page_address(page);
1130	memset(addr, 0, size);
1131	*dma_handle = page_to_phys(page);
1132
1133#ifdef ALLOW_IOV_BYPASS
1134	ASSERT(dev->coherent_dma_mask);
1135	/*
1136 	** Check if the PCI device can DMA to ptr... if so, just return ptr
1137 	*/
1138	if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
1139		DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
1140		           dev->coherent_dma_mask, *dma_handle);
1141
1142		return addr;
1143	}
1144#endif
1145
1146	/*
1147	 * If device can't bypass or bypass is disabled, pass the 32bit fake
1148	 * device to map single to get an iova mapping.
1149	 */
1150	*dma_handle = sba_map_page(&ioc->sac_only_dev->dev, page, 0, size,
1151			DMA_BIDIRECTIONAL, 0);
1152	if (dma_mapping_error(dev, *dma_handle))
1153		return NULL;
1154	return addr;
1155}
1156
1157
1158/**
1159 * sba_free_coherent - free/unmap shared mem for DMA
1160 * @dev: instance of PCI owned by the driver that's asking.
1161 * @size:  number of bytes mapped in driver buffer.
1162 * @vaddr:  virtual address IOVA of "consistent" buffer.
1163 * @dma_handler:  IO virtual address of "consistent" buffer.
1164 *
1165 * See Documentation/DMA-API-HOWTO.txt
1166 */
1167static void sba_free_coherent(struct device *dev, size_t size, void *vaddr,
1168			      dma_addr_t dma_handle, unsigned long attrs)
1169{
1170	sba_unmap_page(dev, dma_handle, size, 0, 0);
1171	free_pages((unsigned long) vaddr, get_order(size));
1172}
1173
1174
1175/*
1176** Since 0 is a valid pdir_base index value, can't use that
1177** to determine if a value is valid or not. Use a flag to indicate
1178** the SG list entry contains a valid pdir index.
1179*/
1180#define PIDE_FLAG 0x1UL
1181
1182#ifdef DEBUG_LARGE_SG_ENTRIES
1183int dump_run_sg = 0;
1184#endif
1185
1186
1187/**
1188 * sba_fill_pdir - write allocated SG entries into IO PDIR
1189 * @ioc: IO MMU structure which owns the pdir we are interested in.
1190 * @startsg:  list of IOVA/size pairs
1191 * @nents: number of entries in startsg list
1192 *
1193 * Take preprocessed SG list and write corresponding entries
1194 * in the IO PDIR.
1195 */
1196
1197static SBA_INLINE int
1198sba_fill_pdir(
1199	struct ioc *ioc,
1200	struct scatterlist *startsg,
1201	int nents)
1202{
1203	struct scatterlist *dma_sg = startsg;	/* pointer to current DMA */
1204	int n_mappings = 0;
1205	u64 *pdirp = NULL;
1206	unsigned long dma_offset = 0;
1207
1208	while (nents-- > 0) {
1209		int     cnt = startsg->dma_length;
1210		startsg->dma_length = 0;
1211
1212#ifdef DEBUG_LARGE_SG_ENTRIES
1213		if (dump_run_sg)
1214			printk(" %2d : %08lx/%05x %p\n",
1215				nents, startsg->dma_address, cnt,
1216				sba_sg_address(startsg));
1217#else
1218		DBG_RUN_SG(" %d : %08lx/%05x %p\n",
1219				nents, startsg->dma_address, cnt,
1220				sba_sg_address(startsg));
1221#endif
1222		/*
1223		** Look for the start of a new DMA stream
1224		*/
1225		if (startsg->dma_address & PIDE_FLAG) {
1226			u32 pide = startsg->dma_address & ~PIDE_FLAG;
1227			dma_offset = (unsigned long) pide & ~iovp_mask;
1228			startsg->dma_address = 0;
1229			if (n_mappings)
1230				dma_sg = sg_next(dma_sg);
1231			dma_sg->dma_address = pide | ioc->ibase;
1232			pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
1233			n_mappings++;
1234		}
1235
1236		/*
1237		** Look for a VCONTIG chunk
1238		*/
1239		if (cnt) {
1240			unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1241			ASSERT(pdirp);
1242
1243			/* Since multiple Vcontig blocks could make up
1244			** one DMA stream, *add* cnt to dma_len.
1245			*/
1246			dma_sg->dma_length += cnt;
1247			cnt += dma_offset;
1248			dma_offset=0;	/* only want offset on first chunk */
1249			cnt = ROUNDUP(cnt, iovp_size);
1250			do {
1251				sba_io_pdir_entry(pdirp, vaddr);
1252				vaddr += iovp_size;
1253				cnt -= iovp_size;
1254				pdirp++;
1255			} while (cnt > 0);
1256		}
1257		startsg = sg_next(startsg);
1258	}
1259	/* force pdir update */
1260	wmb();
1261
1262#ifdef DEBUG_LARGE_SG_ENTRIES
1263	dump_run_sg = 0;
1264#endif
1265	return(n_mappings);
1266}
1267
1268
1269/*
1270** Two address ranges are DMA contiguous *iff* "end of prev" and
1271** "start of next" are both on an IOV page boundary.
1272**
1273** (shift left is a quick trick to mask off upper bits)
1274*/
1275#define DMA_CONTIG(__X, __Y) \
1276	(((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
1277
1278
1279/**
1280 * sba_coalesce_chunks - preprocess the SG list
1281 * @ioc: IO MMU structure which owns the pdir we are interested in.
1282 * @startsg:  list of IOVA/size pairs
1283 * @nents: number of entries in startsg list
1284 *
1285 * First pass is to walk the SG list and determine where the breaks are
1286 * in the DMA stream. Allocates PDIR entries but does not fill them.
1287 * Returns the number of DMA chunks.
1288 *
1289 * Doing the fill separate from the coalescing/allocation keeps the
1290 * code simpler. Future enhancement could make one pass through
1291 * the sglist do both.
1292 */
1293static SBA_INLINE int
1294sba_coalesce_chunks(struct ioc *ioc, struct device *dev,
1295	struct scatterlist *startsg,
1296	int nents)
1297{
1298	struct scatterlist *vcontig_sg;    /* VCONTIG chunk head */
1299	unsigned long vcontig_len;         /* len of VCONTIG chunk */
1300	unsigned long vcontig_end;
1301	struct scatterlist *dma_sg;        /* next DMA stream head */
1302	unsigned long dma_offset, dma_len; /* start/len of DMA stream */
1303	int n_mappings = 0;
1304	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1305	int idx;
1306
1307	while (nents > 0) {
1308		unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1309
1310		/*
1311		** Prepare for first/next DMA stream
1312		*/
1313		dma_sg = vcontig_sg = startsg;
1314		dma_len = vcontig_len = vcontig_end = startsg->length;
1315		vcontig_end +=  vaddr;
1316		dma_offset = vaddr & ~iovp_mask;
1317
1318		/* PARANOID: clear entries */
1319		startsg->dma_address = startsg->dma_length = 0;
1320
1321		/*
1322		** This loop terminates one iteration "early" since
1323		** it's always looking one "ahead".
1324		*/
1325		while (--nents > 0) {
1326			unsigned long vaddr;	/* tmp */
1327
1328			startsg = sg_next(startsg);
1329
1330			/* PARANOID */
1331			startsg->dma_address = startsg->dma_length = 0;
1332
1333			/* catch brokenness in SCSI layer */
1334			ASSERT(startsg->length <= DMA_CHUNK_SIZE);
1335
1336			/*
1337			** First make sure current dma stream won't
1338			** exceed DMA_CHUNK_SIZE if we coalesce the
1339			** next entry.
1340			*/
1341			if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
1342			    > DMA_CHUNK_SIZE)
1343				break;
1344
1345			if (dma_len + startsg->length > max_seg_size)
1346				break;
1347
1348			/*
1349			** Then look for virtually contiguous blocks.
1350			**
1351			** append the next transaction?
1352			*/
1353			vaddr = (unsigned long) sba_sg_address(startsg);
1354			if  (vcontig_end == vaddr)
1355			{
1356				vcontig_len += startsg->length;
1357				vcontig_end += startsg->length;
1358				dma_len     += startsg->length;
1359				continue;
1360			}
1361
1362#ifdef DEBUG_LARGE_SG_ENTRIES
1363			dump_run_sg = (vcontig_len > iovp_size);
1364#endif
1365
1366			/*
1367			** Not virtually contiguous.
1368			** Terminate prev chunk.
1369			** Start a new chunk.
1370			**
1371			** Once we start a new VCONTIG chunk, dma_offset
1372			** can't change. And we need the offset from the first
1373			** chunk - not the last one. Ergo Successive chunks
1374			** must start on page boundaries and dove tail
1375			** with it's predecessor.
1376			*/
1377			vcontig_sg->dma_length = vcontig_len;
1378
1379			vcontig_sg = startsg;
1380			vcontig_len = startsg->length;
1381
1382			/*
1383			** 3) do the entries end/start on page boundaries?
1384			**    Don't update vcontig_end until we've checked.
1385			*/
1386			if (DMA_CONTIG(vcontig_end, vaddr))
1387			{
1388				vcontig_end = vcontig_len + vaddr;
1389				dma_len += vcontig_len;
1390				continue;
1391			} else {
1392				break;
1393			}
1394		}
1395
1396		/*
1397		** End of DMA Stream
1398		** Terminate last VCONTIG block.
1399		** Allocate space for DMA stream.
1400		*/
1401		vcontig_sg->dma_length = vcontig_len;
1402		dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
1403		ASSERT(dma_len <= DMA_CHUNK_SIZE);
1404		idx = sba_alloc_range(ioc, dev, dma_len);
1405		if (idx < 0) {
1406			dma_sg->dma_length = 0;
1407			return -1;
1408		}
1409		dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift)
1410						   | dma_offset);
1411		n_mappings++;
1412	}
1413
1414	return n_mappings;
1415}
1416
1417static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1418			       int nents, enum dma_data_direction dir,
1419			       unsigned long attrs);
1420/**
1421 * sba_map_sg - map Scatter/Gather list
1422 * @dev: instance of PCI owned by the driver that's asking.
1423 * @sglist:  array of buffer/length pairs
1424 * @nents:  number of entries in list
1425 * @dir:  R/W or both.
1426 * @attrs: optional dma attributes
1427 *
1428 * See Documentation/DMA-API-HOWTO.txt
1429 */
1430static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist,
1431			    int nents, enum dma_data_direction dir,
1432			    unsigned long attrs)
1433{
1434	struct ioc *ioc;
1435	int coalesced, filled = 0;
1436#ifdef ASSERT_PDIR_SANITY
1437	unsigned long flags;
1438#endif
1439#ifdef ALLOW_IOV_BYPASS_SG
1440	struct scatterlist *sg;
1441#endif
1442
1443	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1444	ioc = GET_IOC(dev);
1445	ASSERT(ioc);
1446
1447#ifdef ALLOW_IOV_BYPASS_SG
1448	ASSERT(to_pci_dev(dev)->dma_mask);
1449	if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
1450		for_each_sg(sglist, sg, nents, filled) {
1451			sg->dma_length = sg->length;
1452			sg->dma_address = virt_to_phys(sba_sg_address(sg));
1453		}
1454		return filled;
1455	}
1456#endif
1457	/* Fast path single entry scatterlists. */
1458	if (nents == 1) {
1459		sglist->dma_length = sglist->length;
1460		sglist->dma_address = sba_map_page(dev, sg_page(sglist),
1461				sglist->offset, sglist->length, dir, attrs);
1462		if (dma_mapping_error(dev, sglist->dma_address))
1463			return 0;
1464		return 1;
1465	}
1466
1467#ifdef ASSERT_PDIR_SANITY
1468	spin_lock_irqsave(&ioc->res_lock, flags);
1469	if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()"))
1470	{
1471		sba_dump_sg(ioc, sglist, nents);
1472		panic("Check before sba_map_sg_attrs()");
1473	}
1474	spin_unlock_irqrestore(&ioc->res_lock, flags);
1475#endif
1476
1477	prefetch(ioc->res_hint);
1478
1479	/*
1480	** First coalesce the chunks and allocate I/O pdir space
1481	**
1482	** If this is one DMA stream, we can properly map using the
1483	** correct virtual address associated with each DMA page.
1484	** w/o this association, we wouldn't have coherent DMA!
1485	** Access to the virtual address is what forces a two pass algorithm.
1486	*/
1487	coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents);
1488	if (coalesced < 0) {
1489		sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs);
1490		return 0;
1491	}
1492
1493	/*
1494	** Program the I/O Pdir
1495	**
1496	** map the virtual addresses to the I/O Pdir
1497	** o dma_address will contain the pdir index
1498	** o dma_len will contain the number of bytes to map
1499	** o address contains the virtual address.
1500	*/
1501	filled = sba_fill_pdir(ioc, sglist, nents);
1502
1503#ifdef ASSERT_PDIR_SANITY
1504	spin_lock_irqsave(&ioc->res_lock, flags);
1505	if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()"))
1506	{
1507		sba_dump_sg(ioc, sglist, nents);
1508		panic("Check after sba_map_sg_attrs()\n");
1509	}
1510	spin_unlock_irqrestore(&ioc->res_lock, flags);
1511#endif
1512
1513	ASSERT(coalesced == filled);
1514	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1515
1516	return filled;
1517}
1518
1519/**
1520 * sba_unmap_sg_attrs - unmap Scatter/Gather list
1521 * @dev: instance of PCI owned by the driver that's asking.
1522 * @sglist:  array of buffer/length pairs
1523 * @nents:  number of entries in list
1524 * @dir:  R/W or both.
1525 * @attrs: optional dma attributes
1526 *
1527 * See Documentation/DMA-API-HOWTO.txt
1528 */
1529static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1530			       int nents, enum dma_data_direction dir,
1531			       unsigned long attrs)
1532{
1533#ifdef ASSERT_PDIR_SANITY
1534	struct ioc *ioc;
1535	unsigned long flags;
1536#endif
1537
1538	DBG_RUN_SG("%s() START %d entries,  %p,%x\n",
1539		   __func__, nents, sba_sg_address(sglist), sglist->length);
1540
1541#ifdef ASSERT_PDIR_SANITY
1542	ioc = GET_IOC(dev);
1543	ASSERT(ioc);
1544
1545	spin_lock_irqsave(&ioc->res_lock, flags);
1546	sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()");
1547	spin_unlock_irqrestore(&ioc->res_lock, flags);
1548#endif
1549
1550	while (nents && sglist->dma_length) {
1551
1552		sba_unmap_page(dev, sglist->dma_address, sglist->dma_length,
1553			       dir, attrs);
1554		sglist = sg_next(sglist);
1555		nents--;
1556	}
1557
1558	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__,  nents);
1559
1560#ifdef ASSERT_PDIR_SANITY
1561	spin_lock_irqsave(&ioc->res_lock, flags);
1562	sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()");
1563	spin_unlock_irqrestore(&ioc->res_lock, flags);
1564#endif
1565
1566}
1567
1568/**************************************************************
1569*
1570*   Initialization and claim
1571*
1572***************************************************************/
1573
1574static void
1575ioc_iova_init(struct ioc *ioc)
1576{
1577	int tcnfg;
1578	int agp_found = 0;
1579	struct pci_dev *device = NULL;
1580#ifdef FULL_VALID_PDIR
1581	unsigned long index;
1582#endif
1583
1584	/*
1585	** Firmware programs the base and size of a "safe IOVA space"
1586	** (one that doesn't overlap memory or LMMIO space) in the
1587	** IBASE and IMASK registers.
1588	*/
1589	ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
1590	ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
1591
1592	ioc->iov_size = ~ioc->imask + 1;
1593
1594	DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
1595		__func__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
1596		ioc->iov_size >> 20);
1597
1598	switch (iovp_size) {
1599		case  4*1024: tcnfg = 0; break;
1600		case  8*1024: tcnfg = 1; break;
1601		case 16*1024: tcnfg = 2; break;
1602		case 64*1024: tcnfg = 3; break;
1603		default:
1604			panic(PFX "Unsupported IOTLB page size %ldK",
1605				iovp_size >> 10);
1606			break;
1607	}
1608	WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1609
1610	ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
1611	ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1612						   get_order(ioc->pdir_size));
1613	if (!ioc->pdir_base)
1614		panic(PFX "Couldn't allocate I/O Page Table\n");
1615
1616	memset(ioc->pdir_base, 0, ioc->pdir_size);
1617
1618	DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__,
1619		iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
1620
1621	ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
1622	WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1623
1624	/*
1625	** If an AGP device is present, only use half of the IOV space
1626	** for PCI DMA.  Unfortunately we can't know ahead of time
1627	** whether GART support will actually be used, for now we
1628	** can just key on an AGP device found in the system.
1629	** We program the next pdir index after we stop w/ a key for
1630	** the GART code to handshake on.
1631	*/
1632	for_each_pci_dev(device)	
1633		agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
1634
1635	if (agp_found && reserve_sba_gart) {
1636		printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
1637		      ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
1638		ioc->pdir_size /= 2;
1639		((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
1640	}
1641#ifdef FULL_VALID_PDIR
1642	/*
1643  	** Check to see if the spill page has been allocated, we don't need more than
1644	** one across multiple SBAs.
1645	*/
1646	if (!prefetch_spill_page) {
1647		char *spill_poison = "SBAIOMMU POISON";
1648		int poison_size = 16;
1649		void *poison_addr, *addr;
1650
1651		addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
1652		if (!addr)
1653			panic(PFX "Couldn't allocate PDIR spill page\n");
1654
1655		poison_addr = addr;
1656		for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
1657			memcpy(poison_addr, spill_poison, poison_size);
1658
1659		prefetch_spill_page = virt_to_phys(addr);
1660
1661		DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page);
1662	}
1663	/*
1664  	** Set all the PDIR entries valid w/ the spill page as the target
1665	*/
1666	for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
1667		((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
1668#endif
1669
1670	/* Clear I/O TLB of any possible entries */
1671	WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
1672	READ_REG(ioc->ioc_hpa + IOC_PCOM);
1673
1674	/* Enable IOVA translation */
1675	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1676	READ_REG(ioc->ioc_hpa + IOC_IBASE);
1677}
1678
1679static void __init
1680ioc_resource_init(struct ioc *ioc)
1681{
1682	spin_lock_init(&ioc->res_lock);
1683#if DELAYED_RESOURCE_CNT > 0
1684	spin_lock_init(&ioc->saved_lock);
1685#endif
1686
1687	/* resource map size dictated by pdir_size */
1688	ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
1689	ioc->res_size >>= 3;  /* convert bit count to byte count */
1690	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1691
1692	ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
1693						 get_order(ioc->res_size));
1694	if (!ioc->res_map)
1695		panic(PFX "Couldn't allocate resource map\n");
1696
1697	memset(ioc->res_map, 0, ioc->res_size);
1698	/* next available IOVP - circular search */
1699	ioc->res_hint = (unsigned long *) ioc->res_map;
1700
1701#ifdef ASSERT_PDIR_SANITY
1702	/* Mark first bit busy - ie no IOVA 0 */
1703	ioc->res_map[0] = 0x1;
1704	ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
1705#endif
1706#ifdef FULL_VALID_PDIR
1707	/* Mark the last resource used so we don't prefetch beyond IOVA space */
1708	ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
1709	ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
1710							      | prefetch_spill_page);
1711#endif
1712
1713	DBG_INIT("%s() res_map %x %p\n", __func__,
1714		 ioc->res_size, (void *) ioc->res_map);
1715}
1716
1717static void __init
1718ioc_sac_init(struct ioc *ioc)
1719{
1720	struct pci_dev *sac = NULL;
1721	struct pci_controller *controller = NULL;
1722
1723	/*
1724	 * pci_alloc_coherent() must return a DMA address which is
1725	 * SAC (single address cycle) addressable, so allocate a
1726	 * pseudo-device to enforce that.
1727	 */
1728	sac = kzalloc(sizeof(*sac), GFP_KERNEL);
1729	if (!sac)
1730		panic(PFX "Couldn't allocate struct pci_dev");
1731
1732	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
1733	if (!controller)
1734		panic(PFX "Couldn't allocate struct pci_controller");
1735
1736	controller->iommu = ioc;
1737	sac->sysdata = controller;
1738	sac->dma_mask = 0xFFFFFFFFUL;
 
1739	sac->dev.bus = &pci_bus_type;
 
1740	ioc->sac_only_dev = sac;
1741}
1742
1743static void __init
1744ioc_zx1_init(struct ioc *ioc)
1745{
1746	unsigned long rope_config;
1747	unsigned int i;
1748
1749	if (ioc->rev < 0x20)
1750		panic(PFX "IOC 2.0 or later required for IOMMU support\n");
1751
1752	/* 38 bit memory controller + extra bit for range displaced by MMIO */
1753	ioc->dma_mask = (0x1UL << 39) - 1;
1754
1755	/*
1756	** Clear ROPE(N)_CONFIG AO bit.
1757	** Disables "NT Ordering" (~= !"Relaxed Ordering")
1758	** Overrides bit 1 in DMA Hint Sets.
1759	** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
1760	*/
1761	for (i=0; i<(8*8); i+=8) {
1762		rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1763		rope_config &= ~IOC_ROPE_AO;
1764		WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1765	}
1766}
1767
1768typedef void (initfunc)(struct ioc *);
1769
1770struct ioc_iommu {
1771	u32 func_id;
1772	char *name;
1773	initfunc *init;
1774};
1775
1776static struct ioc_iommu ioc_iommu_info[] __initdata = {
1777	{ ZX1_IOC_ID, "zx1", ioc_zx1_init },
1778	{ ZX2_IOC_ID, "zx2", NULL },
1779	{ SX1000_IOC_ID, "sx1000", NULL },
1780	{ SX2000_IOC_ID, "sx2000", NULL },
1781};
1782
1783static void __init ioc_init(unsigned long hpa, struct ioc *ioc)
1784{
1785	struct ioc_iommu *info;
1786
1787	ioc->next = ioc_list;
1788	ioc_list = ioc;
1789
1790	ioc->ioc_hpa = ioremap(hpa, 0x1000);
1791
1792	ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
1793	ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
1794	ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL;	/* conservative */
1795
1796	for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
1797		if (ioc->func_id == info->func_id) {
1798			ioc->name = info->name;
1799			if (info->init)
1800				(info->init)(ioc);
1801		}
1802	}
1803
1804	iovp_size = (1 << iovp_shift);
1805	iovp_mask = ~(iovp_size - 1);
1806
1807	DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__,
1808		PAGE_SIZE >> 10, iovp_size >> 10);
1809
1810	if (!ioc->name) {
1811		ioc->name = kmalloc(24, GFP_KERNEL);
1812		if (ioc->name)
1813			sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
1814				ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
1815		else
1816			ioc->name = "Unknown";
1817	}
1818
1819	ioc_iova_init(ioc);
1820	ioc_resource_init(ioc);
1821	ioc_sac_init(ioc);
1822
 
 
 
1823	printk(KERN_INFO PFX
1824		"%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
1825		ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
1826		hpa, ioc->iov_size >> 20, ioc->ibase);
1827}
1828
1829
1830
1831/**************************************************************************
1832**
1833**   SBA initialization code (HW and SW)
1834**
1835**   o identify SBA chip itself
1836**   o FIXME: initialize DMA hints for reasonable defaults
1837**
1838**************************************************************************/
1839
1840#ifdef CONFIG_PROC_FS
1841static void *
1842ioc_start(struct seq_file *s, loff_t *pos)
1843{
1844	struct ioc *ioc;
1845	loff_t n = *pos;
1846
1847	for (ioc = ioc_list; ioc; ioc = ioc->next)
1848		if (!n--)
1849			return ioc;
1850
1851	return NULL;
1852}
1853
1854static void *
1855ioc_next(struct seq_file *s, void *v, loff_t *pos)
1856{
1857	struct ioc *ioc = v;
1858
1859	++*pos;
1860	return ioc->next;
1861}
1862
1863static void
1864ioc_stop(struct seq_file *s, void *v)
1865{
1866}
1867
1868static int
1869ioc_show(struct seq_file *s, void *v)
1870{
1871	struct ioc *ioc = v;
1872	unsigned long *res_ptr = (unsigned long *)ioc->res_map;
1873	int i, used = 0;
1874
1875	seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
1876		ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
1877#ifdef CONFIG_NUMA
1878	if (ioc->node != NUMA_NO_NODE)
1879		seq_printf(s, "NUMA node       : %d\n", ioc->node);
1880#endif
1881	seq_printf(s, "IOVA size       : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
1882	seq_printf(s, "IOVA page size  : %ld kb\n", iovp_size/1024);
1883
1884	for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
1885		used += hweight64(*res_ptr);
1886
1887	seq_printf(s, "PDIR size       : %d entries\n", ioc->pdir_size >> 3);
1888	seq_printf(s, "PDIR used       : %d entries\n", used);
1889
1890#ifdef PDIR_SEARCH_TIMING
1891	{
1892		unsigned long i = 0, avg = 0, min, max;
1893		min = max = ioc->avg_search[0];
1894		for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1895			avg += ioc->avg_search[i];
1896			if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1897			if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1898		}
1899		avg /= SBA_SEARCH_SAMPLE;
1900		seq_printf(s, "Bitmap search   : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
1901		           min, avg, max);
1902	}
1903#endif
1904#ifndef ALLOW_IOV_BYPASS
1905	 seq_printf(s, "IOVA bypass disabled\n");
1906#endif
1907	return 0;
1908}
1909
1910static const struct seq_operations ioc_seq_ops = {
1911	.start = ioc_start,
1912	.next  = ioc_next,
1913	.stop  = ioc_stop,
1914	.show  = ioc_show
1915};
1916
 
 
 
 
 
 
 
 
 
 
 
 
 
1917static void __init
1918ioc_proc_init(void)
1919{
1920	struct proc_dir_entry *dir;
1921
1922	dir = proc_mkdir("bus/mckinley", NULL);
1923	if (!dir)
1924		return;
1925
1926	proc_create_seq(ioc_list->name, 0, dir, &ioc_seq_ops);
1927}
1928#endif
1929
1930static void
1931sba_connect_bus(struct pci_bus *bus)
1932{
1933	acpi_handle handle, parent;
1934	acpi_status status;
1935	struct ioc *ioc;
1936
1937	if (!PCI_CONTROLLER(bus))
1938		panic(PFX "no sysdata on bus %d!\n", bus->number);
1939
1940	if (PCI_CONTROLLER(bus)->iommu)
1941		return;
1942
1943	handle = acpi_device_handle(PCI_CONTROLLER(bus)->companion);
1944	if (!handle)
1945		return;
1946
1947	/*
1948	 * The IOC scope encloses PCI root bridges in the ACPI
1949	 * namespace, so work our way out until we find an IOC we
1950	 * claimed previously.
1951	 */
1952	do {
1953		for (ioc = ioc_list; ioc; ioc = ioc->next)
1954			if (ioc->handle == handle) {
1955				PCI_CONTROLLER(bus)->iommu = ioc;
1956				return;
1957			}
1958
1959		status = acpi_get_parent(handle, &parent);
1960		handle = parent;
1961	} while (ACPI_SUCCESS(status));
1962
1963	printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
1964}
1965
1966static void __init
1967sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
1968{
1969#ifdef CONFIG_NUMA
1970	unsigned int node;
1971
1972	node = acpi_get_node(handle);
1973	if (node != NUMA_NO_NODE && !node_online(node))
1974		node = NUMA_NO_NODE;
1975
1976	ioc->node = node;
1977#endif
1978}
1979
1980static void __init acpi_sba_ioc_add(struct ioc *ioc)
1981{
1982	acpi_handle handle = ioc->handle;
1983	acpi_status status;
1984	u64 hpa, length;
1985	struct acpi_device_info *adi;
1986
1987	ioc_found = ioc->next;
1988	status = hp_acpi_csr_space(handle, &hpa, &length);
1989	if (ACPI_FAILURE(status))
1990		goto err;
1991
1992	status = acpi_get_object_info(handle, &adi);
1993	if (ACPI_FAILURE(status))
1994		goto err;
1995
1996	/*
1997	 * For HWP0001, only SBA appears in ACPI namespace.  It encloses the PCI
1998	 * root bridges, and its CSR space includes the IOC function.
1999	 */
2000	if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) {
2001		hpa += ZX1_IOC_OFFSET;
2002		/* zx1 based systems default to kernel page size iommu pages */
2003		if (!iovp_shift)
2004			iovp_shift = min(PAGE_SHIFT, 16);
2005	}
2006	kfree(adi);
2007
2008	/*
2009	 * default anything not caught above or specified on cmdline to 4k
2010	 * iommu page size
2011	 */
2012	if (!iovp_shift)
2013		iovp_shift = 12;
2014
2015	ioc_init(hpa, ioc);
2016	/* setup NUMA node association */
2017	sba_map_ioc_to_node(ioc, handle);
2018	return;
2019
2020 err:
2021	kfree(ioc);
2022}
2023
2024static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
2025	{"HWP0001", 0},
2026	{"HWP0004", 0},
2027	{"", 0},
2028};
2029
2030static int acpi_sba_ioc_attach(struct acpi_device *device,
2031			       const struct acpi_device_id *not_used)
2032{
2033	struct ioc *ioc;
2034
2035	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2036	if (!ioc)
2037		return -ENOMEM;
2038
2039	ioc->next = ioc_found;
2040	ioc_found = ioc;
2041	ioc->handle = device->handle;
2042	return 1;
2043}
2044
2045
2046static struct acpi_scan_handler acpi_sba_ioc_handler = {
2047	.ids	= hp_ioc_iommu_device_ids,
2048	.attach	= acpi_sba_ioc_attach,
2049};
2050
2051static int __init acpi_sba_ioc_init_acpi(void)
2052{
2053	return acpi_scan_add_handler(&acpi_sba_ioc_handler);
2054}
2055/* This has to run before acpi_scan_init(). */
2056arch_initcall(acpi_sba_ioc_init_acpi);
2057
2058static int sba_dma_supported (struct device *dev, u64 mask)
2059{
2060	/* make sure it's at least 32bit capable */
2061	return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
2062}
2063
2064static const struct dma_map_ops sba_dma_ops = {
2065	.alloc			= sba_alloc_coherent,
2066	.free			= sba_free_coherent,
2067	.map_page		= sba_map_page,
2068	.unmap_page		= sba_unmap_page,
2069	.map_sg			= sba_map_sg_attrs,
2070	.unmap_sg		= sba_unmap_sg_attrs,
2071	.dma_supported		= sba_dma_supported,
2072	.mmap			= dma_common_mmap,
2073	.get_sgtable		= dma_common_get_sgtable,
2074};
2075
2076static int __init
2077sba_init(void)
2078{
2079	/*
2080	 * If we are booting a kdump kernel, the sba_iommu will cause devices
2081	 * that were not shutdown properly to MCA as soon as they are turned
2082	 * back on.  Our only option for a successful kdump kernel boot is to
2083	 * use swiotlb.
 
 
 
2084	 */
2085	if (is_kdump_kernel())
 
 
 
 
 
2086		return 0;
 
 
2087
2088	/*
2089	 * ioc_found should be populated by the acpi_sba_ioc_handler's .attach()
2090	 * routine, but that only happens if acpi_scan_init() has already run.
2091	 */
2092	while (ioc_found)
2093		acpi_sba_ioc_add(ioc_found);
2094
2095	if (!ioc_list)
 
 
 
 
 
 
 
 
 
 
 
 
 
2096		return 0;
 
2097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2098	{
2099		struct pci_bus *b = NULL;
2100		while ((b = pci_find_next_bus(b)) != NULL)
2101			sba_connect_bus(b);
2102	}
2103
2104	/* no need for swiotlb with the iommu */
2105	swiotlb_exit();
2106	dma_ops = &sba_dma_ops;
2107
2108#ifdef CONFIG_PROC_FS
2109	ioc_proc_init();
2110#endif
2111	return 0;
2112}
2113
2114subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
2115
2116static int __init
2117nosbagart(char *str)
2118{
2119	reserve_sba_gart = 0;
2120	return 1;
2121}
2122
 
 
 
 
 
 
 
 
 
 
 
2123__setup("nosbagart", nosbagart);
2124
2125static int __init
2126sba_page_override(char *str)
2127{
2128	unsigned long page_size;
2129
2130	page_size = memparse(str, &str);
2131	switch (page_size) {
2132		case 4096:
2133		case 8192:
2134		case 16384:
2135		case 65536:
2136			iovp_shift = ffs(page_size) - 1;
2137			break;
2138		default:
2139			printk("%s: unknown/unsupported iommu page size %ld\n",
2140			       __func__, page_size);
2141	}
2142
2143	return 1;
2144}
2145
2146__setup("sbapagesize=",sba_page_override);
v4.17
 
   1/*
   2**  IA64 System Bus Adapter (SBA) I/O MMU manager
   3**
   4**	(c) Copyright 2002-2005 Alex Williamson
   5**	(c) Copyright 2002-2003 Grant Grundler
   6**	(c) Copyright 2002-2005 Hewlett-Packard Company
   7**
   8**	Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
   9**	Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
  10**
  11**	This program is free software; you can redistribute it and/or modify
  12**	it under the terms of the GNU General Public License as published by
  13**      the Free Software Foundation; either version 2 of the License, or
  14**      (at your option) any later version.
  15**
  16**
  17** This module initializes the IOC (I/O Controller) found on HP
  18** McKinley machines and their successors.
  19**
  20*/
  21
  22#include <linux/types.h>
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/spinlock.h>
  26#include <linux/slab.h>
  27#include <linux/init.h>
  28#include <linux/mm.h>
  29#include <linux/string.h>
  30#include <linux/pci.h>
  31#include <linux/proc_fs.h>
  32#include <linux/seq_file.h>
  33#include <linux/acpi.h>
  34#include <linux/efi.h>
  35#include <linux/nodemask.h>
  36#include <linux/bitops.h>         /* hweight64() */
  37#include <linux/crash_dump.h>
  38#include <linux/iommu-helper.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/prefetch.h>
 
  41
  42#include <asm/delay.h>		/* ia64_get_itc() */
  43#include <asm/io.h>
  44#include <asm/page.h>		/* PAGE_OFFSET */
  45#include <asm/dma.h>
  46
  47#include <asm/acpi-ext.h>
  48
  49extern int swiotlb_late_init_with_default_size (size_t size);
  50
  51#define PFX "IOC: "
  52
  53/*
  54** Enabling timing search of the pdir resource map.  Output in /proc.
  55** Disabled by default to optimize performance.
  56*/
  57#undef PDIR_SEARCH_TIMING
  58
  59/*
  60** This option allows cards capable of 64bit DMA to bypass the IOMMU.  If
  61** not defined, all DMA will be 32bit and go through the TLB.
  62** There's potentially a conflict in the bio merge code with us
  63** advertising an iommu, but then bypassing it.  Since I/O MMU bypassing
  64** appears to give more performance than bio-level virtual merging, we'll
  65** do the former for now.  NOTE: BYPASS_SG also needs to be undef'd to
  66** completely restrict DMA to the IOMMU.
  67*/
  68#define ALLOW_IOV_BYPASS
  69
  70/*
  71** This option specifically allows/disallows bypassing scatterlists with
  72** multiple entries.  Coalescing these entries can allow better DMA streaming
  73** and in some cases shows better performance than entirely bypassing the
  74** IOMMU.  Performance increase on the order of 1-2% sequential output/input
  75** using bonnie++ on a RAID0 MD device (sym2 & mpt).
  76*/
  77#undef ALLOW_IOV_BYPASS_SG
  78
  79/*
  80** If a device prefetches beyond the end of a valid pdir entry, it will cause
  81** a hard failure, ie. MCA.  Version 3.0 and later of the zx1 LBA should
  82** disconnect on 4k boundaries and prevent such issues.  If the device is
  83** particularly aggressive, this option will keep the entire pdir valid such
  84** that prefetching will hit a valid address.  This could severely impact
  85** error containment, and is therefore off by default.  The page that is
  86** used for spill-over is poisoned, so that should help debugging somewhat.
  87*/
  88#undef FULL_VALID_PDIR
  89
  90#define ENABLE_MARK_CLEAN
  91
  92/*
  93** The number of debug flags is a clue - this code is fragile.  NOTE: since
  94** tightening the use of res_lock the resource bitmap and actual pdir are no
  95** longer guaranteed to stay in sync.  The sanity checking code isn't going to
  96** like that.
  97*/
  98#undef DEBUG_SBA_INIT
  99#undef DEBUG_SBA_RUN
 100#undef DEBUG_SBA_RUN_SG
 101#undef DEBUG_SBA_RESOURCE
 102#undef ASSERT_PDIR_SANITY
 103#undef DEBUG_LARGE_SG_ENTRIES
 104#undef DEBUG_BYPASS
 105
 106#if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
 107#error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
 108#endif
 109
 110#define SBA_INLINE	__inline__
 111/* #define SBA_INLINE */
 112
 113#ifdef DEBUG_SBA_INIT
 114#define DBG_INIT(x...)	printk(x)
 115#else
 116#define DBG_INIT(x...)
 117#endif
 118
 119#ifdef DEBUG_SBA_RUN
 120#define DBG_RUN(x...)	printk(x)
 121#else
 122#define DBG_RUN(x...)
 123#endif
 124
 125#ifdef DEBUG_SBA_RUN_SG
 126#define DBG_RUN_SG(x...)	printk(x)
 127#else
 128#define DBG_RUN_SG(x...)
 129#endif
 130
 131
 132#ifdef DEBUG_SBA_RESOURCE
 133#define DBG_RES(x...)	printk(x)
 134#else
 135#define DBG_RES(x...)
 136#endif
 137
 138#ifdef DEBUG_BYPASS
 139#define DBG_BYPASS(x...)	printk(x)
 140#else
 141#define DBG_BYPASS(x...)
 142#endif
 143
 144#ifdef ASSERT_PDIR_SANITY
 145#define ASSERT(expr) \
 146        if(!(expr)) { \
 147                printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
 148                panic(#expr); \
 149        }
 150#else
 151#define ASSERT(expr)
 152#endif
 153
 154/*
 155** The number of pdir entries to "free" before issuing
 156** a read to PCOM register to flush out PCOM writes.
 157** Interacts with allocation granularity (ie 4 or 8 entries
 158** allocated and free'd/purged at a time might make this
 159** less interesting).
 160*/
 161#define DELAYED_RESOURCE_CNT	64
 162
 163#define PCI_DEVICE_ID_HP_SX2000_IOC	0x12ec
 164
 165#define ZX1_IOC_ID	((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
 166#define ZX2_IOC_ID	((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
 167#define REO_IOC_ID	((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
 168#define SX1000_IOC_ID	((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
 169#define SX2000_IOC_ID	((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
 170
 171#define ZX1_IOC_OFFSET	0x1000	/* ACPI reports SBA, we want IOC */
 172
 173#define IOC_FUNC_ID	0x000
 174#define IOC_FCLASS	0x008	/* function class, bist, header, rev... */
 175#define IOC_IBASE	0x300	/* IO TLB */
 176#define IOC_IMASK	0x308
 177#define IOC_PCOM	0x310
 178#define IOC_TCNFG	0x318
 179#define IOC_PDIR_BASE	0x320
 180
 181#define IOC_ROPE0_CFG	0x500
 182#define   IOC_ROPE_AO	  0x10	/* Allow "Relaxed Ordering" */
 183
 184
 185/* AGP GART driver looks for this */
 186#define ZX1_SBA_IOMMU_COOKIE	0x0000badbadc0ffeeUL
 187
 188/*
 189** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
 190**
 191** Some IOCs (sx1000) can run at the above pages sizes, but are
 192** really only supported using the IOC at a 4k page size.
 193**
 194** iovp_size could only be greater than PAGE_SIZE if we are
 195** confident the drivers really only touch the next physical
 196** page iff that driver instance owns it.
 197*/
 198static unsigned long iovp_size;
 199static unsigned long iovp_shift;
 200static unsigned long iovp_mask;
 201
 202struct ioc {
 203	void __iomem	*ioc_hpa;	/* I/O MMU base address */
 204	char		*res_map;	/* resource map, bit == pdir entry */
 205	u64		*pdir_base;	/* physical base address */
 206	unsigned long	ibase;		/* pdir IOV Space base */
 207	unsigned long	imask;		/* pdir IOV Space mask */
 208
 209	unsigned long	*res_hint;	/* next avail IOVP - circular search */
 210	unsigned long	dma_mask;
 211	spinlock_t	res_lock;	/* protects the resource bitmap, but must be held when */
 212					/* clearing pdir to prevent races with allocations. */
 213	unsigned int	res_bitshift;	/* from the RIGHT! */
 214	unsigned int	res_size;	/* size of resource map in bytes */
 215#ifdef CONFIG_NUMA
 216	unsigned int	node;		/* node where this IOC lives */
 217#endif
 218#if DELAYED_RESOURCE_CNT > 0
 219	spinlock_t	saved_lock;	/* may want to try to get this on a separate cacheline */
 220					/* than res_lock for bigger systems. */
 221	int		saved_cnt;
 222	struct sba_dma_pair {
 223		dma_addr_t	iova;
 224		size_t		size;
 225	} saved[DELAYED_RESOURCE_CNT];
 226#endif
 227
 228#ifdef PDIR_SEARCH_TIMING
 229#define SBA_SEARCH_SAMPLE	0x100
 230	unsigned long avg_search[SBA_SEARCH_SAMPLE];
 231	unsigned long avg_idx;	/* current index into avg_search */
 232#endif
 233
 234	/* Stuff we don't need in performance path */
 235	struct ioc	*next;		/* list of IOC's in system */
 236	acpi_handle	handle;		/* for multiple IOC's */
 237	const char 	*name;
 238	unsigned int	func_id;
 239	unsigned int	rev;		/* HW revision of chip */
 240	u32		iov_size;
 241	unsigned int	pdir_size;	/* in bytes, determined by IOV Space size */
 242	struct pci_dev	*sac_only_dev;
 243};
 244
 245static struct ioc *ioc_list, *ioc_found;
 246static int reserve_sba_gart = 1;
 247
 248static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
 249static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
 250
 251#define sba_sg_address(sg)	sg_virt((sg))
 252
 253#ifdef FULL_VALID_PDIR
 254static u64 prefetch_spill_page;
 255#endif
 256
 257#ifdef CONFIG_PCI
 258# define GET_IOC(dev)	((dev_is_pci(dev))						\
 259			 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
 260#else
 261# define GET_IOC(dev)	NULL
 262#endif
 263
 264/*
 265** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
 266** (or rather not merge) DMAs into manageable chunks.
 267** On parisc, this is more of the software/tuning constraint
 268** rather than the HW. I/O MMU allocation algorithms can be
 269** faster with smaller sizes (to some degree).
 270*/
 271#define DMA_CHUNK_SIZE  (BITS_PER_LONG*iovp_size)
 272
 273#define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
 274
 275/************************************
 276** SBA register read and write support
 277**
 278** BE WARNED: register writes are posted.
 279**  (ie follow writes which must reach HW with a read)
 280**
 281*/
 282#define READ_REG(addr)       __raw_readq(addr)
 283#define WRITE_REG(val, addr) __raw_writeq(val, addr)
 284
 285#ifdef DEBUG_SBA_INIT
 286
 287/**
 288 * sba_dump_tlb - debugging only - print IOMMU operating parameters
 289 * @hpa: base address of the IOMMU
 290 *
 291 * Print the size/location of the IO MMU PDIR.
 292 */
 293static void
 294sba_dump_tlb(char *hpa)
 295{
 296	DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
 297	DBG_INIT("IOC_IBASE    : %016lx\n", READ_REG(hpa+IOC_IBASE));
 298	DBG_INIT("IOC_IMASK    : %016lx\n", READ_REG(hpa+IOC_IMASK));
 299	DBG_INIT("IOC_TCNFG    : %016lx\n", READ_REG(hpa+IOC_TCNFG));
 300	DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
 301	DBG_INIT("\n");
 302}
 303#endif
 304
 305
 306#ifdef ASSERT_PDIR_SANITY
 307
 308/**
 309 * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
 310 * @ioc: IO MMU structure which owns the pdir we are interested in.
 311 * @msg: text to print ont the output line.
 312 * @pide: pdir index.
 313 *
 314 * Print one entry of the IO MMU PDIR in human readable form.
 315 */
 316static void
 317sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
 318{
 319	/* start printing from lowest pde in rval */
 320	u64 *ptr = &ioc->pdir_base[pide  & ~(BITS_PER_LONG - 1)];
 321	unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
 322	uint rcnt;
 323
 324	printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
 325		 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
 326
 327	rcnt = 0;
 328	while (rcnt < BITS_PER_LONG) {
 329		printk(KERN_DEBUG "%s %2d %p %016Lx\n",
 330		       (rcnt == (pide & (BITS_PER_LONG - 1)))
 331		       ? "    -->" : "       ",
 332		       rcnt, ptr, (unsigned long long) *ptr );
 333		rcnt++;
 334		ptr++;
 335	}
 336	printk(KERN_DEBUG "%s", msg);
 337}
 338
 339
 340/**
 341 * sba_check_pdir - debugging only - consistency checker
 342 * @ioc: IO MMU structure which owns the pdir we are interested in.
 343 * @msg: text to print ont the output line.
 344 *
 345 * Verify the resource map and pdir state is consistent
 346 */
 347static int
 348sba_check_pdir(struct ioc *ioc, char *msg)
 349{
 350	u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
 351	u64 *rptr = (u64 *) ioc->res_map;	/* resource map ptr */
 352	u64 *pptr = ioc->pdir_base;	/* pdir ptr */
 353	uint pide = 0;
 354
 355	while (rptr < rptr_end) {
 356		u64 rval;
 357		int rcnt; /* number of bits we might check */
 358
 359		rval = *rptr;
 360		rcnt = 64;
 361
 362		while (rcnt) {
 363			/* Get last byte and highest bit from that */
 364			u32 pde = ((u32)((*pptr >> (63)) & 0x1));
 365			if ((rval & 0x1) ^ pde)
 366			{
 367				/*
 368				** BUMMER!  -- res_map != pdir --
 369				** Dump rval and matching pdir entries
 370				*/
 371				sba_dump_pdir_entry(ioc, msg, pide);
 372				return(1);
 373			}
 374			rcnt--;
 375			rval >>= 1;	/* try the next bit */
 376			pptr++;
 377			pide++;
 378		}
 379		rptr++;	/* look at next word of res_map */
 380	}
 381	/* It'd be nice if we always got here :^) */
 382	return 0;
 383}
 384
 385
 386/**
 387 * sba_dump_sg - debugging only - print Scatter-Gather list
 388 * @ioc: IO MMU structure which owns the pdir we are interested in.
 389 * @startsg: head of the SG list
 390 * @nents: number of entries in SG list
 391 *
 392 * print the SG list so we can verify it's correct by hand.
 393 */
 394static void
 395sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
 396{
 397	while (nents-- > 0) {
 398		printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
 399		       startsg->dma_address, startsg->dma_length,
 400		       sba_sg_address(startsg));
 401		startsg = sg_next(startsg);
 402	}
 403}
 404
 405static void
 406sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
 407{
 408	struct scatterlist *the_sg = startsg;
 409	int the_nents = nents;
 410
 411	while (the_nents-- > 0) {
 412		if (sba_sg_address(the_sg) == 0x0UL)
 413			sba_dump_sg(NULL, startsg, nents);
 414		the_sg = sg_next(the_sg);
 415	}
 416}
 417
 418#endif /* ASSERT_PDIR_SANITY */
 419
 420
 421
 422
 423/**************************************************************
 424*
 425*   I/O Pdir Resource Management
 426*
 427*   Bits set in the resource map are in use.
 428*   Each bit can represent a number of pages.
 429*   LSbs represent lower addresses (IOVA's).
 430*
 431***************************************************************/
 432#define PAGES_PER_RANGE 1	/* could increase this to 4 or 8 if needed */
 433
 434/* Convert from IOVP to IOVA and vice versa. */
 435#define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
 436#define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
 437
 438#define PDIR_ENTRY_SIZE	sizeof(u64)
 439
 440#define PDIR_INDEX(iovp)   ((iovp)>>iovp_shift)
 441
 442#define RESMAP_MASK(n)    ~(~0UL << (n))
 443#define RESMAP_IDX_MASK   (sizeof(unsigned long) - 1)
 444
 445
 446/**
 447 * For most cases the normal get_order is sufficient, however it limits us
 448 * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity.
 449 * It only incurs about 1 clock cycle to use this one with the static variable
 450 * and makes the code more intuitive.
 451 */
 452static SBA_INLINE int
 453get_iovp_order (unsigned long size)
 454{
 455	long double d = size - 1;
 456	long order;
 457
 458	order = ia64_getf_exp(d);
 459	order = order - iovp_shift - 0xffff + 1;
 460	if (order < 0)
 461		order = 0;
 462	return order;
 463}
 464
 465static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
 466				 unsigned int bitshiftcnt)
 467{
 468	return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
 469		+ bitshiftcnt;
 470}
 471
 472/**
 473 * sba_search_bitmap - find free space in IO PDIR resource bitmap
 474 * @ioc: IO MMU structure which owns the pdir we are interested in.
 475 * @bits_wanted: number of entries we need.
 476 * @use_hint: use res_hint to indicate where to start looking
 477 *
 478 * Find consecutive free bits in resource bitmap.
 479 * Each bit represents one entry in the IO Pdir.
 480 * Cool perf optimization: search for log2(size) bits at a time.
 481 */
 482static SBA_INLINE unsigned long
 483sba_search_bitmap(struct ioc *ioc, struct device *dev,
 484		  unsigned long bits_wanted, int use_hint)
 485{
 486	unsigned long *res_ptr;
 487	unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
 488	unsigned long flags, pide = ~0UL, tpide;
 489	unsigned long boundary_size;
 490	unsigned long shift;
 491	int ret;
 492
 493	ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
 494	ASSERT(res_ptr < res_end);
 495
 496	boundary_size = (unsigned long long)dma_get_seg_boundary(dev) + 1;
 497	boundary_size = ALIGN(boundary_size, 1ULL << iovp_shift) >> iovp_shift;
 498
 499	BUG_ON(ioc->ibase & ~iovp_mask);
 500	shift = ioc->ibase >> iovp_shift;
 501
 502	spin_lock_irqsave(&ioc->res_lock, flags);
 503
 504	/* Allow caller to force a search through the entire resource space */
 505	if (likely(use_hint)) {
 506		res_ptr = ioc->res_hint;
 507	} else {
 508		res_ptr = (ulong *)ioc->res_map;
 509		ioc->res_bitshift = 0;
 510	}
 511
 512	/*
 513	 * N.B.  REO/Grande defect AR2305 can cause TLB fetch timeouts
 514	 * if a TLB entry is purged while in use.  sba_mark_invalid()
 515	 * purges IOTLB entries in power-of-two sizes, so we also
 516	 * allocate IOVA space in power-of-two sizes.
 517	 */
 518	bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
 519
 520	if (likely(bits_wanted == 1)) {
 521		unsigned int bitshiftcnt;
 522		for(; res_ptr < res_end ; res_ptr++) {
 523			if (likely(*res_ptr != ~0UL)) {
 524				bitshiftcnt = ffz(*res_ptr);
 525				*res_ptr |= (1UL << bitshiftcnt);
 526				pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
 527				ioc->res_bitshift = bitshiftcnt + bits_wanted;
 528				goto found_it;
 529			}
 530		}
 531		goto not_found;
 532
 533	}
 534	
 535	if (likely(bits_wanted <= BITS_PER_LONG/2)) {
 536		/*
 537		** Search the resource bit map on well-aligned values.
 538		** "o" is the alignment.
 539		** We need the alignment to invalidate I/O TLB using
 540		** SBA HW features in the unmap path.
 541		*/
 542		unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
 543		uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
 544		unsigned long mask, base_mask;
 545
 546		base_mask = RESMAP_MASK(bits_wanted);
 547		mask = base_mask << bitshiftcnt;
 548
 549		DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
 550		for(; res_ptr < res_end ; res_ptr++)
 551		{ 
 552			DBG_RES("    %p %lx %lx\n", res_ptr, mask, *res_ptr);
 553			ASSERT(0 != mask);
 554			for (; mask ; mask <<= o, bitshiftcnt += o) {
 555				tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
 556				ret = iommu_is_span_boundary(tpide, bits_wanted,
 557							     shift,
 558							     boundary_size);
 559				if ((0 == ((*res_ptr) & mask)) && !ret) {
 560					*res_ptr |= mask;     /* mark resources busy! */
 561					pide = tpide;
 562					ioc->res_bitshift = bitshiftcnt + bits_wanted;
 563					goto found_it;
 564				}
 565			}
 566
 567			bitshiftcnt = 0;
 568			mask = base_mask;
 569
 570		}
 571
 572	} else {
 573		int qwords, bits, i;
 574		unsigned long *end;
 575
 576		qwords = bits_wanted >> 6; /* /64 */
 577		bits = bits_wanted - (qwords * BITS_PER_LONG);
 578
 579		end = res_end - qwords;
 580
 581		for (; res_ptr < end; res_ptr++) {
 582			tpide = ptr_to_pide(ioc, res_ptr, 0);
 583			ret = iommu_is_span_boundary(tpide, bits_wanted,
 584						     shift, boundary_size);
 585			if (ret)
 586				goto next_ptr;
 587			for (i = 0 ; i < qwords ; i++) {
 588				if (res_ptr[i] != 0)
 589					goto next_ptr;
 590			}
 591			if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
 592				continue;
 593
 594			/* Found it, mark it */
 595			for (i = 0 ; i < qwords ; i++)
 596				res_ptr[i] = ~0UL;
 597			res_ptr[i] |= RESMAP_MASK(bits);
 598
 599			pide = tpide;
 600			res_ptr += qwords;
 601			ioc->res_bitshift = bits;
 602			goto found_it;
 603next_ptr:
 604			;
 605		}
 606	}
 607
 608not_found:
 609	prefetch(ioc->res_map);
 610	ioc->res_hint = (unsigned long *) ioc->res_map;
 611	ioc->res_bitshift = 0;
 612	spin_unlock_irqrestore(&ioc->res_lock, flags);
 613	return (pide);
 614
 615found_it:
 616	ioc->res_hint = res_ptr;
 617	spin_unlock_irqrestore(&ioc->res_lock, flags);
 618	return (pide);
 619}
 620
 621
 622/**
 623 * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
 624 * @ioc: IO MMU structure which owns the pdir we are interested in.
 625 * @size: number of bytes to create a mapping for
 626 *
 627 * Given a size, find consecutive unmarked and then mark those bits in the
 628 * resource bit map.
 629 */
 630static int
 631sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
 632{
 633	unsigned int pages_needed = size >> iovp_shift;
 634#ifdef PDIR_SEARCH_TIMING
 635	unsigned long itc_start;
 636#endif
 637	unsigned long pide;
 638
 639	ASSERT(pages_needed);
 640	ASSERT(0 == (size & ~iovp_mask));
 641
 642#ifdef PDIR_SEARCH_TIMING
 643	itc_start = ia64_get_itc();
 644#endif
 645	/*
 646	** "seek and ye shall find"...praying never hurts either...
 647	*/
 648	pide = sba_search_bitmap(ioc, dev, pages_needed, 1);
 649	if (unlikely(pide >= (ioc->res_size << 3))) {
 650		pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
 651		if (unlikely(pide >= (ioc->res_size << 3))) {
 652#if DELAYED_RESOURCE_CNT > 0
 653			unsigned long flags;
 654
 655			/*
 656			** With delayed resource freeing, we can give this one more shot.  We're
 657			** getting close to being in trouble here, so do what we can to make this
 658			** one count.
 659			*/
 660			spin_lock_irqsave(&ioc->saved_lock, flags);
 661			if (ioc->saved_cnt > 0) {
 662				struct sba_dma_pair *d;
 663				int cnt = ioc->saved_cnt;
 664
 665				d = &(ioc->saved[ioc->saved_cnt - 1]);
 666
 667				spin_lock(&ioc->res_lock);
 668				while (cnt--) {
 669					sba_mark_invalid(ioc, d->iova, d->size);
 670					sba_free_range(ioc, d->iova, d->size);
 671					d--;
 672				}
 673				ioc->saved_cnt = 0;
 674				READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
 675				spin_unlock(&ioc->res_lock);
 676			}
 677			spin_unlock_irqrestore(&ioc->saved_lock, flags);
 678
 679			pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
 680			if (unlikely(pide >= (ioc->res_size << 3))) {
 681				printk(KERN_WARNING "%s: I/O MMU @ %p is"
 682				       "out of mapping resources, %u %u %lx\n",
 683				       __func__, ioc->ioc_hpa, ioc->res_size,
 684				       pages_needed, dma_get_seg_boundary(dev));
 685				return -1;
 686			}
 687#else
 688			printk(KERN_WARNING "%s: I/O MMU @ %p is"
 689			       "out of mapping resources, %u %u %lx\n",
 690			       __func__, ioc->ioc_hpa, ioc->res_size,
 691			       pages_needed, dma_get_seg_boundary(dev));
 692			return -1;
 693#endif
 694		}
 695	}
 696
 697#ifdef PDIR_SEARCH_TIMING
 698	ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
 699	ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
 700#endif
 701
 702	prefetchw(&(ioc->pdir_base[pide]));
 703
 704#ifdef ASSERT_PDIR_SANITY
 705	/* verify the first enable bit is clear */
 706	if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
 707		sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
 708	}
 709#endif
 710
 711	DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
 712		__func__, size, pages_needed, pide,
 713		(uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
 714		ioc->res_bitshift );
 715
 716	return (pide);
 717}
 718
 719
 720/**
 721 * sba_free_range - unmark bits in IO PDIR resource bitmap
 722 * @ioc: IO MMU structure which owns the pdir we are interested in.
 723 * @iova: IO virtual address which was previously allocated.
 724 * @size: number of bytes to create a mapping for
 725 *
 726 * clear bits in the ioc's resource map
 727 */
 728static SBA_INLINE void
 729sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
 730{
 731	unsigned long iovp = SBA_IOVP(ioc, iova);
 732	unsigned int pide = PDIR_INDEX(iovp);
 733	unsigned int ridx = pide >> 3;	/* convert bit to byte address */
 734	unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
 735	int bits_not_wanted = size >> iovp_shift;
 736	unsigned long m;
 737
 738	/* Round up to power-of-two size: see AR2305 note above */
 739	bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
 740	for (; bits_not_wanted > 0 ; res_ptr++) {
 741		
 742		if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
 743
 744			/* these mappings start 64bit aligned */
 745			*res_ptr = 0UL;
 746			bits_not_wanted -= BITS_PER_LONG;
 747			pide += BITS_PER_LONG;
 748
 749		} else {
 750
 751			/* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
 752			m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
 753			bits_not_wanted = 0;
 754
 755			DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size,
 756			        bits_not_wanted, m, pide, res_ptr, *res_ptr);
 757
 758			ASSERT(m != 0);
 759			ASSERT(bits_not_wanted);
 760			ASSERT((*res_ptr & m) == m); /* verify same bits are set */
 761			*res_ptr &= ~m;
 762		}
 763	}
 764}
 765
 766
 767/**************************************************************
 768*
 769*   "Dynamic DMA Mapping" support (aka "Coherent I/O")
 770*
 771***************************************************************/
 772
 773/**
 774 * sba_io_pdir_entry - fill in one IO PDIR entry
 775 * @pdir_ptr:  pointer to IO PDIR entry
 776 * @vba: Virtual CPU address of buffer to map
 777 *
 778 * SBA Mapping Routine
 779 *
 780 * Given a virtual address (vba, arg1) sba_io_pdir_entry()
 781 * loads the I/O PDIR entry pointed to by pdir_ptr (arg0).
 782 * Each IO Pdir entry consists of 8 bytes as shown below
 783 * (LSB == bit 0):
 784 *
 785 *  63                    40                                 11    7        0
 786 * +-+---------------------+----------------------------------+----+--------+
 787 * |V|        U            |            PPN[39:12]            | U  |   FF   |
 788 * +-+---------------------+----------------------------------+----+--------+
 789 *
 790 *  V  == Valid Bit
 791 *  U  == Unused
 792 * PPN == Physical Page Number
 793 *
 794 * The physical address fields are filled with the results of virt_to_phys()
 795 * on the vba.
 796 */
 797
 798#if 1
 799#define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL)	\
 800						      | 0x8000000000000000ULL)
 801#else
 802void SBA_INLINE
 803sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
 804{
 805	*pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
 806}
 807#endif
 808
 809#ifdef ENABLE_MARK_CLEAN
 810/**
 811 * Since DMA is i-cache coherent, any (complete) pages that were written via
 812 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
 813 * flush them when they get mapped into an executable vm-area.
 814 */
 815static void
 816mark_clean (void *addr, size_t size)
 817{
 818	unsigned long pg_addr, end;
 819
 820	pg_addr = PAGE_ALIGN((unsigned long) addr);
 821	end = (unsigned long) addr + size;
 822	while (pg_addr + PAGE_SIZE <= end) {
 823		struct page *page = virt_to_page((void *)pg_addr);
 824		set_bit(PG_arch_1, &page->flags);
 825		pg_addr += PAGE_SIZE;
 826	}
 827}
 828#endif
 829
 830/**
 831 * sba_mark_invalid - invalidate one or more IO PDIR entries
 832 * @ioc: IO MMU structure which owns the pdir we are interested in.
 833 * @iova:  IO Virtual Address mapped earlier
 834 * @byte_cnt:  number of bytes this mapping covers.
 835 *
 836 * Marking the IO PDIR entry(ies) as Invalid and invalidate
 837 * corresponding IO TLB entry. The PCOM (Purge Command Register)
 838 * is to purge stale entries in the IO TLB when unmapping entries.
 839 *
 840 * The PCOM register supports purging of multiple pages, with a minium
 841 * of 1 page and a maximum of 2GB. Hardware requires the address be
 842 * aligned to the size of the range being purged. The size of the range
 843 * must be a power of 2. The "Cool perf optimization" in the
 844 * allocation routine helps keep that true.
 845 */
 846static SBA_INLINE void
 847sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
 848{
 849	u32 iovp = (u32) SBA_IOVP(ioc,iova);
 850
 851	int off = PDIR_INDEX(iovp);
 852
 853	/* Must be non-zero and rounded up */
 854	ASSERT(byte_cnt > 0);
 855	ASSERT(0 == (byte_cnt & ~iovp_mask));
 856
 857#ifdef ASSERT_PDIR_SANITY
 858	/* Assert first pdir entry is set */
 859	if (!(ioc->pdir_base[off] >> 60)) {
 860		sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
 861	}
 862#endif
 863
 864	if (byte_cnt <= iovp_size)
 865	{
 866		ASSERT(off < ioc->pdir_size);
 867
 868		iovp |= iovp_shift;     /* set "size" field for PCOM */
 869
 870#ifndef FULL_VALID_PDIR
 871		/*
 872		** clear I/O PDIR entry "valid" bit
 873		** Do NOT clear the rest - save it for debugging.
 874		** We should only clear bits that have previously
 875		** been enabled.
 876		*/
 877		ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
 878#else
 879		/*
 880  		** If we want to maintain the PDIR as valid, put in
 881		** the spill page so devices prefetching won't
 882		** cause a hard fail.
 883		*/
 884		ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
 885#endif
 886	} else {
 887		u32 t = get_iovp_order(byte_cnt) + iovp_shift;
 888
 889		iovp |= t;
 890		ASSERT(t <= 31);   /* 2GB! Max value of "size" field */
 891
 892		do {
 893			/* verify this pdir entry is enabled */
 894			ASSERT(ioc->pdir_base[off]  >> 63);
 895#ifndef FULL_VALID_PDIR
 896			/* clear I/O Pdir entry "valid" bit first */
 897			ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
 898#else
 899			ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
 900#endif
 901			off++;
 902			byte_cnt -= iovp_size;
 903		} while (byte_cnt > 0);
 904	}
 905
 906	WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
 907}
 908
 909/**
 910 * sba_map_single_attrs - map one buffer and return IOVA for DMA
 911 * @dev: instance of PCI owned by the driver that's asking.
 912 * @addr:  driver buffer to map.
 913 * @size:  number of bytes to map in driver buffer.
 914 * @dir:  R/W or both.
 
 915 * @attrs: optional dma attributes
 916 *
 917 * See Documentation/DMA-API-HOWTO.txt
 918 */
 919static dma_addr_t sba_map_page(struct device *dev, struct page *page,
 920			       unsigned long poff, size_t size,
 921			       enum dma_data_direction dir,
 922			       unsigned long attrs)
 923{
 924	struct ioc *ioc;
 925	void *addr = page_address(page) + poff;
 926	dma_addr_t iovp;
 927	dma_addr_t offset;
 928	u64 *pdir_start;
 929	int pide;
 930#ifdef ASSERT_PDIR_SANITY
 931	unsigned long flags;
 932#endif
 933#ifdef ALLOW_IOV_BYPASS
 934	unsigned long pci_addr = virt_to_phys(addr);
 935#endif
 936
 937#ifdef ALLOW_IOV_BYPASS
 938	ASSERT(to_pci_dev(dev)->dma_mask);
 939	/*
 940 	** Check if the PCI device can DMA to ptr... if so, just return ptr
 941 	*/
 942	if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
 943		/*
 944 		** Device is bit capable of DMA'ing to the buffer...
 945		** just return the PCI address of ptr
 946 		*/
 947		DBG_BYPASS("sba_map_single_attrs() bypass mask/addr: "
 948			   "0x%lx/0x%lx\n",
 949		           to_pci_dev(dev)->dma_mask, pci_addr);
 950		return pci_addr;
 951	}
 952#endif
 953	ioc = GET_IOC(dev);
 954	ASSERT(ioc);
 955
 956	prefetch(ioc->res_hint);
 957
 958	ASSERT(size > 0);
 959	ASSERT(size <= DMA_CHUNK_SIZE);
 960
 961	/* save offset bits */
 962	offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
 963
 964	/* round up to nearest iovp_size */
 965	size = (size + offset + ~iovp_mask) & iovp_mask;
 966
 967#ifdef ASSERT_PDIR_SANITY
 968	spin_lock_irqsave(&ioc->res_lock, flags);
 969	if (sba_check_pdir(ioc,"Check before sba_map_single_attrs()"))
 970		panic("Sanity check failed");
 971	spin_unlock_irqrestore(&ioc->res_lock, flags);
 972#endif
 973
 974	pide = sba_alloc_range(ioc, dev, size);
 975	if (pide < 0)
 976		return 0;
 977
 978	iovp = (dma_addr_t) pide << iovp_shift;
 979
 980	DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset);
 981
 982	pdir_start = &(ioc->pdir_base[pide]);
 983
 984	while (size > 0) {
 985		ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
 986		sba_io_pdir_entry(pdir_start, (unsigned long) addr);
 987
 988		DBG_RUN("     pdir 0x%p %lx\n", pdir_start, *pdir_start);
 989
 990		addr += iovp_size;
 991		size -= iovp_size;
 992		pdir_start++;
 993	}
 994	/* force pdir update */
 995	wmb();
 996
 997	/* form complete address */
 998#ifdef ASSERT_PDIR_SANITY
 999	spin_lock_irqsave(&ioc->res_lock, flags);
1000	sba_check_pdir(ioc,"Check after sba_map_single_attrs()");
1001	spin_unlock_irqrestore(&ioc->res_lock, flags);
1002#endif
1003	return SBA_IOVA(ioc, iovp, offset);
1004}
1005
1006static dma_addr_t sba_map_single_attrs(struct device *dev, void *addr,
1007				       size_t size, enum dma_data_direction dir,
1008				       unsigned long attrs)
1009{
1010	return sba_map_page(dev, virt_to_page(addr),
1011			    (unsigned long)addr & ~PAGE_MASK, size, dir, attrs);
1012}
1013
1014#ifdef ENABLE_MARK_CLEAN
1015static SBA_INLINE void
1016sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
1017{
1018	u32	iovp = (u32) SBA_IOVP(ioc,iova);
1019	int	off = PDIR_INDEX(iovp);
1020	void	*addr;
1021
1022	if (size <= iovp_size) {
1023		addr = phys_to_virt(ioc->pdir_base[off] &
1024		                    ~0xE000000000000FFFULL);
1025		mark_clean(addr, size);
1026	} else {
1027		do {
1028			addr = phys_to_virt(ioc->pdir_base[off] &
1029			                    ~0xE000000000000FFFULL);
1030			mark_clean(addr, min(size, iovp_size));
1031			off++;
1032			size -= iovp_size;
1033		} while (size > 0);
1034	}
1035}
1036#endif
1037
1038/**
1039 * sba_unmap_single_attrs - unmap one IOVA and free resources
1040 * @dev: instance of PCI owned by the driver that's asking.
1041 * @iova:  IOVA of driver buffer previously mapped.
1042 * @size:  number of bytes mapped in driver buffer.
1043 * @dir:  R/W or both.
1044 * @attrs: optional dma attributes
1045 *
1046 * See Documentation/DMA-API-HOWTO.txt
1047 */
1048static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
1049			   enum dma_data_direction dir, unsigned long attrs)
1050{
1051	struct ioc *ioc;
1052#if DELAYED_RESOURCE_CNT > 0
1053	struct sba_dma_pair *d;
1054#endif
1055	unsigned long flags;
1056	dma_addr_t offset;
1057
1058	ioc = GET_IOC(dev);
1059	ASSERT(ioc);
1060
1061#ifdef ALLOW_IOV_BYPASS
1062	if (likely((iova & ioc->imask) != ioc->ibase)) {
1063		/*
1064		** Address does not fall w/in IOVA, must be bypassing
1065		*/
1066		DBG_BYPASS("sba_unmap_single_attrs() bypass addr: 0x%lx\n",
1067			   iova);
1068
1069#ifdef ENABLE_MARK_CLEAN
1070		if (dir == DMA_FROM_DEVICE) {
1071			mark_clean(phys_to_virt(iova), size);
1072		}
1073#endif
1074		return;
1075	}
1076#endif
1077	offset = iova & ~iovp_mask;
1078
1079	DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
1080
1081	iova ^= offset;        /* clear offset bits */
1082	size += offset;
1083	size = ROUNDUP(size, iovp_size);
1084
1085#ifdef ENABLE_MARK_CLEAN
1086	if (dir == DMA_FROM_DEVICE)
1087		sba_mark_clean(ioc, iova, size);
1088#endif
1089
1090#if DELAYED_RESOURCE_CNT > 0
1091	spin_lock_irqsave(&ioc->saved_lock, flags);
1092	d = &(ioc->saved[ioc->saved_cnt]);
1093	d->iova = iova;
1094	d->size = size;
1095	if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
1096		int cnt = ioc->saved_cnt;
1097		spin_lock(&ioc->res_lock);
1098		while (cnt--) {
1099			sba_mark_invalid(ioc, d->iova, d->size);
1100			sba_free_range(ioc, d->iova, d->size);
1101			d--;
1102		}
1103		ioc->saved_cnt = 0;
1104		READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
1105		spin_unlock(&ioc->res_lock);
1106	}
1107	spin_unlock_irqrestore(&ioc->saved_lock, flags);
1108#else /* DELAYED_RESOURCE_CNT == 0 */
1109	spin_lock_irqsave(&ioc->res_lock, flags);
1110	sba_mark_invalid(ioc, iova, size);
1111	sba_free_range(ioc, iova, size);
1112	READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
1113	spin_unlock_irqrestore(&ioc->res_lock, flags);
1114#endif /* DELAYED_RESOURCE_CNT == 0 */
1115}
1116
1117void sba_unmap_single_attrs(struct device *dev, dma_addr_t iova, size_t size,
1118			    enum dma_data_direction dir, unsigned long attrs)
1119{
1120	sba_unmap_page(dev, iova, size, dir, attrs);
1121}
1122
1123/**
1124 * sba_alloc_coherent - allocate/map shared mem for DMA
1125 * @dev: instance of PCI owned by the driver that's asking.
1126 * @size:  number of bytes mapped in driver buffer.
1127 * @dma_handle:  IOVA of new buffer.
1128 *
1129 * See Documentation/DMA-API-HOWTO.txt
1130 */
1131static void *
1132sba_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1133		   gfp_t flags, unsigned long attrs)
1134{
 
1135	struct ioc *ioc;
 
1136	void *addr;
1137
1138	ioc = GET_IOC(dev);
1139	ASSERT(ioc);
1140
1141#ifdef CONFIG_NUMA
1142	{
1143		struct page *page;
1144
1145		page = alloc_pages_node(ioc->node, flags, get_order(size));
1146		if (unlikely(!page))
1147			return NULL;
1148
1149		addr = page_address(page);
1150	}
1151#else
1152	addr = (void *) __get_free_pages(flags, get_order(size));
1153#endif
1154	if (unlikely(!addr))
1155		return NULL;
1156
 
1157	memset(addr, 0, size);
1158	*dma_handle = virt_to_phys(addr);
1159
1160#ifdef ALLOW_IOV_BYPASS
1161	ASSERT(dev->coherent_dma_mask);
1162	/*
1163 	** Check if the PCI device can DMA to ptr... if so, just return ptr
1164 	*/
1165	if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
1166		DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
1167		           dev->coherent_dma_mask, *dma_handle);
1168
1169		return addr;
1170	}
1171#endif
1172
1173	/*
1174	 * If device can't bypass or bypass is disabled, pass the 32bit fake
1175	 * device to map single to get an iova mapping.
1176	 */
1177	*dma_handle = sba_map_single_attrs(&ioc->sac_only_dev->dev, addr,
1178					   size, 0, 0);
1179
 
1180	return addr;
1181}
1182
1183
1184/**
1185 * sba_free_coherent - free/unmap shared mem for DMA
1186 * @dev: instance of PCI owned by the driver that's asking.
1187 * @size:  number of bytes mapped in driver buffer.
1188 * @vaddr:  virtual address IOVA of "consistent" buffer.
1189 * @dma_handler:  IO virtual address of "consistent" buffer.
1190 *
1191 * See Documentation/DMA-API-HOWTO.txt
1192 */
1193static void sba_free_coherent(struct device *dev, size_t size, void *vaddr,
1194			      dma_addr_t dma_handle, unsigned long attrs)
1195{
1196	sba_unmap_single_attrs(dev, dma_handle, size, 0, 0);
1197	free_pages((unsigned long) vaddr, get_order(size));
1198}
1199
1200
1201/*
1202** Since 0 is a valid pdir_base index value, can't use that
1203** to determine if a value is valid or not. Use a flag to indicate
1204** the SG list entry contains a valid pdir index.
1205*/
1206#define PIDE_FLAG 0x1UL
1207
1208#ifdef DEBUG_LARGE_SG_ENTRIES
1209int dump_run_sg = 0;
1210#endif
1211
1212
1213/**
1214 * sba_fill_pdir - write allocated SG entries into IO PDIR
1215 * @ioc: IO MMU structure which owns the pdir we are interested in.
1216 * @startsg:  list of IOVA/size pairs
1217 * @nents: number of entries in startsg list
1218 *
1219 * Take preprocessed SG list and write corresponding entries
1220 * in the IO PDIR.
1221 */
1222
1223static SBA_INLINE int
1224sba_fill_pdir(
1225	struct ioc *ioc,
1226	struct scatterlist *startsg,
1227	int nents)
1228{
1229	struct scatterlist *dma_sg = startsg;	/* pointer to current DMA */
1230	int n_mappings = 0;
1231	u64 *pdirp = NULL;
1232	unsigned long dma_offset = 0;
1233
1234	while (nents-- > 0) {
1235		int     cnt = startsg->dma_length;
1236		startsg->dma_length = 0;
1237
1238#ifdef DEBUG_LARGE_SG_ENTRIES
1239		if (dump_run_sg)
1240			printk(" %2d : %08lx/%05x %p\n",
1241				nents, startsg->dma_address, cnt,
1242				sba_sg_address(startsg));
1243#else
1244		DBG_RUN_SG(" %d : %08lx/%05x %p\n",
1245				nents, startsg->dma_address, cnt,
1246				sba_sg_address(startsg));
1247#endif
1248		/*
1249		** Look for the start of a new DMA stream
1250		*/
1251		if (startsg->dma_address & PIDE_FLAG) {
1252			u32 pide = startsg->dma_address & ~PIDE_FLAG;
1253			dma_offset = (unsigned long) pide & ~iovp_mask;
1254			startsg->dma_address = 0;
1255			if (n_mappings)
1256				dma_sg = sg_next(dma_sg);
1257			dma_sg->dma_address = pide | ioc->ibase;
1258			pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
1259			n_mappings++;
1260		}
1261
1262		/*
1263		** Look for a VCONTIG chunk
1264		*/
1265		if (cnt) {
1266			unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1267			ASSERT(pdirp);
1268
1269			/* Since multiple Vcontig blocks could make up
1270			** one DMA stream, *add* cnt to dma_len.
1271			*/
1272			dma_sg->dma_length += cnt;
1273			cnt += dma_offset;
1274			dma_offset=0;	/* only want offset on first chunk */
1275			cnt = ROUNDUP(cnt, iovp_size);
1276			do {
1277				sba_io_pdir_entry(pdirp, vaddr);
1278				vaddr += iovp_size;
1279				cnt -= iovp_size;
1280				pdirp++;
1281			} while (cnt > 0);
1282		}
1283		startsg = sg_next(startsg);
1284	}
1285	/* force pdir update */
1286	wmb();
1287
1288#ifdef DEBUG_LARGE_SG_ENTRIES
1289	dump_run_sg = 0;
1290#endif
1291	return(n_mappings);
1292}
1293
1294
1295/*
1296** Two address ranges are DMA contiguous *iff* "end of prev" and
1297** "start of next" are both on an IOV page boundary.
1298**
1299** (shift left is a quick trick to mask off upper bits)
1300*/
1301#define DMA_CONTIG(__X, __Y) \
1302	(((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
1303
1304
1305/**
1306 * sba_coalesce_chunks - preprocess the SG list
1307 * @ioc: IO MMU structure which owns the pdir we are interested in.
1308 * @startsg:  list of IOVA/size pairs
1309 * @nents: number of entries in startsg list
1310 *
1311 * First pass is to walk the SG list and determine where the breaks are
1312 * in the DMA stream. Allocates PDIR entries but does not fill them.
1313 * Returns the number of DMA chunks.
1314 *
1315 * Doing the fill separate from the coalescing/allocation keeps the
1316 * code simpler. Future enhancement could make one pass through
1317 * the sglist do both.
1318 */
1319static SBA_INLINE int
1320sba_coalesce_chunks(struct ioc *ioc, struct device *dev,
1321	struct scatterlist *startsg,
1322	int nents)
1323{
1324	struct scatterlist *vcontig_sg;    /* VCONTIG chunk head */
1325	unsigned long vcontig_len;         /* len of VCONTIG chunk */
1326	unsigned long vcontig_end;
1327	struct scatterlist *dma_sg;        /* next DMA stream head */
1328	unsigned long dma_offset, dma_len; /* start/len of DMA stream */
1329	int n_mappings = 0;
1330	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1331	int idx;
1332
1333	while (nents > 0) {
1334		unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1335
1336		/*
1337		** Prepare for first/next DMA stream
1338		*/
1339		dma_sg = vcontig_sg = startsg;
1340		dma_len = vcontig_len = vcontig_end = startsg->length;
1341		vcontig_end +=  vaddr;
1342		dma_offset = vaddr & ~iovp_mask;
1343
1344		/* PARANOID: clear entries */
1345		startsg->dma_address = startsg->dma_length = 0;
1346
1347		/*
1348		** This loop terminates one iteration "early" since
1349		** it's always looking one "ahead".
1350		*/
1351		while (--nents > 0) {
1352			unsigned long vaddr;	/* tmp */
1353
1354			startsg = sg_next(startsg);
1355
1356			/* PARANOID */
1357			startsg->dma_address = startsg->dma_length = 0;
1358
1359			/* catch brokenness in SCSI layer */
1360			ASSERT(startsg->length <= DMA_CHUNK_SIZE);
1361
1362			/*
1363			** First make sure current dma stream won't
1364			** exceed DMA_CHUNK_SIZE if we coalesce the
1365			** next entry.
1366			*/
1367			if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
1368			    > DMA_CHUNK_SIZE)
1369				break;
1370
1371			if (dma_len + startsg->length > max_seg_size)
1372				break;
1373
1374			/*
1375			** Then look for virtually contiguous blocks.
1376			**
1377			** append the next transaction?
1378			*/
1379			vaddr = (unsigned long) sba_sg_address(startsg);
1380			if  (vcontig_end == vaddr)
1381			{
1382				vcontig_len += startsg->length;
1383				vcontig_end += startsg->length;
1384				dma_len     += startsg->length;
1385				continue;
1386			}
1387
1388#ifdef DEBUG_LARGE_SG_ENTRIES
1389			dump_run_sg = (vcontig_len > iovp_size);
1390#endif
1391
1392			/*
1393			** Not virtually contiguous.
1394			** Terminate prev chunk.
1395			** Start a new chunk.
1396			**
1397			** Once we start a new VCONTIG chunk, dma_offset
1398			** can't change. And we need the offset from the first
1399			** chunk - not the last one. Ergo Successive chunks
1400			** must start on page boundaries and dove tail
1401			** with it's predecessor.
1402			*/
1403			vcontig_sg->dma_length = vcontig_len;
1404
1405			vcontig_sg = startsg;
1406			vcontig_len = startsg->length;
1407
1408			/*
1409			** 3) do the entries end/start on page boundaries?
1410			**    Don't update vcontig_end until we've checked.
1411			*/
1412			if (DMA_CONTIG(vcontig_end, vaddr))
1413			{
1414				vcontig_end = vcontig_len + vaddr;
1415				dma_len += vcontig_len;
1416				continue;
1417			} else {
1418				break;
1419			}
1420		}
1421
1422		/*
1423		** End of DMA Stream
1424		** Terminate last VCONTIG block.
1425		** Allocate space for DMA stream.
1426		*/
1427		vcontig_sg->dma_length = vcontig_len;
1428		dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
1429		ASSERT(dma_len <= DMA_CHUNK_SIZE);
1430		idx = sba_alloc_range(ioc, dev, dma_len);
1431		if (idx < 0) {
1432			dma_sg->dma_length = 0;
1433			return -1;
1434		}
1435		dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift)
1436						   | dma_offset);
1437		n_mappings++;
1438	}
1439
1440	return n_mappings;
1441}
1442
1443static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1444			       int nents, enum dma_data_direction dir,
1445			       unsigned long attrs);
1446/**
1447 * sba_map_sg - map Scatter/Gather list
1448 * @dev: instance of PCI owned by the driver that's asking.
1449 * @sglist:  array of buffer/length pairs
1450 * @nents:  number of entries in list
1451 * @dir:  R/W or both.
1452 * @attrs: optional dma attributes
1453 *
1454 * See Documentation/DMA-API-HOWTO.txt
1455 */
1456static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist,
1457			    int nents, enum dma_data_direction dir,
1458			    unsigned long attrs)
1459{
1460	struct ioc *ioc;
1461	int coalesced, filled = 0;
1462#ifdef ASSERT_PDIR_SANITY
1463	unsigned long flags;
1464#endif
1465#ifdef ALLOW_IOV_BYPASS_SG
1466	struct scatterlist *sg;
1467#endif
1468
1469	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1470	ioc = GET_IOC(dev);
1471	ASSERT(ioc);
1472
1473#ifdef ALLOW_IOV_BYPASS_SG
1474	ASSERT(to_pci_dev(dev)->dma_mask);
1475	if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
1476		for_each_sg(sglist, sg, nents, filled) {
1477			sg->dma_length = sg->length;
1478			sg->dma_address = virt_to_phys(sba_sg_address(sg));
1479		}
1480		return filled;
1481	}
1482#endif
1483	/* Fast path single entry scatterlists. */
1484	if (nents == 1) {
1485		sglist->dma_length = sglist->length;
1486		sglist->dma_address = sba_map_single_attrs(dev, sba_sg_address(sglist), sglist->length, dir, attrs);
 
 
 
1487		return 1;
1488	}
1489
1490#ifdef ASSERT_PDIR_SANITY
1491	spin_lock_irqsave(&ioc->res_lock, flags);
1492	if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()"))
1493	{
1494		sba_dump_sg(ioc, sglist, nents);
1495		panic("Check before sba_map_sg_attrs()");
1496	}
1497	spin_unlock_irqrestore(&ioc->res_lock, flags);
1498#endif
1499
1500	prefetch(ioc->res_hint);
1501
1502	/*
1503	** First coalesce the chunks and allocate I/O pdir space
1504	**
1505	** If this is one DMA stream, we can properly map using the
1506	** correct virtual address associated with each DMA page.
1507	** w/o this association, we wouldn't have coherent DMA!
1508	** Access to the virtual address is what forces a two pass algorithm.
1509	*/
1510	coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents);
1511	if (coalesced < 0) {
1512		sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs);
1513		return 0;
1514	}
1515
1516	/*
1517	** Program the I/O Pdir
1518	**
1519	** map the virtual addresses to the I/O Pdir
1520	** o dma_address will contain the pdir index
1521	** o dma_len will contain the number of bytes to map
1522	** o address contains the virtual address.
1523	*/
1524	filled = sba_fill_pdir(ioc, sglist, nents);
1525
1526#ifdef ASSERT_PDIR_SANITY
1527	spin_lock_irqsave(&ioc->res_lock, flags);
1528	if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()"))
1529	{
1530		sba_dump_sg(ioc, sglist, nents);
1531		panic("Check after sba_map_sg_attrs()\n");
1532	}
1533	spin_unlock_irqrestore(&ioc->res_lock, flags);
1534#endif
1535
1536	ASSERT(coalesced == filled);
1537	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1538
1539	return filled;
1540}
1541
1542/**
1543 * sba_unmap_sg_attrs - unmap Scatter/Gather list
1544 * @dev: instance of PCI owned by the driver that's asking.
1545 * @sglist:  array of buffer/length pairs
1546 * @nents:  number of entries in list
1547 * @dir:  R/W or both.
1548 * @attrs: optional dma attributes
1549 *
1550 * See Documentation/DMA-API-HOWTO.txt
1551 */
1552static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1553			       int nents, enum dma_data_direction dir,
1554			       unsigned long attrs)
1555{
1556#ifdef ASSERT_PDIR_SANITY
1557	struct ioc *ioc;
1558	unsigned long flags;
1559#endif
1560
1561	DBG_RUN_SG("%s() START %d entries,  %p,%x\n",
1562		   __func__, nents, sba_sg_address(sglist), sglist->length);
1563
1564#ifdef ASSERT_PDIR_SANITY
1565	ioc = GET_IOC(dev);
1566	ASSERT(ioc);
1567
1568	spin_lock_irqsave(&ioc->res_lock, flags);
1569	sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()");
1570	spin_unlock_irqrestore(&ioc->res_lock, flags);
1571#endif
1572
1573	while (nents && sglist->dma_length) {
1574
1575		sba_unmap_single_attrs(dev, sglist->dma_address,
1576				       sglist->dma_length, dir, attrs);
1577		sglist = sg_next(sglist);
1578		nents--;
1579	}
1580
1581	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__,  nents);
1582
1583#ifdef ASSERT_PDIR_SANITY
1584	spin_lock_irqsave(&ioc->res_lock, flags);
1585	sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()");
1586	spin_unlock_irqrestore(&ioc->res_lock, flags);
1587#endif
1588
1589}
1590
1591/**************************************************************
1592*
1593*   Initialization and claim
1594*
1595***************************************************************/
1596
1597static void
1598ioc_iova_init(struct ioc *ioc)
1599{
1600	int tcnfg;
1601	int agp_found = 0;
1602	struct pci_dev *device = NULL;
1603#ifdef FULL_VALID_PDIR
1604	unsigned long index;
1605#endif
1606
1607	/*
1608	** Firmware programs the base and size of a "safe IOVA space"
1609	** (one that doesn't overlap memory or LMMIO space) in the
1610	** IBASE and IMASK registers.
1611	*/
1612	ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
1613	ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
1614
1615	ioc->iov_size = ~ioc->imask + 1;
1616
1617	DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
1618		__func__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
1619		ioc->iov_size >> 20);
1620
1621	switch (iovp_size) {
1622		case  4*1024: tcnfg = 0; break;
1623		case  8*1024: tcnfg = 1; break;
1624		case 16*1024: tcnfg = 2; break;
1625		case 64*1024: tcnfg = 3; break;
1626		default:
1627			panic(PFX "Unsupported IOTLB page size %ldK",
1628				iovp_size >> 10);
1629			break;
1630	}
1631	WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1632
1633	ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
1634	ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1635						   get_order(ioc->pdir_size));
1636	if (!ioc->pdir_base)
1637		panic(PFX "Couldn't allocate I/O Page Table\n");
1638
1639	memset(ioc->pdir_base, 0, ioc->pdir_size);
1640
1641	DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__,
1642		iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
1643
1644	ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
1645	WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1646
1647	/*
1648	** If an AGP device is present, only use half of the IOV space
1649	** for PCI DMA.  Unfortunately we can't know ahead of time
1650	** whether GART support will actually be used, for now we
1651	** can just key on an AGP device found in the system.
1652	** We program the next pdir index after we stop w/ a key for
1653	** the GART code to handshake on.
1654	*/
1655	for_each_pci_dev(device)	
1656		agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
1657
1658	if (agp_found && reserve_sba_gart) {
1659		printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
1660		      ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
1661		ioc->pdir_size /= 2;
1662		((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
1663	}
1664#ifdef FULL_VALID_PDIR
1665	/*
1666  	** Check to see if the spill page has been allocated, we don't need more than
1667	** one across multiple SBAs.
1668	*/
1669	if (!prefetch_spill_page) {
1670		char *spill_poison = "SBAIOMMU POISON";
1671		int poison_size = 16;
1672		void *poison_addr, *addr;
1673
1674		addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
1675		if (!addr)
1676			panic(PFX "Couldn't allocate PDIR spill page\n");
1677
1678		poison_addr = addr;
1679		for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
1680			memcpy(poison_addr, spill_poison, poison_size);
1681
1682		prefetch_spill_page = virt_to_phys(addr);
1683
1684		DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page);
1685	}
1686	/*
1687  	** Set all the PDIR entries valid w/ the spill page as the target
1688	*/
1689	for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
1690		((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
1691#endif
1692
1693	/* Clear I/O TLB of any possible entries */
1694	WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
1695	READ_REG(ioc->ioc_hpa + IOC_PCOM);
1696
1697	/* Enable IOVA translation */
1698	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1699	READ_REG(ioc->ioc_hpa + IOC_IBASE);
1700}
1701
1702static void __init
1703ioc_resource_init(struct ioc *ioc)
1704{
1705	spin_lock_init(&ioc->res_lock);
1706#if DELAYED_RESOURCE_CNT > 0
1707	spin_lock_init(&ioc->saved_lock);
1708#endif
1709
1710	/* resource map size dictated by pdir_size */
1711	ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
1712	ioc->res_size >>= 3;  /* convert bit count to byte count */
1713	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1714
1715	ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
1716						 get_order(ioc->res_size));
1717	if (!ioc->res_map)
1718		panic(PFX "Couldn't allocate resource map\n");
1719
1720	memset(ioc->res_map, 0, ioc->res_size);
1721	/* next available IOVP - circular search */
1722	ioc->res_hint = (unsigned long *) ioc->res_map;
1723
1724#ifdef ASSERT_PDIR_SANITY
1725	/* Mark first bit busy - ie no IOVA 0 */
1726	ioc->res_map[0] = 0x1;
1727	ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
1728#endif
1729#ifdef FULL_VALID_PDIR
1730	/* Mark the last resource used so we don't prefetch beyond IOVA space */
1731	ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
1732	ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
1733							      | prefetch_spill_page);
1734#endif
1735
1736	DBG_INIT("%s() res_map %x %p\n", __func__,
1737		 ioc->res_size, (void *) ioc->res_map);
1738}
1739
1740static void __init
1741ioc_sac_init(struct ioc *ioc)
1742{
1743	struct pci_dev *sac = NULL;
1744	struct pci_controller *controller = NULL;
1745
1746	/*
1747	 * pci_alloc_coherent() must return a DMA address which is
1748	 * SAC (single address cycle) addressable, so allocate a
1749	 * pseudo-device to enforce that.
1750	 */
1751	sac = kzalloc(sizeof(*sac), GFP_KERNEL);
1752	if (!sac)
1753		panic(PFX "Couldn't allocate struct pci_dev");
1754
1755	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
1756	if (!controller)
1757		panic(PFX "Couldn't allocate struct pci_controller");
1758
1759	controller->iommu = ioc;
1760	sac->sysdata = controller;
1761	sac->dma_mask = 0xFFFFFFFFUL;
1762#ifdef CONFIG_PCI
1763	sac->dev.bus = &pci_bus_type;
1764#endif
1765	ioc->sac_only_dev = sac;
1766}
1767
1768static void __init
1769ioc_zx1_init(struct ioc *ioc)
1770{
1771	unsigned long rope_config;
1772	unsigned int i;
1773
1774	if (ioc->rev < 0x20)
1775		panic(PFX "IOC 2.0 or later required for IOMMU support\n");
1776
1777	/* 38 bit memory controller + extra bit for range displaced by MMIO */
1778	ioc->dma_mask = (0x1UL << 39) - 1;
1779
1780	/*
1781	** Clear ROPE(N)_CONFIG AO bit.
1782	** Disables "NT Ordering" (~= !"Relaxed Ordering")
1783	** Overrides bit 1 in DMA Hint Sets.
1784	** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
1785	*/
1786	for (i=0; i<(8*8); i+=8) {
1787		rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1788		rope_config &= ~IOC_ROPE_AO;
1789		WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1790	}
1791}
1792
1793typedef void (initfunc)(struct ioc *);
1794
1795struct ioc_iommu {
1796	u32 func_id;
1797	char *name;
1798	initfunc *init;
1799};
1800
1801static struct ioc_iommu ioc_iommu_info[] __initdata = {
1802	{ ZX1_IOC_ID, "zx1", ioc_zx1_init },
1803	{ ZX2_IOC_ID, "zx2", NULL },
1804	{ SX1000_IOC_ID, "sx1000", NULL },
1805	{ SX2000_IOC_ID, "sx2000", NULL },
1806};
1807
1808static void ioc_init(unsigned long hpa, struct ioc *ioc)
1809{
1810	struct ioc_iommu *info;
1811
1812	ioc->next = ioc_list;
1813	ioc_list = ioc;
1814
1815	ioc->ioc_hpa = ioremap(hpa, 0x1000);
1816
1817	ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
1818	ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
1819	ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL;	/* conservative */
1820
1821	for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
1822		if (ioc->func_id == info->func_id) {
1823			ioc->name = info->name;
1824			if (info->init)
1825				(info->init)(ioc);
1826		}
1827	}
1828
1829	iovp_size = (1 << iovp_shift);
1830	iovp_mask = ~(iovp_size - 1);
1831
1832	DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__,
1833		PAGE_SIZE >> 10, iovp_size >> 10);
1834
1835	if (!ioc->name) {
1836		ioc->name = kmalloc(24, GFP_KERNEL);
1837		if (ioc->name)
1838			sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
1839				ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
1840		else
1841			ioc->name = "Unknown";
1842	}
1843
1844	ioc_iova_init(ioc);
1845	ioc_resource_init(ioc);
1846	ioc_sac_init(ioc);
1847
1848	if ((long) ~iovp_mask > (long) ia64_max_iommu_merge_mask)
1849		ia64_max_iommu_merge_mask = ~iovp_mask;
1850
1851	printk(KERN_INFO PFX
1852		"%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
1853		ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
1854		hpa, ioc->iov_size >> 20, ioc->ibase);
1855}
1856
1857
1858
1859/**************************************************************************
1860**
1861**   SBA initialization code (HW and SW)
1862**
1863**   o identify SBA chip itself
1864**   o FIXME: initialize DMA hints for reasonable defaults
1865**
1866**************************************************************************/
1867
1868#ifdef CONFIG_PROC_FS
1869static void *
1870ioc_start(struct seq_file *s, loff_t *pos)
1871{
1872	struct ioc *ioc;
1873	loff_t n = *pos;
1874
1875	for (ioc = ioc_list; ioc; ioc = ioc->next)
1876		if (!n--)
1877			return ioc;
1878
1879	return NULL;
1880}
1881
1882static void *
1883ioc_next(struct seq_file *s, void *v, loff_t *pos)
1884{
1885	struct ioc *ioc = v;
1886
1887	++*pos;
1888	return ioc->next;
1889}
1890
1891static void
1892ioc_stop(struct seq_file *s, void *v)
1893{
1894}
1895
1896static int
1897ioc_show(struct seq_file *s, void *v)
1898{
1899	struct ioc *ioc = v;
1900	unsigned long *res_ptr = (unsigned long *)ioc->res_map;
1901	int i, used = 0;
1902
1903	seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
1904		ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
1905#ifdef CONFIG_NUMA
1906	if (ioc->node != NUMA_NO_NODE)
1907		seq_printf(s, "NUMA node       : %d\n", ioc->node);
1908#endif
1909	seq_printf(s, "IOVA size       : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
1910	seq_printf(s, "IOVA page size  : %ld kb\n", iovp_size/1024);
1911
1912	for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
1913		used += hweight64(*res_ptr);
1914
1915	seq_printf(s, "PDIR size       : %d entries\n", ioc->pdir_size >> 3);
1916	seq_printf(s, "PDIR used       : %d entries\n", used);
1917
1918#ifdef PDIR_SEARCH_TIMING
1919	{
1920		unsigned long i = 0, avg = 0, min, max;
1921		min = max = ioc->avg_search[0];
1922		for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1923			avg += ioc->avg_search[i];
1924			if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1925			if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1926		}
1927		avg /= SBA_SEARCH_SAMPLE;
1928		seq_printf(s, "Bitmap search   : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
1929		           min, avg, max);
1930	}
1931#endif
1932#ifndef ALLOW_IOV_BYPASS
1933	 seq_printf(s, "IOVA bypass disabled\n");
1934#endif
1935	return 0;
1936}
1937
1938static const struct seq_operations ioc_seq_ops = {
1939	.start = ioc_start,
1940	.next  = ioc_next,
1941	.stop  = ioc_stop,
1942	.show  = ioc_show
1943};
1944
1945static int
1946ioc_open(struct inode *inode, struct file *file)
1947{
1948	return seq_open(file, &ioc_seq_ops);
1949}
1950
1951static const struct file_operations ioc_fops = {
1952	.open    = ioc_open,
1953	.read    = seq_read,
1954	.llseek  = seq_lseek,
1955	.release = seq_release
1956};
1957
1958static void __init
1959ioc_proc_init(void)
1960{
1961	struct proc_dir_entry *dir;
1962
1963	dir = proc_mkdir("bus/mckinley", NULL);
1964	if (!dir)
1965		return;
1966
1967	proc_create(ioc_list->name, 0, dir, &ioc_fops);
1968}
1969#endif
1970
1971static void
1972sba_connect_bus(struct pci_bus *bus)
1973{
1974	acpi_handle handle, parent;
1975	acpi_status status;
1976	struct ioc *ioc;
1977
1978	if (!PCI_CONTROLLER(bus))
1979		panic(PFX "no sysdata on bus %d!\n", bus->number);
1980
1981	if (PCI_CONTROLLER(bus)->iommu)
1982		return;
1983
1984	handle = acpi_device_handle(PCI_CONTROLLER(bus)->companion);
1985	if (!handle)
1986		return;
1987
1988	/*
1989	 * The IOC scope encloses PCI root bridges in the ACPI
1990	 * namespace, so work our way out until we find an IOC we
1991	 * claimed previously.
1992	 */
1993	do {
1994		for (ioc = ioc_list; ioc; ioc = ioc->next)
1995			if (ioc->handle == handle) {
1996				PCI_CONTROLLER(bus)->iommu = ioc;
1997				return;
1998			}
1999
2000		status = acpi_get_parent(handle, &parent);
2001		handle = parent;
2002	} while (ACPI_SUCCESS(status));
2003
2004	printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
2005}
2006
2007static void __init
2008sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
2009{
2010#ifdef CONFIG_NUMA
2011	unsigned int node;
2012
2013	node = acpi_get_node(handle);
2014	if (node != NUMA_NO_NODE && !node_online(node))
2015		node = NUMA_NO_NODE;
2016
2017	ioc->node = node;
2018#endif
2019}
2020
2021static void acpi_sba_ioc_add(struct ioc *ioc)
2022{
2023	acpi_handle handle = ioc->handle;
2024	acpi_status status;
2025	u64 hpa, length;
2026	struct acpi_device_info *adi;
2027
2028	ioc_found = ioc->next;
2029	status = hp_acpi_csr_space(handle, &hpa, &length);
2030	if (ACPI_FAILURE(status))
2031		goto err;
2032
2033	status = acpi_get_object_info(handle, &adi);
2034	if (ACPI_FAILURE(status))
2035		goto err;
2036
2037	/*
2038	 * For HWP0001, only SBA appears in ACPI namespace.  It encloses the PCI
2039	 * root bridges, and its CSR space includes the IOC function.
2040	 */
2041	if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) {
2042		hpa += ZX1_IOC_OFFSET;
2043		/* zx1 based systems default to kernel page size iommu pages */
2044		if (!iovp_shift)
2045			iovp_shift = min(PAGE_SHIFT, 16);
2046	}
2047	kfree(adi);
2048
2049	/*
2050	 * default anything not caught above or specified on cmdline to 4k
2051	 * iommu page size
2052	 */
2053	if (!iovp_shift)
2054		iovp_shift = 12;
2055
2056	ioc_init(hpa, ioc);
2057	/* setup NUMA node association */
2058	sba_map_ioc_to_node(ioc, handle);
2059	return;
2060
2061 err:
2062	kfree(ioc);
2063}
2064
2065static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
2066	{"HWP0001", 0},
2067	{"HWP0004", 0},
2068	{"", 0},
2069};
2070
2071static int acpi_sba_ioc_attach(struct acpi_device *device,
2072			       const struct acpi_device_id *not_used)
2073{
2074	struct ioc *ioc;
2075
2076	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2077	if (!ioc)
2078		return -ENOMEM;
2079
2080	ioc->next = ioc_found;
2081	ioc_found = ioc;
2082	ioc->handle = device->handle;
2083	return 1;
2084}
2085
2086
2087static struct acpi_scan_handler acpi_sba_ioc_handler = {
2088	.ids	= hp_ioc_iommu_device_ids,
2089	.attach	= acpi_sba_ioc_attach,
2090};
2091
2092static int __init acpi_sba_ioc_init_acpi(void)
2093{
2094	return acpi_scan_add_handler(&acpi_sba_ioc_handler);
2095}
2096/* This has to run before acpi_scan_init(). */
2097arch_initcall(acpi_sba_ioc_init_acpi);
2098
2099extern const struct dma_map_ops swiotlb_dma_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2100
2101static int __init
2102sba_init(void)
2103{
2104	if (!ia64_platform_is("hpzx1") && !ia64_platform_is("hpzx1_swiotlb"))
2105		return 0;
2106
2107#if defined(CONFIG_IA64_GENERIC)
2108	/* If we are booting a kdump kernel, the sba_iommu will
2109	 * cause devices that were not shutdown properly to MCA
2110	 * as soon as they are turned back on.  Our only option for
2111	 * a successful kdump kernel boot is to use the swiotlb.
2112	 */
2113	if (is_kdump_kernel()) {
2114		dma_ops = &swiotlb_dma_ops;
2115		if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2116			panic("Unable to initialize software I/O TLB:"
2117				  " Try machvec=dig boot option");
2118		machvec_init("dig");
2119		return 0;
2120	}
2121#endif
2122
2123	/*
2124	 * ioc_found should be populated by the acpi_sba_ioc_handler's .attach()
2125	 * routine, but that only happens if acpi_scan_init() has already run.
2126	 */
2127	while (ioc_found)
2128		acpi_sba_ioc_add(ioc_found);
2129
2130	if (!ioc_list) {
2131#ifdef CONFIG_IA64_GENERIC
2132		/*
2133		 * If we didn't find something sba_iommu can claim, we
2134		 * need to setup the swiotlb and switch to the dig machvec.
2135		 */
2136		dma_ops = &swiotlb_dma_ops;
2137		if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2138			panic("Unable to find SBA IOMMU or initialize "
2139			      "software I/O TLB: Try machvec=dig boot option");
2140		machvec_init("dig");
2141#else
2142		panic("Unable to find SBA IOMMU: Try a generic or DIG kernel");
2143#endif
2144		return 0;
2145	}
2146
2147#if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_HP_ZX1_SWIOTLB)
2148	/*
2149	 * hpzx1_swiotlb needs to have a fairly small swiotlb bounce
2150	 * buffer setup to support devices with smaller DMA masks than
2151	 * sba_iommu can handle.
2152	 */
2153	if (ia64_platform_is("hpzx1_swiotlb")) {
2154		extern void hwsw_init(void);
2155
2156		hwsw_init();
2157	}
2158#endif
2159
2160#ifdef CONFIG_PCI
2161	{
2162		struct pci_bus *b = NULL;
2163		while ((b = pci_find_next_bus(b)) != NULL)
2164			sba_connect_bus(b);
2165	}
2166#endif
 
 
 
2167
2168#ifdef CONFIG_PROC_FS
2169	ioc_proc_init();
2170#endif
2171	return 0;
2172}
2173
2174subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
2175
2176static int __init
2177nosbagart(char *str)
2178{
2179	reserve_sba_gart = 0;
2180	return 1;
2181}
2182
2183static int sba_dma_supported (struct device *dev, u64 mask)
2184{
2185	/* make sure it's at least 32bit capable */
2186	return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
2187}
2188
2189static int sba_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
2190{
2191	return 0;
2192}
2193
2194__setup("nosbagart", nosbagart);
2195
2196static int __init
2197sba_page_override(char *str)
2198{
2199	unsigned long page_size;
2200
2201	page_size = memparse(str, &str);
2202	switch (page_size) {
2203		case 4096:
2204		case 8192:
2205		case 16384:
2206		case 65536:
2207			iovp_shift = ffs(page_size) - 1;
2208			break;
2209		default:
2210			printk("%s: unknown/unsupported iommu page size %ld\n",
2211			       __func__, page_size);
2212	}
2213
2214	return 1;
2215}
2216
2217__setup("sbapagesize=",sba_page_override);
2218
2219const struct dma_map_ops sba_dma_ops = {
2220	.alloc			= sba_alloc_coherent,
2221	.free			= sba_free_coherent,
2222	.map_page		= sba_map_page,
2223	.unmap_page		= sba_unmap_page,
2224	.map_sg			= sba_map_sg_attrs,
2225	.unmap_sg		= sba_unmap_sg_attrs,
2226	.sync_single_for_cpu	= machvec_dma_sync_single,
2227	.sync_sg_for_cpu	= machvec_dma_sync_sg,
2228	.sync_single_for_device	= machvec_dma_sync_single,
2229	.sync_sg_for_device	= machvec_dma_sync_sg,
2230	.dma_supported		= sba_dma_supported,
2231	.mapping_error		= sba_dma_mapping_error,
2232};
2233
2234void sba_dma_init(void)
2235{
2236	dma_ops = &sba_dma_ops;
2237}