Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright 2013 Red Hat Inc.
   4 *
   5 * Authors: Jérôme Glisse <jglisse@redhat.com>
 
 
 
 
 
 
 
 
 
 
   6 */
   7/*
   8 * Refer to include/linux/hmm.h for information about heterogeneous memory
   9 * management or HMM for short.
  10 */
  11#include <linux/pagewalk.h>
  12#include <linux/hmm.h>
  13#include <linux/init.h>
  14#include <linux/rmap.h>
  15#include <linux/swap.h>
  16#include <linux/slab.h>
  17#include <linux/sched.h>
  18#include <linux/mmzone.h>
  19#include <linux/pagemap.h>
  20#include <linux/swapops.h>
  21#include <linux/hugetlb.h>
  22#include <linux/memremap.h>
  23#include <linux/sched/mm.h>
  24#include <linux/jump_label.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/mmu_notifier.h>
  27#include <linux/memory_hotplug.h>
  28
  29static struct mmu_notifier *hmm_alloc_notifier(struct mm_struct *mm)
  30{
  31	struct hmm *hmm;
  32
  33	hmm = kzalloc(sizeof(*hmm), GFP_KERNEL);
  34	if (!hmm)
  35		return ERR_PTR(-ENOMEM);
 
 
 
 
  36
  37	init_waitqueue_head(&hmm->wq);
  38	INIT_LIST_HEAD(&hmm->mirrors);
  39	init_rwsem(&hmm->mirrors_sem);
  40	INIT_LIST_HEAD(&hmm->ranges);
  41	spin_lock_init(&hmm->ranges_lock);
  42	hmm->notifiers = 0;
  43	return &hmm->mmu_notifier;
  44}
  45
  46static void hmm_free_notifier(struct mmu_notifier *mn)
  47{
  48	struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
  49
  50	WARN_ON(!list_empty(&hmm->ranges));
  51	WARN_ON(!list_empty(&hmm->mirrors));
  52	kfree(hmm);
  53}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54
  55static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
 
 
 
 
 
 
 
 
  56{
  57	struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
  58	struct hmm_mirror *mirror;
  59
  60	/*
  61	 * Since hmm_range_register() holds the mmget() lock hmm_release() is
  62	 * prevented as long as a range exists.
 
  63	 */
  64	WARN_ON(!list_empty_careful(&hmm->ranges));
 
  65
  66	down_read(&hmm->mirrors_sem);
  67	list_for_each_entry(mirror, &hmm->mirrors, list) {
  68		/*
  69		 * Note: The driver is not allowed to trigger
  70		 * hmm_mirror_unregister() from this thread.
  71		 */
  72		if (mirror->ops->release)
  73			mirror->ops->release(mirror);
 
 
 
 
 
 
 
 
 
 
 
  74	}
  75	up_read(&hmm->mirrors_sem);
  76}
  77
  78static void notifiers_decrement(struct hmm *hmm)
  79{
  80	unsigned long flags;
 
 
 
  81
  82	spin_lock_irqsave(&hmm->ranges_lock, flags);
  83	hmm->notifiers--;
  84	if (!hmm->notifiers) {
  85		struct hmm_range *range;
  86
  87		list_for_each_entry(range, &hmm->ranges, list) {
  88			if (range->valid)
  89				continue;
  90			range->valid = true;
  91		}
  92		wake_up_all(&hmm->wq);
  93	}
  94	spin_unlock_irqrestore(&hmm->ranges_lock, flags);
 
  95}
  96
  97static int hmm_invalidate_range_start(struct mmu_notifier *mn,
  98			const struct mmu_notifier_range *nrange)
 
 
 
 
 
 
 
  99{
 100	struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
 101	struct hmm_mirror *mirror;
 102	struct hmm_range *range;
 103	unsigned long flags;
 104	int ret = 0;
 105
 106	spin_lock_irqsave(&hmm->ranges_lock, flags);
 107	hmm->notifiers++;
 108	list_for_each_entry(range, &hmm->ranges, list) {
 109		if (nrange->end < range->start || nrange->start >= range->end)
 
 
 110			continue;
 111
 112		range->valid = false;
 
 
 
 
 113	}
 114	spin_unlock_irqrestore(&hmm->ranges_lock, flags);
 115
 116	if (mmu_notifier_range_blockable(nrange))
 117		down_read(&hmm->mirrors_sem);
 118	else if (!down_read_trylock(&hmm->mirrors_sem)) {
 119		ret = -EAGAIN;
 120		goto out;
 121	}
 122
 123	list_for_each_entry(mirror, &hmm->mirrors, list) {
 124		int rc;
 125
 126		rc = mirror->ops->sync_cpu_device_pagetables(mirror, nrange);
 127		if (rc) {
 128			if (WARN_ON(mmu_notifier_range_blockable(nrange) ||
 129			    rc != -EAGAIN))
 130				continue;
 131			ret = -EAGAIN;
 132			break;
 
 
 
 
 
 
 
 
 
 133		}
 
 
 134	}
 135	up_read(&hmm->mirrors_sem);
 
 136
 137out:
 138	if (ret)
 139		notifiers_decrement(hmm);
 140	return ret;
 
 
 
 
 
 
 141}
 142
 143static void hmm_invalidate_range_end(struct mmu_notifier *mn,
 144			const struct mmu_notifier_range *nrange)
 
 
 145{
 146	struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
 147
 148	notifiers_decrement(hmm);
 
 
 149}
 150
 151static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
 152	.release		= hmm_release,
 153	.invalidate_range_start	= hmm_invalidate_range_start,
 154	.invalidate_range_end	= hmm_invalidate_range_end,
 155	.alloc_notifier		= hmm_alloc_notifier,
 156	.free_notifier		= hmm_free_notifier,
 157};
 158
 159/*
 160 * hmm_mirror_register() - register a mirror against an mm
 161 *
 162 * @mirror: new mirror struct to register
 163 * @mm: mm to register against
 164 * Return: 0 on success, -ENOMEM if no memory, -EINVAL if invalid arguments
 165 *
 166 * To start mirroring a process address space, the device driver must register
 167 * an HMM mirror struct.
 168 *
 169 * The caller cannot unregister the hmm_mirror while any ranges are
 170 * registered.
 171 *
 172 * Callers using this function must put a call to mmu_notifier_synchronize()
 173 * in their module exit functions.
 174 */
 175int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
 176{
 177	struct mmu_notifier *mn;
 178
 179	lockdep_assert_held_write(&mm->mmap_sem);
 180
 181	/* Sanity check */
 182	if (!mm || !mirror || !mirror->ops)
 183		return -EINVAL;
 184
 185	mn = mmu_notifier_get_locked(&hmm_mmu_notifier_ops, mm);
 186	if (IS_ERR(mn))
 187		return PTR_ERR(mn);
 188	mirror->hmm = container_of(mn, struct hmm, mmu_notifier);
 189
 190	down_write(&mirror->hmm->mirrors_sem);
 191	list_add(&mirror->list, &mirror->hmm->mirrors);
 192	up_write(&mirror->hmm->mirrors_sem);
 
 
 
 
 
 
 
 
 
 
 193
 194	return 0;
 195}
 196EXPORT_SYMBOL(hmm_mirror_register);
 197
 198/*
 199 * hmm_mirror_unregister() - unregister a mirror
 200 *
 201 * @mirror: mirror struct to unregister
 202 *
 203 * Stop mirroring a process address space, and cleanup.
 204 */
 205void hmm_mirror_unregister(struct hmm_mirror *mirror)
 206{
 207	struct hmm *hmm = mirror->hmm;
 
 
 
 
 
 208
 
 209	down_write(&hmm->mirrors_sem);
 210	list_del(&mirror->list);
 
 
 
 
 211	up_write(&hmm->mirrors_sem);
 212	mmu_notifier_put(&hmm->mmu_notifier);
 
 
 
 
 
 
 
 
 
 
 213}
 214EXPORT_SYMBOL(hmm_mirror_unregister);
 215
 216struct hmm_vma_walk {
 217	struct hmm_range	*range;
 218	struct dev_pagemap	*pgmap;
 219	unsigned long		last;
 220	unsigned int		flags;
 
 221};
 222
 223static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
 224			    bool write_fault, uint64_t *pfn)
 225{
 226	unsigned int flags = FAULT_FLAG_REMOTE;
 227	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 228	struct hmm_range *range = hmm_vma_walk->range;
 229	struct vm_area_struct *vma = walk->vma;
 230	vm_fault_t ret;
 231
 232	if (!vma)
 233		goto err;
 234
 235	if (hmm_vma_walk->flags & HMM_FAULT_ALLOW_RETRY)
 236		flags |= FAULT_FLAG_ALLOW_RETRY;
 237	if (write_fault)
 238		flags |= FAULT_FLAG_WRITE;
 239
 240	ret = handle_mm_fault(vma, addr, flags);
 241	if (ret & VM_FAULT_RETRY) {
 242		/* Note, handle_mm_fault did up_read(&mm->mmap_sem)) */
 243		return -EAGAIN;
 244	}
 245	if (ret & VM_FAULT_ERROR)
 246		goto err;
 247
 248	return -EBUSY;
 249
 250err:
 251	*pfn = range->values[HMM_PFN_ERROR];
 252	return -EFAULT;
 253}
 254
 255static int hmm_pfns_bad(unsigned long addr,
 256			unsigned long end,
 257			struct mm_walk *walk)
 258{
 259	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 260	struct hmm_range *range = hmm_vma_walk->range;
 261	uint64_t *pfns = range->pfns;
 262	unsigned long i;
 263
 264	i = (addr - range->start) >> PAGE_SHIFT;
 265	for (; addr < end; addr += PAGE_SIZE, i++)
 266		pfns[i] = range->values[HMM_PFN_ERROR];
 267
 268	return 0;
 269}
 270
 271/*
 272 * hmm_vma_walk_hole_() - handle a range lacking valid pmd or pte(s)
 273 * @addr: range virtual start address (inclusive)
 274 * @end: range virtual end address (exclusive)
 275 * @fault: should we fault or not ?
 276 * @write_fault: write fault ?
 277 * @walk: mm_walk structure
 278 * Return: 0 on success, -EBUSY after page fault, or page fault error
 279 *
 280 * This function will be called whenever pmd_none() or pte_none() returns true,
 281 * or whenever there is no page directory covering the virtual address range.
 282 */
 283static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
 284			      bool fault, bool write_fault,
 285			      struct mm_walk *walk)
 286{
 287	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 288	struct hmm_range *range = hmm_vma_walk->range;
 289	uint64_t *pfns = range->pfns;
 290	unsigned long i;
 291
 292	hmm_vma_walk->last = addr;
 293	i = (addr - range->start) >> PAGE_SHIFT;
 294
 295	if (write_fault && walk->vma && !(walk->vma->vm_flags & VM_WRITE))
 296		return -EPERM;
 297
 298	for (; addr < end; addr += PAGE_SIZE, i++) {
 299		pfns[i] = range->values[HMM_PFN_NONE];
 300		if (fault || write_fault) {
 301			int ret;
 302
 303			ret = hmm_vma_do_fault(walk, addr, write_fault,
 304					       &pfns[i]);
 305			if (ret != -EBUSY)
 306				return ret;
 307		}
 308	}
 309
 310	return (fault || write_fault) ? -EBUSY : 0;
 311}
 312
 313static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
 314				      uint64_t pfns, uint64_t cpu_flags,
 315				      bool *fault, bool *write_fault)
 316{
 317	struct hmm_range *range = hmm_vma_walk->range;
 318
 319	if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT)
 
 320		return;
 321
 322	/*
 323	 * So we not only consider the individual per page request we also
 324	 * consider the default flags requested for the range. The API can
 325	 * be used 2 ways. The first one where the HMM user coalesces
 326	 * multiple page faults into one request and sets flags per pfn for
 327	 * those faults. The second one where the HMM user wants to pre-
 328	 * fault a range with specific flags. For the latter one it is a
 329	 * waste to have the user pre-fill the pfn arrays with a default
 330	 * flags value.
 331	 */
 332	pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
 333
 334	/* We aren't ask to do anything ... */
 335	if (!(pfns & range->flags[HMM_PFN_VALID]))
 336		return;
 337	/* If this is device memory then only fault if explicitly requested */
 338	if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
 339		/* Do we fault on device memory ? */
 340		if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
 341			*write_fault = pfns & range->flags[HMM_PFN_WRITE];
 342			*fault = true;
 343		}
 344		return;
 345	}
 346
 347	/* If CPU page table is not valid then we need to fault */
 348	*fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
 349	/* Need to write fault ? */
 350	if ((pfns & range->flags[HMM_PFN_WRITE]) &&
 351	    !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
 352		*write_fault = true;
 353		*fault = true;
 354	}
 355}
 356
 357static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
 358				 const uint64_t *pfns, unsigned long npages,
 359				 uint64_t cpu_flags, bool *fault,
 360				 bool *write_fault)
 361{
 362	unsigned long i;
 363
 364	if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT) {
 365		*fault = *write_fault = false;
 366		return;
 367	}
 368
 369	*fault = *write_fault = false;
 370	for (i = 0; i < npages; ++i) {
 371		hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
 372				   fault, write_fault);
 373		if ((*write_fault))
 374			return;
 375	}
 376}
 377
 378static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
 379			     struct mm_walk *walk)
 380{
 381	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 382	struct hmm_range *range = hmm_vma_walk->range;
 383	bool fault, write_fault;
 384	unsigned long i, npages;
 385	uint64_t *pfns;
 386
 387	i = (addr - range->start) >> PAGE_SHIFT;
 388	npages = (end - addr) >> PAGE_SHIFT;
 389	pfns = &range->pfns[i];
 390	hmm_range_need_fault(hmm_vma_walk, pfns, npages,
 391			     0, &fault, &write_fault);
 392	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 393}
 394
 395static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
 396{
 397	if (pmd_protnone(pmd))
 398		return 0;
 399	return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
 400				range->flags[HMM_PFN_WRITE] :
 401				range->flags[HMM_PFN_VALID];
 402}
 403
 404#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 405static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
 406		unsigned long end, uint64_t *pfns, pmd_t pmd)
 
 
 407{
 408	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 409	struct hmm_range *range = hmm_vma_walk->range;
 410	unsigned long pfn, npages, i;
 411	bool fault, write_fault;
 412	uint64_t cpu_flags;
 413
 414	npages = (end - addr) >> PAGE_SHIFT;
 415	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
 416	hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
 417			     &fault, &write_fault);
 418
 419	if (pmd_protnone(pmd) || fault || write_fault)
 420		return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 421
 422	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
 423	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
 424		if (pmd_devmap(pmd)) {
 425			hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
 426					      hmm_vma_walk->pgmap);
 427			if (unlikely(!hmm_vma_walk->pgmap))
 428				return -EBUSY;
 429		}
 430		pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
 431	}
 432	if (hmm_vma_walk->pgmap) {
 433		put_dev_pagemap(hmm_vma_walk->pgmap);
 434		hmm_vma_walk->pgmap = NULL;
 435	}
 436	hmm_vma_walk->last = end;
 437	return 0;
 438}
 439#else /* CONFIG_TRANSPARENT_HUGEPAGE */
 440/* stub to allow the code below to compile */
 441int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
 442		unsigned long end, uint64_t *pfns, pmd_t pmd);
 443#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 444
 445static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
 446{
 447	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
 448		return 0;
 449	return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
 450				range->flags[HMM_PFN_WRITE] :
 451				range->flags[HMM_PFN_VALID];
 452}
 453
 454static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
 455			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
 456			      uint64_t *pfn)
 457{
 458	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 459	struct hmm_range *range = hmm_vma_walk->range;
 
 460	bool fault, write_fault;
 461	uint64_t cpu_flags;
 462	pte_t pte = *ptep;
 463	uint64_t orig_pfn = *pfn;
 464
 465	*pfn = range->values[HMM_PFN_NONE];
 466	fault = write_fault = false;
 
 
 467
 468	if (pte_none(pte)) {
 469		hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
 470				   &fault, &write_fault);
 471		if (fault || write_fault)
 472			goto fault;
 473		return 0;
 474	}
 475
 476	if (!pte_present(pte)) {
 477		swp_entry_t entry = pte_to_swp_entry(pte);
 478
 479		if (!non_swap_entry(entry)) {
 480			cpu_flags = pte_to_hmm_pfn_flags(range, pte);
 481			hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 482					   &fault, &write_fault);
 483			if (fault || write_fault)
 484				goto fault;
 485			return 0;
 486		}
 487
 488		/*
 489		 * This is a special swap entry, ignore migration, use
 490		 * device and report anything else as error.
 491		 */
 492		if (is_device_private_entry(entry)) {
 493			cpu_flags = range->flags[HMM_PFN_VALID] |
 494				range->flags[HMM_PFN_DEVICE_PRIVATE];
 495			cpu_flags |= is_write_device_private_entry(entry) ?
 496				range->flags[HMM_PFN_WRITE] : 0;
 497			hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 498					   &fault, &write_fault);
 499			if (fault || write_fault)
 500				goto fault;
 501			*pfn = hmm_device_entry_from_pfn(range,
 502					    swp_offset(entry));
 503			*pfn |= cpu_flags;
 504			return 0;
 505		}
 506
 507		if (is_migration_entry(entry)) {
 508			if (fault || write_fault) {
 509				pte_unmap(ptep);
 510				hmm_vma_walk->last = addr;
 511				migration_entry_wait(walk->mm, pmdp, addr);
 512				return -EBUSY;
 
 513			}
 514			return 0;
 515		}
 516
 517		/* Report error for everything else */
 518		*pfn = range->values[HMM_PFN_ERROR];
 519		return -EFAULT;
 520	} else {
 521		cpu_flags = pte_to_hmm_pfn_flags(range, pte);
 522		hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 523				   &fault, &write_fault);
 524	}
 525
 526	if (fault || write_fault)
 527		goto fault;
 528
 529	if (pte_devmap(pte)) {
 530		hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
 531					      hmm_vma_walk->pgmap);
 532		if (unlikely(!hmm_vma_walk->pgmap))
 533			return -EBUSY;
 534	} else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
 535		*pfn = range->values[HMM_PFN_SPECIAL];
 536		return -EFAULT;
 537	}
 538
 539	*pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
 540	return 0;
 541
 542fault:
 543	if (hmm_vma_walk->pgmap) {
 544		put_dev_pagemap(hmm_vma_walk->pgmap);
 545		hmm_vma_walk->pgmap = NULL;
 546	}
 547	pte_unmap(ptep);
 548	/* Fault any virtual address we were asked to fault */
 549	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 550}
 551
 552static int hmm_vma_walk_pmd(pmd_t *pmdp,
 553			    unsigned long start,
 554			    unsigned long end,
 555			    struct mm_walk *walk)
 556{
 557	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 558	struct hmm_range *range = hmm_vma_walk->range;
 559	uint64_t *pfns = range->pfns;
 560	unsigned long addr = start, i;
 561	pte_t *ptep;
 562	pmd_t pmd;
 
 563
 564again:
 565	pmd = READ_ONCE(*pmdp);
 566	if (pmd_none(pmd))
 567		return hmm_vma_walk_hole(start, end, walk);
 568
 569	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
 570		bool fault, write_fault;
 571		unsigned long npages;
 572		uint64_t *pfns;
 573
 574		i = (addr - range->start) >> PAGE_SHIFT;
 575		npages = (end - addr) >> PAGE_SHIFT;
 576		pfns = &range->pfns[i];
 577
 578		hmm_range_need_fault(hmm_vma_walk, pfns, npages,
 579				     0, &fault, &write_fault);
 580		if (fault || write_fault) {
 581			hmm_vma_walk->last = addr;
 582			pmd_migration_entry_wait(walk->mm, pmdp);
 583			return -EBUSY;
 584		}
 585		return 0;
 586	} else if (!pmd_present(pmd))
 587		return hmm_pfns_bad(start, end, walk);
 588
 589	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
 
 
 590		/*
 591		 * No need to take pmd_lock here, even if some other thread
 592		 * is splitting the huge pmd we will get that event through
 593		 * mmu_notifier callback.
 594		 *
 595		 * So just read pmd value and check again it's a transparent
 596		 * huge or device mapping one and compute corresponding pfn
 597		 * values.
 598		 */
 599		pmd = pmd_read_atomic(pmdp);
 600		barrier();
 601		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
 602			goto again;
 603
 604		i = (addr - range->start) >> PAGE_SHIFT;
 605		return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
 606	}
 607
 608	/*
 609	 * We have handled all the valid cases above ie either none, migration,
 610	 * huge or transparent huge. At this point either it is a valid pmd
 611	 * entry pointing to pte directory or it is a bad pmd that will not
 612	 * recover.
 613	 */
 614	if (pmd_bad(pmd))
 615		return hmm_pfns_bad(start, end, walk);
 616
 617	ptep = pte_offset_map(pmdp, addr);
 618	i = (addr - range->start) >> PAGE_SHIFT;
 619	for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
 620		int r;
 621
 622		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
 623		if (r) {
 624			/* hmm_vma_handle_pte() did unmap pte directory */
 625			hmm_vma_walk->last = addr;
 626			return r;
 627		}
 628	}
 629	if (hmm_vma_walk->pgmap) {
 630		/*
 631		 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
 632		 * so that we can leverage get_dev_pagemap() optimization which
 633		 * will not re-take a reference on a pgmap if we already have
 634		 * one.
 635		 */
 636		put_dev_pagemap(hmm_vma_walk->pgmap);
 637		hmm_vma_walk->pgmap = NULL;
 638	}
 639	pte_unmap(ptep - 1);
 640
 641	hmm_vma_walk->last = addr;
 642	return 0;
 643}
 644
 645#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
 646    defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
 647static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
 648{
 649	if (!pud_present(pud))
 650		return 0;
 651	return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
 652				range->flags[HMM_PFN_WRITE] :
 653				range->flags[HMM_PFN_VALID];
 654}
 655
 656static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
 657		struct mm_walk *walk)
 658{
 659	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 660	struct hmm_range *range = hmm_vma_walk->range;
 661	unsigned long addr = start, next;
 662	pmd_t *pmdp;
 663	pud_t pud;
 664	int ret;
 665
 666again:
 667	pud = READ_ONCE(*pudp);
 668	if (pud_none(pud))
 669		return hmm_vma_walk_hole(start, end, walk);
 670
 671	if (pud_huge(pud) && pud_devmap(pud)) {
 672		unsigned long i, npages, pfn;
 673		uint64_t *pfns, cpu_flags;
 674		bool fault, write_fault;
 675
 676		if (!pud_present(pud))
 677			return hmm_vma_walk_hole(start, end, walk);
 678
 679		i = (addr - range->start) >> PAGE_SHIFT;
 680		npages = (end - addr) >> PAGE_SHIFT;
 681		pfns = &range->pfns[i];
 682
 683		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
 684		hmm_range_need_fault(hmm_vma_walk, pfns, npages,
 685				     cpu_flags, &fault, &write_fault);
 686		if (fault || write_fault)
 687			return hmm_vma_walk_hole_(addr, end, fault,
 688						write_fault, walk);
 689
 690		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
 691		for (i = 0; i < npages; ++i, ++pfn) {
 692			hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
 693					      hmm_vma_walk->pgmap);
 694			if (unlikely(!hmm_vma_walk->pgmap))
 695				return -EBUSY;
 696			pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
 697				  cpu_flags;
 698		}
 699		if (hmm_vma_walk->pgmap) {
 700			put_dev_pagemap(hmm_vma_walk->pgmap);
 701			hmm_vma_walk->pgmap = NULL;
 702		}
 703		hmm_vma_walk->last = end;
 704		return 0;
 705	}
 706
 707	split_huge_pud(walk->vma, pudp, addr);
 708	if (pud_none(*pudp))
 709		goto again;
 710
 711	pmdp = pmd_offset(pudp, addr);
 712	do {
 713		next = pmd_addr_end(addr, end);
 714		ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
 715		if (ret)
 716			return ret;
 717	} while (pmdp++, addr = next, addr != end);
 718
 719	return 0;
 720}
 721#else
 722#define hmm_vma_walk_pud	NULL
 723#endif
 724
 725#ifdef CONFIG_HUGETLB_PAGE
 726static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
 727				      unsigned long start, unsigned long end,
 728				      struct mm_walk *walk)
 729{
 730	unsigned long addr = start, i, pfn;
 731	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 732	struct hmm_range *range = hmm_vma_walk->range;
 733	struct vm_area_struct *vma = walk->vma;
 734	uint64_t orig_pfn, cpu_flags;
 735	bool fault, write_fault;
 736	spinlock_t *ptl;
 737	pte_t entry;
 738	int ret = 0;
 739
 740	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
 741	entry = huge_ptep_get(pte);
 742
 743	i = (start - range->start) >> PAGE_SHIFT;
 744	orig_pfn = range->pfns[i];
 745	range->pfns[i] = range->values[HMM_PFN_NONE];
 746	cpu_flags = pte_to_hmm_pfn_flags(range, entry);
 747	fault = write_fault = false;
 748	hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 749			   &fault, &write_fault);
 750	if (fault || write_fault) {
 751		ret = -ENOENT;
 752		goto unlock;
 753	}
 754
 755	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
 756	for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
 757		range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
 758				 cpu_flags;
 759	hmm_vma_walk->last = end;
 760
 761unlock:
 762	spin_unlock(ptl);
 763
 764	if (ret == -ENOENT)
 765		return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 766
 767	return ret;
 768}
 769#else
 770#define hmm_vma_walk_hugetlb_entry NULL
 771#endif /* CONFIG_HUGETLB_PAGE */
 772
 773static void hmm_pfns_clear(struct hmm_range *range,
 774			   uint64_t *pfns,
 775			   unsigned long addr,
 776			   unsigned long end)
 777{
 778	for (; addr < end; addr += PAGE_SIZE, pfns++)
 779		*pfns = range->values[HMM_PFN_NONE];
 780}
 781
 
 
 
 
 
 
 
 
 782/*
 783 * hmm_range_register() - start tracking change to CPU page table over a range
 784 * @range: range
 785 * @mm: the mm struct for the range of virtual address
 
 
 
 
 
 786 *
 787 * Return: 0 on success, -EFAULT if the address space is no longer valid
 
 
 788 *
 789 * Track updates to the CPU page table see include/linux/hmm.h
 
 790 */
 791int hmm_range_register(struct hmm_range *range, struct hmm_mirror *mirror)
 792{
 793	struct hmm *hmm = mirror->hmm;
 794	unsigned long flags;
 795
 796	range->valid = false;
 797	range->hmm = NULL;
 798
 799	if ((range->start & (PAGE_SIZE - 1)) || (range->end & (PAGE_SIZE - 1)))
 
 800		return -EINVAL;
 801	if (range->start >= range->end)
 802		return -EINVAL;
 803
 804	/* Prevent hmm_release() from running while the range is valid */
 805	if (!mmget_not_zero(hmm->mmu_notifier.mm))
 806		return -EFAULT;
 
 
 
 807
 808	/* Initialize range to track CPU page table updates. */
 809	spin_lock_irqsave(&hmm->ranges_lock, flags);
 
 
 
 810
 811	range->hmm = hmm;
 812	list_add(&range->list, &hmm->ranges);
 
 
 
 
 
 
 
 
 813
 814	/*
 815	 * If there are any concurrent notifiers we have to wait for them for
 816	 * the range to be valid (see hmm_range_wait_until_valid()).
 817	 */
 818	if (!hmm->notifiers)
 819		range->valid = true;
 820	spin_unlock_irqrestore(&hmm->ranges_lock, flags);
 
 
 
 
 
 
 
 
 
 
 821
 
 822	return 0;
 823}
 824EXPORT_SYMBOL(hmm_range_register);
 825
 826/*
 827 * hmm_range_unregister() - stop tracking change to CPU page table over a range
 828 * @range: range
 
 829 *
 830 * Range struct is used to track updates to the CPU page table after a call to
 831 * hmm_range_register(). See include/linux/hmm.h for how to use it.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832 */
 833void hmm_range_unregister(struct hmm_range *range)
 834{
 835	struct hmm *hmm = range->hmm;
 836	unsigned long flags;
 837
 838	spin_lock_irqsave(&hmm->ranges_lock, flags);
 839	list_del_init(&range->list);
 840	spin_unlock_irqrestore(&hmm->ranges_lock, flags);
 
 841
 842	/* Drop reference taken by hmm_range_register() */
 843	mmput(hmm->mmu_notifier.mm);
 
 
 
 844
 845	/*
 846	 * The range is now invalid and the ref on the hmm is dropped, so
 847	 * poison the pointer.  Leave other fields in place, for the caller's
 848	 * use.
 849	 */
 850	range->valid = false;
 851	memset(&range->hmm, POISON_INUSE, sizeof(range->hmm));
 852}
 853EXPORT_SYMBOL(hmm_range_unregister);
 854
 855static const struct mm_walk_ops hmm_walk_ops = {
 856	.pud_entry	= hmm_vma_walk_pud,
 857	.pmd_entry	= hmm_vma_walk_pmd,
 858	.pte_hole	= hmm_vma_walk_hole,
 859	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
 860};
 861
 862/**
 863 * hmm_range_fault - try to fault some address in a virtual address range
 864 * @range:	range being faulted
 865 * @flags:	HMM_FAULT_* flags
 866 *
 867 * Return: the number of valid pages in range->pfns[] (from range start
 868 * address), which may be zero.  On error one of the following status codes
 869 * can be returned:
 870 *
 871 * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
 872 *		(e.g., device file vma).
 873 * -ENOMEM:	Out of memory.
 874 * -EPERM:	Invalid permission (e.g., asking for write and range is read
 875 *		only).
 876 * -EAGAIN:	A page fault needs to be retried and mmap_sem was dropped.
 877 * -EBUSY:	The range has been invalidated and the caller needs to wait for
 878 *		the invalidation to finish.
 879 * -EFAULT:	Invalid (i.e., either no valid vma or it is illegal to access
 880 *		that range) number of valid pages in range->pfns[] (from
 881 *              range start address).
 882 *
 883 * This is similar to a regular CPU page fault except that it will not trigger
 884 * any memory migration if the memory being faulted is not accessible by CPUs
 885 * and caller does not ask for migration.
 886 *
 887 * On error, for one virtual address in the range, the function will mark the
 888 * corresponding HMM pfn entry with an error flag.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889 */
 890long hmm_range_fault(struct hmm_range *range, unsigned int flags)
 891{
 892	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
 893	unsigned long start = range->start, end;
 894	struct hmm_vma_walk hmm_vma_walk;
 895	struct hmm *hmm = range->hmm;
 896	struct vm_area_struct *vma;
 897	int ret;
 898
 899	lockdep_assert_held(&hmm->mmu_notifier.mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900
 901	do {
 902		/* If range is no longer valid force retry. */
 903		if (!range->valid)
 904			return -EBUSY;
 905
 906		vma = find_vma(hmm->mmu_notifier.mm, start);
 907		if (vma == NULL || (vma->vm_flags & device_vma))
 908			return -EFAULT;
 
 
 
 
 
 
 
 
 
 909
 910		if (!(vma->vm_flags & VM_READ)) {
 911			/*
 912			 * If vma do not allow read access, then assume that it
 913			 * does not allow write access, either. HMM does not
 914			 * support architecture that allow write without read.
 915			 */
 916			hmm_pfns_clear(range, range->pfns,
 917				range->start, range->end);
 918			return -EPERM;
 919		}
 920
 921		hmm_vma_walk.pgmap = NULL;
 922		hmm_vma_walk.last = start;
 923		hmm_vma_walk.flags = flags;
 924		hmm_vma_walk.range = range;
 925		end = min(range->end, vma->vm_end);
 926
 927		walk_page_range(vma->vm_mm, start, end, &hmm_walk_ops,
 928				&hmm_vma_walk);
 929
 930		do {
 931			ret = walk_page_range(vma->vm_mm, start, end,
 932					&hmm_walk_ops, &hmm_vma_walk);
 933			start = hmm_vma_walk.last;
 934
 935			/* Keep trying while the range is valid. */
 936		} while (ret == -EBUSY && range->valid);
 
 
 
 
 
 937
 938		if (ret) {
 939			unsigned long i;
 940
 941			i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
 942			hmm_pfns_clear(range, &range->pfns[i],
 943				hmm_vma_walk.last, range->end);
 944			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945		}
 946		start = end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947
 948	} while (start < range->end);
 
 949
 950	return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 951}
 952EXPORT_SYMBOL(hmm_range_fault);
 953
 954/**
 955 * hmm_range_dma_map - hmm_range_fault() and dma map page all in one.
 956 * @range:	range being faulted
 957 * @device:	device to map page to
 958 * @daddrs:	array of dma addresses for the mapped pages
 959 * @flags:	HMM_FAULT_*
 960 *
 961 * Return: the number of pages mapped on success (including zero), or any
 962 * status return from hmm_range_fault() otherwise.
 
 
 
 
 
 
 
 
 
 
 
 963 */
 964long hmm_range_dma_map(struct hmm_range *range, struct device *device,
 965		dma_addr_t *daddrs, unsigned int flags)
 
 966{
 967	unsigned long i, npages, mapped;
 968	long ret;
 
 969
 970	ret = hmm_range_fault(range, flags);
 971	if (ret <= 0)
 972		return ret ? ret : -EBUSY;
 973
 974	npages = (range->end - range->start) >> PAGE_SHIFT;
 975	for (i = 0, mapped = 0; i < npages; ++i) {
 976		enum dma_data_direction dir = DMA_TO_DEVICE;
 977		struct page *page;
 978
 979		/*
 980		 * FIXME need to update DMA API to provide invalid DMA address
 981		 * value instead of a function to test dma address value. This
 982		 * would remove lot of dumb code duplicated accross many arch.
 983		 *
 984		 * For now setting it to 0 here is good enough as the pfns[]
 985		 * value is what is use to check what is valid and what isn't.
 986		 */
 987		daddrs[i] = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988
 989		page = hmm_device_entry_to_page(range, range->pfns[i]);
 990		if (page == NULL)
 
 
 
 
 
 
 
 991			continue;
 992
 993		/* Check if range is being invalidated */
 994		if (!range->valid) {
 995			ret = -EBUSY;
 996			goto unmap;
 
 997		}
 
 
 
 
 
 
 998
 999		/* If it is read and write than map bi-directional. */
1000		if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1001			dir = DMA_BIDIRECTIONAL;
1002
1003		daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1004		if (dma_mapping_error(device, daddrs[i])) {
1005			ret = -EFAULT;
1006			goto unmap;
1007		}
 
1008
1009		mapped++;
 
 
 
1010	}
1011
1012	return mapped;
1013
1014unmap:
1015	for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1016		enum dma_data_direction dir = DMA_TO_DEVICE;
1017		struct page *page;
 
 
 
 
 
 
 
 
1018
1019		page = hmm_device_entry_to_page(range, range->pfns[i]);
1020		if (page == NULL)
1021			continue;
 
 
 
1022
1023		if (dma_mapping_error(device, daddrs[i]))
1024			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025
1026		/* If it is read and write than map bi-directional. */
1027		if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1028			dir = DMA_BIDIRECTIONAL;
 
 
1029
1030		dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1031		mapped--;
 
 
1032	}
1033
1034	return ret;
 
 
 
 
 
 
 
1035}
1036EXPORT_SYMBOL(hmm_range_dma_map);
1037
1038/**
1039 * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1040 * @range: range being unmapped
1041 * @device: device against which dma map was done
1042 * @daddrs: dma address of mapped pages
1043 * @dirty: dirty page if it had the write flag set
1044 * Return: number of page unmapped on success, -EINVAL otherwise
1045 *
1046 * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1047 * to the sync_cpu_device_pagetables() callback so that it is safe here to
1048 * call set_page_dirty(). Caller must also take appropriate locks to avoid
1049 * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1050 */
1051long hmm_range_dma_unmap(struct hmm_range *range,
1052			 struct device *device,
1053			 dma_addr_t *daddrs,
1054			 bool dirty)
1055{
1056	unsigned long i, npages;
1057	long cpages = 0;
 
1058
1059	/* Sanity check. */
1060	if (range->end <= range->start)
1061		return -EINVAL;
1062	if (!daddrs)
1063		return -EINVAL;
1064	if (!range->pfns)
1065		return -EINVAL;
1066
1067	npages = (range->end - range->start) >> PAGE_SHIFT;
1068	for (i = 0; i < npages; ++i) {
1069		enum dma_data_direction dir = DMA_TO_DEVICE;
1070		struct page *page;
 
 
 
 
1071
1072		page = hmm_device_entry_to_page(range, range->pfns[i]);
1073		if (page == NULL)
1074			continue;
 
1075
1076		/* If it is read and write than map bi-directional. */
1077		if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1078			dir = DMA_BIDIRECTIONAL;
 
 
 
1079
1080			/*
1081			 * See comments in function description on why it is
1082			 * safe here to call set_page_dirty()
1083			 */
1084			if (dirty)
1085				set_page_dirty(page);
1086		}
1087
1088		/* Unmap and clear pfns/dma address */
1089		dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1090		range->pfns[i] = range->values[HMM_PFN_NONE];
1091		/* FIXME see comments in hmm_vma_dma_map() */
1092		daddrs[i] = 0;
1093		cpages++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094	}
 
 
1095
1096	return cpages;
 
 
 
 
 
 
 
 
1097}
1098EXPORT_SYMBOL(hmm_range_dma_unmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v4.17
 
   1/*
   2 * Copyright 2013 Red Hat Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * Authors: Jérôme Glisse <jglisse@redhat.com>
  15 */
  16/*
  17 * Refer to include/linux/hmm.h for information about heterogeneous memory
  18 * management or HMM for short.
  19 */
  20#include <linux/mm.h>
  21#include <linux/hmm.h>
  22#include <linux/init.h>
  23#include <linux/rmap.h>
  24#include <linux/swap.h>
  25#include <linux/slab.h>
  26#include <linux/sched.h>
  27#include <linux/mmzone.h>
  28#include <linux/pagemap.h>
  29#include <linux/swapops.h>
  30#include <linux/hugetlb.h>
  31#include <linux/memremap.h>
 
  32#include <linux/jump_label.h>
 
  33#include <linux/mmu_notifier.h>
  34#include <linux/memory_hotplug.h>
  35
  36#define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
 
 
  37
  38#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
  39/*
  40 * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
  41 */
  42DEFINE_STATIC_KEY_FALSE(device_private_key);
  43EXPORT_SYMBOL(device_private_key);
  44#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
  45
 
 
 
 
 
 
 
 
  46
  47#if IS_ENABLED(CONFIG_HMM_MIRROR)
  48static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
 
  49
  50/*
  51 * struct hmm - HMM per mm struct
  52 *
  53 * @mm: mm struct this HMM struct is bound to
  54 * @lock: lock protecting ranges list
  55 * @sequence: we track updates to the CPU page table with a sequence number
  56 * @ranges: list of range being snapshotted
  57 * @mirrors: list of mirrors for this mm
  58 * @mmu_notifier: mmu notifier to track updates to CPU page table
  59 * @mirrors_sem: read/write semaphore protecting the mirrors list
  60 */
  61struct hmm {
  62	struct mm_struct	*mm;
  63	spinlock_t		lock;
  64	atomic_t		sequence;
  65	struct list_head	ranges;
  66	struct list_head	mirrors;
  67	struct mmu_notifier	mmu_notifier;
  68	struct rw_semaphore	mirrors_sem;
  69};
  70
  71/*
  72 * hmm_register - register HMM against an mm (HMM internal)
  73 *
  74 * @mm: mm struct to attach to
  75 *
  76 * This is not intended to be used directly by device drivers. It allocates an
  77 * HMM struct if mm does not have one, and initializes it.
  78 */
  79static struct hmm *hmm_register(struct mm_struct *mm)
  80{
  81	struct hmm *hmm = READ_ONCE(mm->hmm);
  82	bool cleanup = false;
  83
  84	/*
  85	 * The hmm struct can only be freed once the mm_struct goes away,
  86	 * hence we should always have pre-allocated an new hmm struct
  87	 * above.
  88	 */
  89	if (hmm)
  90		return hmm;
  91
  92	hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
  93	if (!hmm)
  94		return NULL;
  95	INIT_LIST_HEAD(&hmm->mirrors);
  96	init_rwsem(&hmm->mirrors_sem);
  97	atomic_set(&hmm->sequence, 0);
  98	hmm->mmu_notifier.ops = NULL;
  99	INIT_LIST_HEAD(&hmm->ranges);
 100	spin_lock_init(&hmm->lock);
 101	hmm->mm = mm;
 102
 103	/*
 104	 * We should only get here if hold the mmap_sem in write mode ie on
 105	 * registration of first mirror through hmm_mirror_register()
 106	 */
 107	hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
 108	if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
 109		kfree(hmm);
 110		return NULL;
 111	}
 
 
 112
 113	spin_lock(&mm->page_table_lock);
 114	if (!mm->hmm)
 115		mm->hmm = hmm;
 116	else
 117		cleanup = true;
 118	spin_unlock(&mm->page_table_lock);
 119
 120	if (cleanup) {
 121		mmu_notifier_unregister(&hmm->mmu_notifier, mm);
 122		kfree(hmm);
 
 
 
 
 
 
 
 
 123	}
 124
 125	return mm->hmm;
 126}
 127
 128void hmm_mm_destroy(struct mm_struct *mm)
 129{
 130	kfree(mm->hmm);
 131}
 132
 133static void hmm_invalidate_range(struct hmm *hmm,
 134				 enum hmm_update_type action,
 135				 unsigned long start,
 136				 unsigned long end)
 137{
 
 138	struct hmm_mirror *mirror;
 139	struct hmm_range *range;
 
 
 140
 141	spin_lock(&hmm->lock);
 
 142	list_for_each_entry(range, &hmm->ranges, list) {
 143		unsigned long addr, idx, npages;
 144
 145		if (end < range->start || start >= range->end)
 146			continue;
 147
 148		range->valid = false;
 149		addr = max(start, range->start);
 150		idx = (addr - range->start) >> PAGE_SHIFT;
 151		npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
 152		memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
 153	}
 154	spin_unlock(&hmm->lock);
 155
 156	down_read(&hmm->mirrors_sem);
 157	list_for_each_entry(mirror, &hmm->mirrors, list)
 158		mirror->ops->sync_cpu_device_pagetables(mirror, action,
 159							start, end);
 160	up_read(&hmm->mirrors_sem);
 161}
 162
 163static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
 164{
 165	struct hmm_mirror *mirror;
 166	struct hmm *hmm = mm->hmm;
 167
 168	down_write(&hmm->mirrors_sem);
 169	mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
 170					  list);
 171	while (mirror) {
 172		list_del_init(&mirror->list);
 173		if (mirror->ops->release) {
 174			/*
 175			 * Drop mirrors_sem so callback can wait on any pending
 176			 * work that might itself trigger mmu_notifier callback
 177			 * and thus would deadlock with us.
 178			 */
 179			up_write(&hmm->mirrors_sem);
 180			mirror->ops->release(mirror);
 181			down_write(&hmm->mirrors_sem);
 182		}
 183		mirror = list_first_entry_or_null(&hmm->mirrors,
 184						  struct hmm_mirror, list);
 185	}
 186	up_write(&hmm->mirrors_sem);
 187}
 188
 189static void hmm_invalidate_range_start(struct mmu_notifier *mn,
 190				       struct mm_struct *mm,
 191				       unsigned long start,
 192				       unsigned long end)
 193{
 194	struct hmm *hmm = mm->hmm;
 195
 196	VM_BUG_ON(!hmm);
 197
 198	atomic_inc(&hmm->sequence);
 199}
 200
 201static void hmm_invalidate_range_end(struct mmu_notifier *mn,
 202				     struct mm_struct *mm,
 203				     unsigned long start,
 204				     unsigned long end)
 205{
 206	struct hmm *hmm = mm->hmm;
 207
 208	VM_BUG_ON(!hmm);
 209
 210	hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
 211}
 212
 213static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
 214	.release		= hmm_release,
 215	.invalidate_range_start	= hmm_invalidate_range_start,
 216	.invalidate_range_end	= hmm_invalidate_range_end,
 
 
 217};
 218
 219/*
 220 * hmm_mirror_register() - register a mirror against an mm
 221 *
 222 * @mirror: new mirror struct to register
 223 * @mm: mm to register against
 
 224 *
 225 * To start mirroring a process address space, the device driver must register
 226 * an HMM mirror struct.
 227 *
 228 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
 
 
 
 
 229 */
 230int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
 231{
 
 
 
 
 232	/* Sanity check */
 233	if (!mm || !mirror || !mirror->ops)
 234		return -EINVAL;
 235
 236again:
 237	mirror->hmm = hmm_register(mm);
 238	if (!mirror->hmm)
 239		return -ENOMEM;
 240
 241	down_write(&mirror->hmm->mirrors_sem);
 242	if (mirror->hmm->mm == NULL) {
 243		/*
 244		 * A racing hmm_mirror_unregister() is about to destroy the hmm
 245		 * struct. Try again to allocate a new one.
 246		 */
 247		up_write(&mirror->hmm->mirrors_sem);
 248		mirror->hmm = NULL;
 249		goto again;
 250	} else {
 251		list_add(&mirror->list, &mirror->hmm->mirrors);
 252		up_write(&mirror->hmm->mirrors_sem);
 253	}
 254
 255	return 0;
 256}
 257EXPORT_SYMBOL(hmm_mirror_register);
 258
 259/*
 260 * hmm_mirror_unregister() - unregister a mirror
 261 *
 262 * @mirror: new mirror struct to register
 263 *
 264 * Stop mirroring a process address space, and cleanup.
 265 */
 266void hmm_mirror_unregister(struct hmm_mirror *mirror)
 267{
 268	bool should_unregister = false;
 269	struct mm_struct *mm;
 270	struct hmm *hmm;
 271
 272	if (mirror->hmm == NULL)
 273		return;
 274
 275	hmm = mirror->hmm;
 276	down_write(&hmm->mirrors_sem);
 277	list_del_init(&mirror->list);
 278	should_unregister = list_empty(&hmm->mirrors);
 279	mirror->hmm = NULL;
 280	mm = hmm->mm;
 281	hmm->mm = NULL;
 282	up_write(&hmm->mirrors_sem);
 283
 284	if (!should_unregister || mm == NULL)
 285		return;
 286
 287	spin_lock(&mm->page_table_lock);
 288	if (mm->hmm == hmm)
 289		mm->hmm = NULL;
 290	spin_unlock(&mm->page_table_lock);
 291
 292	mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
 293	kfree(hmm);
 294}
 295EXPORT_SYMBOL(hmm_mirror_unregister);
 296
 297struct hmm_vma_walk {
 298	struct hmm_range	*range;
 
 299	unsigned long		last;
 300	bool			fault;
 301	bool			block;
 302};
 303
 304static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
 305			    bool write_fault, uint64_t *pfn)
 306{
 307	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
 308	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 309	struct hmm_range *range = hmm_vma_walk->range;
 310	struct vm_area_struct *vma = walk->vma;
 311	int r;
 
 
 
 312
 313	flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
 314	flags |= write_fault ? FAULT_FLAG_WRITE : 0;
 315	r = handle_mm_fault(vma, addr, flags);
 316	if (r & VM_FAULT_RETRY)
 317		return -EBUSY;
 318	if (r & VM_FAULT_ERROR) {
 319		*pfn = range->values[HMM_PFN_ERROR];
 320		return -EFAULT;
 
 321	}
 
 
 322
 323	return -EAGAIN;
 
 
 
 
 324}
 325
 326static int hmm_pfns_bad(unsigned long addr,
 327			unsigned long end,
 328			struct mm_walk *walk)
 329{
 330	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 331	struct hmm_range *range = hmm_vma_walk->range;
 332	uint64_t *pfns = range->pfns;
 333	unsigned long i;
 334
 335	i = (addr - range->start) >> PAGE_SHIFT;
 336	for (; addr < end; addr += PAGE_SIZE, i++)
 337		pfns[i] = range->values[HMM_PFN_ERROR];
 338
 339	return 0;
 340}
 341
 342/*
 343 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
 344 * @start: range virtual start address (inclusive)
 345 * @end: range virtual end address (exclusive)
 346 * @fault: should we fault or not ?
 347 * @write_fault: write fault ?
 348 * @walk: mm_walk structure
 349 * Returns: 0 on success, -EAGAIN after page fault, or page fault error
 350 *
 351 * This function will be called whenever pmd_none() or pte_none() returns true,
 352 * or whenever there is no page directory covering the virtual address range.
 353 */
 354static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
 355			      bool fault, bool write_fault,
 356			      struct mm_walk *walk)
 357{
 358	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 359	struct hmm_range *range = hmm_vma_walk->range;
 360	uint64_t *pfns = range->pfns;
 361	unsigned long i;
 362
 363	hmm_vma_walk->last = addr;
 364	i = (addr - range->start) >> PAGE_SHIFT;
 
 
 
 
 365	for (; addr < end; addr += PAGE_SIZE, i++) {
 366		pfns[i] = range->values[HMM_PFN_NONE];
 367		if (fault || write_fault) {
 368			int ret;
 369
 370			ret = hmm_vma_do_fault(walk, addr, write_fault,
 371					       &pfns[i]);
 372			if (ret != -EAGAIN)
 373				return ret;
 374		}
 375	}
 376
 377	return (fault || write_fault) ? -EAGAIN : 0;
 378}
 379
 380static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
 381				      uint64_t pfns, uint64_t cpu_flags,
 382				      bool *fault, bool *write_fault)
 383{
 384	struct hmm_range *range = hmm_vma_walk->range;
 385
 386	*fault = *write_fault = false;
 387	if (!hmm_vma_walk->fault)
 388		return;
 389
 
 
 
 
 
 
 
 
 
 
 
 
 390	/* We aren't ask to do anything ... */
 391	if (!(pfns & range->flags[HMM_PFN_VALID]))
 392		return;
 393	/* If this is device memory than only fault if explicitly requested */
 394	if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
 395		/* Do we fault on device memory ? */
 396		if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
 397			*write_fault = pfns & range->flags[HMM_PFN_WRITE];
 398			*fault = true;
 399		}
 400		return;
 401	}
 402
 403	/* If CPU page table is not valid then we need to fault */
 404	*fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
 405	/* Need to write fault ? */
 406	if ((pfns & range->flags[HMM_PFN_WRITE]) &&
 407	    !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
 408		*write_fault = true;
 409		*fault = true;
 410	}
 411}
 412
 413static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
 414				 const uint64_t *pfns, unsigned long npages,
 415				 uint64_t cpu_flags, bool *fault,
 416				 bool *write_fault)
 417{
 418	unsigned long i;
 419
 420	if (!hmm_vma_walk->fault) {
 421		*fault = *write_fault = false;
 422		return;
 423	}
 424
 
 425	for (i = 0; i < npages; ++i) {
 426		hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
 427				   fault, write_fault);
 428		if ((*fault) || (*write_fault))
 429			return;
 430	}
 431}
 432
 433static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
 434			     struct mm_walk *walk)
 435{
 436	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 437	struct hmm_range *range = hmm_vma_walk->range;
 438	bool fault, write_fault;
 439	unsigned long i, npages;
 440	uint64_t *pfns;
 441
 442	i = (addr - range->start) >> PAGE_SHIFT;
 443	npages = (end - addr) >> PAGE_SHIFT;
 444	pfns = &range->pfns[i];
 445	hmm_range_need_fault(hmm_vma_walk, pfns, npages,
 446			     0, &fault, &write_fault);
 447	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 448}
 449
 450static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
 451{
 452	if (pmd_protnone(pmd))
 453		return 0;
 454	return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
 455				range->flags[HMM_PFN_WRITE] :
 456				range->flags[HMM_PFN_VALID];
 457}
 458
 459static int hmm_vma_handle_pmd(struct mm_walk *walk,
 460			      unsigned long addr,
 461			      unsigned long end,
 462			      uint64_t *pfns,
 463			      pmd_t pmd)
 464{
 465	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 466	struct hmm_range *range = hmm_vma_walk->range;
 467	unsigned long pfn, npages, i;
 468	bool fault, write_fault;
 469	uint64_t cpu_flags;
 470
 471	npages = (end - addr) >> PAGE_SHIFT;
 472	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
 473	hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
 474			     &fault, &write_fault);
 475
 476	if (pmd_protnone(pmd) || fault || write_fault)
 477		return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 478
 479	pfn = pmd_pfn(pmd) + pte_index(addr);
 480	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
 481		pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
 
 
 
 
 
 
 
 
 
 
 
 482	hmm_vma_walk->last = end;
 483	return 0;
 484}
 
 
 
 
 
 485
 486static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
 487{
 488	if (pte_none(pte) || !pte_present(pte))
 489		return 0;
 490	return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
 491				range->flags[HMM_PFN_WRITE] :
 492				range->flags[HMM_PFN_VALID];
 493}
 494
 495static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
 496			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
 497			      uint64_t *pfn)
 498{
 499	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 500	struct hmm_range *range = hmm_vma_walk->range;
 501	struct vm_area_struct *vma = walk->vma;
 502	bool fault, write_fault;
 503	uint64_t cpu_flags;
 504	pte_t pte = *ptep;
 505	uint64_t orig_pfn = *pfn;
 506
 507	*pfn = range->values[HMM_PFN_NONE];
 508	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
 509	hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 510			   &fault, &write_fault);
 511
 512	if (pte_none(pte)) {
 
 
 513		if (fault || write_fault)
 514			goto fault;
 515		return 0;
 516	}
 517
 518	if (!pte_present(pte)) {
 519		swp_entry_t entry = pte_to_swp_entry(pte);
 520
 521		if (!non_swap_entry(entry)) {
 
 
 
 522			if (fault || write_fault)
 523				goto fault;
 524			return 0;
 525		}
 526
 527		/*
 528		 * This is a special swap entry, ignore migration, use
 529		 * device and report anything else as error.
 530		 */
 531		if (is_device_private_entry(entry)) {
 532			cpu_flags = range->flags[HMM_PFN_VALID] |
 533				range->flags[HMM_PFN_DEVICE_PRIVATE];
 534			cpu_flags |= is_write_device_private_entry(entry) ?
 535				range->flags[HMM_PFN_WRITE] : 0;
 536			hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 537					   &fault, &write_fault);
 538			if (fault || write_fault)
 539				goto fault;
 540			*pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
 
 541			*pfn |= cpu_flags;
 542			return 0;
 543		}
 544
 545		if (is_migration_entry(entry)) {
 546			if (fault || write_fault) {
 547				pte_unmap(ptep);
 548				hmm_vma_walk->last = addr;
 549				migration_entry_wait(vma->vm_mm,
 550						     pmdp, addr);
 551				return -EAGAIN;
 552			}
 553			return 0;
 554		}
 555
 556		/* Report error for everything else */
 557		*pfn = range->values[HMM_PFN_ERROR];
 558		return -EFAULT;
 
 
 
 
 559	}
 560
 561	if (fault || write_fault)
 562		goto fault;
 563
 564	*pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
 
 
 
 
 
 
 
 
 
 
 565	return 0;
 566
 567fault:
 
 
 
 
 568	pte_unmap(ptep);
 569	/* Fault any virtual address we were asked to fault */
 570	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 571}
 572
 573static int hmm_vma_walk_pmd(pmd_t *pmdp,
 574			    unsigned long start,
 575			    unsigned long end,
 576			    struct mm_walk *walk)
 577{
 578	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 579	struct hmm_range *range = hmm_vma_walk->range;
 580	uint64_t *pfns = range->pfns;
 581	unsigned long addr = start, i;
 582	pte_t *ptep;
 583
 584	i = (addr - range->start) >> PAGE_SHIFT;
 585
 586again:
 587	if (pmd_none(*pmdp))
 
 588		return hmm_vma_walk_hole(start, end, walk);
 589
 590	if (pmd_huge(*pmdp) && (range->vma->vm_flags & VM_HUGETLB))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591		return hmm_pfns_bad(start, end, walk);
 592
 593	if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
 594		pmd_t pmd;
 595
 596		/*
 597		 * No need to take pmd_lock here, even if some other threads
 598		 * is splitting the huge pmd we will get that event through
 599		 * mmu_notifier callback.
 600		 *
 601		 * So just read pmd value and check again its a transparent
 602		 * huge or device mapping one and compute corresponding pfn
 603		 * values.
 604		 */
 605		pmd = pmd_read_atomic(pmdp);
 606		barrier();
 607		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
 608			goto again;
 609
 
 610		return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
 611	}
 612
 613	if (pmd_bad(*pmdp))
 
 
 
 
 
 
 614		return hmm_pfns_bad(start, end, walk);
 615
 616	ptep = pte_offset_map(pmdp, addr);
 
 617	for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
 618		int r;
 619
 620		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
 621		if (r) {
 622			/* hmm_vma_handle_pte() did unmap pte directory */
 623			hmm_vma_walk->last = addr;
 624			return r;
 625		}
 626	}
 
 
 
 
 
 
 
 
 
 
 627	pte_unmap(ptep - 1);
 628
 629	hmm_vma_walk->last = addr;
 630	return 0;
 631}
 632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633static void hmm_pfns_clear(struct hmm_range *range,
 634			   uint64_t *pfns,
 635			   unsigned long addr,
 636			   unsigned long end)
 637{
 638	for (; addr < end; addr += PAGE_SIZE, pfns++)
 639		*pfns = range->values[HMM_PFN_NONE];
 640}
 641
 642static void hmm_pfns_special(struct hmm_range *range)
 643{
 644	unsigned long addr = range->start, i = 0;
 645
 646	for (; addr < range->end; addr += PAGE_SIZE, i++)
 647		range->pfns[i] = range->values[HMM_PFN_SPECIAL];
 648}
 649
 650/*
 651 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
 652 * @range: range being snapshotted
 653 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
 654 *          vma permission, 0 success
 655 *
 656 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
 657 * validity is tracked by range struct. See hmm_vma_range_done() for further
 658 * information.
 659 *
 660 * The range struct is initialized here. It tracks the CPU page table, but only
 661 * if the function returns success (0), in which case the caller must then call
 662 * hmm_vma_range_done() to stop CPU page table update tracking on this range.
 663 *
 664 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
 665 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
 666 */
 667int hmm_vma_get_pfns(struct hmm_range *range)
 668{
 669	struct vm_area_struct *vma = range->vma;
 670	struct hmm_vma_walk hmm_vma_walk;
 671	struct mm_walk mm_walk;
 672	struct hmm *hmm;
 
 673
 674	/* Sanity check, this really should not happen ! */
 675	if (range->start < vma->vm_start || range->start >= vma->vm_end)
 676		return -EINVAL;
 677	if (range->end < vma->vm_start || range->end > vma->vm_end)
 678		return -EINVAL;
 679
 680	hmm = hmm_register(vma->vm_mm);
 681	if (!hmm)
 682		return -ENOMEM;
 683	/* Caller must have registered a mirror, via hmm_mirror_register() ! */
 684	if (!hmm->mmu_notifier.ops)
 685		return -EINVAL;
 686
 687	/* FIXME support hugetlb fs */
 688	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
 689		hmm_pfns_special(range);
 690		return -EINVAL;
 691	}
 692
 693	if (!(vma->vm_flags & VM_READ)) {
 694		/*
 695		 * If vma do not allow read access, then assume that it does
 696		 * not allow write access, either. Architecture that allow
 697		 * write without read access are not supported by HMM, because
 698		 * operations such has atomic access would not work.
 699		 */
 700		hmm_pfns_clear(range, range->pfns, range->start, range->end);
 701		return -EPERM;
 702	}
 703
 704	/* Initialize range to track CPU page table update */
 705	spin_lock(&hmm->lock);
 706	range->valid = true;
 707	list_add_rcu(&range->list, &hmm->ranges);
 708	spin_unlock(&hmm->lock);
 709
 710	hmm_vma_walk.fault = false;
 711	hmm_vma_walk.range = range;
 712	mm_walk.private = &hmm_vma_walk;
 713
 714	mm_walk.vma = vma;
 715	mm_walk.mm = vma->vm_mm;
 716	mm_walk.pte_entry = NULL;
 717	mm_walk.test_walk = NULL;
 718	mm_walk.hugetlb_entry = NULL;
 719	mm_walk.pmd_entry = hmm_vma_walk_pmd;
 720	mm_walk.pte_hole = hmm_vma_walk_hole;
 721
 722	walk_page_range(range->start, range->end, &mm_walk);
 723	return 0;
 724}
 725EXPORT_SYMBOL(hmm_vma_get_pfns);
 726
 727/*
 728 * hmm_vma_range_done() - stop tracking change to CPU page table over a range
 729 * @range: range being tracked
 730 * Returns: false if range data has been invalidated, true otherwise
 731 *
 732 * Range struct is used to track updates to the CPU page table after a call to
 733 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
 734 * using the data,  or wants to lock updates to the data it got from those
 735 * functions, it must call the hmm_vma_range_done() function, which will then
 736 * stop tracking CPU page table updates.
 737 *
 738 * Note that device driver must still implement general CPU page table update
 739 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
 740 * the mmu_notifier API directly.
 741 *
 742 * CPU page table update tracking done through hmm_range is only temporary and
 743 * to be used while trying to duplicate CPU page table contents for a range of
 744 * virtual addresses.
 745 *
 746 * There are two ways to use this :
 747 * again:
 748 *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
 749 *   trans = device_build_page_table_update_transaction(pfns);
 750 *   device_page_table_lock();
 751 *   if (!hmm_vma_range_done(range)) {
 752 *     device_page_table_unlock();
 753 *     goto again;
 754 *   }
 755 *   device_commit_transaction(trans);
 756 *   device_page_table_unlock();
 757 *
 758 * Or:
 759 *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
 760 *   device_page_table_lock();
 761 *   hmm_vma_range_done(range);
 762 *   device_update_page_table(range->pfns);
 763 *   device_page_table_unlock();
 764 */
 765bool hmm_vma_range_done(struct hmm_range *range)
 766{
 767	unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
 768	struct hmm *hmm;
 769
 770	if (range->end <= range->start) {
 771		BUG();
 772		return false;
 773	}
 774
 775	hmm = hmm_register(range->vma->vm_mm);
 776	if (!hmm) {
 777		memset(range->pfns, 0, sizeof(*range->pfns) * npages);
 778		return false;
 779	}
 780
 781	spin_lock(&hmm->lock);
 782	list_del_rcu(&range->list);
 783	spin_unlock(&hmm->lock);
 
 
 
 
 
 
 784
 785	return range->valid;
 786}
 787EXPORT_SYMBOL(hmm_vma_range_done);
 
 
 
 788
 789/*
 790 * hmm_vma_fault() - try to fault some address in a virtual address range
 791 * @range: range being faulted
 792 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
 793 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794 *
 795 * This is similar to a regular CPU page fault except that it will not trigger
 796 * any memory migration if the memory being faulted is not accessible by CPUs.
 
 797 *
 798 * On error, for one virtual address in the range, the function will mark the
 799 * corresponding HMM pfn entry with an error flag.
 800 *
 801 * Expected use pattern:
 802 * retry:
 803 *   down_read(&mm->mmap_sem);
 804 *   // Find vma and address device wants to fault, initialize hmm_pfn_t
 805 *   // array accordingly
 806 *   ret = hmm_vma_fault(range, write, block);
 807 *   switch (ret) {
 808 *   case -EAGAIN:
 809 *     hmm_vma_range_done(range);
 810 *     // You might want to rate limit or yield to play nicely, you may
 811 *     // also commit any valid pfn in the array assuming that you are
 812 *     // getting true from hmm_vma_range_monitor_end()
 813 *     goto retry;
 814 *   case 0:
 815 *     break;
 816 *   case -ENOMEM:
 817 *   case -EINVAL:
 818 *   case -EPERM:
 819 *   default:
 820 *     // Handle error !
 821 *     up_read(&mm->mmap_sem)
 822 *     return;
 823 *   }
 824 *   // Take device driver lock that serialize device page table update
 825 *   driver_lock_device_page_table_update();
 826 *   hmm_vma_range_done(range);
 827 *   // Commit pfns we got from hmm_vma_fault()
 828 *   driver_unlock_device_page_table_update();
 829 *   up_read(&mm->mmap_sem)
 830 *
 831 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
 832 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
 833 *
 834 * YOU HAVE BEEN WARNED !
 835 */
 836int hmm_vma_fault(struct hmm_range *range, bool block)
 837{
 838	struct vm_area_struct *vma = range->vma;
 839	unsigned long start = range->start;
 840	struct hmm_vma_walk hmm_vma_walk;
 841	struct mm_walk mm_walk;
 842	struct hmm *hmm;
 843	int ret;
 844
 845	/* Sanity check, this really should not happen ! */
 846	if (range->start < vma->vm_start || range->start >= vma->vm_end)
 847		return -EINVAL;
 848	if (range->end < vma->vm_start || range->end > vma->vm_end)
 849		return -EINVAL;
 850
 851	hmm = hmm_register(vma->vm_mm);
 852	if (!hmm) {
 853		hmm_pfns_clear(range, range->pfns, range->start, range->end);
 854		return -ENOMEM;
 855	}
 856	/* Caller must have registered a mirror using hmm_mirror_register() */
 857	if (!hmm->mmu_notifier.ops)
 858		return -EINVAL;
 859
 860	/* FIXME support hugetlb fs */
 861	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
 862		hmm_pfns_special(range);
 863		return -EINVAL;
 864	}
 865
 866	if (!(vma->vm_flags & VM_READ)) {
 867		/*
 868		 * If vma do not allow read access, then assume that it does
 869		 * not allow write access, either. Architecture that allow
 870		 * write without read access are not supported by HMM, because
 871		 * operations such has atomic access would not work.
 872		 */
 873		hmm_pfns_clear(range, range->pfns, range->start, range->end);
 874		return -EPERM;
 875	}
 876
 877	/* Initialize range to track CPU page table update */
 878	spin_lock(&hmm->lock);
 879	range->valid = true;
 880	list_add_rcu(&range->list, &hmm->ranges);
 881	spin_unlock(&hmm->lock);
 882
 883	hmm_vma_walk.fault = true;
 884	hmm_vma_walk.block = block;
 885	hmm_vma_walk.range = range;
 886	mm_walk.private = &hmm_vma_walk;
 887	hmm_vma_walk.last = range->start;
 888
 889	mm_walk.vma = vma;
 890	mm_walk.mm = vma->vm_mm;
 891	mm_walk.pte_entry = NULL;
 892	mm_walk.test_walk = NULL;
 893	mm_walk.hugetlb_entry = NULL;
 894	mm_walk.pmd_entry = hmm_vma_walk_pmd;
 895	mm_walk.pte_hole = hmm_vma_walk_hole;
 896
 897	do {
 898		ret = walk_page_range(start, range->end, &mm_walk);
 899		start = hmm_vma_walk.last;
 900	} while (ret == -EAGAIN);
 901
 902	if (ret) {
 903		unsigned long i;
 904
 905		i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
 906		hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
 907			       range->end);
 908		hmm_vma_range_done(range);
 909	}
 910	return ret;
 911}
 912EXPORT_SYMBOL(hmm_vma_fault);
 913#endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
 914
 
 
 
 
 
 
 
 
 
 
 915
 916#if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
 917struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
 918				       unsigned long addr)
 919{
 920	struct page *page;
 
 
 
 
 
 
 
 
 921
 922	page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
 923	if (!page)
 924		return NULL;
 925	lock_page(page);
 926	return page;
 927}
 928EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
 929
 
 
 930
 931static void hmm_devmem_ref_release(struct percpu_ref *ref)
 932{
 933	struct hmm_devmem *devmem;
 934
 935	devmem = container_of(ref, struct hmm_devmem, ref);
 936	complete(&devmem->completion);
 937}
 938
 939static void hmm_devmem_ref_exit(void *data)
 940{
 941	struct percpu_ref *ref = data;
 942	struct hmm_devmem *devmem;
 943
 944	devmem = container_of(ref, struct hmm_devmem, ref);
 945	percpu_ref_exit(ref);
 946	devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
 947}
 948
 949static void hmm_devmem_ref_kill(void *data)
 950{
 951	struct percpu_ref *ref = data;
 952	struct hmm_devmem *devmem;
 953
 954	devmem = container_of(ref, struct hmm_devmem, ref);
 955	percpu_ref_kill(ref);
 956	wait_for_completion(&devmem->completion);
 957	devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
 958}
 959
 960static int hmm_devmem_fault(struct vm_area_struct *vma,
 961			    unsigned long addr,
 962			    const struct page *page,
 963			    unsigned int flags,
 964			    pmd_t *pmdp)
 965{
 966	struct hmm_devmem *devmem = page->pgmap->data;
 967
 968	return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
 969}
 970
 971static void hmm_devmem_free(struct page *page, void *data)
 972{
 973	struct hmm_devmem *devmem = data;
 974
 975	devmem->ops->free(devmem, page);
 976}
 977
 978static DEFINE_MUTEX(hmm_devmem_lock);
 979static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
 980
 981static void hmm_devmem_radix_release(struct resource *resource)
 982{
 983	resource_size_t key, align_start, align_size;
 984
 985	align_start = resource->start & ~(PA_SECTION_SIZE - 1);
 986	align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
 987
 988	mutex_lock(&hmm_devmem_lock);
 989	for (key = resource->start;
 990	     key <= resource->end;
 991	     key += PA_SECTION_SIZE)
 992		radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
 993	mutex_unlock(&hmm_devmem_lock);
 994}
 995
 996static void hmm_devmem_release(struct device *dev, void *data)
 997{
 998	struct hmm_devmem *devmem = data;
 999	struct resource *resource = devmem->resource;
1000	unsigned long start_pfn, npages;
1001	struct zone *zone;
1002	struct page *page;
1003
1004	if (percpu_ref_tryget_live(&devmem->ref)) {
1005		dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
1006		percpu_ref_put(&devmem->ref);
1007	}
1008
1009	/* pages are dead and unused, undo the arch mapping */
1010	start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
1011	npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
1012
1013	page = pfn_to_page(start_pfn);
1014	zone = page_zone(page);
1015
1016	mem_hotplug_begin();
1017	if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1018		__remove_pages(zone, start_pfn, npages, NULL);
1019	else
1020		arch_remove_memory(start_pfn << PAGE_SHIFT,
1021				   npages << PAGE_SHIFT, NULL);
1022	mem_hotplug_done();
1023
1024	hmm_devmem_radix_release(resource);
1025}
1026
1027static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
1028{
1029	resource_size_t key, align_start, align_size, align_end;
1030	struct device *device = devmem->device;
1031	int ret, nid, is_ram;
1032	unsigned long pfn;
1033
1034	align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
1035	align_size = ALIGN(devmem->resource->start +
1036			   resource_size(devmem->resource),
1037			   PA_SECTION_SIZE) - align_start;
1038
1039	is_ram = region_intersects(align_start, align_size,
1040				   IORESOURCE_SYSTEM_RAM,
1041				   IORES_DESC_NONE);
1042	if (is_ram == REGION_MIXED) {
1043		WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1044				__func__, devmem->resource);
1045		return -ENXIO;
1046	}
1047	if (is_ram == REGION_INTERSECTS)
1048		return -ENXIO;
1049
1050	if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
1051		devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1052	else
1053		devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1054
1055	devmem->pagemap.res = *devmem->resource;
1056	devmem->pagemap.page_fault = hmm_devmem_fault;
1057	devmem->pagemap.page_free = hmm_devmem_free;
1058	devmem->pagemap.dev = devmem->device;
1059	devmem->pagemap.ref = &devmem->ref;
1060	devmem->pagemap.data = devmem;
1061
1062	mutex_lock(&hmm_devmem_lock);
1063	align_end = align_start + align_size - 1;
1064	for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
1065		struct hmm_devmem *dup;
1066
1067		dup = radix_tree_lookup(&hmm_devmem_radix,
1068					key >> PA_SECTION_SHIFT);
1069		if (dup) {
1070			dev_err(device, "%s: collides with mapping for %s\n",
1071				__func__, dev_name(dup->device));
1072			mutex_unlock(&hmm_devmem_lock);
1073			ret = -EBUSY;
1074			goto error;
1075		}
1076		ret = radix_tree_insert(&hmm_devmem_radix,
1077					key >> PA_SECTION_SHIFT,
1078					devmem);
1079		if (ret) {
1080			dev_err(device, "%s: failed: %d\n", __func__, ret);
1081			mutex_unlock(&hmm_devmem_lock);
1082			goto error_radix;
1083		}
1084	}
1085	mutex_unlock(&hmm_devmem_lock);
1086
1087	nid = dev_to_node(device);
1088	if (nid < 0)
1089		nid = numa_mem_id();
1090
1091	mem_hotplug_begin();
1092	/*
1093	 * For device private memory we call add_pages() as we only need to
1094	 * allocate and initialize struct page for the device memory. More-
1095	 * over the device memory is un-accessible thus we do not want to
1096	 * create a linear mapping for the memory like arch_add_memory()
1097	 * would do.
1098	 *
1099	 * For device public memory, which is accesible by the CPU, we do
1100	 * want the linear mapping and thus use arch_add_memory().
1101	 */
1102	if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1103		ret = arch_add_memory(nid, align_start, align_size, NULL,
1104				false);
1105	else
1106		ret = add_pages(nid, align_start >> PAGE_SHIFT,
1107				align_size >> PAGE_SHIFT, NULL, false);
1108	if (ret) {
1109		mem_hotplug_done();
1110		goto error_add_memory;
1111	}
1112	move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1113				align_start >> PAGE_SHIFT,
1114				align_size >> PAGE_SHIFT, NULL);
1115	mem_hotplug_done();
1116
1117	for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
1118		struct page *page = pfn_to_page(pfn);
1119
1120		page->pgmap = &devmem->pagemap;
1121	}
1122	return 0;
1123
1124error_add_memory:
1125	untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1126error_radix:
1127	hmm_devmem_radix_release(devmem->resource);
1128error:
1129	return ret;
1130}
1131
1132static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1133{
1134	struct hmm_devmem *devmem = data;
1135
1136	return devmem->resource == match_data;
1137}
1138
1139static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1140{
1141	devres_release(devmem->device, &hmm_devmem_release,
1142		       &hmm_devmem_match, devmem->resource);
1143}
 
1144
1145/*
1146 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
 
 
 
 
1147 *
1148 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1149 * @device: device struct to bind the resource too
1150 * @size: size in bytes of the device memory to add
1151 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1152 *
1153 * This function first finds an empty range of physical address big enough to
1154 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1155 * in turn allocates struct pages. It does not do anything beyond that; all
1156 * events affecting the memory will go through the various callbacks provided
1157 * by hmm_devmem_ops struct.
1158 *
1159 * Device driver should call this function during device initialization and
1160 * is then responsible of memory management. HMM only provides helpers.
1161 */
1162struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1163				  struct device *device,
1164				  unsigned long size)
1165{
1166	struct hmm_devmem *devmem;
1167	resource_size_t addr;
1168	int ret;
1169
1170	static_branch_enable(&device_private_key);
 
 
 
 
 
 
 
1171
1172	devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1173				   GFP_KERNEL, dev_to_node(device));
1174	if (!devmem)
1175		return ERR_PTR(-ENOMEM);
1176
1177	init_completion(&devmem->completion);
1178	devmem->pfn_first = -1UL;
1179	devmem->pfn_last = -1UL;
1180	devmem->resource = NULL;
1181	devmem->device = device;
1182	devmem->ops = ops;
1183
1184	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1185			      0, GFP_KERNEL);
1186	if (ret)
1187		goto error_percpu_ref;
1188
1189	ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1190	if (ret)
1191		goto error_devm_add_action;
1192
1193	size = ALIGN(size, PA_SECTION_SIZE);
1194	addr = min((unsigned long)iomem_resource.end,
1195		   (1UL << MAX_PHYSMEM_BITS) - 1);
1196	addr = addr - size + 1UL;
1197
1198	/*
1199	 * FIXME add a new helper to quickly walk resource tree and find free
1200	 * range
1201	 *
1202	 * FIXME what about ioport_resource resource ?
1203	 */
1204	for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1205		ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1206		if (ret != REGION_DISJOINT)
1207			continue;
1208
1209		devmem->resource = devm_request_mem_region(device, addr, size,
1210							   dev_name(device));
1211		if (!devmem->resource) {
1212			ret = -ENOMEM;
1213			goto error_no_resource;
1214		}
1215		break;
1216	}
1217	if (!devmem->resource) {
1218		ret = -ERANGE;
1219		goto error_no_resource;
1220	}
1221
1222	devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1223	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1224	devmem->pfn_last = devmem->pfn_first +
1225			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1226
1227	ret = hmm_devmem_pages_create(devmem);
1228	if (ret)
1229		goto error_pages;
1230
1231	devres_add(device, devmem);
1232
1233	ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1234	if (ret) {
1235		hmm_devmem_remove(devmem);
1236		return ERR_PTR(ret);
1237	}
1238
1239	return devmem;
1240
1241error_pages:
1242	devm_release_mem_region(device, devmem->resource->start,
1243				resource_size(devmem->resource));
1244error_no_resource:
1245error_devm_add_action:
1246	hmm_devmem_ref_kill(&devmem->ref);
1247	hmm_devmem_ref_exit(&devmem->ref);
1248error_percpu_ref:
1249	devres_free(devmem);
1250	return ERR_PTR(ret);
1251}
1252EXPORT_SYMBOL(hmm_devmem_add);
1253
1254struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1255					   struct device *device,
1256					   struct resource *res)
1257{
1258	struct hmm_devmem *devmem;
1259	int ret;
1260
1261	if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1262		return ERR_PTR(-EINVAL);
1263
1264	static_branch_enable(&device_private_key);
1265
1266	devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1267				   GFP_KERNEL, dev_to_node(device));
1268	if (!devmem)
1269		return ERR_PTR(-ENOMEM);
1270
1271	init_completion(&devmem->completion);
1272	devmem->pfn_first = -1UL;
1273	devmem->pfn_last = -1UL;
1274	devmem->resource = res;
1275	devmem->device = device;
1276	devmem->ops = ops;
1277
1278	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1279			      0, GFP_KERNEL);
1280	if (ret)
1281		goto error_percpu_ref;
1282
1283	ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1284	if (ret)
1285		goto error_devm_add_action;
1286
1287
1288	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1289	devmem->pfn_last = devmem->pfn_first +
1290			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1291
1292	ret = hmm_devmem_pages_create(devmem);
1293	if (ret)
1294		goto error_devm_add_action;
1295
1296	devres_add(device, devmem);
1297
1298	ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1299	if (ret) {
1300		hmm_devmem_remove(devmem);
1301		return ERR_PTR(ret);
1302	}
1303
1304	return devmem;
1305
1306error_devm_add_action:
1307	hmm_devmem_ref_kill(&devmem->ref);
1308	hmm_devmem_ref_exit(&devmem->ref);
1309error_percpu_ref:
1310	devres_free(devmem);
1311	return ERR_PTR(ret);
1312}
1313EXPORT_SYMBOL(hmm_devmem_add_resource);
1314
1315/*
1316 * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1317 *
1318 * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1319 *
1320 * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1321 * of the device driver. It will free struct page and remove the resource that
1322 * reserved the physical address range for this device memory.
 
 
 
 
1323 */
1324void hmm_devmem_remove(struct hmm_devmem *devmem)
 
 
 
1325{
1326	resource_size_t start, size;
1327	struct device *device;
1328	bool cdm = false;
1329
1330	if (!devmem)
1331		return;
 
 
 
 
 
1332
1333	device = devmem->device;
1334	start = devmem->resource->start;
1335	size = resource_size(devmem->resource);
1336
1337	cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1338	hmm_devmem_ref_kill(&devmem->ref);
1339	hmm_devmem_ref_exit(&devmem->ref);
1340	hmm_devmem_pages_remove(devmem);
1341
1342	if (!cdm)
1343		devm_release_mem_region(device, start, size);
1344}
1345EXPORT_SYMBOL(hmm_devmem_remove);
1346
1347/*
1348 * A device driver that wants to handle multiple devices memory through a
1349 * single fake device can use hmm_device to do so. This is purely a helper
1350 * and it is not needed to make use of any HMM functionality.
1351 */
1352#define HMM_DEVICE_MAX 256
1353
1354static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1355static DEFINE_SPINLOCK(hmm_device_lock);
1356static struct class *hmm_device_class;
1357static dev_t hmm_device_devt;
 
 
 
1358
1359static void hmm_device_release(struct device *device)
1360{
1361	struct hmm_device *hmm_device;
1362
1363	hmm_device = container_of(device, struct hmm_device, device);
1364	spin_lock(&hmm_device_lock);
1365	clear_bit(hmm_device->minor, hmm_device_mask);
1366	spin_unlock(&hmm_device_lock);
1367
1368	kfree(hmm_device);
1369}
1370
1371struct hmm_device *hmm_device_new(void *drvdata)
1372{
1373	struct hmm_device *hmm_device;
1374
1375	hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1376	if (!hmm_device)
1377		return ERR_PTR(-ENOMEM);
1378
1379	spin_lock(&hmm_device_lock);
1380	hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1381	if (hmm_device->minor >= HMM_DEVICE_MAX) {
1382		spin_unlock(&hmm_device_lock);
1383		kfree(hmm_device);
1384		return ERR_PTR(-EBUSY);
1385	}
1386	set_bit(hmm_device->minor, hmm_device_mask);
1387	spin_unlock(&hmm_device_lock);
1388
1389	dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1390	hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1391					hmm_device->minor);
1392	hmm_device->device.release = hmm_device_release;
1393	dev_set_drvdata(&hmm_device->device, drvdata);
1394	hmm_device->device.class = hmm_device_class;
1395	device_initialize(&hmm_device->device);
1396
1397	return hmm_device;
1398}
1399EXPORT_SYMBOL(hmm_device_new);
1400
1401void hmm_device_put(struct hmm_device *hmm_device)
1402{
1403	put_device(&hmm_device->device);
1404}
1405EXPORT_SYMBOL(hmm_device_put);
1406
1407static int __init hmm_init(void)
1408{
1409	int ret;
1410
1411	ret = alloc_chrdev_region(&hmm_device_devt, 0,
1412				  HMM_DEVICE_MAX,
1413				  "hmm_device");
1414	if (ret)
1415		return ret;
1416
1417	hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1418	if (IS_ERR(hmm_device_class)) {
1419		unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1420		return PTR_ERR(hmm_device_class);
1421	}
1422	return 0;
1423}
1424
1425device_initcall(hmm_init);
1426#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */