Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v5.4
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 * Internal non-public definitions that provide either classic
   5 * or preemptible semantics.
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Copyright Red Hat, 2009
   8 * Copyright IBM Corporation, 2009
   9 *
  10 * Author: Ingo Molnar <mingo@elte.hu>
  11 *	   Paul E. McKenney <paulmck@linux.ibm.com>
  12 */
  13
 
 
 
 
 
 
 
 
 
 
 
  14#include "../locking/rtmutex_common.h"
  15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  16#ifdef CONFIG_RCU_NOCB_CPU
  17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  18static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  19#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  20
  21/*
  22 * Check the RCU kernel configuration parameters and print informative
  23 * messages about anything out of the ordinary.
  24 */
  25static void __init rcu_bootup_announce_oddness(void)
  26{
  27	if (IS_ENABLED(CONFIG_RCU_TRACE))
  28		pr_info("\tRCU event tracing is enabled.\n");
  29	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  30	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  31		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
  32			RCU_FANOUT);
  33	if (rcu_fanout_exact)
  34		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  35	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  36		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  37	if (IS_ENABLED(CONFIG_PROVE_RCU))
  38		pr_info("\tRCU lockdep checking is enabled.\n");
  39	if (RCU_NUM_LVLS >= 4)
  40		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  41	if (RCU_FANOUT_LEAF != 16)
  42		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  43			RCU_FANOUT_LEAF);
  44	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  45		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
  46			rcu_fanout_leaf);
  47	if (nr_cpu_ids != NR_CPUS)
  48		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
  49#ifdef CONFIG_RCU_BOOST
  50	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
  51		kthread_prio, CONFIG_RCU_BOOST_DELAY);
  52#endif
  53	if (blimit != DEFAULT_RCU_BLIMIT)
  54		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
  55	if (qhimark != DEFAULT_RCU_QHIMARK)
  56		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
  57	if (qlowmark != DEFAULT_RCU_QLOMARK)
  58		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
  59	if (jiffies_till_first_fqs != ULONG_MAX)
  60		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
  61	if (jiffies_till_next_fqs != ULONG_MAX)
  62		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
  63	if (jiffies_till_sched_qs != ULONG_MAX)
  64		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
  65	if (rcu_kick_kthreads)
  66		pr_info("\tKick kthreads if too-long grace period.\n");
  67	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
  68		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
  69	if (gp_preinit_delay)
  70		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
  71	if (gp_init_delay)
  72		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
  73	if (gp_cleanup_delay)
  74		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
  75	if (!use_softirq)
  76		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
  77	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
  78		pr_info("\tRCU debug extended QS entry/exit.\n");
  79	rcupdate_announce_bootup_oddness();
  80}
  81
  82#ifdef CONFIG_PREEMPT_RCU
  83
  84static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
  85static void rcu_read_unlock_special(struct task_struct *t);
 
 
 
 
  86
  87/*
  88 * Tell them what RCU they are running.
  89 */
  90static void __init rcu_bootup_announce(void)
  91{
  92	pr_info("Preemptible hierarchical RCU implementation.\n");
  93	rcu_bootup_announce_oddness();
  94}
  95
  96/* Flags for rcu_preempt_ctxt_queue() decision table. */
  97#define RCU_GP_TASKS	0x8
  98#define RCU_EXP_TASKS	0x4
  99#define RCU_GP_BLKD	0x2
 100#define RCU_EXP_BLKD	0x1
 101
 102/*
 103 * Queues a task preempted within an RCU-preempt read-side critical
 104 * section into the appropriate location within the ->blkd_tasks list,
 105 * depending on the states of any ongoing normal and expedited grace
 106 * periods.  The ->gp_tasks pointer indicates which element the normal
 107 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 108 * indicates which element the expedited grace period is waiting on (again,
 109 * NULL if none).  If a grace period is waiting on a given element in the
 110 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 111 * adding a task to the tail of the list blocks any grace period that is
 112 * already waiting on one of the elements.  In contrast, adding a task
 113 * to the head of the list won't block any grace period that is already
 114 * waiting on one of the elements.
 115 *
 116 * This queuing is imprecise, and can sometimes make an ongoing grace
 117 * period wait for a task that is not strictly speaking blocking it.
 118 * Given the choice, we needlessly block a normal grace period rather than
 119 * blocking an expedited grace period.
 120 *
 121 * Note that an endless sequence of expedited grace periods still cannot
 122 * indefinitely postpone a normal grace period.  Eventually, all of the
 123 * fixed number of preempted tasks blocking the normal grace period that are
 124 * not also blocking the expedited grace period will resume and complete
 125 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 126 * pointer will equal the ->exp_tasks pointer, at which point the end of
 127 * the corresponding expedited grace period will also be the end of the
 128 * normal grace period.
 129 */
 130static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 131	__releases(rnp->lock) /* But leaves rrupts disabled. */
 132{
 133	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 134			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 135			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 136			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 137	struct task_struct *t = current;
 138
 139	raw_lockdep_assert_held_rcu_node(rnp);
 140	WARN_ON_ONCE(rdp->mynode != rnp);
 141	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 142	/* RCU better not be waiting on newly onlined CPUs! */
 143	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
 144		     rdp->grpmask);
 145
 146	/*
 147	 * Decide where to queue the newly blocked task.  In theory,
 148	 * this could be an if-statement.  In practice, when I tried
 149	 * that, it was quite messy.
 150	 */
 151	switch (blkd_state) {
 152	case 0:
 153	case                RCU_EXP_TASKS:
 154	case                RCU_EXP_TASKS + RCU_GP_BLKD:
 155	case RCU_GP_TASKS:
 156	case RCU_GP_TASKS + RCU_EXP_TASKS:
 157
 158		/*
 159		 * Blocking neither GP, or first task blocking the normal
 160		 * GP but not blocking the already-waiting expedited GP.
 161		 * Queue at the head of the list to avoid unnecessarily
 162		 * blocking the already-waiting GPs.
 163		 */
 164		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 165		break;
 166
 167	case                                              RCU_EXP_BLKD:
 168	case                                RCU_GP_BLKD:
 169	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 170	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 171	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 172	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 173
 174		/*
 175		 * First task arriving that blocks either GP, or first task
 176		 * arriving that blocks the expedited GP (with the normal
 177		 * GP already waiting), or a task arriving that blocks
 178		 * both GPs with both GPs already waiting.  Queue at the
 179		 * tail of the list to avoid any GP waiting on any of the
 180		 * already queued tasks that are not blocking it.
 181		 */
 182		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 183		break;
 184
 185	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 186	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 187	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 188
 189		/*
 190		 * Second or subsequent task blocking the expedited GP.
 191		 * The task either does not block the normal GP, or is the
 192		 * first task blocking the normal GP.  Queue just after
 193		 * the first task blocking the expedited GP.
 194		 */
 195		list_add(&t->rcu_node_entry, rnp->exp_tasks);
 196		break;
 197
 198	case RCU_GP_TASKS +                 RCU_GP_BLKD:
 199	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 200
 201		/*
 202		 * Second or subsequent task blocking the normal GP.
 203		 * The task does not block the expedited GP. Queue just
 204		 * after the first task blocking the normal GP.
 205		 */
 206		list_add(&t->rcu_node_entry, rnp->gp_tasks);
 207		break;
 208
 209	default:
 210
 211		/* Yet another exercise in excessive paranoia. */
 212		WARN_ON_ONCE(1);
 213		break;
 214	}
 215
 216	/*
 217	 * We have now queued the task.  If it was the first one to
 218	 * block either grace period, update the ->gp_tasks and/or
 219	 * ->exp_tasks pointers, respectively, to reference the newly
 220	 * blocked tasks.
 221	 */
 222	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
 223		rnp->gp_tasks = &t->rcu_node_entry;
 224		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
 225	}
 226	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 227		rnp->exp_tasks = &t->rcu_node_entry;
 228	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
 229		     !(rnp->qsmask & rdp->grpmask));
 230	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
 231		     !(rnp->expmask & rdp->grpmask));
 232	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 233
 234	/*
 235	 * Report the quiescent state for the expedited GP.  This expedited
 236	 * GP should not be able to end until we report, so there should be
 237	 * no need to check for a subsequent expedited GP.  (Though we are
 238	 * still in a quiescent state in any case.)
 239	 */
 240	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
 241		rcu_report_exp_rdp(rdp);
 242	else
 243		WARN_ON_ONCE(rdp->exp_deferred_qs);
 
 
 
 244}
 245
 246/*
 247 * Record a preemptible-RCU quiescent state for the specified CPU.
 248 * Note that this does not necessarily mean that the task currently running
 249 * on the CPU is in a quiescent state:  Instead, it means that the current
 250 * grace period need not wait on any RCU read-side critical section that
 251 * starts later on this CPU.  It also means that if the current task is
 252 * in an RCU read-side critical section, it has already added itself to
 253 * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
 254 * current task, there might be any number of other tasks blocked while
 255 * in an RCU read-side critical section.
 256 *
 257 * Callers to this function must disable preemption.
 
 258 */
 259static void rcu_qs(void)
 260{
 261	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
 262	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
 263		trace_rcu_grace_period(TPS("rcu_preempt"),
 264				       __this_cpu_read(rcu_data.gp_seq),
 265				       TPS("cpuqs"));
 266		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 267		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
 268		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
 269	}
 270}
 271
 272/*
 273 * We have entered the scheduler, and the current task might soon be
 274 * context-switched away from.  If this task is in an RCU read-side
 275 * critical section, we will no longer be able to rely on the CPU to
 276 * record that fact, so we enqueue the task on the blkd_tasks list.
 277 * The task will dequeue itself when it exits the outermost enclosing
 278 * RCU read-side critical section.  Therefore, the current grace period
 279 * cannot be permitted to complete until the blkd_tasks list entries
 280 * predating the current grace period drain, in other words, until
 281 * rnp->gp_tasks becomes NULL.
 282 *
 283 * Caller must disable interrupts.
 284 */
 285void rcu_note_context_switch(bool preempt)
 286{
 287	struct task_struct *t = current;
 288	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 289	struct rcu_node *rnp;
 290
 291	trace_rcu_utilization(TPS("Start context switch"));
 292	lockdep_assert_irqs_disabled();
 293	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
 294	if (t->rcu_read_lock_nesting > 0 &&
 295	    !t->rcu_read_unlock_special.b.blocked) {
 296
 297		/* Possibly blocking in an RCU read-side critical section. */
 
 298		rnp = rdp->mynode;
 299		raw_spin_lock_rcu_node(rnp);
 300		t->rcu_read_unlock_special.b.blocked = true;
 301		t->rcu_blocked_node = rnp;
 302
 303		/*
 304		 * Verify the CPU's sanity, trace the preemption, and
 305		 * then queue the task as required based on the states
 306		 * of any ongoing and expedited grace periods.
 307		 */
 308		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 309		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 310		trace_rcu_preempt_task(rcu_state.name,
 311				       t->pid,
 312				       (rnp->qsmask & rdp->grpmask)
 313				       ? rnp->gp_seq
 314				       : rcu_seq_snap(&rnp->gp_seq));
 315		rcu_preempt_ctxt_queue(rnp, rdp);
 316	} else {
 317		rcu_preempt_deferred_qs(t);
 
 
 
 
 
 
 318	}
 319
 320	/*
 321	 * Either we were not in an RCU read-side critical section to
 322	 * begin with, or we have now recorded that critical section
 323	 * globally.  Either way, we can now note a quiescent state
 324	 * for this CPU.  Again, if we were in an RCU read-side critical
 325	 * section, and if that critical section was blocking the current
 326	 * grace period, then the fact that the task has been enqueued
 327	 * means that we continue to block the current grace period.
 328	 */
 329	rcu_qs();
 330	if (rdp->exp_deferred_qs)
 331		rcu_report_exp_rdp(rdp);
 332	trace_rcu_utilization(TPS("End context switch"));
 333}
 334EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 335
 336/*
 337 * Check for preempted RCU readers blocking the current grace period
 338 * for the specified rcu_node structure.  If the caller needs a reliable
 339 * answer, it must hold the rcu_node's ->lock.
 340 */
 341static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 342{
 343	return rnp->gp_tasks != NULL;
 344}
 345
 346/* Bias and limit values for ->rcu_read_lock_nesting. */
 347#define RCU_NEST_BIAS INT_MAX
 348#define RCU_NEST_NMAX (-INT_MAX / 2)
 349#define RCU_NEST_PMAX (INT_MAX / 2)
 350
 351/*
 352 * Preemptible RCU implementation for rcu_read_lock().
 353 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 354 * if we block.
 355 */
 356void __rcu_read_lock(void)
 357{
 358	current->rcu_read_lock_nesting++;
 359	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 360		WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
 361	barrier();  /* critical section after entry code. */
 362}
 363EXPORT_SYMBOL_GPL(__rcu_read_lock);
 364
 365/*
 366 * Preemptible RCU implementation for rcu_read_unlock().
 367 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 368 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 369 * invoke rcu_read_unlock_special() to clean up after a context switch
 370 * in an RCU read-side critical section and other special cases.
 371 */
 372void __rcu_read_unlock(void)
 373{
 374	struct task_struct *t = current;
 375
 376	if (t->rcu_read_lock_nesting != 1) {
 377		--t->rcu_read_lock_nesting;
 378	} else {
 379		barrier();  /* critical section before exit code. */
 380		t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
 381		barrier();  /* assign before ->rcu_read_unlock_special load */
 382		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 383			rcu_read_unlock_special(t);
 384		barrier();  /* ->rcu_read_unlock_special load before assign */
 385		t->rcu_read_lock_nesting = 0;
 386	}
 387	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
 388		int rrln = t->rcu_read_lock_nesting;
 389
 390		WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
 391	}
 392}
 393EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 394
 395/*
 396 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 397 * returning NULL if at the end of the list.
 398 */
 399static struct list_head *rcu_next_node_entry(struct task_struct *t,
 400					     struct rcu_node *rnp)
 401{
 402	struct list_head *np;
 403
 404	np = t->rcu_node_entry.next;
 405	if (np == &rnp->blkd_tasks)
 406		np = NULL;
 407	return np;
 408}
 409
 410/*
 411 * Return true if the specified rcu_node structure has tasks that were
 412 * preempted within an RCU read-side critical section.
 413 */
 414static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 415{
 416	return !list_empty(&rnp->blkd_tasks);
 417}
 418
 419/*
 420 * Report deferred quiescent states.  The deferral time can
 421 * be quite short, for example, in the case of the call from
 422 * rcu_read_unlock_special().
 423 */
 424static void
 425rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
 426{
 427	bool empty_exp;
 428	bool empty_norm;
 429	bool empty_exp_now;
 
 430	struct list_head *np;
 431	bool drop_boost_mutex = false;
 432	struct rcu_data *rdp;
 433	struct rcu_node *rnp;
 434	union rcu_special special;
 435
 
 
 
 
 
 
 436	/*
 437	 * If RCU core is waiting for this CPU to exit its critical section,
 438	 * report the fact that it has exited.  Because irqs are disabled,
 439	 * t->rcu_read_unlock_special cannot change.
 440	 */
 441	special = t->rcu_read_unlock_special;
 442	rdp = this_cpu_ptr(&rcu_data);
 443	if (!special.s && !rdp->exp_deferred_qs) {
 444		local_irq_restore(flags);
 445		return;
 446	}
 447	t->rcu_read_unlock_special.b.deferred_qs = false;
 448	if (special.b.need_qs) {
 449		rcu_qs();
 450		t->rcu_read_unlock_special.b.need_qs = false;
 451		if (!t->rcu_read_unlock_special.s && !rdp->exp_deferred_qs) {
 452			local_irq_restore(flags);
 453			return;
 454		}
 455	}
 456
 457	/*
 458	 * Respond to a request by an expedited grace period for a
 459	 * quiescent state from this CPU.  Note that requests from
 460	 * tasks are handled when removing the task from the
 461	 * blocked-tasks list below.
 
 462	 */
 463	if (rdp->exp_deferred_qs) {
 464		rcu_report_exp_rdp(rdp);
 
 
 
 465		if (!t->rcu_read_unlock_special.s) {
 466			local_irq_restore(flags);
 467			return;
 468		}
 469	}
 470
 
 
 
 
 
 
 
 
 
 
 
 
 
 471	/* Clean up if blocked during RCU read-side critical section. */
 472	if (special.b.blocked) {
 473		t->rcu_read_unlock_special.b.blocked = false;
 474
 475		/*
 476		 * Remove this task from the list it blocked on.  The task
 477		 * now remains queued on the rcu_node corresponding to the
 478		 * CPU it first blocked on, so there is no longer any need
 479		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 480		 */
 481		rnp = t->rcu_blocked_node;
 482		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 483		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 484		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 485		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 486		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
 487			     (!empty_norm || rnp->qsmask));
 488		empty_exp = sync_rcu_preempt_exp_done(rnp);
 489		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 490		np = rcu_next_node_entry(t, rnp);
 491		list_del_init(&t->rcu_node_entry);
 492		t->rcu_blocked_node = NULL;
 493		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 494						rnp->gp_seq, t->pid);
 495		if (&t->rcu_node_entry == rnp->gp_tasks)
 496			rnp->gp_tasks = np;
 497		if (&t->rcu_node_entry == rnp->exp_tasks)
 498			rnp->exp_tasks = np;
 499		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 500			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 501			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 502			if (&t->rcu_node_entry == rnp->boost_tasks)
 503				rnp->boost_tasks = np;
 504		}
 505
 506		/*
 507		 * If this was the last task on the current list, and if
 508		 * we aren't waiting on any CPUs, report the quiescent state.
 509		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 510		 * so we must take a snapshot of the expedited state.
 511		 */
 512		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
 513		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 514			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 515							 rnp->gp_seq,
 516							 0, rnp->qsmask,
 517							 rnp->level,
 518							 rnp->grplo,
 519							 rnp->grphi,
 520							 !!rnp->gp_tasks);
 521			rcu_report_unblock_qs_rnp(rnp, flags);
 522		} else {
 523			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 524		}
 525
 526		/* Unboost if we were boosted. */
 527		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 528			rt_mutex_futex_unlock(&rnp->boost_mtx);
 529
 530		/*
 531		 * If this was the last task on the expedited lists,
 532		 * then we need to report up the rcu_node hierarchy.
 533		 */
 534		if (!empty_exp && empty_exp_now)
 535			rcu_report_exp_rnp(rnp, true);
 536	} else {
 537		local_irq_restore(flags);
 538	}
 539}
 540
 541/*
 542 * Is a deferred quiescent-state pending, and are we also not in
 543 * an RCU read-side critical section?  It is the caller's responsibility
 544 * to ensure it is otherwise safe to report any deferred quiescent
 545 * states.  The reason for this is that it is safe to report a
 546 * quiescent state during context switch even though preemption
 547 * is disabled.  This function cannot be expected to understand these
 548 * nuances, so the caller must handle them.
 549 */
 550static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 551{
 552	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
 553		READ_ONCE(t->rcu_read_unlock_special.s)) &&
 554	       t->rcu_read_lock_nesting <= 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555}
 556
 557/*
 558 * Report a deferred quiescent state if needed and safe to do so.
 559 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
 560 * not being in an RCU read-side critical section.  The caller must
 561 * evaluate safety in terms of interrupt, softirq, and preemption
 562 * disabling.
 563 */
 564static void rcu_preempt_deferred_qs(struct task_struct *t)
 565{
 566	unsigned long flags;
 567	bool couldrecurse = t->rcu_read_lock_nesting >= 0;
 568
 569	if (!rcu_preempt_need_deferred_qs(t))
 570		return;
 571	if (couldrecurse)
 572		t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
 573	local_irq_save(flags);
 574	rcu_preempt_deferred_qs_irqrestore(t, flags);
 575	if (couldrecurse)
 576		t->rcu_read_lock_nesting += RCU_NEST_BIAS;
 
 
 
 
 
 
 577}
 578
 579/*
 580 * Minimal handler to give the scheduler a chance to re-evaluate.
 
 581 */
 582static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
 583{
 584	struct rcu_data *rdp;
 
 585
 586	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
 587	rdp->defer_qs_iw_pending = false;
 
 
 
 
 
 
 
 
 
 588}
 589
 590/*
 591 * Handle special cases during rcu_read_unlock(), such as needing to
 592 * notify RCU core processing or task having blocked during the RCU
 593 * read-side critical section.
 594 */
 595static void rcu_read_unlock_special(struct task_struct *t)
 596{
 597	unsigned long flags;
 598	bool preempt_bh_were_disabled =
 599			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
 600	bool irqs_were_disabled;
 601
 602	/* NMI handlers cannot block and cannot safely manipulate state. */
 603	if (in_nmi())
 604		return;
 605
 606	local_irq_save(flags);
 607	irqs_were_disabled = irqs_disabled_flags(flags);
 608	if (preempt_bh_were_disabled || irqs_were_disabled) {
 609		bool exp;
 610		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 611		struct rcu_node *rnp = rdp->mynode;
 612
 613		t->rcu_read_unlock_special.b.exp_hint = false;
 614		exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
 615		      (rdp->grpmask & rnp->expmask) ||
 616		      tick_nohz_full_cpu(rdp->cpu);
 617		// Need to defer quiescent state until everything is enabled.
 618		if (irqs_were_disabled && use_softirq &&
 619		    (in_interrupt() ||
 620		     (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
 621			// Using softirq, safe to awaken, and we get
 622			// no help from enabling irqs, unlike bh/preempt.
 623			raise_softirq_irqoff(RCU_SOFTIRQ);
 624		} else {
 625			// Enabling BH or preempt does reschedule, so...
 626			// Also if no expediting or NO_HZ_FULL, slow is OK.
 627			set_tsk_need_resched(current);
 628			set_preempt_need_resched();
 629			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
 630			    !rdp->defer_qs_iw_pending && exp) {
 631				// Get scheduler to re-evaluate and call hooks.
 632				// If !IRQ_WORK, FQS scan will eventually IPI.
 633				init_irq_work(&rdp->defer_qs_iw,
 634					      rcu_preempt_deferred_qs_handler);
 635				rdp->defer_qs_iw_pending = true;
 636				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
 637			}
 638		}
 639		t->rcu_read_unlock_special.b.deferred_qs = true;
 640		local_irq_restore(flags);
 641		return;
 642	}
 643	WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
 644	rcu_preempt_deferred_qs_irqrestore(t, flags);
 645}
 646
 647/*
 648 * Check that the list of blocked tasks for the newly completed grace
 649 * period is in fact empty.  It is a serious bug to complete a grace
 650 * period that still has RCU readers blocked!  This function must be
 651 * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
 652 * must be held by the caller.
 653 *
 654 * Also, if there are blocked tasks on the list, they automatically
 655 * block the newly created grace period, so set up ->gp_tasks accordingly.
 656 */
 657static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 658{
 659	struct task_struct *t;
 660
 661	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
 662	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
 663		dump_blkd_tasks(rnp, 10);
 664	if (rcu_preempt_has_tasks(rnp) &&
 665	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
 666		rnp->gp_tasks = rnp->blkd_tasks.next;
 667		t = container_of(rnp->gp_tasks, struct task_struct,
 668				 rcu_node_entry);
 669		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
 670						rnp->gp_seq, t->pid);
 671	}
 672	WARN_ON_ONCE(rnp->qsmask);
 673}
 674
 675/*
 676 * Check for a quiescent state from the current CPU, including voluntary
 677 * context switches for Tasks RCU.  When a task blocks, the task is
 678 * recorded in the corresponding CPU's rcu_node structure, which is checked
 679 * elsewhere, hence this function need only check for quiescent states
 680 * related to the current CPU, not to those related to tasks.
 681 */
 682static void rcu_flavor_sched_clock_irq(int user)
 683{
 684	struct task_struct *t = current;
 685
 686	if (user || rcu_is_cpu_rrupt_from_idle()) {
 687		rcu_note_voluntary_context_switch(current);
 688	}
 689	if (t->rcu_read_lock_nesting > 0 ||
 690	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
 691		/* No QS, force context switch if deferred. */
 692		if (rcu_preempt_need_deferred_qs(t)) {
 693			set_tsk_need_resched(t);
 694			set_preempt_need_resched();
 695		}
 696	} else if (rcu_preempt_need_deferred_qs(t)) {
 697		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
 698		return;
 699	} else if (!t->rcu_read_lock_nesting) {
 700		rcu_qs(); /* Report immediate QS. */
 701		return;
 702	}
 703
 704	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
 705	if (t->rcu_read_lock_nesting > 0 &&
 706	    __this_cpu_read(rcu_data.core_needs_qs) &&
 707	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
 708	    !t->rcu_read_unlock_special.b.need_qs &&
 709	    time_after(jiffies, rcu_state.gp_start + HZ))
 710		t->rcu_read_unlock_special.b.need_qs = true;
 711}
 712
 713/*
 714 * Check for a task exiting while in a preemptible-RCU read-side
 715 * critical section, clean up if so.  No need to issue warnings, as
 716 * debug_check_no_locks_held() already does this if lockdep is enabled.
 717 * Besides, if this function does anything other than just immediately
 718 * return, there was a bug of some sort.  Spewing warnings from this
 719 * function is like as not to simply obscure important prior warnings.
 720 */
 721void exit_rcu(void)
 722{
 723	struct task_struct *t = current;
 
 724
 725	if (unlikely(!list_empty(&current->rcu_node_entry))) {
 726		t->rcu_read_lock_nesting = 1;
 727		barrier();
 728		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
 729	} else if (unlikely(t->rcu_read_lock_nesting)) {
 730		t->rcu_read_lock_nesting = 1;
 731	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732		return;
 733	}
 734	__rcu_read_unlock();
 735	rcu_preempt_deferred_qs(current);
 
 736}
 
 737
 738/*
 739 * Dump the blocked-tasks state, but limit the list dump to the
 740 * specified number of elements.
 
 
 
 
 741 */
 742static void
 743dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 744{
 745	int cpu;
 746	int i;
 747	struct list_head *lhp;
 748	bool onl;
 749	struct rcu_data *rdp;
 750	struct rcu_node *rnp1;
 751
 752	raw_lockdep_assert_held_rcu_node(rnp);
 753	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 754		__func__, rnp->grplo, rnp->grphi, rnp->level,
 755		(long)rnp->gp_seq, (long)rnp->completedqs);
 756	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 757		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
 758			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
 759	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
 760		__func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks);
 761	pr_info("%s: ->blkd_tasks", __func__);
 762	i = 0;
 763	list_for_each(lhp, &rnp->blkd_tasks) {
 764		pr_cont(" %p", lhp);
 765		if (++i >= ncheck)
 766			break;
 767	}
 768	pr_cont("\n");
 769	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
 770		rdp = per_cpu_ptr(&rcu_data, cpu);
 771		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
 772		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
 773			cpu, ".o"[onl],
 774			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 775			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 776	}
 777}
 778
 779#else /* #ifdef CONFIG_PREEMPT_RCU */
 780
 781/*
 782 * Tell them what RCU they are running.
 783 */
 784static void __init rcu_bootup_announce(void)
 785{
 786	pr_info("Hierarchical RCU implementation.\n");
 787	rcu_bootup_announce_oddness();
 788}
 789
 790/*
 791 * Note a quiescent state for PREEMPT=n.  Because we do not need to know
 792 * how many quiescent states passed, just if there was at least one since
 793 * the start of the grace period, this just sets a flag.  The caller must
 794 * have disabled preemption.
 795 */
 796static void rcu_qs(void)
 797{
 798	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
 799	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
 800		return;
 801	trace_rcu_grace_period(TPS("rcu_sched"),
 802			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
 803	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 804	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
 805		return;
 806	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
 807	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
 
 
 808}
 809
 
 
 
 
 810/*
 811 * Register an urgently needed quiescent state.  If there is an
 812 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 813 * dyntick-idle quiescent state visible to other CPUs, which will in
 814 * some cases serve for expedited as well as normal grace periods.
 815 * Either way, register a lightweight quiescent state.
 816 */
 817void rcu_all_qs(void)
 818{
 819	unsigned long flags;
 820
 821	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
 822		return;
 823	preempt_disable();
 824	/* Load rcu_urgent_qs before other flags. */
 825	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
 826		preempt_enable();
 827		return;
 828	}
 829	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 830	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
 831		local_irq_save(flags);
 832		rcu_momentary_dyntick_idle();
 833		local_irq_restore(flags);
 834	}
 835	rcu_qs();
 836	preempt_enable();
 837}
 838EXPORT_SYMBOL_GPL(rcu_all_qs);
 839
 840/*
 841 * Note a PREEMPT=n context switch.  The caller must have disabled interrupts.
 
 842 */
 843void rcu_note_context_switch(bool preempt)
 844{
 845	trace_rcu_utilization(TPS("Start context switch"));
 846	rcu_qs();
 847	/* Load rcu_urgent_qs before other flags. */
 848	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
 849		goto out;
 850	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 851	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
 852		rcu_momentary_dyntick_idle();
 853	if (!preempt)
 854		rcu_tasks_qs(current);
 855out:
 856	trace_rcu_utilization(TPS("End context switch"));
 857}
 858EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 859
 860/*
 861 * Because preemptible RCU does not exist, there are never any preempted
 862 * RCU readers.
 863 */
 864static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 865{
 866	return 0;
 867}
 868
 869/*
 870 * Because there is no preemptible RCU, there can be no readers blocked.
 871 */
 872static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 873{
 874	return false;
 875}
 876
 877/*
 878 * Because there is no preemptible RCU, there can be no deferred quiescent
 879 * states.
 880 */
 881static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 882{
 883	return false;
 884}
 885static void rcu_preempt_deferred_qs(struct task_struct *t) { }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886
 887/*
 888 * Because there is no preemptible RCU, there can be no readers blocked,
 889 * so there is no need to check for blocked tasks.  So check only for
 890 * bogus qsmask values.
 891 */
 892static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 893{
 894	WARN_ON_ONCE(rnp->qsmask);
 895}
 896
 897/*
 898 * Check to see if this CPU is in a non-context-switch quiescent state,
 899 * namely user mode and idle loop.
 900 */
 901static void rcu_flavor_sched_clock_irq(int user)
 902{
 903	if (user || rcu_is_cpu_rrupt_from_idle()) {
 904
 905		/*
 906		 * Get here if this CPU took its interrupt from user
 907		 * mode or from the idle loop, and if this is not a
 908		 * nested interrupt.  In this case, the CPU is in
 909		 * a quiescent state, so note it.
 910		 *
 911		 * No memory barrier is required here because rcu_qs()
 912		 * references only CPU-local variables that other CPUs
 913		 * neither access nor modify, at least not while the
 914		 * corresponding CPU is online.
 915		 */
 916
 917		rcu_qs();
 918	}
 919}
 920
 921/*
 922 * Because preemptible RCU does not exist, tasks cannot possibly exit
 923 * while in preemptible RCU read-side critical sections.
 924 */
 925void exit_rcu(void)
 926{
 
 927}
 
 928
 929/*
 930 * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
 931 */
 932static void
 933dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 934{
 935	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
 936}
 937
 938#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 939
 940/*
 941 * If boosting, set rcuc kthreads to realtime priority.
 
 942 */
 943static void rcu_cpu_kthread_setup(unsigned int cpu)
 944{
 945#ifdef CONFIG_RCU_BOOST
 946	struct sched_param sp;
 947
 948	sp.sched_priority = kthread_prio;
 949	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
 950#endif /* #ifdef CONFIG_RCU_BOOST */
 951}
 952
 
 
 953#ifdef CONFIG_RCU_BOOST
 954
 
 
 
 
 
 
 
 
 
 
 955/*
 956 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 957 * or ->boost_tasks, advancing the pointer to the next task in the
 958 * ->blkd_tasks list.
 959 *
 960 * Note that irqs must be enabled: boosting the task can block.
 961 * Returns 1 if there are more tasks needing to be boosted.
 962 */
 963static int rcu_boost(struct rcu_node *rnp)
 964{
 965	unsigned long flags;
 966	struct task_struct *t;
 967	struct list_head *tb;
 968
 969	if (READ_ONCE(rnp->exp_tasks) == NULL &&
 970	    READ_ONCE(rnp->boost_tasks) == NULL)
 971		return 0;  /* Nothing left to boost. */
 972
 973	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 974
 975	/*
 976	 * Recheck under the lock: all tasks in need of boosting
 977	 * might exit their RCU read-side critical sections on their own.
 978	 */
 979	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 980		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 981		return 0;
 982	}
 983
 984	/*
 985	 * Preferentially boost tasks blocking expedited grace periods.
 986	 * This cannot starve the normal grace periods because a second
 987	 * expedited grace period must boost all blocked tasks, including
 988	 * those blocking the pre-existing normal grace period.
 989	 */
 990	if (rnp->exp_tasks != NULL)
 991		tb = rnp->exp_tasks;
 992	else
 993		tb = rnp->boost_tasks;
 994
 995	/*
 996	 * We boost task t by manufacturing an rt_mutex that appears to
 997	 * be held by task t.  We leave a pointer to that rt_mutex where
 998	 * task t can find it, and task t will release the mutex when it
 999	 * exits its outermost RCU read-side critical section.  Then
1000	 * simply acquiring this artificial rt_mutex will boost task
1001	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1002	 *
1003	 * Note that task t must acquire rnp->lock to remove itself from
1004	 * the ->blkd_tasks list, which it will do from exit() if from
1005	 * nowhere else.  We therefore are guaranteed that task t will
1006	 * stay around at least until we drop rnp->lock.  Note that
1007	 * rnp->lock also resolves races between our priority boosting
1008	 * and task t's exiting its outermost RCU read-side critical
1009	 * section.
1010	 */
1011	t = container_of(tb, struct task_struct, rcu_node_entry);
1012	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1013	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1014	/* Lock only for side effect: boosts task t's priority. */
1015	rt_mutex_lock(&rnp->boost_mtx);
1016	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1017
1018	return READ_ONCE(rnp->exp_tasks) != NULL ||
1019	       READ_ONCE(rnp->boost_tasks) != NULL;
1020}
1021
1022/*
1023 * Priority-boosting kthread, one per leaf rcu_node.
1024 */
1025static int rcu_boost_kthread(void *arg)
1026{
1027	struct rcu_node *rnp = (struct rcu_node *)arg;
1028	int spincnt = 0;
1029	int more2boost;
1030
1031	trace_rcu_utilization(TPS("Start boost kthread@init"));
1032	for (;;) {
1033		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1034		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1035		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1036		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1037		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1038		more2boost = rcu_boost(rnp);
1039		if (more2boost)
1040			spincnt++;
1041		else
1042			spincnt = 0;
1043		if (spincnt > 10) {
1044			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1045			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1046			schedule_timeout_interruptible(2);
1047			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1048			spincnt = 0;
1049		}
1050	}
1051	/* NOTREACHED */
1052	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1053	return 0;
1054}
1055
1056/*
1057 * Check to see if it is time to start boosting RCU readers that are
1058 * blocking the current grace period, and, if so, tell the per-rcu_node
1059 * kthread to start boosting them.  If there is an expedited grace
1060 * period in progress, it is always time to boost.
1061 *
1062 * The caller must hold rnp->lock, which this function releases.
1063 * The ->boost_kthread_task is immortal, so we don't need to worry
1064 * about it going away.
1065 */
1066static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1067	__releases(rnp->lock)
1068{
 
 
1069	raw_lockdep_assert_held_rcu_node(rnp);
1070	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1071		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1072		return;
1073	}
1074	if (rnp->exp_tasks != NULL ||
1075	    (rnp->gp_tasks != NULL &&
1076	     rnp->boost_tasks == NULL &&
1077	     rnp->qsmask == 0 &&
1078	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1079		if (rnp->exp_tasks == NULL)
1080			rnp->boost_tasks = rnp->gp_tasks;
1081		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1082		rcu_wake_cond(rnp->boost_kthread_task,
1083			      rnp->boost_kthread_status);
 
1084	} else {
1085		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1086	}
1087}
1088
1089/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090 * Is the current CPU running the RCU-callbacks kthread?
1091 * Caller must have preemption disabled.
1092 */
1093static bool rcu_is_callbacks_kthread(void)
1094{
1095	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1096}
1097
1098#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1099
1100/*
1101 * Do priority-boost accounting for the start of a new grace period.
1102 */
1103static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1104{
1105	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1106}
1107
1108/*
1109 * Create an RCU-boost kthread for the specified node if one does not
1110 * already exist.  We only create this kthread for preemptible RCU.
1111 * Returns zero if all is well, a negated errno otherwise.
1112 */
1113static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
 
1114{
1115	int rnp_index = rnp - rcu_get_root();
1116	unsigned long flags;
1117	struct sched_param sp;
1118	struct task_struct *t;
1119
1120	if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1121		return;
1122
1123	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1124		return;
1125
1126	rcu_state.boost = 1;
1127
 
1128	if (rnp->boost_kthread_task != NULL)
1129		return;
1130
1131	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1132			   "rcub/%d", rnp_index);
1133	if (WARN_ON_ONCE(IS_ERR(t)))
1134		return;
1135
1136	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1137	rnp->boost_kthread_task = t;
1138	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1139	sp.sched_priority = kthread_prio;
1140	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1141	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1142}
1143
1144/*
1145 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1146 * served by the rcu_node in question.  The CPU hotplug lock is still
1147 * held, so the value of rnp->qsmaskinit will be stable.
1148 *
1149 * We don't include outgoingcpu in the affinity set, use -1 if there is
1150 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1151 * this function allows the kthread to execute on any CPU.
1152 */
1153static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1154{
1155	struct task_struct *t = rnp->boost_kthread_task;
1156	unsigned long mask = rcu_rnp_online_cpus(rnp);
1157	cpumask_var_t cm;
1158	int cpu;
1159
1160	if (!t)
1161		return;
1162	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1163		return;
1164	for_each_leaf_node_possible_cpu(rnp, cpu)
1165		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1166		    cpu != outgoingcpu)
1167			cpumask_set_cpu(cpu, cm);
1168	if (cpumask_weight(cm) == 0)
1169		cpumask_setall(cm);
1170	set_cpus_allowed_ptr(t, cm);
1171	free_cpumask_var(cm);
1172}
1173
 
 
 
 
 
 
 
 
 
1174/*
1175 * Spawn boost kthreads -- called as soon as the scheduler is running.
1176 */
1177static void __init rcu_spawn_boost_kthreads(void)
1178{
1179	struct rcu_node *rnp;
 
1180
1181	rcu_for_each_leaf_node(rnp)
1182		rcu_spawn_one_boost_kthread(rnp);
 
 
 
1183}
1184
1185static void rcu_prepare_kthreads(int cpu)
1186{
1187	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1188	struct rcu_node *rnp = rdp->mynode;
1189
1190	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1191	if (rcu_scheduler_fully_active)
1192		rcu_spawn_one_boost_kthread(rnp);
1193}
1194
1195#else /* #ifdef CONFIG_RCU_BOOST */
1196
1197static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1198	__releases(rnp->lock)
1199{
1200	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1201}
1202
 
 
 
 
 
1203static bool rcu_is_callbacks_kthread(void)
1204{
1205	return false;
1206}
1207
1208static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1209{
1210}
1211
1212static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1213{
1214}
1215
1216static void __init rcu_spawn_boost_kthreads(void)
1217{
1218}
1219
1220static void rcu_prepare_kthreads(int cpu)
1221{
1222}
1223
1224#endif /* #else #ifdef CONFIG_RCU_BOOST */
1225
1226#if !defined(CONFIG_RCU_FAST_NO_HZ)
1227
1228/*
1229 * Check to see if any future non-offloaded RCU-related work will need
1230 * to be done by the current CPU, even if none need be done immediately,
1231 * returning 1 if so.  This function is part of the RCU implementation;
1232 * it is -not- an exported member of the RCU API.
1233 *
1234 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1235 * CPU has RCU callbacks queued.
1236 */
1237int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1238{
1239	*nextevt = KTIME_MAX;
1240	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1241	       !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1242}
1243
1244/*
1245 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1246 * after it.
1247 */
1248static void rcu_cleanup_after_idle(void)
1249{
1250}
1251
1252/*
1253 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1254 * is nothing.
1255 */
1256static void rcu_prepare_for_idle(void)
1257{
1258}
1259
 
 
 
 
 
 
 
 
1260#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1261
1262/*
1263 * This code is invoked when a CPU goes idle, at which point we want
1264 * to have the CPU do everything required for RCU so that it can enter
1265 * the energy-efficient dyntick-idle mode.  This is handled by a
1266 * state machine implemented by rcu_prepare_for_idle() below.
1267 *
1268 * The following three proprocessor symbols control this state machine:
1269 *
1270 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1271 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1272 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1273 *	benchmarkers who might otherwise be tempted to set this to a large
1274 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1275 *	system.  And if you are -that- concerned about energy efficiency,
1276 *	just power the system down and be done with it!
1277 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1278 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1279 *	callbacks pending.  Setting this too high can OOM your system.
1280 *
1281 * The values below work well in practice.  If future workloads require
1282 * adjustment, they can be converted into kernel config parameters, though
1283 * making the state machine smarter might be a better option.
1284 */
1285#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1286#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1287
1288static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1289module_param(rcu_idle_gp_delay, int, 0644);
1290static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1291module_param(rcu_idle_lazy_gp_delay, int, 0644);
1292
1293/*
1294 * Try to advance callbacks on the current CPU, but only if it has been
1295 * awhile since the last time we did so.  Afterwards, if there are any
1296 * callbacks ready for immediate invocation, return true.
1297 */
1298static bool __maybe_unused rcu_try_advance_all_cbs(void)
1299{
1300	bool cbs_ready = false;
1301	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
1302	struct rcu_node *rnp;
 
1303
1304	/* Exit early if we advanced recently. */
1305	if (jiffies == rdp->last_advance_all)
1306		return false;
1307	rdp->last_advance_all = jiffies;
1308
1309	rnp = rdp->mynode;
 
 
1310
1311	/*
1312	 * Don't bother checking unless a grace period has
1313	 * completed since we last checked and there are
1314	 * callbacks not yet ready to invoke.
1315	 */
1316	if ((rcu_seq_completed_gp(rdp->gp_seq,
1317				  rcu_seq_current(&rnp->gp_seq)) ||
1318	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1319	    rcu_segcblist_pend_cbs(&rdp->cblist))
1320		note_gp_changes(rdp);
1321
1322	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1323		cbs_ready = true;
 
1324	return cbs_ready;
1325}
1326
1327/*
1328 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1329 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1330 * caller to set the timeout based on whether or not there are non-lazy
1331 * callbacks.
1332 *
1333 * The caller must have disabled interrupts.
1334 */
1335int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1336{
1337	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1338	unsigned long dj;
1339
1340	lockdep_assert_irqs_disabled();
1341
1342	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1343	if (rcu_segcblist_empty(&rdp->cblist) ||
1344	    rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
 
 
1345		*nextevt = KTIME_MAX;
1346		return 0;
1347	}
1348
1349	/* Attempt to advance callbacks. */
1350	if (rcu_try_advance_all_cbs()) {
1351		/* Some ready to invoke, so initiate later invocation. */
1352		invoke_rcu_core();
1353		return 1;
1354	}
1355	rdp->last_accelerate = jiffies;
1356
1357	/* Request timer delay depending on laziness, and round. */
1358	rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist);
1359	if (rdp->all_lazy) {
1360		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1361	} else {
1362		dj = round_up(rcu_idle_gp_delay + jiffies,
1363			       rcu_idle_gp_delay) - jiffies;
 
 
1364	}
1365	*nextevt = basemono + dj * TICK_NSEC;
1366	return 0;
1367}
1368
1369/*
1370 * Prepare a CPU for idle from an RCU perspective.  The first major task
1371 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1372 * The second major task is to check to see if a non-lazy callback has
1373 * arrived at a CPU that previously had only lazy callbacks.  The third
1374 * major task is to accelerate (that is, assign grace-period numbers to)
1375 * any recently arrived callbacks.
1376 *
1377 * The caller must have disabled interrupts.
1378 */
1379static void rcu_prepare_for_idle(void)
1380{
1381	bool needwake;
1382	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
1383	struct rcu_node *rnp;
 
1384	int tne;
1385
1386	lockdep_assert_irqs_disabled();
1387	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1388		return;
1389
1390	/* Handle nohz enablement switches conservatively. */
1391	tne = READ_ONCE(tick_nohz_active);
1392	if (tne != rdp->tick_nohz_enabled_snap) {
1393		if (!rcu_segcblist_empty(&rdp->cblist))
1394			invoke_rcu_core(); /* force nohz to see update. */
1395		rdp->tick_nohz_enabled_snap = tne;
1396		return;
1397	}
1398	if (!tne)
1399		return;
1400
1401	/*
1402	 * If a non-lazy callback arrived at a CPU having only lazy
1403	 * callbacks, invoke RCU core for the side-effect of recalculating
1404	 * idle duration on re-entry to idle.
1405	 */
1406	if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) {
1407		rdp->all_lazy = false;
 
 
1408		invoke_rcu_core();
1409		return;
1410	}
1411
1412	/*
1413	 * If we have not yet accelerated this jiffy, accelerate all
1414	 * callbacks on this CPU.
1415	 */
1416	if (rdp->last_accelerate == jiffies)
1417		return;
1418	rdp->last_accelerate = jiffies;
1419	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
 
 
 
1420		rnp = rdp->mynode;
1421		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1422		needwake = rcu_accelerate_cbs(rnp, rdp);
1423		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1424		if (needwake)
1425			rcu_gp_kthread_wake();
1426	}
1427}
1428
1429/*
1430 * Clean up for exit from idle.  Attempt to advance callbacks based on
1431 * any grace periods that elapsed while the CPU was idle, and if any
1432 * callbacks are now ready to invoke, initiate invocation.
1433 */
1434static void rcu_cleanup_after_idle(void)
1435{
1436	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1437
1438	lockdep_assert_irqs_disabled();
1439	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1440		return;
1441	if (rcu_try_advance_all_cbs())
1442		invoke_rcu_core();
1443}
1444
1445#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1446
1447#ifdef CONFIG_RCU_NOCB_CPU
 
 
 
 
 
 
 
 
 
1448
1449/*
1450 * Offload callback processing from the boot-time-specified set of CPUs
1451 * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1452 * created that pull the callbacks from the corresponding CPU, wait for
1453 * a grace period to elapse, and invoke the callbacks.  These kthreads
1454 * are organized into GP kthreads, which manage incoming callbacks, wait for
1455 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1456 * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1457 * do a wake_up() on their GP kthread when they insert a callback into any
1458 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1459 * in which case each kthread actively polls its CPU.  (Which isn't so great
1460 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1461 *
1462 * This is intended to be used in conjunction with Frederic Weisbecker's
1463 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1464 * running CPU-bound user-mode computations.
1465 *
1466 * Offloading of callbacks can also be used as an energy-efficiency
1467 * measure because CPUs with no RCU callbacks queued are more aggressive
1468 * about entering dyntick-idle mode.
1469 */
 
 
1470
 
 
 
 
 
 
 
 
 
1471
1472/*
1473 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1474 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1475 * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1476 * given, a warning is emitted and all CPUs are offloaded.
 
1477 */
1478static int __init rcu_nocb_setup(char *str)
1479{
1480	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1481	if (!strcasecmp(str, "all"))
1482		cpumask_setall(rcu_nocb_mask);
1483	else
1484		if (cpulist_parse(str, rcu_nocb_mask)) {
1485			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1486			cpumask_setall(rcu_nocb_mask);
 
1487		}
1488	return 1;
1489}
1490__setup("rcu_nocbs=", rcu_nocb_setup);
1491
1492static int __init parse_rcu_nocb_poll(char *arg)
 
 
 
 
 
 
 
 
1493{
1494	rcu_nocb_poll = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495	return 0;
1496}
1497early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1498
1499/*
1500 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1501 * After all, the main point of bypassing is to avoid lock contention
1502 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1503 */
1504int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1505module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1506
1507/*
1508 * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1509 * lock isn't immediately available, increment ->nocb_lock_contended to
1510 * flag the contention.
1511 */
1512static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1513{
1514	lockdep_assert_irqs_disabled();
1515	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1516		return;
1517	atomic_inc(&rdp->nocb_lock_contended);
1518	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1519	smp_mb__after_atomic(); /* atomic_inc() before lock. */
1520	raw_spin_lock(&rdp->nocb_bypass_lock);
1521	smp_mb__before_atomic(); /* atomic_dec() after lock. */
1522	atomic_dec(&rdp->nocb_lock_contended);
1523}
1524
1525/*
1526 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1527 * not contended.  Please note that this is extremely special-purpose,
1528 * relying on the fact that at most two kthreads and one CPU contend for
1529 * this lock, and also that the two kthreads are guaranteed to have frequent
1530 * grace-period-duration time intervals between successive acquisitions
1531 * of the lock.  This allows us to use an extremely simple throttling
1532 * mechanism, and further to apply it only to the CPU doing floods of
1533 * call_rcu() invocations.  Don't try this at home!
1534 */
1535static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1536{
1537	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1538	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1539		cpu_relax();
1540}
1541
1542/*
1543 * Conditionally acquire the specified rcu_data structure's
1544 * ->nocb_bypass_lock.
1545 */
1546static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1547{
1548	lockdep_assert_irqs_disabled();
1549	return raw_spin_trylock(&rdp->nocb_bypass_lock);
1550}
1551
1552/*
1553 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1554 */
1555static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1556{
1557	lockdep_assert_irqs_disabled();
1558	raw_spin_unlock(&rdp->nocb_bypass_lock);
1559}
1560
1561/*
1562 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1563 * if it corresponds to a no-CBs CPU.
1564 */
1565static void rcu_nocb_lock(struct rcu_data *rdp)
1566{
1567	lockdep_assert_irqs_disabled();
1568	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1569		return;
1570	raw_spin_lock(&rdp->nocb_lock);
1571}
1572
1573/*
1574 * Release the specified rcu_data structure's ->nocb_lock, but only
1575 * if it corresponds to a no-CBs CPU.
1576 */
1577static void rcu_nocb_unlock(struct rcu_data *rdp)
1578{
1579	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1580		lockdep_assert_irqs_disabled();
1581		raw_spin_unlock(&rdp->nocb_lock);
1582	}
1583}
1584
 
 
1585/*
1586 * Release the specified rcu_data structure's ->nocb_lock and restore
1587 * interrupts, but only if it corresponds to a no-CBs CPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1588 */
1589static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1590				       unsigned long flags)
 
 
1591{
1592	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1593		lockdep_assert_irqs_disabled();
1594		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1595	} else {
1596		local_irq_restore(flags);
1597	}
1598}
 
1599
1600/* Lockdep check that ->cblist may be safely accessed. */
1601static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1602{
1603	lockdep_assert_irqs_disabled();
1604	if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1605	    cpu_online(rdp->cpu))
1606		lockdep_assert_held(&rdp->nocb_lock);
1607}
 
1608
1609/*
1610 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1611 * grace period.
1612 */
1613static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1614{
1615	swake_up_all(sq);
1616}
1617
 
 
 
 
 
 
 
 
 
 
 
 
 
1618static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1619{
1620	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1621}
1622
1623static void rcu_init_one_nocb(struct rcu_node *rnp)
1624{
1625	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1626	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1627}
1628
1629/* Is the specified CPU a no-CBs CPU? */
1630bool rcu_is_nocb_cpu(int cpu)
1631{
1632	if (cpumask_available(rcu_nocb_mask))
1633		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1634	return false;
1635}
1636
1637/*
1638 * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1639 * and this function releases it.
1640 */
1641static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1642			   unsigned long flags)
1643	__releases(rdp->nocb_lock)
1644{
1645	bool needwake = false;
1646	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1647
1648	lockdep_assert_held(&rdp->nocb_lock);
1649	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1650		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1651				    TPS("AlreadyAwake"));
1652		rcu_nocb_unlock_irqrestore(rdp, flags);
1653		return;
1654	}
1655	del_timer(&rdp->nocb_timer);
1656	rcu_nocb_unlock_irqrestore(rdp, flags);
1657	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1658	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1659		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1660		needwake = true;
1661		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
 
 
1662	}
1663	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1664	if (needwake)
1665		wake_up_process(rdp_gp->nocb_gp_kthread);
1666}
1667
1668/*
1669 * Arrange to wake the GP kthread for this NOCB group at some future
1670 * time when it is safe to do so.
1671 */
1672static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1673			       const char *reason)
1674{
1675	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1676		mod_timer(&rdp->nocb_timer, jiffies + 1);
1677	if (rdp->nocb_defer_wakeup < waketype)
1678		WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1679	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1680}
1681
1682/*
1683 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1684 * However, if there is a callback to be enqueued and if ->nocb_bypass
1685 * proves to be initially empty, just return false because the no-CB GP
1686 * kthread may need to be awakened in this case.
1687 *
1688 * Note that this function always returns true if rhp is NULL.
1689 */
1690static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1691				     unsigned long j)
1692{
1693	struct rcu_cblist rcl;
1694
1695	WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1696	rcu_lockdep_assert_cblist_protected(rdp);
1697	lockdep_assert_held(&rdp->nocb_bypass_lock);
1698	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1699		raw_spin_unlock(&rdp->nocb_bypass_lock);
1700		return false;
1701	}
1702	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1703	if (rhp)
1704		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1705	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1706	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1707	WRITE_ONCE(rdp->nocb_bypass_first, j);
1708	rcu_nocb_bypass_unlock(rdp);
1709	return true;
1710}
1711
1712/*
1713 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1714 * However, if there is a callback to be enqueued and if ->nocb_bypass
1715 * proves to be initially empty, just return false because the no-CB GP
1716 * kthread may need to be awakened in this case.
1717 *
1718 * Note that this function always returns true if rhp is NULL.
1719 */
1720static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1721				  unsigned long j)
1722{
1723	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1724		return true;
1725	rcu_lockdep_assert_cblist_protected(rdp);
1726	rcu_nocb_bypass_lock(rdp);
1727	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1728}
1729
1730/*
1731 * If the ->nocb_bypass_lock is immediately available, flush the
1732 * ->nocb_bypass queue into ->cblist.
1733 */
1734static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1735{
1736	rcu_lockdep_assert_cblist_protected(rdp);
1737	if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1738	    !rcu_nocb_bypass_trylock(rdp))
1739		return;
1740	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1741}
1742
1743/*
1744 * See whether it is appropriate to use the ->nocb_bypass list in order
1745 * to control contention on ->nocb_lock.  A limited number of direct
1746 * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1747 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1748 * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1749 * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1750 * used if ->cblist is empty, because otherwise callbacks can be stranded
1751 * on ->nocb_bypass because we cannot count on the current CPU ever again
1752 * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1753 * non-empty, the corresponding no-CBs grace-period kthread must not be
1754 * in an indefinite sleep state.
1755 *
1756 * Finally, it is not permitted to use the bypass during early boot,
1757 * as doing so would confuse the auto-initialization code.  Besides
1758 * which, there is no point in worrying about lock contention while
1759 * there is only one CPU in operation.
1760 */
1761static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1762				bool *was_alldone, unsigned long flags)
1763{
1764	unsigned long c;
1765	unsigned long cur_gp_seq;
1766	unsigned long j = jiffies;
1767	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1768
1769	if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1770		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1771		return false; /* Not offloaded, no bypassing. */
1772	}
1773	lockdep_assert_irqs_disabled();
1774
1775	// Don't use ->nocb_bypass during early boot.
1776	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1777		rcu_nocb_lock(rdp);
1778		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1779		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1780		return false;
1781	}
 
 
 
 
 
 
1782
1783	// If we have advanced to a new jiffy, reset counts to allow
1784	// moving back from ->nocb_bypass to ->cblist.
1785	if (j == rdp->nocb_nobypass_last) {
1786		c = rdp->nocb_nobypass_count + 1;
1787	} else {
1788		WRITE_ONCE(rdp->nocb_nobypass_last, j);
1789		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1790		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1791				 nocb_nobypass_lim_per_jiffy))
1792			c = 0;
1793		else if (c > nocb_nobypass_lim_per_jiffy)
1794			c = nocb_nobypass_lim_per_jiffy;
1795	}
1796	WRITE_ONCE(rdp->nocb_nobypass_count, c);
1797
1798	// If there hasn't yet been all that many ->cblist enqueues
1799	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1800	// ->nocb_bypass first.
1801	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1802		rcu_nocb_lock(rdp);
1803		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1804		if (*was_alldone)
1805			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1806					    TPS("FirstQ"));
1807		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1808		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1809		return false; // Caller must enqueue the callback.
1810	}
1811
1812	// If ->nocb_bypass has been used too long or is too full,
1813	// flush ->nocb_bypass to ->cblist.
1814	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1815	    ncbs >= qhimark) {
1816		rcu_nocb_lock(rdp);
1817		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1818			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1819			if (*was_alldone)
1820				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1821						    TPS("FirstQ"));
1822			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1823			return false; // Caller must enqueue the callback.
1824		}
1825		if (j != rdp->nocb_gp_adv_time &&
1826		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1827		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1828			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1829			rdp->nocb_gp_adv_time = j;
1830		}
1831		rcu_nocb_unlock_irqrestore(rdp, flags);
1832		return true; // Callback already enqueued.
1833	}
 
1834
1835	// We need to use the bypass.
1836	rcu_nocb_wait_contended(rdp);
1837	rcu_nocb_bypass_lock(rdp);
1838	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1839	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1840	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1841	if (!ncbs) {
1842		WRITE_ONCE(rdp->nocb_bypass_first, j);
1843		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1844	}
1845	rcu_nocb_bypass_unlock(rdp);
1846	smp_mb(); /* Order enqueue before wake. */
1847	if (ncbs) {
1848		local_irq_restore(flags);
1849	} else {
1850		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
1851		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1852		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1853			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1854					    TPS("FirstBQwake"));
1855			__call_rcu_nocb_wake(rdp, true, flags);
1856		} else {
1857			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1858					    TPS("FirstBQnoWake"));
1859			rcu_nocb_unlock_irqrestore(rdp, flags);
1860		}
1861	}
1862	return true; // Callback already enqueued.
1863}
1864
1865/*
1866 * Awaken the no-CBs grace-period kthead if needed, either due to it
1867 * legitimately being asleep or due to overload conditions.
 
 
1868 *
1869 * If warranted, also wake up the kthread servicing this CPUs queues.
1870 */
1871static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1872				 unsigned long flags)
1873				 __releases(rdp->nocb_lock)
1874{
1875	unsigned long cur_gp_seq;
1876	unsigned long j;
1877	long len;
 
1878	struct task_struct *t;
1879
1880	// If we are being polled or there is no kthread, just leave.
1881	t = READ_ONCE(rdp->nocb_gp_kthread);
 
 
 
 
 
 
 
 
1882	if (rcu_nocb_poll || !t) {
1883		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1884				    TPS("WakeNotPoll"));
1885		rcu_nocb_unlock_irqrestore(rdp, flags);
1886		return;
1887	}
1888	// Need to actually to a wakeup.
1889	len = rcu_segcblist_n_cbs(&rdp->cblist);
1890	if (was_alldone) {
1891		rdp->qlen_last_fqs_check = len;
1892		if (!irqs_disabled_flags(flags)) {
1893			/* ... if queue was empty ... */
1894			wake_nocb_gp(rdp, false, flags);
1895			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1896					    TPS("WakeEmpty"));
1897		} else {
1898			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1899					   TPS("WakeEmptyIsDeferred"));
1900			rcu_nocb_unlock_irqrestore(rdp, flags);
1901		}
 
1902	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1903		/* ... or if many callbacks queued. */
1904		rdp->qlen_last_fqs_check = len;
1905		j = jiffies;
1906		if (j != rdp->nocb_gp_adv_time &&
1907		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1908		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1909			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1910			rdp->nocb_gp_adv_time = j;
1911		}
1912		smp_mb(); /* Enqueue before timer_pending(). */
1913		if ((rdp->nocb_cb_sleep ||
1914		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1915		    !timer_pending(&rdp->nocb_bypass_timer))
1916			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1917					   TPS("WakeOvfIsDeferred"));
1918		rcu_nocb_unlock_irqrestore(rdp, flags);
1919	} else {
1920		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1921		rcu_nocb_unlock_irqrestore(rdp, flags);
1922	}
1923	return;
1924}
1925
1926/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1927static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
 
 
 
 
 
 
 
 
 
1928{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1929	unsigned long flags;
1930	struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
 
1931
1932	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1933	rcu_nocb_lock_irqsave(rdp, flags);
1934	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1935	__call_rcu_nocb_wake(rdp, true, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1936}
1937
1938/*
1939 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1940 * or for grace periods to end.
1941 */
1942static void nocb_gp_wait(struct rcu_data *my_rdp)
1943{
1944	bool bypass = false;
1945	long bypass_ncbs;
1946	int __maybe_unused cpu = my_rdp->cpu;
1947	unsigned long cur_gp_seq;
1948	unsigned long flags;
1949	bool gotcbs;
1950	unsigned long j = jiffies;
1951	bool needwait_gp = false; // This prevents actual uninitialized use.
1952	bool needwake;
1953	bool needwake_gp;
1954	struct rcu_data *rdp;
1955	struct rcu_node *rnp;
1956	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1957
1958	/*
1959	 * Each pass through the following loop checks for CBs and for the
1960	 * nearest grace period (if any) to wait for next.  The CB kthreads
1961	 * and the global grace-period kthread are awakened if needed.
1962	 */
1963	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1964		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1965		rcu_nocb_lock_irqsave(rdp, flags);
1966		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1967		if (bypass_ncbs &&
1968		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1969		     bypass_ncbs > 2 * qhimark)) {
1970			// Bypass full or old, so flush it.
1971			(void)rcu_nocb_try_flush_bypass(rdp, j);
1972			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1973		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1974			rcu_nocb_unlock_irqrestore(rdp, flags);
1975			continue; /* No callbacks here, try next. */
1976		}
1977		if (bypass_ncbs) {
1978			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1979					    TPS("Bypass"));
1980			bypass = true;
1981		}
1982		rnp = rdp->mynode;
1983		if (bypass) {  // Avoid race with first bypass CB.
1984			WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1985				   RCU_NOCB_WAKE_NOT);
1986			del_timer(&my_rdp->nocb_timer);
1987		}
1988		// Advance callbacks if helpful and low contention.
1989		needwake_gp = false;
1990		if (!rcu_segcblist_restempty(&rdp->cblist,
1991					     RCU_NEXT_READY_TAIL) ||
1992		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1993		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1994			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1995			needwake_gp = rcu_advance_cbs(rnp, rdp);
1996			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1997		}
1998		// Need to wait on some grace period?
1999		WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
2000						      RCU_NEXT_READY_TAIL));
2001		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2002			if (!needwait_gp ||
2003			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2004				wait_gp_seq = cur_gp_seq;
2005			needwait_gp = true;
2006			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2007					    TPS("NeedWaitGP"));
2008		}
2009		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2010			needwake = rdp->nocb_cb_sleep;
2011			WRITE_ONCE(rdp->nocb_cb_sleep, false);
2012			smp_mb(); /* CB invocation -after- GP end. */
2013		} else {
2014			needwake = false;
 
2015		}
2016		rcu_nocb_unlock_irqrestore(rdp, flags);
2017		if (needwake) {
2018			swake_up_one(&rdp->nocb_cb_wq);
2019			gotcbs = true;
2020		}
2021		if (needwake_gp)
2022			rcu_gp_kthread_wake();
2023	}
2024
2025	my_rdp->nocb_gp_bypass = bypass;
2026	my_rdp->nocb_gp_gp = needwait_gp;
2027	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2028	if (bypass && !rcu_nocb_poll) {
2029		// At least one child with non-empty ->nocb_bypass, so set
2030		// timer in order to avoid stranding its callbacks.
2031		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2032		mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2033		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2034	}
2035	if (rcu_nocb_poll) {
2036		/* Polling, so trace if first poll in the series. */
2037		if (gotcbs)
2038			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2039		schedule_timeout_interruptible(1);
2040	} else if (!needwait_gp) {
2041		/* Wait for callbacks to appear. */
2042		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2043		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2044				!READ_ONCE(my_rdp->nocb_gp_sleep));
2045		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2046	} else {
2047		rnp = my_rdp->mynode;
2048		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2049		swait_event_interruptible_exclusive(
2050			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2051			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2052			!READ_ONCE(my_rdp->nocb_gp_sleep));
2053		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2054	}
2055	if (!rcu_nocb_poll) {
2056		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2057		if (bypass)
2058			del_timer(&my_rdp->nocb_bypass_timer);
2059		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2060		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2061	}
2062	my_rdp->nocb_gp_seq = -1;
2063	WARN_ON(signal_pending(current));
 
 
2064}
2065
2066/*
2067 * No-CBs grace-period-wait kthread.  There is one of these per group
2068 * of CPUs, but only once at least one CPU in that group has come online
2069 * at least once since boot.  This kthread checks for newly posted
2070 * callbacks from any of the CPUs it is responsible for, waits for a
2071 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2072 * that then have callback-invocation work to do.
2073 */
2074static int rcu_nocb_gp_kthread(void *arg)
2075{
2076	struct rcu_data *rdp = arg;
2077
2078	for (;;) {
2079		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2080		nocb_gp_wait(rdp);
2081		cond_resched_tasks_rcu_qs();
 
 
 
 
 
 
2082	}
2083	return 0;
2084}
2085
2086/*
2087 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2088 * then, if there are no more, wait for more to appear.
 
 
2089 */
2090static void nocb_cb_wait(struct rcu_data *rdp)
2091{
2092	unsigned long cur_gp_seq;
2093	unsigned long flags;
2094	bool needwake_gp = false;
2095	struct rcu_node *rnp = rdp->mynode;
2096
2097	local_irq_save(flags);
2098	rcu_momentary_dyntick_idle();
2099	local_irq_restore(flags);
2100	local_bh_disable();
2101	rcu_do_batch(rdp);
2102	local_bh_enable();
2103	lockdep_assert_irqs_enabled();
2104	rcu_nocb_lock_irqsave(rdp, flags);
2105	if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2106	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2107	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2108		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2109		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2110	}
2111	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2112		rcu_nocb_unlock_irqrestore(rdp, flags);
2113		if (needwake_gp)
2114			rcu_gp_kthread_wake();
2115		return;
2116	}
2117
2118	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2119	WRITE_ONCE(rdp->nocb_cb_sleep, true);
2120	rcu_nocb_unlock_irqrestore(rdp, flags);
2121	if (needwake_gp)
2122		rcu_gp_kthread_wake();
2123	swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2124				 !READ_ONCE(rdp->nocb_cb_sleep));
2125	if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2126		/* ^^^ Ensure CB invocation follows _sleep test. */
2127		return;
2128	}
2129	WARN_ON(signal_pending(current));
2130	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2131}
2132
2133/*
2134 * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2135 * nocb_cb_wait() to do the dirty work.
2136 */
2137static int rcu_nocb_cb_kthread(void *arg)
2138{
2139	struct rcu_data *rdp = arg;
2140
2141	// Each pass through this loop does one callback batch, and,
2142	// if there are no more ready callbacks, waits for them.
2143	for (;;) {
2144		nocb_cb_wait(rdp);
2145		cond_resched_tasks_rcu_qs();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2146	}
2147	return 0;
2148}
2149
2150/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2151static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2152{
2153	return READ_ONCE(rdp->nocb_defer_wakeup);
2154}
2155
2156/* Do a deferred wakeup of rcu_nocb_kthread(). */
2157static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2158{
2159	unsigned long flags;
2160	int ndw;
2161
2162	rcu_nocb_lock_irqsave(rdp, flags);
2163	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2164		rcu_nocb_unlock_irqrestore(rdp, flags);
2165		return;
2166	}
2167	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2168	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2169	wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2170	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2171}
2172
2173/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2174static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2175{
2176	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2177
2178	do_nocb_deferred_wakeup_common(rdp);
2179}
2180
2181/*
2182 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2183 * This means we do an inexact common-case check.  Note that if
2184 * we miss, ->nocb_timer will eventually clean things up.
2185 */
2186static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2187{
2188	if (rcu_nocb_need_deferred_wakeup(rdp))
2189		do_nocb_deferred_wakeup_common(rdp);
2190}
2191
2192void __init rcu_init_nohz(void)
2193{
2194	int cpu;
2195	bool need_rcu_nocb_mask = false;
2196	struct rcu_data *rdp;
2197
2198#if defined(CONFIG_NO_HZ_FULL)
2199	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2200		need_rcu_nocb_mask = true;
2201#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2202
2203	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2204		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2205			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2206			return;
2207		}
2208	}
2209	if (!cpumask_available(rcu_nocb_mask))
2210		return;
2211
2212#if defined(CONFIG_NO_HZ_FULL)
2213	if (tick_nohz_full_running)
2214		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2215#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2216
2217	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2218		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2219		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2220			    rcu_nocb_mask);
2221	}
2222	if (cpumask_empty(rcu_nocb_mask))
2223		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2224	else
2225		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2226			cpumask_pr_args(rcu_nocb_mask));
2227	if (rcu_nocb_poll)
2228		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2229
2230	for_each_cpu(cpu, rcu_nocb_mask) {
2231		rdp = per_cpu_ptr(&rcu_data, cpu);
2232		if (rcu_segcblist_empty(&rdp->cblist))
2233			rcu_segcblist_init(&rdp->cblist);
2234		rcu_segcblist_offload(&rdp->cblist);
2235	}
2236	rcu_organize_nocb_kthreads();
2237}
2238
2239/* Initialize per-rcu_data variables for no-CBs CPUs. */
2240static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2241{
2242	init_swait_queue_head(&rdp->nocb_cb_wq);
2243	init_swait_queue_head(&rdp->nocb_gp_wq);
 
2244	raw_spin_lock_init(&rdp->nocb_lock);
2245	raw_spin_lock_init(&rdp->nocb_bypass_lock);
2246	raw_spin_lock_init(&rdp->nocb_gp_lock);
2247	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2248	timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2249	rcu_cblist_init(&rdp->nocb_bypass);
2250}
2251
2252/*
2253 * If the specified CPU is a no-CBs CPU that does not already have its
2254 * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2255 * for this CPU's group has not yet been created, spawn it as well.
 
2256 */
2257static void rcu_spawn_one_nocb_kthread(int cpu)
2258{
2259	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2260	struct rcu_data *rdp_gp;
 
 
2261	struct task_struct *t;
2262
2263	/*
2264	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2265	 * then nothing to do.
2266	 */
2267	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2268		return;
2269
2270	/* If we didn't spawn the GP kthread first, reorganize! */
2271	rdp_gp = rdp->nocb_gp_rdp;
2272	if (!rdp_gp->nocb_gp_kthread) {
2273		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2274				"rcuog/%d", rdp_gp->cpu);
2275		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2276			return;
2277		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
 
 
 
 
 
 
 
 
 
 
2278	}
2279
2280	/* Spawn the kthread for this CPU. */
2281	t = kthread_run(rcu_nocb_cb_kthread, rdp,
2282			"rcuo%c/%d", rcu_state.abbr, cpu);
2283	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2284		return;
2285	WRITE_ONCE(rdp->nocb_cb_kthread, t);
2286	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2287}
2288
2289/*
2290 * If the specified CPU is a no-CBs CPU that does not already have its
2291 * rcuo kthread, spawn it.
2292 */
2293static void rcu_spawn_cpu_nocb_kthread(int cpu)
2294{
 
 
2295	if (rcu_scheduler_fully_active)
2296		rcu_spawn_one_nocb_kthread(cpu);
 
2297}
2298
2299/*
2300 * Once the scheduler is running, spawn rcuo kthreads for all online
2301 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2302 * non-boot CPUs come online -- if this changes, we will need to add
2303 * some mutual exclusion.
2304 */
2305static void __init rcu_spawn_nocb_kthreads(void)
2306{
2307	int cpu;
2308
2309	for_each_online_cpu(cpu)
2310		rcu_spawn_cpu_nocb_kthread(cpu);
2311}
2312
2313/* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2314static int rcu_nocb_gp_stride = -1;
2315module_param(rcu_nocb_gp_stride, int, 0444);
2316
2317/*
2318 * Initialize GP-CB relationships for all no-CBs CPU.
2319 */
2320static void __init rcu_organize_nocb_kthreads(void)
2321{
2322	int cpu;
2323	bool firsttime = true;
2324	int ls = rcu_nocb_gp_stride;
2325	int nl = 0;  /* Next GP kthread. */
2326	struct rcu_data *rdp;
2327	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2328	struct rcu_data *rdp_prev = NULL;
2329
2330	if (!cpumask_available(rcu_nocb_mask))
2331		return;
2332	if (ls == -1) {
2333		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2334		rcu_nocb_gp_stride = ls;
2335	}
2336
2337	/*
2338	 * Each pass through this loop sets up one rcu_data structure.
2339	 * Should the corresponding CPU come online in the future, then
2340	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2341	 */
2342	for_each_cpu(cpu, rcu_nocb_mask) {
2343		rdp = per_cpu_ptr(&rcu_data, cpu);
2344		if (rdp->cpu >= nl) {
2345			/* New GP kthread, set up for CBs & next GP. */
2346			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2347			rdp->nocb_gp_rdp = rdp;
2348			rdp_gp = rdp;
2349			if (!firsttime && dump_tree)
2350				pr_cont("\n");
2351			firsttime = false;
2352			pr_alert("%s: No-CB GP kthread CPU %d:", __func__, cpu);
2353		} else {
2354			/* Another CB kthread, link to previous GP kthread. */
2355			rdp->nocb_gp_rdp = rdp_gp;
2356			rdp_prev->nocb_next_cb_rdp = rdp;
2357			pr_alert(" %d", cpu);
2358		}
2359		rdp_prev = rdp;
2360	}
2361}
2362
2363/*
2364 * Bind the current task to the offloaded CPUs.  If there are no offloaded
2365 * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2366 */
2367void rcu_bind_current_to_nocb(void)
2368{
2369	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2370		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2371}
2372EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2373
2374/*
2375 * Dump out nocb grace-period kthread state for the specified rcu_data
2376 * structure.
2377 */
2378static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2379{
2380	struct rcu_node *rnp = rdp->mynode;
2381
2382	pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2383		rdp->cpu,
2384		"kK"[!!rdp->nocb_gp_kthread],
2385		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2386		"dD"[!!rdp->nocb_defer_wakeup],
2387		"tT"[timer_pending(&rdp->nocb_timer)],
2388		"bB"[timer_pending(&rdp->nocb_bypass_timer)],
2389		"sS"[!!rdp->nocb_gp_sleep],
2390		".W"[swait_active(&rdp->nocb_gp_wq)],
2391		".W"[swait_active(&rnp->nocb_gp_wq[0])],
2392		".W"[swait_active(&rnp->nocb_gp_wq[1])],
2393		".B"[!!rdp->nocb_gp_bypass],
2394		".G"[!!rdp->nocb_gp_gp],
2395		(long)rdp->nocb_gp_seq,
2396		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2397}
2398
2399/* Dump out nocb kthread state for the specified rcu_data structure. */
2400static void show_rcu_nocb_state(struct rcu_data *rdp)
2401{
2402	struct rcu_segcblist *rsclp = &rdp->cblist;
2403	bool waslocked;
2404	bool wastimer;
2405	bool wassleep;
2406
2407	if (rdp->nocb_gp_rdp == rdp)
2408		show_rcu_nocb_gp_state(rdp);
2409
2410	pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2411		rdp->cpu, rdp->nocb_gp_rdp->cpu,
2412		"kK"[!!rdp->nocb_cb_kthread],
2413		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2414		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2415		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2416		"sS"[!!rdp->nocb_cb_sleep],
2417		".W"[swait_active(&rdp->nocb_cb_wq)],
2418		jiffies - rdp->nocb_bypass_first,
2419		jiffies - rdp->nocb_nobypass_last,
2420		rdp->nocb_nobypass_count,
2421		".D"[rcu_segcblist_ready_cbs(rsclp)],
2422		".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2423		".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2424		".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2425		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2426		rcu_segcblist_n_cbs(&rdp->cblist));
2427
2428	/* It is OK for GP kthreads to have GP state. */
2429	if (rdp->nocb_gp_rdp == rdp)
2430		return;
2431
2432	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2433	wastimer = timer_pending(&rdp->nocb_timer);
2434	wassleep = swait_active(&rdp->nocb_gp_wq);
2435	if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2436	    !waslocked && !wastimer && !wassleep)
2437		return;  /* Nothing untowards. */
2438
2439	pr_info("   !!! %c%c%c%c %c\n",
2440		"lL"[waslocked],
2441		"dD"[!!rdp->nocb_defer_wakeup],
2442		"tT"[wastimer],
2443		"sS"[!!rdp->nocb_gp_sleep],
2444		".W"[wassleep]);
2445}
2446
2447#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2448
2449/* No ->nocb_lock to acquire.  */
2450static void rcu_nocb_lock(struct rcu_data *rdp)
2451{
 
 
2452}
2453
2454/* No ->nocb_lock to release.  */
2455static void rcu_nocb_unlock(struct rcu_data *rdp)
2456{
2457}
2458
2459/* No ->nocb_lock to release.  */
2460static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2461				       unsigned long flags)
2462{
2463	local_irq_restore(flags);
2464}
2465
2466/* Lockdep check that ->cblist may be safely accessed. */
2467static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2468{
2469	lockdep_assert_irqs_disabled();
2470}
2471
2472static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2473{
2474}
2475
2476static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2477{
2478	return NULL;
2479}
2480
2481static void rcu_init_one_nocb(struct rcu_node *rnp)
2482{
2483}
2484
2485static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2486				  unsigned long j)
2487{
2488	return true;
2489}
2490
2491static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2492				bool *was_alldone, unsigned long flags)
2493{
2494	return false;
2495}
2496
2497static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2498				 unsigned long flags)
 
2499{
2500	WARN_ON_ONCE(1);  /* Should be dead code! */
2501}
2502
2503static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2504{
2505}
2506
2507static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2508{
2509	return false;
2510}
2511
2512static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2513{
2514}
2515
2516static void rcu_spawn_cpu_nocb_kthread(int cpu)
2517{
2518}
2519
2520static void __init rcu_spawn_nocb_kthreads(void)
2521{
2522}
2523
2524static void show_rcu_nocb_state(struct rcu_data *rdp)
2525{
 
2526}
2527
2528#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2529
2530/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2532 * grace-period kthread will do force_quiescent_state() processing?
2533 * The idea is to avoid waking up RCU core processing on such a
2534 * CPU unless the grace period has extended for too long.
2535 *
2536 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2537 * CONFIG_RCU_NOCB_CPU CPUs.
2538 */
2539static bool rcu_nohz_full_cpu(void)
2540{
2541#ifdef CONFIG_NO_HZ_FULL
2542	if (tick_nohz_full_cpu(smp_processor_id()) &&
2543	    (!rcu_gp_in_progress() ||
2544	     ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2545		return true;
2546#endif /* #ifdef CONFIG_NO_HZ_FULL */
2547	return false;
2548}
2549
2550/*
2551 * Bind the RCU grace-period kthreads to the housekeeping CPU.
 
2552 */
2553static void rcu_bind_gp_kthread(void)
2554{
 
 
2555	if (!tick_nohz_full_enabled())
2556		return;
2557	housekeeping_affine(current, HK_FLAG_RCU);
2558}
2559
2560/* Record the current task on dyntick-idle entry. */
2561static void rcu_dynticks_task_enter(void)
2562{
2563#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2564	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2565#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2566}
2567
2568/* Record no current task on dyntick-idle exit. */
2569static void rcu_dynticks_task_exit(void)
2570{
2571#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2572	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2573#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2574}
v4.17
 
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   3 * Internal non-public definitions that provide either classic
   4 * or preemptible semantics.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, you can access it online at
  18 * http://www.gnu.org/licenses/gpl-2.0.html.
  19 *
  20 * Copyright Red Hat, 2009
  21 * Copyright IBM Corporation, 2009
  22 *
  23 * Author: Ingo Molnar <mingo@elte.hu>
  24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/gfp.h>
  29#include <linux/oom.h>
  30#include <linux/sched/debug.h>
  31#include <linux/smpboot.h>
  32#include <linux/sched/isolation.h>
  33#include <uapi/linux/sched/types.h>
  34#include "../time/tick-internal.h"
  35
  36#ifdef CONFIG_RCU_BOOST
  37
  38#include "../locking/rtmutex_common.h"
  39
  40/*
  41 * Control variables for per-CPU and per-rcu_node kthreads.  These
  42 * handle all flavors of RCU.
  43 */
  44static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  45DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  46DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  47DEFINE_PER_CPU(char, rcu_cpu_has_work);
  48
  49#else /* #ifdef CONFIG_RCU_BOOST */
  50
  51/*
  52 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
  53 * all uses are in dead code.  Provide a definition to keep the compiler
  54 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
  55 * This probably needs to be excluded from -rt builds.
  56 */
  57#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
  58#define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
  59
  60#endif /* #else #ifdef CONFIG_RCU_BOOST */
  61
  62#ifdef CONFIG_RCU_NOCB_CPU
  63static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  64static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  65#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  66
  67/*
  68 * Check the RCU kernel configuration parameters and print informative
  69 * messages about anything out of the ordinary.
  70 */
  71static void __init rcu_bootup_announce_oddness(void)
  72{
  73	if (IS_ENABLED(CONFIG_RCU_TRACE))
  74		pr_info("\tRCU event tracing is enabled.\n");
  75	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  76	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  77		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  78		       RCU_FANOUT);
  79	if (rcu_fanout_exact)
  80		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  81	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  82		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  83	if (IS_ENABLED(CONFIG_PROVE_RCU))
  84		pr_info("\tRCU lockdep checking is enabled.\n");
  85	if (RCU_NUM_LVLS >= 4)
  86		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  87	if (RCU_FANOUT_LEAF != 16)
  88		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  89			RCU_FANOUT_LEAF);
  90	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  91		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
 
  92	if (nr_cpu_ids != NR_CPUS)
  93		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
  94#ifdef CONFIG_RCU_BOOST
  95	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
 
  96#endif
  97	if (blimit != DEFAULT_RCU_BLIMIT)
  98		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
  99	if (qhimark != DEFAULT_RCU_QHIMARK)
 100		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
 101	if (qlowmark != DEFAULT_RCU_QLOMARK)
 102		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
 103	if (jiffies_till_first_fqs != ULONG_MAX)
 104		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
 105	if (jiffies_till_next_fqs != ULONG_MAX)
 106		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
 
 
 107	if (rcu_kick_kthreads)
 108		pr_info("\tKick kthreads if too-long grace period.\n");
 109	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
 110		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
 111	if (gp_preinit_delay)
 112		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
 113	if (gp_init_delay)
 114		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
 115	if (gp_cleanup_delay)
 116		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
 
 
 117	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
 118		pr_info("\tRCU debug extended QS entry/exit.\n");
 119	rcupdate_announce_bootup_oddness();
 120}
 121
 122#ifdef CONFIG_PREEMPT_RCU
 123
 124RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
 125static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
 126static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
 127
 128static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
 129			       bool wake);
 130
 131/*
 132 * Tell them what RCU they are running.
 133 */
 134static void __init rcu_bootup_announce(void)
 135{
 136	pr_info("Preemptible hierarchical RCU implementation.\n");
 137	rcu_bootup_announce_oddness();
 138}
 139
 140/* Flags for rcu_preempt_ctxt_queue() decision table. */
 141#define RCU_GP_TASKS	0x8
 142#define RCU_EXP_TASKS	0x4
 143#define RCU_GP_BLKD	0x2
 144#define RCU_EXP_BLKD	0x1
 145
 146/*
 147 * Queues a task preempted within an RCU-preempt read-side critical
 148 * section into the appropriate location within the ->blkd_tasks list,
 149 * depending on the states of any ongoing normal and expedited grace
 150 * periods.  The ->gp_tasks pointer indicates which element the normal
 151 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 152 * indicates which element the expedited grace period is waiting on (again,
 153 * NULL if none).  If a grace period is waiting on a given element in the
 154 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 155 * adding a task to the tail of the list blocks any grace period that is
 156 * already waiting on one of the elements.  In contrast, adding a task
 157 * to the head of the list won't block any grace period that is already
 158 * waiting on one of the elements.
 159 *
 160 * This queuing is imprecise, and can sometimes make an ongoing grace
 161 * period wait for a task that is not strictly speaking blocking it.
 162 * Given the choice, we needlessly block a normal grace period rather than
 163 * blocking an expedited grace period.
 164 *
 165 * Note that an endless sequence of expedited grace periods still cannot
 166 * indefinitely postpone a normal grace period.  Eventually, all of the
 167 * fixed number of preempted tasks blocking the normal grace period that are
 168 * not also blocking the expedited grace period will resume and complete
 169 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 170 * pointer will equal the ->exp_tasks pointer, at which point the end of
 171 * the corresponding expedited grace period will also be the end of the
 172 * normal grace period.
 173 */
 174static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 175	__releases(rnp->lock) /* But leaves rrupts disabled. */
 176{
 177	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 178			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 179			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 180			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 181	struct task_struct *t = current;
 182
 183	raw_lockdep_assert_held_rcu_node(rnp);
 184	WARN_ON_ONCE(rdp->mynode != rnp);
 185	WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
 
 
 
 186
 187	/*
 188	 * Decide where to queue the newly blocked task.  In theory,
 189	 * this could be an if-statement.  In practice, when I tried
 190	 * that, it was quite messy.
 191	 */
 192	switch (blkd_state) {
 193	case 0:
 194	case                RCU_EXP_TASKS:
 195	case                RCU_EXP_TASKS + RCU_GP_BLKD:
 196	case RCU_GP_TASKS:
 197	case RCU_GP_TASKS + RCU_EXP_TASKS:
 198
 199		/*
 200		 * Blocking neither GP, or first task blocking the normal
 201		 * GP but not blocking the already-waiting expedited GP.
 202		 * Queue at the head of the list to avoid unnecessarily
 203		 * blocking the already-waiting GPs.
 204		 */
 205		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 206		break;
 207
 208	case                                              RCU_EXP_BLKD:
 209	case                                RCU_GP_BLKD:
 210	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 211	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 212	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 213	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 214
 215		/*
 216		 * First task arriving that blocks either GP, or first task
 217		 * arriving that blocks the expedited GP (with the normal
 218		 * GP already waiting), or a task arriving that blocks
 219		 * both GPs with both GPs already waiting.  Queue at the
 220		 * tail of the list to avoid any GP waiting on any of the
 221		 * already queued tasks that are not blocking it.
 222		 */
 223		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 224		break;
 225
 226	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 227	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 228	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 229
 230		/*
 231		 * Second or subsequent task blocking the expedited GP.
 232		 * The task either does not block the normal GP, or is the
 233		 * first task blocking the normal GP.  Queue just after
 234		 * the first task blocking the expedited GP.
 235		 */
 236		list_add(&t->rcu_node_entry, rnp->exp_tasks);
 237		break;
 238
 239	case RCU_GP_TASKS +                 RCU_GP_BLKD:
 240	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 241
 242		/*
 243		 * Second or subsequent task blocking the normal GP.
 244		 * The task does not block the expedited GP. Queue just
 245		 * after the first task blocking the normal GP.
 246		 */
 247		list_add(&t->rcu_node_entry, rnp->gp_tasks);
 248		break;
 249
 250	default:
 251
 252		/* Yet another exercise in excessive paranoia. */
 253		WARN_ON_ONCE(1);
 254		break;
 255	}
 256
 257	/*
 258	 * We have now queued the task.  If it was the first one to
 259	 * block either grace period, update the ->gp_tasks and/or
 260	 * ->exp_tasks pointers, respectively, to reference the newly
 261	 * blocked tasks.
 262	 */
 263	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
 264		rnp->gp_tasks = &t->rcu_node_entry;
 
 
 265	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 266		rnp->exp_tasks = &t->rcu_node_entry;
 267	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
 268		     !(rnp->qsmask & rdp->grpmask));
 269	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
 270		     !(rnp->expmask & rdp->grpmask));
 271	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 272
 273	/*
 274	 * Report the quiescent state for the expedited GP.  This expedited
 275	 * GP should not be able to end until we report, so there should be
 276	 * no need to check for a subsequent expedited GP.  (Though we are
 277	 * still in a quiescent state in any case.)
 278	 */
 279	if (blkd_state & RCU_EXP_BLKD &&
 280	    t->rcu_read_unlock_special.b.exp_need_qs) {
 281		t->rcu_read_unlock_special.b.exp_need_qs = false;
 282		rcu_report_exp_rdp(rdp->rsp, rdp, true);
 283	} else {
 284		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
 285	}
 286}
 287
 288/*
 289 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
 290 * that this just means that the task currently running on the CPU is
 291 * not in a quiescent state.  There might be any number of tasks blocked
 292 * while in an RCU read-side critical section.
 
 
 
 
 
 293 *
 294 * As with the other rcu_*_qs() functions, callers to this function
 295 * must disable preemption.
 296 */
 297static void rcu_preempt_qs(void)
 298{
 299	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
 300	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
 301		trace_rcu_grace_period(TPS("rcu_preempt"),
 302				       __this_cpu_read(rcu_data_p->gpnum),
 303				       TPS("cpuqs"));
 304		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
 305		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
 306		current->rcu_read_unlock_special.b.need_qs = false;
 307	}
 308}
 309
 310/*
 311 * We have entered the scheduler, and the current task might soon be
 312 * context-switched away from.  If this task is in an RCU read-side
 313 * critical section, we will no longer be able to rely on the CPU to
 314 * record that fact, so we enqueue the task on the blkd_tasks list.
 315 * The task will dequeue itself when it exits the outermost enclosing
 316 * RCU read-side critical section.  Therefore, the current grace period
 317 * cannot be permitted to complete until the blkd_tasks list entries
 318 * predating the current grace period drain, in other words, until
 319 * rnp->gp_tasks becomes NULL.
 320 *
 321 * Caller must disable interrupts.
 322 */
 323static void rcu_preempt_note_context_switch(bool preempt)
 324{
 325	struct task_struct *t = current;
 326	struct rcu_data *rdp;
 327	struct rcu_node *rnp;
 328
 
 329	lockdep_assert_irqs_disabled();
 330	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
 331	if (t->rcu_read_lock_nesting > 0 &&
 332	    !t->rcu_read_unlock_special.b.blocked) {
 333
 334		/* Possibly blocking in an RCU read-side critical section. */
 335		rdp = this_cpu_ptr(rcu_state_p->rda);
 336		rnp = rdp->mynode;
 337		raw_spin_lock_rcu_node(rnp);
 338		t->rcu_read_unlock_special.b.blocked = true;
 339		t->rcu_blocked_node = rnp;
 340
 341		/*
 342		 * Verify the CPU's sanity, trace the preemption, and
 343		 * then queue the task as required based on the states
 344		 * of any ongoing and expedited grace periods.
 345		 */
 346		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 347		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 348		trace_rcu_preempt_task(rdp->rsp->name,
 349				       t->pid,
 350				       (rnp->qsmask & rdp->grpmask)
 351				       ? rnp->gpnum
 352				       : rnp->gpnum + 1);
 353		rcu_preempt_ctxt_queue(rnp, rdp);
 354	} else if (t->rcu_read_lock_nesting < 0 &&
 355		   t->rcu_read_unlock_special.s) {
 356
 357		/*
 358		 * Complete exit from RCU read-side critical section on
 359		 * behalf of preempted instance of __rcu_read_unlock().
 360		 */
 361		rcu_read_unlock_special(t);
 362	}
 363
 364	/*
 365	 * Either we were not in an RCU read-side critical section to
 366	 * begin with, or we have now recorded that critical section
 367	 * globally.  Either way, we can now note a quiescent state
 368	 * for this CPU.  Again, if we were in an RCU read-side critical
 369	 * section, and if that critical section was blocking the current
 370	 * grace period, then the fact that the task has been enqueued
 371	 * means that we continue to block the current grace period.
 372	 */
 373	rcu_preempt_qs();
 
 
 
 374}
 
 375
 376/*
 377 * Check for preempted RCU readers blocking the current grace period
 378 * for the specified rcu_node structure.  If the caller needs a reliable
 379 * answer, it must hold the rcu_node's ->lock.
 380 */
 381static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 382{
 383	return rnp->gp_tasks != NULL;
 384}
 385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 386/*
 387 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 388 * returning NULL if at the end of the list.
 389 */
 390static struct list_head *rcu_next_node_entry(struct task_struct *t,
 391					     struct rcu_node *rnp)
 392{
 393	struct list_head *np;
 394
 395	np = t->rcu_node_entry.next;
 396	if (np == &rnp->blkd_tasks)
 397		np = NULL;
 398	return np;
 399}
 400
 401/*
 402 * Return true if the specified rcu_node structure has tasks that were
 403 * preempted within an RCU read-side critical section.
 404 */
 405static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 406{
 407	return !list_empty(&rnp->blkd_tasks);
 408}
 409
 410/*
 411 * Handle special cases during rcu_read_unlock(), such as needing to
 412 * notify RCU core processing or task having blocked during the RCU
 413 * read-side critical section.
 414 */
 415void rcu_read_unlock_special(struct task_struct *t)
 
 416{
 417	bool empty_exp;
 418	bool empty_norm;
 419	bool empty_exp_now;
 420	unsigned long flags;
 421	struct list_head *np;
 422	bool drop_boost_mutex = false;
 423	struct rcu_data *rdp;
 424	struct rcu_node *rnp;
 425	union rcu_special special;
 426
 427	/* NMI handlers cannot block and cannot safely manipulate state. */
 428	if (in_nmi())
 429		return;
 430
 431	local_irq_save(flags);
 432
 433	/*
 434	 * If RCU core is waiting for this CPU to exit its critical section,
 435	 * report the fact that it has exited.  Because irqs are disabled,
 436	 * t->rcu_read_unlock_special cannot change.
 437	 */
 438	special = t->rcu_read_unlock_special;
 
 
 
 
 
 
 439	if (special.b.need_qs) {
 440		rcu_preempt_qs();
 441		t->rcu_read_unlock_special.b.need_qs = false;
 442		if (!t->rcu_read_unlock_special.s) {
 443			local_irq_restore(flags);
 444			return;
 445		}
 446	}
 447
 448	/*
 449	 * Respond to a request for an expedited grace period, but only if
 450	 * we were not preempted, meaning that we were running on the same
 451	 * CPU throughout.  If we were preempted, the exp_need_qs flag
 452	 * would have been cleared at the time of the first preemption,
 453	 * and the quiescent state would be reported when we were dequeued.
 454	 */
 455	if (special.b.exp_need_qs) {
 456		WARN_ON_ONCE(special.b.blocked);
 457		t->rcu_read_unlock_special.b.exp_need_qs = false;
 458		rdp = this_cpu_ptr(rcu_state_p->rda);
 459		rcu_report_exp_rdp(rcu_state_p, rdp, true);
 460		if (!t->rcu_read_unlock_special.s) {
 461			local_irq_restore(flags);
 462			return;
 463		}
 464	}
 465
 466	/* Hardware IRQ handlers cannot block, complain if they get here. */
 467	if (in_irq() || in_serving_softirq()) {
 468		lockdep_rcu_suspicious(__FILE__, __LINE__,
 469				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
 470		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
 471			 t->rcu_read_unlock_special.s,
 472			 t->rcu_read_unlock_special.b.blocked,
 473			 t->rcu_read_unlock_special.b.exp_need_qs,
 474			 t->rcu_read_unlock_special.b.need_qs);
 475		local_irq_restore(flags);
 476		return;
 477	}
 478
 479	/* Clean up if blocked during RCU read-side critical section. */
 480	if (special.b.blocked) {
 481		t->rcu_read_unlock_special.b.blocked = false;
 482
 483		/*
 484		 * Remove this task from the list it blocked on.  The task
 485		 * now remains queued on the rcu_node corresponding to the
 486		 * CPU it first blocked on, so there is no longer any need
 487		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 488		 */
 489		rnp = t->rcu_blocked_node;
 490		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 491		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 492		WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
 493		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 
 
 494		empty_exp = sync_rcu_preempt_exp_done(rnp);
 495		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 496		np = rcu_next_node_entry(t, rnp);
 497		list_del_init(&t->rcu_node_entry);
 498		t->rcu_blocked_node = NULL;
 499		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 500						rnp->gpnum, t->pid);
 501		if (&t->rcu_node_entry == rnp->gp_tasks)
 502			rnp->gp_tasks = np;
 503		if (&t->rcu_node_entry == rnp->exp_tasks)
 504			rnp->exp_tasks = np;
 505		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 506			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 507			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 508			if (&t->rcu_node_entry == rnp->boost_tasks)
 509				rnp->boost_tasks = np;
 510		}
 511
 512		/*
 513		 * If this was the last task on the current list, and if
 514		 * we aren't waiting on any CPUs, report the quiescent state.
 515		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 516		 * so we must take a snapshot of the expedited state.
 517		 */
 518		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
 519		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 520			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 521							 rnp->gpnum,
 522							 0, rnp->qsmask,
 523							 rnp->level,
 524							 rnp->grplo,
 525							 rnp->grphi,
 526							 !!rnp->gp_tasks);
 527			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
 528		} else {
 529			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 530		}
 531
 532		/* Unboost if we were boosted. */
 533		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 534			rt_mutex_futex_unlock(&rnp->boost_mtx);
 535
 536		/*
 537		 * If this was the last task on the expedited lists,
 538		 * then we need to report up the rcu_node hierarchy.
 539		 */
 540		if (!empty_exp && empty_exp_now)
 541			rcu_report_exp_rnp(rcu_state_p, rnp, true);
 542	} else {
 543		local_irq_restore(flags);
 544	}
 545}
 546
 547/*
 548 * Dump detailed information for all tasks blocking the current RCU
 549 * grace period on the specified rcu_node structure.
 
 
 
 
 
 550 */
 551static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
 552{
 553	unsigned long flags;
 554	struct task_struct *t;
 555
 556	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 557	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
 558		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 559		return;
 560	}
 561	t = list_entry(rnp->gp_tasks->prev,
 562		       struct task_struct, rcu_node_entry);
 563	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 564		/*
 565		 * We could be printing a lot while holding a spinlock.
 566		 * Avoid triggering hard lockup.
 567		 */
 568		touch_nmi_watchdog();
 569		sched_show_task(t);
 570	}
 571	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 572}
 573
 574/*
 575 * Dump detailed information for all tasks blocking the current RCU
 576 * grace period.
 
 
 
 577 */
 578static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 579{
 580	struct rcu_node *rnp = rcu_get_root(rsp);
 
 581
 582	rcu_print_detail_task_stall_rnp(rnp);
 583	rcu_for_each_leaf_node(rsp, rnp)
 584		rcu_print_detail_task_stall_rnp(rnp);
 585}
 586
 587static void rcu_print_task_stall_begin(struct rcu_node *rnp)
 588{
 589	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
 590	       rnp->level, rnp->grplo, rnp->grphi);
 591}
 592
 593static void rcu_print_task_stall_end(void)
 594{
 595	pr_cont("\n");
 596}
 597
 598/*
 599 * Scan the current list of tasks blocked within RCU read-side critical
 600 * sections, printing out the tid of each.
 601 */
 602static int rcu_print_task_stall(struct rcu_node *rnp)
 603{
 604	struct task_struct *t;
 605	int ndetected = 0;
 606
 607	if (!rcu_preempt_blocked_readers_cgp(rnp))
 608		return 0;
 609	rcu_print_task_stall_begin(rnp);
 610	t = list_entry(rnp->gp_tasks->prev,
 611		       struct task_struct, rcu_node_entry);
 612	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 613		pr_cont(" P%d", t->pid);
 614		ndetected++;
 615	}
 616	rcu_print_task_stall_end();
 617	return ndetected;
 618}
 619
 620/*
 621 * Scan the current list of tasks blocked within RCU read-side critical
 622 * sections, printing out the tid of each that is blocking the current
 623 * expedited grace period.
 624 */
 625static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 626{
 627	struct task_struct *t;
 628	int ndetected = 0;
 
 
 
 
 
 
 629
 630	if (!rnp->exp_tasks)
 631		return 0;
 632	t = list_entry(rnp->exp_tasks->prev,
 633		       struct task_struct, rcu_node_entry);
 634	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 635		pr_cont(" P%d", t->pid);
 636		ndetected++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637	}
 638	return ndetected;
 
 639}
 640
 641/*
 642 * Check that the list of blocked tasks for the newly completed grace
 643 * period is in fact empty.  It is a serious bug to complete a grace
 644 * period that still has RCU readers blocked!  This function must be
 645 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 646 * must be held by the caller.
 647 *
 648 * Also, if there are blocked tasks on the list, they automatically
 649 * block the newly created grace period, so set up ->gp_tasks accordingly.
 650 */
 651static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 652{
 653	struct task_struct *t;
 654
 655	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
 656	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 657	if (rcu_preempt_has_tasks(rnp)) {
 
 
 658		rnp->gp_tasks = rnp->blkd_tasks.next;
 659		t = container_of(rnp->gp_tasks, struct task_struct,
 660				 rcu_node_entry);
 661		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
 662						rnp->gpnum, t->pid);
 663	}
 664	WARN_ON_ONCE(rnp->qsmask);
 665}
 666
 667/*
 668 * Check for a quiescent state from the current CPU.  When a task blocks,
 669 * the task is recorded in the corresponding CPU's rcu_node structure,
 670 * which is checked elsewhere.
 671 *
 672 * Caller must disable hard irqs.
 673 */
 674static void rcu_preempt_check_callbacks(void)
 675{
 676	struct task_struct *t = current;
 677
 678	if (t->rcu_read_lock_nesting == 0) {
 679		rcu_preempt_qs();
 
 
 
 
 
 
 
 
 
 
 
 
 
 680		return;
 681	}
 
 
 682	if (t->rcu_read_lock_nesting > 0 &&
 683	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
 684	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
 
 
 685		t->rcu_read_unlock_special.b.need_qs = true;
 686}
 687
 688#ifdef CONFIG_RCU_BOOST
 689
 690static void rcu_preempt_do_callbacks(void)
 
 
 
 
 
 
 691{
 692	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
 693}
 694
 695#endif /* #ifdef CONFIG_RCU_BOOST */
 696
 697/**
 698 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 699 * @head: structure to be used for queueing the RCU updates.
 700 * @func: actual callback function to be invoked after the grace period
 701 *
 702 * The callback function will be invoked some time after a full grace
 703 * period elapses, in other words after all pre-existing RCU read-side
 704 * critical sections have completed.  However, the callback function
 705 * might well execute concurrently with RCU read-side critical sections
 706 * that started after call_rcu() was invoked.  RCU read-side critical
 707 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 708 * and may be nested.
 709 *
 710 * Note that all CPUs must agree that the grace period extended beyond
 711 * all pre-existing RCU read-side critical section.  On systems with more
 712 * than one CPU, this means that when "func()" is invoked, each CPU is
 713 * guaranteed to have executed a full memory barrier since the end of its
 714 * last RCU read-side critical section whose beginning preceded the call
 715 * to call_rcu().  It also means that each CPU executing an RCU read-side
 716 * critical section that continues beyond the start of "func()" must have
 717 * executed a memory barrier after the call_rcu() but before the beginning
 718 * of that RCU read-side critical section.  Note that these guarantees
 719 * include CPUs that are offline, idle, or executing in user mode, as
 720 * well as CPUs that are executing in the kernel.
 721 *
 722 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 723 * resulting RCU callback function "func()", then both CPU A and CPU B are
 724 * guaranteed to execute a full memory barrier during the time interval
 725 * between the call to call_rcu() and the invocation of "func()" -- even
 726 * if CPU A and CPU B are the same CPU (but again only if the system has
 727 * more than one CPU).
 728 */
 729void call_rcu(struct rcu_head *head, rcu_callback_t func)
 730{
 731	__call_rcu(head, func, rcu_state_p, -1, 0);
 732}
 733EXPORT_SYMBOL_GPL(call_rcu);
 734
 735/**
 736 * synchronize_rcu - wait until a grace period has elapsed.
 737 *
 738 * Control will return to the caller some time after a full grace
 739 * period has elapsed, in other words after all currently executing RCU
 740 * read-side critical sections have completed.  Note, however, that
 741 * upon return from synchronize_rcu(), the caller might well be executing
 742 * concurrently with new RCU read-side critical sections that began while
 743 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 744 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
 745 *
 746 * See the description of synchronize_sched() for more detailed
 747 * information on memory-ordering guarantees.  However, please note
 748 * that -only- the memory-ordering guarantees apply.  For example,
 749 * synchronize_rcu() is -not- guaranteed to wait on things like code
 750 * protected by preempt_disable(), instead, synchronize_rcu() is -only-
 751 * guaranteed to wait on RCU read-side critical sections, that is, sections
 752 * of code protected by rcu_read_lock().
 753 */
 754void synchronize_rcu(void)
 755{
 756	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 757			 lock_is_held(&rcu_lock_map) ||
 758			 lock_is_held(&rcu_sched_lock_map),
 759			 "Illegal synchronize_rcu() in RCU read-side critical section");
 760	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
 761		return;
 762	if (rcu_gp_is_expedited())
 763		synchronize_rcu_expedited();
 764	else
 765		wait_rcu_gp(call_rcu);
 766}
 767EXPORT_SYMBOL_GPL(synchronize_rcu);
 768
 769/**
 770 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 771 *
 772 * Note that this primitive does not necessarily wait for an RCU grace period
 773 * to complete.  For example, if there are no RCU callbacks queued anywhere
 774 * in the system, then rcu_barrier() is within its rights to return
 775 * immediately, without waiting for anything, much less an RCU grace period.
 776 */
 777void rcu_barrier(void)
 
 778{
 779	_rcu_barrier(rcu_state_p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780}
 781EXPORT_SYMBOL_GPL(rcu_barrier);
 
 782
 783/*
 784 * Initialize preemptible RCU's state structures.
 785 */
 786static void __init __rcu_init_preempt(void)
 787{
 788	rcu_init_one(rcu_state_p);
 
 789}
 790
 791/*
 792 * Check for a task exiting while in a preemptible-RCU read-side
 793 * critical section, clean up if so.  No need to issue warnings,
 794 * as debug_check_no_locks_held() already does this if lockdep
 795 * is enabled.
 796 */
 797void exit_rcu(void)
 798{
 799	struct task_struct *t = current;
 800
 801	if (likely(list_empty(&current->rcu_node_entry)))
 
 
 
 
 802		return;
 803	t->rcu_read_lock_nesting = 1;
 804	barrier();
 805	t->rcu_read_unlock_special.b.blocked = true;
 806	__rcu_read_unlock();
 807}
 808
 809#else /* #ifdef CONFIG_PREEMPT_RCU */
 810
 811static struct rcu_state *const rcu_state_p = &rcu_sched_state;
 812
 813/*
 814 * Tell them what RCU they are running.
 
 
 
 
 815 */
 816static void __init rcu_bootup_announce(void)
 817{
 818	pr_info("Hierarchical RCU implementation.\n");
 819	rcu_bootup_announce_oddness();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820}
 
 821
 822/*
 823 * Because preemptible RCU does not exist, we never have to check for
 824 * CPUs being in quiescent states.
 825 */
 826static void rcu_preempt_note_context_switch(bool preempt)
 827{
 
 
 
 
 
 
 
 
 
 
 
 
 828}
 
 829
 830/*
 831 * Because preemptible RCU does not exist, there are never any preempted
 832 * RCU readers.
 833 */
 834static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 835{
 836	return 0;
 837}
 838
 839/*
 840 * Because there is no preemptible RCU, there can be no readers blocked.
 841 */
 842static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 843{
 844	return false;
 845}
 846
 847/*
 848 * Because preemptible RCU does not exist, we never have to check for
 849 * tasks blocked within RCU read-side critical sections.
 850 */
 851static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 852{
 
 853}
 854
 855/*
 856 * Because preemptible RCU does not exist, we never have to check for
 857 * tasks blocked within RCU read-side critical sections.
 858 */
 859static int rcu_print_task_stall(struct rcu_node *rnp)
 860{
 861	return 0;
 862}
 863
 864/*
 865 * Because preemptible RCU does not exist, we never have to check for
 866 * tasks blocked within RCU read-side critical sections that are
 867 * blocking the current expedited grace period.
 868 */
 869static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 870{
 871	return 0;
 872}
 873
 874/*
 875 * Because there is no preemptible RCU, there can be no readers blocked,
 876 * so there is no need to check for blocked tasks.  So check only for
 877 * bogus qsmask values.
 878 */
 879static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 880{
 881	WARN_ON_ONCE(rnp->qsmask);
 882}
 883
 884/*
 885 * Because preemptible RCU does not exist, it never has any callbacks
 886 * to check.
 887 */
 888static void rcu_preempt_check_callbacks(void)
 889{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 890}
 891
 892/*
 893 * Because preemptible RCU does not exist, rcu_barrier() is just
 894 * another name for rcu_barrier_sched().
 895 */
 896void rcu_barrier(void)
 897{
 898	rcu_barrier_sched();
 899}
 900EXPORT_SYMBOL_GPL(rcu_barrier);
 901
 902/*
 903 * Because preemptible RCU does not exist, it need not be initialized.
 904 */
 905static void __init __rcu_init_preempt(void)
 
 906{
 
 907}
 908
 
 
 909/*
 910 * Because preemptible RCU does not exist, tasks cannot possibly exit
 911 * while in preemptible RCU read-side critical sections.
 912 */
 913void exit_rcu(void)
 914{
 
 
 
 
 
 
 915}
 916
 917#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 918
 919#ifdef CONFIG_RCU_BOOST
 920
 921static void rcu_wake_cond(struct task_struct *t, int status)
 922{
 923	/*
 924	 * If the thread is yielding, only wake it when this
 925	 * is invoked from idle
 926	 */
 927	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
 928		wake_up_process(t);
 929}
 930
 931/*
 932 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 933 * or ->boost_tasks, advancing the pointer to the next task in the
 934 * ->blkd_tasks list.
 935 *
 936 * Note that irqs must be enabled: boosting the task can block.
 937 * Returns 1 if there are more tasks needing to be boosted.
 938 */
 939static int rcu_boost(struct rcu_node *rnp)
 940{
 941	unsigned long flags;
 942	struct task_struct *t;
 943	struct list_head *tb;
 944
 945	if (READ_ONCE(rnp->exp_tasks) == NULL &&
 946	    READ_ONCE(rnp->boost_tasks) == NULL)
 947		return 0;  /* Nothing left to boost. */
 948
 949	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 950
 951	/*
 952	 * Recheck under the lock: all tasks in need of boosting
 953	 * might exit their RCU read-side critical sections on their own.
 954	 */
 955	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 956		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 957		return 0;
 958	}
 959
 960	/*
 961	 * Preferentially boost tasks blocking expedited grace periods.
 962	 * This cannot starve the normal grace periods because a second
 963	 * expedited grace period must boost all blocked tasks, including
 964	 * those blocking the pre-existing normal grace period.
 965	 */
 966	if (rnp->exp_tasks != NULL)
 967		tb = rnp->exp_tasks;
 968	else
 969		tb = rnp->boost_tasks;
 970
 971	/*
 972	 * We boost task t by manufacturing an rt_mutex that appears to
 973	 * be held by task t.  We leave a pointer to that rt_mutex where
 974	 * task t can find it, and task t will release the mutex when it
 975	 * exits its outermost RCU read-side critical section.  Then
 976	 * simply acquiring this artificial rt_mutex will boost task
 977	 * t's priority.  (Thanks to tglx for suggesting this approach!)
 978	 *
 979	 * Note that task t must acquire rnp->lock to remove itself from
 980	 * the ->blkd_tasks list, which it will do from exit() if from
 981	 * nowhere else.  We therefore are guaranteed that task t will
 982	 * stay around at least until we drop rnp->lock.  Note that
 983	 * rnp->lock also resolves races between our priority boosting
 984	 * and task t's exiting its outermost RCU read-side critical
 985	 * section.
 986	 */
 987	t = container_of(tb, struct task_struct, rcu_node_entry);
 988	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
 989	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 990	/* Lock only for side effect: boosts task t's priority. */
 991	rt_mutex_lock(&rnp->boost_mtx);
 992	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
 993
 994	return READ_ONCE(rnp->exp_tasks) != NULL ||
 995	       READ_ONCE(rnp->boost_tasks) != NULL;
 996}
 997
 998/*
 999 * Priority-boosting kthread, one per leaf rcu_node.
1000 */
1001static int rcu_boost_kthread(void *arg)
1002{
1003	struct rcu_node *rnp = (struct rcu_node *)arg;
1004	int spincnt = 0;
1005	int more2boost;
1006
1007	trace_rcu_utilization(TPS("Start boost kthread@init"));
1008	for (;;) {
1009		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1010		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1011		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1012		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1013		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1014		more2boost = rcu_boost(rnp);
1015		if (more2boost)
1016			spincnt++;
1017		else
1018			spincnt = 0;
1019		if (spincnt > 10) {
1020			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1021			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1022			schedule_timeout_interruptible(2);
1023			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1024			spincnt = 0;
1025		}
1026	}
1027	/* NOTREACHED */
1028	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1029	return 0;
1030}
1031
1032/*
1033 * Check to see if it is time to start boosting RCU readers that are
1034 * blocking the current grace period, and, if so, tell the per-rcu_node
1035 * kthread to start boosting them.  If there is an expedited grace
1036 * period in progress, it is always time to boost.
1037 *
1038 * The caller must hold rnp->lock, which this function releases.
1039 * The ->boost_kthread_task is immortal, so we don't need to worry
1040 * about it going away.
1041 */
1042static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1043	__releases(rnp->lock)
1044{
1045	struct task_struct *t;
1046
1047	raw_lockdep_assert_held_rcu_node(rnp);
1048	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1049		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1050		return;
1051	}
1052	if (rnp->exp_tasks != NULL ||
1053	    (rnp->gp_tasks != NULL &&
1054	     rnp->boost_tasks == NULL &&
1055	     rnp->qsmask == 0 &&
1056	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1057		if (rnp->exp_tasks == NULL)
1058			rnp->boost_tasks = rnp->gp_tasks;
1059		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1060		t = rnp->boost_kthread_task;
1061		if (t)
1062			rcu_wake_cond(t, rnp->boost_kthread_status);
1063	} else {
1064		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1065	}
1066}
1067
1068/*
1069 * Wake up the per-CPU kthread to invoke RCU callbacks.
1070 */
1071static void invoke_rcu_callbacks_kthread(void)
1072{
1073	unsigned long flags;
1074
1075	local_irq_save(flags);
1076	__this_cpu_write(rcu_cpu_has_work, 1);
1077	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1078	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1079		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1080			      __this_cpu_read(rcu_cpu_kthread_status));
1081	}
1082	local_irq_restore(flags);
1083}
1084
1085/*
1086 * Is the current CPU running the RCU-callbacks kthread?
1087 * Caller must have preemption disabled.
1088 */
1089static bool rcu_is_callbacks_kthread(void)
1090{
1091	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1092}
1093
1094#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1095
1096/*
1097 * Do priority-boost accounting for the start of a new grace period.
1098 */
1099static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1100{
1101	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1102}
1103
1104/*
1105 * Create an RCU-boost kthread for the specified node if one does not
1106 * already exist.  We only create this kthread for preemptible RCU.
1107 * Returns zero if all is well, a negated errno otherwise.
1108 */
1109static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1110				       struct rcu_node *rnp)
1111{
1112	int rnp_index = rnp - &rsp->node[0];
1113	unsigned long flags;
1114	struct sched_param sp;
1115	struct task_struct *t;
1116
1117	if (rcu_state_p != rsp)
1118		return 0;
1119
1120	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1121		return 0;
 
 
1122
1123	rsp->boost = 1;
1124	if (rnp->boost_kthread_task != NULL)
1125		return 0;
 
1126	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1127			   "rcub/%d", rnp_index);
1128	if (IS_ERR(t))
1129		return PTR_ERR(t);
 
1130	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1131	rnp->boost_kthread_task = t;
1132	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1133	sp.sched_priority = kthread_prio;
1134	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1135	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1136	return 0;
1137}
1138
1139static void rcu_kthread_do_work(void)
1140{
1141	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1142	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1143	rcu_preempt_do_callbacks();
1144}
1145
1146static void rcu_cpu_kthread_setup(unsigned int cpu)
1147{
1148	struct sched_param sp;
1149
1150	sp.sched_priority = kthread_prio;
1151	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1152}
1153
1154static void rcu_cpu_kthread_park(unsigned int cpu)
1155{
1156	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1157}
1158
1159static int rcu_cpu_kthread_should_run(unsigned int cpu)
1160{
1161	return __this_cpu_read(rcu_cpu_has_work);
1162}
1163
1164/*
1165 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1166 * RCU softirq used in flavors and configurations of RCU that do not
1167 * support RCU priority boosting.
1168 */
1169static void rcu_cpu_kthread(unsigned int cpu)
1170{
1171	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1172	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1173	int spincnt;
1174
1175	for (spincnt = 0; spincnt < 10; spincnt++) {
1176		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1177		local_bh_disable();
1178		*statusp = RCU_KTHREAD_RUNNING;
1179		this_cpu_inc(rcu_cpu_kthread_loops);
1180		local_irq_disable();
1181		work = *workp;
1182		*workp = 0;
1183		local_irq_enable();
1184		if (work)
1185			rcu_kthread_do_work();
1186		local_bh_enable();
1187		if (*workp == 0) {
1188			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1189			*statusp = RCU_KTHREAD_WAITING;
1190			return;
1191		}
1192	}
1193	*statusp = RCU_KTHREAD_YIELDING;
1194	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1195	schedule_timeout_interruptible(2);
1196	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1197	*statusp = RCU_KTHREAD_WAITING;
1198}
1199
1200/*
1201 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1202 * served by the rcu_node in question.  The CPU hotplug lock is still
1203 * held, so the value of rnp->qsmaskinit will be stable.
1204 *
1205 * We don't include outgoingcpu in the affinity set, use -1 if there is
1206 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1207 * this function allows the kthread to execute on any CPU.
1208 */
1209static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1210{
1211	struct task_struct *t = rnp->boost_kthread_task;
1212	unsigned long mask = rcu_rnp_online_cpus(rnp);
1213	cpumask_var_t cm;
1214	int cpu;
1215
1216	if (!t)
1217		return;
1218	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1219		return;
1220	for_each_leaf_node_possible_cpu(rnp, cpu)
1221		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1222		    cpu != outgoingcpu)
1223			cpumask_set_cpu(cpu, cm);
1224	if (cpumask_weight(cm) == 0)
1225		cpumask_setall(cm);
1226	set_cpus_allowed_ptr(t, cm);
1227	free_cpumask_var(cm);
1228}
1229
1230static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1231	.store			= &rcu_cpu_kthread_task,
1232	.thread_should_run	= rcu_cpu_kthread_should_run,
1233	.thread_fn		= rcu_cpu_kthread,
1234	.thread_comm		= "rcuc/%u",
1235	.setup			= rcu_cpu_kthread_setup,
1236	.park			= rcu_cpu_kthread_park,
1237};
1238
1239/*
1240 * Spawn boost kthreads -- called as soon as the scheduler is running.
1241 */
1242static void __init rcu_spawn_boost_kthreads(void)
1243{
1244	struct rcu_node *rnp;
1245	int cpu;
1246
1247	for_each_possible_cpu(cpu)
1248		per_cpu(rcu_cpu_has_work, cpu) = 0;
1249	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1250	rcu_for_each_leaf_node(rcu_state_p, rnp)
1251		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1252}
1253
1254static void rcu_prepare_kthreads(int cpu)
1255{
1256	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1257	struct rcu_node *rnp = rdp->mynode;
1258
1259	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1260	if (rcu_scheduler_fully_active)
1261		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1262}
1263
1264#else /* #ifdef CONFIG_RCU_BOOST */
1265
1266static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1267	__releases(rnp->lock)
1268{
1269	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1270}
1271
1272static void invoke_rcu_callbacks_kthread(void)
1273{
1274	WARN_ON_ONCE(1);
1275}
1276
1277static bool rcu_is_callbacks_kthread(void)
1278{
1279	return false;
1280}
1281
1282static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1283{
1284}
1285
1286static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1287{
1288}
1289
1290static void __init rcu_spawn_boost_kthreads(void)
1291{
1292}
1293
1294static void rcu_prepare_kthreads(int cpu)
1295{
1296}
1297
1298#endif /* #else #ifdef CONFIG_RCU_BOOST */
1299
1300#if !defined(CONFIG_RCU_FAST_NO_HZ)
1301
1302/*
1303 * Check to see if any future RCU-related work will need to be done
1304 * by the current CPU, even if none need be done immediately, returning
1305 * 1 if so.  This function is part of the RCU implementation; it is -not-
1306 * an exported member of the RCU API.
1307 *
1308 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1309 * any flavor of RCU.
1310 */
1311int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1312{
1313	*nextevt = KTIME_MAX;
1314	return rcu_cpu_has_callbacks(NULL);
 
1315}
1316
1317/*
1318 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1319 * after it.
1320 */
1321static void rcu_cleanup_after_idle(void)
1322{
1323}
1324
1325/*
1326 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1327 * is nothing.
1328 */
1329static void rcu_prepare_for_idle(void)
1330{
1331}
1332
1333/*
1334 * Don't bother keeping a running count of the number of RCU callbacks
1335 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1336 */
1337static void rcu_idle_count_callbacks_posted(void)
1338{
1339}
1340
1341#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1342
1343/*
1344 * This code is invoked when a CPU goes idle, at which point we want
1345 * to have the CPU do everything required for RCU so that it can enter
1346 * the energy-efficient dyntick-idle mode.  This is handled by a
1347 * state machine implemented by rcu_prepare_for_idle() below.
1348 *
1349 * The following three proprocessor symbols control this state machine:
1350 *
1351 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1352 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1353 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1354 *	benchmarkers who might otherwise be tempted to set this to a large
1355 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1356 *	system.  And if you are -that- concerned about energy efficiency,
1357 *	just power the system down and be done with it!
1358 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1359 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1360 *	callbacks pending.  Setting this too high can OOM your system.
1361 *
1362 * The values below work well in practice.  If future workloads require
1363 * adjustment, they can be converted into kernel config parameters, though
1364 * making the state machine smarter might be a better option.
1365 */
1366#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1367#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1368
1369static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1370module_param(rcu_idle_gp_delay, int, 0644);
1371static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1372module_param(rcu_idle_lazy_gp_delay, int, 0644);
1373
1374/*
1375 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1376 * only if it has been awhile since the last time we did so.  Afterwards,
1377 * if there are any callbacks ready for immediate invocation, return true.
1378 */
1379static bool __maybe_unused rcu_try_advance_all_cbs(void)
1380{
1381	bool cbs_ready = false;
1382	struct rcu_data *rdp;
1383	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1384	struct rcu_node *rnp;
1385	struct rcu_state *rsp;
1386
1387	/* Exit early if we advanced recently. */
1388	if (jiffies == rdtp->last_advance_all)
1389		return false;
1390	rdtp->last_advance_all = jiffies;
1391
1392	for_each_rcu_flavor(rsp) {
1393		rdp = this_cpu_ptr(rsp->rda);
1394		rnp = rdp->mynode;
1395
1396		/*
1397		 * Don't bother checking unless a grace period has
1398		 * completed since we last checked and there are
1399		 * callbacks not yet ready to invoke.
1400		 */
1401		if ((rdp->completed != rnp->completed ||
1402		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1403		    rcu_segcblist_pend_cbs(&rdp->cblist))
1404			note_gp_changes(rsp, rdp);
 
1405
1406		if (rcu_segcblist_ready_cbs(&rdp->cblist))
1407			cbs_ready = true;
1408	}
1409	return cbs_ready;
1410}
1411
1412/*
1413 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1414 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1415 * caller to set the timeout based on whether or not there are non-lazy
1416 * callbacks.
1417 *
1418 * The caller must have disabled interrupts.
1419 */
1420int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1421{
1422	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1423	unsigned long dj;
1424
1425	lockdep_assert_irqs_disabled();
1426
1427	/* Snapshot to detect later posting of non-lazy callback. */
1428	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1429
1430	/* If no callbacks, RCU doesn't need the CPU. */
1431	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1432		*nextevt = KTIME_MAX;
1433		return 0;
1434	}
1435
1436	/* Attempt to advance callbacks. */
1437	if (rcu_try_advance_all_cbs()) {
1438		/* Some ready to invoke, so initiate later invocation. */
1439		invoke_rcu_core();
1440		return 1;
1441	}
1442	rdtp->last_accelerate = jiffies;
1443
1444	/* Request timer delay depending on laziness, and round. */
1445	if (!rdtp->all_lazy) {
 
 
 
1446		dj = round_up(rcu_idle_gp_delay + jiffies,
1447			       rcu_idle_gp_delay) - jiffies;
1448	} else {
1449		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1450	}
1451	*nextevt = basemono + dj * TICK_NSEC;
1452	return 0;
1453}
1454
1455/*
1456 * Prepare a CPU for idle from an RCU perspective.  The first major task
1457 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1458 * The second major task is to check to see if a non-lazy callback has
1459 * arrived at a CPU that previously had only lazy callbacks.  The third
1460 * major task is to accelerate (that is, assign grace-period numbers to)
1461 * any recently arrived callbacks.
1462 *
1463 * The caller must have disabled interrupts.
1464 */
1465static void rcu_prepare_for_idle(void)
1466{
1467	bool needwake;
1468	struct rcu_data *rdp;
1469	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1470	struct rcu_node *rnp;
1471	struct rcu_state *rsp;
1472	int tne;
1473
1474	lockdep_assert_irqs_disabled();
1475	if (rcu_is_nocb_cpu(smp_processor_id()))
1476		return;
1477
1478	/* Handle nohz enablement switches conservatively. */
1479	tne = READ_ONCE(tick_nohz_active);
1480	if (tne != rdtp->tick_nohz_enabled_snap) {
1481		if (rcu_cpu_has_callbacks(NULL))
1482			invoke_rcu_core(); /* force nohz to see update. */
1483		rdtp->tick_nohz_enabled_snap = tne;
1484		return;
1485	}
1486	if (!tne)
1487		return;
1488
1489	/*
1490	 * If a non-lazy callback arrived at a CPU having only lazy
1491	 * callbacks, invoke RCU core for the side-effect of recalculating
1492	 * idle duration on re-entry to idle.
1493	 */
1494	if (rdtp->all_lazy &&
1495	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1496		rdtp->all_lazy = false;
1497		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1498		invoke_rcu_core();
1499		return;
1500	}
1501
1502	/*
1503	 * If we have not yet accelerated this jiffy, accelerate all
1504	 * callbacks on this CPU.
1505	 */
1506	if (rdtp->last_accelerate == jiffies)
1507		return;
1508	rdtp->last_accelerate = jiffies;
1509	for_each_rcu_flavor(rsp) {
1510		rdp = this_cpu_ptr(rsp->rda);
1511		if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1512			continue;
1513		rnp = rdp->mynode;
1514		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1515		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1516		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1517		if (needwake)
1518			rcu_gp_kthread_wake(rsp);
1519	}
1520}
1521
1522/*
1523 * Clean up for exit from idle.  Attempt to advance callbacks based on
1524 * any grace periods that elapsed while the CPU was idle, and if any
1525 * callbacks are now ready to invoke, initiate invocation.
1526 */
1527static void rcu_cleanup_after_idle(void)
1528{
 
 
1529	lockdep_assert_irqs_disabled();
1530	if (rcu_is_nocb_cpu(smp_processor_id()))
1531		return;
1532	if (rcu_try_advance_all_cbs())
1533		invoke_rcu_core();
1534}
1535
1536/*
1537 * Keep a running count of the number of non-lazy callbacks posted
1538 * on this CPU.  This running counter (which is never decremented) allows
1539 * rcu_prepare_for_idle() to detect when something out of the idle loop
1540 * posts a callback, even if an equal number of callbacks are invoked.
1541 * Of course, callbacks should only be posted from within a trace event
1542 * designed to be called from idle or from within RCU_NONIDLE().
1543 */
1544static void rcu_idle_count_callbacks_posted(void)
1545{
1546	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1547}
1548
1549/*
1550 * Data for flushing lazy RCU callbacks at OOM time.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1551 */
1552static atomic_t oom_callback_count;
1553static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1554
1555/*
1556 * RCU OOM callback -- decrement the outstanding count and deliver the
1557 * wake-up if we are the last one.
1558 */
1559static void rcu_oom_callback(struct rcu_head *rhp)
1560{
1561	if (atomic_dec_and_test(&oom_callback_count))
1562		wake_up(&oom_callback_wq);
1563}
1564
1565/*
1566 * Post an rcu_oom_notify callback on the current CPU if it has at
1567 * least one lazy callback.  This will unnecessarily post callbacks
1568 * to CPUs that already have a non-lazy callback at the end of their
1569 * callback list, but this is an infrequent operation, so accept some
1570 * extra overhead to keep things simple.
1571 */
1572static void rcu_oom_notify_cpu(void *unused)
1573{
1574	struct rcu_state *rsp;
1575	struct rcu_data *rdp;
1576
1577	for_each_rcu_flavor(rsp) {
1578		rdp = raw_cpu_ptr(rsp->rda);
1579		if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1580			atomic_inc(&oom_callback_count);
1581			rsp->call(&rdp->oom_head, rcu_oom_callback);
1582		}
1583	}
1584}
 
1585
1586/*
1587 * If low on memory, ensure that each CPU has a non-lazy callback.
1588 * This will wake up CPUs that have only lazy callbacks, in turn
1589 * ensuring that they free up the corresponding memory in a timely manner.
1590 * Because an uncertain amount of memory will be freed in some uncertain
1591 * timeframe, we do not claim to have freed anything.
1592 */
1593static int rcu_oom_notify(struct notifier_block *self,
1594			  unsigned long notused, void *nfreed)
1595{
1596	int cpu;
1597
1598	/* Wait for callbacks from earlier instance to complete. */
1599	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1600	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1601
1602	/*
1603	 * Prevent premature wakeup: ensure that all increments happen
1604	 * before there is a chance of the counter reaching zero.
1605	 */
1606	atomic_set(&oom_callback_count, 1);
1607
1608	for_each_online_cpu(cpu) {
1609		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1610		cond_resched_rcu_qs();
1611	}
1612
1613	/* Unconditionally decrement: no need to wake ourselves up. */
1614	atomic_dec(&oom_callback_count);
1615
1616	return NOTIFY_OK;
1617}
1618
1619static struct notifier_block rcu_oom_nb = {
1620	.notifier_call = rcu_oom_notify
1621};
1622
1623static int __init rcu_register_oom_notifier(void)
1624{
1625	register_oom_notifier(&rcu_oom_nb);
1626	return 0;
1627}
1628early_initcall(rcu_register_oom_notifier);
1629
1630#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
 
 
 
 
 
 
1631
1632#ifdef CONFIG_RCU_FAST_NO_HZ
1633
1634static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
 
 
 
1635{
1636	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1637	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1638
1639	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1640		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1641		ulong2long(nlpd),
1642		rdtp->all_lazy ? 'L' : '.',
1643		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
 
1644}
1645
1646#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1647
1648static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
 
 
 
 
 
 
 
 
1649{
1650	*cp = '\0';
 
 
1651}
1652
1653#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1654
1655/* Initiate the stall-info list. */
1656static void print_cpu_stall_info_begin(void)
 
1657{
1658	pr_cont("\n");
 
1659}
1660
1661/*
1662 * Print out diagnostic information for the specified stalled CPU.
1663 *
1664 * If the specified CPU is aware of the current RCU grace period
1665 * (flavor specified by rsp), then print the number of scheduling
1666 * clock interrupts the CPU has taken during the time that it has
1667 * been aware.  Otherwise, print the number of RCU grace periods
1668 * that this CPU is ignorant of, for example, "1" if the CPU was
1669 * aware of the previous grace period.
1670 *
1671 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1672 */
1673static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1674{
1675	unsigned long delta;
1676	char fast_no_hz[72];
1677	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1678	struct rcu_dynticks *rdtp = rdp->dynticks;
1679	char *ticks_title;
1680	unsigned long ticks_value;
1681
1682	/*
1683	 * We could be printing a lot while holding a spinlock.  Avoid
1684	 * triggering hard lockup.
1685	 */
1686	touch_nmi_watchdog();
1687
1688	if (rsp->gpnum == rdp->gpnum) {
1689		ticks_title = "ticks this GP";
1690		ticks_value = rdp->ticks_this_gp;
1691	} else {
1692		ticks_title = "GPs behind";
1693		ticks_value = rsp->gpnum - rdp->gpnum;
1694	}
1695	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1696	delta = rdp->mynode->gpnum - rdp->rcu_iw_gpnum;
1697	pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%ld softirq=%u/%u fqs=%ld %s\n",
1698	       cpu,
1699	       "O."[!!cpu_online(cpu)],
1700	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1701	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1702	       !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1703			rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1704				"!."[!delta],
1705	       ticks_value, ticks_title,
1706	       rcu_dynticks_snap(rdtp) & 0xfff,
1707	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1708	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1709	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1710	       fast_no_hz);
1711}
1712
1713/* Terminate the stall-info list. */
1714static void print_cpu_stall_info_end(void)
1715{
1716	pr_err("\t");
 
1717}
1718
1719/* Zero ->ticks_this_gp for all flavors of RCU. */
1720static void zero_cpu_stall_ticks(struct rcu_data *rdp)
 
 
 
1721{
1722	rdp->ticks_this_gp = 0;
1723	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
 
 
1724}
1725
1726/* Increment ->ticks_this_gp for all flavors of RCU. */
1727static void increment_cpu_stall_ticks(void)
 
 
 
1728{
1729	struct rcu_state *rsp;
1730
1731	for_each_rcu_flavor(rsp)
1732		raw_cpu_inc(rsp->rda->ticks_this_gp);
1733}
1734
1735#ifdef CONFIG_RCU_NOCB_CPU
1736
1737/*
1738 * Offload callback processing from the boot-time-specified set of CPUs
1739 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1740 * kthread created that pulls the callbacks from the corresponding CPU,
1741 * waits for a grace period to elapse, and invokes the callbacks.
1742 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1743 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1744 * has been specified, in which case each kthread actively polls its
1745 * CPU.  (Which isn't so great for energy efficiency, but which does
1746 * reduce RCU's overhead on that CPU.)
1747 *
1748 * This is intended to be used in conjunction with Frederic Weisbecker's
1749 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1750 * running CPU-bound user-mode computations.
1751 *
1752 * Offloading of callback processing could also in theory be used as
1753 * an energy-efficiency measure because CPUs with no RCU callbacks
1754 * queued are more aggressive about entering dyntick-idle mode.
1755 */
1756
1757
1758/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1759static int __init rcu_nocb_setup(char *str)
1760{
1761	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1762	cpulist_parse(str, rcu_nocb_mask);
1763	return 1;
 
 
 
1764}
1765__setup("rcu_nocbs=", rcu_nocb_setup);
1766
1767static int __init parse_rcu_nocb_poll(char *arg)
 
1768{
1769	rcu_nocb_poll = true;
1770	return 0;
 
 
1771}
1772early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1773
1774/*
1775 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1776 * grace period.
1777 */
1778static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1779{
1780	swake_up_all(sq);
1781}
1782
1783/*
1784 * Set the root rcu_node structure's ->need_future_gp field
1785 * based on the sum of those of all rcu_node structures.  This does
1786 * double-count the root rcu_node structure's requests, but this
1787 * is necessary to handle the possibility of a rcu_nocb_kthread()
1788 * having awakened during the time that the rcu_node structures
1789 * were being updated for the end of the previous grace period.
1790 */
1791static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1792{
1793	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1794}
1795
1796static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1797{
1798	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1799}
1800
1801static void rcu_init_one_nocb(struct rcu_node *rnp)
1802{
1803	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1804	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1805}
1806
1807/* Is the specified CPU a no-CBs CPU? */
1808bool rcu_is_nocb_cpu(int cpu)
1809{
1810	if (cpumask_available(rcu_nocb_mask))
1811		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1812	return false;
1813}
1814
1815/*
1816 * Kick the leader kthread for this NOCB group.  Caller holds ->nocb_lock
1817 * and this function releases it.
1818 */
1819static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1820			       unsigned long flags)
1821	__releases(rdp->nocb_lock)
1822{
1823	struct rcu_data *rdp_leader = rdp->nocb_leader;
 
1824
1825	lockdep_assert_held(&rdp->nocb_lock);
1826	if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1827		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
 
 
1828		return;
1829	}
1830	if (rdp_leader->nocb_leader_sleep || force) {
1831		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1832		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1833		del_timer(&rdp->nocb_timer);
1834		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1835		smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1836		swake_up(&rdp_leader->nocb_wq);
1837	} else {
1838		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1839	}
 
 
 
1840}
1841
1842/*
1843 * Kick the leader kthread for this NOCB group, but caller has not
1844 * acquired locks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845 */
1846static void wake_nocb_leader(struct rcu_data *rdp, bool force)
 
1847{
1848	unsigned long flags;
1849
1850	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1851	__wake_nocb_leader(rdp, force, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1852}
1853
1854/*
1855 * Arrange to wake the leader kthread for this NOCB group at some
1856 * future time when it is safe to do so.
 
 
 
 
1857 */
1858static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1859				   const char *reason)
1860{
1861	unsigned long flags;
 
 
 
 
 
1862
1863	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1864	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1865		mod_timer(&rdp->nocb_timer, jiffies + 1);
1866	WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1867	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1868	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
 
 
 
 
 
1869}
1870
1871/*
1872 * Does the specified CPU need an RCU callback for the specified flavor
1873 * of rcu_barrier()?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874 */
1875static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
 
1876{
1877	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1878	unsigned long ret;
1879#ifdef CONFIG_PROVE_RCU
1880	struct rcu_head *rhp;
1881#endif /* #ifdef CONFIG_PROVE_RCU */
 
 
 
 
 
1882
1883	/*
1884	 * Check count of all no-CBs callbacks awaiting invocation.
1885	 * There needs to be a barrier before this function is called,
1886	 * but associated with a prior determination that no more
1887	 * callbacks would be posted.  In the worst case, the first
1888	 * barrier in _rcu_barrier() suffices (but the caller cannot
1889	 * necessarily rely on this, not a substitute for the caller
1890	 * getting the concurrency design right!).  There must also be
1891	 * a barrier between the following load an posting of a callback
1892	 * (if a callback is in fact needed).  This is associated with an
1893	 * atomic_inc() in the caller.
1894	 */
1895	ret = atomic_long_read(&rdp->nocb_q_count);
1896
1897#ifdef CONFIG_PROVE_RCU
1898	rhp = READ_ONCE(rdp->nocb_head);
1899	if (!rhp)
1900		rhp = READ_ONCE(rdp->nocb_gp_head);
1901	if (!rhp)
1902		rhp = READ_ONCE(rdp->nocb_follower_head);
1903
1904	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1905	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1906	    rcu_scheduler_fully_active) {
1907		/* RCU callback enqueued before CPU first came online??? */
1908		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1909		       cpu, rhp->func);
1910		WARN_ON_ONCE(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1911	}
1912#endif /* #ifdef CONFIG_PROVE_RCU */
1913
1914	return !!ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1915}
1916
1917/*
1918 * Enqueue the specified string of rcu_head structures onto the specified
1919 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1920 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1921 * counts are supplied by rhcount and rhcount_lazy.
1922 *
1923 * If warranted, also wake up the kthread servicing this CPUs queues.
1924 */
1925static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1926				    struct rcu_head *rhp,
1927				    struct rcu_head **rhtp,
1928				    int rhcount, int rhcount_lazy,
1929				    unsigned long flags)
1930{
1931	int len;
1932	struct rcu_head **old_rhpp;
1933	struct task_struct *t;
1934
1935	/* Enqueue the callback on the nocb list and update counts. */
1936	atomic_long_add(rhcount, &rdp->nocb_q_count);
1937	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1938	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1939	WRITE_ONCE(*old_rhpp, rhp);
1940	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1941	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1942
1943	/* If we are not being polled and there is a kthread, awaken it ... */
1944	t = READ_ONCE(rdp->nocb_kthread);
1945	if (rcu_nocb_poll || !t) {
1946		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1947				    TPS("WakeNotPoll"));
 
1948		return;
1949	}
1950	len = atomic_long_read(&rdp->nocb_q_count);
1951	if (old_rhpp == &rdp->nocb_head) {
 
 
1952		if (!irqs_disabled_flags(flags)) {
1953			/* ... if queue was empty ... */
1954			wake_nocb_leader(rdp, false);
1955			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1956					    TPS("WakeEmpty"));
1957		} else {
1958			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1959					       TPS("WakeEmptyIsDeferred"));
 
1960		}
1961		rdp->qlen_last_fqs_check = 0;
1962	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1963		/* ... or if many callbacks queued. */
1964		if (!irqs_disabled_flags(flags)) {
1965			wake_nocb_leader(rdp, true);
1966			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1967					    TPS("WakeOvf"));
1968		} else {
1969			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1970					       TPS("WakeOvfIsDeferred"));
1971		}
1972		rdp->qlen_last_fqs_check = LONG_MAX / 2;
 
 
 
 
 
 
1973	} else {
1974		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
 
1975	}
1976	return;
1977}
1978
1979/*
1980 * This is a helper for __call_rcu(), which invokes this when the normal
1981 * callback queue is inoperable.  If this is not a no-CBs CPU, this
1982 * function returns failure back to __call_rcu(), which can complain
1983 * appropriately.
1984 *
1985 * Otherwise, this function queues the callback where the corresponding
1986 * "rcuo" kthread can find it.
1987 */
1988static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1989			    bool lazy, unsigned long flags)
1990{
1991
1992	if (!rcu_is_nocb_cpu(rdp->cpu))
1993		return false;
1994	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1995	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1996		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1997					 (unsigned long)rhp->func,
1998					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1999					 -atomic_long_read(&rdp->nocb_q_count));
2000	else
2001		trace_rcu_callback(rdp->rsp->name, rhp,
2002				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2003				   -atomic_long_read(&rdp->nocb_q_count));
2004
2005	/*
2006	 * If called from an extended quiescent state with interrupts
2007	 * disabled, invoke the RCU core in order to allow the idle-entry
2008	 * deferred-wakeup check to function.
2009	 */
2010	if (irqs_disabled_flags(flags) &&
2011	    !rcu_is_watching() &&
2012	    cpu_online(smp_processor_id()))
2013		invoke_rcu_core();
2014
2015	return true;
2016}
2017
2018/*
2019 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2020 * not a no-CBs CPU.
2021 */
2022static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2023						     struct rcu_data *rdp,
2024						     unsigned long flags)
2025{
2026	lockdep_assert_irqs_disabled();
2027	if (!rcu_is_nocb_cpu(smp_processor_id()))
2028		return false; /* Not NOCBs CPU, caller must migrate CBs. */
2029	__call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2030				rcu_segcblist_tail(&rdp->cblist),
2031				rcu_segcblist_n_cbs(&rdp->cblist),
2032				rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2033	rcu_segcblist_init(&rdp->cblist);
2034	rcu_segcblist_disable(&rdp->cblist);
2035	return true;
2036}
2037
2038/*
2039 * If necessary, kick off a new grace period, and either way wait
2040 * for a subsequent grace period to complete.
2041 */
2042static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2043{
2044	unsigned long c;
2045	bool d;
2046	unsigned long flags;
2047	bool needwake;
2048	struct rcu_node *rnp = rdp->mynode;
2049
2050	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2051	needwake = rcu_start_future_gp(rnp, rdp, &c);
2052	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2053	if (needwake)
2054		rcu_gp_kthread_wake(rdp->rsp);
2055
2056	/*
2057	 * Wait for the grace period.  Do so interruptibly to avoid messing
2058	 * up the load average.
2059	 */
2060	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2061	for (;;) {
2062		swait_event_interruptible(
2063			rnp->nocb_gp_wq[c & 0x1],
2064			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2065		if (likely(d))
2066			break;
2067		WARN_ON(signal_pending(current));
2068		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2069	}
2070	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2071	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2072}
2073
2074/*
2075 * Leaders come here to wait for additional callbacks to show up.
2076 * This function does not return until callbacks appear.
2077 */
2078static void nocb_leader_wait(struct rcu_data *my_rdp)
2079{
2080	bool firsttime = true;
 
 
 
2081	unsigned long flags;
2082	bool gotcbs;
 
 
 
 
2083	struct rcu_data *rdp;
2084	struct rcu_head **tail;
2085
2086wait_again:
2087
2088	/* Wait for callbacks to appear. */
2089	if (!rcu_nocb_poll) {
2090		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
2091		swait_event_interruptible(my_rdp->nocb_wq,
2092				!READ_ONCE(my_rdp->nocb_leader_sleep));
2093		raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2094		my_rdp->nocb_leader_sleep = true;
2095		WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2096		del_timer(&my_rdp->nocb_timer);
2097		raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2098	} else if (firsttime) {
2099		firsttime = false; /* Don't drown trace log with "Poll"! */
2100		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
2101	}
2102
2103	/*
2104	 * Each pass through the following loop checks a follower for CBs.
2105	 * We are our own first follower.  Any CBs found are moved to
2106	 * nocb_gp_head, where they await a grace period.
2107	 */
2108	gotcbs = false;
2109	smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2110	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2111		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2112		if (!rdp->nocb_gp_head)
2113			continue;  /* No CBs here, try next follower. */
2114
2115		/* Move callbacks to wait-for-GP list, which is empty. */
2116		WRITE_ONCE(rdp->nocb_head, NULL);
2117		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2118		gotcbs = true;
2119	}
2120
2121	/* No callbacks?  Sleep a bit if polling, and go retry.  */
2122	if (unlikely(!gotcbs)) {
2123		WARN_ON(signal_pending(current));
2124		if (rcu_nocb_poll) {
2125			schedule_timeout_interruptible(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2126		} else {
2127			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2128					    TPS("WokeEmpty"));
2129		}
2130		goto wait_again;
 
 
 
 
 
 
2131	}
2132
2133	/* Wait for one grace period. */
2134	rcu_nocb_wait_gp(my_rdp);
2135
2136	/* Each pass through the following loop wakes a follower, if needed. */
2137	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2138		if (!rcu_nocb_poll &&
2139		    READ_ONCE(rdp->nocb_head) &&
2140		    READ_ONCE(my_rdp->nocb_leader_sleep)) {
2141			raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2142			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2143			raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2144		}
2145		if (!rdp->nocb_gp_head)
2146			continue; /* No CBs, so no need to wake follower. */
2147
2148		/* Append callbacks to follower's "done" list. */
2149		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2150		tail = rdp->nocb_follower_tail;
2151		rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2152		*tail = rdp->nocb_gp_head;
2153		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2154		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2155			/* List was empty, so wake up the follower.  */
2156			swake_up(&rdp->nocb_wq);
2157		}
 
 
 
 
 
 
 
 
 
 
 
2158	}
2159
2160	/* If we (the leader) don't have CBs, go wait some more. */
2161	if (!my_rdp->nocb_follower_head)
2162		goto wait_again;
2163}
2164
2165/*
2166 * Followers come here to wait for additional callbacks to show up.
2167 * This function does not return until callbacks appear.
 
 
 
 
2168 */
2169static void nocb_follower_wait(struct rcu_data *rdp)
2170{
 
 
2171	for (;;) {
2172		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
2173		swait_event_interruptible(rdp->nocb_wq,
2174					 READ_ONCE(rdp->nocb_follower_head));
2175		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2176			/* ^^^ Ensure CB invocation follows _head test. */
2177			return;
2178		}
2179		WARN_ON(signal_pending(current));
2180		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
2181	}
 
2182}
2183
2184/*
2185 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2186 * callbacks queued by the corresponding no-CBs CPU, however, there is
2187 * an optional leader-follower relationship so that the grace-period
2188 * kthreads don't have to do quite so many wakeups.
2189 */
2190static int rcu_nocb_kthread(void *arg)
2191{
2192	int c, cl;
2193	unsigned long flags;
2194	struct rcu_head *list;
2195	struct rcu_head *next;
2196	struct rcu_head **tail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2197	struct rcu_data *rdp = arg;
2198
2199	/* Each pass through this loop invokes one batch of callbacks */
 
2200	for (;;) {
2201		/* Wait for callbacks. */
2202		if (rdp->nocb_leader == rdp)
2203			nocb_leader_wait(rdp);
2204		else
2205			nocb_follower_wait(rdp);
2206
2207		/* Pull the ready-to-invoke callbacks onto local list. */
2208		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2209		list = rdp->nocb_follower_head;
2210		rdp->nocb_follower_head = NULL;
2211		tail = rdp->nocb_follower_tail;
2212		rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2213		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2214		BUG_ON(!list);
2215		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
2216
2217		/* Each pass through the following loop invokes a callback. */
2218		trace_rcu_batch_start(rdp->rsp->name,
2219				      atomic_long_read(&rdp->nocb_q_count_lazy),
2220				      atomic_long_read(&rdp->nocb_q_count), -1);
2221		c = cl = 0;
2222		while (list) {
2223			next = list->next;
2224			/* Wait for enqueuing to complete, if needed. */
2225			while (next == NULL && &list->next != tail) {
2226				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2227						    TPS("WaitQueue"));
2228				schedule_timeout_interruptible(1);
2229				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2230						    TPS("WokeQueue"));
2231				next = list->next;
2232			}
2233			debug_rcu_head_unqueue(list);
2234			local_bh_disable();
2235			if (__rcu_reclaim(rdp->rsp->name, list))
2236				cl++;
2237			c++;
2238			local_bh_enable();
2239			cond_resched_rcu_qs();
2240			list = next;
2241		}
2242		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2243		smp_mb__before_atomic();  /* _add after CB invocation. */
2244		atomic_long_add(-c, &rdp->nocb_q_count);
2245		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2246	}
2247	return 0;
2248}
2249
2250/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2251static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2252{
2253	return READ_ONCE(rdp->nocb_defer_wakeup);
2254}
2255
2256/* Do a deferred wakeup of rcu_nocb_kthread(). */
2257static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2258{
2259	unsigned long flags;
2260	int ndw;
2261
2262	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2263	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2264		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2265		return;
2266	}
2267	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2268	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2269	__wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2270	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2271}
2272
2273/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2274static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2275{
2276	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2277
2278	do_nocb_deferred_wakeup_common(rdp);
2279}
2280
2281/*
2282 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2283 * This means we do an inexact common-case check.  Note that if
2284 * we miss, ->nocb_timer will eventually clean things up.
2285 */
2286static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2287{
2288	if (rcu_nocb_need_deferred_wakeup(rdp))
2289		do_nocb_deferred_wakeup_common(rdp);
2290}
2291
2292void __init rcu_init_nohz(void)
2293{
2294	int cpu;
2295	bool need_rcu_nocb_mask = true;
2296	struct rcu_state *rsp;
2297
2298#if defined(CONFIG_NO_HZ_FULL)
2299	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2300		need_rcu_nocb_mask = true;
2301#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2302
2303	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2304		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2305			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2306			return;
2307		}
2308	}
2309	if (!cpumask_available(rcu_nocb_mask))
2310		return;
2311
2312#if defined(CONFIG_NO_HZ_FULL)
2313	if (tick_nohz_full_running)
2314		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2315#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2316
2317	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2318		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2319		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2320			    rcu_nocb_mask);
2321	}
2322	if (cpumask_empty(rcu_nocb_mask))
2323		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2324	else
2325		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2326			cpumask_pr_args(rcu_nocb_mask));
2327	if (rcu_nocb_poll)
2328		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2329
2330	for_each_rcu_flavor(rsp) {
2331		for_each_cpu(cpu, rcu_nocb_mask)
2332			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2333		rcu_organize_nocb_kthreads(rsp);
 
2334	}
 
2335}
2336
2337/* Initialize per-rcu_data variables for no-CBs CPUs. */
2338static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2339{
2340	rdp->nocb_tail = &rdp->nocb_head;
2341	init_swait_queue_head(&rdp->nocb_wq);
2342	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2343	raw_spin_lock_init(&rdp->nocb_lock);
 
 
2344	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
 
 
2345}
2346
2347/*
2348 * If the specified CPU is a no-CBs CPU that does not already have its
2349 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2350 * brought online out of order, this can require re-organizing the
2351 * leader-follower relationships.
2352 */
2353static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2354{
2355	struct rcu_data *rdp;
2356	struct rcu_data *rdp_last;
2357	struct rcu_data *rdp_old_leader;
2358	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2359	struct task_struct *t;
2360
2361	/*
2362	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2363	 * then nothing to do.
2364	 */
2365	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2366		return;
2367
2368	/* If we didn't spawn the leader first, reorganize! */
2369	rdp_old_leader = rdp_spawn->nocb_leader;
2370	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2371		rdp_last = NULL;
2372		rdp = rdp_old_leader;
2373		do {
2374			rdp->nocb_leader = rdp_spawn;
2375			if (rdp_last && rdp != rdp_spawn)
2376				rdp_last->nocb_next_follower = rdp;
2377			if (rdp == rdp_spawn) {
2378				rdp = rdp->nocb_next_follower;
2379			} else {
2380				rdp_last = rdp;
2381				rdp = rdp->nocb_next_follower;
2382				rdp_last->nocb_next_follower = NULL;
2383			}
2384		} while (rdp);
2385		rdp_spawn->nocb_next_follower = rdp_old_leader;
2386	}
2387
2388	/* Spawn the kthread for this CPU and RCU flavor. */
2389	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2390			"rcuo%c/%d", rsp->abbr, cpu);
2391	BUG_ON(IS_ERR(t));
2392	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
 
 
2393}
2394
2395/*
2396 * If the specified CPU is a no-CBs CPU that does not already have its
2397 * rcuo kthreads, spawn them.
2398 */
2399static void rcu_spawn_all_nocb_kthreads(int cpu)
2400{
2401	struct rcu_state *rsp;
2402
2403	if (rcu_scheduler_fully_active)
2404		for_each_rcu_flavor(rsp)
2405			rcu_spawn_one_nocb_kthread(rsp, cpu);
2406}
2407
2408/*
2409 * Once the scheduler is running, spawn rcuo kthreads for all online
2410 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2411 * non-boot CPUs come online -- if this changes, we will need to add
2412 * some mutual exclusion.
2413 */
2414static void __init rcu_spawn_nocb_kthreads(void)
2415{
2416	int cpu;
2417
2418	for_each_online_cpu(cpu)
2419		rcu_spawn_all_nocb_kthreads(cpu);
2420}
2421
2422/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2423static int rcu_nocb_leader_stride = -1;
2424module_param(rcu_nocb_leader_stride, int, 0444);
2425
2426/*
2427 * Initialize leader-follower relationships for all no-CBs CPU.
2428 */
2429static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2430{
2431	int cpu;
2432	int ls = rcu_nocb_leader_stride;
2433	int nl = 0;  /* Next leader. */
 
2434	struct rcu_data *rdp;
2435	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2436	struct rcu_data *rdp_prev = NULL;
2437
2438	if (!cpumask_available(rcu_nocb_mask))
2439		return;
2440	if (ls == -1) {
2441		ls = int_sqrt(nr_cpu_ids);
2442		rcu_nocb_leader_stride = ls;
2443	}
2444
2445	/*
2446	 * Each pass through this loop sets up one rcu_data structure.
2447	 * Should the corresponding CPU come online in the future, then
2448	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2449	 */
2450	for_each_cpu(cpu, rcu_nocb_mask) {
2451		rdp = per_cpu_ptr(rsp->rda, cpu);
2452		if (rdp->cpu >= nl) {
2453			/* New leader, set up for followers & next leader. */
2454			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2455			rdp->nocb_leader = rdp;
2456			rdp_leader = rdp;
 
 
 
 
2457		} else {
2458			/* Another follower, link to previous leader. */
2459			rdp->nocb_leader = rdp_leader;
2460			rdp_prev->nocb_next_follower = rdp;
 
2461		}
2462		rdp_prev = rdp;
2463	}
2464}
2465
2466/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2467static bool init_nocb_callback_list(struct rcu_data *rdp)
 
 
 
2468{
2469	if (!rcu_is_nocb_cpu(rdp->cpu))
2470		return false;
 
 
 
 
 
 
 
 
 
 
2471
2472	/* If there are early-boot callbacks, move them to nocb lists. */
2473	if (!rcu_segcblist_empty(&rdp->cblist)) {
2474		rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2475		rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2476		atomic_long_set(&rdp->nocb_q_count,
2477				rcu_segcblist_n_cbs(&rdp->cblist));
2478		atomic_long_set(&rdp->nocb_q_count_lazy,
2479				rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2480		rcu_segcblist_init(&rdp->cblist);
2481	}
2482	rcu_segcblist_disable(&rdp->cblist);
2483	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484}
2485
2486#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2487
2488static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
 
2489{
2490	WARN_ON_ONCE(1); /* Should be dead code. */
2491	return false;
2492}
2493
2494static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
 
 
 
 
 
 
 
 
 
 
 
 
 
2495{
 
2496}
2497
2498static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2499{
2500}
2501
2502static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2503{
2504	return NULL;
2505}
2506
2507static void rcu_init_one_nocb(struct rcu_node *rnp)
2508{
2509}
2510
2511static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2512			    bool lazy, unsigned long flags)
 
 
 
 
 
 
2513{
2514	return false;
2515}
2516
2517static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2518						     struct rcu_data *rdp,
2519						     unsigned long flags)
2520{
2521	return false;
2522}
2523
2524static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2525{
2526}
2527
2528static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2529{
2530	return false;
2531}
2532
2533static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2534{
2535}
2536
2537static void rcu_spawn_all_nocb_kthreads(int cpu)
2538{
2539}
2540
2541static void __init rcu_spawn_nocb_kthreads(void)
2542{
2543}
2544
2545static bool init_nocb_callback_list(struct rcu_data *rdp)
2546{
2547	return false;
2548}
2549
2550#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2551
2552/*
2553 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2554 * arbitrarily long period of time with the scheduling-clock tick turned
2555 * off.  RCU will be paying attention to this CPU because it is in the
2556 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2557 * machine because the scheduling-clock tick has been disabled.  Therefore,
2558 * if an adaptive-ticks CPU is failing to respond to the current grace
2559 * period and has not be idle from an RCU perspective, kick it.
2560 */
2561static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2562{
2563#ifdef CONFIG_NO_HZ_FULL
2564	if (tick_nohz_full_cpu(cpu))
2565		smp_send_reschedule(cpu);
2566#endif /* #ifdef CONFIG_NO_HZ_FULL */
2567}
2568
2569/*
2570 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2571 * grace-period kthread will do force_quiescent_state() processing?
2572 * The idea is to avoid waking up RCU core processing on such a
2573 * CPU unless the grace period has extended for too long.
2574 *
2575 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2576 * CONFIG_RCU_NOCB_CPU CPUs.
2577 */
2578static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2579{
2580#ifdef CONFIG_NO_HZ_FULL
2581	if (tick_nohz_full_cpu(smp_processor_id()) &&
2582	    (!rcu_gp_in_progress(rsp) ||
2583	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2584		return true;
2585#endif /* #ifdef CONFIG_NO_HZ_FULL */
2586	return false;
2587}
2588
2589/*
2590 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2591 * timekeeping CPU.
2592 */
2593static void rcu_bind_gp_kthread(void)
2594{
2595	int __maybe_unused cpu;
2596
2597	if (!tick_nohz_full_enabled())
2598		return;
2599	housekeeping_affine(current, HK_FLAG_RCU);
2600}
2601
2602/* Record the current task on dyntick-idle entry. */
2603static void rcu_dynticks_task_enter(void)
2604{
2605#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2606	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2607#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2608}
2609
2610/* Record no current task on dyntick-idle exit. */
2611static void rcu_dynticks_task_exit(void)
2612{
2613#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2614	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2615#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2616}